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abstract

In this thesis three different approaches to the Winner Determination Prob-
lem (WDP) for Mixed Multi-Unit Combinatorial Auctions (MMUCA) are ex-
plored. The first, due to [Cerquides et al., 2007] is based on a traditional integer
programming approach. The second, due to [Uckelman and Endriss, 2007] is
based on constraint programing and the third is based on a division of the
original problem in two subproblems.

These two subproblems are the problem of finding an allocation that pro-
duces enough goods, and the problem of finding a sequence of the transfor-
mations in this allocation. It is shown that both problems are NP-complete.
However, in the case of an acyclic goods graph the problem of finding a se-
quence becomes trivial. This is also the case when any cycles present limit
themselves to just one good, i.e. the good occurs both in the input and in the
output of a transformations.

All three algorithms are tested using two different datasets. The first is cre-
ated using the generator described in [Vinyals et al., 2007] and discerns three
different types of transformations, input, output and input-output transforma-
tions. The second is created using a generator that discerns four different types
of transformations, namely input, output, structured and unstructured trans-
formations.

In terms of performance the results are not conclusive. Although the con-
straint programming approach does not perform very well, the performance of
both the integer programming approach and the division approach vary. In sev-
eral situations the latter is better and in other situations the former is better.
Furthermore, the influence of the number of transformations on the complexity
of the auction varies for the different datasets.

However, the results do show that structured auctions are easier to solve
than unstructured and hybrid auctions and that the division approach performs
much better on structured auctions.
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Chapter 1

Introduction

Auctions play an important part in our everyday life. They are used by the
government to distribute the available radio frequencies. Most of the fruit and
vegetables we eat and the plants we look at are bought at auctions at some
point in the processing chain. On a smaller scale many goods are traded using
auctions on sites like ebay.com or marktplaats.nl.

All these types of auctions have in common that there is an auctioneer that
wants to sell something and a set of bidders that want to buy it from the auc-
tioneer. The first extension of this situation is to allow several goods to be
auctioned at the same time, in such a way that the bidders can bid on combina-
tions of goods. Such an auction is called a combinatorial auction [Cramton et
al., 2006]. The second generalisation one can make is to allow goods to travel
both from the auctioneer to the bidder and vice versa. A bidder now no longer
bids on a set of goods, but on a set of “transformations”, where a transfor-
mation consists of a set of input goods and a set of output goods. The input
goods are given to the bidder by the auctioneer. The output goods are given
to the auctioneer by the bidder. An auction consisting of such transformations
is called a Mixed Multi-Unit Combinatorial Auction (MMUCA), and has been
introduced in [Cerquides et al., 2007].

In the end, everybody participating in an auction is interested in who wins
the auction. That is, everybody is interested in who obtains the goods offered
by the auctioneer or who is allowed to perform certain transformations. The
problem of finding this winner is called the Winner Determination Problem
(WDP). For standard auctions, the problem of finding a winner is relatively
easy. However, for combinatorial auctions the problem becomes very hard to
solve. This is due to the fact that the number of possible allocations increases
exponentially with the number of goods that are up for sale. The WDP for
MMUCAs has not yet been studied very thoroughly. In [Vinyals et al., 2007]
some experiments are performed on the WDP using an integer programming
approach. The tests are performed on a testset, generated with a generator
introduced in the same paper. Their results show that this approach is not
scalable.

The purpose of this thesis is to learn more about the WDP for MMUCAs.
To that end, two more methods of solving are introduced on top of the approach
introduced in [Cerquides et al., 2007]. A comparison of these three approaches
is made using both the testset generator introduced by Vinyals et al. [2007] and
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2 CHAPTER 1. INTRODUCTION

a new generator which is introduced in this thesis.

As has already been mentioned, the approach used by Vinyals et al. is based
on integer programming. Integer programming is a tool that is widely used in
the auctions community to solve the WDP for combinatorial auctions. The
problem of using this approach in the MMUCA case, is that it introduces a
quadratic number of variables in terms of the number of transformations in the
auction.

To remedy this two new approaches are introduced that are designed in
such a way that they reduce the amount of variables used. The first of these
approaches is based on the idea of constraint programming. Constraint pro-
gramming is a general technique in which one is able to define constraints over
sets of variables. The advantage of constraint programming over integer pro-
gramming is that the language that can be used to define constraints is much
more flexible. Using this flexibility, the constraint programming uses a linear
number of variables in terms of transformations present in the auction.

The second new approach uses the observation that the WDP for MMUCAs
can be divided into two different subproblems. This division of the WDP into
two subproblems is interesting in that it teaches something about what makes
the WDP for MMUCAs hard to solve. Furthermore, it is shown that both sub-
problems are NP-complete in their own respect.

Although the WDP for MMUCAs is NP-complete [Cerquides et al., 2007],
it is still interesting to see what the performances of several solutions are in the
case of realistic auctions. It might be the case that the problem is more easily
solvable for such transformations. To this end, a dataset must be created. Two
approaches to this are discussed in this thesis, both based on a different tax-
onomy of transformations. The first, taken from [Vinyals et al., 2007], discerns
three different types of transformations. The second discerns four different types
of transformations.

The rest of this thesis is structured as follows. In Chapter 2 the different
methods that can be used to solve the WDP are discussed. In Chapter 3 more
detail is given on auction theory. Chapter 4 discusses the WDP for MMUCAs.
In Chapter 5 the implementation of the different approaches are given and in
Chapter 6 these algorithms are evaluated experimentally. Finally, Chapter 7
contains the conclusions.



Chapter 2

Methods

A wide range of problems can be described using constraints. The purpose of
this Chapter is to introduce two different methods that can use constraints to
solve a problem. The first method that is discussed, integer programming, can
be used to solve a system of linear equations. The second method, constraint
programming, is a much more general approach that can handle a wide array
of constraints (including linear constraints).

Both methods have in common that the constraints must range over a set
of variables. However, the inner workings differ very much. For integer pro-
gramming fast and dedicated algorithms exists, whereas due to the generality
of constraint programming the performance can be slower. On the other hand,
constraint programming can be used to solve a wider array of problems and has
more freedom in the kind of constraints that are used.

In this thesis, both methods are used to analyze the winner determination
problem of mixed multi-unit combinatorial auctions. The WDP consists of a
set of constraints and the way these constraints are represented are of great
influence on the methods that can be used to solve the problem.

Integer programming is the method that is traditionally used to solve the
WDP for all types of auctions. Above that, it is a widely used tool in many
other fields. The use of constraint programming, on the other hand, is not as
wide spread. However, the greater flexibility in available constraints makes it
an interesting candidate for problems like the WDP.

The rest of this Chapter is structured as follows. In Section 1 integer pro-
gramming is introduced, and in Section 2 constraint programming is introduced.

2.1 Integer Programming

Integer programming is a modification of linear programming. Linear program-
ming, also called mathematical programming, involves the optimization of a
linear objective function, who’s variables are subject to linear equality and in-
equality constraints. Integer programming deals with the case where the vari-
ables are constraint to be integer.

In terms of complexity, there is a huge gap between linear and integer pro-
gramming. Where the former is solvable in polynomial time, the latter is known
to be NP-complete [Papadimitriou, 1981]. This complexity gap occurs because
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4 CHAPTER 2. METHODS

in solving an integer programming problem one is required to search, whereas
the solving of a linear programming problem can be done analytically.

The purpose of this section is to give some general information about integer
programming. Readers interested in the method should read [Eiselt et al., 2000]
for a more informal introduction. The more mathematically inclined reader is
referred to [Schrijver, 1986].

2.1.1 Linear programming

Remember that in high school, during math courses one had to solve questions
like

• calculate where 5x+ 6y = 10 and 4x+ 8y = 10 coincide.

• look at the graph depicted in Figure 2.1 and determine where the two
functions cross each other.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  0.5  1  1.5  2

line 1
line 2

Figure 2.1: A high-school example

Both questions deal with linear equations. The first in a symbolic way and
the latter in a geometrical way, but they are both sides of the same coin. In
general, a linear equation follows the following definition.

Definition 1 (Linear equations) A linear equation is of the form

a1x1 + . . .+ anxnOP b

Where a1, . . . , an, b ∈ R, x1, . . . , xn are variables ranging over the reals and
OP ∈ {=,≤}

In terms of geometry, a linear equation must be seen as either a hyperplane
or a halfplane in the Rn. That is, a1x1 + . . . + anxn = b defines a hyperplane
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which cuts the R2 into two separate pieces. These pieces are called halfplanes
and are defined by a1x1 + . . .+ anxn ≤ b and a1x1 + . . .+ anxn ≥ b.

A more succinct representation of linear equations can be found using vector
notation. For example, the equation 5x+ 6y = 5 can be written as

(56)
(
x
y

)
= 5

and represents a line in the R2. In general, a linear equation in vector notation
looks like

axOP b

where a is a row vector, x a column vector and b a real number. A set of linear
equations can now be written as a matrix equation. That is, the set of linear
equations

a1,1x1 + . . .+ a1,nxn ≤ b1
a2,1x1 + . . .+ a2,nxn ≤ b2

...
am,1x1 + . . .+ am,nxn ≤ bm

can be represented as the matrix equation
a1,1 . . . a1,n

a2,1 . . . a2,n

...
. . .

...
am,1 . . . am,n


 x1

...
xn

 ≤
 b1

...
bm


Given a matrix equation Ax ≤ b, the set of solutions to this equation is

defined as {x|Ax ≤ b}, i.e. the set of solutions determines a set of vectors
in Rn. Moreover, one can interpret {x|Ax ≤ b} as the intersection of a finite
number of half spaces. The resulting region is called a polyhedron.

Definition 2 (Polyhedron) A set of vectors P in Rn is called a polyhedron
if P = {x|Ax ≤ b} for some matrix A and some vector b.

The set of solutions to a system of linear equations thus constitutes a poly-
hedron. Geometrically, a polyhedron is a region in space. For example, in the
R2 a polyhedron may look like the region in Figure 2.2

An important property of a polyhedron is that it is convex. A region P
is convex if, for every two vectors x, y ∈ P , the line segment defined by these
two vectors lies inside P . The proof of the following proposition can be found
in [Schrijver, 1986].

Proposition 1 A polyhedron P is convex.

Each point that lies inside the polyhedron is a solution to the original set of
linear equations. However, linear programming is not concerned with finding
just one solution. It wants to find the optimal solution given some vector c.
That is, one tries to find maxx{cx|Ax ≤ b}.
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Figure 2.2: A polyhedron in R2

Let’s go back to the geometrical interpretation for a second. Given some
scalar δ, {x|cx = δ} determines a hyperplane. Finding the optimal solution now
is equivalent to finding the hyperplane with the highest δ that intersects the
polyhedron. In the case of the polyhedron in Figure 2.2, let

c =
(

2
3

)
then {x|cx = δ} determines a line in the R2 and finding an optimal solution
amounts to shifting the line over the region in the direction of improvement
until the line with the highest δ has been found. Note that there will always be
only one direction of improvement.

In the two-dimensional case, it is easy to see that the ‘optimal’ line must
intersect with a corner point. For a generalization to the higher dimensional
case, the reader is referred to §7.2 in [Dantzig, 1963].

Thus, in order to find an optimal point, one only has to visit the vertices.
Even more, one can show that the number of vertices is finite. The first to have
this insight was Fourier [Fourier, 1827]. It was algebrized by Dantzig [Dantzig,
1963], who gave the basis for the Simplex algorithm. The Simplex method is
still the most popular algorithm used to solve linear programming problems.

2.1.2 Integer programming

The Simplex algorithm can be used to solve a system of equations, but it cannot
be used to solve a system of equations that demands an integer solution. This
is due to the fact that, in general, a vertex is not integer. Therefore, finding
such an optimal integer solution requires searching. Several methods have been
designed to do this. In this treatment one of them, the branch and bound
algorithm, is explored in some detail.
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Figure 2.3: An integer programming problem

The basic idea behind the branch and bound algorithm is to first find a so-
lution to the problem without the integrality constraints, and use this solution
as a starting point to find an integer solution. How this actually works is best
explained using an example. Suppose one has the following problem

z = maxx1,x2{x1 + x2}
s.t. 4x+ y ≤ 4

x+ 2y ≤ 4
x, y ∈ N

Geometrically, the solution must lie in the black area depicted in Figure 2.3
The first step is to relax the problem. That is, the problem is adjusted by

replacing the integrality constraint for x and y with x ≥ 0 and y ≥ 0. Next, the
solution to this relaxed problem is calculated. In this case, the optimal solution
is {x = 0.571 , y = 1.714, z = 2.286}. If one looks at Figure 2.3, one can see that
this point lies on a vertex of the polyhedron.

The next step is to choose a variable that does not have an integer solution,
and use the optimal value of this variable to split the problem in two new
problems by adding extra constraints. In our example, x = 0.571. Since x
must be an integer, it is either the case that x ≤ 0 or x ≥ 1. Adding the first
constraint results in the optimal solution {x = 0, y = 2, z = 2}. Adding the
second constraint results in the optimal solution {x = 1, y = 0, z = 1}. Note
that both solutions are integer solutions. The solution with the highest value for
z is {x = 0, y = 2} and constitutes the optimal solution to the original problem.
In most cases, one does not find an integer solution in the first step, and one
has to repeat the previous steps several times.

This splitting operation results in a tree that has to be searched. Each
node in the tree constitutes a linear problem, and the splitting constitutes the
branching part of the branch and bound algorithm. The bounding part operates
on the following two observations. First, a solution that does not produce integer
values for the variables gives an upper bound on the final optimal value. That
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is, since the non-integer solution is optimal, an integer solution cannot produce
a higher optimal value. Second, an integer solution produces a lower bound for
the optimal value, because one is not interested in z values that are lower than
the value already found.

Using this bounding, parts of the search tree can be pruned away. That is,
if at some node the optimal value is lower than what has already been found,
all the nodes below this node can be discarded for the simple reason that none
of his children can produce a higher z value.

As a final note, the way in which the tree is actually expanded can vary and
depends on the problem at hand.

2.2 Constraint programming

This section is based on [Apt, 2003]. Constraint programming is a method one
can use to solve a wide range of problems. The sole requirement is that they
must be representable in the form of constraints over a set of variables. Good
examples are scheduling problems, construction problems but also crossword
puzzles or sudokus.

In general, constraint programming consists of two different tasks. First,
the problem must be modelled. This means that one has to determine which
variables are to be used, what their respective domains are and in what language
the constraints must be specified. The second task is to solve the problem
using the model created in the previous step. Obviously, the solving stage is
strongly influenced by the modeling phase. That is, the types of domains and
the constraint language used determine what kind of solving methods can be
used.

In solving a CSP one can choose to use a specific solving method that is
designed for a specific type of constraint problem, or one can use a more general
approach. A good example of a specific type of solver is a solver based on the
Simplex algorithm. In this Section, the more general approach is introduced.

2.2.1 Modelling phase

The first step in solving a problem using constraint programming (CP) is to
determine the variables, the domains of these variables and the language in
which the constraints over the variables are specified. For example, look at the
sudoku puzzle shown in Figure 2.4. A traditional sudoku consists of nine large
squares that are all subdivided into nine smaller squares. Each small square can
be filled with a number ranging from 1 to 9. However, the way these squares
can be filled is restricted. That is, collections of nine small squares that together
form one large square must all contain different numbers. Furthermore, a single
number is not allowed to occur more than once in a column or a row.

To model such a sudoku, each small square is assigned a variable xi,j where
i is the horizontal coordinate, j the vertical coordinate and x0,0 points to the
lower left small square. The domain of each variable is [1 . . . 9]. Thus, each
variable is an integer variable. As far as constraints are concerned, one needs a
way to define that a sequence of variables all have a different value. This can
be done by either using the 6=, or by a special constraint called alldifferent. In
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5 1

8 4

2

6 9 5 8

3

1 9 7 2

8 2 1 3

3 4 8 9

6 7 2

Figure 2.4: Sudoku

case of the Sudoku in Figure 2.4, this results in the following model consisting
of the variables

x0,0 ∈ [1 . . . 9], . . . , x8,8 ∈ [1 . . . 9]

And the constraints
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alldifferent(x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x2,0, x2,1, x2,2)
alldifferent(x0,3, x0,4, x0,5, x1,3, x1,4, x1,5, x2,3, x2,4, x2,5)
...
alldifferent(x6,6, x6,7, x6,8, x7,6, x7,7, x7,8, x8,6, x8,7, x8,8)

alldifferent(x0,0, x0,1, . . . , x0,8)
alldifferent(x1,0, x1,1, . . . , x1,8)
...
alldifferent(x8,0, x8,1, . . . , x8,8)

alldifferent(x0,0, x1,0, . . . , x8,0)
alldifferent(x0,1, x1,1, . . . , x8,1)
...
alldifferent(x0,8, x1,8, . . . , x8,8)

x0,4 = 5
x0,5 = 1
...
x8,8 = 2

In general, a model is called a Constraint Satisfaction Problem (CSP), and
has the following form.

Definition 3 (Constraint Satisfaction problem) Given a sequence of vari-
ables X = x1, . . . , xn and their respective domains Di, a CSP is of the form
〈C,BE〉. BE = {x1 ∈ D1, . . . , xn ∈ D1} and C is a set of constraints, where a
constraint C over variables xi1 , . . . , xim is of the form C ⊆ Di1 × . . .×Dim .

In the end, one is interested in a solution for the problem. Before the notion
of a solution can be discussed, the following concepts need to be introduced.
First, a specific constraint C over the variables xi1 , . . . , xim

is called a solved
constraint if C = Di1× . . .×Dim

, with m > 0 and each Dik
is non-empty. That

is, the constraint and the domains coincide In the case of m = 0, the only two
constraints that are allowed are ⊥ and >. The former is always false and the
latter is always solved. A CSP is called solved if all its constraints are solved.
If, given some CSP, either one of its constraints is ⊥ or one of the variables has
an empty domain, this CSP is called failed.

A solved CSP, however, is not equal to a solution. In short, a solution is an
assignment of values to variables such that each constraint is satisfied. More
formally.

Definition 4 (Solution) Take a CSP 〈C,BE〉, where BE = {x1 ∈ D1, . . . , xn ∈
Dn}. Then an assignment is a tuple (d1, . . . , dn) ∈ D1×. . .×Dn. A constraint C
over the variables xi1 . . . , xim

is satisfied by an assignment if (di1 , . . . , dim
) ∈ C.

A solution is an assignment (d1, . . . dn) that satisfies all constraints in C

If it is possible to find a solution to a CSP, it is called consistent . A CSP
that does not have any solution is an inconsistent CSP.



2.2. CONSTRAINT PROGRAMMING 11

2.2.2 General method

After the modelling phase is completed, the next step is to find a solution.
Given a CSP 〈C, x1 ∈ D1, . . . , xn ∈ Dn〉, a solution merely is an element in
D1 × . . . × Dn. A naive way of finding a solution is to just enumerate all
the possible assignments and check whether they satisfy all the constraints.
However, the number of possible assignments grows exponentially in the size of
the domains, which makes this method highly inefficient. In order to increase
efficiency, one has to find a way to reduce the search space. That is, one has to
find a way in which one can reduce the size of the domains without loosing any
solutions.

The key idea now is that one can transform a CSP to a form that is easier to
solve. In general, there are two types of transformations. First, the information
contained in the constraints can be used to create a new CSP. That is, one
transforms the CSP to another, equivalent CSP. Second, one can take a CSP
and cut it up in several smaller CSPs, under the condition that the union of
these smaller CSPs is equivalent to the original CSP. That is, every solution to
the original CSP is a solution to one of the smaller CSPs, and every solution to
one of the smaller CSPs is a solution to the original CSP.

The former method is called constraint propagation and is performed by
constraint solvers. The latter method is called splitting. In constraint program-
ming, both methods are applied in an alternating method, resulting a tree like
structure.

2.2.3 Constraint solvers

The purpose of a constraint solver is to transform a CSP to an equivalent CSP
that is easier to solve. Such a transformation is performed by a proof rule, which
has the following form

φ

ψ

Here both φ and ψ are CSPs. If φ and ψ are equivalent, such a proof rule is
called equivalence preserving.

A CSP can be changed in two different ways. One can use the information
contained in the constraints to reduce the domains of certain variables. Rules
that perform this kind of transformation are called domain reduction rules.

The second type of rule, called a transformation rule, can be used to simplify
certain constraints by adding new variables and new constraints. Finally, no
rule is allowed to remove any variable because that would make it possible for
a non-solution to become a solution.

In general, a proof rule deals with one type of constraint while a CSP nor-
mally contains different types of constraints. An application of a proof rule must
therefore be defined in such a way that it only affects the variables in the con-
straint on which the rule must be applied. Do note that affecting some variable
domains means that other constraints over these variables must be adapted as
well.

It is not always the case that the application of a rule has an effect, i.e.
sometimes the CSP in the premise and the conclusion are not only equivalent,
but also identical. If this is the case or a rule R cannot be applied on a CSP,
this CSP is closed under the application of R. If the application of a rule R
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does have an effect, i.e. the resulting CSP differs from the original CSP, the
application of rule R is dubbed relevant.

A constraint solver consists of a finite set of rules. A sequence of applications
of rules in a constraint solver produces a sequence of CSPs. This sequence is
called a derivation. A derivation is successful if the last CSP is the first CSP
that is solved, failed if the last CSP is the first failed CSP and stabilizing if the
last CSP is closed under all the rules in the constraint solver used.

Ideally, one wants to have either a successful or a failed derivation. However,
in most cases the best one can do is to create a stabilizing derivation. The last
element in such a stabilizing derivation is not necessarily consistent. Therefore,
most constraint solvers do not aim for consistency. Instead, one usually tries to
design a constraint solver in such a way that it always derives a CSP that satisfies
a notion of local consistency. The purpose of this is that local consistency,
although it does not imply overall consistency, does make it easier to find a
solution.

2.2.4 Searching

In general constraint propagation is not able to produce a solved CSP. Recall
that it is possible to split a CSP into several smaller CSPs. With splitting,
it is meant that the domain of a certain variable is chopped into little pieces.
Each new subdomain can then be used to replace the old domain, creating a
new CSP. Constraint propagation can be applied on these smaller CSPs, which
on their turn can be split. This can continue until a solution is found or all
possibilities are exhausted.

Figure 2.5: Search tree

A CSP can be split in various ways, but no matter what splitting method
is used, the result is a tree like structure. In this tree, the original CSP is the
root, each node at an uneven depth is the result of constraint propagation and
each node at an even level is the result of splitting, see Figure 2.5. With the
tree structure comes the problem of finding a leaf that contains a solved CSP.
In other words, the tree must be searched. The usual search methods can be
applied to navigate the tree. The interested reader is referred to [Apt, 2003]
for more information on the role of searching in constraint programming.
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2.2.5 Constraint optimization

Above, it is discussed how to find a solution to a CSP. However, in this thesis
constraint programming is not used to find just any solution to a CSP, but an
optimal solution. In general, such problems are called Constraint Optimization
Problems (COP). Which solution is the best is decided using some objective
function f : D1 × . . . × Dn 7→ R. Again, a naive method is to find all the
solutions, calculate their respective f -values and determine the solution with
the highest f -value. However, in traversing the tree certain parts of the tree are
not interesting because they do not contain any solution with a f -value higher
than the value already found. Such parts can thus be discarded in search for
the optimal solution.

A search algorithm that uses this observation in order to prune the tree is
the branch and bound algorithm. The variation of the algorithm that is used in
this thesis traverses the search tree in a depth first manner. Each time it finds
a solution it calculates its f -value and updates the bound for the optimal value.
It only enters a branch that has the possibility of producing a solution with a
higher f -value than has been found before.

2.3 Summary

Two methods have been introduced, integer programming and constraint pro-
gramming. Both methods can be used to solve problems that consist of a col-
lection of constraints. In integer programming, these constraints come in the
form of linear equation. In constraint programming, the constraints can take
on any from.

Integer programming is a modification of linear programming in which one
adds integrality constraints. This turns it from a polynomial time problem to an
NP-complete problem. Linear programming is used to find an optimal solution
to a system of linear equations w.r.t. an objective linear function. One can
show that an optimal solution must lie on one of the vertices of the polyhedron,
defined by the system of linear equations. To find such a vertex, the Simplex
algorithm has been developed. However, the Simplex algorithm only works if
all the variables are allowed to take a non-integer value. In the case of integer
constraints, the Simplex algorithm is used to find an initial solution that can be
used as a starting point to search for an integer solution. The search algorithm
that is used in this thesis is the branch and bound algorithm.

Constraint programming can handle a wide array of constraints. Where in
integer programming the constraint language is fixed, choosing it constitutes
an important decision in the constraint programming setting. This decision is
part of the modeling process of constraint programming. Modeling a problem
consists of deciding the variables, their domains and the constraint language over
these variables. The end product is a constraint satisfaction problem (CSP).

The idea behind constraint programming is that one can use the information
contained in the constraints to reduce the domains of the variables without
searching. This reduction is performed by a constraint solver. A constraint
solver consists of a set of transformation rules. However, in general a constraint
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solver is not able to find a solution. Therefore, at some point a CSP must
be split into several smaller CSPs on which the constraint solver can again be
applied. This process of propagation and splitting results in a search tree that
must be search for a solution.

If one is interested in the optimal solution to some problem, one can use
several different search methods. The method used in this thesis is the branch
and bound algorithm.



Chapter 3

Auctions

Auctions have been around for quite some time. According to the history books,
the old Greeks used auctions to sell their women and Roman soldiers used
auctions to sell their loot. During the French revolution, the common people
used auctions to sell goods in taverns and bars, and today everybody can start
an auction selling almost everything. Just think about eBay.com. This site
enables everybody that has access to internet to either start or participate in
an auction.

But it is not just ordinary people that use auctions. Even governments use
auctions to sell radio or UMTS frequencies. Airports use them to allocate gates
to airlines and some cities uses auctions to allocate bus-routes to bus companies.

As illustrated by the above examples, in today’s world auctions play an
important role. Therefore, it is important to understand what makes auctions
tick. As a reaction to this need, the field of auction theory developed in the
economic community in the 1960-1970 and has developed since. The goal of
this chapter is to provide an introduction to auction theory, more specifically,
to provide some details on combinatorial auctions and its generalisations.

The rest of this chapter is structured as follows. In Section 1, auction the-
ory is introduced. In Section 2, the notion of a combinatorial auction is dis-
cussed. In Section 3, the winner determination problem for combinatorial auc-
tions is treated. Finally, in Section 4 Mixed-Multi-Unit Combinatorial Auctions
(MMUCA’s) are introduced.

3.1 Auction theory

This section is based on Chapter 1 of [Klemperer, 2004]. Many different types
of auctions are in use today. The most notable being the first-price sealed
bid auction, the second-price sealed bid auction, the ascending bid or English
auction and the descending bid or Dutch auction. All these auctions deal with
a set of bidders, bidding for a single item.

The first-price sealed bid auction is an auction where all the bidders make
their bid simultaneously and anonymously. The winner is the bidder with the
highest bid and he must pay the value of its bid. The second-price auction is
almost similar, except that the winner pays the value of the bid of the runner

15
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up.
The ascending bid auction is an auction where the price is successively raised

until only one bidder remains. This bidder is the winner and he must pay the
final price. In a descending bid auction the price is successively dropped until
one bidder calls in. That is, the price is dropped until one bidder accepts the
current price. This bidder then is awarded the item for the current price.

Basically, in an auction one can discern two groups of players. On the one
hand there are the bidders that each have a valuation for the good on sale. This
valuation determines their bidding strategy. On the other hand we have the
auctioneer. The auctioneer decides on the type of auction being held. Having
two groups also means having two perspectives. From the bidder’s perspective,
the problem of solving an auction is equivalent to determining one’s bid. From
the auctioneer’s perspective, the problem is twofold. First, he has to decide on
the type of auction, and second, he must determine the winner of the auction

3.1.1 The bidder’s point of view

In any auction, the sole task of the bidder is to determine the height of his bid.
In making this decision, a bidder must take into account his actual value for the
item on sale, but also his chances of winning, given a certain bid.

In terms of value, one can discern two types of auctions. The bidder’s value
is either private, i.e. each bidder only knows her own value, or the value is in
some degree common. The former is called the private-value model and the
latter the common-value model. In the common-value model, each bidder’s
value depends, to some degree, on the information possessed by him and other
bidders. In this case, it becomes important whether a bidder is allowed to know
other bidders’ information or not.

The term pure common-values is used for the case where each bidders’ value-
function is an identical function dependent on the information it possesses, i.e.
in principle all the bidders have the same value for the object on sale. However,
they do not necessarily posses the same information.

In determining ones bid a bidder does not only need to take into account its
own information and, possibly, the information of other bidders. He must also
determine whether it pays to form a coalition with other bidders. That is, it
might be profitable for a coalition of bidders to cooperate and make agreements
on the division of profit.

3.1.2 The auctioneer’s point of view

From an auctioneer’s point of view, three things are important. First of all,
the auctioneer wants to maximize its revenue. That is, when choosing a winner
he wants to maximize his income. Second, the auctioneer wants that all the
bidders report their true value. Third, the auctioneer wants to prevent bidders
from forming a coalition.

The last two points are related to the first one in that, if it is either the case
that some bidder does not report his true valuation or that several bidders form
a coalition the auctioneer might not be able to maximize his revenue.
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The first type of auction that has been thoroughly investigated by economists
is the Vickrey auction. In [Vickrey, 1961], W. Vickrey investigated the properties
of a second-price sealed bid auction, also known as the Vickrey auction.

The biggest virtue of the Vickrey auction is that truthful reporting of ones
values is a dominant strategy. To see why this is the case, note that the bidder’s
payoff is defined by the bidder’s true valuation, and the bid made by the runner
up. This means that a bidder will not be able to raise his payoff by changing
its bid. Thus, since not reporting truthfully cannot improve a bidder’s payoff
but might harm it, he is inclined to report its true valuation.

In fact, the Vickrey auction is not only an example of an auction where
truthful reporting is the dominant strategy. Under certain assumptions, one can
prove that it is the unique mechanism that has truthful reporting as its dominant
strategy [Green and Laffont, 1979; Holmstrom, 1979]. The distinguishing factor
in a Vickrey auction is the way its prices are calculated.

As already mentioned, the main goal of the auctioneer is, usually, to maxi-
mize its own revenue. This means that he must be able to identify the bidder
that, if chosen as winner, results in the highest revenue. In the case of the first-
price and second price sealed bid auctions, this amounts to choosing the bidder
with the highest bid. In the case of the descending or ascending price auction,
the winner will simply announce itself. The process of finding the winner is
incorporated in the auction design.

In general, the problem of finding an allocation that maximizes the auction-
eer’s revenue is called the Winner Determination Problem (WDP).

3.2 Combinatorial auctions

Where the previous section dealt with single-item auctions, the present deals
with auctions ranging over several items, also called combinatorial auctions.
This Section only mentions some general results concerning combinatorial auc-
tions. For a thorough overview, see [Cramton et al., 2006].

The main difference between single item auctions and combinatorial auc-
tions, is that in the latter the bidder is allowed to bid not only on a single item,
but on a bundle of items. Such an auction is useful in the case where a com-
bination of different items is worth more to a bidder than the individual items
themselves. A nice, real world example of an auction where a combination of
several goods can have an added value is the auctioning of radio spectra. A
licence for, say the Amsterdam area is worth much more to a company if it also
has licences for adjacent regions. It would not be beneficial for a radio operator
to have gaps or holes in the area he covers.

Giving the bidders the possibility to bid on bundles of items allows them to
better report their valuations. However, this enrichment also has its influence
on the complexity of the auction. From the bidder’s point of view, it gets much
harder to determine its bids due to the explosion of combinations. An auction
over k items results in 2k different bundles. For example, 10 items result in
210 = 1024 different bundles. From the auctioneer’s point of view, combinatorial
auctions are both harder to design and to solve. This has resulted in several
different auction designs. The following elements are found in all of them.

Definition 5 (Combinatorial auction) A combinatorial auction consists of
a set of bidders N = {1, ..., n} and a set of goods G. A bundle S ⊂ G is a set of
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goods, and vi(S) denotes the valuation of bidder i for bundle S. Furthermore,
Fi denotes the set of bundles over which bidder i reports a bid.

Definition 6 (Allocation) An allocation x is a vector such that xi ⊆ G repre-
sents the set of items obtained by bidder i. An allocation is a feasible allocation
if ∀g ∈ G

∑
i∈N xi(g) ≤ 1.

A typical and well studied example of a combinatorial auction is the Vickrey-
Clarke-Groves auction [Clarke, 1971; Groves, 1973]. As the name already hints,
the VCG auction is based on the single item Vickrey auction. All the bidders
simultaneously make a bid on each possible bundle of items. The price the
winners have to pay is determined by looking at the same auction, but ignoring
the winning bidders. This results in the following definition.

Definition 7 (VCG winning allocation) Let v̂i be bidder i′s bid, the win-
ning allocation x∗ is defined by

x∗ ∈ argmaxx1,...,xn

∑
i

v̂i(xi)

Definition 8 (VCG auction) Let v̂i be bidder i′s bid and let x∗ be the win-
ning allocation of some combinatorial auction. Then bidder i’s payment pi is cal-
culated as pi = αi −

∑
j 6=i v̂j(x∗j ), where αi = max{

∑
i 6=j v̂j(xj)|

∑
i 6=j xj ≤ 1}.

Note that there is a difference between v and v̂. The former denotes a bid-
der’s true valuations, whereas the latter denotes the bidders reported valuation.

To give a better idea of what happens in a VCG auction, suppose there are
two goods, A and B. Furthermore, suppose that there are two bidders, 1 and 2
with the bids

v̂1(A) = v̂1(B) = 10
v̂1(AB) = 25
v̂2(A) = 5
v̂2(B) = 10
v̂2(AB) = 20

The allocation that maximizes the auctioneer’s revenue results in bidder 1
winning all the items. Now suppose that bidder 1 would not participate in
the auction, then giving both A and B to bidder 2 maximizes the auctioneer’s
revenue. This means that bidder 1 has to pay v̂2(AB) = 20.

However, suppose that v̂1(A) = 13 and v̂2(B) = 13. This results in bidder 1
receiving good A for a price of v̂2(AB)− v̂2(B) = 7 and bidder 2 receiving good
B for a price of v̂1(AB)− v̂1(A) = 12.

Just as in the single item case, the VCG auction as defined above has truth-
ful reporting as a dominant strategy. However, the VCG auction comes with
some flaws. It can result in a low revenue for the auctioneer, the sellers revenue
is non-monotonic in the set of bidders and the amount of bids, it is vulnerable
to coalition forming and it is vulnerable to the use of multiple bidding identities
by a single bidder. To overcome the complexity of the standard combinatorial
auction and weaknesses of the VCG auction, several other auctions designs have
been proposed. See Chapter 1 of [Cramton et al., 2006] for an analysis of these
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weaknesses.

As a final note, the combinatorial auction as defined in Definition 5 deals
with single-unit CAs. That is, each unit occurs exactly once. In the multi-unit
case, the available goods are not represented by a set, but by a multiset of goods.
The definition of a combinatorial auction now becomes:

Definition 9 (Multi-Unit Combinatorial Auction) A multi-unit combina-
torial auction consists of a set of bidders N = {1, ..., n} and a multi-set of goods
M = {G, σ}, where G is a set of goods and σ : G 7→ N is a function that maps
goods to their multiplicity. A bundle S ⊆ M is a multiset of goods, and vi(S)
denotes the valuation of bidder i for bundle S. Furthermore, Fi denotes the set
of bundles over which bidder i reports a bid.

3.3 WDP for combinatorial auctions

The explosion of the valuation function of different bidders makes the WDP for
combinatorial auctions hard to solve. In fact, in general it is NP-hard [Rothkopf
et al., 1998]. This is due to the combinatorial property of the set of possible bun-
dles. However, the bidding language can have an influence in certain restricted
cases.

3.3.1 Bidding languages

A bidding language is a language in which the bidder is allowed to specify
its bids. For a general overview, see Chapter 9 from [Cramton et al., 2006]
and [Nisan, 2000]. Just as there are different types of auctions, there exist
different types of bidding languages. The bidding language determines the types
of valuations that are representable. In this section, three general types of
bidding languages are introduced. These are the atomic bids, the OR bids and
the XOR bids. Most other existing languages are combinations of these three.
All the results discussed below apply to the single-unit case only.

In general, a bidding language provides a succinct representation of a val-
uation. That is, a bidding language does not require a bidder to report his
valuation for every possible bundle. In what way a bid represents the value for
a missing bundle is partially defined by whether or not a bidder is willing to
accept more items than he asks. This is formalized in the notion of free disposal.

Definition 10 (Free disposal) A bidder satisfies free disposal if it is willing
to accept more goods without demanding a change in payment.

The atomic bid language

The simplest bidding language is the atomic bid language, also called the single-
minded language. Using this language, a bidder can submit a pair (S, p), where
S is bundle and p is the price that the bidder that submits this bid is willing to
pay for S. In the case of free disposal, the valuation for a bundle T is v̂(T ) = p
if S ⊆ T and v̂(T ) = 0 otherwise. Without free disposal, the ⊆ can be replaced
with =.
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The OR language

The OR bidding language is already more powerful than the atomic bid lan-
guage. Using the OR language, a bidder can submit a set of atomic bids (Si, pi).
In reporting such a set, the bidder states that he accepts any combination of
disjoint atomic bids in the set for the sum of their respective prices. In terms of
the valuation represented by a bid, for a bundle T , v̂(T ) is the maximum over
all possible valid combinations of bundles W , of the value

∑
Si∈W pi. W is a

valid combination if for all Si, Sj ∈W with i 6= j, Si

⋂
Sj = ∅. In other words,

to calculate the valuation of some bundle T , one has to find the combination of
bids with the highest combined value who’s bundles form a subset of T . Again,
in the case without free disposal a combination W is valid if

⋃
W = T .

The XOR language

Although the OR language is more expressive than the atomic language, it
still cannot express all the possible valuations. For full expressivity, the XOR
language must be used. As in the OR language, a bid consists of a set of atomic
bids (Si, pi). However, in this case a bidder is willing to accept only one of
the atomic bids in the set. In the case of free disposal, for any bundle T , v̂(T )
is defined as maxpi|Si⊆T pi. The XOR language with free disposal is able to
represent all monotonic valuations.

Definition 11 (Monotonic valuation) A valuation v is monotonic if and
only if v(S) ≤ v(S′) implies S ⊆ S′.

Without free disposal, the XOR language is able to represent all possible
valuations. The biggest drawback of the XOR representation, however, is that
it is not very succinct. In fact, the number of atomic bids that is needed to
represent a certain valuation can explode in an exponential way.

In the multi-unit case, the XOR-language is not fully expressive anymore.
This is due to the fact that in this situation there are an infinite number of
possible bundles, making it impossible to create one single XOR statement that
contains all the bundles.

3.3.2 Problem formulations

The WDP is the problem of finding the allocation that maximizes the social
welfare. That is, it tries to solve the following equation

x∗ = maxx1,...,xn

∑
i

v̂i(xi)

under the condition that ∀g ∈ G
∑

i∈N xi(g) ≤ 1. There are several ways to
solve this problem. The formulations below are valid in the single-unit case.
However, they are easily generalizable to the multi-unit case.

Integer Programming

The first method is to describe the problem using a set of equations, and then
solving these equations using the methods developed in the field of Integer
Programming (IP). IP is discussed in Chapter 2. The exact description of the
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problem depends on the bidding language used. In the case of the OR language,
a different representation of the allocation must be used. Instead of using a
vector, an allocation is represented as a set of variables xi(S) for each possible
bundle S ⊆ M and each bidder i. xi(S) = 1 means that bidder i is awarded
bundle S. The WDP is formalized as:

Definition 12 (WDPOR)

maxx1,...,xn

∑n
i=1

∑
S⊆M v̂i(S)xi(S)∑n

i=1

∑
S⊆M ,g∈S xi(S) ≤ 1 ∀g ∈ G

xi(S) ∈ {0, 1}

Note that in this definition, a bidder can receive different disjoint subsets. If,
instead of the OR language the XOR language is used, a third equation must be
added that ensures that each bidder cannot be assigned more than one bundle.
This results in the following formalization.

Definition 13 (WDPXOR)

maxx1,...,xn

∑n
i=1

∑
S⊆M v̂i(S)xi(S)∑n

i=1

∑
S⊆M ,g∈S xi(S) ≤ 1 ∀g ∈ G∑

S⊆M xi(S) ≤ 1 ∀i ∈ N

xi(S) ∈ {0, 1}

Note that each sum over all the subsets results in an exponential blowup, in
terms of the size of M .

Intersection graphs

Another representation that can be used to solve the WDP is the notion of an
intersection graph. Let G = (U,E) be a graph, with U a set of nodes and E a set
of edges. For this representation to work, each item in M must be interpreted as
a unique item. Thus, M becomes equal to a normal set. Each node u ∈ U now
represents a bid v̂i(S) for S ∈ Fi, and an edge between two nodes represents
a conflict between two bids. In the case of the OR language, two bids are in
conflict if they both contain the same item. In the case of the XOR language,
two bids are in conflict if they either overlap, or are made by the same bidder.
The value of each bid is represented with a weight. That is, each node u, linked
to bid v̂i(S) gets the weight wu = v̂i(S) attached.

Using this representation, an allocation is represented by a set of nodes that
are not connected with each other. In graph theory, such a set of nodes is called
a stable set. The problem of finding the winner now equals the problem of
finding the maximum weighted stable set. That is, an unconnected set of nodes
that maximizes the sum of their respective weights.
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3.4 Mixed Multi-Unit Combinatorial Auctions

The types of auctions introduced above all dealt with an auctioneer that wanted
to sell items, and a set of bidders that wanted to buy an item. The case of a
reversed auction, where the bidders sell items and the auctioneer wants to buy
items, follows that same reasoning. In each case, the flow of goods is one way,
either from the auctioneer to the bidder, or vise versa.

Mixed Multi-Unit Combinatorial Auctions (MMUCA), introduced in
[Cerquides et al., 2007], are a generalization of both types of auctions. That is,
in a MMUCA goods can flow both ways. A nice example is the construction
of a car. Suppose that you, as an auctioneer, have all the items to build a
car. However, you do not not have the faintest clue of how to actually build a
car. To this end, you organize an auction where auto mechanics can bid on the
assignment (or a sub assignment) of building a car. For example, one mechanic
can submit a bid for building the engine, while another mechanic can opt for
constructing the wheels. The main characteristic is that each bid consists of
some items going to the bidder, and some items going to the auctioneer. This
bring us to the definition of a transformation.

Definition 14 (Transformation) Let G be the set of goods that is available
in the auction. Then a transformation is a pair of multisets over G. That is, a
transformation is a pair of multisets (I,O) ∈ NG × NG.

In the setting of a MMUCA, an agent can bid on a bundle of transformations.

Definition 15 (Bundle) A bundle S is a multiset of transformations. Thus,
a bundle S is an element of N(NG×NG).

For example, the bundle {({}, {a}), ({b}, {c})} means that an agent that
submits a bid for this bundle is able to deliver a and produce c if it is presented
with b. Recall that in section 3.3.1, several bidding languages where introduced
that could be used by a bidder to convey its valuation function. From the
information in the bid, its entire valuation function could be reproduced using
the notion of a subset. That is, the value of some bundle was determined
by finding out whether it contained some bundle for which the valuation was
known. In the case of transformations, it is not possible to use the normal subset
relation. Therefore, the notion of subsumption is introduced.

Definition 16 (Subsumption) Given two transformations (I,O) and (I ′,O′),
(I,O) is said to be subsumed by (I ′,O′) iff I ⊆ I ′ and O ⊇ O′. Extended to
bundles, the subsumption relation becomes as follows

Let S, S′ ∈ N(NG×NG) be two bundles. S subsumes S′, denoted by S v S′ iff:

1. S and S′ have the same cardinality: |S| = |S′|

2. There exists a surjective mapping f : S 7→ S′ such that, for all transfor-
mations t ∈ S, we have that t v f(t)
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3.4.1 Bidding languages

Atomic bids

The simplest possible bidding language is the language consisting of atomic bids.
Just as in the normal combinatorial auction, an atomic bid Bid in a MMUCA
consists of a bundle of transformations S, combined with a price p, i.e. Bid
= (S, p) . From a collection of atomic bids over transformations a bidder’s
valuation can be obtained.

XOR bids

In this treatment, the WDP for MMUCAs is investigated in terms of the XOR
language. Therefore, only the XOR language is treated. Also, most bidding
languages can be represented using an XOR bid (see [Cerquides et al., 2007]),
thus looking only at the XOR language does not effect the expressivity available.

A XOR bid basically is a combination of atomic bids, with the restriction
that the bidder is willing to accept exactly one of the atomic bids in the bid.
So, let Bid = Bid1 XOR ... XOR Bidn be a bid, with Bidi being an atomic
bid, then the valuation defined by Bid is

vBid(S) = max{vBidi(S)|i ∈ {1, ..., n}}

Just as in combinatorial auctions, the presence of free disposal has an influ-
ence on the expressivity of the language. However, since both the bidder and
the auctioneer can receive goods, the definition must be adjusted to the new
situation.

Definition 17 (Free disposal) Both a bidder and an auctioneer can follow
the assumption of free disposal . On the bidders side, free disposal amounts to
the fact that the bidder is always prepared to accept more goods, and give fewer
goods away without wanting a change in payment. On the auctioneer’s side, free
disposal means that the auctioneer is willing to accept more goods and give less
goods away.

The former influences the bidder’s valuation function, whereas the latter
influences the definition of a proper solution to the WDP for MMUCAs.

In the case of free disposal at the bidder’s side, an atomic bid Bid = (S, p)
results in the following valuation

vBid(S′) =
{
p if S v S′
⊥ otherwise

In the case where free disposal is not valid, the valuation is obtained by
replacing the v in the previous definition with =.

In order to talk about the expressive power of the XOR language for MMU-
CAs, the following definitions are needed.

Definition 18 (Monotonic closure) The monotonic closure ṽ of a valuation
v is defined as ṽ(S) = max{v(S′)|S′ v S}

As in the multi-unit case of standard combinatorial auctions, the existence
of an infinite number of possible bundles posses a problem in terms of expressive
power. The following definition is therefore needed.
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Definition 19 (Finitely-peaked valuation) A valuation is finitely-peaked
iff v is only defined over finite multisets of pairs of finite multisets and {S ∈
N(NG×NG)|v(S) 6= ⊥} is finite

The following theorems, due to [Cerquides et al., 2007], show the expressive
power of the XOR language

Theorem 1 The XOR language without free disposal can represent all finitely-
peaked valuations, and only those.

Theorem 2 The XOR language with free disposal can represent all valuations
that are the monotonic closure of a finitely-peaked valuation, and only those.

3.4.2 WDP for MMUCAs

The introduction of transformations has added to the complexity of the WDP
for MMUCAs. Where in the combinatorial auction an allocation was valid as
long as it did not allocate more goods than available, the design of the MMUCAs
makes the applicability of transformations important as well. A transformation
is applicable if all the input goods are available. Therefore, the notion of a
sequence of transformations becomes important. In other words, an allocation
is only valid if, on top of assigning available goods, the assigned goods can
form a sequence of applicable transformations. The next chapter is focused on
algorithms for solving the WDP of a MMUCA.

3.5 Summary

In this Chapter, several notions and concepts connected with auction theory
have been introduced. First, the notion of a single item auction has been dis-
cussed and it has been shown what the problems and considerations are that
occur when designing an auction. A type of auction that promotes truthful
reporting, the Vickrey auction, has been introduced.

As a generalization of the single item auction, the notion of a combinatorial
auction has been introduced as well. The biggest difference between a single
item auction and a combinatorial auction is that in the latter a bidder is allowed
to bid for a combination of items. The motivation behind this enhancement is
that sometimes, a bundle of items is worth more to a bidder than the individual
items themselves. In that case the whole is more than the sum of its parts.
As in the single item case, a generalization of the Vickrey auction is given that
also promotes truthful reporting. The addition of combinatorial bids greatly
enhances the complexity of the auction. From the perspective of the bidder,
it gets much harder to determine ones valuations. From the perspective of the
auctioneer, it becomes much harder to both design the auction and determine
its winner. In fact, the problem of determining the winner of such an auction
becomes NP-complete.

Finally, the notion of a combinatorial auction is generalized to a Mixed
Multi-Unit Combinatorial Auction. In such an auction, a bidder does not bid
on a set of items. Instead, he bids on a set of transformations. A transformation
represents the process of transforming some goods to other goods. For example,
a transformation could state that a bidder is able to transform dough to cookies.



3.5. SUMMARY 25

To top things off, the XOR bidding language has been introduced, which is able
to represent a wide array of valuations.
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Chapter 4

The Winner Determination
Problem

The winner determination problem for mixed multi-unit combinatorial auctions
differs from the standard winner determination problem. The biggest difference
is that, for an assignment to be a proper assignment, several additional condi-
tions must hold. The purpose of this Chapter is to formalize these conditions
and to suggest several algorithms to solve the WDP for MMUCAs

The rest of this Chapter is structured as follows. In Section 1 the WDP for
MMUCAs is discussed. In Section 2 a division of the WDP is discussed. In
Section 3 three different approaches to solving the WDP are discussed.

4.1 The WDP for MMUCAs

As in standard auctions and combinatorial auctions, solving the WDP in MMU-
CAs means finding a proper allocation of transformations that maximizes the
auctioneer’s revenue. The main difference, however, is the definition of a proper
allocation. Remember that in normal auctions, an allocation is proper if it does
not contain more goods than available.

The structure of the WDP for MMUCAs, however, is more complex. As
input, the WDP gets a set of bids made by the bidders, a multiset of input
goods Uin and a multiset of goods Uout that is requested by the auctioneer.
Thus, where in a normal auction one only has to take into account the available
goods, a MMUCA forces you to also take into account what the result of the
transformations must be. Furthermore, the bidders do not bid on goods, but
provide transformations. Thus, an allocation does not state which bidder gets
which good, but which bidder is allowed to apply which transformation. The
applicability of a transformation is very important.

Definition 20 (Applicable) A transformation (I,O) is applicable, given some
multiset of goods G, if I ⊆ G.

An allocation is proper if one is able to create a sequence of transformations
in which each transformation is applicable and the result is what is requested
by the auctioneer. In the following, the XOR bidding language is assumed.

27
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Definition 21 (MMUCA) A MMUCA consists of a set of input goods Uin,
a set of goods Uout requested by the auctioneer, and a set of XOR bids B. The
bid of bidder i is represented by Bi, and Bij = (Dij , pij) is the jth atomic bid
in bidder i’s bid. Dij ∈ NNG×NG

is a multiset of transformations and pij is the
price. Furthermore, tijk points to the kth transformation in Dij, given some
predefined ordering, and T is the set of all transformations.

Informally, a proper allocation is a sequence of transformations that satisfies
the following requirements.

• The multiset of transformations must satisfy the structure of the bids that
are reported.

• The sequence must be implementable. That is, each transformation in the
sequence must be applicable after all his predecessors have been applied.
Furthermore, after all the transformations have been applied the set of
goods that is delivered must be a superset of Uout.

In the case of the XOR language, the first requirement restricts the auction-
eer in terms of which transformations to accept. That is, if one of the atomic
bids made by a bidder is accepted, no other atomic bids in the same XOR bid
can be accepted.

The second requirement is captured using the following equations. Let
Mm(g) be the amount of good g available after all the transformation up to
position m have been applied. One can assume that M0(g) = Uin(g). Then
Mm(g) is defined as

Mm(g) =Mm−1(g) + (Om(g)− Im(g)) (4.1)

Here Om(g) and Im(g) respectively denote the output goods and the input
goods of the transformation in the mth position of the sequence. The require-
ment of applicability can be modelled using Mm in the following way

Mm−1(g) ≥ Im(g) ∀g ∈ G (4.2)

A proper allocation can now be defined using the functionMm(g) as follows.

Definition 22 (Proper allocation) Given a set of input goods Uin, a set of
output goods Uout and a set of bids B, an allocation Σ is proper if it satisfies
the following requirements

• If the auctioneer selects one transformation from an atomic bid, it must
select all the transformations in this atomic bid

tijk ∈ Σ⇒ tijk′ ∈ Σ

• If an auctioneer selects two transformations from the same bidder, they
must be in the same bid

tijk, tij′k′ ∈ Σ⇒ j = j′

• Each transformation in Σ must satisfy equation 4.2 for each good g, mak-
ing each transformation applicable.
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• The allocation Σ must at least produce what the auctioneer requested

M|Σ|(g) ≥ Uout(g) ∀g ∈ G

Note that the above definition assumes free disposal. In the case without
free disposal, the ≥ in the last requirement must be replaced with =. The WDP
for MMUCAs can now be formalized as follows.

Definition 23 (WDP for MMUCAs) Given a set of input goods Uin, a set
of output goods Uout and a set of XOR bids B, solving the winner determina-
tion problem amounts to finding a proper allocation Σ, such that it maximizes∑

∃k tijk∈Σ pij.

4.2 Division of the WDP

The complexity of the WDP for a MMUCA is NP-complete because, as stated
in [Cerquides et al., 2007], it can simulate a normal combinatorial auction.
However, the WDP for MMUCAs does not only require to find an optimal
allocation, it also requires a sequence consisting of all the transformations in
the allocation.

One can thus decompose the WDP for MMUCAs in two separate problems.
The first problem is to find an optimal set of transformations Σ that satisfy the
requirements posed by the bidding language and combined with Uin produces
enough goods to satisfy Uout, i.e. to find a set of transformations that satisfies
Equation 4.3.

Uin(g) +
∑

i

∑
j

bij · (Oi,j(g)− Ii,j(g)) ≥ Uout(g) ∀g ∈ G (4.3)

The second problem is the problem of finding a proper sequence using all
the transformations in some set Σ. More formally, the second problem can be
defined as:

Definition 24 (Finding a sequence) Given a set of transformations Σ and
a set of goods Uin, let G be the set of goods that occur in Σ. Furthermore, let
Σ be such that ∀g ∈ G Uin(g) +

∑
t∈Σ(Ot(g) − It(g)) ≥ 0. Find a sequence

t1, ..., tn with ti ∈ Σ, such that it contains all the transformations in Σ and

∀m Uin(g) +
m−1∑
i=1

(Oi(g)− Ii(g)) ≥ Im

where m ranges from 1 to n.

Because this decomposition gives rise to a non-standard approach to the
WDP, as shall be demonstrated in Chapter 5, it is interesting what the com-
plexity of the two problems is.

In the case of the XOR language, it is easy to see that the WDP for a normal
combinatorial auction can be simulated using the first problem. Simply replace
every good g in an atomic bid with the transformation ({g}, ∅). Hence, this first
problem is NP-complete. Also note that the first problem resembles the winner
determination for exchange auctions [Sandholm et al., 2002].
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Concerning the second problem one can show that using a solution to the
sequence finding problem, the Hamiltonian directed path problem can be solved.
The Hamiltonian directed path problem is NP-complete [Garey and Johnson,
1979] and therefore the problem defined in Definition 24 is NP-complete as well.

Formally, the Hamiltonian path problem is defined as:

Definition 25 (Hamiltonian directed path problem (HDPP)) Given a
graph G = (V,E) where V is a set of vertices and E ⊆ V × V , find a path
through the graph that visits every vertex exactly once.

To show that the HDPP can be solved using a solution to the sequence
finding problem, a reduction from the HDPP to this problem must be found.
The first step in finding such a reduction is to realize that each vertex can be
represented as a transformation. To this end, label each vertex in the graph.
Then a transformation representing a vertex takes as input the label of this
vertex, and as output the labels of the successor vertices. More formally,

Definition 26 (From vertex to transformation) Given a graph G = (V,E),
associated with each vertex v ∈ V is a transformation of the form ({v}, O), where
O = {v′|(v, v′) ∈ E}.

However, restricting us to just this set of transformations is not sufficient.
Each transformation belonging to a vertex v produces the labels of all its suc-
cessor vertices. However, there is no way to remove the remaining labels after
the successor is chosen. This means that finding a sequence will not guarantee
the existence of a path. Therefore, several restrictions must be built into the
translation in order to make sure that after choosing a successor all the produced
labels are removed.

Instead of deciding which vertex to proceed with the vertices that are not
used are to be selected first. The trick now becomes to postpone choosing a
successor until the choice becomes trivial, i.e. until only one label is left. To
this end the goods e and d are introduced. The good e can only be produced
using a label, and the d can only be produced by as many e’s as there are
successors, minus one. That is, if a label v has n successors, n− 1 e’s must be
used to produce a d. Now, only after the d has been produced the next successor
transformation can be applied, making sure that all the other labels have been
removed. The translation from vertex to transformation now becomes:

Definition 27 (From vertex to transformation no. 2) Given a graph G =
(V,E), associated with each vertex v ∈ V is a set of transformations, containing
only the following transformations, where O = {v′|(v, v′) ∈ E}

• ({v, d, e}, O ∪ {v})

• for each v′ ∈ O, ({v′}, e)

• (E, {d}), with E = {e, ..., e} such that |E| = |O| − 1 (Only if |O| > 0).

For an example of how this procedure works, look at the following graph

•2 •3

•1

``BBBBBBBB

>>||||||||
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Using the second definition, the above graph defines the following set of trans-
formations

• ({1, d, e}, {1, 2, 3})

• ({1}, {e})

• ({2}, {e})

• ({3}, {e})

• ({e}, {d})

• ({2, d, e}, {2})

• ({3, d, e}, {3})

The only two paths through the graph are 1, 2 and 1, 3. This means that,
given Uin = {1, d, e}, it should be possible to make a sequence using all the
transformations belonging to nodes 1 and 2, or all the transformations belonging
to nodes 1 and 3, but not a sequence using all the transformations. That this
is indeed the case can be seen from the fact that one must use either good 2 or
good 3 for the next node transformation to be applicable, rendering the other
transformation unusable.

Next, it is shown that the above translation provides a proper translation of
the Hamiltonian directed path problem to the problem of finding a sequence

Proposition 2 Given a graph G = (V,E), let S be the set of transformations
that is created using Definition 27. G contains a Hamiltonian directed path iff
for some v ∈ V , it is possible to create a sequence using all the transformations
in S ∪ {({v}, {e})} and Uin = {v, d, e}.

Proof.

⇒ Suppose that G contains a Hamiltonian directed path. This means that
there exists a path v1, ..., vn, with vi being the ith vertex on the path,
that contains all the vertices. Using this path, a sequence of transforma-
tions can easily be created. Start by setting Uin = {v1, d, e}. Next, the
only transformation that is applicable is ({v1, d, e}, O1 ∪ {v1}). Having
applied this transformation, one can apply ({v1}, {e}) because v1 is not
needed anymore. Next, by construction, it must be the case that v2 ∈ O1.
Furthermore, let Rem1 = {({v}, {e})|v ∈ O1 \ v2} ⊆ S. That is, Rem1

contains the transformations belonging to all the successor vertices of v1,
except for the transformation belonging to v2. Thus, using Rem1, one
can remove all the labels that do not correspond to v2, producing exactly
enough e to produce a d with (E1, {d}). This leaves us with the goods
{v2, d, e}, and only ({v2, d, e}, O2 ∪ {v2}) is applicable. The rest of the
sequence can be finished as follows. Suppose that the last transformation
that has been applied is of the form ({vi, d, e}, Oi∪{vi}). By construction,
one can remove vi by applying ({vi}, {e}). Also, again by construction,
it is the case that vi+1 ∈ Oi. Let Remi = {({v}, {e})|Oi \ {vi+1}} ⊆ S.
Using the transformations in Remi, all but vi+1 are removed from the set
of available goods, and enough e is produced to create a d with (Ei, {d}).
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Thus, after this only ({vi+1, d, e}, Oi+1 ∪ {vi+1}) is applicable. Note that
each time the last transformation that is associated with vi and all but
one of the transformations that are associated with vi+1 are used. The
sequence ends with ({vn, d, e}, O ∪ {vn}) and after that the transforma-
tions in {({v}, e)|v ∈ O}, (En, {d}) and ({vn−1}, {e}). At each step i,
2 + |Oi| transformations are used, except at the last step, where |On|+ 3
transformations are used. Thus in total 1+2n+

∑n
i=1 |Oi| transformations

are used. By definition, |S| = 2n +
∑n

i=1 |Oi|. This, combined with the
transformation ({v1}, {Se}) that was added at the beginning, justifies the
conclusion that all the transformations have been used in the sequence.

⇐ Suppose that for some v1 ∈ V , it is possible to create a sequence s1, ..., sn,
using all the transformations in S ∪ {({v1}, e)}. We show that from the
sequence s1, ..., sn a Hamiltonian directed path in G can be constructed.
By construction, s1 = ({v1, d, e}, O1 ∪ {v1}). Let v1, ..., vm be a sequence,
with vi the vertex such that ({vi, d, e}, Oi ∪ {vi}) is the first transforma-
tion of this form since ({vi−1, d, e}, Oi1 ∪{vi−1}) occurred in the sequence
s1, ...., sn. By construction, the number of transformations of the form
({vi, d}, Oi ∪ {vi, d}) is equal to the number of vertices in G. This, com-
bined with the fact that a transformation can be used only once make
sure that the sequence visits every vertex exactly once. What remains
to be shown is that v1, ..., vm is a path. Suppose that it is not. This
would mean that at some point vl+1 is not a successor of vl. By con-
struction however, after ({vi, e, d}, Oi ∪ {vi}) has been applied, Oi ∪ {vi}
are the only goods that are available. To see why this is the case, first
note that Uin = {v1, e, d}. After application of ({v1, e, d}, O1 ∪ {v1}),
only O1 ∪ {v1} are available. Next, assume that after application of
({vi, e, d}, Oi ∪ {vi}) only Oi ∪ {vi} are available. This means that at the
moment only {({v}, e)|v ∈ Oi} and ({vi}, e) are applicable. In order for a
sequence to continue, all but one of the transformations in {({v}, e)|v ∈ O}
together with ({vi}, e) can be applied. After this, (Ei, {d}) and ({vi+1}, e)
are applicable. Again, in order for the sequence to continue, only (Ei, {d})
can be applied. Now, {vi+1, e, d} are the only goods that are available.
This means that only ({vi+1, e, d}, Oi+1∪{vi+1}) is applicable, using up all
the available goods. Thus, at this point only Oi+1 ∪ {vi+1} are available.

Hence, after application of ({vl, e, d}, Ol∪{vl}) only the goods Ol∪{vl} are
available. Because ({vl+1, e, d}, Ol+1 ∪ {vl+1}) is the next transformation
of this form, it must be the case that vl+1 ∈ O. This can only be the case
if vl+1 is a successor of vl and thus v1, ..., vm must be a path.

qed

Proposition 2 thus gives us a way of determining whether a graph contains an
Hamiltonian directed path.

Theorem 3 (NP-completeness) The problem of finding a sequence, defined
in Definition 24 is NP-complete

Proof. It is known that the problem of determining whether a graph G con-
tains a Hamiltonian directed path is NP-complete [Garey and Johnson, 1979].
Proposition 2 shows that Definition 27 can be used to translate a graph into a
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set of transformations in such a way that a sequence can only be found if the
graph contains a Hamiltonian path. However, one must take into account the
fact that the translation assumes that the starting point of the path is known.
To actually solve the path problem, one must do the following.

Given graph G, create a set of transformations S according to Definition 27.
The problem thus is that it is not known beforehand on which vertex the path
starts. Therefore, each vertex must be tested as a starting point until a path
has been found, or all the vertices have been checked. After choosing a vertex v
to test, let Uinv

= {v, d, e} and Sv = S∪{({v}, {e})}. To determine whether Sv

contains a sequence, one first tests whether ∀g ∈ G Uinv
(g) +

∑
s∈Sv

(Os(g)−
Is(G)) ≥ 0. If Sv combined with Uinv

satisfies this condition, try to find a
sequence using all the transformations in Sv. If this succeeds, then by Proposi-
tion 2, G contains a Hamiltonian directed path. If no sequence exists, continue
with the next vertex.

The translation can be performed in a polynomial amount of time, since
the number of translations is only dependent on the number of vertices and
the number of successors per vertex. The maximal number of times a test is
performed is a equal to the total number of vertices in the graph. Therefore,
finding a sequence must be NP-complete. qed

The problem of finding a sequence given a fixed number of transformations is
thus NP-complete. However, it is interesting to see whether there are properties
that a set of transformations can have that make it less hard to solve. To this
end, the notion of a goods graph is introduced. Each transformation contains
input and output goods. The goods graph is a directed graph where there is
an edge between two goods, say a and b, if there is some transformation such
that a occurs in this transformations as an input good and b as an output good.
More formally,

Definition 28 (Goods graph) Given a set of transformations T , let G be the
set of goods that occur in T . Then the goods graph G belonging to T is a directed
graph such that G = (G,E), where (a, b) ∈ E if there is some transformation
(I,O) ∈ T such that a ∈ I and b ∈ O.

There is one property of the goods graph that is responsible for the complex-
ity of the second problem. To see what this property is, first let’s look at the
following auction. Let Uin = {a} and Uout = {d}. Furthermore, let ({a}, {b}),
({b}, {c}) and ({c}, {d}) be the available transformations. It is easy to see that
the transformations produce enough goods to satisfy the requirements posed
by Uout. Furthermore, there is only one transformation that can be used in
the first slot of the sequence, after that only one sequence that can be used in
the second slot and only one sequence that can be used in the final slot of the
sequence. In other words, the problem of finding a sequence is trivial in this
instance.

Now let’s look at the following transformation. Let Uin = {a} and Uout =
{c}. The available transformations are ({a}, {b}), ({b}, {a}) and ({a}, {c}).
Now recall that all the transformations must be used in the sequence. However,
when creating this sequence two transformations can be used for the first slot,
namely ({a}, {b}) and ({a}, {c}). The problem, however, is that if ({a}, {c}) is
chosen there is no other transformation that is applicable. Whilst if ({a}, {b})
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is chosen the sequence can be finished. Thus, where in the previous example no
choice has to be made in constructing the sequence there is a choice to be made
in this example.

The difference between the previous two auction is the occurrence of cycles
in the goods graph. More generally, one can state that if there are no cycles in
the goods graph, the problem of finding a sequence is trivial. To prove this, the
reverse is proved. Namely that if it is not trivial to find a sequence, the goods
graph should contain a cycle.

Definition 29 (Building a sequence) Given a set of transformations S and
a multi-set of initial goods Uin, one can build a sequence t1, ..., tn using the
following procedure.

• Start by picking a transformation from t1 ∈ S, with t1 = (I1, O1) that is
applicable. That means that all the goods that are required as an input are
available in Uin. Furthermore, let S1 = S \ t1 and Uin1

= Uin \ I1 ∪O1.

• Next, apply the following operation until either Sn = ∅ or no transforma-
tion is applicable.

– select a transformation ti+1 from Si such that Uini
contains all the

goods that are required.

– Let Si+1 = Si \ ti+1 and Uini+1
= Uini

\ Ii+1 ∪Oi+1.

A sequence is called a proper sequence if it uses all the transformations in
S.

Proposition 3 Given an allocation A that satisfies Equation 4.3, let S be all
the transformations in A. Furthermore, let GS be the goods graph. GS contains
a cycle if one can build a sequence such that at some point i one is not able to
pick a transformation that is applicable while Si−1 6= ∅.

Proof. Suppose that, given some set of transformations S that satisfies Equa-
tion 4.3, one can build a sequence in such a way that at point i no transfor-
mation is applicable, while Si−1 6= ∅. This means that for each transformation
t ∈ Si−1, some required goods are not available. Let’s pick out one of these
goods. Because S satisfies Equation 4.3 it must be the case that there is some
transformation t′ ∈ Si−1 that produces this good. We now show that t′ is
dependent on t.

Let Tt denote the set of all the transformations that produce some good that
is needed by t such that Tt ⊆ Si−1. Now assume that there is no transformation
t such that some t′ ∈ Tt is dependent on t. This means that for each t′ ∈ Tt,
Tt′ ⊆ Si−1 \ t. This again means that for each t′′ ∈ Tt′ , Tt′′ ⊆ Si−1 \ {t, t′}. Due
to the fact that the number of transformations is finite, in the end there must
be some transformation te ∈ Si−1 such that Tte

= ∅. But this would mean that
allocation A does not satisfy Equation 4.3. Thus, there is some transformation
t ∈ Si−1 such that some transformation t′ ∈ Tt is dependent on t.

So, we now know that there is a path in GS from some good that is produced
by t to some good that is needed by t′. By definition t′ produces something that
is needed by t, thus there is a cycle in GS qed
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Thus, if there are no cycles in the the goods graph, the problem of finding
a sequence is trivial. But suppose it does contain a cycle, will it always be the
case that it is not trivial to solve the problem? I.e. are there some types of
cycles for which it is still not important which applicable transformation is used
in which slot? The answer to this question is positive, for suppose that the only
cycles that occur are cycles of the form ({a}, {a}). In general, the problem with
cycles is that they hold certain goods “hostage” that are needed further on in
the transformation. To see what is meant by this, look at the previous example
of a set of transformations with one good. The cycle consists of the goods a and
b. Thus, if transformation ({a}, {b}) is performed, good a is taken hostage by
this transformation. It is not until transformation ({b}, {a}) is performed that
good a is released again so that it can be used by transformation ({a}, {c}).

If the cycle is of the form (a, a), this means that there is a transformation
that has a both in the input and the output. Therefore, a is by no means
“taken hostage” by the transformation. Therefore, transformations of this sort
still allow the sequence to be found very quickly.

That it is not unlikely to come across such transformations can be seen
from the observation that in certain transformations tools can be needed. For
example, to create a cupboard from some boards and a set of nails, one is likely
to need a hammer. However, after the construction the hammer is not a part
of the cupboard. Thus, a transformation for a cupboard would need a hammer
as input but would also deliver the hammer as output.

4.3 Solving the WDP

Traditionally, the WDP is solved using integer programming. However, in the
case of MMUCAs, using integer programming amounts to using a quadratic
number of variables. The purpose of this section is to introduce three different
attempts to solve the WDP for MMUCAs. The first approach is a traditional
approach using an integer programming solver. The second approach tries to
reduce the number of variables used by switching to another constraint language.
Finally, the third approach uses the fact that the WDP for MMUCAs consists
of two different problems, both formulated using integer programming.

4.3.1 A first IP approach

The approach discussed in this section is based on the formalism of integer
programming. The problem formulation is taken from [Cerquides et al., 2007].
The final goal of the WDP is to find a proper sequence. Which transformation
occurs where in the sequence is represented by a set of decision variables xm

ijk ∈
{0, 1}. xm

ijk takes on the value 1 if transformation tijk occurs at positionm in the
sequence, and 0 otherwise. Do note that, although the length of the sequence
is not known beforehand, the maximum length is

∑
i maxj{|Bij |}. That is, the

maximal length of a sequence cannot be longer then the sum of the sizes of the
biggest atomic bids made by each bidder. Therefore, 1 ≤ m ≤

∑
i maxj{|Bij |}.

Furthermore, several other decision variables are used. For a each transfor-
mation tijk, a variable xijk ∈ {0, 1} is used to store whether the transformation
occurs in the sequence. That is, xijk = 1 if tijk occurs in the sequence and 0
otherwise.
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For each atomic bid Bij a variable xij ∈ {0, 1} denotes whether it has
been accepted. And finally, for each position m in the sequence, the variable
xm ∈ {0, 1} denotes whether it is filled.

Using the above introduced decision variables, the following equations model
the WDP

1. One of the requirements of the XOR bidding language is that if one of the
transformations from an atomic bid have been chosen, all the transforma-
tions from this atomic bid must be used in the sequence. This is modelled
using the following equation

xij = xijk ∀ijk (4.4)

2. A second requirement of the XOR language is that per bidder, at most
one atomic bid can be chosen. The following equation models this∑

j

xij ≤ 1 ∀i (4.5)

3. The following equation makes a connection between the xijk and xm
ijk

variables. That is, it models the fact that if a variable is chosen, it must
occur in the sequence and vice versa

xijk =
∑
m

xm
ijk ∀ijk (4.6)

4. By definition, a sequence defines a total order on a set of transforma-
tions. Therefore, only one transformation can occur at position m in the
sequence. This is formalized as

xm =
∑
ijk

xm
ijk ∀m (4.7)

5. The following equation makes sure that there are no gaps in the sequence.
Although it is not essential that there are no gaps in the sequence, it does
reduce the search space.

xm ≥ xm+1 ∀m (4.8)

6. Each transformation in the sequence must be applicable. To this end, in
Section 4.1 the equations 4.1 and 4.2 have been defined. The following
two equations capture the definition of M and enforce applicability of
each transformation in the sequence.

Mm(g) = Uin(g) +
m∑

l=1

∑
ijk

xl
ijk · (Oijk(g)− Iijk(g)) ∀g ∈ G ,∀m (4.9)

Mm−1(g) ≥
∑
ijk

xm
ijk · Iijk(g) ∀g ∈ G ,∀m (4.10)
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7. Finally, Uout resembles the goods that are requested by the auctioneer.
Therefore, after applying the final transformation in the sequence, at least
all the goods in Uout must be present. This is captured via the following
equation

M
P

i maxj{|Bij |}(g) ≥ Uout(g) ∀g ∈ G (4.11)

The above equations resemble the constraints that are posed on the variables.
In other words, they assure that only a proper allocation is a possible solution.
However, the WDP is not interested in just any solution, but in the solution that
maximizes the auctioneer’s revenue. To this end, the following integer program
is defined

max
∑
ij

xij · pij subject to the conditions (4.4)-(4.11)

After solving the above programme, a solution to the WDP can be found by
selecting the transformations tmijk such that xm

ijk equals 1.
The biggest drawback of the formulation introduced above is that it requires

a quadratic number of variables, in terms of the number of transformations. This
is due to the fact that for each position in the sequence, and each transformation,
a variable occurs. The following sections both propose formulations that remedy
this deficiency.

4.3.2 A CP approach

The problem with integer programming is that one is bound by the language of
linear equations. The nice thing about constraint programming is that one is
not bound by any language constraint, only the solving power of the constraint
solver at hand. This means that several other constraints might be introduced
that reduce the number of variables used.

Although the following formulation, which is an extension of the formulation
defined in [Uckelman and Endriss, 2007], resembles the above formulation very
much, several distinct features are used. First of all the alldifferent constraint
is used, and second a variable index to an array is introduced in order reduce
the number of variables.

The variables and their use differ somewhat from the previous approach.
First of all, each transformation tijk is assigned a number nijk. The variable
xn now contains the position at which transformation n occurs in the sequence,
and xm contains the number of the transformation at position m in the se-
quence. There is an obvious link between xm and xn, which is represented by
the following two equations

xxn = n ∀n (4.12)

xxm = m ∀m (4.13)

These two equations state that xn and xm agree with each other on which
transformation is where in the sequence. Furthermore it must be the case that

All the xn are different and all the xm are different (4.14)
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The problem now is that every transformation must have a position some-
where in the sequence. Therefore, one is not able to disambiguate between
accepted and rejected transformations. To this end, a set of dummy transfor-
mation is introduced, combined with a set of dummy positions in the sequence.
That is, the first

∑
i maxj{|Bij |} positions are real positions, and the remaining

|T | are dummy positions. Thus, only accepted transformations occur in a real
position, and the rejected transformations occur in a dummy position. The set
of dummy transformations is used to fill the real and dummy positions that
have not been filled with real transformations. Note that only the real positions
need to be constrained. This brings us to the following set of constraints

1. The following equation is used to record whether transformation tijk is
used in the sequence. bijk equals 1 if tijk does occur in the sequence and
0 otherwise.

bijk =
{

1 if xnijk
≤

∑
i maxj{|Bij |}

0 otherwise ∀ “real” ijk (4.15)

2. The variable bij ∈ {0, 1} is used to encode whether an atomic bid has been
accepted. The following equation ensures that if an atomic bid has been
chosen, each transformation in this bid is used. Furthermore, it ensures
that a bid is chosen if any of its transformations is used.

bij = bijk ∀i (4.16)

3. Again, one is allowed to accept at most one bid per bidder∑
j

bij ≤ 1 ∀i (4.17)

4. The applicability of each transformation is captured using

Mm(g) = Uin(g) +
m∑

l=1

blxl · (Oxl(g)− Ixl(g)) ∀g ∈ G ,∀m (4.18)

Mm−1(g) ≥ Ixm(g) ∀g ∈ G ,∀m (4.19)

5. And finally, the sequence must at least produce the amount of goods in
Uout

M
P

i maxj{|Bij |}(g) ≥ Uout(g) (4.20)

In order to find the allocation that maximizes the auctioneer’s revenue, the
following must be maximized

max
∑
ij

bij · pij subject to the constraints (4.12)-(4.20)

Note that the above formulation allows gaps in the sequence. Again, gaps
do not pose a problem in terms of finding a solution. However, in searching
for the optimal solution, allowing gaps means that one has to deal with a lot
of equivalent solutions. Therefore, gaps should not be allowed. To this end, a
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decision variable bm ∈ {0, 1} is introduced. bm equals 1 if position m is not
filled, and 0 if it is filled. The following constraints now enforce a sequence
without gaps

bm ≤ bm+1∀m

bm =
{

1 xm ≥
∑

i maxj{|Bij |}
undecided otherwise ∀m

4.3.3 A second IP approach

The final approach that is discussed treats the WDP as two separate problems.
First, note that one can look at the combination of a set of transformations
as one big transformation. That is, given some set of transformations Σ, the
total number of input goods required is IΣ

total(g) =
∑

(I,O)∈Σ I(g), and the
total number of output goods produced is OΣ

total(g) =
∑

(I,O)∈ΣO(g). The first
problem now is to find, given Uin, Uout and B, a set of transformations Σ that
maximizes the auctioneer’s revenue, and satisfies the requirements posed by the
bidding language such that Uin(g) +OΣ

total(g)− IΣ
total(g) ≥ Uout(g).

The second problem is to find a proper sequence using all the transformations
in Σ found by solving the previous problem.

Of course it is not the case that solving the WDP amounts to first solving
the first problem and then the second. It can very easily be the case that a set
of transformations Σ satisfying the constraints posed in the first problem, does
not contain any proper sequence. Therefore, both problems need to be solved
sequentially until either a solution is found, or all possible sets of transformations
have been looked at.

The main advantage of this formulation is that it greatly reduces the amount
of variables needed in order to solve the problem. The drawback is that in the
worst case scenario, all possible valid sets of transformations must be explored.
Experimentation must show how often this situation occurs.

The first problem can be formalized using the integer programming method-
ology as follows, where bij ∈ {0, 1} is a decision variable such that bij = 1
if bid Bij is accepted and 0 otherwise. Furthermore, IBij(g) =

∑
k Iijk and

OBij(g) =
∑

kOijk.

1. Again, from each bidder at most one atomic bid can be accepted∑
j

bij ≤ 1

2. All the accepted transformations must together produce at least as much
goods as required by the auctioneer∑

i

∑
j

bij(OBij(g)− IBij(g)) ≥ Uout(g)

3. A solution must maximize ∑
i

∑
j

bijpij
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In order to formulate the second problem, fix an arbitrary total ordering over
the sets of transformations Σ that has been found as a solution to the previous
problem. To model which transformation occurs where in the sequence, the
variable posm

i ∈ {0, 1} is used. posm
i = 1 if transformation ti ∈ Σ occurs

at position m in the sequence. Finally, transformation ti ∈ Σ is of the form
(Ii,Oi).

1. Each transformation in Σ is allowed to occupy exactly one position in the
sequence ∑

m

posm
i = 1 ∀i

2. Each position in the sequence must contain exactly one transformation∑
i

posm
i = 1 ∀m

3. The sequence must be a proper sequence

Mm(g) =Mm−1(g) +
∑

i

posm
i (Oi(g)− Ii(g))

Mm−1(g) ≥
∑

i

posm
i Ii(g)

In case the second problem fails to find a sequence, the first problem must
be solved again. However, the previous solution is no longer a valid solution,
because no sequence can be created from the transformations in this solution.
Therefore, a new constraint must be added that disables the previous solution.
A solution is in fact just an instantiation of a set of decision variables, i.e. it is
a combination of zeros and ones. Interpreting the one as true and the zero as
false, the link with propositional logic is easily found. Thus, an instantiation is
nothing more than a propositional formula, and disabling a formula amounts to
stating that its negation must be true.

A propositional formula can be translated into a linear equation as follows.
The formula p ∨ q being true can be translated as p+ q ≥ 1 and ¬p being true
can be translated as 1− p ≥ 1. Using these translations, the following equation
can be used to disable a solution.∑

i

∑
j

(1− bij) ≥ 1

As a final note, integer programming is used to model this solution because
an integer programming solver can, in general, very quickly determine whether a
set of equations has a solution. This property makes that it can rather efficiently
be decided whether a sequence cannot be created.

4.4 Summary

The winner determination problem for mixed multi-unit combinatorial auctions
appears more complicated than the winner determination problem for tradi-
tional combinatorial auctions. Both problems are NP-complete. However, if
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one looks at the WDP for MMUCAs more closely, one can see that the problem
consists of two separate problems. Namely, the problem of finding an optimal
allocation, and the problem of finding a sequence given this allocation. Both
problems are NP-complete on their own right.

Several solutions to the WDP for MMUCAs have been discussed. The first
approach uses integer programming. The problem with this approach is that
it uses a quadratic number of variables in terms of the number of input trans-
formations. Two different approaches have been taken to reduce the number of
variables used. The first is to switch from integer programing to constraint pro-
gramming. The difference is the use of an indexed variable, taking away the need
to define a decision variable for each possible position of each transformations.

The second approach is based on the subdivision of the WDP in two different
problems. It uses the assumption that, on average, it will not take too many
iterations before a solution is found. Which approach works best must be shown
by experimentation.
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Chapter 5

Implementation

An algorithm is not very useful if one is not able to implement it. Therefore, the
purpose of this chapter is to provide implementations of the algorithms defined
in Chapter 4.

In implementing an algorithm, several choices have to be made. The most
important of these is the choice of the programming language. This choice
influences the performance of the algorithm, the ease with which it can be
implemented but also the readability of the code. Furthermore, in the case of
the WDP one is interested in a comparison between the different algorithms.
Since a comparison is less meaningful if two algorithms are not implemented
using the same language, a language must be found that is able to implement
all the different suggested algorithms.

The difficulty now is that two algorithms require an integer programming ap-
proach, while the other algorithm requires a constraint programming approach.
Fortunately, these two methods can be elegantly combined using ECLiPSe1 [Apt
and Wallace, 2006].

Originally, ECLiPSe is a constraint solver (or actually a combination of con-
straint solvers), based on the programming language Prolog. The functionality
of ECLiPSe can be extended by loading different libraries, one of which is the
EPLEX library. The purpose of this EPLEX library is to provide an interface
between ECLiPSe and several constraint solvers. The constraint solver used in
this thesis is CPLEX 10.22, which is an industrial integer programming solver.

The rest of this Chapter is structured as follows. In Section 1 the ECLiPSe

programming language is briefly introduced and Section 2 deals with the imple-
mentation of the three different algorithms.

5.1 ECLiPSe

ECLiPSe is an extension of Prolog [Bratko, 2001] that provides full-fledged
support for constraint processing. For a general introduction to constraint pro-
gramming using ECLiPSe, the reader is referred to [Apt and Wallace, 2006].

1http://eclipse.crosscoreop.com/
2http://www.ilog.com/products/cplex/

43
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To explain the idea behind the ECLiPSe approach to programming, let us
briefly recall Prolog.

5.1.1 Prolog

The programming language Prolog is an instance of Logic Programming. The
basic constituents of a Prolog program are predicates. A predicate is of the form
Pred(A1, . . . , An), where Pred is the name of the predicate and A1, . . . , An are
its arguments. A predicate can be either true or false, and hence predicates
can be combined using the boolean operators ∨ and ∧ (Note the absence of the
boolean operator ¬). An example of a predicate is

male(bill)

a ∧ combination of predicates is represented by

(male(bill), female(hillary))

and a ∨ combination of predicates is represented by

(president(hillary); president(obama))

Of course, more complicated, nested combinations are possible as well.
A Prolog program can consist of a set of predicates, also called facts. Prolog

now uses this database of facts to obtain the truth value of a query, also called
a goal. A query is a boolean combination of predicates. For example, look at
the following set of predicates

male(bill)
female(hillary)
married(bill, hillary)

The interpretation of this database is that only the predicates present in
it are true, everything else is false. In other words, Prolog uses closed world
reasoning. Thus, Prolog will answer true to the following query

? : −male(bill)

but will answer false to the query

? : −husband(bill, hillary)

Although the traditional ¬ is not available in Prolog, there exists a differ-
ent type of negation, represented by NOT . The interpretation of this NOT is
linked with the closed world assumption used by Prolog. That is, NOT (A) is
true if the query ? : −A returns false. In other words, everything that is not
logically derivable from the database is not true.

In the previous examples, all the arguments to the predicates where con-
stants. However, in Prolog it is also allowed to use variables as arguments. For
example, the results of the query male(X) presented to the above database of
facts will result in the answer X = bill. What happens is that Prolog tries to
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match the query with the facts in the database. In case of the query male(X),
there is only one possible match, namely male(bill). In order to obtain a perfect
match, X must be instantiated to bill. This process is called matching, and has
strong links with first order unification.

Using the variables and matching, one is now able to perform more com-
plicated reasoning using the facts in the database. This can be done using so
called clauses. A clause is of the form Head : −Body, where Head is a simple
predicate and Body is a goal.

Suppose that the following facts are added to the database presented above

male(george)
female(laura)
married(george, laura)

Furthermore, suppose that one wants to add the notion of a husband. This
can be done by adding the facts

husband(bill, hillary)
husband(george, laura)

However, these two facts are already contained in the database because we
know that they are married and we know who is the male and who is the female.
To extract this information, all that needs to be done is to define the ”meaning”
of the concept husband. This can be done using the notion of a clause. The
husband clause now looks like

husband(X,Y ) : −male(X),married(X,Y )

Suppose that we now supply Prolog with the query ? − husband(bill, hillary).
What then happens is that Prolog matches husband(bill, hillary) with husband
(X,Y ), where X = bill and Y = hillary. Next, the goal husband(bill, hillary)
is replaced by male(bill),married(bill, hillary), both of which are facts in the
database.

Besides constants and variables, there is one more important type of argu-
ment to a predicate, the list. A list is nothing more than what it is supposed
to be, a list of arguments. These arguments can be either constants, variables
or other lists. In Prolog, a list is represented as [a1, . . . , an]. To retrieve an ele-
ment from a list, one can use the [Head|Tail] construct. Prolog automatically
matches Head with the first element in the list, and Tail with a list containing
the remaining elements. Using this [Head|Tail] construct, it is very straight-
forward to implement a clause that searches for an element in the list.

member(X, [X|Tail]).
member(X, [Y |Tail]) : − member(X,Tail)

To see what this clause does, let’s look at the query ? : −member(2, [1, 2, 3]).
First, Prolog tries to match the query with the first clause in the database, which
fails. Second, it tries to match it to the second clause, instantiate X to 2, Y to 1
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and Tail to [2, 3], replacing member(2, [1, 2, 3]) with the goal member(2, [2, 3]).
Prolog will again try to match the new goal to some of the facts in the database.
In this instance, the match with the first predicate is successful. Prolog will have
no more goal to satisfy and returns true. From this one can conclude that 2 is
a member of the list [1, 2, 3].

5.1.2 ECLiPSe

The main features of ECLiPSe that are relevant for us are that variables can be
declared and constraints can be imposed on them. For example, setting a range
for a variable, say X, is done using the command

X :: [RANGE]

Furthermore, by loading different variables different solvers can be used.

Programming with Prolog requires a different mindset than programming
with an imperative language. Also, working with datastructures like arrays it
can be very cumbersome to work with Prolog. To that end, certain predicates
have been added to ECLiPSe that allow a program to easily iterate through an
array.

5.2 Algorithms

The goal of the different algorithms is to solve the winner determination problem
for mixed multi-unit combinatorial auctions. To solve this problem, one must
be able to represent auctions. A natural representation seems to be the array
datastructure. Each algorithm uses three arrays, Input, Output and Prices to
represent the auction. ECLiPSe contains some useful predicates to walk through
these arrays in an imperative manner.

The algorithms as presented in Chapter 4 do not provide a way of solving
the WDP. They merely provide a set of constraints, be they integer or other,
that contain enough information to solve the constraints. The actual solving is
performed by solvers. Therefore, the algorithms defined below do not provide
a complete solution. They are just ways to represent the information needed
by the solver to solve the problem. The only exception to this is the third
algorithm, in which some work concerning the solving of the problem is done in
the algorithm itself.

5.2.1 The first IP approach

The IP approach uses the EPLEX interface to talk with the CPLEX solver. In
order to use this interface, the EPLEX library is loaded using the command

:- lib(eplex).

Furthermore, an eplex instance must be created using the command

:- eplex instance(alg1).
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Because the actual solving is handled by CPLEX, the purpose of the eplex
code is to create the constraints that encode the WDP for the auction at hand.
To that end, the clause solve() is defined

solve(Filename, UsedTime) :-
readInput1(Filename, Input, Output, Price, Start, End,
Information, Tm),
cputime(StartTime),
createConstraintArrays(Information, Tm, Xijkm, Xijk,
Xij, Xm, Sequence),
greaterOrEqualThanZero(Xijkm, Xijk, Xij, Xm),
allIntegers(Xijkm, Xijk, Xij, Xm),
fill(Xijkm, Xijk, Xij, Tm, Input),
!,callSolver(Xijkm, Xijk, Xij, Xm, Input, Output, Price,
Start, End, Sequence),
cputime(EndTime),
UsedTime is EndTime - StartTime.

The readInput1 predicate is used to obtain the auction information. The
array Input stores the input information of each transformation and the array
Output stores the output information of each transformation. The price of
each bid is stored in Price, Uin is stored in Start and Uout is stored in End.
Information contains information about the number of agents, the maximum
number of bids per agent and the maximum number of transformations per bid.
Finally, Tm represents the total number of transformations in the auction.

CreateConstraintArrays is used to create the arrays that are needed to cre-
ate the constraints defining the WDP. greaterOrEqualThanZero and allIntegers
define the constraints that make sure that every variable is a decision variable.
That is, each variable can only contain the values 0 and 1.

Each constraint array is created by using the maximum number of bids
per agent and the maximum number of transformations per bid. However, the
actual number of bids or transformations can vary per agent. The predicate fill
is used to fill in the variables that do not belong to an actual transformation or
bid in such a way that they are not considered when generating the constraints.

Finally, the predicate callSolver is used to create the constraints that define
the WDP and call on the CPLEX solver to find a solution. The full code can
be found in Appendix A

5.2.2 The CP approach

The constraint programming approach uses the solver ic, which can handle in-
terval constraints. The fd library could have been used as well, but the ic library
has more options as to different search algorithms that are supported. To this
end, the ic library is loaded using the command

:- lib(ic).

Furthermore, several constraints need to use a variable index to an array.
To this end the library array constraints ic, created by Sebastian Brand [Brand,
2001], is loaded.
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The main solve() clause now has the form

solve_ic(Filename, UsedTime) :-
readInput2(Filename, Input, Output, Price, Start, End,
Information, Nijk, T),
cputime(StartTime),
createArrays(Information, T, Xm, Xn, Bijk, Bij, Bm,
Sequence),
specifyDomains(T, Xm, Xn, Bijk, Bij, Bm),
createConstraint1and2(Xm, Xn),
createConstraintAllDiff(Xm, Xn),
createConstraint3(T, Bijk, Xn),
createConstraint4(Bij, Bijk, Nijk),
createConstraint5(Bij),
createConstraint6(T, Start, Bijk, Input, Output, Xm),
createConstraint7(T, Start, End, Bijk, Input, Output,
Xm),
createConstraint9(T, Bm, Xm),
createConstraint8(T, Bm),
createConstraint10(Bijk, Bm, Xm),
optimizeExpr(Bij, Price, Opt),
{get_elements(Xm, XmE)},
garbage_collect,
bb_min(labelingTest(XmE, T, Constraints), Opt,
bb_options{strategy:restart}),!,
cputime(EndTime),
UsedTime is EndTime - StartTime.

As in the previous algorithm, the data is obtained using the readInput2 pred-
icate and the constraint variables are created using createArrays. The domains
of the variables are specified by using specifyDomains and the constraints are
created using the predicates called createConstraint*.

bb min, an implementation of the branch and bound algorithm, is used to
obtain a solution to the WDP. The interesting part now is the predicate label-
ingTest, which is used by bb min to walk through the different possible instan-
tiations of the constraint variables.

This predicate uses information about the structure of the auction to prune
away different parts of the search tree. Remember that the final goal of the
algorithm is to find a sequence of transformations and that to this end a set of
dummy transformations have been introduced. The situation now is that, as
soon as a dummy transformation is used in the ”real” sequence, one can stop
searching for other transformations. This is due to the fact that no gaps are
allowed in the sequence that is found. The predicate labelingTest makes sure
that bb min stops if this situation occurs.

The complete code for the CP approach can be found in Appendix B.

5.2.3 The second IP approach

The final approach again uses the eplex library. The main solve predicate now
takes the following form
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solve(Filename, UsedTime) :-
readInput1(Filename, Input, Output, Price, Start, End,
Information, Tm),
cputime(StartTime),
createArrays(Information, Bij, InputB, OutputB),
mergeInput(Input, Output, InputB, OutputB, Information),!,
callSolver(Information, Bij, InputB, OutputB, Input,
Output, Start, End, Price),
cputime(EndTime),
UsedTime is EndTime - StartTime.

The second IP approach differs in two aspects from the two previous ap-
proaches. Remember that in this approach the problem is divided into two
smaller problems. The first is to find a set of transformations that satisfy cer-
tain properties. The second is to find a sequence using all these transformations.

The first problem required all the transformations in one bid to be added
together. This functionality is provided by the mergeInput predicate. To solve
the second part of the problem, the callSolver predicate calls the findOptimalSe-
quence predicate. This predicate has the form

findOptimalSequence(Gm, Input, Output, Start, Bij, PassedTime) :-
AvailableTime is 3600 - PassedTime
cputime(CurrentTime),
alg5:eplex_set(timeout, AvailableTime),
alg5:eplex_solve(Cost),!,
dim(Bij, I),
dim(BijCopy, I),
getBij(BijCopy, Bij),!,
(

cputime(CurrentTime2),
PassedTime2 is PassedTime + (CurrentTime2 - CurrentTime),
findSequence(Input, Output, Start, BijCopy, _Sequence,
PassedTime2)

;
writeln("The allocation is not proper"),!,
setExclusion(BijCopy, Bij),
alg5sequence:eplex_cleanup,
cputime(CurrentTime2),
PassedTime2 is PassedTime + (CurrentTime2 - CurrentTime),
findOptimalSequence(Gm, Input, Output, Start, Bij,
PassedTime2)

),!.

alg5 is the eplex instance that solves the first problem of finding a set of
transformations that, together, produce the required amount of goods. The
second eplex instance, alg5Sequence, is the instance that is associated with the
problem of finding a sequence of transformations.

The complete code for the second IP approach can be found in Appendix C.
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5.3 Summary

All the algorithms introduced in Chapter 4 have been implemented using ECLiPSe.
ECLiPSe is a constraint solver based on Prolog, which is a Logic Programming
language. The integer programming solver that is used is CPLEX 10.2.

Both IP approaches use the eplex library to talk to CPLEX. The CP ap-
proach uses the ic constraint solver, in combination with the array constraints
solver by S. Brandt. All algorithms use a branch and bound algorithm to find
the optimal solution to the WDP.

The experimental evaluation of these algorithms is discussed in the next
chapter.



Chapter 6

Experimental evaluation

The WDP of MMUCAs is, in the end, NP-complete. Therefore one will not
be able to find an efficient algorithm that solves every auction in a reasonable
amount of time. However, it is still interesting to see what the performance of
an algorithm is on average for “realistic” auctions.

The purpose of this chapter is to compare the three approaches to the WDP
of MMUCAs and determine which algorithm performs best in certain situations.
Section 1 introduces the testset generators that have been used to generate the
test suites. In Section 2, the experimental setup is discussed. Section 3 presents
the results and finally, in Section 4 the results are discussed.

6.1 Test data

Although the WDP for MMUCAs is NP-complete, it is still very important to
properly design a test suite to test the proposed methods of solving. This is due
to the fact that one is not interested in the performance for all possible auctions.
One is interested in the performance on real auctions, auctions that one might
encounter in real life. Therefore, in designing a test suite one must take into
consideration the situations in which an auction shall be held and performed.

In the case of normal combinatorial auctions, such a test suite already exists
in the form of the CATS test suite1. In [Leyton-Brown et al., 2000] several
requirements are formulated that should be met by a combinatorial auction.
These are

1. Certain goods are more likely to appear together than others.

2. The number of goods in a bundle is often related to which goods compose
the bundle.

3. Valuations are related to which goods appear in the bundle, and, where
appropriate, valuations can be configured to be subadditive, additive or
superadditive in the number of goods requested.

4. Sets of XOR’ed bids are constructed in a meaningful way, on a per-bidder
basis.

1http://www.cs.ubc.ca/∼kevinlb/CATS
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These requirements assume that the bidders bid on goods. Unfortunately,
this is not the case in a MMUCA. However, the requirements can be used as an
inspiration for the creation of a set of requirements for the MMUCA case.

Just as certain goods are more likely to appear together than others, some
transformations are more likely to appear together than others. A factory that
creates bicycle tires is likely to also produce car tires. However, it is not very
likely that such a factory would be able to manufacture milk products. The two
algorithms discussed below both have a different approach to this requirement.

The second requirement is that the number of goods which occur in a bundle
are often related to which goods compose the bundle. The same holds for
transformations, in that a transformation that produces one car has no need of
more than four wheels, and a transformation that produces 5 cars should have
as input 20 wheels. Thus, in the case of transformations the relationship is not
so much between transformations, but between the input and output goods of
one specific transformation.

The third requirement deals with the prices of bids. It states that the price
of a bid is related to the goods that appear in the bid. In the case of MMUCAs
the same can be stated. However, there is one extra layer to consider, namely
the transformations. Each bidder has a valuation for each good that occurs in
the auction. These goods are combined in transformations. Therefore, each
agent also has a valuation for each transformation that occurs in the auction. It
is reasonable to belief that the value for a transformation is determined by the
values for the goods that occur in this transformation. Finally, bids are made
up out of bundles of transformations. Thus, there should be a relation between
the valuation of the bid and the valuations of the transformations that occur in
the bid.

The last requirement is not so much a requirement on the auction, as it is
a requirement on the generation process. It is linked with the first requirement
in that, generating all the bids for one agent and at the same time honouring
requirement one is easier if one generates bids on a per bidder basis.

The two generators discussed below are both based on the CATS require-
ments. However, they differ slightly in the requirements and in the types of
transformations that they discern.

6.1.1 Generator 1

The first generator that is used, is taken from [Vinyals et al., 2007]. Their
analysis has resulted in three different types of transformations.

1. Output transformations

2. Input transformations

3. Input-Output transformations

The Output transformations are of the form (∅,O), the Input transforma-
tions are of the form (I, ∅) and the Input-Output transformations are of the form
(I,O). The Input and Output transformations respectively denote the offer to
buy and the offer to sell a good. The Input-Output transformations denote an
exchange of goods, and can be used to model both assembly, transformation
and trade.
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The use of these three types of transformations has led the authors to state
several requirements for MMUCAs. In their analysis they replace the notion of
goods with the notion of market transformations. These market transformations
are the basic building blocks of an auction, i.e. each transformation that occurs
in an auction is a market transformation. Each market transformation is built
up from a set of atomic transformations. An atomic transformation is a minimal
transformation that can be performed. For example, a closet consists of some
wooden boards and some nails. A transformation that takes as input a set of
wooden boards and some nails, and outputs a closet is minimal. That is, one
will not be able to cut the transformation up into smaller pieces and still obtain
a meaningful transformation. The definitions of an atomic transformation and
a market transformation, taken from [Vinyals et al., 2007], are as follows.

Definition 30 (Atomic transformation) Given a set of transformations T =
{t1, . . . , tn}, we say that transformation ti = (Ii,Oi) is minimum in T iff
∀tj ∈ T satisfying that ∀gi ∈ Ii, gj ∈ Ij gi, gj ∈ I ∩ I ′ and ∀gi ∈ Oi, gj ∈
Oj gi, gj ∈ O ∩O′, the following inequalities hold: (i) mIi

(g) ≤ mIj
(g)∀g ∈ Ij

and; (ii) mOi
(g) ≤ m|outj

(g)∀g ∈ Oj.

Definition 31 (Market transformation) We say that T ⊆ NG × NG is a
set of market transformations iff: (i) it is finite; (ii) every transformation t ∈ T
is minimum; and (iii) ({g}, {}), ({}, {g}) ∈ T ∀g ∈ G

Since a bid now consists of a combination of market transformations, the no-
tion of transformation multiplicity must be introduced as an analogy to goods
multiplicity. A bidder might offer to perform the transformation ({hub, dustcap
, snapring}, {sprocket}) for a certain price. However, it might also offer to
perform the transformation twice for less than twice the amount of one trans-
formation. The multiplicity of the transformation in the second bid is two,
whereas the multiplicity of the transformation in the first bid is one.

Definition 32 (Transformation multiplicity) Let t = (I,O) and t′ = (I ′,O′)
be transformations such that ∀g ∈ I, g′ ∈ I ′ g, g′ ∈ I ∩ I ′ and ∀g ∈ O, g′ ∈
O′ g, g′ ∈ O∩O′. t has multiplicity κ with respect to t′ iff mI(g) = κṁI′(g)∀g ∈
I and mO(g) = κṁO′(g)∀g ∈ O

All that is left is to discuss the requirements on the valuations of transfor-
mations. Suppose that one has all the goods to construct a bicycle, but not the
knowledge to do this. If one goes to a bicycle shop, the mechanic will probably
offer to you to build the bicycle for less than the price of a brand new bicycle.
In fact, he will probably offer you to build the bicycle for the difference between
the market price of the bicycle and the price of the goods. More generally, the
price of a transformation should be determined by the difference between the
valuation of the output goods compared to the valuation of the input goods.

The requirements discussed above, together with the CATS requirements
are shown in Table 6.1

For information on the actual implementation of these requirements, the
reader is referred to [Vinyals et al., 2007].
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1. There is a finite set of market transformations to bid for.

2. Certain transformations are more likely to appear together than others.

3. The number of transformations in a bundle is often related to which trans-
formations appear in the bundle, and, where appropriate, valuations can
be configured to be subadditive, additive or superadditive in the number
of transformations requested.

4. Every transformation valuation is assessed in terms of the difference be-
tween the valuation of its output goods with respect to the valuation of
its input goods.

5. sets of XOR’ed bids are constructed in a meaningful way, on a per-bidder
basis.

6. Unrequested goods by the auctioneer may be involved in the auction.

Table 6.1: Requirements for the three transformation analysis

6.1.2 Generator 2

The previous generator made a division into different types of transformations,
but did not take into consideration the fact that transformations sometimes are
images of an underlying structure. Take as an example the construction of a
bicycle. A bicycle consists of a pair of wheels, a frame, a handlebar, a chain and
so on. A transformation that represents the construction of a bicycle might take
as input the pair of wheels, the frame, the handlebar, the chain and outputs
a bike. Such a transformation now represents the fact that all the goods in
the input are contained in, or needed in the construction of the goods in the
output. In other words, there is an underlying graph structure from which such
transformations are taken.

It thus seems reasonable to define two types of Input-Output transforma-
tions. The first, called structured transformations, represent transformations
that are taken from some structured graph. An edge in a structured graph be-
tween a and b represents the fact that a is contained in b. Therefore, a structured
graph is not allowed to contain any cycles. More formally, its definition is as
follows.

Definition 33 (Structured graph) Given a set of goods G and a graph G =
(G,E), where E ⊆ G × G. G is a structured graph if it does not contain any
cycles.

The second type of transformations, called unstructured transformations, do
not assume any structured relation between the goods in the input and the
output. To complete the terminology, an auction containing only structured
transformations is called a structured auction, an auction containing only un-
structured transformations is called an unstructured auction and an auction
containing both types of transformations is called a hybrid auction.

The structured transformations can be used to represent both assembly and
dis-assembly transformations. The unstructured transformations can be used
to represent trade transformations.
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The requirement that certain transformations are more likely to appear to-
gether than other transformations is valid for the structured transformations,
but not for the unstructured transformations. A bidder that offers a certain
type of structured transformation usually is a specialist in this type of trans-
formation. It would be odd for a car factory to offer to produce dinner tables.
However, an agent that will want to trade something is usually interested in the
valuation and not so much in the specific goods that are traded, although this
of course does not need to be the case.

Introducing two types of transformations has as an effect that different types
of goods can be discerned. The first two types of goods are the structured goods
and the unstructured goods. Between the structured goods there exists some type
of structured relation, whilst the unstructured goods have no specific relation
whatsoever. The third type of good is the tool. In both assembly and dis-
assembly tools can be used. These tools then occur both in the input and in
the output, since they are used in the construction but do not take part in the
final product.

The pricing requirement formulated for the previous generator also holds
for the division in four different types of transformations. However, it only
applies on the structured and unstructured goods. Since the valuation of a
transformation should be dependent on the difference between the valuations
of the input and the output goods, the valuation of a tool does not have any
influence on the valuation of the transformation. However, one should be able
to either buy or sell a tool, and therefore a valuation for a tool should be
determined.

The requirements discussed above are summarized in Table 6.2

1. There is a finite set of structured transformations to bid for.

2. Certain structured transformations are more likely to appear together than
others.

3. The number of structured transformations in a bundle is often related to
which structured transformations appear in the bundle.

4. Where appropriate, transformation valuations can be configured to be
subadditive, additive or superadditive in the number of transformations
requested.

5. Every transformation valuation is assessed in terms of the difference be-
tween the valuation of its output goods with respect to the valuation of
its input goods.

6. sets of XOR’ed bids are constructed in a meaningful way, on a per-bidder
basis.

7. Unrequested goods by the auctioneer may be involved in the auction.

Table 6.2: Requirements for the four transformation analysis
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Algorithm 1: MMUCA generator: generator(nAgents, sGoods, usGoods,
tools, µbids, σbids, µtrans, σtrans,µoutput, σoutput,ratioI, ratioO, ratioTrans,
ratioTrade, µsellRatio, σsellRatio, maxPrice, maxMulti)

network ← createNetwork(sGoods, maxMulti);1

prices ← prices(network, usGoods, maxPrice);2

for i← 1 to nAgents do3

nBids ← dN (µbids, σbids)e;4

for j← 1 to nBids do5

nTrans ← dN (µtrans, σtrans)e;6

for k← 1 to nTrans do7

transType ← randomly select a type of transformation8

according to the given ratios;
switch transType do9

case input10

bid ← InputTrans(nGoods, µiRatio, σiRatio,11

µOutput, σOutput, prices);
end12

case output13

bid ← OutputTrans(nGoods, µsellRatio,14

σsellRatio,µOutput, σOutput, prices);
end15

case structured16

bid ← StructuredTrans(network, nGoods, µsellRatio,17

σsellRatio,µOutput, σOutput, prices);
end18

case unstructured19

bid ← UnstructuredTrans(nGoods, µsellRatio,20

σsellRatio,µOutput, σOutput, prices);
end21

end22

end23

end24

end25

The algorithm

The algorithm discussed below is meant to generate an instance of a MMUCA
WDP. A generated WDP consists of a set of XOR bids in such a way that it
is ready to be fed into the solving methods discussed above. On top of that,
the algorithm is designed in such a way that the WDP it produces satisfies the
requirements from Table 6.2. The algorithm is implemented in MATLAB, and
the code can be obtained via the author.

To this end, first the number of different goods must be determined. That
is, the number of structured and unstructured goods and the number of tools
must be defined. Second, using the structured goods a structured graph must
be generated. After that, the prices of all the goods must be determined. Note
that, although the tools are not used, they must be priced due to the fact that
one should be able to buy or sell tools. Finally, the bids are generated on a per
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Algorithm 2: createNetwork( sGoods, maxMulti)

nLevels ← rand(nGoods);1

initialize levels to an array of size nLevels ;2

for i← 1 to nLevels-1 do3

levels(i)← the goods that occur on this level;4

end5

level ← 1;6

for i← 1 to nGoods minus the number of goods in the highest level do7

if i is the first good on level level +1 then8

level ←level + 19

end10

possibleConnections ← the number of goods above i;11

for j ← 1 to possibleConnections do12

Randomly determine whether i is connected to the jth object13

above it
end14

end15

agent basis and the transformations are generated on a per bid basis.

Generating the structured network

A structured graph is a directed graph that does not contain any cycles. There-
fore, moving from one node to another node in the graph can be seen as moving
deeper into the graph. Furthermore, due to the lack of cycles in the graph there
must be at least one node that has no incoming edges. One can thus say that
at least one node lies on level 1, some of the nodes reachable from this first
node lie on level 2 and so on. Actually, a node can be reachable from several
different “lower” nodes. In this case, the node in question lies on a level that is
higher than the “highest” node from which it is reachable. This view leads to
the graph generating algorithm displayed in Algorithm 2.

First, the number of levels is determined according to the number of goods
that must be contained in the graph. Second, each good is positioned on some
level in the network. The last step in generating the graph is to determine the
edges, where each node can only be connected to nodes that lie on a higher
level.

After the graph has been generated, all that is left is to determine which
tools are needed in which transformation.

Generating the Uin and Uout

The generation procedure for Uin and Uout is identical. The parameters pGood-
Needed and pGoodRequested represent respectively the chance that a good
occurs in Uin and the chance that a good occurs in Uout. In generating the
data, it is determined which good occurs in it on a per good basis.
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Generating the bids

The generation of bids is done on a per bidder bases. The number of bidders
is determined beforehand. Then, for each bidder the number of bids is drawn
from a normal distribution with mean µbids and standard deviation σbids. After
that, the transformations are generated on a per bid basis. Per bid, the number
of transformations is drawn from a normal distribution with mean µtrans and
standard deviation σtrans.

The first step in generating a transformation is determining what the type
of the transformation is. This is done by using an occurrence ratio for each of
the different types. The actual type is than drawn from a uniform distribution
between 1 and the total number of occurrences (the sum of all occurrence ratios).
The next step is influenced by the type of transformation that needs to be
generated. In the case of either an Input or an Output transformation, for
each good it is determined whether it is participating in the auction using the
iRatio argument. The iRatio is drawn from a normal distribution with median

1
numberofgoods and standard deviation 0.1. These parameters are chosen in such
a way that the number of goods per transformation does not become too large.
In generating the transformation, it is made sure that it contains at least one
good to prevent empty transformations.

In the case of a structured transformation, the number of output goods is
generated using the sellRatio, which is drawn from a normal distribution with
medium µsellRatio and standard deviation σsellRatio. However, only structured
goods can be selected. After the output goods have been defined, the number of
input goods is determined via the structured graph, together with the number
of tools.

In the case of an unstructured transformation both the input and the output
goods are generated using sellRatio.

After all the transformations belonging to one bid are generated, the price
of this bid must be determined. This is done by looking at the difference in
value of the input and the output goods per transformation.

6.2 Experimental setup

All the experiments are performed on a Intel Core 2 Duo machine with 2 GB
of memory running linux. Two different tests are performed. The first uses
a testset generated using the generator described in Section 6.1.1, the second
uses a testset generated using the generator described in Section 6.1.2. In both
tests, only the results on feasible auctions are taken into considerations. This
is because CPLEX can very efficiently detect whether a problem is feasible or
not.

6.2.1 Test 1

In [Vinyals et al., 2007] the algorithm presented in Section 4.3.1 has been tested
using a dataset generated with generator 1. Due to the fact that the number
of constraints increases with the number of transformations, they conjectured
that the more transformations appeared in an auction, the harder it would be
to solve it.
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To test this assumption four different datasets where generated, using four
different situations. In the first situation each agent makes only one bid and
each bid contains only one transformation. In the second situation each bid
contains two transformations while each agent is allowed to submit only one
bid. The third situation requires an agent to submit two bids, both containing
one transformation. Finally, in the fourth situation each agent submits two
bids, both containing two transformations.

For each situation the following types of auctions where generated.

• 30 instances of 40 transformations.

• 30 instances of 80 transformations.

• 30 instances of 120 transformations.

• 30 instances of 160 transformations.

• 30 instances of 200 transformations.

The parameters that where used to generate the auctions are:

• nGoods = 4.

• nMarketIOTransformations = 10.

• maxPrice = 100.

• varianceOfprices = 0.05.

• pGoodRequested = 0.3.

• varAddNewXORClause = 0.

• sigmaTrnasfBid = 0.

• pGoodInOutput = 0.3.

• pGoodInInput = 0.1.

• alpha = 0.1.

• pITransformations = 0.2.

• pOTransformations = 0.2.

• cycles = true.

In order to be able to compare the results in [Vinyals et al., 2007] with
the experiments displayed in this thesis, the same tests are performed. To this
end the generator defined in [Vinyals et al., 2007] has been used to generate a
testset with the parameters described above. All three algorithms described in
Chapter 4 are tested by measuring the total cpu-time used to solve each auction.
For each situation and each type the average runtime is calculated. In running
the experiments, a time limit has been set of 3600 minutes. Finally, of each
auction 30 instances are generated.
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6.2.2 Test 2

The generator used in the previous test was based on a three way division in
types of transformations. The motivation behind the second test is to see if
the differentiation in four different types of transformations has an influence on
the performance of the algorithms. That is, it is interesting to see if there is a
performance difference between auctions that only contain structured transfor-
mations, auctions that only contain unstructured transformations and auctions
that contain both types of transformations. Input and Output transformations
are allowed in all three scenarios.

To that end three different testsets have been generated. Each testset con-
tains the same four situations as described above in terms of numbers of bids
and the way the transformations are divided among the agents. However, only
auctions with respectively 40, 80 and 120 transformations are generated. The
difference between the testsets is in the types of transformations that occur.
All the testsets contain input and output transformations. However, Testset 1
contains only structured transformations, Testset 2 only unstructured transfor-
mations and Testset 3 a mixture of both. In generating the testsets, 10 goods
have been used. Testset 1 was generated using 8 structured goods and 2 tools.
Testset 2 was generated using 10 unstructured goods and Testset 3 was gener-
ated using 4 structured and 4 unstructured goods and 2 tools. The number 10
has been chosen such that there are enough goods to create a non trivial struc-
tured graph while not having too many goods. This last to make the testing
still feasible.

In generating all testsets the following parameters have been used, and each
type of auction had 5 instances.

• maxMulti = 5

• mOutput = 5

• sOutput = 1

• mSellRatio = 0.6

• sSellRatio = 0.1

• maxPrice = 100

• sBids = 0

• sTrans = 0

Again the measure of performance is the cpu-time, and a time limit has been
set to 3600 minutes. Of each auction 10 instances are generated

6.3 Results

The tests have been performed using two different datasets. The the results
of Test 1 can be found in Figures 6.1 through 6.3. The results of Test 2 can
be found in Figures 6.4 through 6.9. Furthermore, a more detailed graph of
Figure 6.7 can be found in 6.10.
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The x-axis shows the average cpu-time in minutes needed to obtain a solution
to the problem. Do note that the time limit prohibits any average to reach above
the 3600 minutes. Therefore, any average that reaches this line only tells us that
the program needs 3600 minutes or more to solve the problem. The y-axis shows
the number of transformations per auction.

6.4 Discussion

6.4.1 Test 1

The results belonging to the first IP approach do not correspond with the results
presented in [Vinyals et al., 2007]. Where in the results presented in this thesis
the first IP approach performs worst on situation 2, in [Vinyals et al., 2007]
situation 3 appears to be the most complex. The greatest difference with the
approach taken by Vinyals et al. is that they represent the auctions in OPL
Studio 5.0. In feeding these auctions to CPLEX, a translation must be made
which might account for the discrepancy.

The first observation that can be made from both Figure 6.1 and Figure 6.3 is
that the solving times increases when the number of transformations increases
(except for one situation in Figure 6.3). Thus the increase in the number of
variables has a clear influence on the complexity of the problem.

The results obtained from the CP approach show that, although the con-
straint programming approach reduces the amount of variables that are needed,
it is inferior to the IP approaches. Using the profiler predicate available in
ECLiPSe, one can see that this is mainly due to the constraints dealing with
the variable index. Using such a variable index was the source of reduction in
terms of the number of variables needed. Unfortunately, the constraints that are
needed to deal with these types of constraints are very expensive. As mentioned
in [Brand, 2001], this is due to the nature of the constraint and not so much
due to the nature of the implementation.

Using Figure 6.1 and 6.3, the different situations can be ranked with respect
to how hard it is for both approaches to solve the auctions. This results in the
ranking shown in Table 6.3

rank first IP approach second IP approach
bids trans bids trans

1 2 2 2 1
2 2 1 1 1
3 1 1 2 2
4 1 2 1 2

Table 6.3: complexity ranking of the different situations based on Test 1

Looking at Table 6.3 more closely, two observations can be made. The first is
that it appears to be easier to solve an auction where each agent submits 2 bids
than an auction where each agent submits 1 bid. This might have to do with
the fact that the number of different allocations decreases when the number of
bids per agent increases (keeping the number of transformations constant).
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Figure 6.1: The results for the first IP approach

Figure 6.2: The results for the CP approach
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Figure 6.3: The results for the second IP approach

The influence of the number of transformations does not manifest itself in
the results obtained from the first IP approach. However, looking at the results
from the second IP approach it is clear that auctions containing two transfor-
mations are harder than auctions that contain only one transformation. In fact,
from Figure 6.3 it can be observed that the running times appear to be almost
constant in the case of only one transformation. Remember that the second IP
approach is designed in such a way that an auction becomes more easy to solve
if it does not contain any cycles. It could thus be the case that auctions with
only one transformation per bid are less likely to contain cycles. The experi-
ments performed in Test 2 might strengthen this possibility, since an auction
containing only structured transformations does not contain any cycles.

With the previous result in mind, it would be very interesting to see how
many cycles an auction actually contains. This could be done by first finding all
the cycles in the goods graph using the Floyd-Warshall algorithm. The next step
is to identify the transformations that are responsible for the cycles. Comparing
the total number of transformations participating in a cycle with the complexity
of the auction might show whether the higher the number of transformations,
the harder the auction. Future work should be directed into this direction.

In comparing the performance of the first and the second IP approach, the
first approach is more consistent. That is, a small increase in complexity means
a small increase in running time in the first IP approach. In the second IP
approach, the running times fluctuate more. Thus, overall the first IP approach
has a better performance on the testset generated by generator 1. The only
peculiarity is that for the second situation the average running time of the
second IP approach for an auction consisting of 200 nodes drops significantly.
It could be possible that this is just a peculiarity of the dataset that has been
used. Future work should shed more light on this question.
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Figure 6.4: First IP approach: Structured transformations

Figure 6.5: First IP approach: Unstructured transformations
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Figure 6.6: First IP approach: Both structured and unstructured transforma-
tions

Figure 6.7: Second IP approach: Structured transformations
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Figure 6.8: Second IP approach: Unstructured transformations

Figure 6.9: Second IP approach: Both structured and unstructured transfor-
mations
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Figure 6.10: Second IP approach: structured transformations

6.4.2 Test 2

Before discussing the results, it must first be stated that the performance of
the CP approach was again no match for the IP approaches. Because the re-
sults of these tests do not provide any useful information other than that the
performance is bad they have been omitted.

The second tests have been performed to see what the influence of the dif-
ferent types of Input-Output transformations are on the running time of the
algorithms. Looking at the difference in running time between the auctions
with only structured transformations and the auctions containing only unstruc-
tured transformations, one can see that the performance of the latter is much
better. This is as was expected. That is, it has been shown that for an auction
with an acyclic goods graph it will always be possible to find a sequence. If an
auction only contains structured transformations, the resulting goods graph will
be a subgraph of the structured graph. Since a structured graph is designed not
to have any cycles, such auctions should be easier to solve.

Furthermore, one can see that the second IP approach performs much better
than the first IP approach on structured auctions. See 6.10 for a more detailed
picture of the results of the second IP approach. The fluctuations in Figure 6.10
can be explained from the fact that it is either very fast, or it needs many
iterations.

One explanation for better performance of the second IP approach is that it
benefits from the lack of cycles. That is, since the second part of the problem is
always possible if the goods graph does not contain any cycles, the first problem
has to be solved only once. Because the first problem contains fewer variables
and constraints than the complete WDP while remaining in the IP formalism,
it is easier to solve. This is thus supported by the experimental results.

The performance on auctions that contain both types of Input-Output trans-
formations tends to lie in between. This is the same for both approaches. This
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could be an indication that having fewer unstructured transformations is likely
to reduce the number of cycles and hence also the complexity of the problem
at hand. The fact that the performance of the second IP approach is almost
constant also points into this direction.

Interestingly, in comparing the performance of both algorithms, the second
IP approach appears to perform much better than the first IP approach in all
cases. This indicates that in such situations cycles are less likely to occur. Thus,
it seems that in situations where both trade and construction/deconstruction
occur the second IP approach would perform best.

rank The first IP approach The second IP approach
bids trans bids trans

structured

1 1 2 2 2
2 2 2 1 2
3 1 1 2 1
4 2 1 1 1

unstructured

1 1 2 2 2
2 2 2 2 1
3 1 1 1 2
4 2 1 1 1

hybrid

1 2 2 2 2
2 1 2 1 2
3 1 1 2 1
4 2 1 1 1

Table 6.4: complexity ranking of the different situations based on Test 2

Again, based on the results a complexity ranking can be made for the dif-
ferent situations. This ranking is displayed in Table 6.4. From the ranking
it follows that the more transformations in a bid, the easier it is to solve an
auction. This could be explained from the fact that increasing the number of
transformations per bid makes the first problem, the problem of finding an al-
location that satisfies Equation 4.3 easier. That is, in finding such an allocation
one is not interested in particular transformations, but in the total number of
transformations in a bid. Increasing the number of transformations per bid,
while keeping the total number of transformations equal means that the total
number of possible allocations decreases. i.e. the search space is reduced.

In comparing the results from Test 2 with the results from Test 1, there
is one big discrepancy. In Test 1 more transformations per bid means slower
performance, while in Test 2 more transformations per bid means better perfor-
mance. Since the algorithms used in Test 1 and Test 2 are the same, the cause
of this discrepancy must lie in the testset generation. More tests are needed to
get a better understanding of this discrepancy.

6.5 Summary

Testing an algorithm is of utmost importance, because it can give an indication
of its applicability. Although the problem at hand is NP-complete, testing still
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is important since it could be that in real situations a solution still performs
well.

To test the three solutions to the WDP for MMUCAs two different tests
have been performed. The first with a dataset generated by the generator de-
scribed in [Vinyals et al., 2007]. Here a distinction is made between Input,
Output and Input-Output transformations. The second test is performed with
a testset in which two different types of Input-Output transformations are dis-
cerned, namely structured and unstructured transformations. The purpose of
the second pair of tests has been to see what the influence of these two types of
transformations is on the complexity of the WDP.

From the first test, it can be concluded that the CP approach is no match for
both IP approaches. In comparing both IP approaches, the first performs more
consistently, but on some fronts the second approach is much better. Further-
more, one can notice that increasing the number of bids reduces the complexity
of the auctions. This is probably due to the fact that this reduces the number
of possible allocations. Second, the second IP approach performs better in the
case of one transformation per bid where in the second test the reverse is found.
The reason for this probably lies in the dataset generation, and more work must
be done to analyze this discrepancy further.

Furthermore, the second set of tests shows that auctions containing only
structured transformations are by far the easiest to solve. Auctions containing
only unstructured transformations are much harder to solve, while lowering the
number of unstructured transformations reduces the complexity. Finally, the
second IP approach appears to be performing better than the first IP approach
on all three types of auctions.
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Chapter 7

Conclusions

The purpose of this thesis is to learn more about the WDP for MMUCAs. More
specifically, this thesis looks at the WDP from an experimental viewpoint.

To this end, in Chapter 4 three different approaches to the solving of the
WDP are introduced. The first approach that is introduced models the WDP
using integer constraints in such a way that an integer programming solver can
be used. This is the standard approach taken in combinatorial auctions. The
drawback of this approach, however, is that it needs a quadratic number of
variables. This is due to the fact that, in integer programming, one cannot use
a variable index to an array. Therefore, each possible entry for each point in
the sequence needs an own variable.

To remedy this, a constraint programming approach is introduced. This
second approach uses fewer variables, but makes use of a more expensive con-
straint. However, it is hoped that the reduction of variables is such that the
solving power of this approach is better than the first.

Finally, a third approach is introduced. This approach is based on the ob-
servation that the WDP can be seen as the continued solving of two different
problems. First, the problem of finding an allocation of bids such that the com-
bined set of transformations produces at least the number of required goods.
Second, given an allocation a sequence must be found. One can show that if
the goods graph of an allocation does not contain any cycles, finding a sequence
becomes trivial and will always be possible.

To test the different algorithms two different data generators are used. One,
due to [Vinyals et al., 2007] is used to compare the algorithms with existing
tests. This data generator discerns three different types of transformations, In-
put, Output and Input-Output transformations. The second data generator is
based on the observation that Input-Output transformations can be subdivided
in two types of transformations, structured and unstructured transformations.

The first observation that one can make from the test results obtained in
Test 1, is that the performance of the constraint programming approach is very
bad, compared to the other two approaches. Although the number of variables
is reduced, close examination of the program shows that the variable index
constraints are very expensive.

Second, one can observe that increasing the number of bids per agent appears
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to reduce the complexity of the auction. Increasing the number of transforma-
tions per bid does not have any influence on the first IP approach, but it does
have an effect on the performance of the second IP approach.

From the results obtained in Test 2, it can be observed that the performance
on structured auctions is much better than the performance on unstructured
auctions. The cause of this is most likely to be the lack of cycles in the latter
type of auction. Furthermore, hybrid auctions appear to be less complex than
auctions containing only unstructured transformations. Again this is due to the
fact that cycles are less likely to occur in these types of auctions.

The results in this thesis have resulted in several questions that need answer-
ing. First, it would be interesting to further investigate the influence of cycles
on the complexity of the WDP. It might be that there are other types of cycles
or combinations of cycles that still enable one to find a sequence relatively fast.
One can think, for example, about what happens when there is no interaction
between different cycles. It is likely that this reduces the complexity of the
WDP.

Second, it would be interesting to look further at the discrepancies between
Test 1 and Test 2. Although some suggestions for explanations have been given,
more testing is needed to find the exact cause of the discrepancy.

Finally, the testset generator described in this thesis can still be enhanced.
This could be done by improving the generation of transformations by adjusting
the probability distributions that are used to decide which goods are used, how
many transformations occur in a bid and how many bids each agent makes.



Appendix A

Implementation of the first
IC approach

:- use_module("../read_input2").
:- lib(eplex).
:- eplex_instance(alg1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% General Methods
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% solve(+Name)
%
% This is the main predicate. It gets as inpute a filename, opens this file,
% reads in the bids and calls the solver
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

solve(Name, UsedTime) :-
readInput1(Name, Input, Output, Price, Start, End, Information, Tm),

cputime(StartTime),
createConstraintArrays(Information, Tm, Xijkm, Xijk, Xijk2, Xij, Xij2,

Xm, Sequence),
greaterOrEqualThanZero(Xijkm, Xijk, Xij, Xm),
allIntegers(Xijkm, Xijk, Xij, Xm),
fill(Xijkm, Xijk, Xijk2, Xij, Xij2, Tm, Input),
!,callSolver(Xijkm, Xijk, Xijk2, Xij, Xm, Input, Output, Price, Start,

End, Sequence),
cputime(EndTime),
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UsedTime is EndTime - StartTime.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% callSolver(+Xijkm, +Xijk, +Xij, +Xm, +Input, +Output, +Price, +Start, +End,
% +Sequence)
%
% This predicate first creates all the constraints. After that it creates the
% formula that needs to be maximized and it calls the solver. In the mean time
% it measures the time that is needed to set op the constraints and solve them.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

callSolver(Xijkm, Xijk, Xijk2, Xij, Xm, Input, Output, Price, Start, End,
Sequence) :-

setConstraint1(Xijk, Xijk2, Xij),!,
setConstraint2(Xij),!,
setConstraint3(Xijkm, Xijk, Xijk2),!,
setConstraint4(Xijkm, Xm),!,
setConstraint5(Xm),!,
setConstraint6(Input, Output, Start, Xijkm),
setConstraint7(Input, Output, Start, End, Xijkm),
optimizeEx(Xij, Price, Opt),
alg1: eplex_solver_setup(max(Opt), _, [method(primal), timeout(3600),

abort_handler(aborted(halted))],
0, []),!,

alg1: eplex_solve(Profit),
writeln("solved").

% this predicate catches the situations in which the solver aborts for some
% reason
aborted(halted).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Constraint Predicates
%
% The following predicates set the constraints that are defined in:
% "Bidding Languages and Winner Determination for Mixed Multi-unit
% Combinatorial Auctions"
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

setConstraint1(Xijk, Xijk2, Xij) :-
(

foreachelem(El, Xijk2, [I,J,K]),
param(Xijk, Xij)
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do
(

El == 1,
alg1: (Xijk[I,J,K] $= Xij[I,J])

;
El == 0

)
).

setConstraint2(Xij) :-
dim(Xij, [A, Mb]),
(

count(I, 1, A),
param(Xij, Mb)

do
Temp is Xij[I,1..Mb],

createSum(Temp, Sum),
constraint2(Sum)

).

% this is done to cope with the situation where the sum consists of a single
% variable

constraint2([Sum]) :-
alg1: (Sum $=< 1).

setConstraint3(Xijkm, Xijk, Xijk2) :-
dim(Xijkm, [_,_,_,M]),
(

foreachelem(El, Xijk2, [I,J,K]),
param(Xijkm, Xijk, M)

do
(

El == 1,
Temp is Xijkm[I,J,K,1..M],
createSum(Temp, Sum),!,
constraint3(Xijk, I,J,K,Sum)

;
El == 0

)
).

% this is done to cope with the situation where the sum consists of a single
% variable

constraint3(Xijk, I,J,K, [Sum]) :-
alg1: (Xijk[I,J,K] $= Sum).

setConstraint4(Xijkm, Xm) :-
dim(Xijkm, [I,J,K,_]),
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(
foreachelem(_, Xm, [M]),
param(Xijkm, Xm, I,J,K)

do
Temp is Xijkm[1..I, 1..J, 1..K,M],
flatten(Temp, Temp2),
createSum(Temp2, Sum),!,
constraint4(Xm, M, Sum)

).

% this is done to cope with the situation where the sum consists of a single
% variable

constraint4(Xm, M, [Sum]) :-
alg1: (Xm[M] $= Sum).

setConstraint5(Xm) :-
dim(Xm, [M1]),
M is M1-1,
(

count(I, 1, M),
param(Xm)

do
I2 is I+1,

alg1: (Xm[I2] $=< Xm[I])
%write([I2]), write(" $=< "), writeln([I])

).

setConstraint6(Input, Output, Start, Xijkm) :-
dim(Xijkm, [I,J,K,M1]),
dim(Input, [I,J,K,G1]),
(

count(M, 1, M1),
param(Input, Output, Start, Xijkm, G1)

do
(

count(G, 1, G1),
param(Input, Output, Start, Xijkm, M)

do
Mminus is M - 1,
multiset(Start, Input, Output, Xijkm, Mminus, G, Mset),!,
productSum(Xijkm, Input, M, G, Mset)

)
).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% productSum(+Xijkm, +Input, +M, +G, +Mset)
%
% The purpose of this predicate is to calculate the sum \sum_{ijk} x^{m}_{ijk}
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% *\In_{ijk}(g)
% for some g and some m. After that it sets the
% inequality Mset >= Sum.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

productSum(Xijkm, Input, M, G, Mset) :-
dim(Xijkm, [Imin,Jmin,Kmin,_]),
Im is Imin + 1,
Jm is Jmin + 1,
Km is Kmin + 1,
(

fromto([1,0], In, Out, [Im,Sum]),
param(Xijkm, Input, M, G, Jm, Km)

do
In = [I, SumI_old],!,

(
fromto([1,0], In, Out, [Jm, SumIJ]),
param(Xijkm, Input, M, G, I,Km)

do
In = [J, SumIJ_old],!,

(
fromto([1,0], In, Out, [Km, SumIJK]),
param(Xijkm, Input, M, G, I, J)

do
In = [K, SumIJK_old],!,

Temp is Input[I,J,K,G],
( Temp == void ->

SumIJK_new = SumIJK_old
;

SumIJK_new = Xijkm[I,J,K,M] * Input[I,J,K,G]
+ SumIJK_old

),
Knew is K + 1,
Out = [Knew, SumIJK_new]

),
SumIJ_new = SumIJK + SumIJ_old,
Jnew is J + 1,
Out = [Jnew, SumIJ_new]

),
SumI_new = SumIJ + SumI_old,
Inew is I + 1,
Out = [Inew, SumI_new]

),
alg1: (Mset $>= Sum).

setConstraint7(Input, Output, Start, End, Xijkm) :-
dim(Xijkm, [_, _, _,T]),
(
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foreachelem(_, End, [G]),
param(Input, Output, Start, End, Xijkm, T)

do
multiset(Start, Input, Output, Xijkm, T, G, Mset),!,

alg1: (Mset $>= End[G])
).

multiset(Start, Input, Output, Xijkm, M, G, Mset) :-
doubleSum(Xijkm,Input, Output, M, G, DS),
Uin is Start[G],
Mset = Uin + DS.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% doubleSum(+Xijkm, +Input, +Output, +Mmin, +G, -Mset)
%
% The purpose of this predicate is to calculate the sum
% \sum_{l=1}^{m}\sum_{ijk} x^{l}_{ijk} * (\Out_{ijk}(g) - \In_{ijk}(g))
% which is saved in Mset
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

doubleSum(Xijkm, Input, Output, Mmin, G, Mset) :-
dim(Xijkm, [Imin, Jmin, Kmin, _]),
M is Mmin + 1,
Im is Imin + 1,
Jm is Jmin + 1,
Km is Kmin + 1,
(

fromto([1,0], In, Out, [M,Mset]),
param(Xijkm, Input, Output, G, Im, Jm, Km)

do
In = [L, Mset_old],!,

(
fromto([1,0], In, Out, [Im,MsetI]),
param(Xijkm, Input, Output, G, L, Jm, Km)

do
In = [I, MsetI_old],!,

(
fromto([1,0], In, Out, [Jm, MsetIJ]),
param(Xijkm, Input, Output, L, I, G, Km)

do
In = [J, MsetIJ_old],!,

(
fromto([1,0], In, Out, [Km, MsetIJK]),
param(Xijkm, Input, Output, G, L, I, J)

do
In = [K, MsetIJK_old],!,
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Temp is Input[I,J,K,G],
( Temp == void ->

MsetIJK_new = MsetIJK_old
;

MsetIJK_new = MsetIJK_old + Xijkm[I,J,K,L]
*(Output[I,J,K,G] - Input[I,J,K,G])

),
Knew is K + 1,
Out = [Knew, MsetIJK_new]

),
MsetIJ_new = MsetIJ_old + MsetIJK,
Jnew is J+1,
Out = [Jnew, MsetIJ_new]

),
MsetI_new = MsetI_old + MsetIJ,
Inew is I+1,
Out = [Inew, MsetI_new]

),
Mset_new = Mset_old + MsetI,
Lnew is L+1,
Out = [Lnew, Mset_new]

).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% optimizeEx(+Xij, +Price, -Opt)
%
% This predicate creates the function that needs to be optimized and stores it
% in Opt
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

optimizeEx(Xij, Price, Opt) :-
dim(Xij, [Imax, Jmax]),
Im is Imax + 1,
Jm is Jmax + 1,
(

fromto([1,0], In, Out, [Im,Opt]),
param(Xij, Price, Jm)

do
In = [I, Opt_old],

(
fromto([1,0], In, Out, [Jm,OptIJ]),
param(Xij, Price, I)

do
In = [J, OptIJ_old],

P is Price[I,J],
(

OptIJ_old == 0,
(
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P == void,
OptIJ_new = 0

;
P \== void,

OptIJ_new = Xij[I,J] * Price[I,J]
)

;
OptIJ_old \== 0,
(

P == void,
OptIJ_new = OptIJ_old

;
P \== void,

OptIJ_new = Xij[I,J] * Price[I,J] + OptIJ_old
)

),
Jnew is J + 1,

Out = [Jnew, OptIJ_new]
),
(

Opt_old == 0,
Opt_new = OptIJ

;
Opt_old \== 0,

Opt_new = OptIJ + Opt_old
),
Inew is I + 1,
Out = [Inew, Opt_new]

).

greaterOrEqualThanZero(Xijkm, Xijk, Xij, Xm) :-
dim(Xijkm, Dim),
writeln(Dim),
(

foreachelem(_, Xijkm, [I,J,K,M]),
param(Xijkm, Xijk, Xij)

do
alg1: (Xijkm[I,J,K,M] $>= 0),

alg1: (Xijkm[I,J,K,M] $=< 1),
(

M == 1,
alg1: (Xijk[I,J,K] $>= 0),
alg1: (Xijk[I,J,K] $=< 1),

(
K == 1,
alg1: (Xij[I,J] $>= 0),
alg1: (Xij[I,J] $=< 1)

;
K > 1,
true
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)
;

M > 1,
true

)
),
(

foreachelem(_, Xm, [M]),
param(Xm)

do
alg1: (Xm[M] $>= 0),

alg1: (Xm[M] $=< 1)
).

allIntegers(Xijkm, Xijk, Xij, Xm) :-
dim(Xijkm, [I,J,K,M]),
A1 is Xijkm[1..I,1..J,1..K,1..M],
A2 is Xijk[1..I,1..J,1..K],
A3 is Xij[1..I,1..J],
A4 is Xm[1..M],
A = [A1,A2,A3,A4],
flatten(A, Af),
%writeln(Af),
alg1: integers(Af).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Helper Predicates
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% fill(+Xijkm, +Xijk, +Xij, +M, +Input)
%
% Not every entry in Xijkm etc. points to a real transformation. This is due
% to the fact that not every bid contains the same amount of transformations
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fill(Xijkm, Xijk, Xij, M, Input) :-
dim(Input, [Im, Jm, Km, _]),
Imax is Im + 1,
Jmax is Jm + 1,
Kmax is Km + 1,
(

fromto([1], In, Out,[Imax]),
param(Xijkm, Xijk, Xij, M, Input, Jmax, Kmax, Km)

do
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In = [I],
(

fromto([1], In, Out, [Jmax]),
param(Xijkm, Xijk, Xij, M, Input, I, Kmax, Km)

do
In = [J],

(
fromto([1, 0], In, Out, [Kmax, Kcount]),
param(Xijkm, Xijk, M, Input, I,J)

do
In = [K, Kcount],

Temp is Input[I,J,K,1],
(

Temp == void,
(

count(L, 1, M),
param(Xijkm, I, J, K)

do
subscript(Xijkm, [I,J,K,L], 0)

),
subscript(Xijk, [I,J,K], 0),
Kcount_new is Kcount + 1

;
Temp \== void,

Kcount_new is Kcount
),
Knew is K+1,
Out = [Knew, Kcount_new]
),
(

Kcount == Km,
subscript(Xij, [I,J], 0)

;
Kcount \== Km,

),
Jnew is J + 1,
Out = [Jnew]

),
Inew is I + 1,
Out = [Inew]

).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% createConstraintArrays(+Information, +Tm, -Xijkm, -Xijk, -Xij, Xm)
%
% +Information : a list containing [Agents, Maxbids, Maxtrans, Goods].
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% -Xijkm : a 4D array, with Xijkm[I,J,K,M] == 1 if transformation ijk is
% in location m in the sequence and 0 otheriwse.
% -Xijk : A 3D array, with Xijk[I,J,K] == 1 if the transformation ijk is
% used in the sequence.
% -Xij : A 2D array, with Xij[I,J] == 1 if the bid ij is selected.
% -Xm : A 1D array, with Xm[M] == 1 if position m in the sequence is
% filled.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

createConstraintArrays([A,Mb,Mt,_], Tm, Xijkm, Xijk, Xijk2, Xij, Xij2, Xm, Sequence) :-
dim(Xijkm, [A,Mb,Mt,Tm]),
dim(Xijk, [A,Mb,Mt]),
dim(Xijk2, [A,Mb,Mt]),
dim(Xij, [A,Mb]),
dim(Xij2, [A,Mb]),
dim(Xm, [Tm]),
dim(Sequence, [Tm]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% getSequence(+Xijkm, +Sequence)
%
% This predicate extracts the sequence of transformations that constitutes
% the solution to the WDP.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getSequence(Xijkm, Sequence) :-
(

foreachelem(El, Xijkm, [I,J,K,M]),
param(Sequence)

do
alg1: eplex_var_get(El, typed_solution, El),

(
El == 1,
subscript(Sequence, [M], [I,J,K])

;
true

)
).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% getAcceptedBids(+Xij, -AB)
%
% This predicate extracts the bids that are accepted by the the solution to the
% WDP.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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getAcceptedBids(Xij, AB) :-
dim(Xij, [I,J]),
Im is I + 1,
Jm is J + 1,
(

fromto([1,[]], In, Out, [Im, AB]),
param(Xij, Jm)

do
In = [I, AB_old],
(

fromto([1,[]], In, Out, [Jm, ABI]),
param(Xij, I)

do
In = [J, ABI_old],
El is Xij[I,J],

alg1: eplex_var_get(El, typed_solution, El),
Jnew is J + 1,
(

El == 1,
Out = [Jnew,[(I,J)|ABI_old]]

;
Out = [Jnew, ABI_old]

)
),
Inew is I + 1,
flatten([AB_old, ABI], AB_new),
Out = [Inew, AB_new]

).

createSum([X1,X2], [X1 + X2]) :-
var(X1),
var(X2).

createSum([X1,X2], [X1+0]) :-
var(X1),
not(var(X2)).

createSum([X1,X2], [X2+0]) :-
not(var(X1)),
var(X2).

createSum([X1,X2], [0]) :-
not(var(X1)),
not(var(X2)).

createSum([X], [X]):-
var(X).
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createSum([X], [0]) :-
not(var(X)).

createSum([X|R], [X+Sum]):-
var(X),
createSum(R, [Sum]).

createSum([X|R], Sum):-
not(var(X)),
createSum(R, Sum).
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Appendix B

Implementation of the CP
approach

:- use_module("../read_input2").
:- lib(ic).
:- lib(branch_and_bound).
:- lib(array_constraints_ic).
:- lib(lists).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% solve(+Filename)
%
% This predicate reads in the information that is contained in Filename. It then
% creates the constraints that are needed to solve the problem and uses minimize\2
% to find an optimal solution
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

solve_ic(Filename, UsedTime) :-
readInput2(Filename, Input, Output, Price, Start, End, Information, Nijk

, T),
cputime(StartTime),
createArrays(Information, T, Xm, Xn, Bijk, Bij, Bm, Sequence),
specifyDomains(T, Xm, Xn, Bijk, Bij, Bm),
createConstraint1and2(Xm, Xn),
createConstraintAllDiff(Xm, Xn),
createConstraint3(T, Bijk, Xn),
createConstraint4(Bij, Bijk, Nijk),
createConstraint5(Bij),
createConstraint6(T, Start, Bijk, Input, Output, Xm),
createConstraint7(T, Start, End, Bijk, Input, Output, Xm),
createConstraint9(T, Bm, Xm),
createConstraint8(T, Bm),
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createConstraint10(Bijk, Bm, Xm),
optimizeExpr(Bij, Price, Opt),
{get_elements(Xm, XmE)},
garbage_collect,
bb_min(labelingTest(XmE, T, Constraints), Opt, bb_options{strategy:restart}),!,
cputime(EndTime),
UsedTime is EndTime - StartTime.

labelingTest(X, T, Constraints) :-
halve(X, Xt, Xr),
myLabeling(Xt, T, [], Constraints),
labelingRest(Xr).

myLabeling([], _, _, _).

myLabeling([X|L], T, Done, _) :-
get_bounds(X, Lo, _),
( Lo > T ->

!, labelingRest([X|L])
;

indomain(X),
myLabeling(L, T, [X|Done], ConList)

).

labelingRest([]) :- !.

labelingRest([X|L]) :-
indomain(X), !,
labelingRest(L).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Create the constraints %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

createConstraint1and2(Xm, Xn) :-
(

foreachelem(_, Xn, [N]),
param(Xm, Xn)

do
T1 is Xn[N],

T2 is Xm[N],
{

Xm[T1] = N,
Xn[T2] = N

}
).
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createConstraint3(T, Bijk, Xn) :-
(

foreachelem(_, Bijk, [N]),
param(Bijk, Xn, T)

do
( N =< T ->

T1 is Xn[N],
T2 is Bijk[N],
#=<(T1,T,T2)

;
{Bijk[N] = 0}

)
).

createConstraint4(Bij, Bijk, Nijk) :-
(

foreachelem([I,J,_], Nijk, [N]),
param(Bij,Bijk,Bijk)

do
T1 is Bij[I,J],

T2 is Bijk[N],
#=(T1, T2)

).

createConstraint5(Bij) :-
dim(Bij, [I,J]),
Im is I,
Jm is J + 1,
(

count(I, 1, Im),
param(Bij, Jm)

do
(

fromto([1,0], In, Out, [Jm, Sum]),
param(I, Bij)

do
In = [J, Sum_old],

(
Sum_old == 0,
Sum_new = Bij[I,J]

;
Sum_old \== 0,
Sum_new = Sum_old + Bij[I,J]

),
Jnew is J + 1,
Out = [Jnew, Sum_new]

),
(eval(Sum) #=< 1)

).
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createConstraint6(T, Start, Bijk, Input, Output, Xm) :-
dim(Input, [_,G1]),
(

count(M, 1, T),
param(Input, Output, Start, Bijk, Xm, G1)

do
(

count(G, 1, G1),
param(Input, Output, Start, Bijk, Xm, M)

do
Mminus is M - 1,

multiset(Start, Bijk, Input, Output, Xm, Mminus, G, Mset),
T2 is Xm[M],
{T1 = Input[T2,G]},
List is Xm[1..Mminus],

%suspend(eval(Mset) #>= T1, 0, List->inst)
eval(Mset) #>= T1

)
).

createConstraint6(T, Start, Bijk, Input, Output, Xm, ConstraintsR) :-
T2 is T + 1,
dim(Input, [_,G1]),
G2 is G1 + 1,
(

fromto([1, []], In, Out, [T2, Constraints]),
param(Input, Output, Start, Bijk, Xm, G2)

do
In = [M, ConstraintsOld],
(

fromto([1, []], In, Out, [G2, ConstraintsTemp]),
param(Input, Output, Start, Bijk, Xm, M)

do
In = [G, ConstraintsOldTemp],

Mminus is M - 1,
multiset(Start, Bijk, Input, Output, Xm, Mminus, G, Mset),
{T1 = Input[Xm[M],G]},
ConstraintsNewTemp = [eval(Mset) #>= T1|ConstraintsOldTemp],
Gnew is G + 1,
Out = [Gnew, ConstraintsNewTemp]

),
reverse(ConstraintsTemp, ConstraintsTempR),
ConstraintsNew = [ConstraintsTempR|ConstraintsOld],
Mnew is M + 1,
Out = [Mnew, ConstraintsNew]

),
reverse(Constraints, ConstraintsR).



91

createConstraint7(T, Start, End, Bijk, Input, Output, Xm) :-
dim(Start, [Gmax]),
(

count(G, 1, Gmax),
param(T, Start, End, Bijk, Input, Output, Xm)

do
multiset(Start, Bijk, Input, Output, Xm, T, G, Mset),

eval(Mset) #>= eval(End[G])
).

createConstraint8(T, Bm) :-
Tm is T - 1,
(

count(M, 1, Tm),
param(Bm)

do
M2 is M + 1,

eval(Bm[M]) #=< eval(Bm[M2])
).

createConstraint9(T, Bm, Xm) :-
(

foreachelem(_, Xm, [N]),
param(Xm, Bm, T)

do
( N =< T ->

T1 is Xm[N],
T2 is Bm[N],
#>(T1, T, T2)

;
true

)
).

createConstraint10(Bijk, Bm, Xm) :-
(

foreachelem(_, Xm, [N]),
param(Xm, Bijk, Bm)

do
T3 is Xm[N],
{T1 = Bijk[T3],

T2 = Bm[N]},
#\=(T1, 1, T2)

).

createConstraintAllDiff(Xm, Xn) :-
{

get_elements(Xm, XmE),
get_elements(Xn, XnE)

},
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alldifferent(XmE),
alldifferent(XnE).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Helping Predicates %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% multiset(+Start, +Bijk, +Input, +Output, +Xm, +M, +G, -Mset)
%
% This predicate creates, for a good G, the sum that calculates the amount of
% goods that is available at position M in the sequence. The array_constraints
% library is used to define constraints on nested arrays
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

multiset(Start, Bijk, Input, Output, Xm, M, G, Mset) :-
M2 is M + 1,
(

fromto([1,Start[G]], In, Out, [M2, Mset]),
param(Input, Output, Bijk, Xm, G)

do
In = [L, Sum_old],

{Bijk[Xm[L]] = T1},
{Output[Xm[L], G] = T2},
{Input[Xm[L],G] = T3},
(

Sum_old == 0,
Sum_new = T1*(T2 - T3)

;
Sum_old \== 0,

Sum_new = Sum_old + T1*(T2 - T3)
),
Lnew is L + 1,
Out = [Lnew, Sum_new]

),
!.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% createArrays(+Information, +T, -Xm, -Xn, -Bijk, -Bij, -Sequence)
%
% This predicate creates the arrays that are needed to define the constraints.
%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

createArrays([A,Mb,_,_], T, Xm, Xn, Bijk, Bij, Bm, Sequence) :-
T2 is T*2,
dim(Xm, [T2]),
dim(Bm, [T2]),
dim(Xn, [T2]),
dim(Bijk, [T2]),
dim(Bij, [A,Mb]),

dim(Sequence, [T]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% specifyDomains(+T, +Xm, +Xn, +Bijk, +Bij)
%
% This predicate specifies the domains of the problem variables
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

specifyDomains(T, Xm, Xn, Bijk, Bij, Bm) :-
T2 is T*2,
{Xm :: 1..T2,
Xn :: 1..T2,
Bijk :: 0..1,
Bij :: 0..1,
Bm :: 0..1}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% optimzeExpr(+Bij, +Price, -Opt)
%
% This predicate defines the variable that is used by minimize\2 to find the
% optimal solution. In this case it is the some of the prices of the selected bids
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

optimizeExpr(Bij, Price, Opt) :-
dim(Bij, [Imax, Jmax]),
Im is Imax + 1,
Jm is Jmax + 1,
(

fromto([1,0], In, Out, [Im,OptExpr]),
param(Bij, Price, Jm)

do
In = [I, Opt_old],

(
fromto([1,0], In, Out, [Jm,OptIJ]),
param(Bij, Price, I)
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do
In = [J, OptIJ_old],

P is Price[I,J],
(

OptIJ_old == 0,
(

P == void,
OptIJ_new = 0

;
P \== void,

OptIJ_new = Bij[I,J] * Price[I,J]
)

;
OptIJ_old \== 0,
(

P == void,
OptIJ_new = OptIJ_old

;
P \== void,

OptIJ_new = Bij[I,J] * Price[I,J] + OptIJ_old
)

),
Jnew is J + 1,

Out = [Jnew, OptIJ_new]
),
(

Opt_old == 0,
Opt_new = OptIJ

;
Opt_old \== 0,

Opt_new = OptIJ + Opt_old
),
Inew is I + 1,
Out = [Inew, Opt_new]

),
Opt #= -eval(OptExpr).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% getSequence(+Xm, +Nijk, +Sequence)
%
% This predicate finds the sequence of bids that constitutes the solution
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getSequence(Xm, Nijk, Sequence) :-
dim(Sequence, [T]),
T2 is T + 1,
(

fromto(1, M, Out, T2),
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param(Xm, Nijk, Sequence, T, T2)
do

P is Xm[M],
(

P =< T,
Out is M +1,
El is Nijk[P],
subscript(Sequence, [M], El)

;
P > T,

Out is T2
)

).
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Appendix C

Implementation of the
second IP approach

:- use_module("../read_input2").
:- lib(eplex).
:- lib(lists).
:- lib(hash).
:- eplex_instance(alg5).
:- eplex_instance(alg5sequence).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% General Methods
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% solve(+Name, -UsedTime)
%
% This is the main predicate. It gets as inpute a filename, opens this file,
% reads in
% the bids and calls the solver. In the end, it outputs the CPU time that was
% needed
% to solve the auction.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

solve(Filename, UsedTime) :-
readInput1(Filename, Input, Output, Price, Start, End, Information

, _Tm),
cputime(StartTime),
createArrays(Information, Bij, InputB, OutputB),

97
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mergeInput(Input, Output, InputB, OutputB, Information),!,
callSolver(Information, Bij, InputB, OutputB, Input, Output, Start

, End, Price),
cputime(EndTime),
UsedTime is EndTime - StartTime.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% callSolver(+Information, +Bij, +InutB, +OutputB, +Input, +Output, +Start,
% +End, +Price)
%
% This predicate is responsable for creating the constraints that solve the
% first part of the problem and to call upon the predicate that solves the
% second part of the problem
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

callSolver(Information, Bij, InputB, OutputB, Input, Output, Start, End
, Price) :-

optimizeExpr(Bij, Price, OptExpr),
createEplexConstraints(Bij, Start, End, InputB, OutputB),!,
alg5:eplex_solver_setup(max(OptExpr), _, [method(primal)

, timeout(3600), abort_handler(aborted(boe))]
, 0, []),

findOptimalSequence(Information, Input, Output, Start, Bij, 0).

aborted(boe) :- writeln("execution was aborted").

findOptimalSequence(_, _, _, _, _, PassedTime) :-
PassedTime > 3600.

findOptimalSequence(_Gm, Input, Output, Start, Bij, PassedTime) :-
AvailableTime is 3600 - PassedTime,
cputime(CurrentTime),
alg5:eplex_set(timeout, AvailableTime),
alg5:eplex_solve(Cost),!,
dim(Bij, I),
dim(BijCopy, I),
getBij(BijCopy, Bij),!,
(

% find out whether the allocation is proper.
cputime(CurrentTime2),
PassedTime2 is PassedTime + (CurrentTime2 - CurrentTime),
findSequence(Input, Output, Start, BijCopy, _Sequence

, PassedTime2)
;

% The allocation is not proper, find a new allocation
setExclusion(BijCopy, Bij),
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alg5sequence:eplex_cleanup,
cputime(CurrentTime2),
PassedTime2 is PassedTime + (CurrentTime2 - CurrentTime),
findOptimalSequence(_Gm, Input, Output, Start, Bij, PassedTime2)

),!.

getBij(BijCopy, Bij) :-
(

foreachelem(El, Bij, [I,J]),
param(BijCopy)

do
T is BijCopy[I,J],
alg5: eplex_var_get(El, typed_solution, T)

), !.

findSequence(_, _, _, _, _, PassedTime) :-
PassedTime > 3600.

findSequence(Input, Output, Start, BijCopy, _Sequence, PassedTime) :-
cputime(CurrentTime),
getTransformations(BijCopy, Input, Output, AllInput, AllOutput

, Trans),
( Trans = [] ->

true
;

createSequenceArrays(AllInput, Pos),
setSequenceConstraints(AllInput, AllOutput, Start, Pos),!,
flatten_array(Pos, PosE),
createSum2(PosE, Sum),
dim(AllInput, [I,_]),
alg5sequence: (Sum $>= I),
cputime(CurrentTime2),
AvailableTime is 3600 - PassedTime - (CurrentTime2 - CurrentTime),
( AvailableTime > 0 ->

alg5sequence:eplex_solver_setup(max(Sum), _
, [timeout(AvailableTime)
, abort_handler(aborted(boe))], []),

alg5sequence:eplex_solve(C),!
;

true
)

).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Create the constraints %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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createEplexConstraints(Bij, Start, End, InputB, OutputB) :-
allIntegers(Bij),
greaterThenOrEqualToZero(Bij),
createEplexConstraint1(Bij),
createEplexConstraint2(Bij, Start, End, InputB, OutputB).

allIntegers(Bij) :-
flatten_array(Bij, BijE),
alg5: integers(BijE).

greaterThenOrEqualToZero(Bij) :-
(

foreachelem(_, Bij, [I,J]),
param(Bij)

do
alg5: (Bij[I,J] $>= 0),

alg5: (Bij[I,J] $=< 1)
).

createEplexConstraint1(Bij) :-
dim(Bij, [A, Mb]),
(

count(I, 1, A),
param(Bij, Mb)

do
Temp is Bij[I,1..Mb],

createSum(Temp, Sum),
constraint3(Sum)

).

% this is done to cope with the situation where the sum consists of a
% single variable
constraint3([Sum]) :-
alg5: (Sum $=< 1).

createEplexConstraint2(Bij, Start, End, InputB, OutputB) :-
dim(Bij, [I,J]),
Im is I + 1,
Jm is J + 1,
(

foreachelem(_, Start, [G]),
param(Bij, Start, End, InputB, OutputB, Im, Jm)

do
(

fromto([1,Start[G]], In, Out, [Im, Mset]),
param(Bij, InputB, OutputB, Jm, G)

do
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In = [I, MsetOld],
(

fromto([1, 0], In, Out, [Jm, MsetI]),
param(Bij, InputB, OutputB, I, G)

do
In = [J, MsetIOld],

Temp is (OutputB[I,J,G] - InputB[I,J,G]),
MsetINew = MsetIOld + Bij[I,J] * Temp,
Jnew is J + 1,
Out = [Jnew, MsetINew]

),
Inew is I + 1,
MsetNew = MsetOld + MsetI,
Out = [Inew, MsetNew]

),
alg5: (Mset $>= End[G])

), !.

createExcludeConstraint(BijCopyE, BijE) :-
createSum(BijCopyE, S),
(

fromto([BijE, 0], In, Out, [[], Sum])
do

In = [[El|BijE], SumOld],
(El == 1 ->

SumNew = SumOld + El
;

SumNew = SumOld
),
Out = [BijE, SumNew]

),
alg5: (Sum $=< S).

setSequenceConstraints(AllInput, AllOutput, Start, Pos) :-
flatten_array(Pos, PosE),
alg5sequence:integers(PosE),
setConstraintBin(Pos),
setConstraintAll(Pos),
setConstraintSequence(AllInput, AllOutput, Start, Pos).

setConstraintBin(Pos) :-
(

foreachelem(_, Pos, [I,M]),
param(Pos)

do
alg5sequence: (Pos[I,M] $=< 1),

alg5sequence: (Pos[I,M] $>= 0)
).
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setConstraintAll(Pos) :-
dim(Pos, [T,_]),
(

count(I, 1, T),
param(Pos, T)

do
List is Pos[I,1..T],
List2 is Pos[1..T,I],
createSum2(List, Sum),
createSum2(List2, Sum2),
alg5sequence: (Sum $=< 1),
alg5sequence: (Sum2 $=< 1)

).

setConstraintSequence(AllInput, AllOutput, Start, Pos) :-
dim(Start, [Gm]),
dim(AllInput, [T,_]),

(
count(G, 1, Gm),
param(AllInput, AllOutput, Start, Pos, T)

do
(

count(M, 1, T),
param(AllInput, AllOutput, Start, Pos, G, T)

do
Mmin is M - 1,
multiset(Start, Pos, AllInput, AllOutput, Mmin, G, T, Mset),

createSumInput(Pos, AllInput, M, G, Sum),
alg5sequence: (Sum $=< Mset)

)
),!.

createSumInput(Pos, AllInput, M, G, Sum) :-
dim(Pos, [Im,_]),
(

count(I, 1, Im),
fromto(0, OldS, NewS, Sum),
param(Pos, AllInput, M, G)

do
NewS = OldS + Pos[I,M]*AllInput[I, G]

).

setExclusion(BijCopy, Bij) :-
% writeln(BijCopy),
(

foreachelem(El, BijCopy, [I,J]),
fromto(0, OldSum, NewSum, Sum),
param(Bij)

do
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( El = 0 ->
NewSum = OldSum + Bij[I,J]

;
NewSum = OldSum + (1-Bij[I,J])

)
),
alg5: (Sum $>= 1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Helping Predicates %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% multiset(+Start, +Pos, +Input, +Output, +M, +G, -Mset)
%
% This predicate creates, for a good G, the sum that calculates the amount
% of goods that is available
% at position M in the sequence.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

multiset(Start, Pos, Input, Output, M, G, T, Mset) :-
M2 is M + 1,
T2 is T + 1,
(

fromto([1,Start[G]], In, Out, [M2, Mset]),
param(Input, Output, Pos, G, T2)

do
In = [L, Mset_old],

(
fromto([1,0], In, Out, [T2, MsetT]),
param(Input, Output, Pos, L, G)

do
In = [L2, MsetT_old],

MsetT_new = MsetT_old + Pos[L2, L]*(Output[L2, G]
- Input[L2, G]),

L2new is L2 + 1,
Out = [L2new, MsetT_new]

),
Mset_new = Mset_old + MsetT,
Lnew is L + 1,
Out = [Lnew, Mset_new]

),!.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% createArrays(+Information, +T, -Xm, -Xn, -Bijk, -Bij, -Sequence)
%
% This predicate creates the arrays that are needed to define the constraints.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

createArrays([A,Mb,_,G], Bij, InputB, OutputB) :-
dim(Bij, [A,Mb]),

dim(InputB, [A, Mb, G]),
dim(OutputB, [A, Mb, G]).

createSequenceArrays(AllInput, Pos) :-
dim(AllInput, [I, _]),
dim(Pos, [I,I]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% specifyDomains(+T, +Xm, +Xn, +Bijk, +Bij)
%
% This predicate specifies the domains of the problem variables
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

specifyDomains(T, Xm, Xn, Bijk, Bij, Bm) :-
T2 is T*2,
{Xm :: 1..T2,
Xn :: 1..T2,
Bijk :: 0..1,
Bij :: 0..1,
Bm :: 0..1}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% optimzeExpr(+Bij, +Price, -Opt)
%
% This predicate defines the variable that is used by minimize\2 to find
% the optimal solution. In this case it is the some of the prices of the
% selected bids
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

optimizeExpr(Bij, Price, OptExpr) :-
dim(Bij, [Imax, Jmax]),
Im is Imax + 1,
Jm is Jmax + 1,
(

fromto([1,0], In, Out, [Im,OptExpr]),
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param(Bij, Price, Jm)
do

In = [I, Opt_old],
(

fromto([1,0], In, Out, [Jm,OptIJ]),
param(Bij, Price, I)

do
In = [J, OptIJ_old],

P is Price[I,J],
(

OptIJ_old == 0,
(

P == void,
OptIJ_new = 0

;
P \== void,

OptIJ_new = Bij[I,J] * Price[I,J]
)

;
OptIJ_old \== 0,
(

P == void,
OptIJ_new = OptIJ_old

;
P \== void,

OptIJ_new = Bij[I,J] * Price[I,J] + OptIJ_old
)

),
Jnew is J + 1,

Out = [Jnew, OptIJ_new]
),
(

Opt_old == 0,
Opt_new = OptIJ

;
Opt_old \== 0,

Opt_new = OptIJ + Opt_old
),
Inew is I + 1,
Out = [Inew, Opt_new]

).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% getTransformations(+BijCopy, +Input, +Output, +AllInput, +AllOutput, -Trans)
%
% The purpose of this predicate is to collect all the transformations that
% belong to the selected bids. These transformations are stored in Trans
%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getTransformations(BijCopy, Input, Output, AllInput, AllOutput, Trans) :-
dim(Input, [_, _, Km, Gm]),
Kmax is Km + 1,
Gmax is Gm + 1,
(

foreachelem(El, BijCopy, [I,J]),
fromto(0, Counter, NewCounter, S),
fromto([], OldL, NewL, List),
fromto([], OldL2, NewL2, List2),
param(Input, Output, Kmax, Gmax)

do
(El = 1 ->

(
fromto([1, [], []], In, Out, [Kmax, ListK, ListK2]),
fromto(Counter, OldCounterK, NewCounterK, NewCounter),
param(Input, Output, I, J, Gmax)

do
In = [K, OldLK, OldLK2],

( subscript(Input, [I,J,K,1], void) ->
NewLK = OldLK,
NewLK2 = OldLK2,
NewCounterK = OldCounterK

;
NewCounterK is OldCounterK + 1,

(
fromto([1,[]], In, Out, [Gmax, ListGK]),
param(Input, Output, I, J, K)

do
In = [G, OldListGK],

T1 is Input[I,J,K,G],
T2 is Output[I,J,K,G],

NewListGK = [T1-T2|OldListGK],
NewG is G + 1,
Out = [NewG, NewListGK]

),
NewLK = [ListGK | OldLK],
NewLK2 = [(I-J-K)|OldLK2]

),
NewK is K + 1,
Out = [NewK, NewLK, NewLK2]

),
NewL = [ListK|OldL],
NewL2 = [ListK2|OldL2]

;
NewL = OldL,

NewL2 = OldL2,
NewCounter is Counter
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)
),
( S = 0 ->

dim(Trans, [0])
;

flatten(List, ListE),
flatten(List2, List2E),
dim(AllInput, [S, Gm]),
dim(AllOutput, [S, Gm]),
dim(Trans, [S]),
(

foreach(El, List2E),
count(K, 1, M),
param(Trans)

do
subscript(Trans, [K], El)

),
(

fromto([1,Gm,ListE], In, Out, [_,_,[]]),
param(AllInput, AllOutput, Gm)

do
In = [I, G, [Input-Output|Rest]],

subscript(AllInput, [I,G], Input),
subscript(AllOutput, [I,G], Output),
( G = 1 ->

NewG is Gm,
NewI is I + 1

;
NewG is G - 1,

NewI is I
),
Out = [NewI, NewG, Rest]

)
).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% mergeInput(Input, Output, InputB, OutputB)
%
% This predicate takes as input Input and Output, and merge all the
% transformations belonging to one bid, storing them in InputB and OutputB
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mergeInput(Input, Output, InputB, OutputB, [_, _, _, Gm]) :-
dim(Input, [Im, Jm, Km, Gm]),
Kmax is Km + 1,
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(
count(G, 1, Gm),
param(Input, Output, InputB, OutputB, Im, Jm, Kmax)

do
(

count(I, 1,Im),
param(Input, Output, InputB, OutputB, Jm, Kmax, G)

do
(

count(J, 1, Jm),
param(Input, Output, InputB, OutputB, I, Kmax, G)

do
(

fromto([1,0,0], In, Out, [Kmax, IB, OB]),
param(Input, Output, I, J, G, Kmax)

do
In = [K, IB, OB],

T1 is Input[I,J,K,G],
( T1 = void ->

IBNew is IB,
OBNew is OB,
Knew is Kmax

;
IBNew is IB + Input[I,J,K,G],
OBNew is OB + Output[I,J,K,G],
Knew is K + 1

),
Out = [Knew, IBNew, OBNew]

),
subscript(InputB, [I, J, G], IB),
subscript(OutputB, [I, J, G], OB)

)
)

),
fill(InputB, 0),
fill(OutputB, 0),
!.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% fill(+Array, +Value)
%
% This predicatae takes as input an Array and some value, and it fills
% all the elements in the array that have not been instantiated yet with
% the value Value
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fill(Array, Value) :-
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(
foreachelem(El, Array),
param(Value)

do
( var(El) ->

El = Value
;

true
)

), !.

createSum([X1,X2], [X1 + X2]) :-
var(X1),
var(X2).

createSum([X1,X2], [X1+0]) :-
var(X1),
not(var(X2)).

createSum([X1,X2], [X2+0]) :-
not(var(X1)),
var(X2).

createSum([X1,X2], [0]) :-
not(var(X1)),
not(var(X2)).

createSum([X], [X]):-
var(X).

createSum([X], [0]) :-
not(var(X)).

createSum([X|R], [X+Sum]):-
var(X),
createSum(R, [Sum]).

createSum([X|R], Sum):-
not(var(X)),
createSum(R, Sum).

createSum2([], 0).

createSum2([X|R], Sum) :-
createSum2(R, Sum1),
Sum = Sum1 + X.
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