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Chapter 1

Introduction

Through history logic has been used for several purposes, for example as foun-
dation of mathematics or in philosophy to provide an controlled environment of
argumentation. In this thesis we are interested in using logic to describe mathe-
matical structures. For example, it is well know that algebraic logic can be used
to describe algebraic structures. Birkhoff Theorem clarifies under what condi-
tions a class of algebraic structures can be characterized using algebraic logic.
The dual concept of algebraic structure is that of coalgebraic structure. In the
last decade there has been a development of different logical languages to de-
scribe coalgebraic structures. There is no agreement in which of these language
is the most appropriate to describe coalgebras. This disagreement is partially
based on the fact that there is not much work comparing these languages. In
this thesis we will do some steps on this direction comparing two languages to
describe coalgebraic structures.

Coalgebras and algebras are formally dual concepts, i.e. given a functor T ,
a coalgebra is a function α : A −→ TA and an algebra is a function α : TA −→ A.
Peter Gumm in [6] claims that coalgebras as direct duals of algebras have been in
scene for more than 30 years, but did not receive much attention primarily due
to the lack of vital examples. The vital examples came from computer science.
Various kind of transitions systems, automata and functional programming lan-
guages are naturally represented as coalgebraic structures. These new examples
demonstrated that a better intuition to understand universal coalgebra is to
conceive it as a general and uniform theory to describe dynamic systems.

Our starting point is that of basic modal logic and Kripke structures, frames
and models. It is well known that modal logic is an expressive language to talk
about Kripke structures or relational structures, see [2]. Using modal logic we
can provide an internal local perspective on relational structures, see [2]. Now
Kripke frames and Kripke models can be naturally represented in coalgebraic
terms. For example, a Kripke frame (A,R) is represented by a function R : A
−→ PA, where P is the covariant power set functor and R(s) is the the successors
of s. Here, we can see that modal logic is a language to talk about coalgebraic
structures. This immediately rises interesting questions. Are there other formal
languages like basic modal logic for other coalgebras? Is the modal language
an isolated language or is it an example of a more general concept? Since there
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2 CHAPTER 1. INTRODUCTION

are many languages to talk about coalgebras what is the relation between them?

The first question can be answered through abstract model theory. A lan-
guage for coalgebras is a set with a class of satisfaction relations. The satisfac-
tion of a modal formula on some point of a Kripke frame can be seen as a process
executed over some Kripke structure. Here, we can say that from the point of
modal logic Kripke structures are dynamic systems, therefore coalgebras are a
generalization of Kripke frames, but there is no natural interpretation of basic
modal formulas over arbitrary coalgebras. Pattinson in [9] and Schröder in [10]
solved this problem showing that there is a direct generalization of modal logic,
see Chapter 4 here, using the concept of relation lifting; we call those languages
coalgebraic modal languages. These language can be uniformly defined for a
large class of functors. Hence modal logic is a particular instance of a more
general phenomenon. Historically, coalgebraic modal languages were not the
first languages invented to talk about coalgebras in a uniform framework and
as a generalization of modal logic. The first language with this features was in-
vented by Lawerence S. Moss, see [8]; we call this language Moss’ language. The
presence of at least two different languages to talk about coalgebras explain the
third question. What is the relation between them? We have no general answer
for this question. Out here we do answer the third question in the particular
case of Moss’ language and coalgebraic modal languages.

To return to our starting point, it is usually claimed that in the particu-
lar case of the covariant power set functor, Moss’ language and the coalgebraic
modal language are equally expressive, see [12]. Unfortunately in the litera-
ture used for this thesis, there is no much material explaining what it means
for two languages to be equally expressive. This thesis will not provide such
general theory. Instead we will compare Moss’ language and coalgebraic modal
languages at a semantical level and at a syntactical level.

One way to define the expressiveness of a language is using its semantics. A
language L1 is said to be more expressive than a language L2 if L1 can express
differences between coalgebras that the language L2 cannot. Using this crite-
rion, we will then show that Moss’ language and coalgebraic modal languages
are equally expressive.

Another way to compare the expressiveness of two languages is trough trans-
lations. Using the notation from the previous paragraph, this means that each
formula in the language L2 is translated into an equivalent formula in L1. Using
this criterion, we will show that in the case of Kripke polynomial functors every
predicate lifting can be translated into Moss’ language.

The structure of the thesis is as follows: In the proceeding chapter we intro-
duce the formal context in which this thesis is located, we discuss some basics of
category theory and universal coalgebra. We also establish the background re-
lated to languages and translations, including expressive languages. In Chapter
3 we define Moss’ language, provide examples in the case of Kripke polynomial
functors, and finally we show how to extend Moss’ language with disjunctions
and negations. In Chapter 4 we show how to generalize modal logic to coal-
gebraic modal languages, provide examples in the case of Kripke polynomial
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functors, and show, in an original work, that coalgebraic modal languages can
be represented as initial algebras. With these preliminaries out of the way,
we are ready to compare Moss’ language and coalgebraic modal languages. In
Chapter 5 we demonstrate that the existence of expressive languages is equiv-
alent to the existence of a final object. We present a new elementary proof
developed by the author and Clemens Kupke. Using this result, we define non
constructive translations between Moss’ Language and coalgebraic modal lan-
guages. In the final chapter, we refine such translations, defying constructive
finitary translations for the particular case of Kripke polynomial functors.

Some final remarks: Unfortunately we have neither space nor time to intro-
duce universal coalgebra from scratch, we assume the reader is familiar with
some notions of category theory and coalgebra. The next chapter is only a
source of references for this thesis. An introduction like [11] for category theory
supplies more than enough material. Another useful source is [4], in this book
Robert Golblatt studies the basic concepts in great detail for the particular case
of sets. In the area of universal coalgebra there are several different introduc-
tions we specially recommend [6], [7] and [12]. As stated, our starting point is
that of basic modal logic and Kripke structures. Again there is not enough space
to provide a decent introduction to the subject, therefore we assume the reader
is familiar with modal logic. We base most of our general knowledge on modal
logic in [2]. Finally, we clarify that during this thesis, references in the text are
only used to help the reader to find more detailed proofs and explanations. A
claim like ”Theorem 5.2.1 can be found in [2]” only means that we have used
reference [2] as a base for theorem 5.2.1; we do not claim that the original proof
or idea first appeared in [2].
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Chapter 2

Formalizing the Beginning

In the previous chapter we gave a general introduction to the subject concerning
this thesis. This chapter has two objectives. First, to introduce the formal
context in that this thesis is placed. As we said before, this thesis is not self
contained. This thesis is not an introduction to the theory of coalgebras neither
a state of the art in the use of logics for coalgebras. We give no introduction
to modal logic, the work done in [2] provides more than enough material. The
first section is a short reference to category theory and the second section is
a short introduction to coalgebra. The well informed reader can skip these
sections without problem. The second objective of this chapter is to make
explicit the basic framework that we are gonna use to compare Moss’ language
and coalgebraic modal languages.

2.1 A Short Reference for Category Theory

This thesis is a friendly interaction between category theory and set theory. In
most situations we try to present the subjects from both perspectives but there
are plenty of situations where one overwhelms the other and then it makes no
sense to consider both perspectives.

We assume familiarity with set theoretical operations, with the concepts of
cardinal and ordinal numbers and with the notion of regular cardinals.

Definition 2.1.1. A cardinal number κ is said to be regular if its cofinality is
κ itself.

An intuition behind regular cardinal is that they can not be covered using
less than κ steps. We will use regular cardinals to bound disjunctions and con-
junctions. An example of a regular cardinal is ℵ0. An example of a non regular
cardinal is ℵω.

Here we don’t assume familiarity with general category theory but familiarity
with a categorical view of sets. We assume the reader is familiar with the
concepts of products, pullbacks, equalizers, terminal objects and their duals on
the category of sets. The work done by Robert Goldblatt in [4] is a nice source
to obtain that knowledge. We also assume the reader is aware of the principle
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of duality, and the adjunction between exponentials and products, i.e there is a
natural correspondence

X × Y −→ Z

X −→ ZY
.

This thesis is only about set coalgebras, i.e coalgebras for a functor T : Set
−→ Set. Therefore we have to assume familiarity with endofunctors over the
category Set. We fix some notation.

Notation 2.1.2. Given a functor T , we write, indiscriminately, Tf or T (f) to
indicate the action of T over a function f .

Definition 2.1.3. A category C is locally small iff given any objects X, Y in C
the arrows between X and Y form a set.

It is well known than the category of sets is locally small.

Among all the endofunctors over the category Set, the following functors will
play and important role: (1) The homomorphism functors.

Definition 2.1.4 (Hom(−,−) functors). Let C be a locally small category. The
functor

HomC : Cop × C −→ Set

is defined in the following way. On objects: HomC maps a pair of objects, X, Y
in C, to the set of arrows, Hom(X,Y ), between them. On arrows: HomC maps
a pair of arrows, f : X ′ −→ X; g : Y −→ Y ′, to the function

HomC((f, g)) : Hom(X, Y ) −→ Hom(X ′, Y ′).

This function maps an arrow h : X −→ Y to the following composite

X ′ Y ′-

X Y-h

6
f

?

g

If it is clear what category is involved we will drop the subindex. If the category C
is a category where the arrows are natural transformations we write Nat(−,−)
instead of Hom(−,−).

Notice the following two facts: First, if we fix the first component, say with
C, in the previous functor we obtain a covariant functor

Hom(C,−) : C −→ C.
Second, if we fix the second component, say with C, we obtain a contravariant
functor

Hom(−, C) : Cop −→ C.
The category Set has a distinguished object 2, a set with two elements. This

set is particularly important because the contravariant functor

Hom(−, 2) : Setop −→ Set
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is isomorphic to the contravariant power set functor. The contravariant power
set functor, written 2(−) or sometimes P̌, maps a set X to its power set P̌X.
The action on arrows is as follows: An arrow f : X −→ Y is mapped to its
inverse image f−1 : P̌Y −→ P̌X. If f is an inclusion map i : X −→ Y , it is
mapped to (−)∩X : P̌Y −→ P̌X. Notice that we have three different notations
for the contravariant power set functor,

Hom(−, 2) and P̌(−) and 2(−),

we will use the three of theme indiscriminately. The reason for that is that each
of them give a different perspective that is useful for different situations.

(2) Another important functor is the covariant power set functor written P.
This functor maps an object X to its power set PX. An arrow f : X −→ Y is
mapped to its direct image f : PX −→ PY . We recall that the direct image is
defined as follows. Given a subset A ⊆ X

P(f) = f [A] = {f(x) |x ∈ A}.

With respect to the covariant power set functor it is interesting to remark

Remark 2.1.5. The covariant power set functor is not isomorphic to any sin-
gle functor of the form Hom(D,−), but it is isomorphic to a colimit of such
functors.

(3) Functors can be combined using the limits and colimits on the base
category, it is done pointwise. We are particularly interested in products and
coproducts. Given two functors T1, T2 : Set −→ Set we define the product func-
tor T1 × T2 : Set −→ Set as follows. An object X is mapped to T1X × T2X.
An arrow f : X −→ Y is mapped to the product arrow (T1(f), T2(f)). The
coproduct of two functors is defined following the same idea.

Remark 2.1.6. The reader with knowledge in category theory should know that
products and coproducts of functors are particular cases of limits and colimits
in the category SetSet. This category is the category of endo functors on the
category of sets with natural transformations as arrows and usual composition.
The existence of limits and colimits in SetSet is a particualr instance of the
following general result:

For any locally small category C the functor category SetC has all finite limits
and colimits.

We refer the reader to ?? for a more detailed discussion.

(4) Other functors that will play an important role in this thesis are Kripke
polynomial functors. The collection of Kripke polynomial functors, KPFs for
short, is inductively defined as follows:

K := I |D |K0 + K1 |K0 ×K1 |Hom(D, K) | PK.

Here I is the identity functor, D is a constant functor with value D, P is the co-
variant power set functor, Hom(D,−) is the homomorphism functor, products



8 CHAPTER 2. PRELIMINARIES

and coproducts are defined as we explained on the previous paragraph. Replac-
ing P with the finite power set functor Pω, and demanding D to be finite, we
obtain the collection of finitary Kripke polynomial functors.

Once we assume familiarity with functors we don’t have to do much to
encourage natural transformations to jump to the stage.

Definition 2.1.7. Let F, G : C −→ D be functors. A natural transformation λ
from F to G (denoted λ : F −→ G) is a function that assigns to each object A in
C a morphism λA : FA −→ GA in D in such a way that the following naturality
condition holds: for each morphism f : A −→ B, the square on the right

C D

A

B
?

f

FB GB-
λB

FA GA-λA

?

Ff

?

Gf

commutes in D.

The idea of the previous schema is that we have something in C and there
are two ways to transfer it into D. A natural transformation is a transformation
between such transformations. A component of a natural transformation are
called operators.

Another fact that we will use later, specially in the last chapter, is that using
functors we can transfer and retract natural transformations.

Definition 2.1.8. If F, G : C −→ D are functors and λ : F −→ G is a natural
transformation, then

• for each functor H : D −→ E, the natural transformation H(λ) : HF
−→ HG is defined by

H(λ)A = H(λA),

this natural transformation is the H-transfer of λ.

• For each functor H : E −→ C, the natural transformation λH : FH −→ GH
is defined by

(λH)A = λHA,

this natural transformation is the H-retract of λ.

In Chapter 3 we will need the concept of equivalence. We will only mention
the definition and some results. The interested reader can find more information
in [11].

Definition 2.1.9 (Equivalences). A functor F : C −→ D is essentially surjective
on objects, if for any object D in D there exists an object C in C such that F (C)
is isomorphic to D.
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A functor F : C −→ D is said to be an equivalence if it is full, faithful and
essentially surjective on objects. Two categories are equivalent if there exists an
equivalence between them.

An important characterization of equivalences is given by the following re-
sult, a suggestion for a proof can be found in [11].

Theorem 2.1.10. A functor F : C −→ D is an equivalence iff there exists a
functor G : D −→ C and natural transformations

µ : IdC −→ GF υ : IdD −→ FG

whose components are all isomorphism.

The intuition behind equivalences is that, in general, asking two categories
to be isomorphic is a really strong condition. It can be relaxed using equiva-
lences. Two equivalent categories can not be distinguished using the language of
category theory. This happens because objects are defined up to isomorphisms.

2.2 A Short Reference for Coalgebras

Coalgebras and Algebras are formally dual concepts. In this thesis we will only
study the particular case of coalgebras associated with a functor T : Set −→ Set,
i.e set-coalgebras. Assuming this we define coalgebras and algebras:

Definition 2.2.1. Let a functor T : Set −→ Set be given.

• A coalgebra for T , or a T -coalgebra, is a function α : A −→ TA.

• An algebra for T , or a T -algebra, is a function α : TA −→ A.

The map α is called a structural map.

Notice that more important than the carrier set is the structural map. In
most of the cases there is not a unique structural map associated with a set
A. Because of that in most situations we will only write the structural map to
represent coalgebras. General introductions to the theory of universal coalgebra
can be found in [6] or in [7] or in [9].

Many structures on mathematics and computer science can naturally be
represented as coalgebras. Our starting point is that of Kripke frames. A
Kripke frame (A,R) is represented coalgebraically as follows: A Kripke frame
is a coalgebra for the covariant power set functor. We define αR : A −→ PA to
be

s′ ∈ α(s) iff sRs′.

Coalgebras for a functor T are not isolated objects there are morphism be-
tween them, more formally they from a category. A coalgebraic morphism is
defined as follows
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Definition 2.2.2. A morphism f : α −→ β between coalgebras α and β, for a
functor T , is a function f : A −→ B such that the following diagram

TA TB-
T (f)

A B-f

?

α

?

β

commutes. We call f a coalgebraic morphism. Dually we define algebraic
morphisms.

The commutativity of the previous means that the states s, f(s) behave in
the same way. It is easy to see that in the case of P-coalgebras, Kripke frames,
coalgebraic morphism are precisely bounded morphism between Kripke frames.
The concept of bisimulation is naturally generalized to arbitrary coalgebras as
follows.

Definition 2.2.3. If (A,α) and (B, β) are coalgebras, then a relation R ⊆ A×B
is a T -bisimulation from α to β if there exists a structural map ρ : R −→ TR
such that the following diagram

TA TR¾
T (πA)

A R¾ πA

?

α

?

ρ

TB-
T (πB)

B-πB

? ?

β

commutes, i.e the projections are T -morphisms. Two states s, s′ in coalgebras
α and β, respectively, are said to be bisimilar, written s↔ s′, if there exists a
bisimulation R between α and β such that (s, s′) ∈ R.

Some properties of bisimulations, see [6] for the complete proofs, that will
be used later are:

Proposition 2.2.4. The union of any collection of bisimulations from α to β
is a bisimulation from α to β.

Based on the previous proposition we conclude that for each pair of coalge-
bras (A,α), (B, β) there exists a largest bisimulation from α to β, the union of
all the bisimulations from α to β. We call this relation bisimilarity . This will
be denoted by ↔ αβ and may be written without subscript if there is no risk of
confusion. We also write (α, s)↔ (β, s′) when s↔ αβs′, and view bisimilarity
as a relation between pointed coalgebras. A functor is said to have transitive
bisimilarity if

s↔ s′↔ s′′ implies s↔ s′.

Corollary 2.2.5. Given pointed coalgebras (α, s), (β, s′), then s↔ s′ iff there
exists a bisimulation, say R, from α to β such that (s, s′) ∈ R.

There is a deep relation between bisimulation and coalgebraic morphisms.
Namely, coalgebraic morphisms are functional bisimulations. Formally, it means.
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Proposition 2.2.6. A function f : A −→ B is a morphism from α to β iff its
graph,

Gf = {(s, f(s)) | s ∈ A},
is a bisimulation.

Unfortunately bisimulations do not behave nicely in all cases, see [9]. There is
another concept that allows us to study the behavior of states, namely behavioral
equivalence.

Definition 2.2.7. Two states s, s′ in coalgebras α, β, respectively, are behav-
ioral equivalent, written s ∼ s′, if there exists another coalgebra γ and coalge-
braic morphisms f : α −→ γ and g : β −→ γ such that f(s) = g(s′).

Coalgebraic morphisms preserve the behavior of states, then two states are
behavioral equivalent if we can find a new state that behave as the both of the
initial states. In the general theory of coalgebras this notion is more natural
than the notion of bisimulation.

Coalgebras and algebras are not isolated structures, together with coalge-
braic and algebraic morphisms form categories.

Notation 2.2.8. Let a functor T : Set −→ Set be given.

• We write Coalg(T ) for the category of T -coalgebras with coalgebraic mor-
phism and usual functional composition.

• We write Alg(T ) for the category of T -algebras with algebraic morphism
and usual functional composition.

A final coalgebra is a terminal object in a category of coalgebras. It is easy
to see that if a final coalgebra exists then two states are behavioral equivalent
iff they behave the same over the final coalgebra.

A category of coalgebras has all the colimits that exists in the base category,
that because colimits are computed pointwise, see [6]. For example the coprod-
uct of two coalgebras α, β is computed as follows: At a first instance we have
the coproduct of the two structural maps

[α, β] : A + B −→ TA + TB.

The universal property of the coproduct gives us another arrow

[T (iA), T (iB)] : TA + TB −→ T (A + B).

It is straight forward to check that

[T (iA)α, T (iB)β] : A + B −→ T (A + B)

is the coproduct of α and β in the category Coalg(T ). On the other direction
it can be shown, see [6], that the carrier of a colimit in Coalg(T ) is the same
colimit in the base category.
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Remark 2.2.9. In general limits do not exists in categories of coalgebras, even
if all of them exists on the base category. The existence of limits is bounded to
the preservation of limits of the functor T , see [6]. In this thesis we dont have
to deal with limits of coalgebras.

We finish this section stating an useful result for coalgebras.

Lemma 2.2.10 (Lambek’s lemma). If ζ : Z −→ TZ is a final coalgebra, then ζ
is an isomorphism.

2.3 Languages for Coalgebras

As we said before, our starting point is the fact that the basic modal language
is a formal language to express facts about P-coalgebras. In this thesis we will
show, see Chapter 4, how to generalize the basic modal language to arbitrary
set-functors. Generally speaking languages for coalgebras, see [5] or [10], are
defined as follows:

Definition 2.3.1 (Languages for Coalgebras). Let T be a functor and let L
be a set (language). The set L is a local language for T -coalgebras iff there is
an operation, |=, such that to each T -coalgebra, (A,α), assigns a satisfaction
relation |=α⊆ A× L.

When a pair (s, ϕ) belongs to |=α we write α, s |= ϕ, or s |=α ϕ, and say:
The formula ϕ is true, or satisfied, at state s in A.

This is equivalent to the existence of a function

|=: PCoalg(T ) −→ PL,

where the domain is the class of all pointed T -coalgebras.

This definition is quite general. Furthermore notice that we do not assume
the existence of any logical connectives like disjunctions or modalities, Goldblatt
in [5] suggests that better name could be prelogics. Clearly the basic modal lan-
guage is a local language for P-coalgebras. But there have been several other
examples of local languages in the literature for particular cases of functors since
long time ago. For example a modal language with polyadic modalities is a local
language for the products of the power set functor with itself.

In 1999 Lawrence S. Moss published a paper, see [8], where he explicitly
presented a local language that could be uniformly defined for all set functors,
actually standard weak pullback preserving functors, this language is presented
here in Chapter 3. Another important example of local languages for coalgebras
are the languages with coalgebraic modalities, such languages are presented in
Chapter 4. The main, and only, subject of this thesis is to compare these two
languages at a semantical level and at a syntactical level.
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2.3.1 Semantical Comparisons

Our first approach to compare the expressiveness of local languages is done
using semantics. The expressiveness of a language is not given for the facts it
can express about coalgebras but for those differences that the language can
not express. Notice that for every local language we can restrict the function |=
to a single pointed coalgebra (α, s). This produces what we call truth classes,
formally truth classes are defined as follows.

Definition 2.3.2 (Truth Classes). Given a local language L, we associate with
each pointed coalgebra (α, s) its Truth Class

L(α, s) = {ϕ ∈ L | s °α ϕ}.
A set Φ ⊆ L is called a truth class if there exists a coalgebra α and a state s ∈ A
such that Φ = L(α, s). We write L|= for the set of all truth classes.

Using the truth classes of local language L for T -coalgebras we can define
an equivalence relation !L, logical equivalence or logically indistinguishability,
over the class of all pointed T -coalgebras as follows:

(α, s) !L (β, s′) iff L(α, s) = L(β, s′)

Using this equivalence relation we can define expressive power as follows

Definition 2.3.3 (Expressive Power). Let L be a local language for T -coalgebras.
The expressive power of L is the set of equivalence classes of the relation (α, s)
and (β, s′) are logically indistinguishable for L.

As we said this thesis does not contain a general theory of expressiveness
hence we do not claim the previous definition is the most appropriate, but it is a
start. This definition of expressive power is what we would call a semantical def-
inition. Semantical because the expressive power is a set of pointed coalgebras.
Using this definition we can give a first method to compare languages.

Definition 2.3.4 (Semantic Comparison of Expressiveness). Let L1,L2 be local
languages. We say that the language L2 is more expressive than the language
L1, iff

α !2 β implies α !1 β,

where !1 and !2 are the respective logically equivalence relations. When a
language L1 is more expressive that a language L2 we write L1 ≤ L2. We say
that the language L2 is strictly more expressive than a language L1, iff

L1 ≤M L2 and L2 �M L1

This framework to compare expressiveness is formalizing the following intu-
ition: A language L2 is more expressive than a language L1 if and only if L2

can express properties that L1 can not. For example if ML is the basic modal
language and MLE is the basic modal language together with an universal
modality. The language MLE is strictly more expressive that ML.

Since MLE is an extension of ML it is clear that it will be more expressive
than ML. To see that it is strictly more expressive let M1 = 〈{x, y}, ∅, ∅〉 and
M2 = 〈{x, y}, ∅, V (p) = {y}〉. Clearly (M1, x) !ML (M2, x), but (M1, x) !MLE

(M2, x) does not hold.
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2.3.2 Adequate and Hennessy-Milner Languages

In this thesis we are only interested in local languages that behave nicely with
respect to bisimulations and behavioral equivalence. Those are called expressive
languages. The general idea is the following: Assume we have a local language
L and an equivalence relation R over some class of pointed coalgebras. We
would like characterize the relation R using L but also the other way around,
i.e characterize the language L using R. When this is possible we say that L is
expressive for R.

Adequate Languages

Definition 2.3.5 (Adequacy). Given an equivalence relation, say R, over PCoalg(T ).
We say that a local language L is adequate or appropriate with respect to R iff
equivalence according to R implies equivalence according to L. That is, for any
pair of pointed coalgebras, say (α, s) and and (β, s′)

(α, s)R(β, s′) implies (α, s) !L (β, s′)

Adequacy says that the language L can be characterized using R. Conversely
it says, if s and s′ are not logically equivalent then they can not be equivalent
using R. Notice that adequacy is preserved downwards, i.e under less expressive
languages. That is if R is an equivalence over the class of pointed coalgebras,
and it is the case that L2 is adequate with respect to R and L1 ≤ L2 then L1

is adequate with respect to R.

Example 2.3.6. Some basic examples from modal logic are:

• The basic modal language is adequate with respect to bisimilarity of Kripke
models.

• First order logic is not adequate with respect to bisimulation of Kripke
models

Hennessy-Milner Language

The other side of the coin is to give a logical characterization of an equivalence
relation, say R, over the class of pointed coalgebras. In order to do that we
need the notion of a Hennessy-Milner language.

Definition 2.3.7 (Hennessy-Milner language). Let R be an equivalence rela-
tion over the class of pointed coalgebras. We say that a language L has the
Hennessy-Milner property with respect to R iff logical equivalence according to
L implies equivalence according to R. That is for any pointed coalgebras, say
(α, s) and (β, s′),

(α, s) !L (β, s′) implies (α, s)R(β, s′).

Conversely it says, if s and s′ are not R-equivalent then there is a formula
that witness it. The Hennessy-Milner property is preserved upwards, i.e over
more expressive languages. That is if R is an equivalence over the class of
pointed coalgebras and it is the case that L1 has the Hennessy-Milner property
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with respect to R and L1 ≤ L2 then L2 has the Hennessy-Milner property with
respect to R. Combining adequate and Hennessy-Milner we obtain expressive
languages.

Definition 2.3.8 (Expressive language). Let R be an equivalence class over the
class of pointed coalgebras. We say that a language L is expressive with respect
to R iff it is adequate and has the Hennessy-Milner property with respect to R

A relation between the expressiveness of a Hennessy-Milner languages and
adequate language is:

Theorem 2.3.9. Fix an equivalence relation R over the class of pointed coalge-
bras. Then Hennessy-Milner languages for R are semantically more expressive
than adequate languages for R, i.e if L1 is an adequate language and L2 has the
Hennessy-Milner property then L1 ≤ L2.

Now as consequence of the previous theorem we obtain that expressive lan-
guage can not be differentiated at a semantical level,

Corollary 2.3.10. Expressive languages can not be differentiated semantically.

Perhaps expressive languages can be differentiated using some more sophis-
ticated notion. This leads us to translations, or syntactic comparisons of ex-
pressiveness.

2.3.3 Translations

In Chapter 3 using the literature we show that Moss language is expressive. In
Chapter 4 using the references we show that we can always find a set of predicate
liftings such that the language of predicate liftings is expressive. Hence based
on the previous corollary we conclude that these two languages are equally ex-
pressive at the semantical level. Because of that we will now approach the com-
parison issue at a syntactical level. The intuition is the following: A language
L2 is more expressive than a language at a syntactical level than a language L1

iff for every formula ϕ ∈ L1 there exists a formula ψ ∈ L2 that is equivalent to
ϕ. Notice that this intuition is defining a function from L1 to L2.

Definition 2.3.11 (Translations). Let L1,L2 be local languages. A translation
from L1 to L2 is a function

Trs : L1 −→ L2,

such that for every pointed coalgebra (α, s) the following holds: For all ϕ ∈ L1

α, s |=L1 ϕ iff α, s |=L2 Trs(ϕ)

Clearly the standard translation ST : ML −→ FOLR is a translation. The
characterizing property of translations can also be expressed using satisfaction
sets.

Proposition 2.3.12. Let L1,L2 be local languages for coalgebras. A function
Trs : L1 −→ L2 is a translation iff it commutes with validity. That is for every
coalgebra α and every formula ϕ ∈ L1 the equality

[ϕ]1,α = [Trs(ϕ)]2,α

holds, where [−]i,α; i = 1, 2 are the appropriate satisfaction sets.
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Translations are related to the semantic comparison of expressive power in
the following sense.

Proposition 2.3.13. Let L1,L2 be local languages. If there is a translation
Trs : L1 −→ L2 then L1 ≤ L2.

Proof. Assume (α, s) !L2 (β, s′), we want to prove (α, s) !L1 (β, s′). Using
the former assumption and the translation we have:

α, s |=L1 ϕ iff α, s |=L2 Trs(ϕ) iff β, s′ |=L2 Trs(ϕ) iff β, s′ |=L1 ϕ.

this concludes the proof

Based on the previous result we see that there is, at least, another form to
compare languages.

Definition 2.3.14 (Syntactic Comparison of Expressiveness). Let L1,L2 be lo-
cal languages. We say that the language L2 is more expressive than the language
L1 via translations, iff there exists a translation Trs : L1 −→ L2.

The previous proposition implies that the syntactic comparison of expres-
siveness is finer than the semantic comparison of expressiveness, i.e translations
may, in principle, see differences that semantics can not.

Based on the results of the previous section in later chapters we will prove
that Moss’ language and coalgebraic modal languages are indistinguishable at
a semantical level, then the main problem to study in this thesis becomes the
following:

Can we define translations between Moss’ language and Coalgebraic
modal languages?

In other words the main problem of this thesis can be restated as follows:

Can we express Moss’ modality using predicate liftings and boolean
operators? Given a predicate lifting, say λ, can we express λ using
Moss’ modality and boolean operators?

In the last chapter we answer this question in the case of Kripke polynomial
functors.



Chapter 3

Moss’ Language

In this chapter we will study the language that Lawrence S. Moss published
in the paper Coalgebraic Logic, see [8], in 1999. As stated in that paper Moss
developed a language to express facts about coalgebraic structures that could
be defined uniformly for a large class of functors.

In this chapter, we first present some preliminaries, concentrating on two
subjects. One, relation liftings. The satisfaction relation associated with Moss’
language is given by relation liftings. Two, κ-accessible functors. We will see
that this is a condition needed to guarantee that Moss’ language has a set for-
mulas and not a class of formulas. With those preliminaries out of the way, we
present present a formulations of Moss’ language following the work done by
Pattinson in [9]. Afterwards, we will compute Moss’ language for Kripke poly-
nomial functors to provide some examples and to prepare the field for Chapter
6. We finish this chapter by showing one way to extend Moss’ language with
negations and disjunctions. An interesting result is that the existence of a
translation is represented by the existence of a full and faithful functor and the
equivalence of two categories.

3.1 Preliminaries

First we provide some definitions and results that will be used later.

3.1.1 Accessible Functors

As we have said in several occasions, our starting point is that of the covariant
power set functor, and the fact that the basic modal language is a local lan-
guages for P-coalgebras. It is well known that modal logic does not have the
Hennessy-Milner property with respect to the class of all P-coalgebras. Using
Lambek’s lemma, see 2.2.10 in the previous chapter, it can be shown that the
category Coalg(P) has no terminal object. However, the covariant power set
functor has a finitary version Pω such that: One, modal logic can be seen as
a logic for Pω-coalgebras. Two, modal logic has the Hennessy-Milner property
with respect to Pω-coalgebras. Furthermore the category Coalg(Pω) has a ter-
minal object.

17
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The functor Pω acts on arrows in the same way the functor P does. This
functor maps a set X the finite subsets of X. In this section we will present a
generalization of the functor Pω to arbitrary functors and to arbitrary regular
cardinals, see definition 2.1.1 on the previous chapter.

The functor Pω is what we call and accessible functor. Hence a generalization
of it has to deal with accessibility. Because of that we first define accessible
functors.

Definition 3.1.1 (Accessible functors). Suppose κ is a regular cardinal. A
functor T : Set −→ Set is κ-accessible, if the following holds:

For all sets X and all x ∈ TX there is a subset Yx ⊆ X with |Yx| < κ such
that x ∈ Ti(Y ), where i : Y −→ X is the inclusion and the set Ti(Y ) is the
direct image of Y under the function Ti. A functor is called accessible iff it is
κ-accessible for some regular cardinal κ.

Unfortunately it is not relevant for this thesis to explain in full detail the
ideas used to the generalize the functor Pω. We only present what we claim is
a generalization:

Definition 3.1.2 (Small Tκ functors). Let T : Set −→ Set be a functor and let
κ be a regular cardinal. Given a set X, we define

Tκ(X) =
⋃
{Ti(TA) | i : A −→ X, |A| < κ}

where i is the inclusion function. Given a function f : X −→ Y we define
Tκ(f) = Tf .

The small Tκ functors are important because we can prove the following
result.

Proposition 3.1.3. Let T : Set −→ Set be a functor. Then for each regular
cardinal κ, the functor Tκ is a κ-accessible functor which agrees with T iff T is
κ-accessible.

Proof. By definition every small Tκ functor is κ-accessible. Also by definition
we see that Tκ agrees on objects with T iff T is κ-accessible.

Hence we only have to prove, that they agree on arrows, i.e given a function
f : X −→ Y , the function Tf maps elements in TκX to elements in TκY .

In order to see that, let x ∈ TκX, then there exists A ⊆ X, |A| < κ such
that x ∈ Ti(TA) that is there exists p ∈ TA such that Ti(p) = x. Now notice
that the diagram

f(A) Y-
i′

A X-i

?

f ¹A

?

f
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commutes, where the i’s are the respective inclusions and f(A) is the direct
image of A under f . Then, since T is a functor, we conclude that

Tf(A) TY-
Ti′

TA TX-Ti

?

Tf¹A

?

Tf

also commutes. From this last diagram we have Tf (x) = TfTi(p) = Ti′Tf (p).
Therefore Tf (x) ∈ Ti(Tf(A)), but by definition |f(A)| < κ, we conclude Tf (x) ∈
Tκ(Y ). This concludes the proof.

Our presentation of Moss’ language is based in the following result, the proof
can be found in [1].

Theorem 3.1.4. If T is an accessible functor. Then there exists an initial
T -algebra.

We will only see the use of this result after we have defined Moss’ language.

Remark 3.1.5. There are interesting issues about the relation between the
category Coalg(T ) and the categories Coalg(Tκ). We claim that the category
Coalg(T ) is a colimit of the categories Coalg(Tκ). But, as we said before, this
is not relevant for this thesis and we will say no more.

3.1.2 Relation Liftings

We will define a satisfaction relation related to Moss’ language using a cate-
gorical approach. To explain the set theoretical counter part we will use the
following concepts and results:

Theorem 3.1.6 (Epi-mono Factorizations). In the category Set, every arrow
f : X −→ Y can be factored in the following way:

X Y-f

E

e
@

@
@
@R

@
@

@@R
m

¡
¡

¡
¡µ

µ

where e is a surjection and m is an injection. This factorization is unique up
to isomorphisms.

Remark 3.1.7. The previous result is a particular instance of a more general
fact. More explicitly the previous result can be proved in any regular category.
Notice that in the category of Set every injection is a monomorphism, also ev-
ery surjection is an epimorphism, this explain the name of the theorem. What
is more interesting is that the arrow e can be constructed to be a regular epi-
morphism, i.e an epimorphism that is a coequalizer. In the category Set the
concepts of surjective, epimorphism, and regular epimorphism are equivalent.
The interested reader is refereed to [11] for a general discussion on epi-mono
factorizations.
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Using epi-mono factorizations we can define relation liftings.

Definition 3.1.8 (Relation Lifting). Let T : Set −→ Set be an endofunctor and
let (πX , πY ) : R −→ X×Y be a binary relation. The relation lifting of R, written
TR, is the following epi-mono factorization

TR TX × TY-(T (πX), T (πY ))

TR

e
@

@
@
@R

@
@

@@R
m

¡
¡

¡
¡µ

µ .

Since we are working in the category Set the relation lifting of R using T is
in fact a subset of TX ×TY . Because of that in the category Set we can give a
more concrete characterization of relation liftings, see [12], in the following way:

Proposition 3.1.9. Let T : Set −→ Set be an endofunctor. The relation lifting
of a relation R ⊆ X × Y is the object:

T (R) = {(T (πX)(u), T (πY )(u)) |u ∈ TR}
Relation liftings do not behave nicely in all cases. In our presentation of

Moss’ language we will restrict our attention to the following functors.

Definition 3.1.10. A functor T preserves weak pullbacks if and only if

T (R ◦ S) = TR ◦ TS

for all composable relations R,S. In the particular case of set functors a functor
T preserves weak pull backs iff it can be extended to the category of sets with
relations and usual composition

Remark 3.1.11. The name given in the previous definition might seem a bit
weird since there is no pullback involved. The two definitions are equivalent see
[6] or [9]. In this thesis we don’t really have to deal with pullbacks and that is
why we have chosen the previous statement as our definition.

Our presentation of Moss’ language needs the following propositions.

Proposition 3.1.12. Let a functor T : Set −→ Set and a function f : A −→ B
be given. Assume T preserves weak pullbacks, then

T (Gf ) = GT (f).

Where Gf , GT (f) are the graphs of the respective functions.

Proof. A complete proof is an easy calculation hence is omitted. A sketch of the
proof is: Notice that the graph of an arrow f : A −→ B is the following pullback

A B-
f

Gf B-πB

?

πA

?

1B

.

Therefore, since every functor preserves identities and we assume T preserves
weak pullbacks, we conclude the desired equality.
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It is also easy to see that

Proposition 3.1.13. Let a functor T : Set −→ Set and a function f : A −→ B
be given. Assume T preserves weak pullbacks, then

T (∈B)T (Gf ) = T (Gf−1)T (∈A).

Where Gf , GT (f) are the graphs of the respective functions.

3.2 Coalgebraic Logic

The coalgebraic language invented by Moss is a local language, hence it has
two components. One: A set of formulas, called Moss’ language. Two: A
satisfaction relation, called Moss’ satisfaction and we write it °. As we said,
Moss’ language can be uniformly defined for a large class of functors. One of
the reasons for this is that Moss’ satisfaction is univocally determined by Moss’
language, i.e. once we define the set of formulas the satisfaction relation will be
obtained in a unique way. Because of this we only refer to Moss’ language. In
the following pages of this chapter we will assume our functors preserve weak
pullbacks.

3.2.1 Moss Language

Rutten in [7] explains that during the development of computer science over the
past few decades it has become clear that an abstract description of program-
ming languages is desirable, for example to ensure that a particular program
does not depend on the particular representation of the data it operates. Rut-
ten, in the same source, remarks that the data types used by computer scientists
are often generated from a given collection of operations. This leads computer
scientists to use initial algebras to obtain the abstract representation they need.
This idea can be used to define the set of formulas for Moss’ language. The
formulas of Moss’ language are an abstract representation of the facts that are
expressive in the language.

Remark 3.2.1. Rutten’s idea will become more clear when we present an alge-
braic representation of coalgebraic modal languages in the next chapter. There
we will see that using an operational perspective of the coalgebraic modalities we
can represent the formulas using an initial algebra.

One way to understand Moss’ language is to obtain a language that is deeply
related to a functor T . Following Rutten, a first approach would be to use the
initial algebra for the functor T , but such algebra might not exist. This problem
is solved using the small Tκ functor, because it is κ-accessible and then Theorem
3.1.4 guarantees the existence of the initial algebra.

But using only the functor Tκ will lead us to a language where sentences
cannot be combined, each formula will be an isolated formula. To solve this
problem we use P + T instead of only T . The power set functor will alow us to
do conjunctions of formulas. Again to ensure the existence of the initial algebra,
we should use Pκ + Tκ instead of P + Tκ.
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Notice that by the universal property of coproducts there exist two functions:
∧

: Pκ(Lκ
T ) −→ Lκ

T ; ∇ : TκLκ
T −→ Lκ

T .

Using these functions, Moss’ language can be defined, see [9], in a categorical
context that follows Rutten.

Definition 3.2.2 (Moss Language). Given a functor T : Set −→ Set that pre-
serves weak pullbacks. We define κ-Moss’ language, written Lκ

T to be the car-
rier of (Lκ

T ,
∧

,∇), where this later structure is an initial algebra for the functor
Pκ + Tκ. The operator ∇ is call the Moss’ modality.

Remark 3.2.3. The reader familiar with Moss’ work will notice that this pre-
vious definition is not the definition Moss used in [8]. In that paper Lawrence
Moss presented the language as follows:

Given a standard functor T : Set −→ Set that preserves weak pullbacks
and regular cardinal κ. We define the κ-Moss’ language, written Lκ

T , to be
Lκ

T = (Pκ + Tκ)∗. That is Lκ
T is the least set such that

Lκ
T = PκLκ

T + TκLκ
T .

This presentation has some problems. For example using this original approach
Moss’ language is not definable for all Kripke polynomial functors since the
homomorphism functors are not standard. Furthermore Moss’ has to extend
functors to the category of classes with set continuous functions, this has the
disadvantage that Moss’ language is then a class and not a set.

Rutten in [7] remarks that the least and greatest fixed points of a monotone
function are generalized to the least and greatest points of a functor. That is
what Moss’ uses in [8] based on the assumption that the functor is standard.
Rutten then stress that this last fixed points are suitable described as initial
algebras and final coalgebras. Hence our presentations is a generalization of
Moss’ work.

Remark 3.2.4. Another presentation of Moss’ language from a more set the-
oretical perspective, see [12], is done using the least fixed point as follows:

For T : Set −→ Set be a standard functor that preserves weak pullbacks. we
define κ-Moss’ language, written Lκ

T , to be the least class C such that

1.
∧

Φ ∈ Lκ
T if Φ ∈ Pκ(Lκ

T ).

2. For any P ∈ Tκ(Lκ
T ) the formula ∇P ∈ Lκ

T .

By the comments above we claim that this presentation still produces the
same set of formulas.

3.2.2 Moss’ Satisfaction

In [7], Rutten shows how induction can de formulated abstractly using initial
algebras. Dually using terminal coalgebras we can formulate coinduction. These
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two concepts are not really relevant to this thesis, but the representation of Moss
language will produce a satisfaction relation by induction. Since Lκ

T is the carrier
of the initial algebra for any other Pκ + Tκ-algebra with carrier A, there exists
a unique morphism

Lκ
T −→ A

The existence of such morphism is the definition by induction discussed by Rut-
ten. In our case, we will show that Moss’ satisfaction is defined inductively using
this procedure. Since we want Moss’ language to be a language for coalgebras
we need to give an algebraic representation of coalgebras.

This categorical presentation of Moss’ Satisfaction can be found in [9]. More
precisely, Moss’ satisfaction is an initial arrow. To see that we have to define a
functor

M : Coalg(T )op −→ Alg(P + T ),

we use M for Moss functor. As we will see in later sections and chapters,
Moss functors play an important role in defining appropriate semantics and
translations between languages. In order to define the Moss’ functor we must
define a couple of natural transformations. These natural transformations are
defined by Pattinson in [9]. We deal with conjunctions first.

Definition 3.2.5. Given a set A we define δA : PκPA −→ PA to be

δA(X) =
⋂

X; where X ∈ PκPA.

Remark 3.2.6. Recall that the actions on objects of the covariant power set
functor and of the contravariant power set function are the same, these functors
differ on arrows. Now notice that the previous functions define a natural trans-
formation between contravariant functors and not between covariant functors.
More formally it is:

Lemma 3.2.7. The functions δA, as defined above, are the components of a
natural transformation δ : PκP̌ −→ P̌, where P̌ is the contravariant power set
functor. That is, the following diagram

Set Set

A

B
?

f

PκP̌B P̌B-
δB

PκP̌A P̌A-δA

6
Pκ(f−1)

6
f−1

commutes for every function f : A −→ B.

Now we take care about Moss’ modality.

Definition 3.2.8. We define πA : T P̌A −→ P̌TA to be

πA(t) = {s ∈ TA | (s, t) ∈ T (εA)},
where εA is the membership relation for A. We write π for Pattinson.
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The following lemma is a modification of Theorem 4.1.7 in [9] .

Lemma 3.2.9 (Pattinson Transformation). The functions πA, as defined above,
are the components of a natural transformation π : T P̌ −→ P̌ T , the Pattinson
transformation, that is the following diagram

Set Set

A

B
?

f

T P̌B P̌TB-
πB

T P̌A P̌TA-πA

6
T (f−1)

6
T (f)−1

commutes for every function f : A −→ B.

Proof. We want to prove T (f)−1πB = πAT (f−1). Suppose t ∈ TPB and s ∈ A,
then by definition we have

s ∈ T (f)−1πB(t) iff (Tf (s), t) ∈ T (εB).

By definition of composition of relations,

(Tf (s), t) ∈ T (εB) iff (s, t) ∈ T (εB)GT (f).

Since T preserves weak pullbacks it commutes with graphs, see proposition
3.1.12, this equivalence can be extended to

(Tfs, t) ∈ T (εB) iff (s, t) ∈ T (εB)T (Gf ).

By definition it preserves composition of relations, then our equivalence now is

(s, t) ∈ T (εB)T (Gf ) iff (s, t) ∈ T (Gf−1)T (εA).

Again using the fact that the relation lifting preserves graphs we obtain,

(s, t) ∈ T (Gf−1)T (εA) iff (s, Tf−1(t)) ∈ T (εA)
iff s ∈ πATf−1(t).

Hence we conclude
s ∈ f−1πB(t) iff s ∈ πATf−1(t),

from that we obtain the desired equality and this concludes the proof.

If we have a coalgebra α : A −→ TA we define πα to be the following com-
posite

T P̌A P̌TA-πA

P̌A

πα

@
@

@
@R

α−1
¡

¡
¡

¡ª
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Using this we now consider the following schema:

Coalg(T ) Alg(Pκ + T )

TA TB-
Tf

A B-f

?

α

?

β

P̌A P̌B¾
f−1

PκP̌A + TA PκP̌B + TB¾Pf−1 + Tf−1

?

[δA, πα]

?

[δB , πβ ]

Notice that from the commutative diagrams in the lemmas 3.2.7 and 3.2.9 im-
plies that the diagram on the right commutes if and only if the diagram on the
left does. This shows that the assignation is functorial. We can define the Moss
functor following this idea.

Definition 3.2.10 (Moss Functor). We define a functor

M : Coalg(Tκ)op −→ Alg(Tκ + Pκ)

in the following way. On objects: Given a T -coalgebra (A,α), the functor M
maps it to

[δA, πα] : PκPA + TPA −→ PA.

On arrows: The functor M maps a morphism f : (A,α) −→ (B, β) to

f−1 : (PB, [δB , πβ ]) −→ (PA, [δA, πα])

Notice that the image of a coalgebra α is in fact its complex algebra using
the Moss’ modality, therefore another appropriate name for this functor could
also be Complex algebra functor.

From now on we will assume our functor is in fact κ-accessible, and we will
only stress the subindex in particular important occasions. Using Moss functor
we can define Moss’ satisfaction as follows.

Definition 3.2.11 (Moss Satisfaction). Let T : Set −→ Set be a functor that
preserves weak pullbacks and let (A,α) be a Tκ-coalgebra. We define

[−]α : Lκ
T −→ PA

to be the unique arrow [−]α : (Lκ
T , [

∧
,∇]) −→ (PA, [δA, πA]) that exists in

Alg(Pκ + Tκ) because the algebra on the left is initial. We define °α in the
following way:

s °α ϕ iff s ∈ [ϕ]α.

Notation 3.2.12. We fix some notation before going on. Let [−]α : Lκ
T −→ P̌A

be Moss’ satisfaction for some coalgebra α and let ϕ ∈ TLκ
T . Instead of writing

T ([−]α)(ϕ)

we will write
T ([ϕ]α)

We will keep the same notation for extensions of Moss’ language.
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Pattinson transformations are useful because we can compute the satisfac-
tion set of a formula ∇ϕ as follows.

[∇ϕ]α = α−1πAT ([ϕ]) = {s ∈ A | (α(s), T ([ϕ])) ∈ T (∈A)}.
Remark 3.2.13. Since πA is defined using relation lifting we can see that Moss
satisfaction is also characterized by following clauses, see [12]:

Let T : Set −→ Set be a functor that preserves weak pullbacks. Given a
T -coalgebra (A,α) we define °α⊆ A× Lκ

T as the least relation satisfying:

s °α

∧
ϕ iff s °α ϕ for all ϕ ∈ Φ

s °α ∇P iff (α(s), P ) ∈ TW for some set W ⊆°α .

Remark 3.2.14. Before going on we Notice that any algebra for the functor
Pκ + T should have an operator corresponding to the operator

∧
: Pκ(Lκ

T ) −→ Lκ
T ,

and another operator corresponding to the operator

∇ : TκLκ
T −→ Lκ

T .

Because of that we will use the same notation on any algebra for Pκ +T , i.e an
algebra is of the form (A, [∧,∇]). In the particular case where such algebra is
in fact the complex algebra of a coalgebra α we write

(P̌A, [∧α,∇α]).

Notice that ∇α is equal to α−1∇A where ∇A is the A-component of Pattinson
transformation. At this point this is a purely notational convention but from
next section and specially on Chapter 6 it will show to have a much deeper
motivation. Namely we are going to translate modalities as algebraic operators
instead of modalities as formulas. We will say no more now.

Using Moss functors the following is immediate

Theorem 3.2.15. The Moss’ language associated with a functor Tκ that pre-
serves weak pull backs is adequate with respect to behavioral equivalence.

It is not that immediate, but also possible to show:

Theorem 3.2.16. The Moss’ language associated with a functor Tκ that pre-
serves weak pull backs has the Hennessy-Milner property with respect to behav-
ioral equivalence.

Proofs of this fact can be found in [8], Section 7, in [12], Theorem 194, and
in [9], Theorem 4.1.9.

3.3 Examples

In the previous section we presented the Moss’ language and Moss’ satisfaction
formally. In this section we will show how Moss’ language and Moss’ satisfaction
relation look like in the case of Kripke polynomial functors. The reader will be
refereed back to this section in Chapter 6.
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3.3.1 The Identity Functor

A coalgebra for the identity functor is a function α : A −→ A. We compute Moss
Logic for the identity functor.

In the case of the identity functor we can apply Moss’ modality to any
formula. In this case, the relation lifting of a relation is the relation itself, hence
the semantic of ∇ is the following

s °α ∇ϕ iff α(s) °α ϕ.

The semantics for the boolean operators is defined as usual.

3.3.2 Constant Functors

In this section we assume we are working with a constant functor with value D.
A coalgebra for such functor is a function α : A −→ D.

A formula ϕ in the language LD is either an element in D or a boolean
combination of elements in D.

The relation lifting of a relation is the equality between elements of D. The
semantics for ∇ for a formula ϕ ∈ D is:

s °α ∇ϕ iff (α(s), ϕ) ∈ D(°α) iff α(s) = ϕ.

3.3.3 Hom(D,−) Functors

We first recall that the action of a functor Hom(D,−) on arrows is: An arrow
f : A −→ B is mapped to the function

f ◦ (−) : Hom(D, A) −→ Hom(D, B).

Such function maps an arrow h : D −→ A to fh : D −→ B.

Notice that a coalgebra for this functor is a function α : A −→ Hom(D,A),
therefore for each state s ∈ A the coalgebra maps associates a function α(x) : D
−→ A.

The Moss language for Hom(D,−) is more complex than the previous ones.
The operator ∇ acts on functions ϕ : D −→ LHom(D,−). Given d ∈ D, we will
write ϕ(d) for the value of d under the function ϕ. The relation lifting of the
membership relation is

Hom(D,∈A) = {(f, f ′) | f(d) ∈A f ′(d)) for all d ∈ D}.

Using that we conclude that the semantics for the nabla is

s °α ∇ϕ iff (∀d ∈ D)(α(x)(d) °α ϕ(d)).
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3.3.4 Power set functor

A coalgebra for the covariant power set functor is a function α : A −→ PA. It is
well know that coalgebras for the covariant power set functor are Kripke frames
over one relation R, i.e the category of P-coalgebras with coalgebraic morphism
is isomorphic to the category of Kripke frames with one relation and bounded
morphism.

The nabla operator acts on subsets Φ ⊆ Lκ
T . The relation lifting of the

membership relation with the covariant power set functor is

P(∈A) = {(Q0, Q1) | (∀q0 ∈ Q0)(∃(q1 ∈ Q1))(q0 ∈A q1)
and (∀q1 ∈ Q1)(∃(q0 ∈ Q0))(q0 ∈A q1)} .

Now assume Q0 = α(s) for some coalgebra and some state s. Also assume Q1

is the image of set of formulas Φ under the covariant power set functor, i.e it
is the set of satisfaction sets of the formulas in Φ. We use the same name Φ to
avoid extra notation.

Consider the first part of the formula defining the relation lifting,

(∀q0 ∈ Q0)(∃q1 ∈ Q1)(q0 ∈A q1),

using our assumptions above it will become

(∀s′ ∈ α(s))(∃ϕ ∈ Φ)(s′ ∈ [ϕ]).

Using the basic modal operators we can see that this is expressing ¤
∨

Φ.

Now consider the other side of the formula,

(∀q1 ∈ Q1)(∃(q0 ∈ Q0))((q0, q1) ∈ (∈A)),

Using the conventions above this becomes

(∀ϕ ∈ Φ)(∃s′ ∈ α(s))(s′ ∈ [ϕ]).

In the basic modal language it expresses
∧

♦Φ. Using this two representations
we write Moss’ satisfaction for the nabla operator as follows

s °α ∇Φ iff s |=α ¤
∨

Φ ∧
∧

♦Φ,

where |=α is the usual satisfaction relation for Kripke frames.

3.3.5 Nablas as operators

Before going on with examples we will continue the discussion started in remark
3.2.14 on page 26.

To understand Moss’ modality is to understand its semantics. As we have
seen the semantics of Moss’ modalities is given by Pattinson transformations.
Recall that Pattinson transformations, on page 25, are natural transformations

∇ : T P̌ −→ P̌T,
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with the following components. An element t ∈ T P̌A is mapped to

∇A(t) = {s ∈ TA | (s, t) ∈ T (∈A)}.
Using this natural transformation, for each T coalgebra α we obtain a function

∇α = α−1∇A : T P̌A −→ P̌A.

As we saw after the definition of Moss’ satisfaction giving a formula ϕ ∈ TLκ
T (¬)

the satisfaction set [∇ϕ]α can be computed as follows

[∇ϕ]α = α−1∇AT ([ϕ]α).

Our conclusion is that in order to understand the semantics of the Moss’ modal-
ity it is enough to understand the action of the components of the natural
transformation

∇ : T P̌ −→ P̌T.

Now we claim that we can compute Pattinson transformation using the corre-
sponding natural transformations of the ingredients of T . In other words we
can understand the Moss’ modality of a functor T using the Moss’ modalities
of its ingredients. Let’s consider the case of coproducts to explain our point.

Coproducts of functors

Let K1 + K2 be the coproduct of two Kripke polynomial functors. We want to
describe the natural transformation

∇ : (K1 + K2)P̌ −→ P̌(K1 + K2)

in terms of the natural transformations

∇1 : K1P̌ −→ P̌K1

∇2 : K2P̌ −→ P̌K2.

A first problem is that ∇ is not the coproduct of ∇1 and ∇2 because P̌(K1+
K2) is not equal, or even isomorphic, to P̌(K1) + P̌(K2).

Notice that the relation lifting of the membership relation using a coproduct
of functors is

K1 + K2(∈A) = {(i1(s), i1(t)) | (s, t) ∈ K1 (∈A)}∪{(i2(s), i2(t)) | (s, t) ∈ K2 (∈A)},
where i1, i2 are the appropriate coproduct inclusions.

Using this we can express the the natural transformation ∇ as follows. An
element t ∈ K1PA + K2P̌A is mapped to

{i1(s) ∈ K1A + K2A | s ∈ ∇(1,A)(t)} if t ∈ K1P̌A.

{i2(s) ∈ K1A + K2A | s ∈ ∇(2,A)(t)} if t ∈ K1P̌A.

This shows how to express the natural transformation ∇ in terms of ∇1 and ∇2.
Explicitly the A-component maps an element t ∈ K1PA + K2P̌A to

∇A(t) = ∇(1,A)(t) ∪∇(2,A)(t).
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Now we will show how to compute the satisfaction set of ∇ϕ. Let α : A
−→ K1A+K2A be a coalgebra for the coproduct and let ϕ ∈ K1L+K2L. From
the representation above we conclude that our intuition on equation ?? for the
case of the coproduct was accurate but not quite. What we really have is

[∇ϕ]12,α = ∇1,αK1([ϕ]12) ∪∇2,αK2([ϕ]12).

In other words this can be express as follows

[∇ϕ]12,α = ∇1,αK1([ϕ]12) if ϕ ∈ K1Lκ
T (¬).

[∇ϕ]12,α = ∇2,αK2([ϕ]12) if ϕ ∈ K2Lκ
T (¬),

where T = K1 + K2.

A more logical presentation of the satisfaction relation would be

s °α ∇ϕ iff (α(s) ∈ K1A ∧ (s ∈ ∇1K1[ϕ])) ∨ (α(s) ∈ K2A ∧ (s ∈ ∇2K2[ϕ])).

Remark 3.3.1. Another reason why we decided to use Pattinson transforma-
tions to describe Moss’ modality for coproducts is the following issue. For a
formula ϕ ∈ K1Lκ

T (¬), where T = K1 + K2, we would be tempted to describe
the formula ∇ϕ saying that it is like the formula ∇1ϕ, where ∇1 is Moss’ modal-
ity for K1.

But this does not makes sense because Moss’ modality for the coproduct is
a function ∇ : TLκ

T (¬) −→ Lκ
T (¬) and Moss’ modality ∇1 is a function ∇1 :

K1LK1(¬) −→ LK1(¬). Hence, we don’t know, in principle, if ϕ ∈ K1LK1(¬).

If we see that the Moss’ modality is in fact a natural transformation we can
describe this natural transformation using the ingredients of T , as we saw in
the case of the coproduct. Then we solve the issue mentioned in this remark
because even that we can not apply ∇1 to a formula ϕ ∈ Lκ

T (¬), we can apply
the natural transformation defining ∇1 to the satisfaction set T ([ϕ]12) and then
obtain the satisfaction set [∇ϕ].

The moral of the history is: We can describe the Pattinson transformation
associated with a functor T using the Pattinson transformations of the ingre-
dients of T . We exemplify this idea on the other inductive cases of Kripke
polynomial functors.

3.3.6 Product of functors

Let a pair of functors K1,K2 : Set −→ Set be given. In this section we will
investigate Moss language and the Coalgebraic modal language for the product
functor K1 × K2 : Set −→ Set. We write [−]12 for the satisfaction relation,
[−]1, [−]2 for the satisfaction relations of K1 and K2, respectively. ∇ is the
Moss’ modality for the product, and ∇1,∇2 are the modalities for the respec-
tive factors.

A coalgebra for a product functor is an arrow α : A −→ K1A×K2A. Hence
given s ∈ A, we have α(s) = (s1, s2) for some s1 ∈ K1A and s2 ∈ K2A. That
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is a coalgebra over the coproduct is the product of a coalgebra α1 for K1 and a
coalgebra α2 for K2, both with the same carrier.

The nabla operator for a product functor acts on pair of formulas (ϕ1, ϕ2)
such that

ϕ1 ∈ K1L and ϕ2 ∈ K2L.

By definition we have

s °α ∇(ϕ1, ϕ2) iff (s1, s2), ((K1 ×K2)([−])(ϕ1, ϕ2)) ∈ K1 ×K2(∈A).

The relation lifting for the product is given by

K1 ×K2(∈A) = {((x0, x1), (x′0, x
′
1)) | (x0, x

′
0) ∈ K1(∈A) and (x1, x

′
1) ∈ K2(∈A)}.

From that unravelling the definition of satisfaction for a product functor we
obtain the following interpretation.

s °α ∇(ϕ1, ϕ2) iff π1α(s) ∈ ∇1K1([ϕ1]12 and π2α(s) ∈ ∇2K2([ϕ2]12).

Again we remark that in this case seeing the modalities as operator is crucial.
From this we conclude that the nabla operator for the product acts as follows
on complex algebras: Given t1 ∈ K1PA and t2 ∈ K2PA,

∇(t1, t2) = ∇1(t1) ∩∇2(t2).

3.3.7 Hom(D, K)) functors

Now we will compose a Kripke polynomial functor, say K, with a homomor-
phisms functor, say Hom(D,−). A coalgebra for this functor is a function
α : A −→ Hom(D,KA). Notice that the functor Hom(D, K(−)) is a particular
case of the product functors, namely multiply T with itself D-times. Hence
in the case of finitary Kripke polynomial functors it is just the case studied in
the previous section. Anyway we can still analyze on the case of an arbitrary D.

The nabla operator acts on formulas ϕ ∈ Hom(D, KLκ
Hom(D,K)), i.e a for-

mula is a function ϕ : D −→ KLκ
Hom(D,K). The relation lifting of the member-

ship relation is

Hom(D,K(∈A)) = {(f, f ′) | (f(d), f ′(d)) ∈ K(∈A)}.

From that we conclude that the semantics for the nabla operator is

s °α ∇ϕ iff (∀d ∈ D)(α(s)(d) ∈ ∇‘K([ϕ(d)])),

where ∇′ is the nabla operator for K and [−] is the Moss’ satisfaction for
Hom(D, K).

3.3.8 PK functors

We finish this section composing the covariant power set functor with a Kripke
polynomial functor. A coalgebra for this functor is a function α : A −→ PKA.
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Such coalgebra can be seen as a frame of type K. The nabla operator acts on
formulas Φ ⊆ KLκ

T . The relation lifting of the membership relation is

P(∈A) =
{
(Q0, Q1) | (∀q0 ∈ Q0)(∃(q1 ∈ Q1))((q0, q1) ∈ K(∈A))

and (∀q1 ∈ Q1)(∃(q0 ∈ Q0))((q0, q1) ∈ K(∈A))
}

.

Therefore the A-component ∇A : PKP̌ −→ P̌PK of Pattinson transformation
acts as follows: A set Q ⊆ KP̌A is mapped to

∇A(Q) =
{
U ⊆ KA | (∀q ∈ Q)(∃u ∈ U)((q, u) ∈ K(∈A))

and (∀u ∈ U)(∃q ∈ Q)((q, u) ∈ K(∈A))
}

.

From these definitions we obtain

s °α ∇Φ iff (∀s′ ∈ α(s))(∃(ϕ ∈ Φ))((s′,K([ϕ])) ∈ K(∈A))

and (∀ϕ ∈ Φ)(∃(s′ ∈ α(s)))((s′, K([ϕ])) ∈ K(∈A)).

3.4 Extensions of Moss’ Languages

In the following section we show that more important then Moss’ satisfaction
are Moss functors. They are the crucial point to define appropriate satisfaction
relations over coalgebras. Notice that in the given presentations of Moss lan-
guage there is no mention to negations neither to disjunctions. This is not a
coincidence. In this section we will present extensions of Moss language with
negations and disjunctions.

An extension of Moss language can be done using a κ-accessible functor
H : Set −→ Set and a natural transformation

γ : HP̌ −→ P̌.

Using γ we define a Moss functor

M(γ) : Coalg(T ) −→ Alg(Pκ + T + H)

in the obvious way. Explicitly: On Arrows M(γ) acts like M , i.e M(γ)f = f−1.
On Objects: The functor M(γ) maps a coalgebra (A,α) to the following algebra

[∧α,∇α, γα] : PPA + TPA + HPA −→ PA.

The fact that γ is a natural transformation is exactly what we need to prove
that M(γ) is in indeed a functor.

3.4.1 Moss’ Language + Negations

Negation is added using the identity functor, written I, and the complement
transformation

¬ : P̌ −→ P̌ .

We remark two facts: First that a component ¬A : PA −→ PA of the com-
plement transformation maps a subset X ⊆ A to its complement. Second, the
complement transformation is in fact a natural transformation.
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Definition 3.4.1 (Moss Language + Negations). Given a functor T : Set −→
Set that preserves pullbacks. We define Moss coalgebraic language with nega-
tions, written Lκ

T (¬) to be the carrier of the initial object, say (Lκ
T (¬), [

∧
,∇,¬]),

in the category Alg(Pκ + T + I).

We use M(¬) for the associated Moss functor.

Definition 3.4.2 (Moss Satisfaction for negations). Let T : Set −→ Set be a
functor that preserves weak pullbacks and let (A,α) be a T -coalgebra. We define

[−]α : Lκ
T (¬) −→ PA

to be the unique arrow [−]α : (Lκ
T , [

∧
,∇,¬]) −→ (PA, [∧α,∇α,¬α]) that exists

in Alg(Pκ + T + I). We define °α in the following way:

x °α ϕ iff x ∈ [ϕ]α.

The commutativity of the diagram

Lκ
T (¬) PA-

d−eα

Lκ
T (¬) PA-[−]α

?

¬
?

¬α

shows that the functor M(¬) provides the right semantics.

3.4.2 Moss’ Language + Disjunctions

We add disjunctions using the multiplication associated to the power set monad,
i.e using unions.
A component of this multiplication is a function

µA : PκPA −→ PA.

such function maps a family of set X ⊆ PA to its union. i.e

µA(X) =
⋃

X; where X ∈ PκPA.

Definition 3.4.3 (Moss Language + Disjunctions). Given a functor T : Set −→
Set that preserves pullbacks. We define Moss coalgebraic language with disjunc-
tions, written Lκ

T (
∨

) to be the carrier of the initial object, say (Lκ
T (¬), [

∧
,∇, µ]),

in the category Alg(Pκ + Tκ + Pκ).

We use M(
∨

) for the associated Moss functor.

Definition 3.4.4 (Moss Satisfaction for disjunctions). Let T : Set −→ Set be a
functor that preserves weak pullbacks and let (A,α) be a T -coalgebra. We define

[−]α : Lκ
T (

∨
) −→ PA

to be the unique arrow [−]α : (Lκ
T , [

∧
,∇, µ]) −→ (PA, [∧α,∇α,∨α]) that exists

in Alg(Pκ + Tκ + Pκ). We define °α in the following way:

x °α ϕ iff x ∈ [ϕ]α.
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3.4.3 Moss’ Language + Negations + Disjunctions

In principle using the extension procedure described at the beginning of this
section we could also add disjunctions to the language Lκ

T (¬). But it is well
know that disjunctions can be expressed using conjunctions and negations. In
this section we will show that this fact has a categorical representation.

The best know translation for disjunctions is

∨ = ¬ ∧ ¬.

Using this translation we will produce a translation functor and an equivalence.

Definition 3.4.5 (Translation Functor). We define a translation functor,

F∨ : Alg(Pκ + T + I) −→ Alg(Pκ + T + Pκ),

in the following way: The functor F∨ is the identity on arrows. On objects: The
functor F∨ maps an algebra (A, [∧A,∇A,¬A]) to the algebra

(A, [∧A,∇A,¬A ∧A P¬A ]).

In more details we can describe the translation functor to be the identity on
the Moss language and disjunctions are expressed by the following composite:

PA A-

PA A-∧A

6
P¬A

?

¬A

Proposition 3.4.6. The translation functor is in fact a functor.

Proof. It is enough to show that for a morphism f : A −→ B of Pκ + T + I
algebras the following diagram

PA PB-
Pf

A B-f

6
¬A ∧A P¬A

6
¬B ∧B P¬B

commutes. Since f is a morphism of Pκ + T + I-algebras the following two
diagrams

PA PB-
Pf

A B-f

6
∧A

6
∧B

A B-
f

A B-f

6
¬A

6
¬B

commute. From that using the power set functor we conclude the commutativity
of the first diagram. This concludes the proof.
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Proposition 3.4.7. The translation functor F∨ is full and faithful, and dis-
junctions are expressible in the language Lκ

T (¬).

Proof. he first claim follows by construction. The second claim follows from the
commutativity of the following diagram

Alg(Pκ + T + I) Alg(Pκ + T + Pκ)-F∨

Coalg(T )op

M(¬)

@
@

@
@

@
@

@I

M(∨)

¡
¡

¡
¡

¡
¡
¡µ

Proposition 3.4.8. The categories Alg(Pκ +T + I +Pκ) and Alg(Pκ +T + I)
are equivalent.

Proof. Consider the forgetful functor

U : Alg(Pκ + T + I + Pκ) −→ Alg(Pκ + T + I).

Clearly the forgetful functor is full and faithful. Now every algebra (A, [∧A,∇A,¬A])
is isomorphic, in fact equal, to the image of the algebra (A, [∧A,∇A,¬A,¬A ∧A

P¬A ]) under the functor U . Therefore the functor U is essentially surjective on
objects, hence is an equivalence. This concludes the proof.

Notice that the forgetful functor is not injective in objects therefore is not
an isomorphism.
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Chapter 4

From Modal Logic to
Coalgebraic Modal Logic
via Yoneda Lemma

In the previous chapter, we studied the first language developed to express facts
about coalgebras that could be defined uniformly for a large class of functors.
As we saw in the case of the power set functor, section 3.3.4, the basic modalities
are inside the nabla, see equation 3.3.4 on page 28. Furthermore in the case
of the power set functor, we can recover the basic modalities from the nabla
operator. We can easily see that

♦ϕ = ∇{ϕ,>}; and ¤ϕ = ∇∅ ∨∇{ϕ}.
Now we would like to change the functor but still obtain modalities from the
nabla operator. We want to obtain modalities that are like the basic modalities
♦,¤ but for arbitrary functors. In this chapter we don’t show how to obtain
such modalities. A non constructive procedure can be found on Chapter 5, an-
other more constructive answer for the case of Kripke polynomial functors can
be found on Chapter 6.

In this chapter we will show how to generalize the basic modalities to ar-
bitrary functors. One of the key points is to see that coalgebraic modalities,
as nabla operators, are rather operators over sets instead of just formulas, i.e.
they can be described using natural transformations. Using this perspective we
will present the basic modalities as natural transformations. With this we will
define the concept of predicate lifting that we claim is a good generalization of
the concept of modality.

To put it in another way,

Using predicate liftings each coalgebra induces a neighborhood model.

In other words, using predicate liftings we can transform an obscure, and not
really known, T -coalgebra into a more familiar structure like a neighborhood
model. This other intuition will show to be the right approach to present coalge-
braic modal languages algebraically, i.e. as the carrier of some initial algebra, see

37
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Section 4.5. We will not discus this approach right now. Instead we will begin
studying the basic modalities of the basic modal language to present predicate
liftings as a generalization of the basic modalities.

4.1 Basic Modal Logic Revisited

First we analyze the case of the universal modality. Recall that a Kripke frame
is a coalgebra for the power set functor. Now, given a formula of the basic modal
language ϕ, what can we say about the formula

¤ϕ.

This last formula has a well known semantics using the relational approach. We
will restate this definition using the coalgebraic perspective. Let a Kripke frame
α : A −→ PA and a state s ∈ A be given. Translating the relational semantics
for the box, we obtain:

s |=α ¤ϕ iff (∀s′ ∈ α(s))(s′ |=α ϕ).

Restating this using satisfaction sets we obtain

s ∈ [¤ϕ] iff α(s) ⊆ [ϕ]. (4.1)

Now notice two facts: first, an equivalence like the previous one is associated
with every formula ϕ. Second, we are transforming a membership relation into
a subset relation in the same way the power set functor does. Then we can
see the box like a transformation of satisfaction sets. Consider the following
function

¤A : 2A −→ 2PA

defined as follows
¤A(X) = {Y ⊆ A |Y ⊆ X}.

Using this, function the semantics for the universal modality can be expressed
as follows

s |=α ¤ϕ iff α(s) ∈ ¤A([ϕ]).

Now notice that if f : A −→ B is a function, the following diagram

Set Set

A

B
?

f

2B 2PB-
¤B

2A 2PA-¤A

6
f−1

6
(P(f))−1

commutes. That is, the universal modality is a natural transformation ¤ : P̌
−→ P̌P.
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Using the same kind of analysis we can see that the existential modality is
also a natural transformation ♦ : P̌ −→ P̌P. This natural transformation has
the following components:

♦A(X) = {Y ⊆ A |Y ∩X 6= ∅}.
Based on this analysis, a natural way (not the only one) to generalize the

basic modal operators is to change the functor and keep the naturality condition.
Such natural transformations are called predicate liftings. Formally predicate
liftings are defined as follows:

Definition 4.1.1 (Predicate Liftings). A predicate lifting for a functor T is a
natural transformation

λ : 2(−) −→ 2T (−),

where 2(−) : Setop −→ Set denotes the contravariant power set functor.

Remark 4.1.2. The naturality condition happens to be the right condition to
obtain adequate languages with respect to behavioral equivalence. In our presen-
tation it will be used to define Schröder functors that are the analogous of Moss’
functor for the case of coalgebraic modal languages.

4.2 Coalgebraic Modal Languages

Now we will present how to recover a language from predicate liftings. We
first present coalgebraic modal languages as they are defined in [10]. Later we
will present coalgebraic modal languages in a more categorical light, i.e. we
will define coalgebraic modal languages as the carrier of initial algebras for an
appropriate functor. With this algebraic characterization, we will define the
equivalent of Moss’ functors for the case of coalgebraic modal languages. We
call these Schröder functors.

Our task now is to interpret predicate liftings over coalgebras. As we saw in
the previous section the semantics for the universal modality can be restated as
follows:

s |=α ¤ϕ iff α(s) ∈ ¤A([ϕ]),

where ¤A is the A-component of the natural transformation associated with
the universal modality. From this it is clear how to define the semantics for a
predicate lifting. The idea is that for each predicate lifting, say λ, we will have
a symbol in the language. We use [λ] to represent representing the modality
associated with λ. Using this we define the semantics for λ as follows:

s |=α [λ]ϕ iff α(s) ∈ λA([ϕ]),

where λA is the A-component of λ. At this point, we have enough machinery
to define a coalgebraic modal language. Before doing this, however, we will first
discuses polyadic modalities. This because monadic predicate liftings can not
handle all the modalities known from modal logic.

Consider the functor P((−)×(−)). A coalgebra for this functor is a function

α : A −→ P(A×A).
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This coalgebra is in fact isomorphic to a Kripke frame where the successor of a
state s is not a single state s′ but a pair of states (s′, s′′). An intuitive modality
for α would be a modality that sees the behavior of s and s′ at the same time.
Notice that predicate liftings cannot, in principle, cover this intuition. Predicate
liftings act over a single formula and then only see a successor of an state s as
a single object. Therefore we have to switch from predicate liftings to polyadic
predicate liftings.

Definition 4.2.1 (Polyadic Predicate Liftings). Let η be a cardinal number.
An η-ary predicate lifting for a functor T is a natural transformation

λ : (2(−))η −→ 2T (−),

where 2(−) : Setop −→ Set denotes the contravariant power set functor. A set Λ
of such predicate liftings is called σ-bounded for a regular cardinal σ or σ = 1
if all predicate liftings in Λ have arity smaller than σ.

The naturality condition says that for all sets A,B and functions f : A −→ B
the following diagram

Set Set

A

B
?

f

(2B)η 2TB-
λB

(2A)η 2TA-λA

6
(f−1)η

6
(T (f))−1

commutes, where λA, λB are the components of λ and the vertical arrow on
the left of the square is the η-fold product of f−1. The commutativity of this
diagram is equivalent to the fact that for each family

−→
X = (Xj)j∈η of subsets

Xj ⊆ B,

(Tf )−1λB(
−→
X ) = λA

−−−−−→
f−1(X)

holds, where
−−−−−→
f−1(X) = (f−1(Xj))j∈η.

For example consider the following polyadic predicate lifting for a functor
Hom(D,−). We define ν to be the following |D|-ary predicate lifting:

νA : (2A)D −→ 2Hom(D,A)

(Xd)d∈D −→{h : D −→ A | (∀d ∈ D)(h(D) ⊆ Xd)}.

It is easy to see that these functions are in fact the components of a natural
transformation ν : (2(−))D −→ 2Hom(D,−).

The intuition behind polyadic predicate liftings is that of polyadic modalities.

Now we can define coalgebraic modal languages. This language is parame-
terized by a set of predicate liftings Λ.
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Definition 4.2.2 (Coalgebraic Modal Languages I). Let T : Set −→ Set be a
κ-accessible functor and let Λ be a set of predicate liftings, possibly polyadic, for
T . Then Lκ

T (Λ), the κ-coalgebraic modal language for T , is defined as the least
class such that

1. If Φ ∈ PκLκ
T (Λ) then

∧
Φ ∈ Lκ

T (Λ).

2. If ϕ ∈ Lκ
T (Λ) then ¬ϕ ∈ Lκ

T (Λ).

3. If λ is a η-ary predicate lifting in Λ and (ϕj)j∈η is a family of formulas
in Lκ

T (Λ) then [λ](ϕj)j∈η ∈ Lκ
T (Λ).

The satisfaction relation is defined as usual.

Definition 4.2.3 (Coalgebraic satisfaction I). We define the satisfaction rela-
tion for conjunctions and negations in the usual way. The definition for a modal
operator [λ] is:

(α, s) |= [λ](ϕj)j∈η iff α(s) ∈ λA(
−→
[ϕ]),

where
−→
[ϕ] = ([ϕj ])j∈η.

It is our we claim that coalgebraic modal languages are an appropriate gen-
eralization of the basic modal language.

4.3 Counting Predicate Liftings

There might seem that there are too many predicate liftings for a functor T ,
but in fact this is not the case. Lutz Schrd̈oer in [10] showed that the predicate
liftings of arity η are in bijection with the subsets of T (2η). In order to see
that we have to use one of the basic results of category theory, namely Yoneda
Lemma. The general formulation of Yoneda Lemma is as follows.

Lemma 4.3.1 (Yoneda Lemma). Let C be a locally small category, Let F : Cop

−→ Set be a functor. For every object C of C, there is a natural bijection

yC,F : Nat(Hom(−, C), F ) −→ F (C).

This bijection is natural in the following sense: Given g : C ′ −→ C in C and
µ : F −→ F ′ in SetC

op

, the diagram

Nat(Hom(−, C ′), F ′) F ′(C ′)-
yC′,F ′

Nat(Hom(−, C), F ) F (C)-yC,F

?

Nat(g,µ)

?

µC′Fg = F ′gµC

commutes in the category Set.

Proof. We will only define the natural bijection. A complete proof can be found
in [11]. A natural transformation λ : Hom(−, C) −→ F is completely determined
by λC(1C) ∈ F (C). Conversely given an element a ∈ F (C) we define a natural
transformation λa : Hom(−, C) −→ F such that the component λa,X maps an
arrow f : X −→ C to λX,a(f) = Ff (a). These maps are inverse of each other
and satisfy the mentioned naturality condition.
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Notice that given a functor T : Set −→ Set there is a functor T op : Setop

−→ Setop that acts exactly like T but has different domain and codomain, hence
is not equal. Since the actions are the same we use the same name for both
functors. Now the functor T op can be composed with any Hom(−, C) functor.
We obtain a contravariant functor

Hom(T (−), C) : Setop −→ Set.

Then we can restate Yoneda Lemma for such particular functors.

Proposition 4.3.2. Let T : Set −→ Set be a functor. For every set C there is
a natural bijection

yC,T : Nat(Hom(−, C),Hom(T (−), C)) −→ Hom(T (C), C).

This will also hold in the particular case of C = 2, a set with two elements.
There is a natural bijection

yC,T : Nat(Hom(−, 2),Hom(T (−), 2) −→ Hom(T (2), 2).

Then we conclude that for predicate liftings we have

Corollary 4.3.3. Let T : Set −→ Set be a functor. The predicate liftings for T
are in natural bijection with the subsets of T (2).

We will explain explicitly how to obtain a predicate lifting from a set C ⊆
T (2). First notice that such set is in fact a function

χC : T (2) −→ 2.

We want to define a predicate lifting, i.e a natural transformation,

λC : P̌ −→ P̌T.

We only explain how to define the components. Fix a set A. The component of
λC on A, written λC,A, according to Yoneda Lemma is defined as follows.

Let X be a subset of A. Since T is covariant we have a function

T (χX) : TA −→ T2.

Using the contravariant power set functor we obtain a function

(T (χX))−1 : P̌T2 −→ P̌TA.

Now the proof of Yoneda Lemma says that in order to obtain the action of λC,A

over X, this last function should be evaluated on C , i.e

λC,A(X) = (T (χX))−1(C).

In an even more set theoretical presentation this set is defined as follows.

λC,A(X) = {t ∈ TA |T (χX)(t) ∈ C} (4.2)

We can obtain a similar representation of polyadic predicate liftings. Notice
the following.
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Proposition 4.3.4. For any cardinal number η, the functor Hom(−, 2)η : Setop

−→ Set is isomorphic to Hom(−, 2η) : Setop −→ Set.

Proof. We define a natural isomorphism having as components the following
functions: µX : Hom(X, 2)η −→ Hom(X, 2η) maps a family of functions (fj : X
−→ 2)j∈η and assigns the product arrow (fj)j∈η. Its inverse maps an arrow
f : X −→ 2η the family πjf : X −→ 2, where πj is the j-th component.

Based on this proposition from now on, in order to simplify computations
we will understand polyadic predicate liftings as transformations

λ : Hom(−, 2η) −→ Hom(T (−), 2).

The previous proposition has as corollary the desired representation.

Corollary 4.3.5. Let T : Set −→ Set be a functor and η a cardinal number.
The η-ary predicate liftings for T are in natural bijection with the subsets of
T (2η).

Explicitly, the η-ary predicate lifting associated with a set C ⊆ T (2η) is
computed as follows. Let (Xj)j∈η be a family of subsets of A. The family
(Xj)j∈η defines an arrow

< χXj >j∈η: A −→ 2η,

namely the product arrow. Using the functor T over this arrow we obtain

T (< χXj >j∈η) : TA −→ T (2η).

Using the contravariant power set functor we obtain a function

((T (< χXj >j∈η))−1) : P̌T (2η) −→ P̌TA.

Notice that we are using the inverse image of the function T (< Xj >j∈η).
Evaluating this function on C we obtain the action of λC,A over X, i.e

λC,A(X) = ((T (< χXj >j∈η))−1)(C).

In a set theoretical presentation this set is defined as follows.

λC,A(X) = {t ∈ TA | (T (< χXj >j∈η)(t) ∈ C)}. (4.3)

4.3.1 Singleton Predicate Liftings

In this section we will study some important cases of predicate liftings for a
functor T . First, the predicate liftings associated with the empty set. Second,
the predicate liftings associated with the full sets T (2η) and third, the predicate
liftings associated with singleton sets.

Every functor has at least two predicate liftings of arity η, one associated
with the empty set,an another one associated with full set T (2η). Let us compute
first the predicate lifting associated with the empty set. Equation (4.3) describes
the predicate lifting as follows

λ∅,A(X) = {t ∈ TA |T (< χXj >j∈η)(t) ∈ ∅} = ∅.
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Notice that there are no coalgebra α, no state s ∈ A and no formula ϕ such that

s |=α [λ∅]ϕ

holds. It would be possible if our states accepts contradictions. We write this
predicate lifting λ⊥ instead of λ∅. In other words [λ⊥]ϕ = ⊥. These predicates
liftings will play an important role in the translations of coproducts.

Now we compute the predicate lifting associated with the full set T (2η). By
equation (4.3) the action of this predicate lifting is

λT (2η),A(X) = {t ∈ TA | (T (< χXj >j∈η)(t) ∈ 2η)} = TA.

Notice that for every coalgebra α, every state s ∈ A and every formula ϕ the
following

s |=α [λT (2η )]ϕ

holds. We write this predicate lifting λ> instead of λ2η . These predicate lifting
will play an important role in the translation of products.

One of most basic facts of set theory, but one of the most fundamental ones,
is the following: For any set C the following

C =
⋃

p∈C

{p}

holds. From that we have that the predicate liftings associated with singleton
sets have an important property, namely they generate all other predicate lift-
ings. Let p ∈ T (2η). Equation (4.3) implies that the predicate lifting associated
with {p} is

λ{p},A(X) = {t ∈ TA | (T ([χXj ]j∈η)(t) ∈ {p})}
= {t ∈ TA | (T ([χXj ]j∈η)(t) = p)}

From that we can prove the following simple but useful result

Theorem 4.3.6. Let a functor T : Set −→ Set and a set C ⊆ T (2η) be given.
Then for every set A and every family of subsets

−→
X = (Xj)j∈η of A, the fol-

lowing
λC,A(

−→
X ) =

⋃

p∈C

λ{p,A}(
−→
X )

holds.

As corollary we have the particular case of η = 1.

Corollary 4.3.7. Let a functor T : Set −→ Set and a set C ⊆ T (2) be given.
Then for every set A and every subset X ⊆ A, the following

λC,A(X) =
⋃

p∈C

λ{p},A(X)

holds
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This is particularly important because now we have the following represen-
tation of coalgebraic modalities.

Corollary 4.3.8. Let T : Set −→ Set be a functor and s a state in some T -
coalgebra α, then for every set C ⊆ T (2η) and every family of formulas (ϕj)j∈η,

s |=α [λC ](ϕ)j∈η iff s |=α

∨

p∈C

[λ{p}](ϕ)j∈η.

In the particular case of η = 1 this is.

Corollary 4.3.9. Let T : Set −→ Set be a functor and s a state in some T -
coalgebra α, then for every set C ⊆ T (2) and every formula ϕ

s |=α [λC ]ϕ iff s |=α

∨

p∈C

[λ{p}]ϕ.

Since such predicate liftings will be of particular importance we give them a
name.

Definition 4.3.10 (Singleton Predicate Liftings). A predicate lifting λC asso-
ciated with a set C ⊆ T (2η) is called a singleton predicate lifting, or a singleton
lifting, if C = {p} for some p ∈ T (2η). We usually write λp instead of λ{p} for
the singleton lifting associated with {p}.

In Chapter 6 we will use singleton liftings to simplify our work. This last
two corollaries show that it will be enough to translate singleton liftings in the
case the target language has disjunctions. This will be particularity useful to
cover the inductive steps.

4.4 Examples

Until here we have presented coalgebraic modal languages formally and we have
defined the concept of singleton lifting. In this section we will show how do the
predicate liftings look like in the case of Kripke polynomial functors. Based on
Theorem 4.3.6 in most of the cases we will only show how singleton predicate
liftings look like. The reader will be refereed back to this section in Chapter 6.

4.4.1 The Identity Functor

A coalgebra for the identity functor is a function α : A −→ A.

According to the first corollary of proposition 4.3.2, the identity functor has
four monadic predicate liftings.

From now on during this thesis we will represent the set 2 as follows 2 =
{⊥,>}.

Using this notation the four predicate liftings associated for the identity
functor are associated with the following sets

∅, {⊥}, {>}, {⊥,>}.
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We will compute explicitly the predicate lifting associated with {>}. Equation
4.2 tell us that the A component of this predicate lifting is

λ{>},A(X) = {t ∈ TA | (χX)(t) ∈ {>}} = X.

In other words the predicate lifting associated with {>} is the identity: 1 : 2A

−→ 2A. The semantics for this predicate lifting is:

s |=α [1]ϕ iff α(s) |=α ϕ.

We can easily see that the other predicate liftings are:

1. The complement: ¬ : 2A −→ 2A, this corresponds to {⊥}. The semantics
for this predicate lifting is:

s |=α [¬]ϕ iff α(s) |=α ¬ϕ.

2. The top constant: M : 2A −→ 2A, this corresponds to {⊥,>}. The seman-
tics for this predicate lifting is:

s |=α [M ]ϕ iff α(s) |=α >.

3. The bot constant: ∅ : 2A −→ 2A, this corresponds to ∅. The semantics for
this predicate lifting is:

s |=α [∅]ϕ iff α(s) |=α ⊥.

Polyadic predicate liftings are sequences of the singleton liftings.

4.4.2 Constant functors

In this section we assume we are working with a constant functor with value D.
A coalgebra for such functor is a function α : A −→ D.

As a consequence of proposition 4.3.2 we know that D has 2|D| predicate
liftings. Let C ⊆ D, the component, of the predicate lifting λC ,

λC,A : 2A −→ 2D

is the constant function with value C. The semantics is given by

s |=α [λC ]ϕ iff α(s) ∈ λC([ϕ]) iff α(s) ∈ C.

In the particular case of singleton sets it is

s |=α [λp]ϕ iff α(s) = p.

In this case there is no difference between polyadic predicate liftings an unary
liftings.
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4.4.3 Hom(D,−) Functors

Notice that a coalgebra for this functor is a function α : A −→ Hom(D,A),
therefore for each state s ∈ A the coalgebra maps associates a function α(s) : D
−→ A.

In this case we only study singleton liftings, i.e we only consider the case
{P} ⊆ Hom(D, 2), i.e P ⊆ D. Since Hom(D,−)(χX) is the function that
composes χX to the right, we can see that the predicate lifting associated with
{P} acts as follows: Given X ⊆ A

λP,A(X) = {h : D −→ A |χXh = χP }.

More generally, given {P} ⊂ Hom(D, 2η), the polyadic predicate lifting associ-
ated with {P} acts as follows: First notice that P can be seen as a family of
subsets of D, say (Pj)j∈η, then given a family (Xj)j∈α

λP,A(Xj)j∈η =
⋂

j∈η

λPj ,A(Xj).

In this last formula we are using the fact that composition to the right distributes
over product arrows.

4.4.4 Power set functor

According to Proposition 4.3.2, the power set functor has 16 predicate liftings.
The universal modality correspond to the set {∅, {>}}. The existential modal-
ity correspond to the set {{>}, {>,⊥}}. Furthermore it can be shown that all
other predicate liftings are the boolean combinations of the last two. We only
show this characterization for the singleton liftings.

The singleton liftings are the associated with the elements of P2

{>}, {⊥}, {⊥,>}, ∅.

Here are they respective semantics. Fix a set A and a subset X ⊆ A.

We will first compute the predicate associated with {>}. Equation 4.2 tells
that the components of this natural transformation are

λA(X) = {U ⊆ A | P(χX)(U) = >}

Since P(χX) is the direct image we have that the components of λ{>} are

λA(X) = {U ⊆ A |U 6= ∅ ∧ U ⊆ X}.

The semantics for this predicate lifting is given by the formula ¤ϕ ∧ ♦ϕ.

Using the same procedure we can see that the components of λ{⊥} are

λA(X) = {U ⊆ A |U 6= ∅ ∧ U ⊆ ¬X},
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where ¬X is the complement of X. The semantics for this predicate lifting is
given by the formula ¤¬ϕ ∧ ♦¬ϕ.

We will give more details in section 4.4.8 but we can see that the predicate
lifting λ{⊥,>} has the following components

λA(X) = {U ⊆ A |U ∩X 6= ∅ 6= U ∩ ¬X}.
The semantics is given by the formula ♦ϕ ∧ ♦¬ϕ.

Finally the predicate lifting λ∅ is defines as follows

λA(X) = {∅}.
A state validates this predicate lifting iff it has no successors, i.e validates ¤⊥.
Notice that the empty set defining this predicate lifting is an element of P2 and
not a subset of it.

4.4.5 Coproducts of functors

Let K1 + K2 be the coproduct of two Kripke polynomial functors. It is well
know that XY +Z ∼= XY ×XZ . Therefore a predicate lifting

λ : 2(−) −→ 2(K1+K2)(−) ∼= 2K1(−) × 2K2(−),

is in fact a pair of predicate liftings

λ1 : 2(−) −→ 2K1(−) λ2 : 2(−) −→ 2K2(−).

Assume λ = (λ1, λ2), where λ1 and λ2 are predicate liftings for K1 and K2

respectively. It is easy to see that for a set X ⊆ A,

λA(X) = λ1,A(X) ∪ λ2,A(X).

The same holds for polyadic predicate liftings.

Now we characterize singleton liftings for the coproduct. An element p ∈
K1(2η)+K2(2η) belongs to exactly one of the factors. Assume p ∈ K1(2η). The
predicate lifting for the coproduct associated with {p} is (λp, λ⊥), where λ⊥ is
the predicate lifting defined on page 43 and λp is the predicate lifting for K1

associated with {p}. This predicate lifting acts as follows.

(λp, λ⊥)A(
−→
X ) = λp(

−→
X ),

where
−→
X = (Xj)j∈η Symmetrically if p ∈ K2(2η) the predicate lifting for the

coproduct associated with {p} is (λ⊥, λp).

A coalgebra for the coproduct is a function α : A −→ K1A + K2A, i.e for
each state s ∈ A either α(s) ∈ K1A or either α(s) ∈ K2A. The semantics for a
singleton lifting associated with p ∈ K1(2η) is

s |=α [λp, λ⊥](ϕj)j∈η iff α(s) ∈ λp([ϕj ])j∈η.

Notice that this previous formula implies α(s) ∈ K1A. The semantics for p ∈
K2(2η) is symmetric.
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4.4.6 Product of functors

Let a pair of functors K1, K2 : Set −→ Set be given. In this section we will in-
vestigate the Coalgebraic modal language for the product functor K1×K2 : Set
−→ Set.

We first studied singleton liftings to understand predicate liftings for the
product. The following paragraphs will show that singleton liftings enormously
simplify the presentation of predicate liftings for the product of functors.

Let (p1, p2) ∈ K1(2η) × K2(2η). According to equation 4.3, the predicate
lifting for the product associated with {(p1, p2)} acts as follows: Given a family
of subsets (Xj)j∈η of A

λ(p1,p2),A(X) = {(t1, t2) ∈ K1A×K2A | (K1×K2)(< χXj >j∈η)(t1, t2) = (p1, p2))}.

In other words this can be stated as follows

λ(p1,p2),A(Xj)j∈η = λp1(Xj)j∈η × λp2(Xj)j∈η,

where λp1 and λp2 are the singleton predicate liftings associated with p1 for K1

and associated with p2 for K2.

The semantics for such singleton predicate lifting is:

s |=α [λ(p1,p2)](ϕj)j∈η iff π1α(s) ∈ λp1([ϕj ])j∈η and π2α(s) ∈ λp2([ϕ])j∈η.

Remark 4.4.1. Notice that the predicate liftings for the product are associated
with sets C ⊆ K12 × K2. If the set C is the product of two sets we can give
a nice characterization as we did in the case of singleton liftings. If not a
characterization using the predicate liftings of the factors is much more obscure.
Singleton liftings solve this problem because now the predicate lifting associated
with C can be represented as the union of the predicate liftings of its elements.

4.4.7 Hom(D, K)) functors

Now we will compose a Kripke polynomial functor, say K, with a homomor-
phism functor, say Hom(D,−). A coalgebra for this functor is a function α : A
−→ Hom(D, KA).

A singleton predicate lifting will be associated with a function P : D −→
K(2η). The predicate lifting associated with {P} acts as follows: Given a
family of subsets (Xj)j∈η of A

λP,A(Xj)j∈η = {h : D −→ TA |K([Xj ]j∈η)h = P}.

The semantic for such predicate lifting is:

s |=α [λP ](ϕj)j∈η iff (∀d ∈ D)(α(s)(d) ∈ λP (d)(Xj)j∈η),

where λP (d) is the singleton predicate lifting associated with P (d) for K.
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4.4.8 PK functors

A coalgebra for this functor can be seen as a Kripke frame of type K, i.e is
a function α : A −→ PKA. A singleton lifting will be associated with a set
P ⊆ K(2). Equation 4.2 tell us that the function of λ(P,A) : 2A −→ 2PKA acts
as follows: A set X ⊆ A is mapped to

λ(P,A)(X) = {U ⊆ KA |K(χX)[U ] = P},
where K(χX)[U ] is the direct image of U under the function K(χX). Notice
that K(χX) : KA −→ K2, therefore its direct image goes from PKA to PK2.
Using this we can see that the elements in λ(P,A)(X) are the sets U ⊆ KA such
that

(∀u ∈ U)(∃p ∈ P )(K(χX)(u) = p) ∧ ∀(p ∈ P )(∃u ∈ U)(K(χX)(u) = p).

Now we will provide a characterization that will be used to translate the
predicate liftings for a functor of the form PK into the Moss’ language for the
same functor.

We will use capital P to denote subsets of K2 and we will use small p to
denote elements of K2. Consider the predicate lifting associated with P = {p},
where p ∈ K2. The A-component of this predicate lifting goes from 2A to
2PKA. Rewriting the previous characterization the elements of λ{p}(X) are the
sets U ⊆ KA such that

(∀u ∈ U)(K(χX)(u) = p) ∧ (∃u ∈ U)(K(χX)(u) = p).

Now consider the predicate lifting associated with p ∈ K2 for the functor K.
We already know that the A-component λp : 2A −→ 2KA acts as follows

λp(X) = {u ∈ KA |K(χX)(u) = p}.
Using this we can see that the formula

(∀u ∈ U)(K(χX)(u) = p)

is equivalent to the formula
U ⊆ λp(X).

The formula
(∃u ∈ U)(K(χX)(u) = p)

is expressing the fact that U is not empty. We conclude that the singleton lifting
λ{p} : 2A −→ 2PKA can be characterized in terms of λp as follows:

λ({p},A)(X) = {U ⊆ TA |U 6= ∅ ∧ U ⊆ λp(X)}.
More general, we can see that for P ⊆ K2 the formula

(∀u ∈ U)(∃p ∈ P )(K(χX)(u) = p)

is equivalent to the formula

U ⊆
⋃

p∈P

λp(X).
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We can also see that the formula

∀(p ∈ P )(∃u ∈ U)(K(χX)(u) = p)

is equivalent to the formula

(∀p ∈ P )(U ∩ λp(X) 6= ∅).

Using that we can characterize λ(P,A) : 2A −→ 2PKA in terms of the predicate
liftings for K associated with the elements of P as follows

λ(P,A)(X) = {U ⊆ KA |U ⊆
⋃

p∈P

λp(X) ∧ (∀p ∈ P )(U ∩ λp(X) 6= ∅)},

where a λp : 2A −→ 2KA is the singleton lifting associated with p for the functor
K.

4.5 Coalgebraic Modal Languages Algebraically

On Chapter 3 we showed that Moss’ language can also be represented as the
initial algebra of the functor Pκ +Tκ. In this section we will show that a similar
characterization can be given for coalgebraic modal languages, i.e they can be
understood in a more categorical context. First we show how to see predicate
liftings as operators over sets.

As we said before there is another intuition, to understand predicate liftings.
Namely predicate liftings convert coalgebras into neighborhood frames. The
components of a predicate lifting λ,

λA : 2A −→ 2TA,

are uniquely determined by its exponential adjoints,

λ̃A : TA −→ 22A

.

This functions are defined as follows

λ̃A(t) = {X ⊆ A | t ∈ λA(X)}.

Given a T -coalgebra α we can define a neighborhood model by composition

λ̃Aα : A −→ 22A

.

Then predicate liftings can be understand as a way to transform an obscure, and
not really known, T -coalgebra into a more familiar structure like neighborhood
models are.

Now notice that the exponential adjoint associated with the neighborhood
model of a predicate lifting is a function

fα : 2A −→ 2A
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defined as follows,

fα(X) = {s ∈ A |α(s) ∈ λA(X)} = α−1λA(X).

This shows how to present predicate liftings as algebraic operators.

Generally speaking, given a T -coalgebra (A,α) and a predicate lifting λ :
2(−)×η −→ 2T (−), we define λα : PA −→ PA to be the following composite

2A×η 2TA-λA

2A

λα

@
@

@
@R

α−1
¡

¡
¡

¡ª
.

Furthermore it can be shown that in fact we have

Lemma 4.5.1. The functions λα, as defined above, have the following property:
In the following schema

Coalg(T ) Alg(I)

TA TB-
Tf

A B-f

?

α

?

β

P̌A P̌B¾
f−1

P̌A P̌B¾ f−1

?

λα

?

λβ

the diagram on the right commutes if the diagram on the left commutes.

4.5.1 Schröder functors

Following the idea used to define a functor M associated with Moss’ language
we now define a functor associated with a predicate lifting λ, and in general
with a set of predicate liftings Λ.

Definition 4.5.2 (Schröder Functor). Given a predicate lifting λ : 2(−)×η −→
2T (−), we define a functor

S(λ) : Coalg(T )op −→ Alg(P + Iα + I)

in the following way. On objects: Given a T -coalgebra (A,α), the functor S(λ)
maps this coalgebra to

[δA, λα,¬A] : PPA + PA + PA −→ PA,

where δA and ¬A are the functions defined on Chapter 3 representing conjunc-
tions, see page 23, and negations, see page 32. On arrows: The functor S(λ)
maps a morphism f : (A,α) −→ (B, β) to

f−1 : (PB, [δB , λβ ,¬B ]) −→ (PA, [δA, λα,¬A]).
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Given a set of predicate liftings Λ, we define a functor

S(Λ) : Coalg(T )op −→ Alg(P + Λ + I)

in a similar way. Here P + Λ + I states for P +
∐

λ∈Λ Iηλ + I, where ηλ is the
arity of λ.

Remark 4.5.3. Notice that one of the reasons why the definition above makes
sense, i.e Schröder functors are in fact functors, is that predicate liftings are
natural transformation.

Now we can redefine coalgebraic modal languages.

Definition 4.5.4 (Coalgebraic Modal languages II). Given a κ-accessible func-
tor T : Set −→ Set, we define the κ-coalgebraic modal language, written Lκ

T (Λ),
to be the carrier of (Lκ

T (Λ),
∧

, Λ,¬), where this later structure is an initial al-
gebra for the functor Pκ + Λ + I, defined above.

Using this and Schröder functors we redefine the satisfaction relation for
coalgebraic modal language as follows: Let T : Set −→ Set be a functor that
preserves weak pullbacks and let (A,α) be a Tκ-coalgebra. We define

[−]α : Lκ
T (Λ) −→ PA

to be the unique arrow [−]α : (Lκ
T (Λ), [

∧
, Λ,¬]) −→ (PA, [∧α, Λ,¬α]) that exists

in Alg(Pκ + Λ + I). We define |=α as follows:

s |=α ϕ iff s ∈ [ϕ]α.

Using Schröder functors the following is immediate

Theorem 4.5.5. Coalgebraic languages language associated with a functor Tκ

are adequate with respect to behavioral equivalence.

Unfortunately not all coalgebraic modal languages with only unary predicate
liftings have the Hennessy-Milner property with respect to behavioral equiva-
lence, for example modal logic for P-coalgebras. This problem is solved assum-
ing κ-accessibility and imposing some properties over the parameter Λ.

In [10] Schröder defines separating sets of predicate liftings as follows.

Definition 4.5.6 (Separating sets). A set Λ of predicate liftings for T is sep-
arating iff for each set A, the associated source of transposites

(
λ̃A : TA −→ 2((2A)η)

)
λ∈Λ

is jointly injective for each set A. That is every t ∈ TA is uniquely determined
by the set

{(λ,X) ∈ Λ× (2A)η | t ∈ λA(X)}.
We say that set C ⊆ T2 is separating if the associated set of predicate liftings
is separating.
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In other word a set of predicate liftings is separating if it can differentiate
elements in TA, i.e if t 6= t′ then there exists λ ∈ Λ and X ⊆ A such that

t ∈ λA(X) and t′ /∈ λA(X).

Using separating sets of predicate liftings Schröder in [10] showed that under
the condition of separability, coalgebraic modal languages are expressive.

Theorem 4.5.7. Let T be a κ-accessible functor and let Λ be a separating set of
predicate liftings, possibly polyadic, for T . Then Lκ(Λ) has the Hennessy-Milner
property with respect to behavioral equivalence in the category of T -coalgebras.

Now it happens to be the case that all accessible functors admit a separating
set of predicate liftings, see [10].

Proposition 4.5.8. If T is κ-accessible and preserves monos, then T admits a
κ-bounded set of polyadic predicate liftings.

As corollary we have

Corollary 4.5.9. Let T be a κ-accessible functor and let Λ be the set of κ-
bounded predicate liftings for T . Then Lκ(Λ) has the Hennessy-Milner property
with respect to behavioral equivalence in the category of T -coalgebras.



Chapter 5

Hennessy-Milner Logics and
Final Coalgebras

In this chapter we will prove the following:

The existence of an expressive local language for behavioral equivalence is
equivalent to the existence of a final coalgebra.

In the last section of this chapter we will use this construction to produce trans-
lations between Moss’ language and coalgebraic modal languages.

Final Coalgebras are terminal objects in the category of coalgebras. Final
coalgebras are particulary important because they code all the possible be-
haviors of states in the category Coalg(T ) and have the following coinductive
property: Let (Z, ζ) be a final coalgebra and s, s′ ∈ Z then

s↔ s′ iff s = s′ iff s ∼ s′,

where the first relation is bisimilarity and the last one is behavioral equivalence.

If there is an expressive language L for bisimilarity, or behavioral equivalence,
the previous equivalence can be extended to

s ≡ s′ iff s↔ s′ iff s = s′ iff s ∼ s′,

where the first relation is the logically equivalent relation. Notice that both
adequacy and HM are needed to obtain the first equivalence.

In other words: if there is a final coalgebra (Z, ζ) and an adequate language
L with the HM for behavioral equivalence then the states of the final coalgebra
represent the truth classes of L, see page 13.

In this chapter we will show that this is the only possibility, i.e. a language
L is expressive iff we can define a final coalgebraic structure over the set of truth
classes, written (L|=, ζ).

55
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5.1 Simple Coalgebras

In this section we will mention concepts of Universal Algebra. We do not enter
in details because they are not needed for the formal development of this thesis,
but tho be familiar with those concepts might help the intuition. We encourage
the interested reader to consult a book in Universal algebra. We recommend [3].

Congruences are one of the central objects in Universal Algebra. An equiv-
alence relation θ on a set A, where A is the underlying set of some algebra, is
called a congruence if the algebraic structure can be transferred to A/θ to make
the quotient map, eθ, into a homomorphism. Now any function has a kernel
equivalence relation on its domain, namely

Kerf = {(x, y) | f(x) = f(y)}.
Furthermore, when f is a homomorphism of algebras this is a congruence. In
fact in universal algebra the congruences are just the kernels of homomorphisms.
An algebra is simple if it has no non-trivial congruences relations.

Suppose now that A is the state set of a T -coalgebra, say α. What does it
take to make the quotient set A/θ into a coalgebra? The answer, see [5] or [6],
is:

Theorem 5.1.1. Let (A,α) be a T -coalgebra, let θ be an equivalence relation
over A and eθ : A −→ A/θ be the canonical map. The following are equivalent:

• There is a unique structural map dθ : A/θ −→ T (A/θ) such that the fol-
lowing diagram

TA T (A/θ)-
T (eθ)

A A/θ-eθ

?

α

?

dθ

commutes.

• θ ⊆ Ker(T (eθ)α).

• The relation θ is the kernel of some T -coalgebra morphism with domain
(A,α).

Based on the previous theorem we define the concept of congruence.

Definition 5.1.2. An equivalence relation, say θ, over the state set of a T -
coalgebra, α, is called a congruence if

θ ⊆ Ker(T (eθ)α),

where eθ : A −→ A/θ is the canonical map.

Not all bisimulations are congruences, that because some bisimulations are
not equivalence relations. In general it is not the case that all congruences are
bisimulations, unless the functor preserves weak kernels. There is a counterex-
ample in [6]. Never the less, see [6], it can be shown that for any functor, any
bisimulation can be extended to a smallest congruence containing it.
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Proposition 5.1.3. For every bisimulation (R, ρ) there exists the smallest con-
gruence relation, 〈R〉, containing R.

Proof. By definition the projections π1, π2 : ρ −→ α are T -morphism. Let e : α
−→ γ be a coequalizer of π1, π2 in Coalg(T ). By Theorem 5.1.1 Ker(e) is a
congruence because e is a morphism in Coalg(T ). By definition of coequalizers
it contains R and it is the smallest congruence containing R.

In the category Set every coequalizer produces an equivalence relation and
viceversa. This implies the following corollary.

Corollary 5.1.4. Every bisimulation that is an equivalence relation is a con-
gruence.

It is shown in [6] that the set of all congruences is a complete lattice.

Theorem 5.1.5. The set of all congruences on a coalgebra (A,α) is a complete
lattice. The supremum is given by

∨
θj = (

⋃
θj)∗,

where (−)∗ is the transitive closure. The infimum is given by
∧

θj = Con[
⋂

θj ],

where Con[R] is the supremum of all congruences contained in R.

The smallest element of the lattice of congruences on (A,α) is trivial, i.e it
is the identity, ∆A. But unlike the universal algebra case the largest element
ΥA, may be, in general, a proper subset of A × A. For example in the case of
the constant functor a pair of states (s, s′) in a coalgebra α : A −→ D belongs
to some congruence iff α(s) = α(s′). However the largest congruence has the
following uniqueness property:

Theorem 5.1.6. If ΥA is the largest congruence on α then for every coalgebra
β there is at most one morphism f : β −→ α/ΥA

Proof. Assume f1, f2 : β −→ α/ΥA are two morphisms. Let e : α/ΥA −→ ξ
coequalize them in Colag(T ). By Theorem 5.1.1 the relation Ker(efΥ), where
fΥ is the quotient map, is a congruence on α. Therefore Ker(efΥ) ⊆ ∇A. In
other words, for every a, a′ ∈ A

ef∇(a) = ef∇(a′) implies a∇a′.

Fix b ∈ B and let a ∈ f1(b), a′ ∈ f2(b). By definition f∇(a) = f1(b) and f∇(a′) =
f2(b). Then we have

ef∇(a) = ef1(b) = ef2(b) = ef∇(a′).

Hence by the previous observation a∇a′, therefore f1(b) = f2(b). This concludes
the proof.

The previous theorem shows that coalgebras of the form α/ΥA are weakly
terminal, i.e almost terminal but the existence condition is missing. This lead
us to the concept of simple coalgebras.
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Definition 5.1.7. A coalgebra (A,α) is called simple if its largest, and hence
only, congruence is ∆A. In other words ∆A = ΥA.

Simple coalgebras can also be characterized in the following way

Theorem 5.1.8. For a coalgebra (A, α), the following are equivalent.

1. α is a simple coalgebra.

2. Every morphism with domain α is injective.

3. For every coalgebra β there is at most one morphism f : β −→ α.

4. Every epimorphism with domain α is an isomorphism.

Proof. The proof is almost direct from the definitions. The interested reader
can also consult ??.

Based on this theorem we obtain the following relation between congruences,
final coalgebras and simplicity.

Corollary 5.1.9. • For any coalgebra α, α/ΥA is simple.

• Every final coalgebra is simple.

Using this corollary we can also prove the following.

Theorem 5.1.10. Assume a final coalgebra ζ exists. Then a coalgebra α is
simple iff it is isomorphic to a subcoalgebra of ζ.

5.2 From Final Coalgebras to Hennessy-Milner
Logics

Proposition 5.2.1. Suppose T has a final coalgebra (Z, ζ), with fα being the
unique morphism from α to ζ for each T -coalgebra (A,α). Then for any pointed
coalgebras (α, s), (β, s′),

• s↔ αβs′ implies fα(s) = fβ(s′).

• If T has transitive bisimilarity, then fα(s) = fβ(s′) implies s↔ αβs′.

Proof. (1): If s↔ αβs′, then (s, s′) belongs to some bisimulation R from α to
β. Hence there exists a coalgebra structure, ρ, on R such that the following
diagram

ζ

fα

@
@

@
@R

α ρ¾ πA β-πB

?

fρ fβ

¡
¡

¡
¡ª

commutes. Form that we conclude

fα(s) = fαπA(s, s′) = fβπB(s, s′) = fβ(s′).

(2): Morphism are functional bisimulations, therefore

s↔ fα(s) = fβ(s′)↔ s′.

Since T has transitive bisimilarity we conclude s↔ s′.
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Theorem 5.2.2. If T has a final coalgebra then there exists an adequate local
language L with the Hennessy-Milner property with respect to behavioral equiv-
alence.

Proof. Assume T has a final coalgebra (Z, ζ), with fα being the unique mor-
phism from α to ζ for each T -coalgebra (A,α).

We define a local language by taking L = Z, so that L is small, and putting

s |=α ϕ iff fα(s) = ϕ.

By definition L is adequate. On the other hand we defined L(α, s) = {fζ(s)},
hence L(α, s) = L(β, s′) iff fα(s) = fβ(s′). Hence logically equivalent states are
behavioral equivalent, this concludes the proof.

Corollary 5.2.3. If T has transitive bisimilarity and a final coalgebra then
there exists a local language L with the Hennessy-Milner property with respect
to bisimilarity.

Proof. Following the construction of the previous theorem we have

s↔ fα(s) = fβ(s′)↔ s′.

If T has transitive bisimilarity we conclude s↔ s′.

5.3 From Hennessy-Milner Logics to Final Coal-
gebras

In this section we present an elementary construction of final coalgebras by
Clemens Kupke and the author directly over the set L|=, see page 13, of the
truth- classes.

Theorem 5.3.1. If there exists an adequate local language, say L, for T that
has the Hennessy-Milner property with respect to behavioral equivalence then T
has a final coalgebra.

Construction. We define a structural map, ζ : L|= −→ TL|=, directly over the
set of truth classes. Notice that the satisfaction relation is a function

|=α: A −→ L|=.

By definition for any Φ ∈ L|= there exists a pointed coalgebra (α, s) such that
|=α (s) = Φ. Using this we define

ζ(ϕ) := T (|=α)α(s).

First we have to show that the function ζ is well defined, i.e the value of ζ
does not depend on the choice of α neither in the choice of s. First we show it
is well defined under morphisms proving the following lemma.
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Lemma 5.3.2. Let f : α −→ β be a coalgebraic morphism, then for any s ∈ A

T (|=α)α(s) = T (|=β)βf(s).

Proof. By the adequacy of L the following diagram

B L|=-
|=β

|=α

@
@

@
@R

A

?

f

commutes. Then, since T is a functor,

T (|=β)T (f) = T (|=α).

Using this and the fact that f is a morphism we obtain:

T (|=β)βf(s) = T (|=β)Tfα(s) = T (|=α)α(s)

This concludes the proof.

Now we can prove

Claim 5.3.3. The function ζ : L|= −→ TL|=, defined above, is well defined.
Explicitly it is: For any coalgebras α and β coalgebras and states s ∈ A, s′ ∈ B
such that |=α (s) = |=β (s′) the following holds

T (|=α)α(s) = T (|=β)β(s′).

Proof. Let α, β be coalgebras and s ∈ A, s′ ∈ B be logically equivalent. There-
fore, by the HM, we conclude s ∼ s′. By definition of behavioral equivalence
it implies that there is a coalgebra (G, γ) and morphisms f : α −→ γ and g : β
−→ γ such that f(s) = g(s′). By the previous lemma we conclude

T (|=α)α(s) = T (|=γ)γf(s) = T (|=γ)γg(s) = T (|=β)β(s′).

This concludes the proof.

We remark that our definition of ζ is based in the following diagram

TA T (L|=)-
T (|=α)

A L|=-|=α

?

α

?

ζ

,

i.e we want this diagram to commute. Since we did not know ζ we defined it is
such a way that the diagram commutes, we followed the lower path. As we said
before we had to show that ζ was well defined. Once we have it we conclude.

Corollary 5.3.4. For any coalgebra α, the satisfaction function |=α: α −→ ζ is
a morphism.
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We now show that the coalgebra (L|=, ζ) is simple.

Claim 5.3.5. The coalgebra (L|=, ζ) is simple.

Proof. Let θ be a congruence on L|=, with eθ its canonical map. We want to
show that it is the identity. By definition of congruence we know

θ ⊆ Ker(T (eθ)ζ),

i.e. for every ϕ,ψ ∈ L|=
ϕθψ implies T (eθ)ζ(ϕ) = T (eθ)ζ(ψ).

Assume ϕ is the truth class of a state s in a coalgebra α and that ψ is the truth
class of a sate s′ in a coalgebra β and assume ϕθψ. If we manage to show s ∼ s′

by the adequacy of L we are done. Our assumption implies,

|=α (s) = ϕ and |=β (s′) = ψ.

Therefore using the assumption ϕθψ we obtain

eθ |=α (s) = eθ(ϕ) = eθ(ψ) = eθ |=β (s′).

since |=α and |=β are morphism, by the previous corollary, we conclude s ∼ s′

and this concludes the proof of the claim.

By the previous corollary and Theorem 5.1.8 we conclude (L|=, ζ) is a final
coalgebra. This concludes the proof of Theorem 5.3.1.

We have just showed that if an adequate language L has the HM with re-
spect to behavioral equivalence, then we can define a final coalgebraic structure
(L|=, ζ) such that for any coalgebra α the function |=α: α −→ ζ is the only
morphism. Now we show that it is in fact the only possibility.

Theorem 5.3.6. Let L be a local language for coalgebras. If there is a final
coalgebraic structure (L|=, ζ) such that for any coalgebra, α, the function |=α: α
−→ ζ is the only morphism, then L is adequate and has the Hennessy Milner
property with respect to behavioral equivalence.

Proof. Adequacy: First notice that under the existence of a final coalgebra,
two states s, s′, in coalgebras α and β, respectively, are behavioral equivalent iff
they are mapped to the same state in the final coalgebra. Assume s ∼ s′, then
by hypotheses we conclude |=α (s) = |=β (s′). That is L is adequate.

HM: Notice that two states s, s′, in coalgebras α and β respectively, are logi-
cally equivalent iff |=α (s) = |=β (s′). Since each |=α is a morphism, we conclude
L has the Hennessy-Milner property with respect to behavioral equivalence.

5.4 Non-compositional translations

Now we will use the construction of Theorem 5.3.1, on the previous section, to
produce translations between Moss’ language and Coalgebraic modal languages.
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The idea is the following: On chapter 3 we proved that Moss’ language, writ-
ten Lκ

T , for a κ-accessible functor is a set and has the Hennessy-Milner property
with respect to behavioral equivalence. On chapter 4 we proved that every
κ-accessible functor that preserves monos admits a set of separating predicate
liftings, say Λ, hence the language Lκ

T (Λ) has the Hennessy-Milner property
with respect to behavioral equivalence. Using theorem 5.3.1, we will construct
final coalgebras ζM and ζΛ, respectively. Then using Moss functor over ζΛ we
obtain a translation l : Lκ

T −→ LT (Λ). Using the Schröder functor over ζM we
obtain a translation m : Lκ

T (Λ) −→ LT (¬).

Theorem 5.4.1. Let T be a κ-accessible functor that preserves weak pull backs,
then there exists a translation

l : Lκ
T −→ LT (Λ),

where Λ is a separating set of predicate liftings. Notice that we are allowing
arbitrary conjunctions on the language with predicate liftings.

Proof. From Chapter 4 we know that the language Lκ
T (Λ) is expressive. Using

Theorem 5.3.1 we construct a final coalgebra (Z, ζ) associated with Lκ
T (Λ). We

recall that the states of this final coalgebra are the truth classes of Lκ
T (Λ).

Using Moss’ functor we map (Z, ζ) into the category Alg(Pκ + T ). By the
definition of Moss’ satisfaction, the following diagram

PLT + TLT PPZ + TPZ-

LT PZ-[−]

6 6

commutes, where the vertical right arrow is the complex algebra associated with
(Z, ζ).

We define a function, l : Lκ
T −→ Lκ

T (Λ), as follows:

l(
∧

ϕ) =
∧

l(ϕ),

l(∇T ϕ) =
∨

s̃′∈[∇T ϕ]

∧
Lκ

T (Λ)(ζ, s̃′).

We now claim that the function l, defined above, is a translation, i.e for
every coalgebra (α, s) and any formula ϕ ∈ LT the following holds

s °α ϕ iff s |=α l(ϕ).

We will only take care about the operator ∇T .

From left to right: Let fα : α −→ ζ be the unique terminal morphism in
Colag(T ). Since Moss’ language is adequate we conclude fα(s) °ζ ∇T ϕ. On
the other hand since Lκ

T (Λ) is also adequate we conclude

Lκ
T (Λ)(α, s) = Lκ

T (Λ)(ζ, fα(s)).
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This gives the implication from left to right.

From right to left: Assume s |=α

∧Lκ
T (Λ)(ζ, s̃′) for some s′ such that

s̃′ °ζ ∇T ϕ. By the adequacy of Moss’ language it is enough to show s̃′ ∼ s. In
order to show that, we will use the Hennessy-Milner Property of Lκ

T (Λ).

By definition truth classes we have

ψ ∈ Lκ
T (Λ)(α, s) iff ψ ∈ Lκ

T (Λ)(ζ, s̃′),

here we use the fact that Lκ
T (Λ) has negations. Therefore, using the Hennessy-

Milner Property of Lκ
T (Λ), we conclude that s is behavioral equivalent to s̃′.

Since Moss’ language is adequate we conclude

s °α ∇T ϕ.

This concludes the proof.

From that we conclude

Corollary 5.4.2. The Moss’ modality, ∇T , is expressible in LT (Λ).

Furthermore, based on chapter 4 we conclude

Corollary 5.4.3. Let T be a κ-accessible functor that preserves monos, then
there exists a set of predicate liftings, say Λ that can express the Moss’ modality
∇.

And clearly we have

Theorem 5.4.4. For every regular cardinal κ The Moss language LT is more
expressive than Lκ

T (Λ).

Now we can use the same procedure to translate predicate liftings

Theorem 5.4.5. Let T be a κ-accessible functor that preserves weak pull backs,
then there exists a translation

m : Lκ
T (Λ) −→ LT (¬).

Notice that we are allowing arbitrary conjunctions on the Moss’ language.

Proof. The construction and proof are the same as in Theorem 5.4.1, i.e the
construction goes as follows:

By Theorem 3.2.16 the language Lκ
T is expressive. Using Theorem 5.3.1 we

construct a final coalgebra (Z, ζ) associated with Lκ
T . We recall that the states

of this final coalgebra are the truth classes of Lκ
T . Using Schröder’s functor we

map (Z, ζ) into the category Alg(Pκ + Λ).

We define a translation, m : Lκ
T (Λ) −→ LT (¬), as follows:

m(
∧

ϕ) =
∧

m(ϕ),

m(¬ϕ) = ¬m(ϕ),

m([λ]ϕ) =
∨

s̃′∈[λϕ]

∧
L(ζ, s̃′), where λ ∈ Λ.
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Using the procedure invented for the proof of Theorem 5.4.1 we conclude
that m is in fact a translation.

From that we conclude

Corollary 5.4.6. Let T be a κ-accessible functor that preserves weak pullbacks.
Every predicate lifting for T is expressible in LT (¬).

finally we obtain

Theorem 5.4.7. Let T be a κ-accessible functor that preserves weak pullbacks
and monos, then the Moss language LT (¬) and the language LT (Λ), where Λ is
the set of all predicate liftings, are equally expressive via translations.

Unfortunately the previous translations are not compositional and highly
non constructive. Such translations are also not finitary. For example in the
case of the power set functor the nabla operator would be translated as a for-
mula with ω conjunctions. But we know that in this case the nabla operator
has a nice finitary translation, see equation 3.3.4 on page 28 in Chapter 3. We
will try to obtain more refined translations as a result. We particulary looking
for translations that are finitary. We do not approach this problem at a general
level but only in the case of Kripke polynomial functors, more specifically fini-
tary Kripke polynomial functors.



Chapter 6

From Moss’ Language to
Predicate Liftings and Back

In this chapter, we will compare Moss’ language with negations, written Lκ
T (¬),

and languages with predicate liftings, written Lκ
T (Λ), for a given Kripke polyno-

mial functor T . We will define, when possible, translations between the two lan-
guages. Recall that a translation between two languages is a function Trs : L1

−→ L2 that commutes with satisfaction.

The collection of Kripke polynomial functors is inductively defined as follows:

K := I |D |K0 + K1 |K0 ×K1 |Hom(D, K) | PK.

Here I is the identity functor, D is a constant functor with value D, P is the co-
variant power set functor, Hom(D,−) is the homomorphism functor, products
and coproducts are taken pointwise, see Chapter 2. Replacing P with the finite
power set functor Pω, and demanding D to be finite, we obtain the collection
of finitary Kripke polynomial functors.

We are particulary interested in finitary translations. A translation m :
Lκ

T (Λ) −→ Lκ
T (¬) is said finitary if it maps finite formulas involving monadic

predicate liftings to finite formulas of finitary Kripke polynomial functors. When
possible, we will stress that our translations are in fact finitary.

We will define translations inductively over the complexity of the functor. In
Chapter 3, we had to use Pattinson transformations to describe Moss’ modality
in the inductive cases. We have a similar problem when we want to carry out
an inductive construction of translations. It is not enough to see translations
only as functions. One more time we consider modalities, nablas or predicate
liftings, not only act over formulas but rather over sets, i.e. they are natural
transformations. Our plan is to translate this natural transformations instead
of only formulas. We present a formal idea below. The intuitive idea is: We will
obtain translations composing natural transformations. Notice that nabla oper-
ators, i.e the components of Pattinson transformations, are functions taking an
argument of type T P̌A and producing a set. Divergent to that, predicate liftings
transform subsets into subsets. If we want to translate such functions into each

65
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other we should translate two things: one, the assignation rule of the function
itself, and two, the argument of the function. As we said, these two kinds of
translations are formalized using composition of natural transformations. When
our translation is obtained using composition of natural transformations, we call
it a natural translation. Natural translations allow us to pass over the inductive
steps because natural transformations are defined for all sets. The main prob-
lem is obtaining syntactic translations back from such natural transformations.
A natural transformation that produces a syntactic translation is said to be
logically representable. Using this technique we will prove:

Theorem 6.0.8. Let Λ be the set of monadic predicate liftings for a Kripke
polynomial functor T .

• Every formula of the language Lκ
T (Λ) can be expressed using formulas of

Lκ
T (¬).

In particular we will show:

Corollary 6.0.9. Let Λ be the set of monadic predicate liftings for a finitary
Kripke Polynomial functor T .

• Every finite formula of the language Lκ
T (Λ) can be expressed using finite

formulas of Lκ
T (¬).

In the following section we, detail the general procedure to translate predi-
cate liftings. In order to provide a more concrete explanation, we will exemplify
our procedure using the identity functor and the covariant power set functor
before explaining the general theory. To give an idea of how to extend the
translations over the inductive steps, we will use combinations of the power set
functor and the identity functor.

A final comment before proceeding. In the following pages, we always assume
the boolean operators are translated as usual, hence we will only present our
translations in the case of the modal operators.

6.1 Translating Predicate Liftings

At a first glance, translating all predicate liftings might seem an enormous
amount work. We will use singleton liftings to simplify our work. Theorem
4.3.6, see page 44, implies that it is enough to translate singleton liftings. No-
tice that every finitary predicate lifting for finitary Kripke polynomial functors
can be expressed using only finitely many singleton liftings. This procedure will
allow us to restrict our translations to finitary translations. We should remark
that this idea will not work if the set T (2) is infinite. However, we will show by
induction on the complexity of the functor that with each unary singleton lifting
λpϕ there is a map mp : Lκ

T (¬) −→ TLκ
T (¬) satisfying some nice properties that

help us to produce syntactic translations, i.e. in the case of the singleton liftings
it is enough to translate arguments. As stated, we will do it composing natural
transformations.

Before explaining the general theory let’s use examples. We start with the
identity functor.



6.1. TRANSLATING PREDICATE LIFTINGS 67

6.1.1 The identity functor

A coalgebra for the identity functor is a function α : A −→ A. Moss’ Language
for this functor can be found on page 27. Coalgebraic modal logic for this func-
tor can be found on page 45.

As we saw in section 4.4.1 of Chapter 4, the singleton liftings for the iden-
tity functor are associated to > and ⊥. In that section we used [1] for the first
singleton lifting and [¬] for the other. In some diagram because of some LATEX
technicalities we will also use λ> and λ⊥ to denote these singleton liftings.

In the case of the identity functor the syntactic translation is immediate.
We define a syntactical translation m : LI(Λ) −→ LI(¬) as follows:

m([1]ϕ) = ∇m(ϕ),
m([¬]ϕ) = ∇¬m(ϕ),

m([M ]ϕ) =
∧
∅,

m([∅]ϕ) =
∨
∅.

This translation is fine but is hiding its origin. We will show that this transla-
tion is obtained from a natural transformation. This translation will help us to
explain our technique.

In order to obtain natural transformations from that translation, we notice
that in this case the Moss’ modality has the same semantics as the predicate
lifting [1]. Let’s play the blind translator for a bit and let’s assume we can use
the same formula in the Moss’ language and in the coalgebraic language, keep in
mind that this assumption is wrong, using that our translation can be written

m([1]ϕ) = ∇ϕ.

We can read this new equality as follows: The predicate lifting [1] is the same
as the operator ∇. If we see it in terms of satisfaction sets we can see that the
following diagram

P̌ P̌-id

P̌

λ>,α

@
@

@
@R

∇α

¡
¡

¡
¡ª

commutes for each coalgebra α. The natural transformation associated with [1]
is the identity. Notice that the components of this natural transformation can
be defined for every Pκ + I-algebra.

Form this diagram we can obtain the syntactic translation back. Notice that
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the following diagram

LI(¬) LI(¬)-
id

P̌A P̌A-id

6
[−]α

6
[−]α

commutes for every coalgebra α. Call the identity function on the bottom of
the previous square m> : LI(¬) −→ LI(¬). Using m> we obtain the syntactic
translation back as follows: Star defining a syntactic translation m : LI(Λ)
−→ LI(¬) inductively. To translate formulas of the form [1]ϕ use the following
diagram

LI(Λ) LI(¬)-
m

LI(Λ) LI(¬)-m

?

λ>

?LI(¬) LI(¬)¾
∇

m>
@

@
@
@R

LI(¬)

.

Thus the translation of a formula [1]ϕ is

m([1]ϕ) = ∇m>m(ϕ) = ∇m(ϕ),

and that is exactly what we had before. In other words in order to define a
translation of a formula [1]ϕ we assume that inductively we already know how
to use the translation m over the formula ϕ and then we use Moss’ modality
over it.

This procedure also works for the other singleton lifting, in that case, notice
that the following diagram

P̌ P̌-¬

P̌

λ⊥,α

@
@

@
@R

∇α

¡
¡

¡
¡ª

,

commutes for every coalgebra α. The natural transformation associated with [¬]
is the complement natural transformation. Again notice that the components of
this natural transformation can be defined for every Pκ+I-algebra. Furthermore
notice that the following diagram

LI(¬) LI(¬)-¬

P̌A P̌A-¬A

6
[−]α

6
[−]α

commutes for every coalgebra α, where the function at the bottom is the nega-
tion of the language, we use m⊥ to represent that function. To obtain the trans-
lation back again we start defining a syntactic translation m : LI(Λ) −→ LI(¬)
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inductively. To translate formulas of the form [¬]ϕ we use the following diagram

LI(Λ) LI(¬)-
m

LI(Λ) LI(¬)-m

?

λ>

?LI(¬) LI(¬)¾
∇

m⊥
@

@
@
@R

LI(¬)

Using this diagram we conclude that the translation of a formula [¬]ϕ is

m([1]ϕ) = ∇m⊥m(ϕ) = ∇¬m(ϕ).

Again we obtain the translation above. Before explaining the general theory we
will show how the same procedure works for the covariant power set functor.

6.1.2 Power set functor

In this section, we will illustrate the general procedure explained in the next sec-
tion. Our reader has, at least, three options: one, to continue reading following
the linear order of the text. Two, to use a non-linear order skipping this section
now, reading the next section first and then go back to read this section. Three,
neither of the previous two. What we recommend is to read this section two
times. At a first instance, read it now to develop an intuition of what is going
to happen in the next section. But also do a parallel reading with the next sec-
tion. In this section we treat two examples of logical translators in detail. The
concept of logical translator can be found in the next section. The structure of
each example is exactly the structure of next section. More explicitly for each
example, we will define a natural transformation τ : P̌ −→ PP̌. Using τ we will
show that we can express a predicate lifting

λ : P̌P̌P
using Pattinson transformation

∇ : PP̌ −→ P̌P,

for the covariant power set functor, as follows

λ = ∇τ.

Moss Logic for the power set functor can be found on page 28. Coalgebraic
modal logic for this functor can be found on page 47.

As stated, playing the blind translator, the universal and existential modality
can be translated in terms of Moss’ language as follows:

♦ϕ = ∇{ϕ,>}; ¤ϕ = ∇∅ ∨∇{ϕ}.
In this section, we will show how the procedure used in the case of the identity
functor can also be used to translate the singleton liftings of the covariant power
set functor. The singleton liftings of the power set functor are associated with
the sets

∅, {>}, {⊥}, {⊥,>}.
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The existential modality is not a singleton lifting, it is associated with the set
{{>}, {⊥,>}}, but the translation suggested above allows us to produce a trans-
lation using the same technique we will use for the singleton liftings. Hence to
help the intuition we will explain our technique in the case of the existential
modality and in the case of the predicate lifting associated with {>}.

The existential modality

We start with the existential modality. The formula

♦ϕ = ∇{ϕ,>}

shows us that in this case it is enough to translate the argument. Recall that
the A-component of the existential modality maps a set X ⊆ A to

♦A(X) = {U ⊆ A |U ∩X 6= ∅}.

In this section we will do three things:

1. We will define a natural transformation τ : P̌ −→ PP̌.

2. We will prove that for each set A the following holds

♦A = ∇AτA.

Recall that ∇A is the notation for Pattinson transformations.

3. Extract the translation above from τ .

First we define a natural transformation

τ : P̌ −→ PP̌

as follows: the A-component of τ is a function

τA : P̌A −→ PP̌A.

This function maps a set X ⊆ A

τA(X) = {X, A}.

As we said now we want to show that these functions are the components of
a natural transformation. In order to show that we have to show that given a
function f : A −→ B and X ⊆ B the following holds

τA(f−1(X)) = P(f−1)τB(X).

By definition we have

τA(f−1(X)) = {f−1(X), A}.

On the other side of the equality we have

P(f−1)τB(X) = P(f−1)({X, B}).
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By definition of P(f−1) we conclude that

P(f−1)τB(X) = {f−1(X), f−1(B)}.
Now notice that for every function f : A −→ B the inverse image of B is A, using
this we conclude the desired equality and then that τ is a natural transformation.

Now as stated we will prove ♦ = ∇τ . In order to prove this we have to show
that the following diagram

P̌A PP̌A-τA

P̌A

♦A

@
@

@
@R

∇A

¡
¡

¡
¡ª

,

commutes for every set A. By definition of relation lifting for the covariant
power set functor we know that U ∈ ∇AτA(X) iff U ⊆ A and

(∀u ∈ U)(u ∈ X ∨ u ∈ A) ∧ (∃u ∈ U)(u ∈ A) ∧ (∃u ∈ U)(u ∈ X).

Notice that the first two conjunctions are always true if U is non empty, also
notice that the last conjunction implies that U is non empty. Therefore we
conclude

U ∈ ∇AτA(X) iff U ⊆ A ∧ (∃u ∈ U)(u ∈ X) iff U ∈ ♦A(X).

We conclude ♦ = ∇τ as we wanted. Using the terminology of the next section
we have just showed that τ is a natural translator for ♦.

Now we will extract the translation above using τ . Notice that given a
Pκ + I-algebra A = (A,∧,¬), we can define a function

τA : A −→ PA

imitating the same idea we used to define τ as follows: An element x ∈ A is
mapped to

τA(x) = {x,>},
where > = ∧(∅). Furthermore notice that this functions have the following
property: Let f : A −→ B be a morphism of Pκ + I algebras then the following
diagram

B PB-
τB

A PA-τA

?

f

?

P(f)

commutes. In order to prove this, unravelling all definitions, we have to show
for x ∈ A

{f(x),∧A(∅)} = P(f)({x,∧B(∅)}).
By definition of P(f) we have

P(f)({x,∧B(∅)}) = {f(x), f(∧B(∅))}.
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Since f is a morphism of Pκ + I-algebras we have

f∧B = ∧AP(f).

Finally it is well known that
P(f)(∅) = ∅.

From that we conclude

P(f)({x,∧B(∅)}) = {f(x), f(∧B(∅))} = {f(x),∧B(∅)}.
This illustrates the commutativity of the square above. Using the terminology
of next section we have defined a boolean transformation τ : I −→ P.

Notice that if A = (P̌A,∧,¬) is a Pκ+I-algebra where ∧ is the A-component
of the natural transformation for conjunctions and ¬ is the A component of the
natural transformation for negations, then

τA = τA.

In the terminology of the next section we say that τ extends τ . We also say
that τ is a logical translator.

Notice that LP(¬) is a Pκ + I algebra. Hence we have a function

m♦ = τLP(¬) : LP(¬) −→ PLP(¬)

such that
m♦(ϕ) = {ϕ,>}.

We remark that the function m♦ has as domain the Moss’ language and not
the language of predicate liftings. Furthermore notice the the Moss’ satisfaction
[−]α is a morphism of Pκ + I-algebras hence the following diagram

LP(¬) PLP(¬)-
m♦

P̌A PP̌A-τA

6
[−]α

6
P([−]α)

commutes for every coalgebra α.

Using all this we define a syntactic translation m : LP(Λ) −→ LP(¬) induc-
tively. To translate formulas of the form ♦ϕ we use the following diagram

LP(Λ) LP(¬)-
m

LP(Λ) LP(¬)-m

?

♦

? PLP(¬)¾
∇

m¦

@
@

@
@
@R

Using this diagram we can describe the translation of a formula ♦ϕ as follows

m(♦ϕ) = ∇m♦m(ϕ) = ∇{m(ϕ),>}.
And it is exactly the translation that we wanted. Using the notation of the next
section we have proved that the translation m is a natural translation.
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Another example

We hope our reader is getting the idea. We will give one more detailed example
before explaining the general procedure. We will study the predicate lifting
associated with {>}. We recall that the predicate lifting λ{>} has as components

λA(X) = {U ⊂ A |U 6= ∅ ∧ U ⊆ X}.
Using the basic modal language, a formula λ{>}ϕ is equivalent to the formula
¤ϕ∧♦ϕ. This time we will not give the translation from the beginning but we
will produce it using the technique that is not explicit yet.

Again we will do three things.

1. We will define a natural transformation τ : P̌ −→ PP̌.

2. We will prove that for each set A the following holds

λ({>},A) = ∇AτA.

Recall that ∇A is the notation for Pattinson transformations.

3. We will extract a translation from τ .

First we define a natural transformation τ : P̌ −→ PP̌, associated with {>}.
The A-component of τ maps a set X ⊆ A to

τA(X) = {X}.
Now we will check that this defines a natural transformation. In order to show
that we have to show that given a function f : A −→ B and X ⊆ B the following
holds

τA(f−1(X)) = P(f−1)τB(X).

By definition we have
τA(f−1(X)) = {f−1(X)}.

On the other side of the equality we have

P(f−1)τB(X) = P(f−1)({X}).
By definition of P(f−1) we conclude that

P(f−1)τB(X) = {f−1(X)}.
We conclude the desired equality and then that τ is a natural transformation.

We can easily check that for each set A the following diagram

P̌A PP̌A-τA

P̌A

λ({>},A)

@
@

@
@R

∇A

¡
¡

¡
¡ª

commutes. Notice that in this case U ∈ ∇AτA(X) iff U ⊆ A and

(∀u ∈ U)(u ∈ X) ∧ (∃u ∈ U)(u ∈ X).
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Therefore it is immediate that

U ∈ ∇AτA(X) iff U ∈ λ({>},A)(X).

In the terminology of the next section we have showed that τ is a natural trans-
lator for λ{>}.

Now for every Pκ + I-algebra A = (A,∧,¬), we define a function

τA : A −→ PA

following the same idea. Explicitly an element x ∈ A is mapped to τA(x) = {x}.
Furthermore these functions have the following property: Let f : A −→ B be a
morphism of Pκ + I algebras then the following diagram

B PB-
τB

A PA-τA

?

f

?

P(f)

commutes. In order to prove that we have to show that for x ∈ B the following
holds

{f(x)} = P(f)({x}).

The follows immediately from the definition of P(f). Using the terminology of
the next section we have defined a boolean transformation τ : I −→ P.

Notice that if A = (P̌A,∧,¬) is a Pκ+I-algebra where ∧ is the A-component
of the natural transformation for conjunctions and ¬ is the A component of the
natural transformation for negations, then

τA = τA.

In the terminology of the next section we say that τ extends τ . We also say
that τ is a logical translator.

Since LP(¬) is a Pκ + I algebra, in particular we have a function m{>} :
LP(¬) −→ PLP(¬), which maps a formula ϕ ∈ LP(¬) to {ϕ}. Notice that the
following diagram

LP(¬) PLP(¬)-
m{>}

P̌A PP̌A-τA

6
[−]α

6
P([−]α)

commutes for every coalgebra α.
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Using m{>} we define a syntactic translation m : LP(Λ) −→ LP(¬) induc-
tively. To translate formulas of the form λ{>}ϕ, we use the following diagram

LP(Λ) LP(¬)-
m

LP(Λ) LP(¬)-m

?

♦

? PLP(¬)¾
∇

m{>}

@
@

@
@
@R

Using this diagram we can describe the translation of a formula λ{>}ϕ is

m(λ{>}ϕ) = ∇m{>}m(ϕ) = ∇{m(ϕ)}.
Using the notation of the blind translator it is m(λ{>}ϕ) = ∇{ϕ}. It is easy to
check that this is in fact a translation.

We will not translate the other singleton liftings in this section. The trans-
lation of the other predicate liftings is in the next section on page 81.

Now we believe the reader has enough background and intuition to see the
general procedure. Actually we hope that at this point the reader has seen the
general procedure by itself.

6.1.3 The general procedure

In this section, we will explain the general procedure used in the previous sec-
tions to obtain translations from natural transformations. As stated, the previ-
ous section contains two detailed examples of the work done here.

If we want to give an inductive translation from languages of predicate lift-
ings to Moss’ languages, then one must realize that the only way to translate
a predicate lifting is to use Moss’ modality. As we have seen in the examples
above and will see in the following pages, in the case of singleton liftings in fact
we only have to use Moss’ modality.

Our technique to translate a singleton lifting λ, for a functor T , is a three
steps technique. The three steps are:

Step 1: Carefully define a natural transformation τ : P̌ −→ T P̌.

Step 2: Prove that λ = ∇τ .

Step 3: Extract a translation from τ .

The first two steps are coded in the definition of natural translator below. The
third step is the hard one and lead us to the concepts of boolean transformation
and logical translator. The third step produces the translation and the first two
steps allow us to prove that it is in fact a translation.

Remark 6.1.1. Notice that the steps of our technique should be executed in the
order in which they are presented. But notice that to produce a translation we
usually first define the function candidate to be a translation, and then we prove
that it is in fact a translation.
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Definition 6.1.2. A natural translator for a singleton lifting λp is a natural
transformation

τ : P̌ −→ T P̌,

such that the following diagram

P̌A T P̌A-τA

P̌TA

λp

@
@

@
@R

∇A

¡
¡

¡
¡ª

(6.1)

commutes for every set A. In other words ∇τ = λp.

We invite the reader the to check previous section to see two examples of
natural translators.

Now we want to obtain a syntactic translation from τ and we want to extend
this translation over the inductive steps. For that purposes we will define the
concept of boolean transformation. A natural transformation λ : F −→ G is a
class of arrows indexed over the domain of F and G. A boolean transformation
follows the same idea but we do not index over the domain category but over
the category of Pκ + I-algebras.

Definition 6.1.3 (Boolean transformations). Let two endofunctors F and G
over the category Set be given. A boolean transformation τ from F to G (de-
noted τ : F −→ G)) is a function that assigns to each Pκ + I-algebra A =
(A,∧,¬) a function τA : FA −→ GA, an arrow in Set, in such a way that the
following naturality condition holds: for each morphism of Pκ +I-algebras f : A
−→ B, the square on the right

Alg(Pκ + I) Set

A

B
?

f

FB GB-
τB

FA GA-τA

?

F (f)

?

G(f)

commutes.

Remark 6.1.4. The reader familiar with category theory should have noticed
that boolean transformations are just natural transformations

τ : FU −→ GU,

where U is the forgetful functor U : Alg(Pκ + I) −→ Set.

Remark 6.1.5. Notice that every natural transformation from F to G is a
boolean transformation but not the other way around. We are indexing over the
category of Pκ + I-algebras and not over the category Set. This has two main
consequences: one, we only have a function τA : FA −→ GA if the set A is the
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carrier of a Pκ+I-algebra. And two, if the set A is the carrier of many different
boolean structures, we should have a function from FA to GA for each of these
structures.

We suggest to our reader to have look to the previous section to see two
examples of boolean transformations.

The trick to obtain syntactic translations from natural transformations that
can be extended over the inductive steps is to use a combination of natural
translators and boolean transformations.

Definition 6.1.6. A natural translator τ : P̌ −→ T P̌ for a singleton lifting
λp is logically representable, or a logical translator, if there exists a boolean
transformation τ : I −→ T such that if A = (P̌A,∧,¬) is a Pκ +I-algebra where
∧ is the A-component of the natural transformation for conjunctions and ¬ is
the A component of the natural transformation for negations then

τA = τA.

If τ is logically representable, we also say that τ can be extended to a boolean
transformation, or that τ can be extended to τ , or that τ extends τ .

Examples of natural translators that can be extended to boolean transfor-
mations can be found in the previous section. For each of the logical translators
in the previous section we defined a function

m : LP(¬) −→ PLP(¬),

that later we used to produce a translation. The existence of such functions is a
general property of logical translators. Later we will illustrate how to use these
functions to define a translation.

Lemma 6.1.7. If τ : P̌ −→ T P̌ is a logical translator for a singleton lifting
λp then there exists a function mp : Lκ

T (¬) −→ TLκ
T (¬) such that the following

diagram

Lκ
T (¬) TLκ

T (¬)-
mp

P̌A T P̌A-τA

6
[−]α

6
T ([−]α)

(6.2)

commutes for each coalgebra α.

In other words for each ϕLκ
T (¬) the following holds

τA([ϕ]α) = T ([mp(ϕ)]α)

for each coalgebra α.

The function mp is called the signature of the translator.
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Proof. Since τ is a logical translator it can be extended to a boolean translation
τ : I −→ T . Since Lκ

T (¬) is a Pκ + I-algebra there exists a function

τLκ
T (¬) = mp : Lκ

T (¬) −→ TLκ
T (¬).

Notice that the satisfaction relation [−]α : Lκ
T (¬) −→ P̌A is a morphism of

Pκ + I-algebras. Therefore, by definition of boolean translation, the diagram in
the statement of the lemma commutes.

We remark that the domain of the signature of a translator is Moss’ lan-
guage and not the coalgebraic language. As we saw in the previous sections
using logical translators we can produce syntactic translations from the lan-
guage of predicate liftings to the Moss’ language. Illustrations of this previous
lemma and construction of signatures are discussed in the previous section.

The idea to define a translation from a logical translator is as follows: Moss’
language happens to be a Pκ+T+I-algebra. To define translation is to define the
singleton lifting as a explicit operation of the algebra (Lκ

T (¬),
∧

,∇,¬). Since
Lκ

T (Λ) is an initial algebra we will give such definition inductively. In other
words we will define function

? : Lκ
T (¬) −→ Lκ

T (¬)

such that the following diagram

Lκ
T (Λ) Lκ

T (¬)-
m

Lκ
T (Λ) Lκ

T (¬)-m

?

λp

?

?

commutes. The commutativity of this squares represents that our translation
is defined inductively.

Theorem 6.1.8. The predicate lifting λp is expressible in the Moss’ language
if there exists a natural translator τ for λp that is logically representable.

Proof. We use [−](m,α) for Moss’ satisfaction, we use [−]s,α for the satisfaction
relation of coalgebraic modal languages.

Since τ is a logical translator, by the previous lemma, there exists a function
mp : Lκ

T (¬) −→ TLκ
T (¬), the signature for τ , such that for every formula ψ ∈

Lκ
T (¬) and every coalgebra α the following holds

τA([ψ](m,α)) = T ([mp(ψ)]). (6.3)

We define a syntactic translation m : Lκ
T (Λ) −→ Lκ

T (¬) inductively. The
inductive step to translate formulas of the form λpϕ uses the the signature of τ
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in the following diagram

Lκ
T (Λ) Lκ

T (¬)-
m

Lκ
T (Λ) Lκ

T (¬)-m

?

λp

?

?

TLκ
T (¬)¾

∇

mp

@
@

@
@
@R

.

In other words the translation m works as follows

m(λpϕ) = ∇mpm(ϕ).

Now we want to see that this is in fact a translation, i.e. we want to prove the
following.

Claim 6.1.9. For every T -coalgebra α and every formula ϕ ∈ Lκ
T (Λ) the fol-

lowing holds
[λpϕ](s,α) = [∇mpm(ϕ)](m,α).

We will present a proof of this equality using a chain of equalities that will
be extended step by step based on previous results.

Our inductive hypothesis is:

[ϕ](s,α) = [m(ϕ)](m,α).

In Chapter 4 when we showed how to present coalgebraic languages algebraically
we saw that

[λpϕ](s,α) = α−1λ(p,A)([ϕ](s,α)).

Using the inductive hypothesis it can be extended as follows

[λpϕ](s,α) = α−1λ(p,A)([ϕ](s,α))

= α−1λ(p,A)([m(ϕ)](m,α)).

Since τ is a natural translator for λp then for every set X ⊆ A we have

α−1λ(p,A)(X) = α−1∇AτA(X).

Replacing X for [m(ϕ)](m,α) in the previous equation we conclude

α−1λ(p,A)([m(ϕ)](m,α)) = α−1∇AτA([m(ϕ)](m,α)).

Using this we can extend our first equality to

[λpϕ](s,α) = α−1λ(p,A)([ϕ](s,α))

= α−1λ(p,A)([m(ϕ)](m,α))

= α−1∇AτA([m(ϕ)](m,α)).

Since m(ϕ) ∈ Lκ
T (¬), we can use equation 6.3, above, and then obtain

α−1∇AτA([m(ϕ)](m,α)) = α−1∇AT ([mpm(ϕ)](m,α)).
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With this our chain of equalities is extended to

[λpϕ](s,α) = α−1λ(p,A)([ϕ](s,α))

= α−1λ(p,A)([m(ϕ)](m,α))

= α−1∇AτA([m(ϕ)](m,α))

= α−1∇AT ([mpm(ϕ)](m,α)).

Finally, recall that in Chapter 3 we saw that using Pattinson transformations
we can compute satisfaction sets as follows

α−1∇AT ([mpm(ϕ)](m,α)) = [∇mpm(ϕ)](m,α).

With all this together our chain becomes.

[λpϕ](s,α) = α−1λ(p,A)([ϕ](s,α))

= α−1λ(p,A)([m(ϕ)](m,α))

= α−1∇AτA([m(ϕ)](m,α))

= α−1∇AT ([mpm(ϕ)](m,α)) = [∇mpm(ϕ)](m,α).

This concludes the proof of the claim.

Therefore we conclude that the function m described above is a translation
and this concludes the proof of the theorem.

Definition 6.1.10. A translation m : Lκ
T (Λ) −→ Lκ

T (¬) that is obtained by
the procedure described in the previous theorem is said to be natural for λp. A
translation is a natural translation if it is natural for all singleton liftings.

In summary, to produce a natural translation for a singleton lifting λ for a
functor T we need three steps. These steps are

Step 1: Define a natural transformation τ : P̌ −→ T P̌ that seems like a natural
translator for λ.

Step 2: Prove that τ is a natural translator for λ.

Step 3: Show that τ can be extended to a boolean transformation τ : I −→ T

As we saw in Theorem 6.1.8, if we follow these three steps we can produce a
natural translation.

Remark 6.1.11. Technically speaking we produce a natural translation in four
steps:

Step 4: Use the signature of τ to produce a translation for λ.

but as we saw in the light of Theorem 6.1.8 it is enough to do the first three
steps and then the fourth one is automatic.

Remark 6.1.12. Let T ′ be a functor, λ a singleton lifting for T ′, and let τ be a
logical translator for λ. Now notice the following property of logical translators:
For any other functor T Moss’ language Lκ

T (¬) is a Pκ + I-algebra. Since τ is
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a logical translator it can be extended to a boolean transformation τ : I −→ T ′,
then there exists a function

τLκ
T (¬) : Lκ

T (¬) −→ T ′Lκ
T (¬).

The existence of these functions is what will help us to extend logical translators
over the inductive steps. For example, using the coproduct inclusions we obtain
an arrow

iT τLT+T ′ (¬) : LT+T ′(¬) −→ (TLT+T ′(¬) + T ′LT+T ′(¬)).

In later sections we will see that this arrow will be the signature of a natural
translator for the predicate lifting (λ, λ⊥) : P̌ −→ P̌(T + T ′).

Some reasons why logical translators will be useful because are the following:

1. Natural translators help us to describe Pattinson transformations using
predicate liftings.

2. Since every logical translator can be extended to a boolean transformation
they produce syntactic translations.

3. We can appropriately redefine logical translators over the inductive steps,
using technics from category theory, in such a way that we obtain new
logical translators.

Before showing how to extend logical translators over all the inductive steps
we will produce natural translations for the other remaining base cases, i.e. the
constant functors and the homomorphism functors.

Power set functor (continued)

First we will define logical translators for the remaining singleton liftings for
the covariant power set functor. We will only mention which is the natural
translator and what is its signature. The construction of the other components
is clear from that.

We can construct a logical translator for the singleton lifting associated with
∅ using:

• A natural translator τ : P̌ −→ PP̌. The components of τ are the constant
function with value ∅.

• The signature of τ is the function m{∅} : LP(¬) −→ PLP(¬) with constant
value ∅.

• The translation is
m(λ{∅}ϕ) = ∇∅

We can construct a logical translator for the singleton lifting associated with
{⊥} using:
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• A natural translator τ : P̌ −→ PP̌ with the following components: The
A-component maps a set X ⊆ A to {¬X}

• The signature of τ is the function m{⊥} : LP(¬) −→ PLP(¬) which maps
a formula ϕ to {¬ϕ}.

• The translation is
m(λ{⊥}ϕ) = ∇{¬m(ϕ)}

We can construct a logical translator for the singleton lifting associated with
{⊥,>} using:

• A natural translator τ : P̌ −→ PP̌ with the following components: The
A-component maps a set X ⊆ A to {¬X, X}

• The signature of τ is the function m{⊥} : LP(¬) −→ PLP(¬) which maps
a formula ϕ to {¬ϕ,ϕ}.

• The translation is

m(λ{⊥,>}ϕ) = ∇{¬m(ϕ),m(ϕ)}

Summarizing we have that a translation for the covariant set functor is a
function m : Lκ

T (Λ) −→ Lκ
T (¬) defined as follows:

m([λ{∅}]ϕ) = ∇∅.
m([λ{>}]ϕ) = ∇{m(ϕ)}.
m([λ{⊥}]ϕ) = ∇{m(¬ϕ)}.

m([λ{>,⊥}]ϕ) = ∇{m(ϕ),¬m(ϕ)}.

6.1.4 Constant functors

In this section we assume we are working with a constant functor with value D.
A coalgebra for a constant functor is a function α : A −→ D. Moss’ Logic for
this functor can be found on page 27. Coalgebraic modal logic for this functor
can be found on page 46.

The predicate lifting associated with d ∈ D is the constant function with
value d. The natural translator τ : P̌ −→ D associated with λd has as compo-
nents constant functions with value d. Clearly this translator can be extended
to a boolean transformation. Hence it is a logical translator. The signature
mp : LD(¬) −→ D of this translator is the constant function with value d. From
all this we conclude that in the case of constant functors the natural translation
is as follows:

Using Theorem 6.1.8 we define m : LD(Λ) −→ LD(¬) inductively as follows:

m([λd]ϕ) = ∇d

m([λC ]ϕ) =
∨

d∈C

∇d.
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6.1.5 Hom(D,−) functors

A coalgebra for this functor is a function α : A −→ Hom(D,A). Moss Logic for
this functor can be found on page 27. Coalgebraic modal logic for this functor
can be found on page 47.

As we said before, a singleton lifting for this functor is associated with P ⊆
D. Now we will define a natural translator τ : P̌ −→ Hom(D, P̌(−))using this
set P . The component τA : P̌A −→ Hom(D, P̌A) of τ acts as follows: A set
X ⊆ A is mapped to

XP :D −→P̌A

d 7−→
{

X if d ∈ P

¬X if d /∈ P

,

where ¬X is the complement of X. Now we will show that this is in fact a
natural transformation. We want to show that for a function g : A −→ B and
for every X ⊆ A,

g−1(XP ) = g−1(X)P .

By definition we have

g−1XP :D −→B

d 7−→
{

g−1(X) if d ∈ P

g−1(¬X) if d /∈ P

Since the inverse image of g commutes with complements, we conclude the de-
sired equality.

In the previous construction we only used that g−1 is a morphism of Pκ + I-
algebras. From that we can see that we can extend τ to a boolean transformation
τ : I −→ Hom(D,−) as follows: Let A be a Pκ+I-algebra and x ∈ A an element
in the carrier. The element x is mapped to

xP :D −→A

d 7−→
{

x if d ∈ P

¬x if d /∈ P

,

where ¬x is the complement of x in A.

The signature of τ is: mP : Lκ
T (¬) −→ Hom(D,Lκ

T (¬)), where T = Hom(D,−).
A formula ϕ is mapped to ϕP : D −→ Lκ

T (¬), this function is defined as follows:

ϕP (d) = ϕ if d ∈ P ; ϕP (d) = ¬ϕ if d /∈ P.

Using this signature we define a natural translation m : Lκ
T (Λ) −→ Lκ

T (¬) fol-
lowing the idea of Theorem 6.1.8. This translation acts on predicate liftings as
follows:

m([λP ]ϕ) = ∇m(ϕ)P ,

With this we finish all the base cases. Now we proceed to translate the
inductive steps.
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6.1.6 Coproducts of functors

Before explaining the general case, we will use the example P + I to show how
to extend natural translations of the base cases to coproducts.

Recall that a predicate lifting for a coproduct is the product of two predi-
cate liftings, one for each of the factors. Also recall that a singleton lifting is
associated with an element p in one of the factors of the coproduct.

Let’s consider the predicate lifting associated wit ⊥ ∈ 2. The associated
predicate lifting for the coproduct is ([¬], λ⊥). Recall that this predicate lifting
maps X ⊆ A to ¬X ⊆ A +PA. Now notice that the translator ¬ : P̌ −→ P̌ can
be extended to ¬ : P̌ −→ P̌ +PP̌ using the appropriate injections. Furthermore
notice that this extension is a natural translator for ([¬], λ⊥). The signature
m⊥ : Lκ

T (¬) −→ (Lκ
T (¬)+PLκ

T (¬)) maps a formula ϕ ∈ Lκ
T (¬) to ¬ϕ. Explicitly

the translation is
m(λ⊥ϕ) = ∇(¬ϕ),

where nabla is now the Moss’ modality for the coproduct.

Lets consider another example before explaining the general case. We con-
sider the case {>} ∈ P2. The associated predicate lifting is (λ⊥, λ{>}). Again
we have a natural translator τ : P̌ −→ PP̌. We extend it to τ : P̌ −→ (P̌+PP̌) us-
ing the appropriate injections. Again this is a natural translator for (λ⊥, λ{>}).
The signature m{>} : Lκ

T (¬) −→ (Lκ
T (¬) + PLκ

T (¬)) maps a formula ϕ ∈ Lκ
T (¬)

to {ϕ}. Explicitly the translation is

m(λ{>}ϕ) = ∇{m(ϕ)},

where nabla is now the Moss’ modality for the coproduct.

The general case

Moss’ Logic for coproducts can be found on page 29. Coalgebraic modal logic
for this functor can be found on page 48. A coalgebra for the coproduct is a
function α : A −→ K1A + K2A. Now we explain the general procedure.

Given p ∈ K12 + K22 we want to translate the predicate lifting

λ(p,12) : 2(−) −→ 2K1+K2

into the Moss’ language for K1 + K2. It is our claim that we can obtain such
translation using logical translators for K1 and K2. Furthermore we claim that
we can obtain a natural translation, i.e. a translation constructed from a logical
translator as described in Theorem 6.1.8. In other words we want to prove the
following theorem.

Theorem 6.1.13. Let K1 and K2 be two functors such that:

• We can define Moss’ language for both of them.

• Every singleton lifting for K1 can be translated into the Moss’ language of
K1 using logical translators.
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• Every singleton lifting for K2 can be translated into the Moss’ language of
K2 using logical translators.

Then every singleton lifting for K1+K2 can be translated into the Moss’ language
for K1 + K2 using logical translators.

Assume p ∈ K12. Recall that the predicate lifting λ(p,12) is a pair (λp, λ⊥)
of predicate liftings, where λp is the predicate lifting λp : 2(−) −→ 2K1(−) and
λ⊥ is the predicate lifting associated with the empty set for K2. In order to
produce a logical translator for (λp, λ⊥) we have to do three things:

1. Define a natural transformation τ : P̌ −→ K1P̌ + K2P̌ that has a chance
of being a natural translator for (λp, λ⊥).

2. Prove that τ is a natural translator for (λp, λ⊥).

3. Show that τ can be extended to a boolean transformation τ : I −→ K1+K2.

Our inductive hypothesis is: For each p ∈ K12 there exists a natural trans-
lator

τp : P̌ −→ K1P̌,

that is logically representable, i.e. τ produces a natural translation for λp : P̌
−→ K1P̌. The same holds for each p ∈ K22.

First we define τ . By inductive hypothesis there exists a logical translator

τp : P̌ −→ K1P̌

for λp : 2(−) −→ 2K1(−). By definition of coproducts there exists a natural
transformation

iK1 : K1P̌ −→ K1P̌ + K2P̌.

Composing these two natural transformations we obtain a natural transforma-
tion

τ = iK1τp : P̌ −→ K1P̌ + K2P̌.

Claim 6.1.14. The natural transformation τ , as defined above, is a natural
translator for (λp, λ⊥).

In order to prove this claim we have to show that the following diagram

PA K1PA + K2PA-(iK1τp)A

PA

(λp, λ⊥)A

@
@

@
@R

∇A

¡
¡

¡
¡ª

(6.4)

commutes for each set A. In other words we want to proof (λp, λ⊥) = ∇τ .

Since τp is a translator for λp, then for each X ⊆ A,

λ(p,A)(X) = ∇1,Aτ(p,A)(X),
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where ∇1 is the Pattinson transformation for K1. From now on we will omit
the subindex A.

This previous equality is saying the following

λp(X) = {s ∈ K1A | (s, τp(X)) ∈ K1(∈A)}. (6.5)

The commutativity of triangle 6.4 will follow once we prove that

(λp, λ⊥)(X) = {s ∈ (K1A + K2A) | (s, i1τp(X)) ∈ K1 + K2(∈A)},

where i1 = iK1 . This follows gathering the next two facts: one, by definition,
see page 48, we have

(λp, λ⊥)(X) = {s ∈ K1A | s ∈ λp(X)}.

Two, the relation lifting for the coproduct is

K1 + K2(∈A) = {(i1(s), i1(X)) | (s,X) ∈ K1(∈A)}∪{(i2(s), i2(X)) | (s, X) ∈ K2(∈A)}.

Then Equation (6.5), above, implies the desired equality. This concludes the
proof of the claim. Therefore we conclude that τ is a natural translator for
(λp, λ⊥).

Now we want to obtain a syntactic translation from τ , i.e. we want to show
that the new translator τ = iK1τp is logically representable. Since τp is logically
representable there exist a boolean transformation

τp : I −→ K1

that extends it. Notice that the injection iK1 : K1 −→ K1 + K2 is a boolean
transformation because it is a natural transformation. Composing these two
boolean transformations we obtain a boolean transformation

iK1τp : I −→ (K1 + K2).

Recall that the composition of boolean transformations is again a boolean trans-
formation. Since τp extends τp it follows that iK1τp also extends τ = iK1τp. We
conclude that τ is not only a translator for (λp, λ⊥) but a logical translator.
The case p ∈ K22 is symmetric. This concludes the proof of the theorem.

Corollary 6.1.15. Under the assumptions of the previous theorem, if we allow
K12 + K2 conjunctions in the Moss’ language, then every monadic singleton
lifting for K1 + K1 can be translated into the Moss’ language for K1 + K2.

Proof. We translate singleton liftings using the previous theorem. Using Theo-
rem 4.3.6, we translate the other predicate liftings.

An informal description of the natural translation obtained above will be as
follows. For p ∈ K12, the signature of τ is the function

m1 = (iK1τp)Lκ
T (¬) : Lκ

T (¬) −→ (K1Lκ
T (¬) + K2Lκ

T (¬)),
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where T = K1 + K2. Explicitly, the translation m : Lκ
T (Λ) −→ Lκ

T (¬) maps a
formula [λp, λ⊥]ϕ to

m([λp, λ⊥]ϕ) = ∇m1(ϕ).

The case p ∈ K22 is symmetric.

Corollary 6.1.16. Under the assumptions of the previous theorem, if K12 and K22
are finite, then every predicate lifting for K1 + K2 can be translated into Moss’
language for K1 + K2 using a finitary translation.

Corollary 6.1.17. If K1 and K2 are Kripke polynomial functors, then every
predicate lifting for K1 +K2 can be translated into Moss’ language for K1 +K2.
If both functors are finitary, we obtain a finitary translation.

6.1.7 Product of functors

First we will use the example P ×D to show how to extend the natural trans-
lations of the base cases to products.

We will only consider the singleton lifting associated with (d, {⊥}) ∈ D ×
P(2). Recall that the A-component of this predicate lifting maps a set X ⊆ A
to

λd(X)× λ{⊥}(X) = {d} × {¬X}.
We know that there exist logical translators,

τd : P̌ −→ D, τ{⊥} : P̌ −→ PP̌,

associated with λd and λ{⊥} respectively. Since we are working with a product
functor, the only reasonable attempt to construct a natural translator is to use
the universal property of the product to obtain a new translator

(τd, τ{⊥}) : P̌ −→ D × PP̌.

Clearly it is again a natural transformation and doing a simple computation we
can see that in fact it is a natural translator for λ(d,{⊥}). The signature of this
translator, m(d,{⊥}) : Lκ

T (¬) −→ D × PLκ
T (¬), maps a formula ϕ ∈ Lκ

T (¬) to
(d, {¬ϕ}). From that we can see that a translation is

m(λ(d,{⊥})ϕ) = ∇(d, {¬ϕ}).

The general case

Let a pair of functors K1,K2 : Set −→ Set be given. In this section we will
investigate Moss language and the Coalgebraic modal language for the product
functor K1 ×K2 : Set −→ Set.

Moss Logic for this functor can be found on page 30. Coalgebraic modal
logic for this functor can be found on page 49.

A singleton predicate lifting for the product is associated with a pair (p1, p2) ∈
K12×K22. The A-component of this predicate lifting is a function

λ(p1,p2) : 2A −→ 2K1A×K2A.



88 CHAPTER 6. TRANSLATING KPFS

Such function maps a set X ⊆ A to λp1(X) × λp2(X). We want to translate
λ(p1,p2) into the Moss’ language for K1 ×K2. It is our claim that we can do it
using a natural translation. In order to show that, we will prove the following
result.

Theorem 6.1.18. Let K1 and K2 be two functors such that:

• We can define Moss’ language for both of them.

• Every singleton lifting for K1 can be translated into the Moss’ language of
K1 using logical translators.

• Every singleton lifting for K2 can be translated into the Moss’ language of
K2 using logical translators.

Then every singleton lifting for K1×K2 can be translated into the Moss’ language
for K1 ×K2 using logical translators.

Fix (p1, p2) ∈ K12 × K22. To produce a logical translator for λ(p1,p2) we
have to do three things:

1. Define a natural transformation τ : P̌ −→ K1P̌ × K2P̌ that will be a
natural translator for λ(p1,p2).

2. Prove that τ is a natural translator for λ(p1,p2).

3. Show that τ can be extended to a boolean transformation τ : I −→ K1×K2

Our inductive hypothesis is: for each p1 ∈ K12 there exists a natural trans-
lator

τp1 : P̌ −→ K1P̌
that is logically representable. The same holds for each p2 ∈ K22.

First we define τ . By inductive hypothesis there exists logical translators

τp1 : P̌ −→ K1P̌; τp2 : P̌ −→ K1P̌
for λp1 and λp2 respectively. By the universal property of the product there
exists a natural transformation

τ = (τp1 , τp2) : P̌ −→ K1P̌ ×K2P̌.

In other words, the natural translator associated with λ(p1,p2) is the product
of τp1 and τp2 . Recall that the A-component of τ maps a set X ⊆ A to
(τ(p1,A)(X), τ(p2,A)(X)).

Now we want to show that τ is a natural translator for λ(p1,p2), i.e. we want
to show

λ(p1,p2)(X) = {(s1, s2) ∈ K1A×K2A | ((s1, s2), (τp1 , τp2)(X)) ∈ (K1 ×K2)(∈A)}.
(6.6)

By induction hypotheses we have

λp1(X) = {s1 ∈ K1A | (s1, τp1(X)) ∈ K1(∈A)} and

λp2(X) = {s2 ∈ K2A | (s2, τp1(X)) ∈ K2(∈A)}.
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The relation lifting of the membership relation with a product is:

K1 ×K2(∈A) = {((x0, x1), (x′0, x
′
1)) | (x0, x

′
0) ∈ K1(∈A) and (x1, x

′
1) ∈ K2(∈A)}.

Putting this and the inductive hypothesis together we can prove Equation 6.6
after a straight forward computation. We conclude that τ is a logical translator
for λ(p1,p2).

Now we have to show that (τp1 , τp2) : P̌ −→ K1P̌ ×K2P̌ is logically repre-
sentable. Let A be a Pκ + I-algebra with carrier set A. Since τp1 and τp1 can
be extended to boolean translations there exists functions

τ(p1,A) : A −→ K1A and τ(p2,A) : A −→ K2A.

Using the universal property of products we obtain a function

(τ(p1,A), τ(p1,A)) : A −→ K1A×K2A.

It is easy to see that these are the components of a boolean translation

(τp1 , τp2) : I −→ K1 + K2

extending the natural translator (τp1 , τp2). Notice that (τp1 , τp2) is the product
of τp1 and τp2 . We conclude that (τp1 , τp2) is a logical translator for λ(p1,p2).
With this we conclude the proof of the theorem.

Corollary 6.1.19. Under the assumptions of the previous theorem, if we allow
K12×K22 conjuntions in Moss’ language, then every predicate lifting for K1×
K1 can be translated into the Moss’ language for K1 ×K2.

Proof. We translate singleton liftings using the previous theorem. Using Theo-
rem 4.3.6 we translate the other predicate liftings.

An informal description of the natural translation is as follows: Put T =
K1 × K2, let m1 : Lκ

T (¬) −→ K1Lκ
T (¬) be the Lκ

T (¬)-component of τp1 , and
let m2 : Lκ

T (¬) −→ K2Lκ
T (¬) be the Lκ

T (¬) component of τp2 . The signature of
(τp1 , τp2) is the product function of m1 and m2,

(m1,m2) : Lκ
T (¬) −→ K1Lκ

T (¬)×K2Lκ
T (¬),

A formula [λ(p1,p2)]ϕ is translated into

m([λ(p1,p2)]ϕ) = ∇(m1(ϕ), m2(ϕ))

Corollary 6.1.20. Under the assumptions of the previous theorem, if K12 and K22
are finite, then every predicate lifting for K1 ×K2 can be translated into Moss’
language for K1 + K2 using a finitary translation.

Corollary 6.1.21. If K1 and K2 are Kripke polynomial functors, then every
predicate lifting for K1×K2 can be translated into Moss’ language for K1×K2.
If both functors are finitary we obtain a finitary translation.

Hom(D, K) functors are a particular case of products, hence we do not
explain their translations.
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6.1.8 PK Functors

A coalgebra for this functor is a function α : A −→ PKA. Moss Logic for this
functor can be found on page 31. Coalgebraic modal logic for this functor can
be found on page 50.

Consider the predicate lifting associated with {⊥,>} ∈ P2 for the covariant
power set functor. As we saw above, the translation for this predicate lifting is:

m(λ{>,⊥}ϕ) = ∇{m(ϕ),¬m(ϕ)}.

Notice that we can restate it as follows

m(λ{>,⊥}ϕ) = ∇{m>m(ϕ),m⊥m(ϕ)},

where m>, and m⊥ are the signatures for the natural translators of the pred-
icate liftings [1] and [¬] for the identity functor. Furthermore notice that this
idea also works for the natural translator, i.e the A-component for a natural
translator τ for λ{⊥,>} maps a set X ⊆ A ro

τA(X) = {τA,>(X), τA,⊥(X)},

where τ> and τ⊥ are the natural translators for [1] and [¬], respectively.

The general procedure

Let λP : P̌ −→ PKP̌ be a singleton lifting for PK associated with a set P ⊆ K2.
We want to translate ΛP into the Moss’ language for PK. One more time we
claim that we can in fact obtain a natural translation. In other words, we want
to prove the following result.

Theorem 6.1.22. Let K be a functor such that:

• We can define Moss’ language for K.

• Every singleton lifting for K can be translated into the Moss’ language of
K using logical translators.

Then every singleton lifting for PK can be translated into the Moss’ language
for PK using logical translators.

Fix P ⊆ K2. To produce a logical translator for λP we have to do three
things:

1. Define a natural transformation τP : P̌ −→ PKP̌ that will be a natural
translator for λP .

2. Prove that τP is a natural translator for λP .

3. Show that τP can be extended to a boolean transformation τ : I −→ PK

Our inductive hypothesis is: for each p ∈ K2 there exists a logical translator

τp : P̌ −→ KP̌
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for λp : P̌ −→ P̌K.

As always we first define τP . By inductive hypothesis for each p ∈ P there
exists a logical translator

τp : P̌ −→ KP̌
for λp : P̌ −→ P̌K. Since each τp is a logical translator, it is a natural transfor-
mation. We define a natural translator

τP : P̌ −→ PKP̌

for λP as follows: The A-component of τP maps a set X ⊆ A to

τ(P,A)(X) = {τ(p,A)(X) | p ∈ P},

where τp is a logical translator for λp. Since all τp are natural transformations
it is straight forward to check that τP is a natural transformation.

Now we have to prove that τP is in fact the right translator, i.e we have to
show that the following diagram

P̌A PKP̌A-τP

P̌KA

λP

@
@

@
@R

∇A

¡
¡

¡
¡ª

commutes for every set A, where ∇ is the Moss’ modality for PK. From now
on we will omit the subindex A. By induction hypothesis we have that for each
p ∈ K2 the following holds

λp(X) = {s ∈ KA | (s, τp(X)) ∈ K (∈A)}.

In Section 4.4.8 of Chapter 4, we saw that λP : P̌ −→ P̌PK has the following
characterization

λP (X) = {U ⊆ KA |U ⊆
⋃

p∈P

λp(X) ∧ (∀p ∈ P )(U ∩ λp(X) 6= ∅)}.

In Section 3.3.8 of Chapter 3, we saw that Pattinson transformation for PK
can be described as follows: A set τP (X) ⊆ KP̌A is mapped to

∇A(τP (X)) =
{
U ⊆ KA | (∀q ∈ τP (X))(∃(u ∈ U))((q, u) ∈ K(∈A))

and (∀u ∈ U)(∃(q ∈ τP (X)))((q, u) ∈ K(∈A))
}

.

Using the inductive hypothesis we can see that

(∀u ∈ U)(∃(q ∈ τP (X)))((q, u) ∈ K(∈A))

is equivalent to
U ⊆

⋃

p∈P

λp(X).
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Using the inductive hypothesis we can also see that

(∀q ∈ τP (X))(∃(u ∈ U))((q, u) ∈ K(∈A))

is equivalent to
(∀p ∈ P )(U ∩ λp(X) 6= ∅).

Therefore we conclude that τP is a natural translator for λP .

Now we will show that τP is logically representable. Let A be a Pκ + I-
algebra over a set A. By induction hypothesis all the translators τp : P̌ −→ KP̌
can be extended to boolean transformations. Therefore for each p ∈ P there
exists a function

τ(p,A) : A −→ KA.

Using these boolean transformations we define a boolean transformation

τP : P̌ −→ PKP̌

as follows: the A-component of τP : P̌ −→ PKP̌ maps an element x ∈ A to

τ(P,A)(x) = {τ(p,A)(x) | p ∈ P}.

It is straightforward to check that these are the components of a boolean trans-
lation τP : I −→ PK extending τP . We conclude that τP is logical translator
for λP . This concludes the proof of the theorem.

Corollary 6.1.23. Under the assumptions of the previous theorem, if we allow
PK2 conjunctions in Moss’ language, then every predicate lifting for PK can
be translated into the Moss’ language for PK.

Proof. Using Theorem 6.1.8 we produce a natural translation for λP . Using
Theorem 4.3.6 we translate the other predicate liftings.

The signature mP : Lκ
T (¬) −→ PTLκ

T (¬), where T = PK, of τP maps a
formula ϕ ∈ Lκ

T (¬) to the set

mP (ϕ) = {mp(ϕ) | p ∈ P},

where mp : Lκ
T (¬) −→ PKLκ

T (¬) are the Lκ
T (¬)-components of the boolean

transformations associated with the singleton liftings of K. In other words the
the translation is the following

m(λP ϕ) = ∇{mpm(ϕ) | p ∈ P}.

Corollary 6.1.24. Under the assumptions of the previous theorem, if K2 is
finite, then every predicate lifting for PK can be translated into Moss’ language
for PK using a finitary translation.

Corollary 6.1.25. If K is a Kripke polynomial functors, then every predicate
lifting for PK can be translated into Moss’ language for PK. If K is finitary
we obtain a finitary translation.
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Conclusions

In this section we summarize the results obtained in this thesis and mention our
ideas about further work.

What we have done

Based on the work done in Chapters 2, 3, 4, we proved the following result.

Theorem. For every κ-accessible functor T that preserves weak pullbacks and
monomorphisms there exists a separating set of predicate liftings Λ such that
Moss’ language Lκ

T (¬) and the coalgebraic modal language Lκ
T (Λ) are indistin-

guishable at a semantic level.

In Chapter 5 we proved the following result.

Theorem. The existence of an expressive language for T -coalgebras is equiva-
lent to the existence of a final T -coalgebra.

Using this construction we defined translations and proved the following
theorem.

Theorem. For every regular cardinal κ and every functor T that preserves weak
pullbacks and monomorphisms there exists a separating set of predicate liftings
Λ such that:

• Every formula in Lκ
Tκ

(¬) can be translated into a formula in LTκ(Λ).

• Every formula in Lκ
Tκ

(Λ) can be translated into a formula in LTκ(¬).

In Chapter 6 we defined the concepts of natural translator, logical translator
and boolean transformation. In that chapter we also developed a three steps
technique to produce logical translators. Recall that our technique is:

Step 1: Define a natural transformation τ : P̌ −→ T P̌ that seems like a natural
translator for λ.

Step 2: Prove that τ is a natural translator for λ.

Step 3: Show that τ can be extended to a boolean transformation τ : I −→ T
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Using this procedure we proved the following result.

Theorem. A singleton predicate lifting λp for a functor T is expressible in the
Moss’ language for T if there exists a natural translator τ for λp that is logically
representable.

Using this construction in the particular case of Kripke polynomial functors
we proved the following theorem.

Theorem. Given a Kripke polynomial functor K, if we allow K2 conjunctions
in Moss’ language and the coalgebraic language, then every formula of monadic
predicate liftings for K can be translated in toa formula of Moss’ language for
K. If K is finitary this translation is a finitary translation.

During the proof of this last result we had to prove the following interesting
result.

Theorem. Let K1 and K2 be two functors such that:

• We can define Moss’ language for both of them.

• Every singleton lifting for K1 can be translated into the Moss’ language of
K1 using logical translators.

• Every singleton lifting for K2 can be translated into the Moss’ language of
K2 using logical translators.

If these three condition hold then

• Every singleton lifting for K1 + K2 can be translated into the Moss’ lan-
guage for K1 + K2 using logical translators

• Every singleton lifting for K1 ×K2 can be translated into the Moss’ lan-
guage for K1 ×K2 using logical translators

• Every singleton lifting for PK1 can be translated into the Moss’ language
for PK1 using logical translators

In other words logical translators can be extended over products, coproducts
and composition with the functor P. This result has the following immediate
extension.

Let H be a functor which we can define Moss’ language. We define the
collection of Kripke polynomial functors modulo H inductively as follows:

K := I |D |H |K0 + K1 |K0 ×K1 |Hom(D, K) | PK.

In other words we add H as a base functor. Using the previous result we can
then prove.

Theorem. Let K be a Kripke polynomial functor modulo H. If every single-
ton lifting for H can be translated using logical translators, then every singleton
lifting for K can be translated using logical translators.

If we allow K2 conjunctions in Moss’ language for K, then every predicate
lifting for K can be translated into Moss’ language for K.
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What we have not done

The previous section summarized most of the result developed in this thesis.
But there is much more work that is still to be done.

A first issue that we didn’t solve is: Can we translate Moss’ modality into
languages of predicate liftings? We can define natural translators for Moss’
modality as follows.

Definition. A natural translator for nabla is a pair (ϑ, ρ) of natural transfor-
mations such that the following diagram

T P̌A
∏

i∈η Li(P̌)A-ϑA

P̌TA

∇A

@
@

@
@R

ρA

¡
¡

¡
¡ª

(7.1)

commutes for every set A, where the Li‘s are subfunctors of P + Λ + I.

We can produce natural translators for all the Moss’ modalities for Kripke
polynomial functors. But we could not clarify under what conditions we can
extract a syntactic translation from the pair (ϑ, ρ). The main problem is than
now we want to obtain a one free variable formula from ρ. It is not yet clear for
us what are the conditions for that extractions. The main problem is the case
for PK functors.

Another issue related to the previous one is the translations of polyadic pred-
icate liftings. We conjecture that such translations can be obtained using logical
translators.

Related to the last theorem in the previous section it is out of the scope of
our knowledge what base functors H allow us to translate singleton predicate
liftings using logical translators.

Another issue is to investigate is about other constructions of functors that
allow us to extend logical translators. Two interesting constructions to investi-
gate are pullbacks and exponentials.
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