
Automata on flows

MSc Thesis (Afstudeerscriptie)

written by

Petter Remen

(born 5th August 1980 in Tønsberg, Norway)

under the supervision of Yde Venema, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

29th August, 2007 Yde Venema
Peter van Emde Boas
Jan Rutten
Johan van Benthem

Abstract

We introduce a coalgebraic generalization of an infinite word, namely a sourced
flow, followed by a definition of what it means for an automaton to accept a
sourced flow, thereby generalizing the notion of ω-regularity. We show that
this definition yields a finitary description of acceptance for finite sourced flows.
We end by presenting three characterization results on regular classes of finite
sourced flows.

1 Introduction

There is a deep connection linking the fields of automata and logic. On the con-
ceptual level, both use a relation (acceptance/satisfaction) to let finite objects
(automata/formulas) describe properties of other, possibly infinite structures
(e.g. infinite words/models). Intuitively, one may see automata as a generaliza-
tion of formulas, in the sense that the syntactic structure of the latter is a tree,
whereas automata admit loops, i.e., their underlying structure is a finite graph.

And although the terminology differs, the questions asked are often similar.
Can we characterize those classes C of structures which are such that there exists
a formula ϕ (an automaton A) such that M ∈ C if and only if M satisfies ϕ (M
is accepted by A)? How are the expressive powers of different logics (classes of
automata) related, when compared over a class of structures?

In some cases, the connection is very strong indeed. In the 60’s, Büchi ob-
tained a decision procedure for the monadic second order logic of one successor,
S1S [2], by showing that S1S and automata are equally strong in expressive
power over the class of infinite words. In fact, he showed that there is a con-
structive algorithm transforming a given S1S sentence ϕ into an automaton Aϕ

such that ϕ is true for an infinite word u if and only if u is accepted by Aϕ.
Since the emptiness problem for automata – i.e., the question of whether a given
automaton A accepts any infinite words at all – is computable, this gave an ef-
fective procedure for deciding satisfiability of S1S formulas. The techniques used
by Büchi were later used by Rabin in [16], in which he showed that the stronger
theory of monadic second order logic of two successors, S2S, is decidable (over
the class of binary trees). The result, also called Rabin’s theorem, has been
successfully applied to obtain decidability results for other logics and problems
by reducing them to questions of S2S.

1.1 Modal logic and automata

Both Büchi and Rabin treated infinite words and binary trees as colored tran-
sition structures when seeing them as second-order models. It therefore makes
sense to compare the expressive power of automata to that of a natural logical
language for transition structures, namely modal logic. It is not difficult to see
that classical modal logic is quite weak in comparison. Since every modal for-
mula only can “see” finitely many steps ahead, such properties as “there are only
finitely many states which satisfy the propositional variable p” or even “each
state which satisfies p is eventually followed by a state which satisfies q” are not
expressible, even though they are easily characterized by automata. However,
it turns out that adding adding fixpoint operators to the classic modal language
adds precisely the strength required in order for the logic to gain the same
expressive power as automata. In fact, there is a back-and-forth translation be-
tween what is called the modal µ-calculus [9] and alternating tree automata [24].
This has turned out to be quite a success story for computer science. Viewing
Kripke models as process graphs for computer programs with non-deterministic
behavior, one can use the modal µ-calculus as a highly expressive specification
language. Then, using the translation into automata, one can check whether a
given graph satisfies the specification, yielding a field of research called model
checking.

For a modal logician, the modal µ-calculus serves as a very beautiful exten-

1

sion to the classic modal language, being remarkably strong but still preserving
two important properties, namely the finite model property and bisimulation
invariance. Many questions from modal logic can be lifted to this setting, such
as whether there exists a characterization theorem for the modal µ-calculus in
the style of van Benthem’s result [21] for the classical modal logic. This ques-
tion was answered in [8], when Janin & Walukiewicz showed that it is equal
in expressive power to the bisimulation invariant fragment of monadic second
order logic. There are still open questions in this area, such as whether the
result of Janin & Walukiewicz still holds if we restrict ourself to the class of
finite models.

1.2 The coalgebraic perspective

It turns out that the strong connection between automata and logic holds for
many different classes of transition structures (in this introduction, we have al-
ready briefly mentioned infinite words, binary trees and Kripke models). More-
over, the techniques used are often similar, indicating the possibility of a more
general setting in which to develop these theories.

The fact that transition systems can be seen as coalgebras was observed
in [1]. It also turns out that the familiar notions of bounded morphisms and
bisimulation are natural in the coalgebraic setting. Moreover, modal logic, which
classically applies to Kripke models (which are coalgebras of a special signature),
can be generalized to coalgebras [13]. Combining this with the link between the
modal µ-calculus and automata, a natural question arises: is it possible to
develop a theory of coalgebraic automata and add fixpoints to coalgebraic logics
in such a way that this link is preserved?

This question was positively answered by Venema in [22], in which a general
theory of coalgebraic fixpoint logic and coalgebraic automata was developed,
and in [10] together with Kupke, where standard results from automata theory
was shown to hold in this, more general, setting.

1.3 The aim of this thesis

In this thesis we investigate automata operating on one of the simplest classes of
coalgebras, namely sourced flows. Sourced flows are labeled transition structures
with a well-defined initial state and where each state has a unique successor. As
such, they constitute a natural generalization of an infinite word. In fact, it turns
out that we can view the “ordinary” infinite words as precisely the sourced flows
which have infinitely many states. Therefore, the generalization can be seen as
a way of adding finite models to the existing theory. In fact, our primary focus
will be to find characterization theorems for those classes L of finite sourced
flows which are regular, in the sense that there is an automaton A such that L
consists of precisely the finite sourced flows which A accepts. Implicit in our
investigation is the connection between automata and the corresponding modal
calculus with fixpoint operators, so, actually we will be investigating the finite
model theory of this calculus.

Seeing how we want to fit into the coalgebraic setting, our definitions, state-
ments and proofs will try to use the toolkit of universal coalgebra, such as the
notions of homomorphisms, bisimilarity and generated subcoalgebra. This has
the added advantage of making it easier to see how the ideas in this thesis might

2

possibly be generalized to other classes of coalgebras with more complicated sig-
natures than ours.

3

2 Preliminaries

We assume that the reader is proficient with the standard toolset of regular
languages and automata operating on finite words.

We begin by presenting a characterization theorem for regular languages in
terms of a pumping property. Both the result in itself and its proof will be used
to obtain a characterization theorem for regular languages of lassos (defined in
section 3).

The subsequent part of this section is devoted to introducing automata on
infinite words; however, it can hardly be seen as a tutorial. Hence, for the reader
who wants to have a better grip on the subject, we recommend the works of
Thomas in [20] & [19], Perrin & Pin in [15], and the comprehensive work in [5].

Before we begin, know that from now on and throughout the entire thesis,
Σ denotes some fixed finite alphabet of symbols. We tend to use lowercase a’s,
b’s, and c’s as variables ranging over Σ. Elements of Σ∗ are called finite words
and elements of Σω are called infinite words.

2.1 Regular languages and the block-removal property

It is well-known that regular languages have a “pumping” property. That is, if
L ⊆ Σ∗ is a regular language and x is a sufficiently large string in L, then there
is some substring of x which can be removed or repeated arbitrarily many times,
the result always remaining in L. Eurenfeucht, Parikh and Rozenberg showed
in [3] that there is a pumping condition which is equivalent to regularity. We
present here the main argument, referring the reader to the paper for the full
proofs.

Let w ∈ Σ∗ be a finite word, and let y1, y2, . . . , yk be a sequence of consecu-
tive (possibly empty) subwords of w, i.e., w = xy1y2 . . . ykz for some x, z ∈ Σ∗.
We consider those strings w′ which are obtained from w by removing “blocks”
of consecutive y’s. Formally, we call a word w′ ∈ Σ∗ a cut of xy1y2 . . . ykz, if
w′ = xy1y2 . . . yiyj+1 . . . ykz for some 0 ≤ i < j ≤ k. Note that w′ is a cut
relative to the “factorization” w = xy1y2 . . . ykz. Also note that there are no
“empty” cuts, since we forced i < j.

w = xy1y2 . . . yi−1yi

the removed block
︷ ︸︸ ︷
yi+1 . . . yj−1yj yj+1 . . . ykz

w′ = xy1y2 . . . yi−1yiyj+1 . . . ykz

Figure 1: An example of a cut

Definition 2.1. Let L ⊆ Σ∗ be set of finite words and let k ∈ ω be a natural
number. We say that L has the k-blockremoval property if for every w ∈ Σ∗ and
sequence y1, . . . , yk of length k such that w = xy1y2 . . . ykz for some x, z ∈ Σ∗,
there is a cut w′ of xy1y2 . . . ykz such that w ∈ L if and only if w′ ∈ L.

Theorem 2.2 (Eurenfeucht, Parikh & Rozenberg). A language L is regular if
and only if it has the k-blockremoval property.

4

The proof of this theorem is by means of three lemmas, the first of which is
of independent interest to us and is used in Theorem 5.11. The third shows how
to create a deterministic automaton from a finite congruence, a construction
from which we take inspiration in Theorem 5.26.

Lemma 2.3. For every k ∈ ω, there are only finitely many languages L ⊆ Σ∗

with the k-blockremoval property.

Proof. The proof uses Ramsey’s theorem to show that for every k ∈ ω there is
a number r(k) such that every language L with the k-blockpumping property
is uniquely determined by its set of strings of length ≤ r(k). Hence, there are
at most |Σ|r(k) many languages with the k-blockpumping property.

Lemma 2.4. If L ⊆ Σ∗ has the k-blockpumping property, then so do all of its
derivatives, i.e., La = {x | ax ∈ L} has the k-blockpumping property for each
a ∈ Σ.

Proof. Let xy1y2 . . . ykz be a finite word. Then there are i < j ≤ k such
that axy1y2 . . . ykz ∈ L if and only if axy1 . . . yiyj+1 . . . ykz ∈ L, and hence
xy1y2 . . . ykz ∈ La if and only if xy1 . . . yiyj+1 . . . ykz ∈ La.

Lemma 2.5. Let L be a finite set of languages such that L ∈ L implies that
La ∈ L for all a ∈ Σ. Then every language in L is regular.

Proof. We let A be the deterministic automaton (without initial states) where

• the set of states is L,

• the transition function is such that for every L ∈ L and a ∈ Σ, the unique
a-successor of L is La, and

• a state L is accepting if and only if L contains the empty word, i.e., ǫ ∈ L.

It is now straightforward to check that the language accepted by setting the
initial point of A to a state L is precisely L itself.

Proof of Theorem 2.2. If L is a regular language, then there is a deterministic
automaton A which accepts L. Letting k be the number of states of A, it is
easy to check that L has the k-blockpumping property.

For the other direction, the three lemmas show that every language which
has the k-blockpumping property is regular.

2.2 Automata on infinite words

As in the finitary case, the underlying structure for an automaton operating on
infinite words is a finite labeled transition system. The structure necessary to
define acceptance in the infinitary case is a bit more involved. Instead of a single
set of accepting states, we need a set of sets of states, the reason for which will
be explained shortly.

Definition 2.6. An automaton A consists of

1. a finite set of states QA ,

2. a transition function ∆A : Q → ℘(Σ × Q),

5

3. a set IA ⊆ Q of initial states, and

4. an acceptance condition AccA ⊆ ℘(Q).

We omit the subscript A when the automaton is implicit from context.

One often sees the underlying labeled transition systems of an automaton
formalized by means of a transition relation R ⊆ Q×Σ×Q. The two different
definitions are equivalent through the isomorphism mapping such a relation R

to the transition function ∆R = λq.{ (a, q′) | (q, a, q′) ∈ R }.
Let A = (Q,∆, I,Acc) be an automaton. We introduce some convenient

shorthands for reasoning about transitions.

• We write q
a
→ q′ for (a, q′) ∈ ∆(q).

• We inductively define a terniary relation q
x
։ s , where q and s are elements

of Q and x ∈ Σ∗ is a finite word, the induction being performed on the
length of x.

In the base case when x = ǫ, i.e., x is the empty word, we have that q
x
։ q′

if and only if q = s. In the inductive case when x = a0 . . . an−1, we let

x′ = a1 . . . an−1. We then have that q
x
։ s if and only if there is an r ∈ Q

such that q
a0→ r and r

x′

։ s.

• Given two states q, q′ ∈ Q, we write [q ։ q′] for the set of all finite words

x ∈ Σ∗ such that q
x
։ q′.

As in the finitary case, the acceptance of an infinite word is witnessed by a
(in our case infinite) trace through the automaton.

Definition 2.7. Let A be an automaton and let u = a0a1 . . . ∈ Σω be an infinite
word. A u-labeled trace through A is a sequence of pairs (q0, a0), (q1, a1) . . . ,

such that qi
ai→ qi+1 for all i ∈ ω. We often write

q0
a0→ q1

a1→ q2
a2→ · · ·

for traces, calling the sequence q0q1 . . . the states of the trace, and q0 the starting
state.

We now use the acceptance condition to specify which traces are successful.
In the finitary case, a finite path through the automaton is successful if it ends
in an accepting state. As traces are one-way infinite, we do not have the luxury
of a final state; instead, we define the success of trace based on its infinitary
behavior.

Definition 2.8. Given an automaton A and an trace (q0, a0), (q1, a1), . . . through
A, we let

inf(τ) = { q ∈ Q | q = qi for infinitely many i ∈ ω }.

Definition 2.9. A trace τ through an automaton A with acceptance condition
Acc is said to be successful if inf(τ) ∈ Acc.

6

Consider now a point q in an automaton. If we take the collection of suc-
cessful traces which start in q and take their labels, we obtain a subset of Σω,
i.e., a language.

Definition 2.10. Let A be an automaton. The (infinitary) language defined or
accepted by a point q ∈ A, written Lω(A, q), or simply Lω(q) if the automaton
is implicit, is defined as the set of all u ∈ Σω such that there is a successful
u-labeled trace τ with starting state q.

Letting I be the set of initial states of A, the language defined or accepted
by A, written Lω(A), is defined as

Lω(A) :=
⋃

q∈I

Lω(q),

By calling successful traces which start in an initial state accepting, we get that
an infinite word u is accepted by an automaton A (i.e., u ∈ Lω(A)) if and only
if u is the label of an accepting trace through A.

Definition 2.11. A language L ⊆ Σω is called ω-regular if there is some au-
tomaton A which accepts it, i.e., L = Lω(A).

It is worth noting that there are a plethora of different acceptance conditions
in the literature, all of which are defined in terms of the infinitary behavior of
traces. While defining our automata, we have implicitly chosen the most general
of these, namely Muller acceptance, but will more often use two other, at first
sight more restrictive, conditions. The first one, called Büchi acceptance, is the
one most reminiscient of the finitary case and the one which will be used most
often in this thesis.

Definition 2.12 (Büchi automata). Let A be an automaton with states Q and
acceptance condition Acc. We say that Acc is a Büchi acceptance condition,
and A a Büchi automaton, if there is a set F ⊆ Q such that

Acc = {X ⊆ Q | X ∩ F 6= ∅ }.

The elements of F are called accepting states .

If A is a Büchi automaton with accepting states F , we have that a trace
q0

a0→ q1
a1→ . . . is successful if and only if qi ∈ F for infinitely many i ∈ ω; and

since automata always have finitely many states, this is equivalent to requiring
that there is some state qF ∈ F such that qi = qF for infinitely many i ∈ ω.
We will often write FA for the set of accepting states of a Büchi automaton A.
Figure 2 shows an example of a Büchi automaton. The initial states are pointed
to with large ingoing arrows, and the accepting states are marked with double
circles. The automaton in Figure 2, has q0 and q1 as initial states, and q1 and
q2 as accepting states.

The language accepted by a Büchi automaton can easily be described in
terms of finitary regular languages.

Definition 2.13. Let L ⊆ Σ∗ be a set of finite words. We define

Lω := {x0x1x2 · · · | xi ∈ L for all i ∈ ω }.

7

Figure 2: A Büchi automaton

Proposition 2.14 (Büchi). Let A be a Büchi automaton with initial states I

and accepting states F . The language L(A) accepted by A is precisely

⋃

qI∈I

⋃

qF ∈F

[qI ։ qF] ◦ [qF ։ qF]ω

Proof. An infinite word u is accepted by A if and only if there is an u-labeled
successful trace which starts in an initial state qI ∈ I. However, a trace
(qIq1q2 . . . , u) is successful if and only if there is some state qF ∈ F such that
qi = qF for infinitely many i ∈ ω. From this the result follows easily.

The second condition is a bit more involved. If Q is the set of states of
some automaton and n is some natural number, we call a function p : Q →
{1, 2, . . . , n} a parity map.

Definition 2.15 (Parity automata). Let A be an automaton with states Q and
acceptance condition Acc. We say that Acc is a parity acceptance condition and
A is a parity automaton if there is a parity map p : Q → {1, 2, . . . , n} such that

Acc = {X ⊆ Q | max(p[X]) is even }.

In other words, a trace τ through an automaton A with parity map p is successful
if and only if the element of inf(τ) with highest parity is even.

Both of these conditions are useful because the success of a trace is witnessed
by a single state in its infinite behavior; a fact which makes reasoning about
these sort of automata much easier. Surpringly, by the next theorem we can al-
ways assume our automata to be of this kind, and in the case of parity automata,
we can also assume the underlying transition system to be deterministic.

Definition 2.16. An automaton A is said to be deterministic if the set I of
initial states is a singleton set and for every q ∈ Q, a ∈ Σ, there is exactly one
q′ ∈ Q such that q

a
→ q′ in A.

Theorem 2.17. Let L ⊆ Σω be a set of infinite words. Then the following are
equivalent:

(a) L is ω-regular, i.e., L is accepted by an automaton.

(b) L is accepted by a (possibly non-deterministic) Büchi automaton.

(c) L is accepted by a deterministic parity automaton.

Proof. Both the proof of (a) ⇒ (b) and (b) ⇒ (c) are non-trivial (the second
one being by far the hardest). For a full proof, see [4] and [17].

8

Using the (a) ⇒ (b) part of the theorem, we get the following characterization
theorem for regular languages.

Theorem 2.18 (Büchi). A language L is ω-regular if and only if there is a
finite set {X0, Y0,X1, Y1, . . . ,Xn−1, Yn−1 } of regular languages such that

L =
⋃

i<n

Xi ◦ Y ω
i

Proof. If L is regular, then by Theorem 2.17 there is a Büchi automaton which
accepts L. The result then follows from Proposition 2.14.

We omit the proof of the other direction, since a similar construction is used
when proving the analogous Theorem 5.3.

Note that if A is a deterministic automaton whose single initial state is
qI , then, for every infinite word u, there is exactly one u-labeled trace which
starts in qI . Since Büchi automata are the simplest to work with, we would
have hoped that deterministic Büchi automata would suffice, but unfortunately
there are ω-regular languages which are not accepted by deterministic Büchi
automata. However, there is another class of automata which almost do the
trick, and which also correspond to the “syntactic” automata for finitary regular
languages, namely prophetic automata.

2.3 Prophetic automata

Definition 2.19. An automaton A is said to be prophetic if for every infinite
word u, there is exactly one successful u-labeled trace through A.

Now, if we assume that our automata are trim1, meaning that for every
state q, the language Lω(q) is non-empty, we get the following proposition.

Proposition 2.20. Let A be an automaton. Then A is prophetic if and only if

⋃

q∈A

Lω(q) = Σω (1)

and

Lω(q) ∩ Lω(q′) = ∅ for all distinct q, q′ ∈ A. (2)

In other words, A is prophetic if and only if the sets Lω(q) form a partition of
Σω.

Notice the almost deterministic quality of prophetic automata. As long as
we are only interested in successful traces, there is but one choice. It is therefore
quite surprising that the class of prophetic Büchi automata is equally strong in
expressive power as the class of all automata.

Theorem 2.21 (Carton & Michel). For every ω-regular language L, there is a
prophetic Büchi automaton A which accepts L.

1It should be fairly clear that this is safe to assume since every state which defines the

empty language can be safely removed.

9

Proof. This was proven in [12] where the term “complete and unambiguous” is
used instead of “prophetic”, the latter borrowed from [15].

As we shall see in Theorem 5.26, prophetic automata can also be seen as
syntactic automata for ω-regular languages, similar to the construction used in
Lemma 2.5 in the section on regular languages and the block-removal property.

10

3 (Sourced) Flows

This chapter defines the primary objects of our investigation, namely sourced
flows. These can be seen in two ways; as a natural coalgebraic generalization
of an infinite word, or as the natural class of structures for which the modal
µ-calculus of one modal “next”-operator applies.

Definition 3.1. A flow S consists of a non-empty set S, called the carrier
of S, together with a function σ : S → Σ × S called the transition function or
successor function of S. Elements of S are usually designated with letters r, s, t,
and are called the states of (or points in) S. If σ(s) = (a, s′) we call a the color
of s and s′ the successor of s .

Alternatively, we can think of flows as the special case of a labeled transition
system in which each point has a unique successor, i.e., for every state s there
is a unique pair (a, s′) ∈ Σ × S such that s

a
−→ s′. This point of view will be

very helpful to us later when we consider automata operating on flows, since it
enables us to see the structural similarities between the two classes of objects.

Figure 3: A typical flow.

Figure 3 shows a typical flow over the alphabet {a, b}. Note that it is not
connected being the disjoint union of two flows. Another illustrative example is
the two way infinite flow

. . .
a
→ −2

b
→ −1

a
→ 0

b
→ 1

a
→ 2

b
→ . . .

showing that it is quite possible for every point to have a predecessor.
Since flows can be seen as a special case of labeled transition systems, we

adopt the same notation.

Definition 3.2. Let S be a flow. We write s
a
→ s′ for ϕ(s) = (a, s′) and s

x
։ s′

if and only if either

• x = ǫ and s = s′, or

• x = ax′ and there is an s′′ ∈ S such that s
a
→ s′′ and s′′

x′

։ s′.

The objects satisfying formulas of the modal µ-calculus of one modal “next”-
operator are points in flows, or alternatively, pointed flows, i.e., pairs (S, s),
where s is a point in S. However, in this thesis, it will be very convenient to
restrict our attention to pointed flows of a certain kind, namely those where the
flow is generated by the designated point.

Definition 3.3. Let S = (S, σ) be a flow and let s ∈ S. The flow Ss = (Ss, σs)

is defined by letting Ss = { s′ | ∃x s
x
։ s′ } and σs = σ ↾ Ss. We say that Ss

11

is the subflow of S generated by s. If S = Ss for some s ∈ S, we say that S is
point-generated (by s).

Definition 3.4. A sourced flow S is a structure (S, s), where S is generated by
s, i.e., S = Ss. We call s the source of S.

One might think that since the underlying flow is generated by the source,
the extra mention of s is superfluous. The reason why we need to explicitely
mention it is that a point which generates a point-generated flow need not be
unique. For instance, the flow S in Figure 4 is generated by each of its points.

Figure 4: A flow with several generators.

It is well-known that if (S, s) is a pointed flow and ϕ is a modal µ-calculus
formula, then ϕ is true for (S, s) if and only if ϕ is true for (Ss, s). So, our
restriction to sourced flows as opposed to pointed flows does not cause any loss
in information in this sense.

3.1 The coalgebraic perspective

As can be seen from its definition, a flow is a coalgebra over the functor Σ× id
(see Appendix A for a brief introduction to universal coalgebra). The benefit
of having this perspective is that it enables us to use the standard toolkit of
universal coalgebra in our arguments. We have already seen one of these tools,
namely the definition of a generated subflow above. This, together with the
following definitions of homomorphism, bisimulation, final flow and behavioral
equivalence are precisely what the definitions from universal coalgebra boil down
to if spelled out for our specific functor Σ × id .

First, to simplify notation, if S and T are flows, we will often write f : S → T
for a function between the carriers of S to T , and similarily for relations. The
same applies to sourced flows, in the sense that if S = (Ss, s) and T = (Tt, t),
we write f : S → T for a function between the carriers of the Ss and Tt.

Definition 3.5. Let S and T be two flows. A function f : S → T is a ho-
momorphism from S to T if s

a
→ s′ in S implies f(s)

a
→ f(s′) in T for all

s, s′ ∈ S.
For sourced flows, we also require that the function f maps initial points to

initial points. I.e., if S = (Ss, s) and T = (Tt, t) are two sourced flows, then
f : S → T is a homomorphism if and only if it is a homomorphism from S to T
such that f(s) = t.

Note that in the absence of multiple successors, the “back” condition which
occurs when defining bounded morphisms in the setting of Kripke frames be-
comes superfluous. For the same reason, the definition of a bisimulation simpli-
fies to the following.

Definition 3.6. A relation R ⊆ S × T is called a bisimulation between S and
T if (s, t) ∈ R implies that s and t have the same color and their respective
successors s′ and t′ are R related, i.e., (s′, t′) ∈ R.

12

Let s and t be points in two flows S and T , respectively. We say that s and
t are bisimilar , if there exists a bisimulation R ⊆ S × T such that (s, t) ∈ R.

We now lift this relation on points of flows to sourced flows by saying that
two sourced flows (Ss, s) and (Tt, t) are bisimilar, written (Ss, s) ↔ (Tt, t), if s

and t are bisimilar.

The primary aim of this thesis will be to define acceptance of a sourced flow
by an automaton. We get our inspiration from the fact that infinite words can
themselves be seen as a special case of sourced flows, namely the infinite ones.

3.2 Infinite words as sourced flows

An infinite word u is a function from ω to Σ, and can thus be seen as a coloring
of the set ω. However, in our case, the essential point of the matter is that ω can
be seen as a transition structure with an initial point (namely 0) and where each
element has a unique successor. Indeed, we identify an infinite word u : ω → Σ
with the sourced flow whose carrier is the set ω, where the transition function
is λi.(u(i), i + 1) and where the initial point is 0.

0
u(0)
→ 1

u(1)
→ 2

u(2)
→ . . .

Seen through this perspective, the infinite words have a special place amongst
the pointed flows as seen by the following two propositions.

Proposition 3.7. Two infinite words u and v are bisimilar if and only if they
are identical.

Proof. By simple induction using the definition of bisimilarity in the successor
steps.

Proposition 3.8. For every sourced flow S there is a unique bisimilar infinite

word
−→
S , called the unraveling of S. In fact, there is a unique homomorphism

US :
−→
S → S .

The “U” in the above proposition is for “unravel”, although, strictly speak-
ing, the unraveling is in the other direction. See Figure 5.

Proof. Let S = (Ss0
, s0) be a sourced flow. We inductively create a sequence

s0s1 . . . of states of S and a sequence a0a1 . . . of symbols of Σ by setting ai and
si+1 to be the unique pair such that si

ai→ si+1 (note that s0 is already given).

The unraveling
−→
S of S is the infinite word a0a1 . . . , i.e.,

0
a0→ 1

a1→ 2
a2→ . . .

and the homomorphism is quite simply the sequence s0s1 . . . when seen as a
function from ω to S.

The uniqueness of a0a1 . . . follows from the preceding proposition and the
uniqueness of the homomorphism follows from the fact that any homomorphism
f : S → T must be unique, since the definition of homomorphism on sourced
flows yields a unique inductive definition of f .

13

Figure 5: Unwinding a sourced flow S

From this we obtain a simple way of checking whether two sourced flows are
bisimilar.

Corollary 3.9. Two sourced flows S and T are bisimilar if and only if
−→
S =

−→
T .

Proof. Assume that S and T are bisimilar. It is easy to check that bisimilarity

is a transitive relation over sourced flows, and hence
−→
S and

−→
T are bisimilar as

well. But then
−→
S =

−→
T . The other direction is similarily straight forward.

In fact, there is another way to view the unraveling of a pointed flow S

with initial point s, namely as the behavior of s. The notion of behavioral
equivalence is a fairly abstract notion (see Appendix A), but in our case it
becomes simplified, since the category of flows has a final object.

Fact 3.10. We write Σω for the flow whose elements are infinite words u ∈ Σω

and where the transition function is defined as au
a
→ u for all a ∈ Σ, u ∈ Σω.

The flow Σω is final in the category of all flows, i.e., for every flow S there
is a unique homomorphism !S : S → Σω, which is defined by

!S(s) =
−−−−→
(Ss, s).

We say that two pointed flows (S, s) and (T , t) are behaviorally equivalent if

!S(s) =!T (t). However, this is equivalent to saying that
−−−−→
(Ss, s) =

−−−→
(Tt, t) which

in turn is equivalent to saying that the two sourced flows (Ss, s) and (Tt, t) are
bisimilar.

It is easy to see that a source-pointed flow S is infinite (has an infinite carrier)
if and only if it is (isomorphic to) an infinite word. Now, since one of the aims of
our thesis is to come up with a natural definition of an automaton accepting a
sourced flow, and we already know how to deal with infinite words, we are more
interested in the finite sourced flows. These are the ones in which the successor
function eventually loops. If we go back again to the modal µ-calculus, these
can be seen as the finite models of the logic and are therefore interesting in their
own right.

3.3 Lassos

Definition 3.11. A finite sourced flow S = (Ss, s) (i.e., where the carrier of Ss

is finite) is called a lasso. The least subset of Ss which is closed under successor
is called the loop of S. The set of remaining points is called the spoke of the
lasso.

14

We give a special name to the point of the loop which is closest to the source.

Definition 3.12. Let S be a sourced flow with source s. For each point t of S

we say that d(s) = min{|x| | s
x
։ t } is the distance from the source to t.

Definition 3.13. If S is a lasso with source s, we call the point t of the loop
with the least distance from s the knot point of S.

Figure 6: A lasso showing its parts.

Let S be a lasso with source s and knot point r. Let x be the least string

such that s
x
։ r and let y be the least string such that r

y
։ r. It is easy to see

that
−→
S = xyω and that x and y uniquely determine S up to isomorphism, in

the sense that the lasso (x, y) defined below will be isomorphic to S.

Definition 3.14. Given finite strings x and y, where y is nonempty, we write
(x, y) for the lasso whose carrier is the set {0, 1, . . . , |xy|−1}; where the transition
function σ is defined by

σ(i) =







(x(i), i + 1) if i < |x|,

(y(i), i + 1) if |x| ≤ i < |xy| − 1,

(y(i), |x|) if i = |xy| − 1;

and where the source is 0. For an example, see figure 7.

Figure 7: The lasso (aba, ab).

Figure 8: Two bisimilar but non-isomorphic lassos.

Since the representation (x, y) uniquely determines a lasso and also gives all
the information we need about the spoke and loop part, we will henceforth call
the string x the spoke of (x, y) and similarily the string y its loop . Please note

15

that this is a name conflict, but we will try to be clear so as to not cause any
confusion.

By Corollary 3.9 we know that two lassos (x, y) and (z, w) are bisimilar if and
only if xyω = zwω. However, we could still have x 6= z or w 6= y. For instance,
(ab, ab) is bisimilar to (a, baba) (see Figure 8), but they are not isomorphic.

We will not differentiate between isomorphic structures in this thesis. Hence,
we can safely speak of the set of sourced flows, which we write SFlow . We write
Lasso for the set of all finite sourced flows, i.e., lassos, and Stream for the set of
all infinite sourced flows, i.e., infinite words.

16

4 Automata on flows

We are now ready to define what it means for an automaton to accept an arbi-
trary sourced flow S. There are some requirements that we want this definition
to satisfy. We want it to be conservative with regards to infinite words (seen as
sourced flows) and we want it to be bisimulation invariant , i.e., if S and T are
bisimilar, then an automaton A should accept S if and only if it accepts T. The
second requirement is to guarantee that we keep the equivalence in expressive
power between automata and the modal fixed point logic when expanding from
infinite words to the set of all flows. These two requirements also makes our
definition conform with the general one in [22], although ours is different in that
is does not use games to define acceptance, instead using homomorphisms and
label-preserving maps. There are two primary reasons for this. One is that it
enables us to give a definition of acceptance which for finite sourced flows is
purely finitary, i.e., it does not need infinite objects as witnesses for acceptance.
Secondly, using maps and homomorphisms allow us to see structural similarities
between the automata and the sourced flows it accepts, giving us more control
when pursuing our goal of finding characterization theorems.

4.1 Traces and runs

The idea of our definition is taken from the game theoretic semantics given in
[22] and goes as follows. Take an automaton A and a sourced flow S. We want
to stepwise identify states in S with states of A in a label-preserving way. So,
starting by setting s0 to be the source of S, we pick some element q0 of A. Next,
we have that s0

a0→ s1 for some a0 ∈ Σ, s1 ∈ S. We then pick some element
q1 ∈ A such that q0

a0→ q1. Continuing in this fashion, we obtain a sequence

(s0, q0, a0), (s1, q1, a1), (s2, q2, a2), . . . (3)

such that si
ai→ si+1 and qi

ai→ qi+1 holds for all i ∈ ω. In the game theoretic
perspective, this sequence is often called a play or a match.

Now, if we rewrite the sequence in (3) as

(q0, s0, 0)
a0→ (q1, s1, 1)

a1→ (q2, s2, 2)
a2→ · · ·

we see that this is in fact a sourced flow, which we will designate R. The accute
reader might notice that it is isomorphic to the infinite word a0a1 . . . which is
also the unraveling of the sourced flow S. This, however, is a bit outside the
point (although it will become important later on). The main observation is
that the following two statements hold:

• The function ρ : R → A sending a state (qn, sn, n) to qn is label-preserving

in the sense that if r
a
→ r′ in R, then ρ(r)

a
→ ρ(r′) in A.

• The function h : R → S sending a state (qn, sn, n) to sn is a homomor-
phism.

Hence, this “stepwise” identification of states yielded the following situation.

R
ρ

����
��

��
�

h

��
??

??
??

?

A S

(4)

17

Notice how this diagram is similar, but not identical, to the general coalgebraic
notion of a bisimulation. The difference is that the automaton A is not a sourced
flow and ρ is not a homomorphism (and could not reasonably be required to be
one, since the automaton A has a different coalgebraic signature).

We now use the diagram in (4) to give us our definition of a run, beginning
by giving the function ρ a special name.

Definition 4.1. Let A be an automaton and S be a sourced flow. We say that
a function τ : S → A is an S-labeled trace through A if

s
a
→ s′ =⇒ τ(s)

a
→ τ(s′)

for all s, s′ ∈ S, a ∈ Σ.

Definition 4.2. Let A be an automaton and S a sourced flow. A run of A on
S is a trace ρ : R → A together with a homomorphism h : R → S.

Note that any homomorphism between two sourced flows must be unique if
it exists, since it maps the source of the first to the source of the other, and
successor points to successor points. So, in the definition above, the actual
nature of the homomorphism h does not matter, as long as it exists. Hence, as
a convention, we will instead say “let ρ : R → A be a run of A on S”, implying
that R is a homomorphic preimage of S. Often (but not always), we will make
a typographical distinction and write ρ for traces which are also runs, and τ

otherwise.
To determine whether a run ρ of A on a sourced flow S is accepting or not,

we need to look at the infinite behavior of ρ, when seen as a trace. Recall that
in the case for infinite words, acceptance was determined by looking at the set
of states of the automaton that were was visited infinitely many times during
the run. In our generalized case, this definition won’t do as it stands, but we
can reformulate it in such a way that it applies. Instead of asking “which states
of the automaton gets mapped to infinitely often by ρ”, we ask ourselves “which
states q of the automaton are such that wherever you start in the run, q will
eventually show up”. Formalizing this gives us the following definition.

Definition 4.3. Let τ : S → A be a trace. For each s ∈ S, let Ss be the set of

all points s′ ∈ S such that s
x
։ s′ for some x ∈ Σ∗. The infinite behavior of τ ,

inf(τ), is then defined by

inf(τ) :=
⋂

s∈S

τ [Ss].

The definition of whether a trace is successful (accepting) or not becomes
the same as the one we saw for infinite words in Definition 2.9.

Definition 4.4. A trace τ : S → A is said to be successful if inf(τ) ∈ AccA. It
is called accepting if it is successful and starts in an initial point of A, i.e., if
τ(s0) ∈ IA, where s0 is the source of S.

These definitions “lift” directly to runs by saying that a run ρ : R → A

is successful (accepting) if the trace ρ is successful (accepting). From this we
obtain the following definition of acceptance.

18

Definition 4.5. Let A be an automaton. We say that a sourced flow S is
accepted by a point q in A if there is a successful run ρ of A on S which starts
in q. We write L(q, A) (or simply L(q), if the automaton A is implicit) for the
set of all sourced flows accepted by q.

Similarily, we say that S is accepted by A if there is an accepting run ρ of A

on S. We write L(A) for the set of all sourced flows accepted by A.

For an automaton A with initial states I, we immediately get that

L(A) =
⋃

qI∈I

L(qI).

We now show that the definition yields the results we want, namely being
conservative with regards to the standard definition over the set of infinite words;
being bisimulation invariant; and giving a finitary definition of acceptance for
finite sourced flows.

Proposition 4.6. A automaton A accepts the coalgebraic representation of an
infinite word u (in the sense of Definition 4.5) if and only if it accepts the infinite
word u in the ordinary sense (i.e., in the sense of Definition 2.10).

Proof. The result follows from a simple comparison of the two definitions, to-
gether with the observation that for infinite sourced flows, Definition 4.3 reduces
to the ordinary notion of “infinite behavior”.

Now, in order to prove that the language accepted by an automaton is closed
under bisimilarity, we prove the following statement.

Proposition 4.7. Let ρ : R → A be a run of an automaton A on a sourced flow
S and let f be a homomorphism from some sourced flow T to R. Then τ = ρ◦f

is a also a run of A on S. Moreover, τ is successful (accepting) if and only if ρ

is successful (accepting).

T
τ=ρ◦f

����
��

��
�

h◦f

��
??

??
??

?

f

��

A Rρ
oo

h
// S

Figure 9: Runs are preserved by taking homomorphic preimages.

Proof. Since ρ is a run of A on S, we know that R is a homomorphic preimage
of S, i.e., there is a homomorphism h : R → S. It is easy to check that the
composition of two homomorphisms is still a homomorphism, and hence T is
a homomorphic preimage of S, using the homomorphism h ◦ f . Furthermore,
it is easy to see that τ = ρ ◦ f is a trace, since it is the composition of two
label-preserving functions.

We now show that τ and ρ have the same infinite behavior, which shows
that τ is successful if and only if ρ is. Using the notation of Definition 4.3,
we first observe that f [Tt] = Rf(t) for every t ∈ T. This is because f is a

19

homomorphism and hence must map successor points to successor points. Our
second observation is that f must be surjective. This again follows from the
fact that it maps successors to successors, but now combined with the fact that
it also is required to map the source of T to the source of S. But then we must
have

inf(τ) =
⋂

t∈T

τ [Tt]

=
⋂

t∈T

(ρ ◦ f)[Tt]

=
⋂

t∈T

ρ[f [Tt]]

=
⋂

t∈T

ρ[Rf(t)]

=
⋂

r∈R

ρ[Rr]

= inf(ρ).

Now, since the success of a run is determined in terms of its infinite behavior
this means that τ is successful if and only if ρ is. To realize that τ is accepting
if and only if ρ is, it is enough to observe that if t0 and r0 are the sources of
T and R, respectively, then τ(t0) = ρ(f(t0)) = ρ(r0). This is because f is a
homomorphism, and therefore, by definition, must map the source of T to the
source of R.

Corollary 4.8. Let A be an automaton and S a sourced flow. Then the fol-
lowing are equivalent:

(a) S is accepted by A.

(b)
−→
S is accepted by A

(c) There is an
−→
S -labeled accepting trace through A.

Proof. (a) ⇒ (c). Assume that A accepts S. Then there is some run ρ : R → A

of A on S. But then, according to Proposition 4.7, the function −→ρ :
−→
R → A

defined by −→ρ := ρ ◦ UR is an accepting run of A on S. We then have that
−→
R

and S are bisimilar, since
−→
R is a homomorphic preimage of S. This means that

−→
R =

−→
S , which means that −→ρ is an

−→
S -labeled accepting trace.

−→
R =

−→
S

−→ρ =ρ◦UR

{{xx
xx

xx
xx

x

UR

��

h◦UR=US

""FF
FF

FF
FF

F

A R
ρ

oo h // S

(c) ⇒ (b). Immediate.

(b) ⇒ (a). Assume that there is an accepting run ρ : R → A of A on
−→
S .

Then R is a homomorphic preimage of
−→
S which means that R =

−→
S (or rather, R

and
−→
S are isomorphic, but we do not differentiate between isomorphic copies).

But then ρ : R → A is also an accepting run of A on S, since R =
−→
S is a

homomorphic preimage of S.

20

Proposition 4.9. If S and T are two bisimilar sourced flows and A is an au-
tomaton, then A accepts S if and only if A accepts T.

Proof. We know that S and T are bisimilar if and only if
−→
S =

−→
T . The result

then follows from Corollary 4.8.

Having shown that our definition behaves nicely with respect to infinite
words and bisimulation, we are now ready to show our last claim, namely that
for lassos, the definition can be made purely finitary. We will do this by defining
the finitary fragment of a regular language of sourced flows, and looking at its
properties. First, we introduce a special subset of the language accepted by an
automaton, namely those sourced flows which are the domain of an accepting
trace, as they will play an important part in the rest of the thesis.

4.2 Labels

In Proposition 4.8, we saw that an automaton A accepts a sourced flow S if

and only if there is an accepting trace ρ :
−→
S → A. Hence, if S is infinite, i.e.,

if S =
−→
S , then there is an accepting trace ρ whose label is S. The reason why

these are to become important is that the trace ρ will enable us to reason about
similarities in structure between A and S.

Definition 4.10. Let A be an automaton and q a state in A. If S is the label of
a successful trace through A which starts in q, i.e., if there is a successful trace
ρ : S → A, we say that S is a successful label of q. The set of successful labels of
q is denoted Label(q, A), or simply Label(q) if the automaton A is implicit.

Similarily, we call S an accepting label of A if it is a successful label of an
initial point of A, i.e., if there exists an accepting trace ρ : S → A. We write
Label(A) for the set of accepting labels of A.

Using this definition, we obtain the following proposition which is just a
reformulation of Definition 4.5.

Proposition 4.11. The language L(A) accepted by an automaton A is the
closure of the set Label(A) under homomorphic images.

Since Label(A) is closed under homomorphic preimages, it is not difficult to
see that this is equivalent to saying that L(A) is the closure of Label(A) under
bisimilarity.

If we let A be the automaton displayed in Figure 10, we get an example of
when the two languages L(A) and Label(A) don’t coincide. To see why, consider
the lasso (a, b). Certainly the infinite word abω is accepted by A, so the lasso
(a, b) is as well. However, there are no (a, b)-labeled traces through A as can be
realized by asking which state of A the single point in the loop of (a, b) would
be mapped to. In a sense, the righthand “loop” in A is too big. In Section 4.4 of
this chapter, we will see that for prophetic automata, the two languages always
coincide.

4.3 Regular lasso languages

We are very interested in the set of lassos accepted by an automaton A, since,
as we have mentioned, lassos can be seen as the finite models of the modal

21

Figure 10: An example of when Label(A) 6= L(A)

µ-calculus of one modal operator. Hence, by studying these in particular, we
are doing finite model theory for this logic.

Recalling how we defined Lasso to be the set of finite sourced flows, and
Stream as the set of infinite ones, we define the finitary and infinitary fragments
of a language of sourced flows in the following way.

Definition 4.12. If L is a language of sourced flows, we define

Lfin := L ∩ Lasso

Lω := L ∩ Stream.

These are respectively called the finitary and infinitary fragments of the lan-
guage L.

Proposition 4.13. The class of regular languages of sourced flows is closed
under intersection, union and complementation.

Proof. This follows from the fact that the statement holds for the infinitary
fragments. As an example we show closure under intersection.

Let L and L′ be two regular languages of sourced flows. Consider the sets
Lω and L′

ω of infinite sourced flows, seen as sets of infinite words. Then both
Lω and L′

ω are ω-regular languages, and since ω-regular languages are closed
under intersection, we have that Lω ∩L′

ω is ω-regular. But then the automaton
which accepts Lω ∩L′

ω also accepts L∩L′, since L∩L′ is the closure of Lω ∩L′
ω

under homomorphic images.

From this we obtain the well-known result (although rephrased in our ter-
minology) that regular languages are determined by their finitary fragment.

Theorem 4.14. Let L,L′ be regular languages of sourced flows. Then the
following are equivalent:

(a) L = L′

(b) Lω = L′
ω

(c) Lfin = L′
fin

Proof. That (a) ⇒ (b) is clear. For the case of (b) ⇒ (c), if L′
fin 6= L′

fin, we can,
without loss of generality, assume that there is some lasso S ∈ L \ L′. But then
−→
S ∈ L\L′, since both L and L′ are closed under bisimilarity. Hence, Lω 6= L′

ω.
To prove that (c) ⇒ (a), assume that L 6= L′. Without loss of generality, we

can assume that L \L′ is non-empty, and we want to show that L \L′ contains
some lasso, from which the result follows.

Since the class of regular languages is closed under complementation and
intersection, L \ L′ is regular, and hence there is some Büchi automaton A

22

which accepts it. Now, since A is finite and accepts some sourced flow S (since
we assumed that L\L′ was non-empty), it is not difficult to see that there must
be some finite path from an initial point qI to some accepting point qF (say
with label x), and a non-empty finite path from qF back to itself (say with label
y). But then the lasso (x, y) is an element of L \ L′.

We define the following shorthands for the finitary fragments of the languages
defined by an automaton A.

Definition 4.15. Let A be an automaton. We define

Labelfin(q, A) := Label(q, A) ∩ Lasso

Labelfin(A) := Label(A) ∩ Lasso

Lfin(q, A) := L(q, A) ∩ Lasso

Lfin(A) := L(A) ∩ Lasso

The language LA is called the finitary language, or lasso language, accepted
by A. We say that a language L of lassos is a regular lasso language if there is
an automaton A such that L is the lasso language accepted by A.

What we want is a purely finitary definition of a regular lasso-language,
since these correspond to the definable classes of finitary models in the modal
µ-calculus. As we saw in Proposition 4.11, the language accepted by A is the
closure of Label(A) under homomorphic images. For a finitary version of this,
we would like the lasso-language Lfin(A) accepted by an automaton A to be the
closure of Labelfin(A) under homomorphic images. Calling a run ρ : R → A on a
sourced flow S finite if R is finite, this is equivalent to requiring that whenever
there exists an infinite accepting run ρ of an automaton A on a finite sourced
flow S, then there also exists a finite run ρ′ of A on S.

In fact, we can do even better, as we can give a bound on how “big” the run
has to be, in terms of the size of the automaton.

Theorem 4.16. Let A be an automaton with k states and let (x, y) be a lasso
in L(A). Then there are n < k + k3 and m < k3, dependent on (x, y), such that
(xyn, ym) ∈ Labelfin(A).

These upper bounds are probably not optimal, since there is much room for
“tweaking” the proof in order to obtain better results.

Proof. Assume that A has k states and that (x, y) ∈ L(A). Then there must be
an accepting trace τ through A whose label is the infinite word xyω. We show
that we can assume that τ is of a certain form, which will enable us to create a
finite accepting trace with the required properties.

Our infinite trace τ consists of a label preserving function from the flow
representation of the infinite word xyω. Writing x(i) for the i:th symbol of x

(indexing from zero), and similarily for y, we have a sequence of states q0, q1, . . .

of the automaton such that

q0
x(0)
→ q1

x(1)
→ . . .

x(|x|−1)
→ q|x|

y(0)
→ q|x|+1

y(1)
→ . . .

y(|y|−1)
→ q|x|+|y|

y(0)
→ . . .

23

We are especially interested in the states q|x|+|y|·i for different values of i ∈ ω,
so we write qi := q|x|+|y|·i and can then write the trace above as

q0
x
։ q0

y
։ q1

y
։ . . .

Since τ is accepting, there is a set F ∈ AccA such that inf(τ) = F . This means
that after some point in the sequence q0, q1, . . . , only elements of F occurs. So
we can let m0 be the least natural number such that

{ τ(i) | i ≥ |x| + |y| · m0 } = F.

Now, if we start at some point qi where i is greater than |x| + |y| · m0, then
there must be some j ≥ i such that { qi, qi+1, . . . , qj} = F . Moreover, for every
j′ greater than j, {qi, qi+1, . . . , qj′} is equal to F as well. Writing [qi, qj] for the
inclusive interval between the points qi and qj , i.e.,

[qi, qj] := { qn | |x| + |y| · i ≤ n ≤ |x| + |y| · j }

we can therefore inductively define mi+1 to be the least such that [qmi , qmi+1] =
F . Then, if we consider the trace τ up to qmk ,

q0

xym
0

։ qm0
ym1−m0

։ qm1
ym2−m1

։ qm1
ym3−m2

։ · · ·
y

mk−mk−1

։ qmk ,

at least two of the points in the set {qm0 , qm1 , . . . , qmk} must be identical, i.e.,
there are a < b ≤ k such that qma = qmb . But this means that we have found
a “loop” in the automaton, by which we mean that the string ymb−ma is the
label of a finite path from qma back to itself. Now, by construction, this finite
path passes through every element of F . So, moving first by from q0 to qma by
means of the finite xyma-labeled path q0, q1, . . . , q

ma and then back from qma to
itself by means of the ymb−ma-labeled path we just found, gives us an accepting
trace whose label is (xyma , ymb−ma).

Finally, we show that we can assume that m0 < k and mk − m0 < k3,
concluding our proof. For the first statement, observe the trace up to qm0 :

q0
x
։ q0

y
։ q1

y
։ q2

y
։ · · ·

y
։ qm0

If m0 ≥ k, then two of the states in the set {q0, q1, . . . , qm0} must be equal, and
hence we can remove the segment between these two points without changing
the label or the acceptance of the trace. Hence, it is safe to assume that m0 < k.

For the second statement, we prove that for every i < k, mi+1 − mi can be
assumed to be less than k2. This suffices because then mk −m0 = (m1 −m0)+
(m2 − m1) + . . . + (mk − mk−1) < k3.

Consider the trace between qmi and qmi+1 for some choice of i:

qmi
y
։ qmi+1

y
։ · · ·

y
։ qmi+1−1

y
։ qmi+1

The idea is that this path must “accumulate” states from F one by one, allowing
us to split it into subpaths which we then show can be assumed to be bounded
in length. We start by letting l0 = mi and inductively setting lj+1 to be the
least natural number ≥ lj such that

[ql0 , qlj] ([ql0 , qlj+1].

24

In other words, we start at ql0 , move stepwise through the trace, and increase
the “counter” variable j each time we are at a point qn (for some n), having
encountered an element of F which we haven’t seen before. Now, since we start
by having “seen” ql0 , the counter variable j can only increase to some number
h < k. In other words, we know that the sizes of the sets

[ql0 , ql0] ([ql0 , ql1] (· · · ([ql0 , qlh]

are strictly increasing, but are bounded by |F | ≤ k. By our choice of mi+1 we
must have a situation which looks like this:

qmi = ql0
yl1−l0

։ ql1
yl2−l1

։ ql2
yl3−l2

։ · · ·
y

lh−lh−1

։ qlh

︸ ︷︷ ︸

≤k intervals

= qmi+1

The final step is now to give a bound for lj+1 − lj . Consider the segment of the
trace between the points qlj and qlj+1 :

qlj
y
։ qlj+1

y
։ · · ·

y
։ qlj+1−1

︸ ︷︷ ︸

no new points of F here

y
։ qlj+1

Certainly, if lj+1−lj ≥ k, then the set {qlj , qlj+1, . . . , qlj+1} would have more
than k elements. Therefore we should be able to reason as in the case of m0, and
remove the segment of the trace between these two points. However, in doing so
we might accidentally remove a point such that the interval [qmi , qmi+1] no longer
contains every element of F . Luckily, the minimality of lj+1 guarantees that
[qmi , qlj] = [qmi , qmj+1−1], so removing segments in the interval [qlj , qlj+1−1] is
safe. So, we can argue as follows: if lj+1 − lj is strictly greater than k, then
the set {qlj , qlj+1, . . . , qlj+1−1} has cardinality greater than k and hence there
are two points which are equal. By the above discussion, removing the segment
between these two points does not alter the label of the trace, nor the fact that
[qmi , qmi+1] = F . Hence, we may safely assume that lj+1 − lj ≤ k. But then

mi+1 − mi =

j=h−1
∑

j=0

(lj+1 − lj)

≤

j=h−1
∑

j=0

k

< k2,

as required.

Having these upper bounds enables us to give a uniform size for the wit-
nessing lasso in Label(A).

Corollary 4.17. Let A be an automaton with k states. Then

(x, y) ∈ L(A) ⇐⇒ (xyk+k3

, yk3!) ∈ Label(A).

Proof. The main observation to make here is that if we take x ∈ Σ∗, y ∈ Σ+,
n ≥ 0,m ≥ 1, and consider the lasso (xyn, ym), then for any n′ ≥ n and any
multiple m′ of m, (xyn, ym) is a homomorphic image of (xyn′

, ym′

).

25

Hence, the direction from right to left is immediate, since (x, y) is a homo-

morphic image of (xyk+k3

, yk3!). For the other direction, assume that (x, y) is ac-
cepted by A. Then there are n < k+k3,m < k3 such that (xyn, ym) ∈ Label(A).
By choosing n′ = k + k3 and m′ = k3!, we get n′ > n and that m′ is a multiple
of m; hence we obtain the wanted result.

We also get the result we want, namely that a finite sourced flow S is accepted
by an automaton A if and only if there is a finite run ρ : R → A of A on S.

Corollary 4.18. If A is an automaton, then Lfin(A) is the closure of Labelfin(A)
under homomorphic images.

Since Labelfin(A) is closed under homomorphic preimages, restricted to the
set of lassos, it is not difficult to check that Lfin(A) is also the closure of
Labelfin(A) under bisimilarity, restricted to the set of lassos. This can also
be realized by noting that Lfin(A) must be closed under bisimilarity restricted
to the set of lassos, since L(A) is closed under bisimilarity over the entire class
of sourced flows.

4.4 Prophetic automata and labels

As we have seen, it is not in general the case that the set Label(A) of accepting
labels of an automaton A coincides with the set of accepted sourced flows. It
turns out that the set Label(A) is easier to investigate than L(A), because of
the similarities in structure between the lassos in Label(A) and the automaton
A itself.

Here we show that for a prophetic Büchi automaton A, as defined in section
2.3, the two sets L(A) and Label(A) are equal. In fact, we get a stronger
property, namely that the sets Label(q) for each q ∈ A, constitutes a partition
of the class of all pointed flows, where each class is closed under bisimulation.

Theorem 4.19. Let A be a Büchi automaton. Then A is prophetic if and only
if for every sourced flow S, there is a unique successful trace τ : S → A.

Proof. Note that an automaton is prophetic if and only if this theorem holds
when restricted to the class of infinite words, i.e., the infinite sourced flows.
Hence, the direction from right to left is immediate.

For the direction from left to right, assume that A is prophetic. Then, for
every infinite word u there is a unique successful trace τu : u → A (remember
that we identify infinite words with their sourced flow representation).

Now, take an arbitrary sourced flow S and let u =
−→
S be its unraveling. We

know that there is a unique homomorphism US : u → S, and by proposition 4.7,
we know that if there is a successful trace

τ : S → A,

then
τ ◦ US : u → A

is a successful trace as well. By the uniqueness of τu, this would imply that
τu = τ ◦US, and hence there is really just one choice for τ , namely the function
which maps a state s ∈ S to the unique state q ∈ A such that if US(i) = s for

any i ∈
−→
S , then τ(i) = q (provided that such a state q exists).

26

So, it suffices to show that if i, j ∈
−→
S are such that US(i) = US(j), then

τ(i) = τ(j). However, if US(i) = US(j), then the points i and j are behaviorally
equivalent, and hence the suffixes of u generated by i and j, respectively, are
identical.

0
a0→ 1

a1→ . . .
ai−1

→ i
ai→ i + 1

ai+1

→ . . .
aj−1

→ j
aj

→ j + 1
aj+1

→ . . .

Because of the uniqueness of the successful traces, if v ∈ Σω is a suffix of u,
then τv must conform with τu, i.e., τv = τu ↾ v. Hence, τ(i) = τ(j).

From this we obtain a corollary which is analoguous to Proposition 2.20.

Corollary 4.20. An automaton A is prophetic if and only if {Label(q) | q ∈ A }
partitions SFlow.

We also obtain the result which was mentioned in the beginning of this
subsection, namely that for prophetic automata A, Label(A) is closed under
bisimilarity. This is implied by the following corollary.

Corollary 4.21. If A is prophetic, then Label(q) is closed under bisimilarity
for every q ∈ A.

Proof. Take a prophetic automaton A and consider two bisimilar sourced flows
S and T. There are unique q, q′ ∈ A such that S ∈ Label(q) and T ∈ Label(q′).

Then
−→
S ∈ Label(q) and

−→
T ∈ Label(q′). Because S and T are bisimilar, we have

−→
S =

−→
T and hence we must have q = q′.

Prophetic automata can be characterized in yet another way, showing a
connection to the final flow (the final object in the category of flows). The
result will not be used in the rest of the thesis, but is mentioned here anyway
since we think it is an interesting result on its own. Let A be an automaton
and S be a (non-pointed) flow. We temporarily call a function τ : S → A a
successful trace if, for every s ∈ S, τ restricted to the sourced flow (Ss, s) is a
successful trace in the ordinary sense.

Theorem 4.22. An automaton A is prophetic if and only if there is surjective
successful trace τ : Σω → A which is unique with respect to being successful.

Proof. The unique successful trace is the one mapping an infinite word u to
the unique point q such that u ∈ L(q). We omit the details since they are
straightforward and reminiscient of the proof of Theorem 4.19.

27

5 Characterizating regular lasso languages

Recall from Definition 4.15 that a set L ⊆ Lasso is called a regular lasso language
if it is the lasso fragment of a regular language of pointed flows, i.e., if there is
an automaton A such that L = Lfin(A).

Our aim in this section is to look for interesting properties shared by these
regular lasso languages, ultimately seeking out those properties which are equiv-
alent to regularity.

We will often define sets of lassos by specifying their sets of spokes and loops.
For this reason, we introduce the following conveniant shorthand.

Definition 5.1. Let X,Y ⊆ Σ∗ be sets of finite strings, where ǫ 6∈ Y . We let

Lassos(X,Y) := { (x, y) | x ∈ X, y ∈ Y },

saying that Lassos(X,Y) is the set (or language) of lassos generated by X and
Y .

5.1 Characterization using finitary regular languages

Our first characterization theorem is an analogue of Theorem 2.18 of the pre-
liminaries in which ω-regular languages were defined in terms of finitary regular
languages. To establish a similar result for regular languages of lassos, we first
prove an analogue of Proposition 2.14. For this, let A be a Büchi automaton,
(x, y) be a lasso, and consider a (x, y)-labeled trace τ through A. Such a trace
is accepting if and only if

• the initial state of (x, y) to some initial state qI of A,

• the knot point of (x, y) to some state q of A,

• some point of the loop of (x, y) to some accepting state qF .

In other words, (x, y) ∈ Labelfin(A) if and only if

qI

x
։ q

y1

։ qF

y2

։ q

for some qI ∈ IA, q ∈ QA, qF ∈ FA, and y1, y2 ∈ Σ∗ such that y1y2 = y.
Reformulated, we have the following.

Proposition 5.2. Let A be a Büchi automaton. Then

Labelfin(A) =
⋃

qI∈IA

⋃

q∈A

⋃

qF ∈FA

Lassos ([qI ։ q], ([q ։ qF] ◦ [qF ։ q]) \ {ǫ})

As a reminder, Theorem 2.18 states that a language L ⊆ Σω is ω-regular if
and only if

L =
⋃

i<n

Xi ◦ Y ω
i

for some finite set of regular languages {X0, Y0, . . . ,Xn−1, Yn−1}. We will prove
something similar, but the result will be a bit more complicated. This is in
part due to the fact that X ◦ Y ω = X ◦ Y ∗ ◦ Y ω, and so, very losely speaking,

28

the separation of the “loop-part” Y and the “spoke-part” X isn’t as clear cut.
What we get instead is the following.

Theorem 5.3. A bisimulation closed set of lassos L is regular if and only if

L =
⋃

i<n

Lassos(XiY
∗
i , Y +

i)

for some finite set {X0, Y0,X1, Y1, . . . ,Xn−1, Yn−1} of regular languages (over
Σ∗) such that Yi does not contain the empty string, ǫ, for any i < n.

The proof from right to left will use the following lemma.

Lemma 5.4. For every pair (X,Y) of regular languages X,Y ⊆ Σ∗ such
that ǫ 6∈ Y , there is an automaton A such that Lfin(A) is the closure of
Lassos(XY ∗, Y +) under bisimilarity, restricted to the set of lassos.

This in turn will be proven using two well-known results about regular lan-
guages over Σ∗. The same sort of construction can for instance be found in the
proof of Theorem 5.4 in [15], page 28. They are proved here for the sake of
completeness.

The first of the lemmas gives us an automaton of a special shape for the
“spoke”-part of our lasso language.

Definition 5.5. We call a state q in an automaton A a sink if there are no
outgoing transitions from q, i.e., q

a
→ q′ does not hold for any a ∈ Σ, q′ ∈ A.

Lemma 5.6. For every regular language X ⊆ Σ∗, there is an automaton As

which accepts X, such that As has a single accepting state qF which is a sink.

Proof. Since X is a regular language, there is some automaton

A = (QA,∆A, IA, FA)

which accepts X. We construct our automaton

As = (QAs
,∆As

, IAs
, FAs

)

by adding a new point r to A, setting it as the single accepting point and adding
transitions to it from states which used to see an accepting point. More formally,
we let

QAs
= QA ⊎ {r}

IAs
=

{

IA if IA ∩ FA = ∅, i.e., ǫ 6∈ L(A)

IA ∪ {r} otherwise.

FAs
= {r}

and define the transition function by setting

q
a
→ q′ in As ⇐⇒

{

q
a
→ q′ in A, or

q′ = r and ∃qF ∈ FA s.t. q
a
→ qF in A

Now, it is clear that by construction, A accepts the empty word if and only
if As accepts it. For the case of a non-empty word x we have that, for an

arbitrary q ∈ QA, q
x
։ qF for some qF ∈ FA if and only if q

x
։ r in As. Hence,

L(A) = L(As) as required.

29

The second lemma gives us an automaton for the “loop”-part.

Lemma 5.7. If Y ⊆ Σ∗ is a regular language such that Y = Y ∗, then there is
an automaton Al which accepts Y such that Al has a single initial and accepting
state which coincide, i.e., IAl

= FAl
= {qF } for some qF ∈ Al.

Proof. The proof is similar to the previous one. We take an existing automaton
A with initial states IA and accepting states FA, add a new point r which will
be the new single initial and accepting state. Again, we add transitions to r

from those states of A which see an accepting point, but we also add transitions
from r to those states of A which are seen by an initial point. Formally, we let
Al be an automaton defined by

QAl
= QA ⊎ {r}

IAl
= {r}

FAl
= {r}

and we define the transition function by letting

q
a
→ q′ in Al ⇐⇒







q
a
→ q′ in A, or

q′ = r and ∃qF ∈ FA s.t. q
a
→ qF in A, or

q = r and ∃qI ∈ IA s.t. qI
a
→ q′ in A, or

q = q′ = r and ∃qI ∈ IA, qF ∈ FA s.t. qI
a
→ qF in A.

It is easy to see that L(A) ⊆ L(Al), since any accepting path

q0
a0→ q1

a1→ . . .
an−2

→ qn−1
an−1

→ qn

in A yields an accepting path

r
a0→ q1

a1→ . . .
an−2

→ qn−1
an−1

→ r

in Al. For the other direction, note that for every path in Al which is of the
form

r
a0→ q1

a1→ . . .
an−2

→ qn−1
an−1

→ r (5)

where all of the states q1, . . . , qn−1 are also in A (i.e., are distinct from r), there
are qI ∈ IA and qF ∈ FA such that

qI
a0→ q1

a1→ . . .
an−2

→ qn−1
an−1

→ qF

is a path in A. Given the requirement that L(A) = Y = Y ∗, the result now
follows from the observation that any accepting path through Al must either be
the empty path or be a concatenation of paths of the form in (5).

Proof of Lemma 5.4. Let X,Y ⊆ Σ∗ be regular languages where ǫ 6∈ Y and let
L be the closure of Lassos(XY ∗, Y +) under bisimilarity, restricted to the set of
lassos. Our aim is to build an automaton A such that Lfin(A) = L.

According to Lemma 5.6 there is an automaton As accepting X with a single
accepting state qF which is a sink. Similarily, Lemma 5.7 provides us with an
automaton As with a single initial and accepting state q′F . We now combine
these two automata by first letting As and Al have disjoint states except that

30

we let qF = q′F , thereby identifying the accepting state of As with the initial
and accepting state of Al. Next, we let A be the automaton defined by

QA = QAs
∪ QAl

∆A = ∆As
∪ ∆Al

IA = IAs

FA = {qF }.

We now show that L = Lfin(A) by showing that

(a) Lassos(XY ∗, Y +) ⊆ Labelfin(A); and

(b) for every lasso in Labelfin(A) there is a bisimilar one in Lassos(XY ∗, Y +).

This suffices, since then the bisimulation closure of Lassos(XY ∗, Y +) is equal
to the bisimulation closure of Labelfin(A) (restricted to the set of lassos). But
the former is precisely L and the latter is precisely Lfin(A).

(a) Consider a lasso (xy, y′) ∈ Lassos(XY ∗, Y +) such that x ∈ X, y ∈ Y ∗

and y′ ∈ Y +. By the construction of our automaton A, x is the label of a
finite path from an initial state qI to qF , y is the label of a finite path from
qF to qF and y′ is the label of a non-empty finite path from qF to qF . Hence

qI

xy
։ qF

y′

։ qF . But this means that (xy, y′) is the label of an accepting trace
through A, i.e., (xy, y′) ∈ Labelfin(A).

(b) Let (w, z) be a lasso in Labelfin(A). Our aim is to construct a bisimilar
lasso (xy, y′) such that x ∈ X, y ∈ Y ∗ and y′ ∈ Y +.

Figure 11: Deconstructing a lasso (w, z) ∈ Labelfin(A)

Keeping Figure 11 in mind, we argue as follows. Since (w, z) is the label of
an accepting path through A, we have that w is the label of a finite path from
some initial state qI to some state q and z is the label of a non-empty finite
path from q back to itself which passes through the accepting state qF . In other
words, there must be y1, y2 ∈ Σ∗ such that z = y1y2 and

qI

w
։ q

y1

։ qF

y2

։ q.

Our first observation is that all the states in the finite path

q
y1

։ qF

y2

։ q

31

must be in the “loop-part” of the automaton A, i.e., they must be elements
in QAl

. This is because there are no outgoing transitions from qF “back” into
QAs

\ {qF }. In particular, q is in the loop-part, and therefore, the finite path

qI

w
։ q must pass through the accepting state qF , which means that there are

x, y0 ∈ Σ∗ such that x ∈ X and w = xy0. Note that y0 can be the empty string

if q = qF and the entire path qI

w
։ q is in the “spoke-part” of the automaton

(i.e., in QAs
).

If we let y = y0y1 and y′ = y1y2, we therefore have that (w, z) = (xy0, y1y2)
is bisimilar to (xy0y1, y2y1) = (xy, y′). What remains is to show that y ∈ Y ∗

and y′ ∈ Y +. However, since z = y1y2 is the loop of the lasso (z, w), it cannot
be the empty string which means that y′ = y2y1 is not the empty string either.
Therefore, it suffices to show that both y and y′ are in Y ∗. But this is follows
from the fact that

y, y′ ∈ [qF ։ qF]A = [qF ։ qF]Al
= Y ∗.

Proof of Theorem 5.3. ⇒) Assume that L is a regular language of lassos, and
let A be a prophetic Büchi automaton accepting L. Combining Corollary 4.21,
which states that the set Label(A) is closed under bisimilarity, with Propositon
5.2, we get that

Lfin(A) = Labelfin(A) =
⋃

qI∈IA

q∈QA

qF ∈FA

Lassos ([qI ։ q], ([q ։ qF] ◦ [qF ։ q]) \ {ǫ}) .

Fixing a triplet (qI , q, qF) ∈ IA × QA × FA we let

X := [qI ։ q]

Y := ([q ։ qF] ◦ [qF ։ q]) \ {ǫ}.

Then X and Y are both regular languages and Y does not contain the empty
string. Furthermore, it is not difficult to see that Y = Y + since the concate-
nation of two paths from q to q which passes through qF must itself be a path
from q to q which passes through qF . Similarily, we have X = X ◦ Y ∗, since
the concatenation of a path qI ։ q with a path q ։ qF ։ q is a path from qI

to q. Therefore, Lassos(X,Y) = Lassos(XY ∗, Y +) and the result follows from
the simple observation that there are only finitely many triplets (qI , q, qF) in
IA × QA × FA.

⇐) Assume that L is a lasso language which is closed under bisimilar-
ity (restricted to the set of lassos), and that there are regular languages
{X0, Y0,X1, Y1, . . . ,Xn−1, Yn−1}, where ǫ 6∈ Yi for any i < n, such that

L =
⋃

i<n

Lassos(XiY
∗
i , Y +

i).

Our aim is to construct an automaton A such that Lfin(A) = L. We will do
this by taking the disjoint union of automata obtained by applying Lemma 5.4.
Formally, if A and B are two Büchi automata, then C = A ⊎ B is defined by
letting QC = QA ⊎ QB,∆C = ∆A ⊎ ∆B, IC = IA ⊎ IB, and FC = FA ⊎ FB.

32

Now, according to Lemma 5.4, for each pair Xi, Yi, there is an automaton
Ai which accepts the bisimilarity closure of Lassos(XiY

∗
i , Y +). So, we let A =

⊎

i<n Ai and proceed to show that this automaton will do.
For this, take a lasso S ∈ Lfin(A). By definition there is an i < n such that

S ∈ Lfin(Ai). But then S is bisimilar to some T ∈ Lassos(XiY
∗
i , Y +

i). Since
L =

⋃

i<n Lassos(XiY
∗
i , Y +

i), T ∈ L; and since L is closed under bisimilarity,
S ∈ L.

For the other direction, assume that S ∈ L =
⋃

i<n Lassos(XiY
∗
i , Y +

i). Then

there is some i < n such that S ∈ Lassos(XiY
∗
i , Y +

i). But then S ∈ Lfin(Ai),
and therefore S ∈ Lfin(A).

Notice how the proof above made use of the fact that prophetic Büchi au-
tomata have the property that the set of accepting labels is equal to the set
of accepted sourced flows. In the next characterization theorem, we will be
working with deterministic parity automata, for which we have no result which
equates the set of accepting labels with the set of accepted sourced flows. What
we instead obtain is a result characterizing regular lasso languages in terms of
the k-blockpumping property.

5.2 Characterization using the k-blockremoval property

Definition 5.8. Let L be a lasso language. For an arbitrary x ∈ Σ∗, we let

Loopx(L) := { y | (x, y) ∈ L}.

We say that L has the relativized loop concatenation property (RLCP), if for
every x ∈ Σ∗, Loopx(L) = Loopx(L)+.

As an example, if X and Y are any sets of finite strings, where Y doesn’t
contain the empty string, then Lassos(X,Y +) has the loop concatenation prop-
erty. To see why, pick an arbitrary x ∈ Σ∗ and let (x, y) and (x, y′) be two
lassos in Lassos(X,Y +). Then x ∈ X and y, y′ ∈ Y +. Since Y + is closed under
concatenation, we have yy′ ∈ Y + as well, and so (x, yy′) ∈ Y +.

Note, however that we do not in general have that regular lasso languages
have the RLCP. As a simple example let

L := {(ǫ, a), (ǫ, aa), (ǫ, aaa), . . . } ∪ {(ǫ, b), (ǫ, bb), (ǫ, bbb), . . . }.

Then L is a regular lasso language, but Loopǫ(L) is not closed under concate-
nation.

Definition 5.9. If x, y ∈ Σ∗ are such that Loopx(L) = Loopy(L), then we call
x and y loop equivalent. This is clearly an equivalence relation and we write [x]
for the equivalence class to which x belongs, i.e., the set of all y such that x and
y are loop equivalent (relative to L, of course).

Definition 5.10. We say that a language L of lassos has the loop unwinding
property (LUP), if

y ∈ Loopx(L) =⇒ [x] = [xy],

for all x, y ∈ Σ∗.

33

Having the LUP is a quite strong property and can be seen as a sort of “right
congruence” property of the equivalence classes [x]. It is therefore perhaps not
so surprising that it is linked to determinism, as we shall see in the proof of
Theorem 5.11 below.

Theorem 5.11. A lasso language L is regular if and only if there is some k ∈ ω

and some language of lassos L′ such that

(a) L is the bisimulation closure of L′,

(b) L′ has the RLCP

(c) L′ has the LUP

(d) for all x ∈ Σ∗, both Loopx(L′) and [x] have the k-blockremoval property.

Proof. ⇒). Let L be a regular lasso language and let A be a deterministic parity
automaton with parity map p : QA → ω such that Lfin(A) = L. We will make
heavy use of the fact that A is deterministic, amongst others in the following
sense: For x ∈ Σ∗, we inductively define the state qx inductively by letting qǫ be
the initial state of A, and in the induction step letting qxa be the unique state
such that qx

a
→ qxa.

We will now show that L′ = Labelfin(A) has the required properties. Recall
that Labelfin(A) are the set of lassos (x, y) such that there exists an accepting
trace τ : (x, y) → A. For parity automata, this means that

qI

x
։ q

y
։ q,

and that in the (unique) finite path q
y
։ q, the highest parity encountered is

even.
Our first observation is that for any x ∈ Σ∗, the sets [x] and Loopx(L′) are

uniquely determined by the state qx. More precisely, if x and y are finite strings
such that qx = qy, then it is not difficult to see that Loopx(L′) = Loopy(L′),
which also means that [x] = [y].

(a) We know that L = Lfin(A) is the bisimulation closure of L′ = Labelfin(A).

(b) Take an arbitrary x ∈ Σ∗ and consider two lassos (x, y) and (x, y′) in
Labelfin(A). By the definition of Labelfin(A), we have that

qI

x
։ qx

y
։ qx and qI

x
։ qx

y′

։ qx.

Moreover, the (unique) paths qx

y
։ qx and qx

y′

։ qx are both such that the
highest parity encountered on the path is even. But then concatenating these
two paths yields a path from qx back to itself which has the property that the
highest parity encountered is even. Hence (x, yy′) ∈ Labelfin(A), which shows
that L′ = Labelfin(A) has the RLCP.

(c) Let x, y ∈ Σ∗ be such that y ∈ Loopx(L′). This means that there is a
unique y-labeled finite path from qx back to itself. But then qx = qxy and so
[x] = [xy].

34

(d) Now, our task is to find a k ∈ ω which works for every x ∈ Σ∗, in the sense
that for each x ∈ Σ∗, both Loopx(L′) and [x] has the k-blockremoval property.
We do this by proving that

(i) There are only finitely many different sets Loopx(L′) and [x], i.e., both
{Loopx(L′) | x ∈ Σ∗ } and { [x] | x ∈ Σ∗ } are finite;

(ii) for each x ∈ Σ∗, there is a k ∈ ω such that Loopx(L′) has the k-
blockremoval property; and

(iii) for each x ∈ Σ∗, there is a k ∈ ω such that [x] has the k-blockremoval
property.

This suffices because then we can take k to be the maximum of those found in
(ii) and (iii). Furthermore, by Theorem 2.2, in order to show (ii) and (iii), it is
sufficient to prove that both Loopx(L′) and [x] are regular languages, for each
choice of x ∈ Σ∗.

(i) As mentioned, the sets Loopx(A) are determined by the states qx. Since
there are only finitely many states in A, this implies that {Loopx(A) | x ∈ Σ∗ } is
finite. This, in turn, implies that the set { [x] | x ∈ Σ∗ } is finite as well, since two
strings x and x′ belong to the same equivalence class iff Loopx(A) = Loopx′(A).

(ii) Let x ∈ Σ∗ be an arbitrary finite word. Since A is deterministic, we know
that for every y ∈ Σ∗, there is a unique y-labeled finite path starting in qx. We
now set f(y) to be the highest parity encountered in this finite path. Formally,
this can be expressed as

f(y) = max{ p(qxy′) | y′ a substring of y }.

Using this definition, we have that Loopx(L′), which by definition is equal to
{ y | (x, y) ∈ Labelfin(A) }, consists of precisely those non-empty strings y such

that qx

y
։ qx and f(y) is even. Now, [qx ։ qx] \ {ǫ} is a regular language

and since regular languages are closed under intersection, it therefore suffices to
show that the set { y | f(y) is even } is regular.

Now, since A is finite, there is a highest possible parity, say n. This means
that

{ y | f(y) is even } =
⋃

{i|2i≤n}

{ y | f(y) = 2i }.

Since the class of regular languages is closed under finite union, it therefore
suffices to show that Li := { y | f(y) = i } is regular for each i ≤ n.

Now, a string y is in Li if and only if y is the label of a path from qx which
passes through a state with parity i, without passing through any state with
higher parity. In other words, y is an element of Li if and only if y = y1y2, for
some strings y1 and y2 such that qxy1

has parity i and y is not an element of
Lj for any j > i. This can be summarized in the following equation.

Li =




⋃

q∈A,p(q)=i

{ y1y2 | qx

y1

։ q }



 \
⋃

i<j≤n

Lj .

35

This implies that Ln is regular, since the equation then reduces to

Ln =
⋃

q∈A,p(q)=n

{ y1y2 | qx

y1

։ q }

=
⋃

q∈A,p(q)=n

[qx ։ q] ◦ Σ∗,

which is regular since the class of regular languages is closed under finite unions
and composition.

An inductive argument now shows that all the Li’s are regular, for i ≤ n.

(iii) That [x] is regular for every x ∈ Σ∗ is somewhat simpler. A string
x′ ∈ Σ∗ is an element of [x] if and only if Loopx′(L′) = Loopx(L′). We already
noted that Loopx(L′) is uniquely determined by the state qx of the automaton.
Making this more notationally precise, we have that if we write

Loop(q) := { y | (ǫ, y) ∈ Labelfin(q) }

then
Loopx(L′) = Loop(qx).

Hence

[x] = {x′ | Loopx′(L′) = Loopx(L′) }

= {x′ | Loop(qx′) = Loop(qx) }

=
⋃

Loop(q)=Loop(qx)

[qǫ ։ q],

which is a finite union of regular sets, and is therefore regular itself.

⇐). Assume that we have a set L′ and a k with the required properties.
Now, since Loopx(L′) and [x] both have the k-blockremoval property, we know
that they are regular. However, we also know that there are only finitely many
languages with the k-blockremoval property, which implies that

{ [x] | x ∈ Σ∗ } = {X0,X1, . . . ,Xn−1}

for some finite set of regular languages {X0,X1, . . . ,Xn−1}. Furthermore, since
each Xi = [x] for some x, there is some associated set

Yi := Loopx(L′).

We now show that
L′ =

⋃

i<n

Lassos(Xi, Yi).

For this, take a lasso (x, y) ∈ L′. There is some i < n such that [x] = Xi. By
definition, we have y ∈ Loopx(L′), which means that y ∈ Yi. But this means
that (x, y) ∈ Lassos(Xi, Yi). For the other direction, assume that a lasso (x, y)
is an element of Lassos(Xi, Yi) for some i < n. This is equivalent to saying that
[x] = Xi and y ∈ Loopx(L′), which implies that (x, y) ∈ L′.

36

Now, we know that L′ has the RLCP, which means that for every x,
Loopx(L′) = Loopx(L′)+. In other words, we have Yi = Y +

i for every i < n.
Furthermore, we know that L′ has the LUP, which means that if y ∈ Loopx(L′),
then [x] = [xy]. In other words, if x ∈ Xi and y ∈ Yi, then xy ∈ Xi, for ev-
ery i < n. But this means that Xi = Xi ◦ Y ∗

i , for every i < n. These two
observations taken together gives us that

L′ =
⋃

i<n

Lassos(XiY
∗
i , Y +

i)

where, for each i < n, Xi, Yi are regular languages over Σ∗, and Yi doesn’t
contain the empty string (since Yi consists of loops, which are always non-
empty). The proof is now nearly identical to the last part of the proof of
Theorem 5.3.

5.3 Characterization using a finite congruence

In this section we show that not only does a prophetic automaton partition the
set of all lassos, but this partition is a special sort of congruence. In fact, we
can turn this into a characterization theorem for regular lasso languages. This
is comparable to the situation for regular languages over finite words, where
it is well known that a set X of finite strings is regular if and only if X is an
equivalence class of a congruence of finite index.

The theorem can also be applied as a characterization result for ω-regular
languages. As such, it is a natural, and arguably simple, consequence of the
result by Carton and Michel (our Theorem 2.21). For this reason, it is quite
possibly a well known result, but we were unable to find a reference.

Definition 5.12. Let S be a sourced flow and x ∈ Σ∗ a finite word. We write
xS for the result of “prepending” S with x. Formally, if S is an infinite word u,
then xS is xu, and if S is a lasso (y, z), then xS = (xy, z).

Definition 5.13. Let S = (Ss, s) be a sourced flow and x ∈ Σ∗ a finite word.

If s
x
։ t in S for some t, we say that S has an x-derivative, and that the sourced

flow Sx := (St, t) is the x-derivative of S.

Note that, for all x ∈ Σ, (xS)x = S. However, even if S has an x-derivative,
we do not in general have that x(Sx) = S. For instance, if S is the lasso (ǫ, xy),
for some xy ∈ Σ∗, then Sx = (ǫ, yx) and hence x(Sx) = (x, yx). We do, however,
have the following.

Lemma 5.14. If S and T are sourced flows such that Sx = T for some x ∈ Σ∗,
then S is bisimilar to xT.

Proof. The result follows from the observation that
−→
S = x

−→
T =

−→
xT.

We now lift these notions to the sets of sourced flows.

Definition 5.15. Let L be a set of sourced flows and x ∈ Σ∗ be a finite word.
We let

xL := {xS | S ∈ L}

37

and

Lx := {Sx | S ∈ L, S has an x-derivative }

By these definitions we have that (xL)x = L for all L ⊆ SFlow and x ∈ Σ∗;
but not in general that x(Lx) = L. Consider, for instance, when L is non-
empty but none of its elements are x-derivable. Then Lx = ∅, and hence
x(Lx) = ∅ 6= L.

Definition 5.16. Let ∼ be an equivalence relation on the set of all sourced
flows, and write [S] for the equivalence class to which an arbitrary sourced flow
S belongs. We say that ∼ is a left congruence if

x[S] ⊆ [xS]

for all sourced flows S, S′ and finite words x ∈ Σ∗.

It is not difficult to see that ∼ is a left congruence if and only if S ∼ S′ =⇒
xS ∼ xS′ for all S, S′ ∈ SFlow, x ∈ Σ∗, which explains the term “left congru-
ence”.

Now, if A is a prophetic automaton, we know that the sets {L(q)}q∈A form
a partition of SFlow. We write ∼A for the equivalence relation corresponding to
this partition, and for an arbitrary S ∈ SFlow, we write [S]A for the equivalence
class to which S belongs. The fact that it is a left congruence follows easily from
the following proposition.

Proposition 5.17. Let A be a prophetic automaton. Then

q
x
։ q′ ⇐⇒ L(q) ⊇ xL(q′)

for any q, q′ ∈ A, x ∈ Σ∗.

Proof. If q
x
։ q′ and S ∈ L(q′), then certainly xS ∈ L(q), since prepending the

accepting S-labeled trace starting in q′ with the finite x-labeled path from q to
q′ yields an accepting xS-labeled trace starting in q.

For the other direction, assume L(q) ⊇ xL(q′), and take an arbitrary S ∈ L(q′).

Then, by assumption, xS ∈ L(q). However, this means that q
x
։ q′′ for some q′′

such that S ∈ Label(q′′). Since A is prophetic, this implies q′′ = q′.

We get the following as a corollary. Here we use the standard terminology
that an equivalence relation is said to be of finite index if it only has finitely
many equivalence classes.

Corollary 5.18. If A is prophetic then ∼A is a left congruence of finite index.

Proof. We have already established that ∼A is an equivalence relation of fi-
nite index, so we only need to show that for arbitrary x ∈ Σ∗, S ∈ SFlow,
x[S]A ⊆ [xS]A. Now, let q be the unique state such that L(q) = [xS]A and let
q′ be the unique state such that L(q′) = [S]A. Since xS ∈ L(q), there must be

some state q′′ such that S ∈ L(q′′) and q
x
։ q′′. By uniqueness, we must have

q′′ = q′. Hence q
x
։ q′, and the result follows from Proposition 5.17 above.

38

Our final aim is to take a (special kind of) left congruence ∼ of finite index
over SFlow and construct a Büchi automaton A∼ whose states are the equiv-
alence classes L of ∼ and where the transitions are such that L

a
→ L′ if and

only if L ⊇ aL′. The question is, which equivalence classes will act as accepting
points? So, we look at the accepting points of a prophetic automaton to see if
the languages they define have some defining properties.

Definition 5.19. If L ⊆ SFlow and x ∈ Σ∗ are such that L ⊆ Lx, we call x a
postfixpoint of L. We write Postfix(L) for the set of all postfixpoints of L.

Since we will deal with languages which are closed under bisimilarity, the
following lemma gives us an alternate definition of postfixpoints.

Lemma 5.20. If L is a language of sourced flows closed under bisimilarity, then
x is a postfixpoint of L if and only if xL ⊆ L.

Proof. Let L be a language of flows which is closed under bisimilarity. For the
direction from left to right, assume that x is a postfixpoint of L and that S ∈ L.
Since L ⊆ Lx, there must be some T ∈ L such that Tx = S. But then T is
bisimilar to xS, and since L is closed under bisimilarity, we have xS ∈ L. This
shows that xL ⊆ L.

For the direction from right to left, assume that xL ⊆ L. Then, if S ∈ L,
xS ∈ L. But since (xS)x = S, we have that S ∈ Lx. This shows that L ⊆ Lx,
so x is a postfixpoint.

Now, consider a Büchi automaton A and a state q ∈ A such that q
x
։ q

for some x ∈ Σ∗. If τ : S → A is a successful trace which starts in q, then
“prepending” this trace with the finite x-labeled path from q to q, yields an xS-
labeled successful trace starting in q. It is not difficult to see that this implies
that if S ∈ L(q), then xS ∈ L(q), for all sourced flow S. But this means that x

is a postfixpoint of L(q) and so we get the following proposition.

Lemma 5.21. If A is a Büchi automaton, then

q
x
։ q =⇒ x ∈ Postfix(L(q)),

for every x ∈ Σ∗, q ∈ A.

We would like for the converse to hold as well, but, unfortunately, we we

cannot in general draw the conclusion that q
x
։ q from the fact that x is a

postfixpoint of L(q). Consider, for instance, the automaton of Figure 12. Here
a is a postfixpoint of L(q0), since if S ∈ L(q0), then certainly aS ∈ L(q0) as well.
But there is no a-labeled path from q0 to q0.

Figure 12: Not all postfixpoints yield loops

For prophetic automata, the converse does hold.

39

Lemma 5.22. If A be a prophetic Büchi automaton, then the following are
equivalent for every finite word x ∈ Σ∗ and state q ∈ A:

(a) q
x
։ q

(b) x ∈ Postfix(L(q))

(c) x ∈ Postfix(Lfin(q)).

Proof. (a) ⇒ (b) is Lemma 5.21.
(b) ⇒ (c) Assume that x ∈ Σ∗ is a postfixpoint of L(q), we wish to show

that it is also a postfixpoint of Lfin(q). However, this follows from the following
chain of implications.

S ∈ Lfin(q) =⇒ S ∈ L(q)

=⇒ xS ∈ L(q) (since x is a postfixpoint of L(q))

=⇒ xS ∈ Lfin(q) (since xS is finite whenever S is).

(c) ⇒ (a) Let L = Lfin(q) and assume that x is a postfixpoint of L. By

Lemma 5.20, we have L ⊆ xL, which, using Proposition 5.17, shows that q
x
։ q.

If we consider an accepting state q in a prophetic Büchi automaton, we get
that every finite x-labeled path from q back to itself passes through an accepting
state, namely q itself. By Lemma 5.22 above, we know that every such path
is witnessed by a postfixpoint of L(q). Hence, we obtain that whenever x is a
postfixpoint of L(q), then the lasso (ǫ, x) ∈ L(q). We can also concatenate such
finite paths, from which we get that if x0, x1, . . . are all postfixpoints of q, then
the infinite word x0x1 . . . is an element of L(q).

Definition 5.23. We say that a language L of sourced flows is postfixpoint-
closed if

1. x ∈ Postfix(L) =⇒ (ǫ, x) ∈ L for every x ∈ Σ∗, and

2. u ∈ Postfix(L)ω =⇒ u ∈ L for every u ∈ Σω.

We say that a language L of lassos is finitely postfixpoint-closed if it satisfies
condition 1.

The discussion preceding Definition 5.23 showed that the language accepted
by an accepting state of a prophetic Büchi automaton is postfixpoint-closed.
We now show the converse of this, namely that if an element q of a prophetic
automaton A is postfixpoint-closed, then it is accepting. This requires that
A has a maximal set of accepting states, in the sense that the set cannot be
enlarged without changing the languages defined by points in the automaton.

Definition 5.24. Let A be a Büchi automaton. We say that the set FA of
accepting states is maximal if and only if whenever B = (QA,∆A, IA, F ′) for
some F ′) FA, then there is some q ∈ QA such that L(q, A) 6= L(q, B).

Lemma 5.25. Let A be a prophetic Büchi automaton with a maximal set of
accepting states. Then the following are equivalent for any state q:

(a) q is accepting.

40

(b) L(q) is postfixpoint-closed.

(c) Lfin(q) is finitely postfixpoint-closed.

Proof. (a) ⇒ (b) Let q be an accepting state and let x0, x1, x2, . . . be a sequence

of fixpoints of L(q). By Lemma 5.22, we have that q
xi

։ q for all i ∈ ω. But then
concatenating these finite paths yields an accepting x0x1x2 . . . -labeled trace
through A, which shows that x0x1x2 . . . ∈ L(A).

(b) ⇒ (c) This is Lemma 5.21.
(c) ⇒ (a) Assume that Lfin(q) is finitely postfixpoint-closed. To show that q

is accepting, we show that for any point q0 in A, and any infinite trace τ : u → A

(where u is some infinite word) which starts in q0 and where q ∈ inf(τ), there
exists a (possibly different) successful u-labeled trace starting in q0. This is
sufficient, since then q can be made accepting without changing the language
accepted by q0, and since q0 was arbitrarily chosen, the maximality of FA implies
that q is accepting.

So, pick a point q0 ∈ A, and let τ : u → A be some trace starting in q0 such
that q ∈ inf(τ). Then we must have that

q0
x
։ q

y0

։ q
y1

։ q
y2

։ . . .

where xy0y1y2 . . . = u. By Lemma 5.22, yi is a postfixpoint of Lfin(q) for every
i ∈ ω. Since Lfin(q) is finitely postfixpoint-closed by assumption, we must have
(ǫ, yi) ∈ Lfin(q) for every i ∈ ω. Because A is prophetic, this implies that
(ǫ, yi) ∈ Labelfin(q) for each i ∈ ω.

Now, that (ǫ, yi) ∈ Labelfin(q), means that there is a trace of the form

q
ǫ

։ q
yi

։ q,

where the path q
yi

։ q passes through some accepting state. But then by con-
catenating these finite paths, we obtain a trace τ of the form

q
y0

։ q
y1

։ q
y2

։ · · ·

which is successful and starts in q. Since q0
x
։ q, prepending this finite path to

τ , we get a successful u = xy0y1y2 . . . -labeled trace starting in q0.

We are now suited to state and prove our main theorem of this subsection.
We state it simultaneously in its “full” and “restricted” version, the first being a
characterization theorem for regular languages of sourced flows, and the second
characterizing regular lasso languages.

Theorem 5.26. A language L of sourced flows (lassos) is regular (is a regular
lasso language) if and only if there is a left congruence of finite index ∼ on SFlow

(Lasso) such that

(a) each equivalence class [S] of ∼ is closed under bisimilarity (in the finitary
case, restricted to the set of lassos),

(b) L = [S0]∪[S1]∪. . .∪[Sn−1] for some finite set {S0, S1, . . . , Sn−1} of sourced
flows (lassos),

41

(c) for every lasso S, there is an x-derivative Sx, where x 6= ǫ, such that [Sx]
is postfixpoint-closed (finitarily postfixpoint-closed).

We prove only the finitary version of the theorem. The proof can easily be
adapted to the full case.

Proof. ⇒) Assume that L is a regular lasso language. Then there is some
prophetic automaton A such that Lfin(A) = L, and we can safely assume that
its set of final states is maximal. We let the equivalence classes of our wanted
relation ∼ be the languages Lfin(q), for q ∈ A. Then (a) and (b) are immediate.
To see why (c) holds, consider any lasso S. Since A is prophetic, there is some
state q such that S ∈ Labelfin(q). In other words, there is some successful trace
τ : S → A which starts in q. This trace must visit some accepting point qF

and from this it is not difficult to see that there must be some x such that
[Sx] = L(qF). By Lemma 5.25, L(qF) must be postfixpoint-closed, so we are
done.

⇐) Assume that ∼ is a left congruence of finite index satisfying conditions
(a), (b) and (c). We define a Büchi automaton A by letting

QA = { [S] | S ∈ Lasso }

IA = { [S0], [S1], . . . , [Sn−1] }

FA = { [S] | S ∈ Lasso, [S] is finitely postfixpoint-closed }

and where the transition function is defined by

[S]
a
→ [T] ⇐⇒ [S] = [aT].

This is well defined, since ∼ is a left congruence and hence T ∼ T′ =⇒ aT ∼ aT′

for all S, T ∈ Lasso, a ∈ Σ. It is not difficult to see that it also means that

[S]
x
։ [T] ⇐⇒ [S] = [xT]

for all x ∈ Σ∗.
We now show that for every state A ∈ A and every lasso S

S ∈ Lfin(A) ⇐⇒ S ∈ A,

from which the result follows.
For the direction from left to right, assume that S is an element of Lfin(A).

Then there is some successful finite run ρ of A on S which starts in A. If we let
(x, y) be the label of the run ρ, we know that there is some state B and some
accepting state C such that

A
x
։ B

y1

։ C
y2

։ B

for some y1, y2 ∈ Σ∗ such that y = y1y2. Then

A
xy1

։ C
y2y1

։ C

holds as well. Now, take a lasso S ∈ C. Then we have that C = [S]. Since

C
y2y1

։ C, our transition function states that [S] = [y2y1S]. But this means
that y2y1S ∈ C, showing that y2y1C ⊆ C. By Lemma 5.20, this implies that

42

y2y1 is a postfixpoint of C. Since C is an accepting point, it is per definition
finitely postfixpoint-closed which means that (ǫ, y2y1) is an element of C and

so C = [(ǫ, y2y1)]. However, since we have A
xy1

։ C, we must, according to the
definition of our transition function, have A = [xy1(ǫ, y2y1)] = [(xy1, y2y1)]. But
(xy1, y2y1) is bisimilar to (x, y1y2), so by condition (a), we have (x, y1y2) ∈ A,
as required.

For the right to left direction, assume that S is a lasso in A, i.e., A = [S].

We will construct a successful
−→
S -labeled trace through A starting in A, which

suffices according to Corollary 4.8.
By property (c), there is some x0 ∈ Σ+ such that [Sx0

] is finitely postfixpoint-
closed. Again, by property (c), there is some x1 ∈ Σ+ such that [(Sx0

)x1
] =

[Sx0x1
] is finitely postfixpoint-closed. Continuing in this fashion, we obtain a

sequence of finitely postfixpoint-closed states [Sx0
], [Sx0x1

], . . .
Now, for all lassos T and all x such that Tx exists, we have that x(Tx) is

bisimilar to T and so [T] = [xTx]. Hence, according to our transition function,

we have that for all x such that Tx exists, [T] = [xTx]
x
։ [Tx]. In particular

then, we have that

A = [S]
x0

։ [Sx0
]

x1

։ [Sx0x1
]

x2

։ . . . (6)

It is not difficult to see that if a lasso T is derivable by some string x, then
−→
T = xu for some u ∈ Σ∗. Now, since our strings x0, x1, . . . are all non-empty,

and S is derivable by x0, x0x1, x0x1x2, . . . , this means that
−→
S = x0x1x2 . . .

Hence, any trace of the form (6) defines a successful
−→
S -labeled trace starting in

A.

Borrowing inspiration from the theory of automata operating on finite words,
we call the automaton defined in the left to right direction of the proof of
Theorem 5.26 the syntactic automaton generated by ∼. It is not difficult to
see that the automaton produced is prophetic and therefore co-deterministic,
as opposed to the deterministic automaton one obtains when constructing the
syntactic automaton for a congruence over finite words.

43

6 Conclusions

The main objective of this thesis was to investigate automata operating on
sourced flows, and in particular investigate properties of the finitary fragments
of regular languages of flows. The rationale for this investigation is that there
is a translation between automata and the modal µ-calculus which can be lifted
to a translation between coalgebraic automata and coalgebraic fixed point logic
(see [22]). Therefore, the regular languages from the automata perspective cor-
respond to the definable classes of models in the logic perspective. In particular,
the finitary fragments of regular languages correspond to the definable classes
of finite models. In that sense, this thesis has been an investigation in the fi-
nite model theory of the coalgebraic fixed point logic, for one particular class of
coalgebras.

The most important conceptual idea is the development of a run of an au-
tomaton on a sourced flow, as the definition gives us a purely finitary description
of the finitary fragment of regular languages. This definition also showed that
given an automaton A, there are some accepted sourced flows which are more
“representative” than others, namely those which are labels of accepting traces
through A. This subset turns out to be important, since a trace τ gives us
information about the similarities in structure between the sourced flows and
the automaton. In particular, it gives information about loops in the automa-
ton. We then showed that for a particular class of automata, namely prophetic
Büchi automata, the set of accepting labels is identical to the language accepted.
Hence, prophetic automata behave very nicely in this coalgebraic perspective.

Finally, we gave three characterization results for regular lasso languages,
being the finitary fragments of regular languages of sourced flows. Among these
three, the arguably most enlightening one is the third (Theorem 5.26), where
we showed that regularity is equivalent to being the union of equivalence classes
of a special type of finite congruence.

One of the initial aims was to find a characterization result using some sort
of “pumping”. In that respect, the second result (Theorem 5.11) can be seen
as a partial success. However, we would have wanted to develop pumping in a
more “coalgebraic” way, in order for the result to be generalizable to a more
general setting.

6.1 Future Research

We believe that the syntactic quality of prophetic automata as it applies to the
coalgebraic setting is something which is worth further investigation. As an
example, Theorem 4.22 shows a link between the final coalgebra Σω, and the
structure of prophetic automata; a result which can possibly yield important
insights.

Moreover, we hope that the ideas from this thesis can be generalized to other
classes of coalgebras. It would be interesting to see if, for instance, our definition
of a run could be applied in a more general setting.

Finally, we think that there is a possibility of developing a good notion of
pumping in order to yield a characterization result. We already have some ideas
for this, which may be developed in a later paper.

44

A Coalgebra

Given the coalgebraic perspective in this thesis, we here provide a very short list
of definitions to let the reader familiarize with the notions involved. We happily
refer the reader to the works of Rutten [18] and the joint work by Jacobs &
Rutten [7], especially for the theory of systems. For the connections between
coalgebra and modal logic, we recommend Kurz [11], Pattinson [14] and Venema
[23].

Definition A.1. Let F be an endofunctor over some category C. An F -
coalgebra, also called a coalgebra with signature F , is a pair A = (A,α), where
A is some object in C and α is an arrow from A to FA.

Definition A.2. Let A = (A,α) and B = (B, β) be two F -coalgebras for some
endofunctor F . An arrow h : A → B is called a homomorphism if β◦h = α◦Fh,
i.e., if the following diagram commutes:

A
h //

α

��

B

β

��

FA
Fh

// FB

Definition A.3. With F an endofunctor, we write Coalg(F) for the category
of all F -coalgebras, with homomorphisms acting as arrows. It is easy to check
that the requirements for being a category is satisfied.

This perspective enables us to ask general category theoretic questions, such
as whether a certain endofunctor F admits a final coalgebra, i.e., whether the
category Coalg(F) has a final object.

Definition A.4. A coalgebra Z = (Z, ζ) with signature F is said to be final
in the category of all F -coalgebras if for every F -coalgebra (A,α), there is a
unique homomorphism !S : S → Z.

Now, in the following, we will assume that F is an endofunctor over the
base category Set. Using the terminology of Rutten in [18], coalgebras over
such functors F are called systems or transition structures. In this case, we can
speak of states of an F -coalgebra (A,α), a state simply being an element of
A. Many of the familiar notions of Kripke frames or labeled transition systems
easily generalize into this setting.

Definition A.5. Let (A,α) be a system over some Set endofunctor F and let
B ⊆ A be a subset of A where i : B → A is the inclusion mapping. We say that
B is a subsystem of A if there is a function β : B → FB such that i : B → A is
a homomorphism from (B, β) to (A,α).

Definition A.6. Let A = (A,α) be a system and let a ∈ A be a state. The
subsystem of A generated by a, written Aa, is the smallest (in terms of ⊆)
subsystem of A which contains a.

Definition A.7. A system A is called minimal if it has no proper subsystems,
i.e., the only subsystem of A is A itself.

45

As an example, in the category of flows defined in section 3, the minimal
flows are precisely the lassos where the spoke is empty, i.e., the lassos consisting
only of a loop.

Now, thinking of systems as mathematical models of state-based dynamic
systems, we can see homomorphisms as some sort of behavior preserving func-
tions, i.e., if f is a homomorphism from A to B and a is some state in a, we
intuitively regard a and f(a) as having the same behaviour. To turn this semi-
intuitive notion into an equivalence relation over states of systems, one arrives,
after a bit of work, at the following definition:

Definition A.8. Let A = (A,α) and B = (B, β) be two systems over some
Set endofunctor F . We say that two points a ∈ A and b ∈ B are behaviorally
equivalent, written A, a ≡ B, b, if there is some F -coalgebra X = (X, ξ) and two
homomorphisms f : A → X and g : B → X such that f(a) = g(b), i.e., such that
the following diagram commutes:

1
a

||xx
xx

xx
xx

x
b

""FF
FF

FF
FF

F

A
f

//

α

��

X

ξ

��

B
g

oo

β

��

FA
Ff

// FX FB
Fg

oo

A related notion, and one which is well-known from both modal logic and
computer science, is that of a bisimulation relation between two structures. This
can be generalized to systems in the following way:

Definition A.9. Let F be an endofunctor over set and let (A,α) and (B, β) be
two F -systems. A relation R ⊆ A × B is said to be a bisimulation if it can be
endowed with a coalgebraic structure, i.e., if there is a function ρ : R → FR such
that the projection functions π0 : R → A and π1 : R → B are homomorphisms:

A

α

��

R
π0oo

ρ

��

π1 // B

β

��

FA FR
Fπ0oo

Fπ1 // FB

Fixing two points a ∈ A and b ∈ B, we say that a and b are bisimilar, written
A, a ↔ B, b, if there exists a bisimulation R ⊆ A × B such that (a, b) ∈ R.

Fact A.10. Bisimilarity implies behavioural equivalence, i.e.,

A, a ↔ B, b =⇒ A, a ≡ B, b

The reverse implication does not in general hold, see for instance the work
on monotone neighborhood frames by Hansen & Kupke [6]. However, the two
notions do coincide for a large class of functors.

Fact A.11. If F is a Set endofunctor which preserves weak pullbacks, then
behavioral equivalence implies bisimililarity, i.e.,

A, a ≡ B, b =⇒ A, a ↔ B, b

46

Since Kripke polynomial functors preserve weak pullbacks, we get that for
the two coalgebraic structures that are present in this thesis, viz., labeled tran-
sition systems and flows, behavioral equivalence and bisimilarity coincide.

47

References

[1] Peter Aczel. Non-Well-Founded Sets. Number 14 in CSLI Lecture Notes.
Center for the Study of Language and Information, Stanford, 1988.

[2] Julius Büchi. On a decision method in restricted second-order arithmetic.
In Prooceedings of the International Congress on Logic, Method, and Phi-
losophy of Sciences, pages 1–12. Stanford University Press, 1962.

[3] Andrzej Ehrenfeucht, Rohit Parikh, and Grzegorz Rozenberg. Pumping
lemmas for regular sets. SIAM Journal on Computing, 10(3):536–541, 1981.

[4] Berndt Farwer. ω-automata. In Grädel et al. [5], pages 3–20.

[5] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research, volume 2500 of
Lecture Notes in Computer Science. Springer, 2002.

[6] Helle Hansen and Clemens Kupke. A coalgebraic perspective on monotone
modal logic. Electronic Notes in Theoretical Computer Science, 106:121–
143, 2004.

[7] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the European Association for Theoretical Computer Science, 12,
1997. Also available at
http://citeseer.ist.psu.edu/jacobs97tutorial.html.

[8] David Janin and Igor Walukiewicz. On the expressive completeness of
the propositional µ-calculus with respect to monadic second order logic. In
CONCUR ’96: Concurrency Theory, 7th International Conference, volume
1119, pages 263–277. Springer-Verlag, 1996. Also available at
http://citeseer.ist.psu.edu/janin96expressive.html.

[9] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

[10] Clemens Kupke and Yde Venema. Closure properties of coalgebra au-
tomata. In LICS ’05: Proceedings of the 20th Annual IEEE Symposium on
Logic in Computer Science (LICS’ 05), pages 199–208, Washington, DC,
USA, 2005. IEEE Computer Society.

[11] Alexander Kurz. Coalgebras and modal logic. In Proceedings of Advances
in Modal Logic, pages 222–230, 1998. Also available at
http://citeseer.ist.psu.edu/article/kurz98coalgebras.html.

[12] Max Michel and Olivier Carton. Unambiguous büchi automata. Theoretical
Computer Science, 297:37–81, 2003.

[13] Lawrence Moss. Coalgebraic logic. Annals of Pure and Applied Logic,
96:277–317, 1999.

[14] Dirk Pattinson. An introduction to the theory of coalgebras, 2003.
Available at
http://www.pst.ifi.lmu.de/∼pattinso/Publications/nasslli.all.ps.gz.

48

http://citeseer.ist.psu.edu/jacobs97tutorial.html
http://citeseer.ist.psu.edu/janin96expressive.html
http://citeseer.ist.psu.edu/article/kurz98coalgebras.html
http://www.pst.ifi.lmu.de/~pattinso/Publications/nasslli.all.ps.gz

[15] Dominique Perrin and Jean Éric Pin. Infinite Words, volume 141 of Pure
and Applied Mathematics. Elsevier, 2004. ISBN 0-12-532111-2.

[16] Michael Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society, 141:1–
35, 1969.

[17] Markus Roggenbach. Determinization of büchi-automata. In Grädel et al.
[5], pages 43–60.

[18] Jan Rutten. Universal coalgebra: A theory of systems. Technical report,
CWI, 1996. Available at
http://citeseer.ist.psu.edu/301731.html.

[19] Wolfgang Thomas. Automata on infinite objects. In Handbook of The-
oretical Computer Science (vol. B): formal models and semantics, pages
133–191. MIT Press, Cambridge, MA, USA, 1990.

[20] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal
Languages, vol. 3: Beyond Words, pages 389–455. Springer-Verlag New
York, Inc., New York, NY, USA, 1997. Also available at
http://citeseer.ist.psu.edu/thomas96language.html.

[21] Johan van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli,
1983.

[22] Yde Venema. Automata and fixed point logics for coalgebras. Electronic
Notes in Computer Science, 106:335–375, 2004.

[23] Yde Venema. Algebras and coalgebras. In Johan van Benthem, Patrick
Blackburn, and Frank Wolter, editors, Handbook of Modal Logic, pages
331–426. Elsevier, Amsterdam, 2006.

[24] Thomas Wilke. Alternating tree automata, parity games, and modal µ-
calculus. Bulletin of the Belgian Mathematical Society, 8(2):359–391, 2001.
Also available at
http://citeseer.ist.psu.edu/wilke00alternating.html.

49

http://citeseer.ist.psu.edu/301731.html
http://citeseer.ist.psu.edu/thomas96language.html
http://citeseer.ist.psu.edu/wilke00alternating.html

Index

(x, y), 15
F -coalgebra, 45
FA, 7
IA, 6
QA, 5
US, 13
AccA, 6
∆A, 5
Label(A), 21
Label(q), Label(q, A), 21
Labelfin(A), 23
Labelfin(q), 23
Lasso, 16
Lassos(X,Y), 28
Loopx(L), 33
Postfix(L), 39
SFlow, 16
Stream, 16
L(A), 19
L(q),L(q, A), 19
Lω, 7
Lfin, 22
Lfin(A), 23
Lfin(q), 23
Lω, 22
Lx, 37
Σω, 14
ω-regular, 7
Sx, 37
k-blockremoval property, 4

q
x
։ q′, 6

q
a
→ q′, 6

[q ։ q′], 6
xL, 37
xS, 37

acceptance condition, 6
Büchi, 7
parity, 8

automaton, 5
Büchi, 7
deterministic, 8
parity, 8
prophetic, 9

behaviorally equivalent, 14, 46
bisimilar, 13, 46

bisimulation, 12, 46
bisimulation invariant, 17

coalgebra, 45
final, 45

derivative, 37

finite index, 38
flow, 11

carrier of, 11
point-generated, 12
pointed, 11
sourced, 12

derivative of, 37
source of, 12
unraveling of, 13

state of, 11
transition function of, 11

homomorphism, 12, 45

label
accepting, 21
successful, 21

lasso, 14
knot point of, 15
loop of, 14, 15
spoke of, 14, 15

lasso language
regular, 23

left congruence, 38
loop unwinding property (LUP), 33

postfixpoint, 39
postfixpoint-closed, 40

finitely, 40

relativized loop concatenation property
(RLCP), 33

run, 18
accepting, 18
finite, 23
infinite, 23
infinite behavior of, 18
successful, 18

sink, 29

50

state
accepting, 7
color of, 11
initial, 6
of a flow, 11
of an automaton, 5
successor of, 11

trace, 18
accepting, 18
infinite behavior of, 18
successful, 18

transition function
of a flow, 11
of an automaton, 5

unraveling, 13

51

	Introduction
	Modal logic and automata
	The coalgebraic perspective
	The aim of this thesis

	Preliminaries
	Regular languages and the block-removal property
	Automata on infinite words
	Prophetic automata

	(Sourced) Flows
	The coalgebraic perspective
	Infinite words as sourced flows
	Lassos

	Automata on flows
	Traces and runs
	Labels
	Regular lasso languages
	Prophetic automata and labels

	Characterizating regular lasso languages
	Characterization using finitary regular languages
	Characterization using the k-blockremoval property
	Characterization using a finite congruence

	Conclusions
	Future Research

	Coalgebra

