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Abstract

Default Logic and Autoepistemic Logic are two forms of nonmonotonic
logic originating from the works of Reiter in 1980 and Moore in 1985, re-
spectively. Konolige showed that via a translation from defaults to modal
formulas default logic can be expressed in autoepistemic logic. However,
no translation has been found that relates the originally used semantics
for default logic (extensions) precisely to the originally used semantics for
autoepistemic logic (expansions).

In a series of papers, Denecker, Marek and Truszczyński revealed a
uniform semantics for default logic and autoepistemic logic, which we will
explain. They defined several operators on the lattices of possible world
structures relating to various semantics for default logic and autoepistemic
logic. This way they defined four connected semantics for each of the
two logics, among those the two semantics of extensions and expansions.
Hence, they revealed the connection between the two semantics (using
the Konolige translation from defaults to modal formulas), but also the
difference.

We will also examine a form of prioritized versions of default logic and
autoepistemic logic inspired by Rintanen, in which preference structures
on defaults or formulas relate to preference structures on extensions or
expansion. We will explain how the Konolige translation can be used to
relate the prioritized version of default logic to the prioritized version of
autoepistemic logic.
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1 Introduction

Probably the most widely used examples of logical reasoning are Aristotle’s syl-
logisms, such as

All men are mortal
Socrates is a man
Socrates is mortal

There’s no denying that this conclusion, given the two premisses, is irrefutable.
Even more so, whenever one draws a conclusion from a set of premises in classi-
cal logic, this conclusion will not be refuted by any additional information. This
property of classical logic is called monotonicity of entailment :

Definition 1.1. An entailment relation � is monotone if whenever Π � ϕ then
also Π ∪A � ϕ.

It seems very reasonable for an entailment relation. However, every-day
reasoning is usually not that simple; we simplify, generalize and jump to con-
clusions all the time. One of the most used example in non-monotonic reasoning
is that of Tweety:

Birds fly
Tweety is a bird
Tweety flies

This seems reasonable, but if we would add the following information, our con-
clusion above is refuted.

Penguins don’t fly
Tweety is a penguin
Tweety doesn’t fly

Knowing that penguins are also birds, what should we conclude from these
argumentations? Should we use the first line of argument and conclude that
Tweety flies or use the second and conclude that Tweety doesn’t? The state-
ments “Birds fly” and “Penguins don’t fly” are of course generalizations and
thus we could say that these logical deductions are simply incorrect, because
the premises are incorrect. However, in every day life such jumps to conclusions
are made all the time and even necessary. This is because we live in a state of
incomplete information.

As an example, suppose we would want to talk to someone at the Universiteit
van Amsterdam (UvA). We don’t know anything about this person, except that
we meet him at this Dutch university; obviously we are in a state of incomplete
information. We figure that since people in the Netherlands are usually Dutch
we will address him in Dutch. However, approaching him we see a name tag of
the ILLC (the Institute of Logic, Language and Computation at the UvA) on
his sweater after which we decide to address him in English, since that is the
going language at this internationally orientated institute. Either way, we have
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to make some assumptions, some generalizations, some jumps to conclusion,
otherwise the conversation will never start off. As well as the Tweety example,
which we will use a lot in the following text, the above is an example of non-
monotonic reasoning; after adding some information (seeing the name tag of
the ILLC), our previous conclusion (that we should address him in Dutch) gets
refuted.

To model the behavior of the examples above calls for a non-classical ap-
proach. It can not be dealt with by classical logics, because (as Moore explains
in [15]):

“As Minsky [14] has pointed out, standard logics are always mono-
tonic, because their inference rules make every axiom permissive.
That is, the inference rules are always of the form “P is a theorem if
Q1, . . . , Qn are theorems”, so new axioms can only make more the-
orems derivable; they can never result in a previous theorem being
invalidated.
(. . . )
The general idea is to allow axioms to be restrictive as well as per-
missive, by employing inference rules of the form “P is a theorem
if Q1, . . . , Qn are not theorems”. The inference that birds can fly
handled by having, in effect, a rule that says that for any X, “X
can fly” is a theorem if “X is a bird” is a theorem and “X cannot
fly” is not a theorem. If all we are told about Tweety is that he is a
bird, then we will not be able to derive “Tweety cannot fly”, and the
inference to “Tweety can fly” will go through. If we are told that
Tweety is a penguin and we know that no penguin can fly, we will
be able to derive the fact that Tweety cannot fly, and the inference
that Tweety can fly will be blocked.”

Default logic and autoepistemic logic are two forms of non-monotonic logics
dealing with these kinds of problems. They originate from papers by Raymond
Reiter [17] in 1980 and Robert C. Moore [15] in 1985 respectively and since
have been studied extensively, exposing both the similarities and the differences
between the two formalisms.

The thesis is organized as follows: chapter 2 contains the preliminaries of
default logic and autoepistemic logic. The usual semantics for these logics are
treated: Reiter’s extensions for default logic and Moore’s expansions for au-
toepistemic logic. The principle properties of the two formalisms are proven
and a link between the two is given in the form of the Konolige translation.

Chapter 3 explains mostly the writings of Denecker, Marek and Truszczyński,
as it explains how default logic and autoepistemic logic can be treated in terms
of possible world structures. Characterizations of extensions for default logic
and expansions for autoepistemic logic in terms of possible world structures are
given with new, straightforward and detailed proofs. For both formalisms four
semantics are treated, among which weak extensions for default logic and exten-
sions for autoepistemic logic. It is explained how to link the four semantics of
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these logics together with the Konolige translation. A short description is pre-
sented of the theory Denecker et al. used for their work, namely Approximation
Theory. The chapter is closed of by a short description of the link with Logic
Programming. A translation of logic programming with negation to default
logic is presented and how to link different semantics for logic programming to
the notions of (weak) extensions and expansions.

In chapter 4 the notion of prioritization is explained, after which Rinta-
nen’s lexicographic prioritization is explained for default logic and expanded to
autoepistemic logic. Again, the Konolige translation is used to show the link
between prioritized default logic and prioritized autoepistemic logic.

The thesis is closed off by a chapter on topics of future research.
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2 Preliminaries on default and autoepistemic logic

For any set of formulas T , we will denote the set of classical consequences of T
by Th(T ). This is not to be confused with ThL(Q) for possible world structures
Q, which will all be defined later on.

2.1 Default logic

Reiter’s default logic contains, apart from the usual propositional language,
denoted by L, inference rules called default rules or defaults. Default rules are
rules-of-thumb, such as “birds fly” in the Tweety example. When using such a
rule-of-thumb, we can explain it in numerous ways, such as

• “birds usually fly”, or

• “most birds fly”, or

• “when encountering a bird we will by default assume that it flies”, or

• “all birds fly, except for penguins, ostriches, Big Bird, . . .”.

Reiter chose to go with the following approach:

birdTweety : fliesTweety
fliesTweety

which is read as “if we know that Tweety is a bird and it is consistent to assume
that Tweety flies, then conclude that Tweety flies”. It is specified below what
it means to “know” that Tweety flies and with what exactly fliesTweety has to
be consistent. Formally, we define defaults as follows:

Definition 2.1. A default rule (or default) δ is of the form

ϕ : ψ1, . . . , ψn
χ

,

with ϕ,ψ1, . . . , ψn and χ propositional formulas. We refer to ϕ as the prereq-
uisite of δ and denote this by pre(δ). Also, {ψ1, . . . , ψn} is the set of justifica-
tions of δ (denoted by just(δ)) and χ the conclusion of δ (denoted by con(δ)).
A default theory ∆ is of the form (D,W ), where W is a a set of propositional
formulas (the set of facts) and D is a set of defaults.

Reiter defined the semantics of default logic in terms of extensions. Given
a set of facts W and a set of default rules D these extensions are meant to
formally specify an agent’s set of beliefs. The extensions will be interpreted as
acceptable sets of beliefs that one may hold about the incompletely specified
world W . Reiter defined these belief sets in such a way that

1. they include the set of facts about the world W ,
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2. they are deductively closed, i.e. closed under propositional consequence
(hence the agents we would be dealing with are perfect rational agents),

3. they are closed under the default rules in D (in a sense to be explained
below).

Formally, we have the following definition of extensions:

Definition 2.2. Let ∆ = (D,W ) be a default theory. For any set of formulas
S, let Γ∆(S) be the least set of formulas such that

D1 W ⊆ Γ∆(S),

D2 Th(Γ∆(S)) = Γ∆(S) (Recall that by Th(T ) we mean the set of classical
consequences of T ),

D3 for any default ϕ:ψ1,...,ψn

χ ∈ D, if ϕ ∈ Γ∆(S) and S 0 ¬ψi for all i ∈
{1, . . . , n} then χ ∈ Γ∆(S).

A set of formulas E is an extension of ∆ if and only if it is a fixpoint of the
operator Γ∆, i.e. if and only if Γ∆(E) = E.

For a set to be “closed under the default rules in D” thus means that every
default who’s prerequisite is in the set and who’s justifications are consistent
with it has also it’s conclusion in the set.

Note that the definition of extensions is not a constructive one, since there
is a self-reference in D3. This means that we have to guess a set E and sub-
sequently check wether it fulfills the requirements D1 to D3. Alternative con-
structive characterizations for extensions have been proposed in (among others)
[17] and [1].

Example 2.3. To illustrate the definitions, consider the Tweety example. The
given facts are that Tweety is a bird and that Tweety is a penguin; these are
described in the set of facts W{bird, penguin}. The rules-of-thumb are:

• “if Tweety is a bird and it is consistent to assume that Tweety flies, then
we conclude that Tweety flies”,

• “if Tweety is a penguin and it is consistent to assume that Tweety doesn’t
fly, then we conclude that Tweety doesn’t fly”.

These rules-of-thumb are described by the default rules in the set of defaults

D = {δ1 =
bird : flies

flies
, δ2 =

penguin : ¬flies
¬flies

}.

The default theory we are dealing with is ∆ = (D,W ). Since we know that
Tweety is a bird and a penguin, but we doubt whether he flies or not, we consider
the following sets as possible extensions: E1 = Th({bird, penguin, flies}) and
E2 = Th({bird, penguin,¬flies}). The set of facts W is clearly included in both
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E1 and E2 and also both sets are clearly deductively closed, so items D1 and
D2 are obviously satisfied. Now let’s look at D3. Since pre(δ1) = bird ∈ E1 and
E1 0 ¬flies = ¬just(δ1), item D3 requires that con(δ1) = flies ∈ E1, which is
satisfied. Moreover, since E1 ` flies = ¬just(δ2), δ2 vacuously satisfies D3 for
E1. Since there is no smaller set than E1 itself that satisfies all items we can
conclude that E1 is indeed a fixpoint of Γ∆ and thus is an extension. We can
also conclude that E2 is an extension, since now δ2 satisfies D3 by “application”,
whereas δ1 satisfies it “vacuously”.

Just to see where it leads to, consider W as a possible extension. Then by
D1 and D2 Γ∆(W ) would have to include Th(W ), thus in any case pre(δ1) and
pre(δ2) are included in Γ∆(W ). Then, since W 0 ¬flies and W 0 ¬¬flies,
both flies and ¬flies must be included in Γ∆(W ) by D3, thus Γ∆(W ) = L
and thus W is not an extension. �

This example immediately illustrates that default logic can’t always lead to
straight answers: we still don’t know whether Tweety flies or not! And indeed,
we will not know until we somehow decide which default to prefer over the other.
We will come to this subject in the chapter 4 on prioritizing default logic and
autoepistemic logic.

2.1.1 Properties of default logic

The following notable properties of default logic provide for a better under-
standing of default logic and will be used in later sections. The most notable
property of default logic is of course it’s nonmonotonic nature. As an example,
the default theory ({ true:aa }, ∅) has the extension Th({a}), whereas the extended
default theory ({ true:aa }, {¬a}) has the extension Th({¬a}); the addition of new
information can cause old information to be refuted. As we mentioned in the
previous section, definition 2.2 is non-constructive, hence extensions must be
guessed and tested in stead of constructed. However, the following theorem
from [17] can help in deciding which sets to choose as possible extensions.

Theorem 2.4. Let E ⊆ L be a set of formulas and ∆ = (W,D) a default
theory. Then E is an extension of ∆ iff E =

⋃
nEn, where E0 = W and

En+1 = Th(En) ∪ {con(δ) | δ ∈ D ∧ pre(δ) ∈ En ∧ ∀ψi ∈ just(δ)(¬ψi /∈ E)}.

Proof: Firstly, it is easy to see that
⋃
nEn satisfies:

Di W ⊆
⋃
nEn,

Dii Th(
⋃
nEn) =

⋃
nEn, and

Diii for any default ϕ:ψ1,...,ψm

χ , if ϕ ∈
⋃
nEn and E 0 ¬ψi for all i ∈ {1, . . . ,m}

then χ ∈
⋃
nEn.

Since Γ∆(E) is the minimal set with the properties Di to Diii , we get Γ∆(E) ⊆⋃
nEn. Now, for the proof of the theorem:
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“⇒”: Suppose E is an extension of ∆, i.e. Γ∆(E) = E. We need to show
that E =

⋃
nEn, but by E = Γ∆(E) ⊆

⋃
nEn we only have left to show

that
⋃
nEn ⊆ Γ∆(E) = E, which we will do by induction on n. Firstly

it is obvious (by requirement D1) that E0 = W ⊆ Γ∆(E). Now assume
that En ⊆ E and let ξ ∈ En+1. If ξ ∈ Th(En) then by assumption
ξ ∈ Th(E) = E. Otherwise ξ is the conclusion of a default α:β1,...,βp

ξ ∈ D
such that α ∈ En and β1, . . . , βp /∈ E. By assumption α ∈ En ⊆ E and so
by D3 also ξ ∈ E. This concludes

⋃
nEn ⊆ Γ∆(E)(= E).

“⇐”: Suppose that E =
⋃
nEn, then we need show that E is an extension

of ∆, but by Γ∆(E) ⊆
⋃
nEn we only have left to show that

⋃
nEn ⊆

Γ∆(E), which we will again do by induction on n. Again it is obvious (by
requirement D1) that E0 = W ⊆ Γ∆(E). Now assume that En ⊆ Γ∆(E)
and let ξ ∈ En+1. If ξ ∈ Th(En) then by assumption ξ ∈ Th(Γ∆(E)) =
Γ∆(E). Otherwise ξ is the conclusion of a default α:β1,...,βp

ξ ∈ D such that
α ∈ En and β1, . . . , βp /∈ E. Then again by assumption α ∈ En ⊆ Γ∆(E)
and by D3 then also ξ ∈ Γ∆(E). This concludes (E =)

⋃
nEn ⊆ Γ∆(E)

The above shows the claim. �

Consider the following example as an illustration of theorem 2.4:

Example 2.5. Let ∆ = {D,W} be a default theory consisting of the set of facts
W = {¬p ∨ ¬q} and the set of defaults D = { true:pp , true:qq }. For any extension
E of ∆, E0 as defined in the theorem would of course be equal to W . Now, since
the prerequisites of both defaults are true and no negations of justifications are
in E0, it is definitely safe to add any of the two consequences to the candidate
extension E. For instance, we could choose E1 = Th(E0)∪{p}. In the next step
however, we could not add the consequence of the second default. Namely, E1

contains ¬p∨¬q and p, and so E2 would contain ¬q. It is clear that the second
default can then not be applied. Similarly, if we choose E1 = Th(E0) ∪ {q} by
applying the second default, the first default can subsequently not be applied.
Thus the extensions are Th(W ∪ {p}) and Th(W ∪ {q}). �

Lemma 2.6. Let E and F be extensions of a default theory (D,W ). If E ⊆ F
then E = F .

Proof: Let E =
⋃
nEn and F =

⋃
n Fn as given by theorem 2.4 and assume

that E ⊆ F . Inductively on n we will show that Fn ⊆ En and thus that F ⊆ E.
Trivially F0 ⊆ E0 ⊆ E. Suppose Fn ⊆ En and let ξ ∈ Fn+1. If ξ ∈ Th(Fn)
then by the assumption ξ ∈ Th(En) ⊆ En+1. Otherwise ξ is the conclusion of
a default α:β1,...,βp

ξ ∈ D such that α ∈ Fn and β1, . . . , βp /∈ F . Then again by
the assumptions Fn ⊆ En and E ⊆ F we get that α ∈ En and β1, . . . , βp /∈ E,
hence ξ ∈ En+1. This concludes Fn+1 ⊆ En+1. �
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Lemma 2.7. A default theory ∆ = (D,W ) has an inconsistent extension if and
only if W is inconsistent.

Proof: IfW is inconsistent then Th(W ) = L is obviously equal to Γ∆(Th(W )),
hence L is an inconsistent extension of ∆. Conversely, let E be an inconsistent
extension of ∆. Then E =

⋃
nEn as given by theorem 2.4, and thus there is a

minimal n such that En is inconsistent. Suppose this n > 0, so En−1 is consis-
tent. Let δ ∈ D. Then just(δ) ∈ E, since E is inconsistent (and thus equal to
L). Therefore con(δ) will not be included in En and so En = Th(En−1), which
is consistent. This concludes that n must be 0, i.e. E0 = W is inconsistent. �

Corollary 2.8. If a default theory has an inconsistent extension then this is its
only extension.

Proof: Immediate from lemma 2.6 and lemma 2.7. �

If E is an extension of a default theory ∆ = (D,W ) then the set GD(E,∆) =
{δ ∈ D | pre(δ) ∈ E and just(δ) /∈ E} is the set of generating defaults for E
with respect to ∆.

Theorem 2.9. If E is an extension of a default theory ∆ = (D,W ) then
E = Th(W ∪ {con(δ) | δ ∈ GD(E,∆)}).

Proof: Let E =
⋃
nEn as given by theorem 2.4. Inductively on n we will

show that En ⊆ Th(W ∪ {con(δ) | δ ∈ GD(E,∆)}). This is obvious for E0 =
W , so assume that the inclusion holds for En and let χ ∈ En+1. Then if
χ ∈ Th(En) it is obviously included in Th(W ∪ {con(δ) | δ ∈ GD(E,∆)})
by the assumption. If not then there must be a default ϕ:ψ1,...,ψm

χ ∈ D with
ϕ ∈ E and ψ1, . . . , ψm /∈ E. But then obviously ϕ:ψ1,...,ψm

χ is a generating
default, hence χ ∈ {con(δ) | δ ∈ GD(E,∆)}), which concludes the inclusion
E ⊆ Th(W ∪ {con(δ) | δ ∈ GD(E,∆)}).

As for the reverse inclusion, it is obvious from the definition of extensions
that if δ is a generating default for an extension E then con(δ) ∈ E. Then, for
the other inclusion, it follows that {con(δ) | δ ∈ GD(E,∆)} ⊆ E. Subsequently
it is obvious that Th(W ∪ {con(δ) | δ ∈ GD(E,∆)}) ⊆ E. �

2.2 Autoepistemic logic

In contrast to Reiter’s default logic, Moore’s autoepistemic logic doesn’t contain
non-standard default rules, but contains a modal operator L, which stands for
knowing something, in order for an agent to reason about his own knowledge1.
We will denote the autoepistemic language, i.e. the language L of propositional
logic plus the modal operator L, by Lae. Formulas of Lae are called ae-formulas

1In some literature (for example that of Marek and Truszczyński) the letter K is used in
stead of L. Also, M is often used as the dual of L or K; we will simply write ¬L¬ instead.
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and sets of ae-formulas are called ae-theories. The semantics of autoepistemic
logic are, similar to default logic, defined in knowledge sets which are here called
stable expansions, or simply expansions. The key property of these knowledge
sets are positive and negative introspection. This means that if you know ϕ then
you know that you know ϕ (positive introspection) and if you don’t know ϕ
then you know that you don’t know ϕ (negative introspection). Given some
set of facts T , we thus want expansions of T (the knowledge induced by T ) to
include LT , L¬T c, LLT , and so on. (For any set of formulas S ⊆ Lae we write
Sc for Lae\S.)

Definition 2.10. Let T and E be sets of ae-formulas. Denote {Lϕ | ϕ ∈ E} by
LE and {¬Lϕ | ϕ /∈ E} by ¬LEc. Also, let ΩT (E) = {ϕ | T ∪LE∪¬LEc � ϕ}.
Then E is called an expansion of T if and only if E = ΩT (E).

Note that the definition of expansions, like the definition of extensions, is
not a constructive one, since there is a self-reference in the requirement that
E = ΩT (E) = {ϕ | T ∪ LE ∪ ¬LEc � ϕ}, i.e. we have to guess a set E
and subsequently check wether it fulfills the requirements. We will give some
examples is the following section.

2.2.1 Properties of autoepistemic logic

The degree of an ae-formula ϕ (written deg(ϕ)) is the maximal depth of L-
nesting occurring in ϕ:

• if ϕ ∈ L then deg(ϕ) = 0,

• deg(¬ϕ) = deg(ϕ),

• deg(ϕ ∧ ψ) = max(ϕ,ψ),

• deg(ϕ ∨ ψ) = max(ϕ,ψ),

• deg(Lϕ) = deg(ϕ) + 1.

For an ae-theory T we denote the set of formulas in T with degree less than or
equal to n by Tn. The nonmodal or propositional part of T , i.e. T0, is called
the kernel of T . The set Lae0 is simply the set of propositional, or non-modal,
formulas L.

The following notion, that of stable sets, is very important for autoepistemic
logic, especially because of theorems 2.12 and 2.14.

Definition 2.11. An ae-theory E is called stable if and only if

• E is deductively closed, i.e. Th(E) = E,

• if ϕ ∈ E then also Lϕ ∈ E,

• if ϕ /∈ E then also ¬Lϕ ∈ E.
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Theorem 2.12. Let T and E be ae-theories. Then the following are equivalent:

(a) E is an expansion of T

(b) E is stable, contains T and satisfies E ⊆ ΩT (E).

Proof: by definition 2.10, (a) implies (b). Conversely, we only have to
show that ΩT (E) ⊆ E. By stability of E, we have that Th(E) = E and
that LE ∪ ¬LEc ⊆ E. Since by assumption E also contains T , we get that
ΩT (E) = Th(T ∪ LE ∪ ¬LEc) ⊆ E. �

Theorem 2.14 states that two stable sets are the same if their kernels are
the same. In particular this also holds for expansions, as we now know by
the previous theorem that expansions are stable sets. The theorem uses the
following lemma.

Lemma 2.13. Every ae-formula ϕ is equivalent to a formula ϕ′ (with the same
degree as ϕ) of the form ϕ0 ∧ . . . ∧ ϕn, where each ϕi is of the form

ϕi = ϕi,0 ∨ Lϕi,1 ∨ . . . ∨ Lϕi,pi
∨ ¬Lϕi,pi+1 ∨ . . . ∨ ¬Lϕi,qi

, (1)

where ϕi,0 ∈ L and deg(ϕi,j) < deg(ϕi). Formulas of the form of ϕ′ are said to
be in normal form.

Proof: The proof is very well-know and will be omitted. For a reference, see
[1]. �

Theorem 2.14. Let E and F be stable sets. Then E0 = F0 implies E = F .

Proof: By induction on the degree of L-nesting, we will prove that ϕ ∈ E
iff ϕ ∈ F . For formulas with degree 0 this is given by the assumption E0 = F0.
Now assume that the claim holds for formulas with degree less or equal to d
and let the degree of ϕ be d + 1. As we explained before, ϕ is equivalent to
ϕ0 ∧ . . . ∧ ϕn, where

ϕi = ψi,0 ∨ Lψi,1 ∨ . . . ∨ Lψi,pi ∨ ¬Lψi,pi+1 ∨ . . . ∨ ¬Lψi,qi ,

where ψi,0 is a non-modal formula and deg(ψi,j) < d + 1 for j = 1, . . . j = qi.
Since E and F are deductively closed, it suffices to prove ϕi ∈ E iff ϕi ∈ F for
an arbitrary i.

Case 1: Suppose ψi,j ∈ E for some j ∈ {1, . . . , pi}. Then by the induction
hypothesis also ψi,j ∈ F , since deg(ψi,j) ≤ d. By stability of E and F it
follows that Lψi,j ∈ E,F and thus ϕi ∈ E,F .

Case 2: Suppose ψi,k /∈ E for some k ∈ {pi + 1, . . . qi}. Then again by the
induction hypothesis ψi,k /∈ F . By stability then ¬Lψi,k ∈ E,F and thus
ϕi ∈ E,F .
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Case 3: Suppose case 1 and 2 do not hold, i.e. that ψi,j /∈ E for all j ∈
{1, . . . , pi} and ψi,k ∈ E for all k ∈ {pi + 1, . . . , qi}. By induction hy-
pothesis and stability ¬Lψi,1, . . .¬Lψi,pi

, Lψi,pi+1, . . . Lψi,qi
∈ E,F . By

deductive closure and the assumption E0 = F0 it follows that ϕi ∈ E iff
ψi,0 ∈ E iff ψi,0 ∈ F iff ϕi ∈ F . �

As we explained, the definition of expansions of an ae-theory T are non-
constructive. The following theorem gives a somewhat more constructive way of
finding expansions, similar to theorem 2.4 for finding extensions. Also, it proves
that every deductively closed first order theory is the kernel of an expansion.
In the theorem we write T �E ϕ for T ∪ LE ∪ ¬LEc � ϕ. In [1] the entailment
relation T �E ϕ is called “deduction of ϕ from T with belief set E”. Note that
E is an expansion of T if and only if E = {ϕ | T �E ϕ}.

Theorem 2.15. Let T ⊆ L be a deductively closed set of non-modal formulas.
Then E =

⋃
nE(n) is a stable set with kernel T , where E(n) is inductively

defined as follows:

E(0) = T,

E(n+ 1) = {ϕ ∈ Laen+1 | T �E(n) ϕ}.

Consequently, E is an expansion of T .

Proof: Firstly we show by induction on n that E(n) = E(n + 1)n. As the
base case,

E(1)0 = {ϕ ∈ Lae1 | T �E(0) ϕ}0
= {ϕ ∈ Lae0 | T �E(0) ϕ}
= {ϕ ∈ Lae0 | T � ϕ}
= T = E(0).

(The second and third step are validated by the fact that T is a deductively
closed set of first order formulas.) Next, assume as an induction hypothesis
that E(n) = E(n+ 1)n. Then

E(n+ 2)n+1 = {ϕ ∈ Laen+2 | T �E(n+1) ϕ}n+1

= {ϕ ∈ Laen+1 | T �E(n+1) ϕ}
= {ϕ ∈ Laen+1 | T �E(n+1)n

ϕ}
= {ϕ ∈ Laen+1 | T �E(n) ϕ}
= E(n+ 1).

The third step is validated by the fact that {ϕ | T∪LE(n+1)∪¬LE(n+1)c � ϕ}
restricted to L(n+1) is the same as {ϕ | T ∪ LE(n) ∪ ¬LE(n)c � ϕ}. In partic-
ular, we have that E(n) ⊆ E(n+ 1). It is obvious that E is deductively closed
and that T = E0, so we only have to prove that E is stable. Let ϕ ∈ E. Then
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for some n, ϕ ∈ E(n). Then also Lϕ ∈ E(n+ 1) and so Lϕ ∈ E. Also, if ϕ /∈ E
and ϕ ∈ Laen+1 then ϕ /∈ E(n), hence T �E(n) ¬Lϕ and so ¬Lϕ ∈ E. This
proves stability of E. �

2.3 Link between default and autoepistemic logic

Given the two nonmonotonic formalisms, one wonders about the link between
the two. As we saw, problems can be attacked by both formalisms with sim-
ilar outcomes, for example the Tweety example. Konolige proposed in [12] to
translate a default

ϕ : ψ1, . . . , ψn
χ

(2)

into the ae-formula

Lϕ ∧ ¬L¬ψ1 ∧ . . . ∧ ¬L¬ψn → χ. (3)

Certainly this seems legitimate, if one recalls that the default ϕ:ψ1,...,ψn

χ would
be explained as “if we know that ϕ and it is consistent to assume that ψ1, . . . ψn,
then conclude χ” which can be interpreted as “if we know that ϕ and we don’t
know that not ψ1, . . . ψn, then conclude χ”. The latter is easily interpreted in
autoepistemic logic as Lϕ∧¬L¬ψ1∧ . . .∧¬L¬ψn → χ. We call this translation
from default logic to autoepistemic logic the Konolige translation; for a default
δ of the form (2), let its Konolige translation kon(δ) be the ae-formula (3).
For a set of defaults D, let kon(D) = {kon(δ) | δ ∈ D}. For a default theory
∆ = (D,W ), its Konolige translation kon(∆) is then defined as the ae-theory
W ∪ kon(D).

There is a problem, though. Although the extensions of default theories
correspond to expansions of their Konolige translation, the opposite is not guar-
anteed. In other words, the set of extensions corresponds to a subset of the set
of expansions under Konolige translation.

Example 2.16. As an example, consider the default theory

∆ = (∅, {p : true
p
})

and the Konolige translation

kon(∆) = {Lp ∧ ¬L¬true→ p}.

The autoepistemic theory kon(∆) has two expansions; with kernels Th(∅) and
Th({p}) respectively. Namely, if we decide to believe in nothing, this turns
out to be a stable set containing kon(∆), since Lp ∧ ¬L¬true → p is satisfied
vacuously, and if we decide to believe in p, this also turns out to be a stable
set containing kon(D), since Lp ∧ ¬L¬true → p is satisfied. Now consider the
default theory ∆. The set Th(∅) (which is the kernel of one of the expansions
of kon(∆)) is an extension of ∆, since it obviously satisfies D1-D3 and thus is
a fixpoint of the operator Γ∆. The set Th(p) however is not an extension of ∆,
for in this case the least set Γ∆(Th(p)) such that
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D1 ∅ ⊆ Γ∆(Th(p)),

D2 Th(Γ∆(Th(p))) = Γ∆(Th(p))

D3 if p ∈ Γ∆(Th(p)) and Th(p) 0 ¬true then p ∈ Γ∆(Th(p))

is Th(∅); Th(p) evidently is not a fixpoint of Γ∆ and thus not an extension. �

The “deciding to believe in p” that we used in the autoepistemic example is
an option default logic doesn’t have; the belief in p has to be justified by either
the set of facts or by another default. In this case: since the prerequisite p of the
only default will never be known (since it is not provided by the set of facts, nor
by any other default), the default can never be applied in an extension. This is
how Denecker et al. explain that

“the autoepistemic logic of Moore could be viewed as a nonmono-
tonic logic of belief and the default logic of Reiter could be viewed
as a nonmonotonic logic of justified belief” [8].

Many have tried since, but eventually

“Gottlob [11] proved that a modular translation from default logic
with the semantics of extensions to autoepistemic logic with the
semantics of expansions does not exist. In conclusion, there is no
modal interpretation of a default under which extensions would cor-
respond to expansions” [8].

However, Konolige’s translation has turned out to be very useful after all.
As Konolige himself proposed, default logic can be embedded into a version of
autoepistemic logic, in which extensions relate to strongly grounded expansions
under Konolige translation [12]. To be more precise, he proved that if ∆ is a
default theory and T = kon(∆) its Konolige translation, then the extensions of
∆ are in one-to-one correspondence to the strongly grounded expansions of T .
Moreover, Marek and Truszczyński [13] proposed the concept of weak extensions,
an alternative semantics for default logic, which correspond to expansions under
Konolige translation. That is, the weak extensions of a default theory ∆ are in
one-to-one correspondence with the expansions of the ae-theory T = kon(∆).
However, the link between default logic and autoepistemic logic does not stop
here.

An underlying, unifying structure of default logic and autoepistemic logic has
been extensively studied by Denecker, Marek and Truszczyński. It was found
with help of possible world structures; collections of two-valued interpretations
each representing a state of the world that is possible according to the agents
beliefs. Moore [16] already used this alternative framework for autoepistemic
logic and provided for an alternative characterization, given in section 3.2. These
works of Denecker, Marek and Truszczyński are explained in the next section.
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3 Possible world semantics

In this chapter we will explain how Denecker, Marek and Truszczyński united de-
fault logic and autoepistemic logic with use of possible world structures. Next to
Reiter’s extensions they described three other semantics for default logic: weak
extensions, partial extensions and partial expansions. Also, next to Moore’s
expansions they described three other semantics for autoepistemic logic: exten-
sions2, partial extensions and partial expansions. Their main contribution is
proving that the Konolige translation connects precisely the extensions, weak
extensions, partial extensions and partial expansions of default logic with the ex-
tensions, expansions, partial extensions and partial expansions of autoepistemic
logic, respectively.

3.1 An example of possible world semantics

We will consider the autoepistemic language Lae (the propositional language
L with one modal operator L; in examples we will use appropriate indices in
stead of the index ae). A two-valued interpretation or simply interpretation
is a function assigning to each propositional letter in the given propositional
language L one of the values true and false. The set of all interpretations of
L will be denoted by A (with appropriate index). A possible world structure is
a set of interpretations (it can be seen as a universal Kripke model with total
accessibility relation with the possibility of an empty set of interpretations).
The possible world structures represent an agent’s knowledge about the actual
world. The set of all possible world structures 2A will be denoted by W (with
appropriate index).

To get an idea of how possible world structures work, we will look at a
simplified version of the Tweety example from the introduction.

Example 3.1. Since the facts that Tweety is a bird and a penguin are given
in the example, we consider the autoepistemic language Lf with only f (for
“Tweety flies”) as an atom. Then there are just two possible interpretations,
namely:

If : f 7→ true

I¬f : f 7→ false

We will denote the set of interpretations {If , I¬f} by Af . The four subsets of
Af are the possible world structures in this example: ∅, {If}, {I¬f} and Af
itself. They represent an agent’s knowledge about the world. For instance, in
the possible world structure {If} the agent knows that Tweety flies, whereas
in the possible world structure Af the agent holds it possible that Tweety flies
(If ) or not (I¬f ); all options are left open. In the possible world structure ∅
there are no options at all; every assertion about the ability to fly is considered

2The extensions for autoepistemic logic are what Konolige [12] called strongly grounded
expansions.
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true and thus the agent has an inconsistent theory about the world. �

In general, the more interpretations we include in a possible world structure,
the more the agent holds possible, so the less he actually knows for sure. In
particular in the structure A itself (or Af in the example above) everything
is possible and nothing is certain. Therefore, the agents knowledge about the
actual world decreases when including more interpretations. That justifies the
following order: given a collection of possible world structures W, it can be
ordered by reverse set inclusion, also called the knowledge ordering. For all
Q,Q′ ∈ W, let

Q v Q′ if and only if Q′ ⊆ Q.
The structure 〈W,v〉 is a complete lattice: if Q,Q′ ∈ W then Q∪Q′ is obviously
the least upper bound of Q and Q′ with respect to the subset ordering ⊆, so
Q ∪Q′ is the greatest lower bound of Q and Q′ with respect to the knowledge
ordering v. Similarly, Q ∩ Q′ is the ⊆-greatest lower bound and the v-least
upper bound of Q and Q′.

We will first give a two-valued truth function HQ,I : Lae → {true, false},
given a possible world structure Q ⊆ W and an interpretation I ∈ A by induc-
tion on formulas. This truth function will give the truth values of ae-formulas
relative to Q and I. The possible world structure Q represents the set of pos-
sible states that the agent believes the actual world to be in as we explained
above; the interpretation I represents the actual world.

Definition 3.2. The truth function HQ,I will give truth values to formulas
relative to the knowledge state Q of the agent and the actual world I as follows:

1. HQ,I(p) = I(p), if p is a propositional letter,

2. HQ,I(ϕ ∧ ψ) = true if and only if HQ,I(ϕ) = HQ,I(ψ) = true,

3. HQ,I(ϕ ∨ ψ) = true if and only if HQ,I(ϕ) = true or HQ,I(ψ) = true,

4. HQ,I(¬ϕ) = true if and only if HQ,I(ϕ) = false,

5. HQ,I(Lϕ) = true if and only if for every J ∈ Q,HQ,J(ϕ) = true.

Note that the value of Lϕ entirely depends on Q (knowing something will
indeed only depend on the agent’s knowledge state, not on the actual world);
we will illustrate this by writing HQ(Lϕ) in stead of HQ,I(Lϕ). The theory of
a possible world structure Q is defined as

ThL(Q) = {ϕ | HQ(Lϕ) = true}.

This means that ThL(Q) contains the formulas that the agent believes to be true.
For instance in example 3.1 above the theory of the possible world structure {If}
contains f . Namely,

f ∈ ThL({If}) iff H{If}(Lf) = true

iff H{If},J(f) = true for every J ∈ {If}
iff If (f) = true (which is certainly the case.)
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But then also LLf ∈ Th({If}) namely

Lf ∈ ThL({If}) iff H{If}(LLf) = true

iff H{If},J(Lf) = true for every J ∈ {If}
iff H{If}(Lf) = true

(since the value of Lf only depends on {If})
iff H{If},J(f) = true for every J ∈ {If}
iff If (f) = true.

Notice that this is an instance of positive introspection. We will indeed
see that H plays an important role in the definition of expansions (and other
semantics) in terms of possible world structures.

3.2 Possible world semantics for autoepistemic logic

In this section we will firstly present the operator DT on the lattice 〈W,v〉 and
prove that its fixpoints correspond exactly to the expansions of an autoepistemic
theory T . Then we will present the notion of approximations of possible world
structures, which are certain pairs of possible world structures (P, S). Next, we
will present partial expansions, which are the fixpoints of the operator DT on
pairs of possible world structures. This operator can be seen as a generalization
of DT to pairs of possible world structures. Then, from DT , we will derive
another operator on 〈W,v〉 denoted by Dst

T . The fixpoints of Dst
T will later be

proven to correspond precisely to the extensions of default logic. That is, if ∆
is a default theory and T = kon(∆) its Konolige translation, then the fixpoints
of Dst

T correspond precisely to the extensions of ∆. Hence we will call these
fixpoints the extensions of T 3.

All those operators represent an agent’s revising his belief set. This means
that given a possible world structure Q that represents his belief set, the agent
can revise his belief set with help of such an operator, such that the revision is
a “better” belief set (“better” in ways we will explain).

3.2.1 Characterization of expansions

Firstly, to clear up any confusion that might occur, we should again explicitly
distinguish the two operators with similar notation: Th() and ThL(). The first
is simply logical consequence and will be taken over sets of formulas, the second
is defined over possible world structures as follows: ThL(Q) = {ϕ | HQ(Lϕ) =
true}.

Let T be an ae-theory and Q a possible world structure. Given the brief
preview above, we define the operator DT :W →W as follows:

DT (Q) = {I | HQ,I(ϕ) = true for all ϕ ∈ T}.
3As we mentioned before, note that the extensions of T are sometimes also called the

strongly grounded expansions of T
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Moore [16] described the following characterization of expansions, which we
provide with a much more detailed proof.

Theorem 3.3. Let T ⊆ Lae. A theory E ⊆ Lae is an expansion of T if and
only if E = ThL(Q) for some possible world structure Q such that Q = DT (Q).

Proof:

“⇐” Let Q be a possible world structure such that Q = DT (Q) and let E =
ThL(Q) = {ϕ | HQ(Lϕ) = true}. Then we need to show that E is an
expansion of T , i.e. that E = Th(T ∪ LE ∪ ¬LEc).

1. “T ⊆ E”: let ϕ ∈ T . Then for all I ∈ DT (Q),HQ,I(ϕ) = true. Since
Q = DT (Q), it follows that for all I ∈ Q,HQ,I(ϕ) = true, hence
HQ(Lϕ) = true, so ϕ ∈ ThL(Q) = E. This proves that T ⊆ E.

2. “LE ⊆ E”: let ϕ ∈ E, i.e. HQ(Lϕ) = true. Since HQ(Lϕ) is an
abbreviation of HQ,I(Lϕ) (because HQ,I(Lϕ) only depends on Q,
not on I), this means that HQ,I(Lϕ) = true for all I. But then in
particular HQ,I(Lϕ) = true for all I ∈ Q, so HQ(LLϕ) = true, hence
Lϕ ∈ E.

3. “¬LEc ⊆ E”: let ϕ /∈ E, i.e. HQ(Lϕ) = false. This means, again
because the truth value HQ,I(Lψ) only depends on Q, not on I, that
HQ,I(Lϕ) = false for all I, and thus that HQ,I(¬Lϕ) = true for
all I. In particular this is so for all I ∈ Q, hence we can conclude
HQ(L¬Lϕ) = true, and thus that ¬Lϕ ∈ E.

4. “Th(E) ⊆ E”: let ψ0 ∧ . . . ∧ ψn ` ϕ and let ψ0, . . . ψn ∈ E, i.e.
HQ(Lψi) = true for each i ∈ {0, . . . , n}. Then we need to show
that ϕ ∈ E. By an easy induction on n it follows that HQ,I(L(ψ0 ∧
. . . ∧ ψn)) = true for all I ∈ Q. (Namely, because HQ(Lψi) =
true for each i, we know that for each I ∈ Q, HQ,I(ψi) for each i,
and thus for each I ∈ Q, HQ,I(ψ0 ∧ . . . ∧ ψn), and thus that that
HQ(L(ψ0 ∧ . . . ∧ ψn)).) Also, ψ0 ∧ . . . ∧ ψn → ϕ is a tautology
and since all interpretations make tautologies true it follows that
HQ,I(ψ0 ∧ . . . ∧ ψn → ϕ) = true for all I ∈ Q. It is easy to see
that HQ,I(ϕ) = true for all I ∈ Q, and thus that ϕ ∈ E. (Namely,
HQ,I((ψ0 ∧ . . . ∧ ψn) → ϕ) = true iff HQ,I(ϕ) = true whenever
HQ,I(ψ0 ∧ . . . ∧ ψn) = true.)

5. “E ⊆ Th(T ∪ LE ∪ LEc): suppose the opposite, i.e. let ϕ ∈ E
and ϕ /∈ Th(T ∪ LE ∪ LEc). Note that T cannot be inconsistent,
for then ϕ would be included. Then by deductive closure ¬ϕ ∈
Th(T ∪ LE ∪ LEc)and hence, by steps 1 to 4, ¬ϕ ∈ E. This means
that by 4 E = For. Now, since Q is such that E = ThL(Q) and E
is inconsistent, it follows that Q = ∅, since for no interpretation I,
HQ,I(⊥) = true. But then by the consistency of T , DT (Q) cannot
be empty, hence Q 6= DT (Q).
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“⇒” : Let E be an expansion of T , i.e. E = Th(T ∪LE∪¬LEc). Then we need
to show that there is a possible world structure Q such that Q = DT (Q)
and E = ThL(Q). Stable sets, and thus expansions in particular, are
completely determined by their kernel. Moreover, any expansion E of T
is also an expansion of its kernel E0, i.e. E = Th(E0∪LE ∪¬LEc). Now,
if ϕ is a propositional formula (without occurrences of the modal operator
L) then the truth value HQ,I(ϕ) depends entirely on the interpretation I
and not on Q, so that the following possible world structure is well defined:

Q := {I | I(ϕ) = true for all ϕ ∈ E0}
= {I | HQ,I(ϕ) = true for all ϕ ∈ E0}
= DE0(Q)

We will show that E = ThL(Q) and that Q = DT (Q):

• “E ⊆ ThL(Q)”: We can construct the expansion E as follows: E =⋃
nE(n), where E(0) := E0 andE(n+1) := {ϕ ∈ Laen+1 | E(0) �E(n)

ϕ}(Theorem 9.5 in [1]). Now we can prove by induction on n that
E(n) ⊆ ThL(Q), thus concluding that E ⊆ ThL(Q). For n = 0, it
is obvious that E(0) ⊆ ThL(Q), since by our definition of Q, for all
ϕ ∈ E0 and all I ∈ Q, HQ,I(ϕ) = true and so E0 ⊆ ThL(Q). Now
suppose that E(n) ⊆ ThL(Q) and that E0 �E(n) ϕ with ϕ ∈ Laen+1 .
The only relevant case is if ϕ = Lψ, with ψ ∈ E(n) (since all sets
E(k) we are talking about are deductively closed and HQ,I respects
logical consequence). But then by assumption ψ ∈ ThL(Q), hence
for all I ∈ Q, HQ,I(ψ) = true, so also HQ(Lψ) = true and thus
Lψ ∈ ThL(Q).

• “E ⊇ ThL(Q)”: we will show the equivalent statement Ec ⊆ (ThL(Q))c.
Suppose ϕ /∈ E. Then, since ¬LEc ∈ E, ¬Lϕ ∈ E. Since we just
proved that E ⊆ ThL(Q), it follows that HQ(L¬Lϕ) = true, hence
HQ,I(¬Lϕ) = true. It follows that there is some I ∈ Q such that
HQ,I(ϕ) = false, and thus that ϕ /∈ ThL(Q).

• “Q ⊆ DT (Q)”: this follows from the above, in the following way.
Since E = ThL(Q), it follows that HQ,I(ϕ) = true for all I ∈ Q
if and only if ϕ ∈ E. Now, since T ⊆ E, it follows that for all
I ∈ Q,HQ,I(ϕ) = true for all ϕ ∈ T , and so that each I ∈ Q is also
in DT (Q).

• “Q ⊇ DT (Q)”: let I be such that HQ,I(T ) = true. Then we need to
show that I ∈ Q, i.e. that HQ,I(E0) = true as well. Since we showed
that E = ThL(Q), i.e. ϕ ∈ E iff HQ(Lϕ) = true, we know that
both HQ,I(LE) = true and that HQ,I(¬LEc) = true. Now, since E
is the set of logical consequences of T ∪ LE ∪ ¬LEc and the truth
function HQ,I respects logical consequence, HQ,I(E) = true, so also
HQ,I(E0) = true. �

18



As theorem 3.3 is stated, it gives no definite answer on whether the possible
world structure given in the proof, namely Q = DE0(Q) is the only structure
that satisfies the theorem. The following proposition shows that it is in fact
unique.

Proposition 3.4. Let Q,Q′ be two different fixpoints of DT , i.e. Q 6= Q′,
DT (Q) = Q and DT (Q′) = Q′. Then ThL(Q) 6= ThL(Q′). Consequently, if E
is an expansion of T then the possible world structure P such that P = DT (P )
and E = ThL(P ) given by theorem 3.3 is unique.

Proof: Suppose for a contradiction that ThL(Q) = ThL(Q′), i.e.

{ϕ | HQ(Lϕ) = true} = {ϕ | HQ′(Lϕ) = true}. (4)

Then an easy induction will show that precisely the same interpretations I
deliver the same truth values in HQ,I(ϕ) and HQ′,I(ϕ), namely:

• if p is a propositional letter then HQ,I(p) = I(p) = HQ′,I(p),

When we assume as an induction hypothesis that HQ,I(ϕi) = HQ′,I(ϕi) for
i = 1, 2 then it’s obvious by definition 3.2 that

• HQ,I(ϕ1 ∧ ϕ2) = HQ′,I(ϕ1 ∧ ϕ2),

• HQ,I(ϕ1 ∨ ϕ2) = HQ′,I(ϕ1 ∨ ϕ2),

• HQ,I(¬ϕ1) = HQ′,I(¬ϕ1),

• HQ(Lϕ) = HQ′(Lϕ) (by 4).

It follows directly that {I | HQ,I(ϕ) = true} = {I | HQ′,I(ϕ) = true} and so
that DT (Q) = DT (Q′). This is a contradiction with the facts that Q 6= Q′

and Q = DT (Q) and DT (Q′), thus the possible world structure talked about in
theorem 3.3 is unique. �

To illustrate the above, consider the following example.

Example 3.5. Consider the ae-language Lp with the only atom p and let T =
{¬Lp}, i.e., the only thing the agent knows is that he doesn’t know p. The
relevant interpretations are of course Ip : p 7→ true and I¬p : p 7→ false. The
four possible world structures are then Ap = {Ip, I¬p}, Ip = {Ip}, I¬p = {I¬p}
and ∅. Let us look at what the operator DT does with a possible world structure
Q:

DT (Q) = {I | HQ,I(¬Lp) = true for all I ∈ Q}
= {I | HQ,I(Lp) = false for all I ∈ Q}

Now, since the falsity of Lp does not depend on I, but solely on Q, we get that

DT (Q) = Ap if HQ(Lp) = false, and
DT (Q) = ∅ if HQ(Lp) = true.
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Thus, we get the following table, in which we can read that the expansions of
T are Ap and ∅:

Q Ap I¬p Ip ∅
DT (Q) Ap Ap ∅ ∅

Indeed, to come to a stable set with the only knowledge that you don’t
know p, you can either decide to believe in nothing (Ap) or decide to believe in
everything (∅), which is of course inconsistent. �

3.2.2 Approximating possible world structures

Now that we got interested in fixpoints of the operator DT , it’s time to look for
ways of finding them. Denecker et al. [8] used the concept of approximations of
possible world structures. If someone would have to give an estimate for which
formulas are included in some given ae-theory T , a conservative guess would be
an underestimate, i.e. one would only include formulas of which he was certain,
while a liberal guess would be an overestimate. An approximation of T is a tuple
of ae-theories (V,W ) such that V is a conservative estimate (an underestimate)
of T and W a liberal one (overestimate), i.e. V ⊆ T ⊆ W . Similarly, if Q is
a possible world structure, an approximation of Q is a tuple of possible world
structures (P, S) such that P v Q v S. We use the knowledge ordering v for
the reasons explained in section 3.1: recall that Q v Q′ if and only if Q′ ⊆ Q
and that the larger a set of interpretations is, the more the agent holds possible
and the less he knows for certain. This means that when P v Q v S, the
knowledge represented by S is more than that of Q and thus is an overestimate.
Similarly, P represents an underestimate of the knowledge represented by Q. A
pair of possible world structures (P, S) is called a belief pair ; if also P v S then
we call (P, S) a consistent belief pair; a pair (P, P ) is called a complete belief
pair. When a term refers to a belief pair the indices ( )1 and ( )2 refer to the first
and second component of the pair respectively; for example if T = (P, S) then
T1 = P and T2 = S. The set of belief pairs is denoted by B (with appropriate
index). In particular a consistent belief pair (P, S) approximates all Q such that
P v Q v S. Some argue that only consistent pairs are in order in this context,
since inconsistent pairs do not approximate anything, and its hard to imagine
what an inconsistent belief pair would mean for an agent. For an account of
approximation theory restricted to consistent belief pairs, see [9]. We order the
set of belief pairs with the so-called precision order �pr as follows:

(P, S) �pr (P ′, S′) iff P v P ′ and S′ v S.

Another order on B is the knowledge ordering v; it is the component-wise
extension of the knowledge ordering v on W (and consequently has got the
same notation and terminology):

(P, S) v (P ′, S′) if P v P ′ and S v S′.

The knowledge ordering plays only a very small role in this thesis.
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To illustrate the precision ordering, suppose that (P, S) and (P ′, S′) approx-
imate some Q, i.e. both P v Q v S and P ′ v Q v S′. If P ′ is a better (more
accurate) v-underestimate to Q than P is (so P v P ′ v Q), and S′ is a better
v-overestimate to Q than S (so Q v S′ v S), we say that (P ′, S′) is a more
precise approximation of Q than (P, S). That is

(P, S) �pr (P ′, S′) iff (P ′, S′)P v P ′ v Q v S′ v S,

(so note that v-larger pairs are the more precise ones).
The following lemma will often be used further on.

Lemma 3.6. (P, S) �pr (P ′, S′) if and only if (S′, P ′) �pr (S, P ).

Proof: (P, S) �pr (P ′, S′) if and only if P ′ v P and S v S′ if and only if
(S′, P ′) �pr (S, P ) �

Lemma 3.7. 〈B,�pr〉 is a complete lattice

Proof: for a set of belief pairs B = {(Pi, Si) ∈ B | i ∈ I} the following hold

• (
⋃
i∈I Pi,

⋂
i∈I Si) is the �pr-greatest lower bound, since

⋃
i∈I Pi v Pi for

all i and is the v-least to do so and Si v
⋂
i∈I Si for all i and is the

v-greatest to do so. Consequently, (
⋃
i∈I Pi,

⋂
i∈I Si) is the �pr-greatest

lower bound of B,

• analogously, (
⋂
i∈I Pi,

⋃
i∈I Si) is the �pr-least upper bound of B. �

The relevance of the fact that 〈B,v〉 is a complete lattice is in the well-
known theorem by Tarksi [21], inspired by Knaster [2], which states that a
monotone operator on a complete lattice has a least fixpoint. We will namely
define a monotone operator DT on the lattice B, whose fixpoints are the partial
expansions. The Knaster-Tarski theorem will then assure us that there is indeed
at least one partial expansion. Also, it states that the fixpoints of a monotone
operator on a complete lattice form a complete lattice itself. We denote the
least fixpoint of an operator O by lfp(O) and the greatest fixpoint by gfp(O).
The proof is very well-known and will be omitted.

Theorem 3.8. (Knaster-Tarksi) Let 〈L,≤〉 be a complete lattice, O : L→ L a
monotone operator on L, i.e. if x ≤ y then O(x) ≤ O(y). Then

(a) lfp(O) =
∧
{x | O(x) ≤ x} and

(b) the fixpoints of O form a complete lattice with the ordering ≤. �

For any autoepistemic theory T we will define the operator DT : B → B. It
represents the revising of ones approximation of the real world: if an agent has
a conservative estimate P of the world and a liberal estimate S, then DT (P, S)
will give a new (and more precise) conservative estimate P ′ and a new (and
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more precise) estimate S′. In order to do this we will provide ae-formulas with
a conservative truth value and a liberal truth value, given a belief pair (P, S) ∈ B
which represents an approximation for the agents belief set. Fortunately, we only
have to define a two-valued conservative truth functionH2

(P,S),I in order to do so;
the liberal truth value will be found by switching the roles of the underestimate
and overestimate in the conservative truth function. Given a belief pair (P, S)
and an interpretation I, the function H2

(P,S),I : Lae → {true, false} is defined
inductively as follows:

1. H2
(P,S),I(p) = I(p), if p is a propositional letter,

2. H2
(P,S),I(ϕ ∧ ψ) = true iff H2

(P,S),I(ϕ) = true and H2
(P,S),I(ψ) = true,

3. H2
(P,S),I(ϕ ∨ ψ) = true iff H2

(P,S),I(ϕ) = true or H2
(P,S),I(ψ) = true,

4. H2
(P,S),I(¬ϕ) = ¬H2

(S,P ),I(ϕ),

5. H2
(P,S),I(Lϕ) = true iff H2

(P,S),J(ϕ) = true for all J ∈ P .

Steps 1, 2 and 3 are straightforward. The key steps are 4 and 5, since these
ensure the conservative nature of H2

(P,S),I . Consider a formula ϕ ∈ Lae. Step
5 explains that Lϕ is evaluated only with respect to the conservative belief set
P . If we consider the negated formula ¬Lϕ however, step 4 explains that we
should switch the roles of the conservative and the liberal belief set; ¬Lϕ is
true with respect to a conservative approach if Lϕ is false with respect to a
liberal approach. Or in other words, to obtain the conservative estimate for
the truth value of a formula ϕ, modal subformulas that appear positively in ϕ
must be evaluated according to the conservative point of view (i.e. with respect
to P ) while modal subformulas that appear negatively in ϕ must be evaluated
according to the liberal point of view (i.e. with respect to S).

The following lemma states that the conservative truth value and the liberal
truth value with respect to a complete belief pair (P, P ) are the same, and
that they are equal to the truth value with respect to the only possible world
structure that (P, P ) approximates, namely P .

Lemma 3.9. Let P ∈ W, ϕ ∈ Lae, I ∈ A. Then H2
(P,P ),I(ϕ) = HP,I(ϕ).

Proof: The statement follow directly from the definitions ofHP,I andH2
P,I .�

Let≤ be the ordering of the truth values true and false, where false ≤ true.
The following proposition states that the conservative truth value of a formula
with respect to a belief pair is as least as true with respect to less precise belief
pairs. The opposite holds for the liberal truth value.

Proposition 3.10. Let (P, S), (P ′, S′) ∈ B such that (P, S) �pr (P ′, S′). Let
ϕ ∈ Lae, I ∈ A. Then H2

(P,S),I(ϕ) ≤ H2
(P ′,S′),I(ϕ).
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Proof: If H2
(P,S),I(ϕ) = false the inequality holds trivially, so we need to

show that if H2
(P,S),I(ϕ) = true then H2

(P ′,S′),I(ϕ) = true; we will do so by in-
duction on ae-formulas. If ϕ ∈ L then the two values only depend on I and thus
are the same. As the induction hypothesis, let the claim hold for ϕ and ψ. Then
the claim holds trivially for ϕ ∧ ψ and ϕ ∨ ψ. Now let H2

(P,S),I(Lϕ) = true, i.e.
H2

(P,S),J(ϕ) = true for all J ∈ P . By the hypothesis then also H2
(P ′,S′),J(ϕ) =

true for all J ∈ P . Since (P, S) �pr (P ′, S′), P v P ′, i.e. P ′ ⊆ P , so then
also H2

(P ′,S′),J(ϕ) = true for all J ∈ P ′ and so H2
(P ′,S′),I(Lϕ) = true. To

conclude the induction, let H2
(P,S),I(¬ϕ) = true, i.e. H2

(S,P ),I(ϕ) = false. Be-
cause of (P, S) �pr (P ′, S′), we also have that (S′, P ′) �pr (S, P ), hence by
the induction hypothesis H2

(S′,P ′),I(ϕ) ≤ H2
(S,P ),I(ϕ) = false. It follows that

H2
(S′,P ′),I(ϕ) = false and thus that H2

(P ′,S),I(¬ϕ) = true. This concludes the
proposition. �

3.2.3 Partial expansions for autoepistemic logic

The most prominent properties of the operator DT we are going to study are
monotonicity and symmetry. Recall that an operator O : B → B is �pr-
monotone if whenever (P, S) �pr (P ′, S′) then also O(P, S) �pr O(P ′, S′) (for
brevity we leave out one pair of brackets in O((P, S)) ). An operator O : B → B
is symmetric if

O(P, S) = (P ′, S′) if and only if O(S, P ) = (S′, P ′).

Proposition 3.11. Let O : B → B be a �pr-monotone and symmetric operator.
Then

(a) whenever (P, S) is consistent, O(P, S) is also consistent,

(b) lfp(O) is consistent,

(c) if lfp(O) is complete (i.e. there is some P such that lfp(O) = (P, P )) then
it is the unique fixpoint of O.

Proof: If (P, S) is consistent then P v S and thus (P, S) �pr (S, P ). By �pr-
monotonicity O(P, S) �pr O(S, P ). Now, let O(P, S) = (P ′, S′). Then by sym-
metry O(S, P ) = (S′, P ′) and thus (P ′, S′) �pr (S′, P ′). It follows that P ′ v S′
and that (P ′, S′) is consistent, concluding (a). As for (b), let (P, S) = lfp(O)
(lfp(O) exists by the Knaster-Tarski theorem), so O(P, S) = (P, S). Then also,
by symmetry, O(S, P ) = (S, P ), so (S, P ) is also a fixpoint of O. Since (P, S) is
the least fixpoint, (P, S) �pr (S, P ) and so P v S, which means that (P, S) is
consistent. For (c), let lfp(O) = (P, P ) and let (S,R) be a fixpoint of O. Then
again by symmetry (R,S) is a fixpoint of O as well. Since (P, P ) is �pr-less
than both (S,R) and (R,S), it follows that P v S and R v P and P v R and
S v P respectively, thus concluding that S = R = P . �
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Now, consider the following operator4

DT (P, S) = (D1
T (P, S),D2

T (P, S))

where
D1
T (P, S) = {I | H2

(S,P ),I(T ) = true}

and
D2
T (P, S) = {I | H2

(P,S),I(T ) = true},

where H2
(S,P ),I(T ) = true if and only if H2

(S,P ),I(ϕ) = true for all ϕ ∈ T .
The fixpoints of DT are called partial expansions. We will show that DT is a
symmetric and �pr-monotone operator on belief pairs. This means of course
that we can then apply proposition 3.11.

Proposition 3.12. The operator DT is symmetric and �pr-monotone.

Proof: It is obvious from the definitions that D1
T (P, S) = D2

T (S, P ). It
follows that

DT (P, S) = (D1
T (P, S),D1

T (S, P ))

and
DT (S, P ) = (D1

T (S, P ),D1
T (P, S))

and thus thatDT (P, S) is symmetric. As for the�pr-monotonicity, let (P, S) �pr
(P ′, S′), i.e. P v P ′ and S′ v S, i.e. P ′ ⊆ P and S ⊆ S′. Then we
need to show that DT (P, S) �pr DT (P ′, S′), i.e. D1

T (P, S) v D1
T (P ′, S′) and

D1
T (S′, P ′) v D1

T (S, P ), i.e. D1
T (P ′, S′) ⊆ D1

T (P, S) and D1
T (S, P ) ⊆ D1

T (S′, P ′).
Let I ∈ D1

T (P ′, S′), so H2
(S′,P ′),I(T ) = true. Since (P, S) �pr (P ′, S′), also

(S′, P ′) �pr (S, P ). Then by proposition 3.10, H2
(S,P ),I = true and thus

I ∈ D1
T (P, S). Proof for the second inclusion is similar by (P, S) �pr (P ′, S′)

and proposition 3.10. �

Applying proposition 3.11 means that DT always gives a more precise belief
pair if a consistent belief pair is given. Also, it ensures the existence of at least
one partial expansion: by simply iterating the operator DT over (A, ∅), the
�pr-least element of B, the least fixpoint of DT emerges. This fixpoint is called
the Kripke-Kleene fixpoint for T and is denoted by KK(T ). The terminology
‘Kripke-Kleene’ was chosen by Denecker et al. to reflect the close analogy of
this fixpoint with the Kripke-Kleene semantics in Logic Programming (the link
with logic programming is treated briefly in section 3.5.1). The following corol-
lary states that KK(T ) approximates all (if any) partial expansions of T , is
consistent, and provides a sufficient argument for the uniqueness of a partial
expansion.

Corollary 3.13. Let T be an ae-theory. Then
4A slight difference in notation from [8], which uses Dl and Du in stead of D1 and D2

respectively.
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(a) the fixpoint KK(T ) is consistent, i.e. KK(T )1 v KK(T )2,

(b) for every partial expansion (P, S) of T , KK(T ) �pr (P, S),

(c) if KK(T ) is complete and thus KK(T ) = (P, P ) for some P , then KK(T )
is the unique partial expansion of T and P is the unique expansion of T .

Proof: (a) is a direct consequence of item (b) from proposition 3.11, (b) is a
direct result from the fact that KK(T ) is the �pr-least fixpoint of DT and (c)
is a direct result from (a) and (b). �

To illustrate the above, consider the following example.

Example 3.14. (example 3.5 continued) Recall example 3.5, where we consid-
ered the ae-language Lp with the only atom p and T = {¬Lp}. The relevant
interpretations are Ip : p 7→ true and I¬p : p 7→ false and the four possible
world structures are Ap = {Ip, I¬p}, Ip = {Ip}, I¬p = {I¬p} and ∅. We estab-
lished that the expansions of T are ∅ and Ap. Now, let us look at what operator
DT does to a belief pair (P, S):

DT (P, S) = (D1
T (P, S),D2

T (P, S))
= ({I | H2

(S,P ),I(¬Lp) = true}, {I | H2
(P,S),I(¬Lp) = true})

= ({I | H2
(P,S),I(Lp) = false}, {I | H2

(S,P ),I(Lp) = false}).

Now, the falsity of, for instance, H(P,S),I(Lp) (in the first entry of DT (P, S))
only depends on P , namely:

H(P,S),I(Lp) = false iff H(P,S),J(p) = false for some J ∈ P
iff J(p) = false for some J ∈ P

Therefore, the first entry of DT (P, S) is Ap if and only if for some J ∈ P ,
J(p) = false and it is ∅ if and only if for all J ∈ P , J(p) = true. The second
entry is the same, now with S in stead if P . Hence we get the following table:

(P, S) (Ap, ∅) (Ap, Ip) (Ip, ∅) (I¬p, ∅)
DT (P, S) (Ap, ∅) (Ap, ∅) (∅, ∅) (Ap, ∅)

(P, S) (Ap, I¬p) (I¬p, Ip) (Ap,Ap) (Ip, Ip)
DT (P, S) (Ap,Ap) (Ap, ∅) (Ap,Ap) (∅, ∅)

(P, S) (∅, ∅) (I¬p, I¬p) (Ip, I¬p) (I¬p,Ap)
DT (P, S) (∅, ∅) (Ap,Ap) (∅,Ap) (Ap,Ap)

(P, S) (Ip,Ap) (∅, Ip) (∅, I¬p) (∅,Ap)
DT (P, S) (∅,Ap) (∅, ∅) (∅,Ap) (∅,Ap)

We see that T has four partial expansions, namely (Ap, ∅), (Ap,Ap), (∅, ∅)
and (∅,Ap), of which (Ap, ∅) is of course the least and thus the Kripke-Kleene
fixpoint for T . It is also obvious, since it is the least element in B, that it ap-
proximates the other three partial expansions. As a final observation, note that
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iterating DT to any belief pair leads to a partial expansion. In this example,
applying DT just once to any belief pair results in a partial expansion. �

Finally (not unimportantly), we explain how partial expansions are linked
to expansions in the following proposition.

Proposition 3.15. Let T be an ae-theory and P a possible world structure.
Then DT (P, P ) = (DT (P ), DT (P )). Consequently, (P, P ) is a fixpoint of DT if
and only if P is a fixpoint of DT .

Proof: By definition DT (P, P ) = (D1
T (P, P ),D2

T (P, P )). Also by defini-
tion D1

T (P, P ) = D2
T (P, P ) = {I | H2

(P,P ),I(T ) = true} and hence by propo-
sition (3.9) this is equal to {I | HP,I(T ) = true} = DT (P ). This proves
DT (P, P ) = (DT (P ), DT (P )). Obviously it follows that DT (P, P ) = (P, P ) if
and only if DT (P ) = P . �

3.2.4 Extensions for autoepistemic logic

In the previous section the operator DT provided an ae-theory T with a seman-
tics corresponding to expansions and the newly defined partial expansions. In
the present section we will derive from DT an additional operator Dst

T on the set
W of possible world structures and an operator DstT on the set B of belief pairs.
The fixpoint of these operators are called the extensions and partial extensions
of T , respectively. This terminology is of course not arbitrarily chosen; the ex-
tensions of a default theory ∆ correspond precisely to the fixpoints of Dst

kon(∆).
Thus, the operator DT establishes a uniform semantics for both default and
autoepistemic logic. The �pr-least fixed point of DstT provides for the so-called
well-founded semantics of autoepistemic logic and is related to the extensions
of T in a similar way as the Kripke-Kleene fixpoint of T is related to the expan-
sions of T .

Consider the function D1
T (P, S) = {I | H2

(S,P ),I(T ) = true} which we defined
in the previous section and constitutes the first entry of DT (P, S). We can view
this function as an operator on possible world structures in the first variable as
follows:

D1
T (·, S) : P 7→ D1

T (P, S).

Of course we will simply write D1
T (P, S) for D1

T (·, S)(P ). Similarly defined, we
will consider the function D2

T (P, S) = {I | H2
(P,S),I(T ) = true} (the second

entry of DT (P, S)) as an operator on possible world structures in the second
variable:

D2
T (P, ·) : S 7→ D2

T (P, S).

It is easy to see from the definitions that

D1
T (P, S) = D2

T (S, P ) and so D1
T (·, S) = D2

T (S, ·). (5)
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Lemma 3.16. Let T be an ae-theory and S a possible world structure. The
operators D1

T (·, S) and D2
T (S, ·) are v-monotone.

Proof: Let P v P ′. Then since also S v S it is obvious that (P, S) �pr
(P ′, S). By the �pr-monotonicity of DT it follows that DT (P, S) �pr DT (P ′, S)
and hence D1

T (P, S) v D1
T (P ′, S), which proves v-monotonicity of D1

T (·, S). By
(5), D2

T (S, ·) is also v-monotone. �

Now that we have established monotonicity, we will look at the least fixed
points provided by the Knaster-Tarski theorem. Let

Dst
T (S) = lfp(D1

T (·, S)) = lfp(D2
T (S, ·)).

Similar to DT this is a revision operator for possible world structures. The
fixpoints of Dst

T are called extensions of T .

Example 3.17. Recall example 3.5 and its continuation 3.14, in which we con-
sidered the ae-language Lp with the only atom p and let T = {¬Lp}, i.e., the
only thing the agent knows is that he doesn’t know p. The relevant interpreta-
tions are of course Ip : p 7→ true and I¬p : p 7→ false. The four possible world
structures are then Ap = {Ip, I¬p}, Ip = {Ip}, I¬p = {I¬p} and ∅. We estab-
lished that to come to a stable set with the only knowledge that you don’t know
p, you can either decide to believe in nothing (Ap) or decide to believe in every-
thing (∅). In default logic, however, we cannot just decide to believe everything.
This is illustrated in the extensions of T . By definition DstT (Q) = lfp(D1

T (·, Q)).
Now, from the table in example 3.14, we can read off entries of D1

T (·, Q) very
easily. The results are that for any Q ⊆ Ap the fixpoints of D1

T (·, Q) are ∅ and
Ap, of which the v-least is Ap. Thus the table of Dst

T is

Q Ap I¬p Ip ∅
Dst
T (Q) Ap Ap Ap Ap

We see that T has only one extension, which is believing in nothing, since
that is the only justified belief we can deduce from not knowing p. �

Consider the following operator on B:

DstT (P, S) = (Dst
T (S), Dst

T (P )). (6)

Similar to DT , DstT is a revision operator for belief pairs. The fixpoints of DstT
are called partial extensions. From (6) it follows immediately that

DstT (P, P ) = (Dst
T (P ), Dst

T (P )). (7)

Consequently, (P, P ) is a fixpoint of DstT if and only if P is a fixpoint of Dst
T .
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Fig. 1. Operators associated with autoepistemic logic ([8]).

Theorem 3.18. Let T be an ae-theory. The operator Dst
T is anti-monotone and

the operator DstT is �pr-monotone and symmetric. Also, for every consistent
belief pair (P, S), DstT (P, S) is also consistent.

Proof: Let P v S and let P ′ = Dst
T (P ) = lfp(D1

T (·, P )) and S′ = Dst
T (S) =

lfp(D1
T (·, P )). Clearly (because P ′ is a fixpoint of D1

T (·, P ))

P ′ = D1
T (P ′, P ). (8)

Also, by �pr-monotonicity of DT and since (P ′, S) �pr (P ′, P ) it follows that
DT (P ′, S) �pr DT (P ′, P ) and hence

D1
T (P ′, S) v D1

T (P ′, P ). (9)

By (8) and (9) D1
T (P ′, S) v P ′, i.e. P ′ is a prefixpoint of D1

T (·, S). By
lemma 3.16, D1

T (·, S) is v-monotone. Then by the Knaster-Tarski theorem,
lfp(mathcalD1

T (·, S)) ≤ x for all v-prefixpoints of mathcalD1
T (·, S). It follows

that S′ v P ′, which concludes the anti-monotonicity of Dst
T .

Let (P, S) �pr (P ′, S′). It follows directly from the anti-monotonicity of Dst
T

that Dst
T (S, P ) �pr Dst

T (S′, P ′), i.e. DstT (P, S) �pr DstT (P ′, S′), hence concluding
monotonicity of DstT . The symmetry of DstT is immediate from the definition.

The last statement is immediate from proposition 3.11. �

Since we now established monotonicity of Dst, we will again investigate the
least fixpoint, which is called the well-founded fixpoint of T and is denoted by
WF (T ). Denecker et al. chose the name because the semantics specified by the
well-founded fixpoint is closely related to the well-founded semantics for default
logic and logic programming.

The following corollary states for the well-founded fixpoint similar state-
ments to what corollary 3.13 stated for the Kripke-Kleene fixpoint; WF (T )
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approximates all (if any) partial extensions of T , is consistent, and provides a
sufficient argument for the uniqueness of a partial extension.

Corollary 3.19. Let T be an ae-theory. Then

(a) the fixpoint WF (T ) is consistent, i.e. WF (T )1 vWF (T )2,

(b) for every partial extension (P, S) of T , WF (T ) �pr (P, S),

(c) if WF (T ) is complete and thus WF (T ) = (P, P ) for some P , then it is the
unique partial extension of T and P is the unique extension of T .

Proof: Since WF (T ) can be reached by iterating DstT over (A, ∅) (the least,
and consistent, element of B) (a) follows directly from theorem 3.18. (b) is a
direct result from the fact that WF (T ) is the �pr-least fixpoint of DstT and (c)
is a direct result from (a) and (b). �

Example 3.17 (continued) Because of the work in examples 3.5, 3.14 and
3.17 it is now very easy to find the partial extensions of T = {¬Lp}. Since the
only extension of T isAp, we know from the definition that DstT (P, S) = (Ap,Ap)
for all P and S. Thus the only partial extension is (Ap,Ap). This in partic-
ular complies with the corollary above and the theorem below on the relation
between the four different operators. �

The following theorem explains the relation between the partial extensions
and the partial expansions of a theory T . The order v on belief pairs in the
theorem is the component-wise extension of the knowledge ordering on possible
world structures which we briefly mentioned earlier 3.2.2: (P, S) v (P ′, S′) if
and only of P v P ′ and S v S′.

Theorem 3.20. Let T be an ae-theory. Then

(a) partial extensions of T are also partial expansions of T ,

(b) KK(T ) �pr WF (T ),

(c) every partial extension of T is a v-minimal partial expansion of T .

Proof: For (a), let (P, S) be a partial extension, i.e. a fixpoint of DstT . Then
P = Dst

T (S) = lfp(D1
T (·, S)) and consequently, D1

T (P, S) = P . Similarly, S =
lfp(D1

T (·, P )) and consequently, S = D1
T (S, P ) = D2

T (P, S), hence concluding
that DT (P, S) = (P, S), proving (a). Since KK(T ) is the least fixpoint of DT ,
(b) follows directly from (a).

For (c), assume that (P, S) is a partial extension of T . Then (P, S) is a
fixpoint of DstT and hence S = lfp(D1(·, P )). Also assume that (P ′, S′) is a
partial expansion of T such that (P ′, S′) v (P, S). Then we have to show that
(P ′, S′) = (P, S). Since P ′ v P , it follows that (S′, P ) �pr (S′, P ′). By �pr-
monotonicity of DT we get that D1

T (S′, P ) v D1
T (S′, P ) = S′, and thus that S′ is
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a v-prefixpoint of D1(·, P ). Since by lemma 3.16 D1
T (·, P ) is v-monotone, it fol-

lows by the Knaster-Tarski theorem that lfp(D1(·, P )) v x for all v-prefixpoints.
It follows that S = lfp(D1(·, P )) v S′ and thus that S = S′. By similar argu-
mentation we get that P v P ′ and thus that P = P ′, proving (c). �

Direct results of theorem 3.20 are that extensions of T are also expansions of
T and that every extension of T is a v-minimal expansion of T . This of course
complies with the idea that extensions are a stronger concept than expansions.

3.3 Possible world semantics for default logic

In this section we will define the equivalents for default logic of the operators
in the previous section. The operators E∆, E∆, Est∆ and Est∆ will be the equiva-
lents of DT , DT , Dst

T and DstT , respectively. Their fixpoints will be called partial
expansions, weak extensions, extensions and partial extensions and we will in-
deed prove that the extensions of a default theory ∆ correspond exactly to the
fixpoints of Est∆ . In the next section we will prove that the connection between
these quadruples of operators is that they are actually the same if T = kon(∆).
We will proceed by firstly defining for a belief pair (P, S) ∈ B a truth function
Hdl(P,S),I that provides formulas and defaults with a conservative truth value, as
H2

(P,S),I does for ae-formulas. Again, the liberal truth value of formulas and
defaults will be found by simply switching the roles of the underestimate P and
overestimate S in the conservative truth function.

Definition 3.21. Let for a given belief pair (P, S) and an interpretation I the
truth function Hdl(P,S),I be defined as follows:

1. Hdl(P,S),I(ϕ) = I(ϕ), if ϕ is a propositional formula,

2. for a default ϕ:ψ1,...,ψn

χ , Hdl(P,S),I(
ϕ:ψ1,...,ψn

χ ) = true just in case at least
one of the following conditions hold:

(a) there is a J ∈ S such that J(ϕ) = false,

(b) there is an i ∈ {1, . . . n} such that for all J ∈ P , J(ψi) = false,

(c) I(χ) = true.

Otherwise Hdl(P,S),I(
ϕ:ψ1,...,ψn

χ ) = false.

The definition clearly describes a conservative truth value for defaults given
an underestimate P and an overestimate S: the value of a default is true if
its prerequisite is false even with respect to the liberal view S, or at least one
of its justifications are perceived impossible just by the conservative view P
(remember that generally S v P , so P is generally a smaller set than S), or
if the conclusion is true. Arguably, Hdl(S,P ),I (switching the roles of P and S)
provides a liberal estimate for a truth value with respect to the belief pair (P, S),
since now the value of a default is true if the prerequisite is false just with respect
tot the conservative view P , or at least one of its justifications are perceived
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impossible even by the liberal view S, or if the conclusion is true. For a default
theory ∆ = (D,W ), we write Hdl(P,S),I(∆) = true if and only Hdl(P,S),I(d) = true

for every element (formula or default) d in D ∪W .
Recall that ≤ orders the values true and false as false ≤ true. The follow-

ing proposition is the analogy of proposition 3.10 for default logic:

Proposition 3.22. Let (P, S), (P ′, S′) ∈ B be two belief pairs such that (P, S) �pr
(P ′, S′). Let δ be a default, ϕ ∈ L a propositional formula and I ∈ A an inter-
pretation. Then

(a) Hdl(P,S),I(ϕ) = Hdl(P ′,S′),I(ϕ),

(b) Hdl(P,S),I(δ) ≤ H
dl
(P ′,S′),I(δ).

Proof: Item (a) is trivial from the definition, since the truth value of formulas
only depends on the interpretation I. As for (b), suppose δ = ϕ:ψ1,...,ψn

χ and
suppose H2

(P,S),I(d) = true. We need to show that also H2
(P ′,S′),I(d) = true.

Now, at least one of the following three cases holds.

1. There is a J ∈ S such that J(ϕ) = false. Since S ⊆ S′, it then follows
that H2

(P ′,S′),I(δ) = true.

2. There is an i ∈ {1, . . . k} such that for all J ∈ P , J(ψi) = false. Since
P ′ ⊆ P , it follows that H2

(P ′,S′),I(δ) = true.

3. I(χ) = true. Again, since the value only depends on I, it follows that also
H2

(P ′,S′),I(δ) = true.

Each of the three cases results in H2
(P ′,S′),I(d) being true. �

3.3.1 Partial expansions for default logic

Analogous to the operator DT for an ae-theory T , we define the operator E∆ on
the lattice of belief pairs 〈B,�pr〉 for a default theory ∆ = (D,W ):

E∆(P, S) = (E1
∆(P, S), E2

∆(P, S)),

where
E1
∆(P, S) = {I | Hdl(S,P ),I(∆) = true}

and
E2
∆(P, S) = {I | Hdl(P,S),I(∆) = true}.

The fixpoints of E∆ are called the partial expansions of ∆. It is obvious that
E1
∆(P, S) = E2

∆(S, P ) and thus we have the following analogy to proposition
3.12:

Proposition 3.23. The operator E∆ is �pr-monotone and symmetric.
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Proof: Symmetry of E∆ directly follows from E1
∆(P, S) = E2

∆(S, P ) and the
definitions above as follows:

E∆(P, S) = (E1
∆(P, S), E1

∆(S, P ))

and
E∆(S, P ) = (E1

∆(S, P ), E1
∆(P, S))

which shows symmetry of E∆. As for the monotonicity, let (P, S) �pr (P ′, S′).
Then we need to show that E∆(P, S) �pr E∆(P ′, S′), i.e. that E1

∆(P, S) v
E1
∆(P ′, S′) and E2

∆(P ′, S′) ⊆ E2
∆(P, S), i.e. that E1

∆(P ′, S′) ⊆ E1
∆(P, S) and

E2
∆(P, S) ⊆ E2

∆(P ′, S′). Let I ∈ E1
∆(P ′, S′). Then Hdl(S′,P ′),I(∆) = true. Since

(P, S) �pr (P ′, S′) it follows that (S′, P ′) �pr (S, P ) and thus by proposition
3.22 that Hdl(S′,P ′),I(∆) ≤ Hdl(S,P ),I(∆). Since Hdl(S′,P ′),I(∆) = true it follows
that also Hdl(S,P ),I(∆) = true and thus that I ∈ E1

∆(P, S). The second inclu-
sion is proved analogously: let I ∈ E2

∆(P, S). Then Hdl(P,S),I(∆) = true. By
(P, S) �pr (P ′, S′) and proposition 3.22 it follows that that Hdl(P ′,S′),I(∆) ≥
Hdl(P,S),I(∆) = true and so I ∈ E2

∆(P ′, S′). �

We define for a possible world structure Q the following operator:

E∆(Q) = E1
∆(Q,Q) = E2

∆(Q,Q),

so that, similar to the statement in proposition 3.15 the following holds.

Corollary 3.24. Let Q be a possible world structure. Then E∆(Q,Q) = (E∆(Q),
E∆(Q)). Consequently, (Q,Q) is a fixpoint of E∆ if and only if Q is a fixpoint
of E∆.

Proof: by definition of E∆ and E∆. �

The fixpoints of E∆ are called the weak extensions of ∆ (also sometimes
called the expansions of ∆).

Obviously, the monotonicity of E∆ in proposition 3.23 results via the Knaster-
Tarski theorem in a unique �pr-least fixed point for E∆. The fixpoint is called
the Kripke-Kleene fixpoint for ∆ (denoted by KK(∆)). Again, as did the
Kripke-Kleene fixpoint for autoepistemic logic in corollary 3.13, KK(∆) ap-
proximates all (if any) partial expansions of ∆, is consistent, and provides for
a sufficient argument for the uniqueness of a partial expansion. This is stated
in the following corollary. (Recall that when for example KK(∆) is a pair
(P, S), KK(∆)1 is the first component of the pair (P ) and KK(∆) the second
component (S).)

Corollary 3.25. Let ∆ be a default theory. Then

(a) the fixpoint KK(∆) is consistent, i.e. KK(∆)1 v KK(∆)2,

(b) for every partial expansion (P, S) of ∆, KK(∆) �pr (P, S),
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(c) if KK(∆) is complete and thus KK(∆) = (P, P ) for some P , then KK(∆)
is the unique partial expansion of ∆ and P is the unique expansion of ∆.

Proof: The proofs are exactly the same as those of corollary 3.13. �

3.3.2 Partial extensions for default logic

Consider, similar to D1(P, S) in section 3.2.4, the function E1(P, S) as an oper-
ator on W as follows:

E1(·, S) : P 7→ E1(P, S).

We have the following analogy to lemma 3.16:

Lemma 3.26. Let ∆ be a default theory and S a possible world structure. The
operators E1

∆(·, S) and E2
∆(S, ·) are v-monotone.

Proof: Let P v P ′. Then since also S v S it is obvious that (P, S) �pr
(P ′, S). By the �pr-monotonicity of E∆ it follows that E∆(P, S) �pr E∆(P ′, S)
and hence E1

∆(P, S) v E1
∆(P ′, S), which proves v-monotonicity of E1

∆(·, S).
Since E1

∆(·, S) = E2
∆(S, ·), E2

∆(S, ·) is also v-monotone. �

The v-least fixpoint of E1
∆(·, S) exists by the Tarski-Knaster theorem, so we

can define
Est∆ (S) = lfp(E1

∆(·, S))

and
Est∆ (P, S) = (Est∆ (S), Est∆ (P )).

The operators Est∆ and Est∆ are revision operators for possible world structures
and belief pairs and their fixpoints will be called extensions of ∆ and partial
extensions of ∆, respectively. It follows immediately that (P, P ) is a fixpoint
of Est∆ if and only if P is fixpoint of Est∆ . As we hinted al along (in particular
by the terminology), the fixpoints of Est∆ turn out to correspond exactly to the
extensions of ∆, as we defined them in section 2.1.

Theorem 3.27. Let ∆ = (D,W ) be a default theory. If a possible world struc-
ture Q is a fixpoint of Est∆ then the theory E = {ϕ ∈ L | ∀I ∈ Q : I(ϕ) = true}
is an extension of ∆. Conversely, if E is an extension of ∆, then the possible
world structure Q = {I ∈ A | ∀ϕ ∈ E, I(E) = true} is a fixpoint of Est∆ .

Proof: For the first part of the theorem, let Q be a fixpoint of Est∆ , so
Q = lfp(E1

∆(·, Q)), so

Q = E1
∆(Q,Q) = {I | Hdl(Q,Q),I(∆) = true}. (10)

Let E = {ϕ ∈ L | ∀I ∈ Q : I(ϕ) = true}. We will show that E is an extension
of ∆ (i.e. E = Γ∆(E)) in two parts:

“Γ∆(E) ⊆ E”: we need to show that E complies to D1, D2 and D3 of defini-
tion 2.2. Since Γ∆(E) is the least set to do so, we get that Γ∆(E) ⊆ E.
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• For D1, let ϕ ∈ W . Then by 10, I(ϕ) = true for all I ∈ Q, so then
ϕ ∈ E by definition of E.

• From the definition of E it also follows directly that E is deductively
closed, which proves D2.

• For D3, let δ = ϕ:ψ1,...ψn

χ ∈ D be a default and I ∈ Q and assume
that ϕ ∈ E and E 0 ψi for all i ∈ {1, . . . , n}. Then we need to show
that χ ∈ E. By (10), we know that Hdl(Q,Q),I(δ) = true, i.e. at least
one of the following three holds:

(a) ∃J ∈ Q such that J(ϕ) = false,
(b) ∃i ∈ {1, . . . , n} such that J(ψi) = false for all J ∈ Q,
(c) I(χ) = true.

Since we assumed that ϕ ∈ E, we have that J(ϕ) = true for all
J ∈ Q, so (a) is ruled out. Also, since we assumed that E 0 ψi for
all i ∈ {1, . . . , n} and since E is deductively closed, we have that
¬ψi /∈ E for all i ∈ {1, . . . n}. Therefore, for any i ∈ {1, . . . , n} there
is a J ∈ Q such that J(ψ1) = true, which rules out (b). Therefore
(c) must hold. Since I is an arbitrarily chosen interpretation in Q,
we conclude that J(χ) = true for all J ∈ Q, hence χ ∈ E.

“Γ∆(E) ⊇ E”: Consider an interpretation I ∈ A such that for every ϕ ∈
Γ∆(E), I(ϕ) = true. We will show that I ∈ Q. By (10) it is suffi-
cient to show that Hdl(Q,Q),I(∆) = true. Firstly, since W ⊆ Γ∆(E), it
follows by the assumption that Hdl(Q,Q),I(ϕ) = I(ϕ) = true for all ϕ ∈ W .

Secondly, consider a default δ = ϕ:ψ1,...,ψn

χ ∈ ∆. Then we need to show
that Hdl(Q,Q),I(δ) = true, i.e. one of the three conditions (a)-(c) that we
mentioned above holds. Let’s suppose that (a) and (b) do not hold, i.e.

• for every J ∈ Q, J(ϕ) = true, and

• for each i ∈ {1, . . . , n} there is a J ∈ Q such that J(ψ1) = true.

Then we need to show that (c) holds, that is, I(χ) = true. From (a)
it follows that ϕ ∈ E. From (b) and the definition of E it follows that
E 0 ¬ψi for all i ∈ {1, . . . , n}. Consequently, by the definition of Γ∆(E),
we get that χ ∈ Γ∆(E). Hence I(χ) = true and Hdl(Q,Q),I(δ) = true. This
concludes that

{I ∈ A | ∀ϕ ∈ Γ∆(E), I(ϕ) = true} ⊆ Q.

Together with the fact that Q = {I ∈ A | ∀ϕ ∈ E, I(ϕ) = true} we get
that

{I ∈ A | ∀ϕ ∈ Γ∆(E), I(ϕ) = true} ⊆ {I ∈ A | ∀ϕ ∈ E, I(ϕ) = true},

or equivalently, E ⊆ Γ∆(E). The last step uses the fact that E and Γ∆(E)
are both deductively closed.
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For the second part of the theorem we use the concept of generating defaults
as explained in section 2.1.1. Recall that a default δ = ϕ:ψ1,...,ψn

χ is generating
for E if ϕ ∈ E and ¬ψi /∈ E for i ∈ {1, . . . , n}. Also, recall theorem 2.9,
which says that if E is an extension of a default theory ∆ = (D,W ) then
E = Th(W ∪GDE), where GDE is the set of consequences of all defaults in D
that are generating for E.

let E be an extension of ∆. Then we need to show that the possible world
structure Q = {I ∈ A | ∀ϕ ∈ E, I(ϕ) = true} is a fixpoint of Est∆ . Since E is
deductively closed, E = {ϕ ∈ L | ∀I ∈ Q : I(ϕ) = true}. We will show that
E1
∆(Q,Q) v Q (i.e. Q is a pre-fixpoint of E1

∆(·, Q)) and that Q v Q′ for any
fixpoint Q′ of E1

∆(·, Q). By the Knaster-Tarski theorem this proves the assertion
that Q = Est∆ (Q) = lfp(E1

∆(·, Q)).
To prove that E1

∆(Q,Q) v Q, recall that E1
∆(Q,Q) = {I ∈ A | Hdl(Q,Q),I(∆) =

true}. Let I ∈ Q. Since E is an extension of (D,W ), W ⊆ E. Thus, for every
ϕ ∈ W , Hdl(Q,Q),I(ϕ) = I(ϕ) = true. Next, let δ = ϕ:ψ1,...,ψn

χ ∈ D. If δ is a
generating default for E then χ ∈ E and I(χ) = true and so Hdl(Q,Q),I(δ) = true.
If δ is not a generating default of E then either we have (1) ϕ ∈ E, or (2) there
is an i ∈ {1, . . . , n} such that J(ψi) = true for all J ∈ Q. In either case it
follows that Hdl(Q,Q),I(δ) = true, as well. Consequently, Hdl(Q,Q),I(∆) = true and
I ∈ E1

∆(Q,Q). Thus, we get Q ⊆ E1
∆(Q,Q), or equivalently E1

∆(Q,Q) v Q.
Let us now consider a fixpoint Q′ of E1

∆(·, Q) and define E′ = {ϕ | ∀I ∈
Q′ : I(ϕ) = true}. Clearly, E′ is deductively closed. It is also obvious that
Q′ = E1

∆(Q′, Q) = {I ∈ A | Hdl(Q,Q′),I(∆) = true. Thus, for every ϕ ∈ W

and for every I ∈ Q′, I(ϕ) = true, i.e. W ⊆ E′. Consider again a default
δ = ϕ:ψ1,...,ψn

χ ∈ D and assume that ϕ ∈ E′ and for every i ∈ {1, . . . , n}, E 0 ψi.
It follows that for every J ∈ Q′, J(ϕ) = true and, since E is deductively closed,
that for each i ∈ {1, . . . , n} there is a J ∈ Q such that J(ψi) = true. Let
I ∈ Q′. Since Hdl(Q,Q′),I(δ) = true, it follows that I(χ) = true and thus χ ∈ E′.
We have now proved that E′ satisfies the three requirements from the definition
of Γ∆(E). Thus, E = Γ∆(E) ⊆ E′. Consequently, Q′ ⊆ Q or, equivalently,
Q v Q′.

We proved that Q is a pre-fixpoint of E1
∆(·, Q) and that Q v Q′ for any

fixpoint Q′ of E1
∆(·, Q). It follows that Q is the least fixpoint of E1

∆(·, Q). �
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Fig. 2. Operators associated with default logic ([8]).

Analogous to theorem 3.18, we have the following result:

Theorem 3.28. Let ∆ = (D,W ) be a default theory. Then Est∆ is v-antimonotone
and Est∆ is �pr-monotone and symmetric. Moreover, for every consistent belief
pair (P, S), Est∆ (P, S) is also consistent.

Proof: The proof is completely analogous to that of theorem 3.18 and will
be omitted. �

By �pr-monotonicity of Est∆ , the Knaster-Tarski theorem ensures the exis-
tence of its least fixpoint, which will be called the well-founded fixpoint of ∆
(denoted by WF (∆)).

From theorem 3.28 and proposition 3.11, we can conclude the following:

Corollary 3.29. Let ∆ = (D,W ) be a default theory. Then

(a) the fixpoint WF (∆) is consistent, i.e. WF (∆)1 vWF (∆)2,

(b) for every partial extension (P, S) of ∆, WF (∆) �pr (P, S),

(c) if WF (∆) is complete and thus WF (∆) = (P, P ) for some P , then it is the
unique partial extension of ∆ and P is the unique extension of ∆.

Proof: Again, the proof is completely analogous to corollary 3.19. �

Theorem 3.30. Let ∆ be a default theory. Then

(a) partial extensions of ∆ are also partial expansions of ∆

(b) KK(∆) �pr WF (∆),

(c) every partial extension (P,S) of ∆ is a v-minimal partial expansion of ∆.
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Proof: Again, the proof is completely analogous to theorem 3.20. �

As might be clear by now, a general approximation theory about these kinds
of fixpoint-semantics can be drawn, as has been done by Denecker et al. in [7].
We will sketch this theory very briefly in the following section.

3.4 Approximation theory

In stead of the lattices 〈W,v〉 and 〈B,�pr〉 and the specific operators for au-
toepistemic logic and default logic, we quickly sketch a general theory about
approximating operators on arbitrary lattices.

Let 〈L,≤〉 be a complete lattice and let (x, y) ∈ L2 and (x′, y′) ∈ L2 be pairs
of elements from L. Then L2 together with the so-called precision order defined
by

(x, y) ≤pr (x′, y′) if and only if x ≤ x′ and y′ ≤ y

forms another complete lattice. A ≤pr-monotone and symmetric operator O :
L2 → L2 is called an approximating operator. If there is an operator O : L→ L
such that O(x, x) = (O(x), O(x)) then O is called an approximating operator for
O. In particular, since by symmetryO(x, x)1 = O(x, x)2, O is approximating for
O(x, x)1 and for O(x, x)2. Consider the operator O(·, y)1 : L→ L, which takes
an element x of L and returns the first component of O(x, y). We can prove that
O(·, y)1 is ≤-monotone and thus has a least fixpoint which constitutes another
operator Ost(y) = lfp(O(·, y)1). The operator Ost(x, y) = (Ost(y), Ost(x)) is
called the stable operator for O and can be proven to be ≤pr-monotone. The
least fixpoints of O and Ost are called the Kripke-Kleene fixpoint of O and the
well-founded fixpoint of O, respectively (for now we use the notations KK(O)
and WF (O)). Moreover, we can prove, among others, the following analogies to
theorems and corollaries about the operators O, O,Ost and Ost in the previous
sections:

• fixpoints of Ost are also fixpoints of O,

• fixpoints of Ost are ≤-minimal fixpoints of O, where ≤ is the component-
wise extension of the order ≤ on the lattice L to the lattice L2,

• the Kripke-Kleene fixpoint KK(O) approximates all fixpoints of O,

• the well-founded fixpoint WF (O) approximates all fixpoints of Ost,

• if KK(O) is complete then it is the only fixpoint of O,

• if WF (O) is complete then it is the only fixpoint of Ost,

• KK(O) ≤pr WF (O),

• WF (O) is consistent.
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Obviously, by filling in DT , DT , Dst
T , DstT or E∆, E∆, Est∆ , Est∆ for O, O, Ost

and Ost, we get the approximating theories for autoepistemic logic and default
logic as we explained them in detail above.

However, the approximating theories of autoepistemic logic and default logic
in particular are connected even more closely by the Konolige translation, as we
explain in the following section.

3.5 Link between default and autoepistemic logic

As we explained in section 2.3 of the same name, Konolige’s translation does not
establish a correspondence between the extensions of a default theory and the
expansions of an ae-theory. However, the sections above provide for different
semantics for both default and autoepistemic logic between which the Konolige
translation does establish a direct correspondences. The following theorem is a
culmination in the works of Denecker, Marek and Truszczyński.

Theorem 3.31. Let ∆ = (D,W ) be a default theory and T = kon(∆) its
Konolige translation. Then

1. E∆ = DT ,

2. E∆ = DT ,

3. Est∆ = Dst
T ,

4. Est∆ = DstT .

In particular, ∆ and T have the same (partial) extensions, (partial) expansions,
Kripke-Kleene fixpoint and well-founded fixpoint in terms of possible world struc-
tures.

ϕ : ψ1, . . . , ψn
χ

7→ Lϕ ∧ ¬L¬ψ1 ∧ . . . ∧ ¬L¬ψn → χ

Fig. 3. Embedding default logic into autoepistemic logic ([8].

We will use the following lemma to prove the theorem.

Lemma 3.32. Let (P, S) be a belief pair. Then for every interpretation I ∈ A
and every default δ

Hdl(P,S),I(δ) = H2
(P,S),I(kon(δ)).
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Proof: Let δ be of the form ϕ:ψ1,...,ψn

χ . Then kon(δ) = ¬Lϕ ∨  L¬ψ1 ∨ . . . ∨
L¬ϕn ∨ χ. Now, Hdl(P,S),I(δ) = false if and only if the following conditions all
hold:

1. for all J ∈ S, J(ϕ) = true,

2. for every i ∈ {1, . . . n} there is a J ∈ P such that J(ψi) = true,

3. I(χ) = false.

The conditions 1, 2 and 3 above are equivalent to the following conditions i, ii
and iii respectively.

i. H2
(S,P ),I(Lϕ) = true, which in turn is equivalent to H2

(P,S),I(¬Lϕ) = false,

ii. for every i ∈ {1, . . . n} there is a J ∈ P such that J(¬ψi) = false, which in
turn is equivalent to H2

(P,S),I(L¬ψi) = false

iii. H2
(P,S),I(χ) = true

The set of conditions i-iii holds if and only if H2
(P,S),I(kon(δ)) = false, which

concludes the claim. �

Proof of theorem 3.31: By lemma 3.32, it follows directly that for any belief
pair (P, S)

{I | Hdl(P,S),I(∆) = true} = {I | H2
(P,S),I(kon(∆)) = true}, (11)

1. From (11) it follows directly that E∆(P, S) = Dkon(∆)(P, S).

2. Recall that E∆(P ) = Q iff E∆(P, P ) = (Q,Q), and thus by the previous
equality, iff Dkon(∆)(P, P ) = (Q,Q), which, by proposition 3.15, happens
iff Dkon(∆)(P ) = Q.

3. By E∆(P, S) = Dkon(∆)(P, S) it immediately follows that

E1
∆(·, S) = D1

kon(∆)(·, S)

and thus that lfp(E1
∆(·, S)) = lfp(D1

kon(∆)(·, S)). This proves Est∆ = Dst
T .

4. From the previous equation, it follows directly that

Est∆ (P, S) = (Est∆ (S), Est∆ (P ))
= (Dst

T (S), Dst
T (P ))

= DstT (P, S).

It immediately follows from equations 1-4 that ∆ and kon(∆) have the same
(partial) extensions and (partial) expansions in terms of possible world struc-
tures. �
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3.5.1 The link with logic programming

A point that should be addressed at least briefly is the link with logic program-
ming with negation, if only by a description. A logic program with negation is
a set of formulas called rules, which are of the form

c← a1, . . . an,notb1, . . . ,notbm,

where all ai, all bi and c are literals; c is called the head of r and a1, . . ., an,
notb1, . . ., notbm the body of r. The symbol not denotes negation as failure,
i.e. notϕ is true if all quests for a proof of the truth of ϕ end in failure. This
should not be confused with ¬ϕ, which is true if there is proof that ϕ is false. In
this difference between negation and negation as failure one can see the analogy
with the application of a default rule: the consequent of a default is true if the
prerequisite is true and there is no proof of the negation of the justifications of
the default. A logic programming rule can thus be translated to default theory
as follows (where we call ∆ the default translation of the rule):

∆ : c← a1, . . . , an,notb1, . . . ,notbm 7→
a1 ∧ . . . ∧ an : ¬b1 ∧ . . . ∧ ¬bm

c
.

The default translation ∆(P ) of a logic program P is simply the set of default
translations of all rules in P .

Two distinct semantics for logic programming with negation are the so-called
supported models and stable models. If P is a set of programming clauses then
a model I is a supported model of P iff it is exactly the set of heads of clauses
in P of which the bodies are made true by I. In other terms, it is a fixpoint of
the operator

TP : I 7→ {c | c is the head of a rule r in P
such that I makes true the body of r}.

The operator TP is called the immediate consequence operator for P or the
Van Emden-Kowalski operator for P ([22]).

Later, Gelfond and Lifschitz ([10]) proposed an alternative semantics based
on an operator GLP , the fixpoints of which are called stable models. In this
semantics an atom is only true if it has a constructive argumentation. We will
illustrate what a constructive argumentation means by an example:

Example 3.33. Consider the following program

P = {r1 = (p← p), r2 = (q ← notp)}.

Then P has two supported models E1 = {p} and E2 = {q}. Indeed, E1 proves
only the body of r1, so TP (E1) = E1. Also, E2 does not prove p, hence it
proves notp, and so TP (E2) = E2. However, in E1 the formula p has no con-
structive argumentation. It is simply chosen to be true, after which the set is
automatically closed under rule r1. The formula q in E2 does have a construc-
tive argumentation: since we have no given facts, we cannot prove the truth of

40



p and therefore we establish that notp is true, after which we can apply rule r2
to conclude q. By this argumentation the supported model E2 is also a stable
model as defined by Gelfond and Lifschitz whereas E1 is not. �

The difference between the two semantics explained above is the same as
that between default logic and autoepistemic logic in a quote from [8] we cited
before: “the autoepistemic logic of Moore could be viewed as a nonmonotonic
logic of belief and the default logic of Reiter could be viewed as a nonmonotonic
logic of justified belief”. Indeed, in [7], Denecker et al. explain that a so-called
4-valued van Emden-Kowalski operator (denoted by TP ) does for the semantics
of supported models and stable models of a logic program P exactly what the
operators DT and E∆ do for the extensions and expansions of an autoepistemic
theory T and a default theory ∆, respectively. Moreover, the default translation
connects the semantics of logic programming and default logic in a similar way
that the Konolige translation connects those of default and autoepistemic logic.
In other terms, the fixpoints of the operators TP , GLP and TP of a logic pro-
gram P correspond precisely to the fixpoints of E∆(P ), Est∆(P ) and E∆(P ) of the
default theory ∆(P ), which in their turn correspond precisely to the fixpoints of
Dkon(∆(P )), Dst

kon(∆(P )) and Dkon(∆(P )) of the autoepistemic theory kon(∆(P )).
Indeed, the example above illustrates this:

Example 3.33 (continued). When looking at the example above, we get
that there is only one extension of the default translation of P :

∆(P ) = ({p : true
p

,
true : ¬p

q
}, ∅),

being Th({q}), which corresponds to the stable model E2 of P . Also, we get
that there are two expansions of the Konolige translation of ∆(P ):

kon(∆(P )) = {Lp→ p,¬Lp→ q},

being the stable sets with kernels Th({p}) and Th({q}), which correspond to
the supported models of P . �
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4 Prioritizing default logic and autoepistemic
logic

As we saw many times now, default theories and autoepistemic theories often
have multiple extensions and/or expansions. In terms of possible world struc-
tures this manifests itself in multiple fixpoints of the operators in the previous
chapter. Suppose for example that P and Q are two expansions of an ae-theory
T ⊆ Lae. This means that (P, P ) and (Q,Q) are both partial expansions, i.e.
fixpoints of DT . Since DT is �pr-monotone, an application of the operator to a
belief pair will result in a revision of the belief pair that is at least as precise.
But since (P, P ) and (Q,Q) are both complete belief pairs neither of them can
be made more precise via operator DT ; that also means that neither (P, P ) nor
(Q,Q) is more precise than the other and thus that the relevance of them as
belief pairs is incomparable. Now, this isn’t always a problem. In some situa-
tions there is no expansion or extension that is preferred over the others. For
instance this is the case in the well-known example of the Nixon diamond:

quakers are pacifists
Nixon is a quaker
Nixon is a pacifist

republicans are not pacifists
Nixon is a republican
Nixon is not a pacifist

Obviously there are two extensions: one in which Nixon is a pacifist and
one in which he is not. With no extra information none of the two is preferred
over the other. In our Tweety example however, it is clear that we prefer the
extension in which Tweety cannot fly. This is because the information that
Tweety is a penguin is more specific than the information that Tweety is a bird:
the general rule is that birds fly - penguins are a specific type of bird that is an
exception to this rule.

In general, if there are multiple extensions or expansions we want to be able
to somehow express preference of some extensions over other extensions. A way
of attacking this problem is through prioritization, i.e. to describe how to prefer
one expansion over the other, given a preference relation on some of the formulas
involved. In the Tweety example, we could for instance express the fact that
we would prefer non-flying birds over flying penguins by the preference relation
bird ∧ ¬flies > penguin ∧ flies, and from this deciding that the expansion
containing bird, penguin and ¬flies is preferred to the expansions containing
bird, penguin and flies.

Rintanen described in [19] several ways of lexicographically prioritizing de-
fault logic. In this section we will explain this method of prioritizing default
logic and extend it to autoepistemic logic using the Konolige translation. Fur-
thermore, we will investigate a preference relation derived from these methods.
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We will finish by stating a problem involving the works of Denecker et al. as ex-
plained in the previous section: how can the prioritization methods of extensions
and expansions in default logic and autoepistemic logic be connected.

4.1 How to handle preferences

A considerable number of classifying approaches to preference handling in non-
monotonic logic is described in [5]. To distinguish the properties of lexicograph-
ical prioritization from others, we mention especially the following classifying
approaches:

Meta-level vs. object-level preferences. Whether the preferences are im-
posed “externally” on the rules of the system or whether the preferences
themselves become objects within the system. The first approach could
for example concern the finding of the most preferred expansion of a the-
ory, given some externally imposed preference relation on the formulas in
the theory, and thus is a way of formalizing preferences about a theory.
The second approach allows the use of preferences on the object-level; one
would be able to reason about these preferences within the theory, for
example by including formulas like ϕ → δ1 < δ2 or defaults like ϕ:δ1<δ2

δ1<δ2
.

The first is easier to implement, the second is more flexible. As we will
later see, lexicographical prioritization is a meta-level approach.

Properties of the preference structure. We will mostly be dealing with ir-
reflexive partial orders as preference orders, properties which are most
widely used and accepted when dealing with preference structures. In-
deed,

• nothing should be more preferred than itself (irreflexivity),

• if A is more preferred than B then B is not more preferred than A
(asymmetry),

• if A is more preferred than B and B is more preferred than C then
A is more preferred than C (transitivity), and

• one need not have a preference of A over B or vice versa for any two
entities A and B (partiality).

Sometimes we will impose some restrictions such as totality or absence of
infinite ascending chains to ensure some results.

Prescriptive vs. descriptive preferences. In descriptive prioritization one
defines why some expansions of a theory are more preferred than others.
This gives a ranking on desired outcomes: the preferred outcome is the one
where (for example) the most preferred rules are applied. In prescriptive
prioritization the definition of the semantics is altered, for example by
requiring that higher priority rules are always applied (if possible), be-
fore the lower priority ones are considered. A consequence could be that
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the prioritized expansions are not expansions in the non-prioritized sense,
since the definition is altered.

The distinction between these two methods and their terminology is illus-
trated in the following example from [4]: consider the default theory with
W = ∅ and D = {ϕ:ψ

ψ , true:¬ψ¬ψ , true:ϕϕ }, where the first default is more pre-
ferred than the second, and the second is more preferred than the third.
A prescriptive method would fail to apply the most preferred default since
the prerequisite ϕ is not provable. However, one might expect to apply the
two lesser-preferred defaults, giving an extension containing {ϕ,¬ψ}. In
a descriptive interpretation, one might observe that by applying the least-
preferred default, the most preferred default can be applied; this yields an
extension containing {ϕ,ψ}.
As we will see, lexicographic prioritization is a descriptive method.

4.2 Lexicographic prioritization for default logic

Rintanen defined four so-called lexicographic ways of defining the most preferred
extension(s) among the extensions of a default theory, given a strict partial order
on the set of defaults. From now on, if two defaults δ and δ′ are related by a
given order > (i.e. δ > δ′), then δ is considered to have higher priority than δ′;
application of δ is more desirable than application of δ′.

Rintanen used a definition of applied defaults and defeated defaults to define
the distinct ways of lexicographic prioritization.

Definition 4.1. Let ∆ = (D,W ) be a default theory and E ⊆ L a set of
formulas. A default δ = ϕ:ψ1,...,ψn

χ ∈ D is said to be applied in E (notation
app(δ, E)) if ϕ ∈ E and E 0 ¬ψi for i ∈ {1, . . . , n}. The default δ is said
to be defeated in E (notation def(δ, E)) if ϕ ∈ E and E ` ¬ψi for some
i ∈ {1, . . . , n}.

When E is an extension and app(δ, E) then of course χ ∈ E as well, in
accordance with D3 of the definition of extensions (definition 2.2). Note however
that def(δ, E) need not imply that χ /∈ E. Also, note that app(δ, E) implies
¬def(δ, E) and def(δ, E) implies ¬app(δ, E), but the converses do not hold in
general. Indeed, ¬app(δ, E) and ¬def(δ, E) are both true if and only if pre(δ) /∈
E, in which case the default cannot even be considered for application. When
δ is prerequisite-free (i.e. pre(δ) = true) the converses obviously do hold and
thus app(δ, E) if and only if ¬def(δ, E). For convenience, we write app(δ, E,E′)
for app(δ, E) ∧ ¬app(δ, E′) and def(δ, E,E′) for def(δ, E) ∧ ¬def(δ, E′).

Now that we defined the ways of measuring a defaults success (application in
an extension) or failure (defeat in an extension) we can define when an extension
is a preferred extension, relative to a preference order on the set of defaults. One
way to do this is to prefer an extension that has the more-preferred defaults
applied in it. Another way is to prefer an extension with the lesser-preferred
defaults defeated in it. The following definition by Rintanen elaborates.
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Definition 4.2. Let ∆ = (D,W ) be a default theory and > a strict partial
order on the set of defaults D. A set E is a D>-preferred extension of ∆ iff
it is an extension of ∆ and there is a strict total order >′ on D extending the
partial order > (i.e. >⊆>′), such that for all extensions E′ of D:

∀δ ∈ D (app(δ, E′, E)→ ∃δ′ ∈ D (app(δ′, E,E′) ∧ δ′ >′ δ)). (12)

Also, E is a D>-preferred2 extension of ∆ iff it is an extension of ∆ and for
all extensions E′ of ∆ there is a strict total order >′ on D extending > such
that (12) holds. By replacing (12) by

∀δ ∈ D (def(δ, E,E′)→ ∃δ′ ∈ D (def(δ′, E′, E) ∧ δ′ >′ δ)). (13)

we obtain the definitions of D>-preferredd extension of ∆ and D>-preferred2d

extension of ∆, respectively.

The four ways of prioritization in the definition are thus obtained by switch-
ing the order of the quantifiers “for all extensions” and “there is a strict total
order” and by choosing either (12) or (13) as a means of preference. Note that
for prerequisite-free defaults (12) and (13) are the same, since then

app(δ, E,E′) iff app(δ, E) ∧ ¬app(δ, E′)
iff ¬def(δ, E) ∧ def(δ, E′)
iff def(δ, E′, E).

Example 4.3. Consider the following example from [19] as an illustration of
the definitions:

∆ = (∅, (δ1 =
true : ¬q ∧ r
¬q ∧ r

, δ2 =
true : p

p
, δ3 =

true : ¬p ∧ ¬r
¬p ∧ ¬r

, δ4 =
true : q

q
)).

The default theory ∆ has four extensions:

Eδ2δ4 = Th({p, q}), Eδ1δ2 = Th({¬q, r, p})andEδ3δ4 = Th({¬p,¬r, q})

(the indices indicate which defaults are applied in the extensions). Consider the
preference structure

D> = {δ1 > δ2, δ3 > δ4}.

There are six possible total relations containing the partial preference relation,
namely

{δ1 >1 δ2 >1 δ3 >1 δ4} {δ3 >4 δ4 >4 δ1 >4 δ2}
{δ1 >2 δ3 >2 δ2 >2 δ4} {δ3 >5 δ1 >5 δ4 >5 δ2}
{δ1 >3 δ3 >3 δ4 >3 δ2} {δ3 >6 δ1 >6 δ2 >6 δ4}

Then >1 and >4 illustrate both the D>-preferredness and D>-preferredness2 of
Eδ1δ2 and Eδ3δ4 respectively. Also, Eδ2δ4 is D>-preferred2, since >1 satisfies (13)
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for E = Eδ2δ4 and E′ = Eδ3δ4 and >4 satisfies (13) for E′ = Eδ1δ2 . However,
Eδ2δ4 is not D>-preferred, since >1, >2 and >3 refute (12) with E′ = Eδ1δ2
and >4, >5 and >6 refute (12) with E′ = Eδ3δ4 . In this example, all the
above also holds for D>-preferrednessd in stead of D>-preferredness and D>-
preferredness2d in stead of D>-preferredness2. �

Proposition 4.4. If E is a D>-preferred (D>-preferredd) extension of ∆ then
it is also a D>-preferred2 (D>-preferred2d) extension of ∆. The converses do
not hold.

Proof: The implications are immediate from definition 4.2; the converses are
refuted by the example above. �

As we said in section 4.1, lexicographical prioritization is a descriptive method
of preference handling. This is quite literally illustrated by the phrase “A set
E is a D>-preferred extension of ∆ iff it is an extension of ∆ and there is . . . ”
in definition 4.2. We thus get a partition of the set of extensions of ∆ in a
set of D>-preferred extensions and not D>-preferred extensions not by altering
the definition of extensions, but rather by describing why some extensions are
more preferred than others. This is essentially why we can easily extend the
definition to include weak extensions, too. Application of a default is namely
defined in any set E; whether E is an extension, a weak extension, or any
other set of formulas. So, by replacing “extension” by “weak extension” in
definition 4.2 we obtain the definitions of D>-preferred(2)(d) weak extensions
of ∆. (By “D>-preferred(2)(d)” we mean “D>-preferred, D>-preferred2, D>-
preferredd and D>-preferred2d, respectively”.)

Definition 4.2 directly determines subsets of the set of extensions of a default
theory, namely the D>-preferred ones and the D>-preferred2 ones etcetera.
It can also be used to create the following preference relation on extensions,
allowing us to compare the priorities of extensions pairwise: given a strict total
order > on the set of defaults D and two expansions E and E′, let

E >D E′ iff E 6= E′ ∧ ∀δ(app(δ, E′, E)→ ∃δ′(app(δ′, E,E′) ∧ δ′ > δ)), (14)

E >dD E′ iff E 6= E′ ∧ ∀δ(def(δ, E,E′)→ ∃δ′(def(δ′, E′, E) ∧ δ′ > δ)). (15)

It is evident that (14) is derived from (12) and (15) from (13). In the first pair
it is more important to include preferred defaults than to exclude less-preferred
ones and in the second pair vice versa. Rintanen described this as the difference
between “choosing for presence” and “choosing for absence”. We will elaborate
on these preference relations in the following sections.

4.3 Lexicographic prioritization for autoepistemic logic

In default logic, conflicting defaults are the cause of multiple extensions. When
prioritizing default logic, the set of defaults is therefore the obvious choice for
imposing a preference order on; we can decide which defaults to apply by stating
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which ones are preferred (for instance lexicographically). In autoepistemic logic
there are no special default rules. Therefore the freedom to choose a preference
order is much greater, since we can impose these preferences on any set of ae-
formulas. The formulas that are involved in an agents preferences together with
the preference relation are gathered in a tuple called a prioritization.

Definition 4.5. Let P ⊆ Lae be a set of autoepistemic formulas and >⊆ P ×P
a strict partial order on P . Then we call the tuple 〈P,>〉 a prioritization which
we will denote by P>.

The prioritization contains all formulas that are involved in the preference
structure of the agent, so those are the only formulas we need to consider when
trying to prioritize the set of expansions lexicographically. This means that if
E and E′ are two expansions and P> the prioritization, we will consider the
formulas in the sets E ∩P and E′ ∩P to establish which of the two expansions
is more preferred.

4.3.1 Translating prioritizing

Our objective is to prioritize autoepistemic logic in a similar way as we did
default logic. What does that mean exactly? We saw in chapter 3 what the exact
relation is between default logic and autoepistemic logic and their semantics,
namely: if ∆ is a default theory and T = kon(∆) then E is an extension or a
weak extension of ∆ if and only if E is the kernel of an extension or an expansion
of T , respectively. (Let us call the extension or expansion of which E is the kernel
EL.) Therefore, we want to lexicographically prioritize autoepistemic logic in
such a way that a D>-preferred extension or weak extension of ∆ is the kernel
of a kon(D)>-preferred extension or expansion of T , respectively (and the same
for preferred2, preferredd and preferred2d). To do this, we turn to definition 4.2
and “translate” this to autoepistemic logic and subsequently generalize it to all
formulas. Recall that for a default δ = ϕ:ψ1,...,ψn

χ :

app(δ, E,E′) iff app(δ, E) and ¬app(δ, E′),
iff ϕ ∈ E ∧ E 0 ¬ψi ∨ . . . ∨ ¬ψn

and ¬(ϕ ∈ E′ ∧ E′ 0 ¬ψi ∨ . . . ∨ ¬ψn).

The Konolige translation of δ is Lϕ∧¬L¬ψ1∧ . . .∧¬L¬ψn → χ, so application
of δ in a set E can best be translated as including

Lϕ ∧ ¬L¬ψ1 ∧ . . . ∧ ¬L¬ψn (16)

in the smallest stable set containing E; non-application of δ in E′ can best be
translated as the absence of (16) in the smallest stable set containing E′. Indeed,
if E is an extension or expansion, because it is deductively closed, E 0 ψ will
hold if and only if ψ ∈ E if and only if Lψ ∈ E, so app(δ, E,E′) holds for
extensions or expansions E and E′ of ∆ if and only if (16) ∈ F\F ′ for the
corresponding extensions or expansions F and F ′ of kon(∆). For convenience,
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we will denote (16) by konapp(δ). As a direct translation from default logic to
autoepistemic logic, we get that (according to definition 4.2) an (autoepistemic!)
extension E of kon(∆) is kon(D)>-preferred iff there is a strict total order >′

extending > such that for every extension E′ and δ ∈ D, if konapp(δ) ∈ (E′\E)
then there is a δ′ ∈ D such that konapp(δ′) ∈ (E\E′) and δ′ >′ δ. By a
simple generalization of formulas of the form konapp(δ) to arbitrary formulas
and of prioritizations of the form kon(D)> to arbitrary prioritizations we come
to the definition of P>-preferredness in autoepistemic logic below. We get the
definition of P>-preferredness2 again by switching the quantifiers “there is a
strict total order” and “for all extensions E′”.

Definition 4.6. Let P> be a prioritization and T an ae-theory. Then E is a
P>-preferred extension of T iff it is an extension of T and there is a total order
>′ on P extending the partial order > (i.e. >⊆>′) such that for all extensions
E′ of T

∀ϕ ∈ (E′\E) ∩ P ∃ψ ∈ (E\E′) ∩ P (ψ >′ ϕ). (17)

Also, E is a P>-preferred2 extension of T iff for all extensions E′ of T there is
a total order >′ on P extending the partial order > such that (17) holds.

By replacing “extension” by “expansion” in the definition above we get the
notions P>-preferred and P>-preferred2 expansions of T . For translating the
notions D>-preferredd and D>-preferred2d from default logic to autoepistemic
logic, recall that

def(δ, E,E′) iff def(δ, E) and ¬def(δ, E′),
iff pre(δ) ∈ E ∧ E ` ¬ψi ∨ . . . ∨ ¬ψn

and ¬(ϕ ∈ E′ ∧ E ` ¬ψi ∨ . . . ∨ ¬ψn).

Similar to the application of δ, the defeat of δ in a set E can best be translated
as including

Lϕ ∧ (L¬ψ1 ∨ . . . ∨ L¬ψn) (18)

in the smallest stable set containing E; non-defeat of δ in E′ can be translated as
the absence of (18) in the smallest stable set containing E′. For convenience we
denote (18) by kondef (δ). As before, as a direct translation from default logic to
autoepistemic logic, we get that (according to definition 4.2) an (autoepistemic)
extension E of kon(∆) is kon(D)>-preferredd iff there is a strict total order >′

extending > such that for every extension E′ and δ ∈ D, if kondef (δ) ∈ (E\E′)
then there is a δ′ ∈ D such that kondef (δ′) ∈ (E′\E) and δ′ >′ δ.

Defintion 4.6 (continued). Again, by generalization, we get that by replacing
(17) by

∀ϕ ∈ (E\E′) ∩ P ∃ψ ∈ (E′\E) ∩ P (ϕ >′ ψ). (19)

we obtain the definitions of P>-preferredd expansion of T and P>-preferred2d

expansion of T , respectively.
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In [18], the notion we call P>-preferredd is actually called P>-preferred by
Rintanen. It is there explained to be a generalization of preferedness of sub-
theories in [3]. The notion we call P>-preferred2d is called P>-maximality in
[18] and is explained to be a generalization of maximality of ordered theory
presentations in [20]. We changed the names knowingly so to comply with the
analogous definitions in the previous section, which seems only natural to do.
The notions P>-preferred and P>-preferred2 have not previously been described
in autoepistemic logic. The following theorem summarizes the translation of pri-
oritized default logic to autoepistemic logic.

Theorem 4.7. Let ∆ = (D,W ) be a default theory and > a strict partial
order on D. Let >′ be the strict partial order on kon(D) such that for all
δ, ε ∈ D, kon(δ) >′ kon(ε) iff δ > ε. Then E is a D>-preferred(2)(d) extension
(weak extension) of ∆ if and only if E is a kon(D)>′-preferred(2)(d) extension
(expansion) of kon(∆).

Proof: The theorem holds by the construction of T -preferred(2)(d) extension
(expansion) of an ae-theory T . �

Definition 4.6 gives rise to the following preference relations on expansions,
which we will further study in section 4.3.3.

Definition 4.8. Given a total prioritization P> and two expansions E and E′,
let

E >P E
′ ↔ (E ∩ P ) 6= (E′ ∩ P ) ∧ ∀ϕ ∈ P ∩ (E′\E) ∃ψ ∈ P ∩ (E\E′) (ψ > ϕ),

(20)
E >dP E

′ ↔ (E ∩ P ) 6= (E′ ∩ P ) ∧ ∀ϕ ∈ P ∩ (E\E′) ∃ψ ∈ P ∩ (E′\E) (ϕ > ψ).
(21)

It is evident that (20) is derived from (17) and (21) from (19). Note that
the symbols >P and >dP are chosen deliberately to reflect both the set P and
the relation > of the prioritization P> (i.e. a prioritization Q>′ would lead to
preference structures denoted by >′

Q and >′d
Q).

4.3.2 On the term “lexicographic”

Usually the expression “lexicographic order” is used to define an order on strings
of elements of some strict total order 〈P,>〉 as it would be in a dictionary: let
p = (p1, . . . , pk) and q = (q1, . . . , ql) be strings of elements from strict total
order 〈P,>〉. Then if pi = qi for i = 1, . . . ,min{k, l} then whichever string is
the shortest is lexicographically preferred (thus “logic” comes before “logical”
in a dictionary). Otherwise, let i be the least such that pi 6= qi. Then p is
lexicographically preferred iff pi > qi and q is preferred iff qi > pi (thus “logical”
comes before “logician”).
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Example 4.9. If for example P = {ϕ1, ϕ2, ϕ3} with >= {ϕ1 > ϕ2 > ϕ3} is
such a strict total order then

∅ >lex {ϕ1} >lex {ϕ1, ϕ2} >lex {ϕ1, ϕ2, ϕ3} >lex
{ϕ1, ϕ3} >lex {ϕ2} >lex {ϕ2, ϕ3} >lex {ϕ3},

where >lex stands for lexicographically preferred. (Note though that ∅ actually
does not usually show up in dictionaries.) �

We will explain that the term “lexicographic” is somewhat oddly chosen,
since Rintanens different ways of prioritizing are not lexicographical as usual.
If we take again the total prioritization P> = {ϕ1 > ϕ2 > ϕ3} and we suppose
that all subsets of P = {ϕ1, ϕ2, ϕ3} are expansions, then P itself is >P -more
preferred than any other expansion, since it satisfies (20) vacuously for all E′,
and no other expansion satisfies (20) for P . Also, the empty set ∅ is >dP -more
preferred than any other expansion, since it satisfies (21) for all expansions and
no expansion satisfies (21) for the empty set. Further we get that:

{ϕ1, ϕ2, ϕ3} > {ϕ1, ϕ2} > {ϕ1, ϕ3} > {ϕ1} > {ϕ2, ϕ3} > {ϕ2} > {ϕ3} > ∅,
(22)

∅ >d {ϕ1} >d {ϕ2} >d {ϕ1, ϕ2} >d {ϕ3} >d

{ϕ1, ϕ3} >d {ϕ2, ϕ3} >d {ϕ1, ϕ2, ϕ3}. (23)

Neither the order >, nor the order >d is quite the usual lexicographic order-
ing (none-the-less we will remain using this term for these sorts of orderings). In
these examples it becomes visible that the first method is described by “choosing
for presence” and the second by “choosing for absence”; the first prefers namely
the presence of more-preferred formulas while the second prefers the absence of
less-preferred formulas. Note though that for ∗ ∈ {>,>d, >lex}, the following
parts are all present:

• {ϕ1} ∗ {ϕ2} ∗ {ϕ3},

• {ϕ1, ϕ2} ∗ {ϕ1, ϕ3} ∗ {ϕ2, ϕ3},

• {ϕ1, ϕ2} ∗ {ϕ3},

• {ϕ1} ∗ {ϕ2, ϕ3}.

These parts are paradigmatic for the parts that these three lexicographic orders
have in common for sets of arbitrary magnitude. Namely, if A and B are sets
such that neither A\B nor B\A is empty and each element in A\B is more
*-preferred than each element in B\A then A ∗B for ∗ ∈ {>,>d, >lex}.
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4.3.3 Properties of the preference relation

We would like the given relations >P and >dP to in fact describe preference
relations, so we would like them to have certain properties. Irreflexivity of the
relations are ensured by the clause (E ∩ P ) 6= (E′ ∩ P ) in definition 4.8. To
ensure that the relations are also asymmetric and transitive and consequently
represent preference relations, we have to impose some restrictions, for infinite
examples can refute these properties. Consider namely the following example.

Example 4.10. Let P = {ϕn | n ∈ N} with ϕn < ϕn+1 for all n and let

E1 = {ϕ3, ϕ5, ϕ7, ϕ9, ϕ11, . . .},
E2 = {ϕ1, ϕ2, ϕ4, ϕ6, ϕ8, ϕ10, . . .},
E3 = {ϕ1, ϕ3, ϕ5, ϕ7, ϕ9, ϕ11, . . .}.

Then for all ϕn ∈ E1\E2 there is a ϕm ∈ E2\E1 such that ϕm > ϕn, for example
m = n+ 1. Hence E2 >P E1. Similarly we get E1 >P E2 and so anti-symmetry
fails, since E1 6= E2. Also, we have E1 > E2 and E2 > E3 but E1 ≯ E3, since
ϕ1 ∈ E3\E1, but E1\E3 = ∅, and thus (20) fails and so transitivity fails. Also
(in case of choice for absence in stead of presence), consider the same set P
above, but now with ϕn > ϕn+1 for all n. Then it’s again easy to see that
E1 >

d
P E2 and E2 >

d
P E1 and so antisymmetry fails. Also, E3 >

d
P E2 >

d
P E1

but E3 ≯d
P E1 and so transitivity fails. �

We will show that the orders >P and >dP are irreflexive, asymmetric and
transitive if there are no infinite ascending or descending chains, respectively.
But first we will give an other characterization for the preference relation on
sets of formulas that will help in proving the subsequent theorems.

Lemma 4.11. Let E,E′ be sets of formulas and P> a prioritization such that
E ∩ P and E′ ∩ P have no infinite ascending chains. Then E >P E′ if and
only if E ∩ P 6= E′ ∩ P and max>(P ∩ (E ∪E′)\(E ∩E′)) ∈ E. Also, if E ∩ P
and E′ ∩ P have no infinite descending chains, then E >dP E′ if and only if
E ∩ P 6= E′ ∩ P and min>(P ∩ (E ∪ E′)\(E ∩ E′)) /∈ E′.

Proof:

“⇒”: Assume that E >P E
′, i.e. E ∩P 6= E′ ∩P and ∀ϕ ∈ P ∩ (E′\E) ∃ψ ∈

P ∩ (E\E′) such that ψ > ϕ. Since E ∩ P 6= E′ ∩ P it follows that
P ∩ (E ∪ E′)\(E ∩ E′) 6= ∅ and since also E ∩ P and E′ ∩ P contain no
infinite ascending chains it follows that max>(P ∩(E∪E′)\(E∩E′)) exists
and is either contained in E\E′ or in E′\E. If the maximum is in E′\E, by
assumption there must be a ψ ∈ E\E′ such that ψ > max>((E∪E′)\(E∩
E′)), which is a contradiction. It follows that max>((E ∪E′)\(E ∩E′)) ∈
E\E′.

“⇐”: Assume that E∩P 6= E′∩P and max>(P∩(E∪E′)\(E∩E′)) ∈ E. Then
obviously, since max>(P ∩ (E∪E′)\(E∩E′)) /∈ E′, for all ϕ ∈ P ∩ (E′\E)
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the maximum max>(P ∩ (E ∪ E′)\(E ∩ E′) is >-larger than ϕ), thus
E >P E

′.

The second proof is analogous and will be omitted. �

The following lemma is used in proving proving proposition 4.13.

Lemma 4.12. For sets of formulas E and E′ and prioritization P>,

E >P E
′ iff E ∩ P >P E

′ ∩ P and E >dP E
′ iff E ∩ P >dP E

′ ∩ P.

Proof: Immediate from (20) and (21). �

Proposition 4.13. Let P> be a prioritization and E1, E2 and E3 sets of for-
mulas such that their intersection with P have no infinite ascending chains. If
E1 >P E2 then E2 ≯P E1. Also, if E1 >P E2 and E2 >P E3 then E1 >P E3.
This shows asymmetry and transitivity of >P . Also, >dP is asymmetric and
transitive.

Proof: For symmetry, let E1 >P E2. Then E1∩P 6= E2∩P and max>(P ∩
(E1 ∪E2)\(E1 ∩E2)) ∈ E1, so obviously max>(P ∩ (E1 ∪E2)\(E1 ∩E2)) /∈ E2,
hence E2 ≯P E1. For transitivity, let E1, E2 and E3 be sets of formulas and let
E1 >P E2 and E2 >P E3. Then we need to show that E1 >P E3. Given lemma
4.12, we can without loss of generalization assume that Ei = Ei∩P . We denote
the seven relevant sets in the proof as follows:

• E1\(E2 ∪ E3) 7→ (1);

• E2\(E1 ∪ E3) 7→ (2);

• E3\(E1 ∪ E2) 7→ (3);

• (E1 ∩ E2)\E3 7→ (12);

• (E1 ∩ E3)\E2 7→ (13);

• (E2 ∩ E3)\E1 7→ (23);

• E1 ∩ E2 ∩ E3 7→ (123).

Suppose for a contradiction that E1 ≯P E3, i.e. there is a ϕ ∈ E3\E1 such that
ϕ > ψ for all ψ ∈ E1\E3. Since E3\E1 = (3)∪ (23), ϕ is either in (3) or in (23).

Suppose that ϕ ∈ (23). Since no set has infinite ascending chains by assump-
tion, we may assume that ϕ is the maximal formula in (23). Since ϕ is
also contained by E2\E1 and E1 >P E2, there must be some ψ ∈ E1\E2

such that ψ > ϕ. Since E1\E2 = (1) ∪ (13), either ψ ∈ (1) or ψ ∈ (13).
However, if ψ would be in (1), then by our assumption that ϕ is more
preferred than all formulas in (1), we would have that ϕ > ψ > ϕ, which
contradicts the asymmetry of the order. Thus we conclude that ψ must
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be in (13). Again we may assume that ψ is the maximal formula in
(13). But then, since ψ ∈ E3\E2 and E2 >P E3, there must be some
χ ∈ E2\E3 = (2) ∪ (12) such that χ > ψ. But suppose χ ∈ (12). Then
by our assumption that ϕ is more preferred than all formulas in (12),
we would have that χ > ψ > ϕ > χ, which by transitivity of the order
on formulas contradicts the asymmetry of the same order. Also, suppose
χ ∈ (2). Then again by E1 >P E2 and similar argumentation there must
be a ξ in either (1) or in (13) such that ξ > χ. The first fails, since
ϕ was more preferred than all formulas in (1) and hence we would get
ξ > χ > ψ > ϕ > ξ. The second fails, because then ξ > χ > ψ, whereas
we assumed that ψ was the maximal formula in (13).

Suppose that ϕ ∈ (3). By E2 >P E3 there must be a ψ ∈ E2\E3 = (2)∪ (12)
such that ψ > ϕ. By similar argumentation as above, ψ cannot be in (12),
since then we would have ϕ > ψ > ϕ. So assume that ψ is the maximal
formula in (2). Then by E1 >P E2 there must be a χ ∈ E1\E2 = (1)∪(13)
such that χ > ψ. Again, χ cannot be in (1), for then we would have
χ > ψ > ϕ > χ, so assume that χ is the maximal formula in (13). Then
since E2 >P E3, there must be a ξ ∈ E2\E3 = (2)∪ (12) such that ξ > χ.
However, if ξ ∈ (12) then ξ > χ > ψ > ϕ > ξ, since ϕ was supposed to
be more preferred than all formulas in (12). Moreover, if ξ ∈ (2), then
ξ > χ > ψ, whereas we assumed that ψ was the maximal formula in (2).

In every case of supposing that E1 ≯ E3, we come to contradiction, hence
E1 > E3. The proofs of asymmetry and transitivity of >dP are similar and will
be omitted. �

So far, the prioritizations of expansions, being >P given by (20) and >dP
given by (21), are defined only with respect to a total prioritization P> on
formulas. There are two natural possible ways of extending these definitions
to prioritizations with respect to a partial prioritization P>. One contains an
existential quantifier where the other has a universal one (the reasoning for >dP
is analogous to that for >P , so we only describe the latter):

1. if P> is a partial prioritization, let E >P E
′ iff there is a strict total order

>′ on P extending > such that E >′
P E

′,

2. if P> is a partial prioritization, let E >P E
′ iff for each strict total orders

>′ on P extending >, E >′
P E

′.

The trouble with the first option is that the desired properties of preference
structures no longer hold. Consider namely the following counterexample for
asymmetry.

Example 4.14. Let P> be a partial prioritization consisting of the set P =
{a, b, c} and the partial preference relation {a > c, b > c} and let E = {a, c}
and E′ = {b, c}. There are two possible total orders >1 and >2 on P extend-
ing the partial order, being {a >1 b >1 c} and {b >2 a >2 c}. It is easy to
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see that E >1
P E′ and E′ >2

P E, hence E >P E′ and E′ >P E. Transitivity
also fails by the following counterexample: let P> a the partial prioritization
with P = {a, b, c, d} and {a > b, c > b, d > a}. Let E = {a, b}, E′ = {c, b}
and E′′ = {d, a, b}. Then E >1 E′ with the total order {d >1 a >1 c >1 b},
E′ >2 E′′ with {c >2 d >1 a >1 b}, but for no total order >3 extending > will
E >3 E′′ hold, since d, the greatest element in P ∩E′′, will always be >3-greater
than a, the greatest element in P ∩ E. �

For the second definition, with the universal quantifier, asymmetry and tran-
sitivity do hold. This is trivially true by the asymmetry and transitivity of >P
when P> is a total prioritization (as long as we assume that there are no infinite
ascending chains in the prioritization).

Definition 4.15. Let P> be a prioritization and E, E′ expansions of some
ae-theory T . Then E >P E

′ iff for every total order >′ on P extending >,

E ∩ P 6= E′ ∩ P ∧ ∀ϕ ∈ P ∩ E′\E ∃ψ ∈ P ∩ E\E′ (ψ >′ ϕ).

Corollary 4.16. If P> is a prioritization then >P is a asymmetric and tran-
sitive relation.

Proof: Immediate by proposition 4.13. �

As a last remark before the next section, we note that the definitions of
the preference structures above need not be restricted merely to expansions or
extensions, but rather can be viewed as preference structures on sets of formulas
in general.
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5 Topics of future research

In addition to the previous 4 chapters, the following topics were originally meant
to be treated in this thesis. Due to restraints in time, knowledge, so many things,
they are now only treated as yet unsolved questions, or topics of future research.

5.1 Prioritization in terms of possible world structures

Given a preference relation > on a set of defaults D or on a set of formulas P we
have defined several lexicographic preference relations on sets of expansions and
extensions of a default theory ∆ or an ae-theory T . Given the interesting results
of Denecker et al. on the relation between expansions (and extensions) and the
possible world structures linked to them, a sensible quest is that for a charac-
terization of the lexicographic preference relations in terms of possible world
structures. In particular, we would like to find a way of prioritizing possible
world structures given the prioritization P> in such a way that it corresponds
to the prioritization of sets of formulas given that same prioritization P>. In
other words, we would like to define some relation �P on possible world struc-
tures in such a way that if Ei are expansions and Qi are such that Ei = ThL(Qi)
then E1 >P E2 if and only if Q1 �P Q2.

Since possible world structures are simply sets of interpretations, like ex-
pansions are simply sets of formulas, one way of prioritizing possible world
structures would be somehow in terms interpretations, as the sets of formulas
are prioritized in terms of the formulas. But also, since the only information
given to us in advance of the prioritization of expansions is the prioritization
P>, we need to link the prioritization of the possible world structures also to this
entity P>. Thus the following diagram arises, which (ideally) would commute:

ϕ > ψ
?

! I � J
↓ ↓?

E1 >P E2 ↔ Q1 �P Q2

However, it is not obvious how to “translate” a preference relation on for-
mulas to a preference relation on interpretations. Our proposal is therefore to
define, in stead of a relation on interpretations, a relation on sets of interpre-
tations as follows: if for some first order formulas ϕ > ψ, then let Qϕ � Qψ,
where Qχ = {I | I(χ) = true}. For future research, it would be interesting to
fill in the last questionmark in the following picture, such that it would commute:

ϕ > ψ ↔ Qϕ � Qψ
↓ ↓?

E1 >P E2 ↔ Q1 �P Q2

As a start, we can in any case say the following:

Lemma 5.1. If E = ThL(Q) then ϕ ∈ E0 if and only if Q ⊆ Qϕ
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Proof: By definition E = ThL(Q) = {ϕ | HQ(Lϕ) = true}, so

E0 = {ϕ ∈ L | HQ(Lϕ) = true}
= {ϕ ∈ L | HQ,I(ϕ) = true for all I ∈ Q}
= {ϕ ∈ L | I(ϕ) = true for all I ∈ Q}
=

⋂
I∈Q
{ϕ ∈ L | I(ϕ) = true}

From the above follows that ϕ ∈ E0 if and only if for all I in Q I(ϕ) = true,
i.e. Q ⊆ {I | I(ϕ) = true} = Qϕ. �

Given this lemma, we conjecture that the way to define Q1 �P Q2 in terms
of sets of the form Qϕ, given a prioritization P> on formulas will not look very
different from the way E1 >P E2 was defined in, for example, definition 4.8.

5.2 The link between preferred extensions and preferred
expansions

Another subject to address is the link between the different semantics of priori-
tized default logic and prioritized autoepistemic logic. From chapter 3 we have a
very clear connection between the semantics of default logic and autoepistemic
and it would be interesting to investigate this connection in the prioritized ver-
sions. What do the analogies to the semantics of partial extensions and partial
expansions in terms of formulas and sets of formulas look like and do they re-
late in the same way to extensions and expansions as in terms of possible world
structures? That is, can we define operators on pairs of sets of formulas in
such a way that their fixpoints correspond to the partial extensions and partial
expansions of default theories or ae-theories? Moreover, do these connections
preserve the preferredness of extensions and expansions in some way? In other
words, how are the preferred extensions of ∆ or T related to the preferred weak
extensions of ∆ or the preferred expansions of T , respectively.

5.3 The connection with other forms of prioritization

Next to lexicographic prioritization, there are a considerable number of other
ways of prioritization, as section 4.1 implies. Notable examples are [4] and [6].
Now, there are always disputes about which method is better than another.
One way of doing this is naming examples that are treated “unintuitively” by
this method or that, as if there is one intuition that is the best. We chose not to
go there in this thesis and investigate just one method, without mentioning the
“pros and cons”. This is largely due to lack of time, because it is an important
issue that should be investigated.
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