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1 Introduction

Arguably, the most successful applications of modal logic to other areas of math-
ematics have been the so called “provability” interpretations, and various topo-
logical interpretations.1 This thesis concerns both of these interpretations, al-
beit each only indirectly. The Polymodal Provability Logic known as GLP has
held significant interest in the study of strong provability predicates in arith-
metical theories, as well as in the study of ordinal notation systems for these
theories. In particular, the closed fragment of GLP, which we shall denote
GLP0, simply GLP restricted to the language without variables, has found
applications in mainstream proof theory (See Section 1.2). The majority of this
thesis is therefore dedicated to exploring relational and topological models of
this logic. At the same time, however, an underlying impetus for this study is
the fact that the full logic GLP with variables is frame-incomplete (See Section
1.1.2). While a thorough treatment of the full logic is beyond the scope of the
thesis, it is hoped that a better understanding of the closed fragment, and in
particular the interaction between relational and topological interpretations of
the closed fragment, will shed some light on the full fragment. Last but not
least, some of the structures we will come across are sufficiently intriguing and
natural, we believe, so as to merit interest in and of themselves.

1.1 GL and GLP

1.1.1 Classical Provability Logic

The idea of a logic of provability goes back to a short paper by Kurt Gödel
([Gödel, 1933]). Let B(x, y) be (any reasonable variation of) Gödel’s ∆0 predi-
cate formalizing, “y is the code of a proof in Peano Arithmetic of the sentence
with Gödel number x,” with Bew(x) = ∃yB(x, y), and let A# be the numeral
of the Gödel code of A. Gödel first showed that the following schema is valid:

Bew((A → B)#) ⇒ (Bew(A#) ⇒ Bew(B#))

In fact, not only is the schema true, it can be proven in Peano Arithmetic
(henceforth PA) itself, whereby the meta-conditional “⇒” becomes “→” in the
language of arithmetic. The following rule also holds for all A (as an instance
of so called Σ1-completeness):

If A is provable, then Bew(A#) is provable.

This fact is also formalizable in PA (by so called provable Σ1-completeness), so
we have one more schema:

Bew(A#) → Bew(Bew(A#)#)

Ignoring the distinction between a formula and its Gödel number, and replacing
Bew with ¤, we can write each of these schemas and rules in what looks like
the standard modal language, giving each a name suggestive thereof.

1At any rate, so much is claimed in, e.g. [Artemov, 2006].
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K: ¤(φ → ψ) → (¤φ → ¤ψ)

4: ¤φ → ¤¤φ

And the rule,

Nec: If φ, then ¤φ.

If we add to this the rule modus ponens, we obtain the modal system K4. Later,
building on work by Hilbert and Bernays, Martin Löb identified ([Löb, 1955])
one last principle that he showed is sufficient, given the other axioms, for a
schematic proof of Gödel’s Second Incompleteness Theorem. The extra principle
is known as Löb’s Axiom (stated here in the anachronistic modal language):

L: ¤(¤φ → φ) → ¤φ

The resulting extension of K4 is called GL (named after Gödel and Löb).
Essentially what Gödel, Löb, and Hilbert and Bernays showed is that if φ is
a theorem of GL, then for all functions f that send propositional variables
to arbitrary arithmetical formulas, ¤ψ to Bew(ψ#), and that commute with
boolean operations, f(φ) is a theorem of PA. And this is indeed enough to
prove the Second Incompleteness Theorem using purely modal reasoning: If
PA could prove its consistency statement, ¬¤⊥, then ¤⊥ → ⊥ would follow.
By rule Nec, we would have ¤(¤⊥ → ⊥), and finally by Axiom L and one
application of modus ponens, ¤⊥, that is, PA would be inconsistent.

The question eventually arose whether GL encompasses all schemata prov-
able of the provability predicate. Provoked by a notice to the American Mathe-
matical Society written by George Boolos, Robert Solovay proved GL is arith-
metically complete.2

Theorem 1.1.1 ([Solovay, 1976]). GL ⊢ φ iff PA ⊢ f(φ), for all f .

The logic GL is sound and complete with respect to the class of finite,
rooted, partially ordered Kripke frames (henceforth GL-frames), a result first
published by Krister Segerberg ([Segerberg, 1971]). The basic idea of Solovay’s
proof is to embed an arbitrary GL-model into Peano Arithmetic, so that any
refuting Kripke model becomes an arithmetical counterexample.

This striking correspondence between modal logic and arithmetic opened
up the possibility of proving interesting arithmetical results using purely modal
methods, one of the most famous examples being the de Jongh-Sambin Fixed
Point Theorem (in fact proven even before the publication of Solovay’s paper),
which shows when and why certain formulas have explicit and unique solutions,
thus generalizing the original fixed point theorem. For, in a very definite sense,
GL tells us everything there is to know about what a reasonable arithmetical
theory can say about the behavior of its own provability predicate.

2Solovay also proved that the non-normal logic GLS, obtained by extending GL with
the schema ¤φ → φ and rejecting the necessitation principle, encompasses all true schemata
involving the provability predicate. For a historical overview of the early development of
provability logic, see [Boolos and Sambin, 1991].
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1.1.2 From Provability to ω-Provability to Reflection Principles

Gödel’s original proofs of the incompleteness theorems did not apply to all
consistent arithmetical theories, but merely to theories that were ω-consistent.
Recall that T is ω-inconsistent if there is an arithmetical formula A(x) such that,
T ⊢ ∃xA(x), but for each natural number n, T ⊢ ¬A(n).3 T is ω-consistent if
it is not ω-inconsistent. ω-consistency is stronger than consistency: If T is
ω-consistent, then there is some formula that T does not prove (either ¬A(n)
for some n, or ∃xA(x), for every predicate A(x)), so it is certainly consistent;
however, there are examples of consistent theories that are not ω-consistent (e.g.
add the sentence Bew(0=1) to PA). And it was not until later that John Rosser
extended the range of incompleteness to consistent theories tout court.

We say A is ω-provable in a theory T, if the theory T + ¬A is ω-inconsistent.4

As ω-consistency implies consistency, so also ω-provability implies provability:
If A is not provable, then T + ¬A is consistent, i.e. not inconsistent, hence
not ω-inconsistent, and so A is not ω-provable. George Boolos was the first
to address the logic of ω-provability for PA ([Boolos, 1980]). He found that it
is also GL, and with some minor adjustments the Solovay-style arithmetical
completeness proof can be used.

The next natural question was to determine the joint logic of provability
and ω-provability so as to capture the exact relationship between them. Several
principles we can see right away must be valid. Let us write [0] for normal
provability and [1] for the natural arithmetical formalization of ω-provability
as a Σ3-predicate. We know both [0] and [1] satisfy all of the axioms of GL.
Moreover, by our earlier observation, we obviously have,

[0]φ → [1]φ

It is also not difficult to see that this principle should also be part of the logic:

¬[0]φ → [1]¬[0]φ

Reasoning in PA, suppose A is not provable. Then no number n is the code
of a proof of A, that is, ¬B(n, A#) is true for all n, which means that PA

⊢ ¬B(n,A#) for all n. But then it is easy to see that PA + ∃xB(x,A#) will be
ω-inconsistent, that is to say, ¬∃xB(x,A#) is ω-provable. And ∃xB(x,A#) is
exactly the definition of Bew(A#), so ¬Bew(A#) is ω-provable.

Giorgi Japaridze was the first to prove that these principles are indeed suf-
ficient ([Japaridze, 1985]). The proof is a non-trivial variation on Solovay’s
method for proving arithmetical completeness of GL.

In a certain sense, the set of ω-provable sentences of PA gets us one step
closer to the set of true arithmetical sentences than the set of normally provable
sentences. This can be better seen by considering an alternative, but equivalent,

3For convenience, we use bold notation for the arithmetical representation of numerals and
logical symbols.

4The presentation in this section is very much based on that in [Boolos, 1993]. This is also
an excellent source for the proof of Japaridze’s Theorem 1.1.3 in the bimodal case.
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formulation of ω-provability. Let us say A is provable by one application of the
ω-rule if there is some formula B(x) such that PA ⊢ B(n) for all n, and PA ⊢
∀xB(x) → A. It is easy to see that these two concepts coincide. That provability
by one application of the ω-rule implies ω-provability is obvious. For the other
direction, if A is ω-provable, there is some B(x) such that (using the Deduction
Rule), for all n, PA ⊢ ¬A → ¬B(n), but PA ⊢ ¬A → ∃xB(x). It follows that,
PA ⊢ ∀x(¬A → ¬B(x)) ↔ ⊥, and in particular PA ⊢ ∀x(¬A → ¬B(x)) → A.
So A is provable by one application of the ω-rule.

Taking provability by one application of the ω-rule as an alternative defini-
tion of ω-provability, this notion naturally gives rise to a whole succession of
stronger and stronger provability predicates. We could then let [2] correspond
to the formalization of provable by two applications of the ω-rule, and so on for
all natural numbers. In this way, adding more and more sentences to this list
of “provable” formulas, we gradually approach the standard model of all true
arithmetical sentences, since infinitely many applications of the rule gives all
such sentences. Obviously the logic of “n-provability” for each n will mirror
that of normal provability, just as 1-provability does. And the relationship be-
tween n- and n + 1-provability is analogously captured by that between 0- and
1-provability. Thus, we are ready to give the formal definition of GLP (P for
“polymodal”):

Definition 1.1.2. The logic GLP is defined by the following axioms, for n < ω:

(i) All tautologies

(ii) [n](φ → ψ) → ([n]φ → [n]ψ)

(iii) [n]([n]φ → φ) → [n]φ

(iv) 〈n〉φ → [n + 1]〈n〉φ

(v) [n]φ → [n + 1]φ

GLP is closed under modus ponens, and [n]-necessitation for all n < ω.

As in the case of GL, we put a natural restriction on the functions f from
modal formulas to arithmetical formulas, in particular so that, e.g. [n]φ is
always mapped to the formalization of “φ is provable by n applications of the
ω-rule.” Then, Japaridze’s Theorem can be stated:

Theorem 1.1.3 ([Japaridze, 1985]). GLP ⊢ φ iff PA ⊢ f(φ), for all f .

The interpretation of GLP we have been discussing so far is mostly of his-
torical interest, e.g. given Gödel’s original proof of the incompleteness theorem.
This is also the original interpretation that Japaridze considered. However, from
a proof theoretic point of view, the formalization of ω-provability is somewhat of
an incidental object. As Craig Smoryński has argued ([Smoryński, 1975]), the
notable historical uses of ω-consistency, e.g. in the first incompleteness theorem,
have been dispensable; and moreover the notion of ω-consistency is naturally
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encompassed by the more general and canonical notion of reflection principles,
sentences of the form,

Bew(A#) → A

When such principles are restricted to subclasses of the arithmetical hierarchy,
a more natural definition of n-provability arises.

Where ThΠn
(N) is the set of true Πn arithmetical sentences, let us say a the-

ory T is n-consistent if T + ThΠn
(N) is consistent, otherwise it is n-inconsistent.

It is known that the statement of a theory’s n-consistency is equivalent (prov-
ably in a weak arithmetic) to Σn-reflection over that theory. And a natural
notion of n-provability of a sentence can be defined analogously to the case of
ω-provability:

A sentence A is n-provable in T if the theory T + ¬A is n-inconsistent.

So n-provability becomes a natural Σn+1 predicate meaning, “provable from T

along with all true Πn sentences,” and the connection to reflection principles
thereby becomes more evident.5

Theorem 1.1.3 was extended by Konstantin Ignatiev ([Ignatiev, 1993]) to a
wider class of possible interpretations of [n]φ. He isolated minimal requirements
for an interpretation to give rise to GLP, and n-provability turns out to be the
weakest possible. All of these considerations together suggest that n-provability
takes precedence as the standard arithmetical interpretation of GLP. The ap-
plication discussed in the next section strengthens this suggestion yet further.

1.2 GLP and Ordinal Analysis

One of the traditional aims of proof theory has been to assign appropriate
ordinals to arithmetical theories. By appropriate, it is meant, on the one hand,
that the assignment should provide a comparative measure of “strength” of
different theories, most notably consistency strength. On the other, it should
be possible to glean computational information about such theories from their
respective ordinals, e.g. a characterization of the class of functions the theory is
able to prove total. Ordinal analysis began with Gerhard Gentzen, who proved
that Peano Arithmetic is consistent by using induction up to the ordinal ǫ0,
that is, the least ordinal fixed point of the equation ωα = β. In the same
paper, Gentzen showed that PA is able to verify transfinite induction for any
arithmetical predicate up to any ordinal less than ǫ0. Thus, a reasonable idea for
the definition of the proof-theoretic ordinal of a theory T could be something like,
“the least ordinal needed to prove the consistency of T,” or else, “the supremum
of the ordinals (order types) that T is able to prove are well-founded.”

The problem with these definitions is that pathologies creep in where details,
such as how ordinals are to be represented in the theory, are left vague and
open-ended. For instance, Georg Kreisel has shown that it is possible to define
a (primitive recursive) ordering of type ω so that even very weak theories can
prove the consistency of quite strong theories, like PA, using induction on this

5See [Beklemishev, 2005] for more details.
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ordering. As a converse to this, Lev Beklemishev has shown that for any ordinal
λ < ωCK

1 there is a (primitive recursive) well-order of order type λ such that no
sufficiently modest theory can prove the consistency of PA, even with transfinite
induction up to λ.6 One lesson that could be drawn from such examples is
that the notion of a proof-theoretic ordinal should abstract away as much as
possible from the particular syntactic details of the theory in question, and that
the assignment of an ordinal should be somehow canonical. The problem then
becomes, what sort of information should be relevant to determining a theory’s
ordinal? And what exactly does, or should, canonical mean here?

In [Beklemishev, 2004a], Beklemishev proposes that the relevant information
is captured, roughly, by the logic GLP. More particularly, he considers the
Lindenbaum-Tarski Algebra of GLP (See Definition 3.1.10), in which terms
corresponds to polymodal formulas and the identities are exactly the theorems
of GLP. On the 0-generated free subalgebra, corresponding exactly to the set
of closed formulas of GLP, a primitive recursive relation <0 is defined:

φ <0 ψ ⇔ GLP ⊢ ψ → 〈0〉φ

As we shall see later in this thesis (Section 2.3), the order type of <0 is exactly
ǫ0 when T is a sound arithmetical theory. Given the arithmetical interpretation
of GLP as n-provability, a direct connection can be made between n-provability
and quantifier complexity. Finally, by defining a bijection between elements of
this algebra and ordinals less than ǫ0 (see Definition 2.4.4), an ordinal notation
system is established that essentially depends only on the natural quantifier
complexity levels of the arithmetical language. This treatment allows for a very
simple, and “high-level” proof of Gentzen’s result on the consistency of PA, as
well as a more refined ordinal analysis of theories weaker than PA.

As this seems to be a promising and attractive approach to one of the central
problems in proof theory and mathematical logic generally, the closed fragment
of GLP, and the associated modal algebra, holds special interest.

1.3 Outline of the Thesis

The thesis is divided into three main sections. In the first section, we investigate
relational models of GLP. After presenting a simplified treatment of Beklem-
ishev’s blow-up model construction, we exploit completeness for such models
to obtain a new, purely semantic proof that GLP0 is complete with respect to
Ignatiev’s universal frame U . Following this, we investigate formula definable
subsets of U in anticipation of our work in the next two sections.

In the second section, we explore the connection between the frame U and the
canonical frame of GLP0. Using the theory of descriptive frames, we extend
U to a frame Vc that is isomorphic to the canonical frame, thus obtaining a
detailed definition of this object in terms of a coordinate structure we develop
in Section 2.

6Recall that ωCK
1 is the least ordinal that cannot be represented as the order type of a

recursive well-ordering. For details on these two examples, see [Pohlers, 1999].
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Finally, in the last section, we explore topological models of GLP. The
central result of this section is an analog of the Abashidze-Blass Theorem for
GL, to the effect that GLP0 enjoys topological completeness with respect to
a simply defined polytopology on the ordinal ǫ0 + 1. This space can be seen
as a condensed, and much simplified, version of the canonical frame of GLP0.
We then consider the possibility of an extension of this theorem to full GLP.
However, such an extension would require large cardinal assumptions beyond
ZFC, so we leave this further question for future work.

2 Relational Models

2.1 Frame Incompleteness

GLP is the normal polymodal logic defined as follows:

Definition 2.1.1 (The Logic GLP). For each n < ω, extend K by the axioms:

(iii) [n]([n]φ → φ) → [n]φ

(iv) 〈n〉φ → [n + 1]〈n〉φ

(v) [n]φ → [n + 1]φ

As usual, we would like to know what class of frames, if any, this logic
defines. Unfortunately, in this case, the answer is that there is no single frame
on which GLP is sound. Recall the relational semantics of GL:7

Fact 2.1.2 ([Segerberg, 1971]). F ² [n]([n]φ → φ) → [n]φ, if and only if Rn

is transitive and converse-well-founded.

Axiom (iv) also defines a property on frames:8

Fact 2.1.3. F ² 〈n〉φ → [n + 1]〈n〉φ, if and only if xRny, xRn+1z imply zRny.

Axiom (v) does as well:

Fact 2.1.4. F ² [n]φ → [n + 1]φ, if and only if xRn+1y implies xRny.

Remark 2.1.5. Let Rn be the set of pairs (x, y) such that xRny, and let R−1
n

be its inverse. Then Rn(X) := {y : ∃x ∈ X,xRny}, and R−1
n (X) := {x : ∃y ∈

X : xRny}. We call a set X an Rn-upset if it is upwards closed with respect to
Rn, i.e. x ∈ X and xRny implies y ∈ X.

Axioms (iv) and (v) have interpretations in this terminology: Axiom (iv)
means every set R−1

n (X) is an Rn+1-upset. And Axiom (v) means Rn+1 ⊆ Rn.9

7
F denotes an arbitrary frame in the polymodal language, and “²” denotes modal validity.

8Facts 2.1.3 and 2.1.4 are very easily proven. See, e.g. [Boolos, 1993].
9This formulation is due to Guram Bezhanishvili.
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No non-trivial frame satisfies all of these requirements. Suppose for a con-
tradiction that GLP is sound with respect to a frame F with R1 non-empty.
Then there are x, y such that xR1y, and by Fact 2.1.4, xR0y. By Fact 2.1.3,
yR0y, which contradicts Fact 2.1.2. Consequently, on any frame for which GLP
is sound, Rn must empty, so [n]⊥ becomes valid for all n > 0. We state this
result as a limitative theorem:

Theorem 2.1.6. GLP is incomplete with respect to its class of frames. In
particular, GLP is not sound on any frame for which Rn 6= ∅ for n > 0.

2.2 Models of GLP

Faced with the impossibility of obtaining a class of frames for GLP, one might
nonetheless hope a reasonable class of models for GLP is obtainable. Beklemi-
shev has isolated such a class for which GLP is sound and complete. We shall
outline the basic idea of this approach, simplifying where possible, and use it to
study models of the closed fragment. Since many of the results in this first part
are derived from [Beklemishev, 2007a], we often refer to this paper when proofs
would take us too far afield. We are most concerned with presenting a readable
treatment that gives the basic idea of the construction, and of what models of
GLP look like.

Following [Beklemishev, 2007a], our strategy will be as follows. We first
identify a logic J that approximates GLP, but in which the “monotonicity
axiom,” Axiom (v), is weakened. J enjoys completeness with respect to a simple
class of frames, which satisfy all of the axioms of GLP, with the exception
of Axiom (v). Models of GLP will then be obtained by defining a certain
operation, called the blow-up operation, over models based on J-frames. The
resulting models, called blow-up models, will simultaneously be models of J and
satisfy Axiom (v); that is, they will be models of GLP.

Before going further, we define a model property that serves as a suffi-
cient condition for the monotonicity axiom to hold. Recall the definition of
m-bisimilarity:

Definition 2.2.1 (n-bisimilarity). We define x ∼m x′ by recursion on m:

• x ∼0 x′ if and only if x and x′ force all the same variables

• x ∼m+1 x′ if and only if each of the following holds:

– x ∼m x′

– ∀k ≥ 0 ∀y(xRky ⇒ ∃y′(x′Rky′ & y ∼m y′))

– ∀k ≥ 0 ∀y′(x′Rky′ ⇒ ∃y(xRky & y′ ∼m y))

Let us write dp(φ) for the depth of φ, that is, the maximal number of nested
modalities in φ. The following fact is well known.10

10See, e.g. [Blackburn et al., 2001].
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Fact 2.2.2. If x ∼n x′, then if dp(φ) ≤ n, x ² φ ⇐⇒ x′ ² φ.

Definition 2.2.3. A model A satisfies the m-similarity property for Rn if,

∀x, y ∈ A(xRn+1y ⇒ ∃y′(xRny′ & y ∼m y′))

Lemma 2.2.4. If A satisfies the m-similarity property for Rn, then

A ² [n]φ → [n + 1]φ

for every φ with dp(φ) ≤ m.

Proof. If A, x 2 [i + 1]φ, then there is some y ∈ A such that xRi+1y and
A, y 2 φ. By the n-similarity property, there is some y′ such that xRiy

′ and
y ∼n y′. Hence A, x 2 [i]φ. ⊣

Given the completeness result that we will obtain in Theorem 2.2.36, we can
give relatively abstract conditions for a class of models for which GLP is sound
and complete:

Proposition 2.2.5. GLP ⊢ φ, if and only if φ is valid in all converse-well-
founded, transitive models with the m-similarity property for all m and all Rn,
and in which each R−1

n (A) is an Rn+1-upset.

This section is dedicated to giving a sense of how such models are obtained.

2.2.1 The Logic J

Definition 2.2.6. J is the sublogic of GLP defined by the weaking the mono-
tonicity axiom (v) of Definition 2.1.1 to axioms (vi) and (vii) below:

(vi) [n]φ → [n + 1][n]φ

(vii) [n]φ → [n][n + 1]φ

As usual, we close under modus ponens and [n]-necessitation.

One can easily show that, indeed, (vi) and (vii) are already theorems of
GLP. As we said earlier, J enjoys a relatively simple frame semantics:

Definition 2.2.7. A modal frame is called a J-frame if, for all n, Rn is a
converse-well-founded, transitive relation, and, moreover, it satisfies the prop-
erties (I) and (J) for all such n and m:

(I) ∀x, y(xRny ⇒ ∀z(xRmz ⇔ yRmz)), if m < n.

(J) ∀x, y(xRmy & yRnz ⇒ xRmz), if m ≤ n.

Condition (I) simply says that each R−1
n (A) is always an Rn+1-upset, thus

ensuring the validity of Axiom (iv). See Figures 1 and 2.
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n //

m
ÂÂ?

?
?

?
?

?
?

m

²²

n //

m
ÂÂ

m

²²

Figure 1: Frame Condition (I)

m //

m
ÂÂ

n

²²

Figure 2: Frame Condition (J)

Theorem 2.2.8 ([Beklemishev, 2007a]). J is sound and complete with re-
spect to (finite) J-frames.

This theorem is proven using a variation of the standard filtration method
used to prove completeness of GL ([Segerberg, 1971]). The class of J-frames
can be improved to another, more restricted class.

Definition 2.2.9. A frame is called a stratified frame if it is a J-frame and
moreover satisfies the property (S):

(S) ∀x, y, z(zRmx & yRnx ⇒ zRmy), if m < n

m //

m
ÂÂ

n

OO

Figure 3: Frame Condition (S)

Stratified frames have a certain structure that makes them especially pleas-
ant to work with. For any stratified frame, the relation R0 defines a strict,
well-founded partial ordering on what we shall call 1-sheets; 1-sheets are simply
submodels all of whose members are Ri-related to one another, for i > 0.

Definition 2.2.10. A subframe of a stratified frame is an n-sheet if it is closed
under the operation R∗

n, where xR∗
ny if for some m ≥ n, xRmy or yRmx.

In turn, each 1-sheet can be seen as a partial ordering of 2-sheets, and so
on for all n. This also means, in general, we can talk about n + 1-sheets being
Rn-related to one another: Letting ordinals serve as variables for sheets, if α
and β are n + 1-sheets, x ∈ α, y ∈ β, and xRny, then, by properties (J) and
(S), all elements of α are Rn-related to all elements of β.

Within the class of stratified frames, we can single out an even more restric-
tive class:

11



Definition 2.2.11. A stratified frame is hereditarily rooted if for all n-sheets,
there is an n + 1-sheet α, such that αRnβ for all other n + 1-sheets β.

Theorem 2.2.12 ([Beklemishev, 2007a]). J is sound and complete with re-
spect to (finite) stratified, hereditarily rooted frames.

Our interest in the closed fragment leads us to the following subclass:

Definition 2.2.13. Let us say a stratified frame is hereditarily linear, or h.l.
for short, if it satisfies property (L):

(L) ∀x, y, z (xRny & xRnz ⇒ ∃m ≥ n(yRmz or zRmy or z = y))

In other words, h.l. stratified frames can be visualized as those stratified
frames in which Rn defines a transitive, linear ordering of Rn+1-sheets for all n.
This class holds particular interest because it is exactly the class of frames for
the closed fragment of J. Just as the closed fragment of GL is complete with
respect to converse-well-founded, transitive linear frames, the closed fragment
of J is complete with respect to h.l. stratified frames. In particular, we have:

Lemma 2.2.14. The root point of any rooted, stratified frame is point-wise
bisimilar to the root point of some h.l. stratified frame.

Proof. The Rn-depth of a point in a stratified frame is the length of the greatest
Rn-chain beginning at that point. Given a rooted stratified frame A, define an
equivalence relation on A so that xEy if and only if x and y have the same
Rn-depth for all n. Let AE be the frame consisting of these equivalence classes,
and let [x]Rn[y] in AE if and only if there is some x ∈ [x] and some y ∈ [y]
such that xRny in A (or equivalently, if and only if for all x ∈ [x] there is some
y ∈ [y] such that xRny in A). Where r is the root point of A, we must check
that r and [r] are bisimilar, and that AE is a h.l. stratified frame.

That r and [r] are point-wise (frame) bisimilar follows immediately from the
definition of A.11 Noting that all paths are finite, if rRiy..Rjx is any path in A
it can be imitated by the path [r]Ri[y]...Rj [x] in AE . For the other direction,
if [r]Ri[y]...Rj [x], then taking any representative w of [r] will give us some z in
[y] such that wRiz, and so on up to [x].

AE is a stratified frame because A is. E.g., to see condition (S), suppose
[z]Rn[x] and [y]Rn+1[x]. Then there are z ∈ [z], x ∈ [x], and y ∈ [y] such that
zRnx and yRn+1x in A, so since (S) holds in A, zRny, and so [x]Rn[y] in AE .

It remains to show hereditary linearity. Suppose [x]Rn[y] and [x]Rn[z]. We
must show either [z]Rk[y] or [z]Rk[y] for some k ≥ n, or [z] = [y]. Since [y]
and [z] are in the same n-sheet, they have the same Ri-depth for all i < n.
If [z] 6= [y], suppose without loss that k is the least such that [z] has greater
Rk-depth than [y]. Then [z]Rk[w], where [w] has the same Rk-depth as [y]. [w]
also has the same Ri-depth for all i < n, again because [w] and [y] are in the
same n-sheet. We must show they have the same Ri-depth for n ≤ i < k as
well: This follows because, for any such i, [z] and [y] have the same Ri-depth,

11Yet, not all points in A will be bisimilar to the corresponding equivalence class in AE .
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and if [z]Ri[u], then by Condition (I), [w]Ri[u] as well. Consequently, we can
continue in this way: If there is a j such that [w] and [y] have different Rj-
depth for j > k, then repeat the same process. Since AE is well-founded, this
will eventually come to an end. We will obtain some point [v] such that (using
(J)), either [z]Ri[v] for i > n or [z] = [v], and either [y]Rj [v] for j > n or
[y] = [v]. If either equality holds, we are done. We cannot have i = j, because
then they would be in the same i-sheet, which contradicts the fact that, e.g. [z]
has greater Ri-depth than [y]. So, if i > j, then by (S), [y]Rj [z]. And if i < j,
then again by (S), [z]Ri[y]. ⊣

Corollary 2.2.15. If φ is a closed formula and J 0 φ, then there is a h.l.
stratified frame A such that A 2 φ.

Proof. If J 0 φ, then φ is falsified at the root x of some hereditarily rooted
stratified frame A. By Lemma 2.2.14, x is bisimilar to some point x′ in a h.l.
stratified frame A′. As a closed formula, φ is obviously falsified at x′ in A′. ⊣

2.2.2 Beklemishev’s Blow-up Models

We present a different treatment of blow-up models from [Beklemishev, 2007a].
First of all, whereas Beklemishev defines blow-ups to be finite objects and ob-
tains models of GLP as inverse limits of these objects, our construction is
slightly more general. Our blow-up operation applies directly to infinite objects,
and we obtain infinite objects already in the first stage of the construction. This
has advantages and disadvantages. On the one hand, it is significantly simpler
and less involved than the treatment in [Beklemishev, 2007a]. On the other
hand, we are unable to reason about our construction in a finitistic manner.
Another difference is that we are mainly interested in blow-ups of h.l. stratified
frames. Therefore, while we believe our treatment applies equally well to the
case of arbitrary hereditarily rooted stratified models, we focus on this case.

Blow-up models will be introduced in two stages. First we define what is
called sheet-wise blow-up, which takes an n + 1-sheet and turns it into a much
larger n-sheet satisfying the m-similarity property for Rn. Then, in order to
ensure that the m-similarity property holds for all Rn simultaneously, we will
introduce global blow-up.

For the next two definitions, suppose (I,R) is a converse-well-founded, tran-
sitive, linearly ordered set, and we have a 0-sheet αi for each i ∈ I.

Definition 2.2.16. Let
∑

i<ω αi, the disjoint sum, denote the disjoint union of
the αi’s, R0-ordered so that xR0y if and only if x, y ∈ αi and xR0y, or x ∈ αi

and y ∈ αj and iRj. For the binary case, we write αi + αj .

We call an injective p-morphism an end-embedding.12 We define the direct
limit of end-embeddings as follows:

12See [Chagrov and Zakharyaschev, 1997] or [Blackburn et al., 2001] for the definition of
p-morphism, in the latter referred to as bounded morphism.
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Definition 2.2.17 (Direct Limit). Suppose whenever iRj, there is an asso-
ciated end-embedding υij : αi −→ αj , such that:

• υii is the identity map on αi.

• υjk ◦ υij = υik, if iRjRk.

Then we define limi∈I αi as the disjoint union of the αi’s, modulo the equivalence
relation ∼I defined as the transitive, symmetric closure of:

x ∼I y ⇐⇒ ∃i, j ∈ I(iRj or i = j, x ∈ αi, y ∈ αj , and y = υij(x))

The relations are defined for equivalence classes:

[x]RI
n[y] ⇐⇒ ∃i,∃x′, y′ ∈ αi(x ∼I , y ∼I y′ and x′Rny′)

Finally, validity is defined:

lim
i∈I

αi, [x] ² φ ⇐⇒ ∃i,∃x′ ∈ αi(x ∼I x′ and αi, x
′ ² φ)

Essentially, the direct limit identifies exactly those points that are mapped
one to the other by the end-embeddings υij . The key fact about such limits is
the following:

Lemma 2.2.18. If each of the αi’s is a hereditarily linear stratified model, then
limi∈I αi is a hereditarily linear stratified model.

Proof. This is a straightforward consequence of the Definition 2.2.17. ⊣

Remark 2.2.19. We shall find it convenient to abuse notation somewhat and
write

⋃
i∈I αi, instead of limi∈I αi. End-embeddings are, after all, embeddings,

so it is often more intuitive to see each αi as a submodel of the direct limit.

Without further ado, we introduce the first blow-up notion, sheet-wise blow-
up. Where α is a 1-sheet, and ρ its root 2-sheet (we write αρ to make this more

apparent), the resulting 0-sheet, α
(ω)
ρ , will give us the m-similarity property for

R0 without leaving the class of hereditarily linear stratified models.13

Definition 2.2.20 (Sheet-Wise Blow-Up). We define the sheet-wise blow-up

of αρ, denoted α
(ω)
ρ , by induction on R1-successors of ρ. If αρ consists only of the

2-sheet ρ, then α
(ω)
ρ is defined to be the same 1-sheet, now considered as a 0-sheet

with R0 empty. Otherwise, suppose α
(ω)
σ is defined for any σ such that ρR1σ.

For each such σ, let Bσ :=
∑

i<ω α
(ω)
σ , that is, ω-many copies of α

(ω)
σ conversely-

well-founded and linearly ordered by R0. We inductively assume whenever
ρR1σR1σ

′, there are natural end-embeddings υσ′σ : Bσ′ −→ Bσ. Appealing to

Definition 2.2.17 and Lemma 2.2.18, α
(ω)
ρ is obtained by putting

⋃
ρR1σ Bσ, the

13It will often be convenient to give definitions and prove results for 0-sheets, tacitly using
the obvious fact that these notions can be “lifted” to n-sheets.
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direct limit, R0-above a copy of αρ. Thus, the inductive end-embedding υσρ :
Bσ −→ Bρ becomes the composition of the following obvious end-embeddings:

Bσ −→
⋃

σR1σ′

Bσ′ −→ α(ω)
ρ −→

∑

i<ω

α(ω)
ρ = Bρ

Corollary 2.2.21. If αρ is a hereditarily linear, stratified model, so is α
(ω)
ρ .

Effectively, the blow-up operation turns a 1-sheet (n + 1-sheet) into a much
larger 0-sheet (n-sheet). To work with such models, it will help to label certain
parts of the structure. In that direction we shall let [αi

σ](ω) stand for the ith

copy of α
(ω)
σ within

∑
i<ω α

(ω)
σ . So we will have, e.g.,

αρR0...R0[α
i+1
σ ](ω)R0[α

i
σ](ω)R0...R0[α

0
σ](ω)

(and the transitive closure thereof) for any σ for which ρR1σ. Furthermore,
each [αi

σ](ω) has a copy of ασ as its root, and this will be denoted αi
σ.

We say a point x ∈ α
(ω)
ρ has level i, written l(x) = i, if x ∈ [αi

σ](ω) for ρR1σ.
If x is in the root, then l(x) = ∞. We also define natural projection functions
for this structure:

Definition 2.2.22. We recursively define a projection function πρ : α
(ω)
ρ → αρ.

First, πρ is identity on αρ. Assume πi
σ : [αi

σ](ω) → αi
σ has been defined for each

σ for which ρR1σ and for all i < ω. If x ∈ [αi
σ](ω), then πρ(x) := y where y ∈ ασ

is the point corresponding to πi
σ(x) in the isomorphic structure αi

σ.

Fact 2.2.23. πρ restricted to any 1-sheet in α
(ω)
ρ is an end-embedding.

Proof. See [Beklemishev, 2007a]. ⊣

With these definitions and facts in hand, we can show that blowing up sheet-
wise gets us part of the way to the global k-similarity property.

Lemma 2.2.24. Suppose a ∈ αρ. Each point x ∈ α
(ω)
ρ such that x ∈ π−1

ρ (a)
and l(x) ≥ k is k-bisimilar to a (and thus also to every other such point).

Proof. We show this by induction on k. The case of k = 0 follows trivially
since the valuation on all points in π−1

ρ (a) is the same. So consider the case of
k + 1. We show each of the conditions from Definition 2.2.1 in turn. For the
first condition, we have x ∼k a by the induction hypothesis.

Next, suppose xRmy. If m = 0, then certainly aRmy by the construction.
If m > 0, then aRmb for b = πρ(y), and by induction hypothesis b ∼k y.

For the last condition, suppose aRmb. If m > 0, then b is in the root as well,
so we can take a y ∈ π−1

ρ (b) in the same 2-sheet as x, and xR0y and y ∼k b by
induction hypothesis and by Fact 2.2.23. On the other hand, if m = 0, then b
must be in [αi

σ](ω) for some σ and some i. If i ≤ k, then automatically xR0b
since l(x) ≥ k + 1; but if i > k, then we can still find the corresponding b′ in
[αk

σ](ω), and clearly xR0b
′, and b ∼k b′ by induction hypothesis. ⊣
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We also have the following elementary fact about n-bisimilations:

Fact 2.2.25. Suppose B ⊆ A is a submodel such that for all k ≥ 0, we have:

∀x, y ∈ B ∀z ∈ A \ B (xRkz ⇒ yRkz)

Then x ∼n y in B if and only if x ∼n y in A.

Lemma 2.2.26. The model α
(ω)
ρ satisfies the k-similarity property for R0.

Proof. This is proven by induction on the construction of α
(ω)
ρ . Suppose x ∈ α

(ω)
ρ

and xR1y. If x ∈ αρ, then so is y and we can find an appropriate y′ ∈ π−1
ρ (y)

such that l(y′) ≥ k. Then, by Lemma 2.2.24, y′ ∼k y.
If x ∈ [αi

σ](ω), by the inductive hypothesis, we can find a y′ such that xR0y
′

and y ∼k y′ in [αi
σ](ω). Then [αi

σ](ω), as a submodel of α
(ω)
ρ , satisfies the

conditions of Fact 2.2.25. So we have y ∼k y′ in α
(ω)
ρ as well. ⊣

Lemma 2.2.27. If m > 0 and αρ satisfies the k-similarity property for Rm,

then so does α
(ω)
ρ .

Proof. By Lemma 2.2.23, every 1-sheet of α
(ω)
ρ can be end-embedded into αρ,

and so each such 1-sheet satisfies the k-similarity property for Rm. Since this

is generally true for 1-sheets in α
(ω)
ρ , it also holds for α

(ω)
ρ itself. ⊣

What we have argued so far is that, if we sheet-wise blow-up a 1-sheet α,
we get a new 0-sheet α(ω), that satisfies the k-similarity property for R0. As
we noted earlier, this can automatically be lifted to the case of n + 1-sheets, for
any n. However, to obtain models of GLP or GLP0, we need the k-similarity
property for all Rn simultaneously. For that, we introduce the global blow-up
operation. If A is a 0-sheet (i.e. a stratified model), we write α ∈ A to mean α
is a 1-sheet in A, and so on for 1-sheets, 2-sheets, etc.

Definition 2.2.28 (Global Blow-Up). For any hereditarily linear, stratified
model A, we define,

Bω(A) :=
∑

α∈A

Bω(α)(ω)

That is, to obtain the blow-up of a model A, we take the ordered sum
of infinitely many copies of the blow-up of each 1-sheet in A, and order the
resulting sum by mimicking the R0-order of the 1-sheets in A. In turn, the
blow-up of each 1-sheet is defined analogously in terms of blow-ups of its 2-
sheets, and so on. As there is a hidden recursion in the definition, the operation
Bω is ambiguous in a certain sense: we must know whether the model we we
are blowing up is being considered as a 0-sheet, a 1-sheet, etc. The operation
is defined in such a way as to apply to n-sheets for any n. It is this operation
that will give us the k-similarity property for all Rm.

Corollary 2.2.29. If A is hereditarily linear and stratified, so is Bω(A).
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Proof. This follows by Corollary 2.2.21 and Definition 2.2.28. ⊣

Lemma 2.2.30. If A is a finite, hereditarily linear, stratified model, then
Bω(A) satisfies the k-similarity property for all Rm.

Proof. Assume this holds for all 1-sheets α ∈ A. So, for each α, Bω(α) satisfies
the k-similarity property for all Rn. We have two cases:

If n = 0, then indeed Bω(α)(ω) satisfies the k-similarity property by Lemma
2.2.27. By Fact 2.2.25 so does

∑
α∈A Bω(α)(ω).

If n > 0, then by Lemma 2.2.27, each Bω(α)(ω) also satisfies the k-similarity
property. Once again, by Fact 2.2.25 this carries over to

∑
α∈A Bω(α)(ω). ⊣

When we took sheet-wise blowups of n + 1-sheets, we maintained models of
J, in fact, even stronger, we remained in the class of hereditarily linear stratified
models (Corollary 2.2.21). Lemma 2.2.30, coupled with Lemma 2.2.4, ensures
that blow-up models also satisfy each of the monotonicity schemas.

Corollary 2.2.31. For any hereditarily linear, stratified model A, Bω(A) is a
model of GLP.

Definition 2.2.32. Let M(φ) :=
∧

i<s([mi]φi → [mi + 1]φi), where [mi]φi for
i < s are all subformulas of φ of the form [k]ψ. And if n = maxi<smi, let
M+(φ) := M(φ) ∧

∧
i≤n[i]M(φ).

We clearly have:14

Fact 2.2.33. If J ⊢ M+(φ) → φ, then GLP ⊢ φ.

Given Corollary 2.2.15 and Fact 2.2.33, completeness of GLP0 is relatively
straightforward.

Theorem 2.2.34. If GLP0 0 φ, there is an h.l. stratified model A, such that
Bω(A) 2 φ.

Proof. If φ is a closed formula and GLP0 0 φ, then J 0 M+(φ) → φ. By
Corollary 2.2.15, there is a h.l. stratified model A such that A 2 M+(φ) → φ.
We must see that Bω(A) 2 φ.

Define the natural projection function π∗ : Bω(A) → A, so that π∗ is the
identity mapping when A is trivial. Otherwise, recall by Definition 2.2.28,

Bω(A) =
∑

α∈A

Bω(α)(ω)

By inductive hypothesis, we are given a function π∗
α for Bω(α). And let πα :

Bω(α)(ω) → Bω(α) be the projection function from Definition 2.2.22. Then
π∗(x) := π∗

α(πα(x)), whenever x ∈ Bω(α)(ω). We state the following lemma:

14As a result of Theorem 2.2.36, this is actually a biconditional. This fact allows for a
proof of the Craig Interpolation Property and the Fixed Point Property for GLP by reason-
ing formalizable in PA ([Beklemishev, 2007b]). Ignatiev established in [Ignatiev, 1992] and
[Ignatiev, 1993] the Craig Interpolation Property for GLP, but the proof used arithmetical
soundness of GLP in the form of reflection principles, and so was not formalizable in Peano
Arithmetic. Whether this could be done in PA alone was noted as an open question.
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Lemma 2.2.35. If ψ is a subformula of φ, then for all x ∈ Bω(A),

Bω(A), x ² ψ ⇐⇒ A, π∗(x) ² ψ

Proof. The proof of this lemma is identical to that for Lemma 9.3 in the original
[Beklemishev, 2007a], so we shall not repeat it here. The rough idea is simply
that the composition of the natural projection functions from the “outermost”
sheets all the way to the root n-sheet isomorphic to A is exactly the function
π∗. Since each of these functions preserves and reflects modal validity (Lemma
2.2.24), so does π∗. ⊣

Lemma 2.2.35 thus completes the proof, as Bω(A) 2 M+(φ) → φ, but since
Bω(A) ² M+(φ) by Corollary 2.2.31, it follows that Bω(A) 2 φ. ⊣

As we noted earlier, the treatment here is significantly simpler than that in
[Beklemishev, 2007a], both because our operation is well defined over infinite
models, and because we concentrate on the hereditarily linear case. While
we believe these results also apply equally well to arbitrary hereditarily rooted
stratified models, nevertheless such a completeness result for full GLP has been
established, and we state this result here.

Theorem 2.2.36 ([Beklemishev, 2007a]). GLP ⊢ φ, if and only if, for all
hereditarily rooted stratified models A, Bω(A) ² φ.

2.3 Ignatiev’s Frame U

As a historical point, the frame we shall introduce in this section, due to Ignatiev,
was actually the prototype on which the models discussed in the last section
were based. Indeed, we shall prove that, ignoring valuations, Ignatiev’s frame
U is a special case of the blow-ups of h.l. stratified frames (Corollary 2.3.11
below). However, U is of special interest because it is universal for the closed
fragment of GLP; that is, every non-theorem is falsifiable on U . By showing
that the blow-up of any h.l. stratified frame is embeddable in U , completeness of
GLP0 with respect to the former, proven in the previous section, will translate
to completeness with respect to the latter.

Remark 2.3.1. If A is a relational structure in the polymodal language, A+

is the same structure obtained by letting xRn+1y in A+ if and only if xRny in
A, so that Rn is empty in A+, for the least non-empty Rn in A.

Recall that every ordinal can be put into normal form:

Theorem 2.3.2 (Cantor Normal Form). Every ordinal > 0 can be written
in Cantor Normal Form: in the form ωλk + ... + ωλ0 , where λi ≥ λj for i > j.

The following function e, defined on the Cantor Normal Form of an ordinal
will be used heavily in our study. It is important to notice that, for any ordinal
α < ǫ0, after some finite number n of iterations of e, en(α) = 0.
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Definition 2.3.3. If α ≤ ǫ0 has Cantor Normal Form ωλk + ... + ωλ0 , then we
define e(α) := λ0. In particular, e(ǫ0) = ǫ0. We furthermore stipulate e(0) = 0.

We shall give two different definitions of U . The first is a variation of Ig-
natiev’s original definition ([Ignatiev, 1992]), due to [Beklemishev et al., 2005].

Definition 2.3.4. Define U = (U,Rn : n < ω) in ǫ0-many stages so that U =⋃
α<ǫ0

Uα. U0 is the structure consisting of a single point with empty relations.

Assuming Uβ has been defined for β < α, let Wα be an isomorphic copy of U+
e(α),

which is already defined, since e(α) < α whenever α < ǫ0. Then Uα is obtained
by taking the disjoint union of

⋃
β<α Uβ and Wα, and by extending R0 so that

each element of Wα is R0-related to each element in
⋃

β<α Uβ .

Recalling Remark 2.2.19, the definition of Uα can simply be stated:

Uα :=
⋃

β<α

Uβ + U+
e(α)

Since Wα is isomorphic to U+
e(α), we let p : U → U be a function mapping

any point of Wα to the corresponding point in Ue(α) (the same frame with the
original relations).

For ease of reference,15 we associate with every element x ∈ U a sequence of
ordinals (α0, α1, α2, ...), each αi < ǫ0. In general, α0 will signify at which stage
x was constructed, and the rest of the coordinates will locate where x is within
Wα0

. More precisely, suppose α0 is the first ordinal such that x ∈ Uα0
. Since

α0 is least, x /∈
⋃

β<α0
Uβ , and so x ∈ Wα0

. Then consider p(x), and let α1 be
the first ordinal such that p(x) ∈ Uα1

. Continuing in this way we obtain our
sequence of ordinals α0, α1, α2, ... Recall that, for example, since p(x) ∈ Ue(α),
we must have α1 ≤ e(α). In general, then, our sequence satisfies the requirement
that ∀i, αi+1 ≤ e(αi). Conversely, if we consider any such sequence satisfying
this requirement, we can easily find an appropriate point x.

Let Ω be the set of ω-sequences ~α := (α0, α1, α2, ...), where each αi < ǫ0.
The correspondence described in the previous paragraph leads to our second
definition of U .16

Definition 2.3.5 (Ignatiev’s Frame U). U := (U,Rn : n < ω) is defined:

U := {~α ∈ Ω : ∀n < ω,αn+1 ≤ e(αn)}

~αRn
~β ⇔ (∀m < n,αm = βm & αn > βm)

Thus, each point in U can be seen as a strictly decreasing finite sequence of
ordinals. We label the n-th “coordinate” of a point ~α by αn. Then, for each
~α ∈ U , there is some m such that αn = 0 for all n ≥ m.

15And following [Beklemishev et al., 2005].
16Definition 2.3.5 is based on the treatment in [Beklemishev et al., 2005], which is itself a

variation on that in [Ignatiev, 1992].
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We define validity of formulas in the usual way:

U , ~α ² 〈n〉φ ⇐⇒ ∃~β ∈ U (~αRn
~β & U , ~β ² φ)

For a visualization of the very top part of U , namely Uωω+1 , see Figure 4.17 Single
arrows represent R0, double arrows represent R1, and triple arrows represent
R2. While each Rn is transitive, we leave out many of the arrows that should
be there as a consequence.

The 1-sheets on this structure are easily identifiable. They are simply those
clusters of points that are R1-related to one another. E.g. (ω, 1) and (ω, 0) form
a 1-sheet. U is also clearly a h.l. stratified frame. Indeed, U is a model of GLP0,
and GLP0 is complete with respect to U , as Ignatiev was the first to show. As
our proof of this fact makes use of blow-up models, it differs significantly from
those in [Ignatiev, 1993] and [Beklemishev et al., 2005], which are both based
on syntactic arguments.

Proposition 2.3.6. GLP0 ⊢ φ if and only if, for all ~α ∈ U , U , ~α ² φ.

We first prove soundness, then completeness.

Lemma 2.3.7. GLP0 is sound w.r.t. U .

Proof. We reason by induction on proofs in GLP0, treating only axioms (iii),
(iv), and (v). To see Axiom (iv), it is sufficient to note that each relation Rn+1

satisfies the condition:

∀~α, ~β ∈ U(~αRn+1
~β ⇒ ∀~γ(~αRn~γ ⇔ ~βRn~γ))

This is obvious by the definition of Rn+1.
An easy proof that Löb’s Axiom is valid relies on the fact that each relation

Rn is transitive and converse-well-founded. It is converse-well-founded simply
because all ordinals are well-founded under the <-relation. So given a point
~α ∈ U , αn can decrease only finitely often.18

Finally, while it is possible to prove the validity of Axiom (v), the “Mono-
tonicity Axiom”, in a number of ways, we refer the reader to Corollary 3.2.14
below, where we prove that the validity of closed formulas does not change when
we augment relations so that ~αRn+1

~β implies ~αRn
~β for all n. This is clearly

sufficient for Axiom (v) to hold. ⊣

Our method of showing completeness is to reduce the completeness for U to
that for blow-ups of h.l. stratified frames. So we must first prove a number of
auxiliary lemmas.

Lemma 2.3.8. For all α, β < ǫ0, Uα + Uβ
∼= Uα+1+β.

17This diagram is due to Joost Joosten, having originally appeared in [Joosten, 2004].
18This fact, however, is not formalizable in PA. In [Beklemishev et al., 2005], a proof of the

soundness of Axiom (iii) is given using reasoning formalizable in a weak subsystem of PA.
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Figure 4: Ignatiev’s Frame U
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Proof. Transfinite induction on β. For the basic case, Uα + U0 is isomorphic to
Uα+1 by definition.

Suppose β = γ + 1. The induction hypothesis (×2) gives the result:

Uα + Uγ+1
∼= Uα +

⋃

δ<γ+1

Uδ + Ue(γ+1)

∼= Uα + Uγ + U0

∼= Uα+1+γ + U0

∼= Uα+1+γ+1

When β = λ is a limit, we have the following:

Uα + Uλ
∼= Uα +

⋃

γ<λ

Uγ + U+
e(λ)

∼=
⋃

γ<λ

(Uα + Uγ) + U+
e(λ)

∼=
⋃

γ<λ

Uα+1+γ + U+
e(λ)

∼=
⋃

γ<α+1+λ

Uγ + U+
e(λ)

∼=
⋃

γ<α+1+λ

Uγ + U+
e(α+1+λ)

∼= Uα+1+λ

The penultimate step follows because the e function only depends on the last
summand of the Cantor Normal Form. ⊣

Lemma 2.3.9. For all α, (U+
α )(ω) ∼= Uωα .

Proof. This is shown by transfinite induction on α. First of all, notice we have
the following by the definition of sheet-wise blow-up:

(U+
α )(ω) :=

⋃

α̂R0
~β

∑

i<ω

(U+
~β

)(ω) + U+
α

Otherwise put,

(U+
α )(ω) =

⋃

β<α

∑

i<ω

(U+
β )(ω) + U+

α

By the inductive hypothesis,

⋃

β<α

∑

i<ω

(U+
β )(ω) ∼=

⋃

β<α

∑

i<ω

Uωβ

We claim that, ⋃

β<α

∑

i<ω

Uωβ =
⋃

β<ωα

Uβ
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There are two cases to check: either α is a limit or a successor ordinal.
Suppose α is a successor ordinal. In particular, suppose α = γ + 1:

⋃

β<α

∑

i<ω

Uωβ =
∑

i<ω

Uωγ

=
⋃

β<ωγ · ω

Uβ

=
⋃

β<ωα

Uβ

On the other hand, if α is a limit ordinal:
⋃

β<α

∑

i<ω

Uωβ =
⋃

β<α

Uωβ+1

=
⋃

β<α

Uωβ

=
⋃

β<ωα

Uβ

Finally, putting all of this together,

(U+
α )(ω) ∼=

⋃

β<ωα

Uβ + U+
α

But this is exactly the definition of Uωα . ⊣

Lemma 2.3.10. Suppose A is a h.l. stratified model and α is an n-sheet with
Rm empty for all m > n. Then there is some β such that Bω(α) = Uβ.

Proof. Any such n-sheet can be written as U+...++
k , where k is the length of

the single n-chain in α and there are n ‘+’ symbols. This is simply an n-sheet
isomorphic to the very top part of the Ignatiev frame. For simplicity denote it
U+n

k . By the definition of global blowup, we have:

Bω(α) ∼= Bω(U+n
k )

∼= (Bω(U+n−1
k )+)(ω)

... (n − 1 applications of Definition 2.2.28)
∼= ((...(Bω(Uk)+)(ω)...)+)(ω)

... (n − 1 applications of Lemma 2.3.9)
∼= Uβ

This β is therefore determined as in Lemma 2.3.9. ⊣

Seeing as Bω(U1) ∼= Uω is obvious, the argument in Lemma 2.3.10 gives rise
to the following corollary (noted in [Beklemishev, 2007a]), which shows that
blowups of simple two point frames approximate the entire structure U :
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Corollary 2.3.11. For all n, Bω(U+n
1 ) ∼= Uωn

.

This next theorem shows that U is in a strong sense universal for the class
of finite h.l. stratified frames.

Theorem 2.3.12. For any finite h.l. stratified frame A, there is a β such that

Bω(A) ∼= Uβ .

Proof. We show this by induction on rank.19 The case of rank 0 is exactly
Lemma 2.3.10. So, consider any h.l. stratified frame A with positive rank.
Every such frame can be written as the 0-linear ordering of 1-sheets:

α0R0α1R0...R0αn

The blowup, Bω(A), can be written similarly as the 0-linearly ordered sum of
blow-ups of 1-sheets:

Bω(α0) + Bω(α1) + ... + Bω(αn)

By induction hypothesis, each such Bω(αi) is isomorphic to some Uβi
. So:

Bω(A) ∼= Uβ0
+ Uβ1

+ ... + Uβn

∼= Uβ0+1+β1+1+...+βn

The last step is by Lemma 2.3.8. ⊣

Theorem 2.3.13. GLP0 is complete with respect to U .

Proof. If GLP0 0 φ, then J 0 M+(φ) → φ, and by Corollary 2.2.15 there is a
h.l. stratified frame A such that A 2 M+(φ) → φ. Correspondingly, Bω(A) 2 φ.
Theorem 2.3.12 ensures that Bω(A) is isomorphic to some generated subframe
of U . Therefore, U 2 φ. ⊣

In fact Theorem 2.3.13 can be improved to a special subset of points in U .
We only mention the result here, and defer the proof to the next section, after
further study of U .

Definition 2.3.14 (Main Axis). ~α ∈ U is a root point if and only if ∀i,
αi+1 = e(αi). The main axis of U , denoted M , is the set of all root points.

We shall write α̂ for the root point “generated by” a given ordinal α:

α̂ := (α, e(α), e(e(α)), ...)

Proposition 2.3.15 ([Ignatiev, 1993]). If GLP0 0 φ, then there is a root
point α̂ on the main axis M , such that U , α̂ 2 φ.

19We have not needed to use the notion of rank ([Beklemishev, 2007a]) up to this point,
but it is a sufficiently natural notion. Essentially, it is just the maximal depth of nestings
of sheets. The formal definition is as follows: For an m-sheet A, if all Rn are empty, then
rkm(A) = 0; otherwise rkm(A) := maxα∈A rkm+1(α) + 1.
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2.4 Words and Ordinals

Our study of U will center around a class of formulas called words, introduced
in [Beklemishev, 2004a].20 An important fact, analogous to the Normal Form
Theorem for GL,21 is that all closed formulas are GLP0-equivalent to a boolean
combination of words. Syntactic proofs of this fact were given by Ignatiev and
Beklemishev ([Beklemishev, 2004a],[Beklemishev, 2004b],[Ignatiev, 1992]). As
a result of Theorem 2.3.13, knowing that GLP0 is sound and complete for U ,
we automatically gain a normal form result for U :

Theorem 2.4.1 (Normal Form Theorem). Every closed formula is equiva-
lent in U to a boolean combination of words.

We shall use words to study the subsets of U that correspond to the validity
set of a closed formula. We call such sets closed formula definable subsets, or
simply definable subsets, of U . The notation Sφ denotes the set of points where
φ is true. As a result of Theorem 2.4.1, words will provide a very useful tool in
studying such subsets.

By a word we mean a modal formula of the form 〈nm〉...〈no〉⊤. Instead of
writing out words in this way we shall abbreviate, letting any sequence of nu-
merals denote a word. In particular, the empty sequence Λ corresponds to ⊤.
This will allow us to perform various operations on sequences such as concate-
nation: e.g. if 12 denotes 〈1〉〈2〉⊤ and 01 denotes 〈0〉〈1〉⊤, then 1201 denotes
〈1〉〈2〉〈0〉〈1〉⊤. We shall let n,m, ... serve as variables for individual diamonds,
and A,B... serve as variables for sequences of diamonds. We will also write,
e.g. U , ~β ² A, even though, strictly speaking, this is an abuse of the notation.
Finally, let S denote the set of all words, and Sn denote the set of words with
only modalities 〈m〉 for m ≥ n.

In order to investigate validity of words, and closed formulas in general, in
U , we introduce the following ordering on U .

Definition 2.4.2. The relation ¹ defines a rooted partial order on points in U
so that, for any two points ~α and ~β,

~β ¹ ~α ⇔ (∀i, βi ≤ αi)

Lemma 2.4.3. For any word A, if U , ~α ² A, then for all ~β ∈ U such that
~β º ~α, we have U , ~β ² A.

Proof. By induction on the length of words. If A = Λ, this is obvious. Suppose
this holds for formulas of length m, and ~α ² nA, for A of length ≤ m. Suppose
in particular that ~αRn

~δ for some ~δ ² A. Now take any ~β ∈ U such that ~β º ~α.
We see ~βRn~γ, where ~γ is such that ∀i < n γi = βi, and ∀i ≥ n γi = δi. Then we
have that ~γ º ~δ, so by the induction hypothesis ~γ ² A, and hence ~β ² nA. ⊣

20Although, similar formulas were introduced in [Ignatiev, 1992].
21See [Boolos, 1993].
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Next, we define a surjective function o from words to ordinals, originally
used by Beklemishev to establish a one-to-one ordinal notation system for ǫ0
(See Section 1.2).22 The function o is defined by recursion on the width of a
word, denoted w(A), where w(A) is the number of different numerals occurring
in A, with a subsidiary recursion on min(A), where min(A) = min(nm, ..., n1) if
A = nm...n1. We write A− for the result of reducing each element of A by one.

Definition 2.4.4 ([Beklemishev, 2004a],[Beklemishev, 2005]). The func-
tion o : S → ǫ0 is defined:

• If A = 0k, then o(A) = k

• Otherwise, if A = A10...0Ak, with each Ai ∈ S1 and not all Ai empty,

then o(A) = ωo(A−

k
) + ... + ωo(A−

1
).

To see that this is a well defined function, note that w(A−
i ) < w(A) whenever

k > 1. And when k = 1, min(A−
i ) = min(Ai) − 1 < min(A).

We shall prove that o gives us a means of specifying at what points in U a
given closed formula is validated. First, an auxiliary lemma:23

Lemma 2.4.5. If A ∈ S1, then for any word B, we have U , ~β ² A0B if and
only if U , ~β ² A and U , ~β ² 0B.

Proof. For the left-to-right direction, if ~β ² A0B, certainly ~β ² A. Moreover,
there is some sequence

~βRi~γ...Rj
~δR0~α

such that each i, j... > 0 and ~α ² B. Since therefore α0 < β0, we have ~βR0~α,
and thus ~β ² 0B.

For the other direction, if ~β ² A, we have a sequence witnessing this fact:

~βRi~γ...Rj
~δ

As A ∈ S1, each i, j, .. > 0. Therefore, δ0 = β0. Since ~β ² 0B, it is also clear
that ~δ ² 0B. This means ~β ² A0B. ⊣

Definition 2.4.6. Let ι(A) := ô(A), so that ι(A) is in M .

Proposition 2.4.7. For all words A ∈ S and points ~β ∈ U ,

U , ~β ² A ⇐⇒ ~β º ι(A)

Proof. Induction on the length of A. When A is the empty sequence, this is
clear, as ι(Λ) = (0).

Supposing A is not empty, we now induct on min(A).

22Ignatiev has also defined such a surjection ([Ignatiev, 1993]), however that in
[Beklemishev, 2004a] is simpler.

23C.f. [Beklemishev, 2004a], Lemma 5.9(iv) for a syntactic proof of this fact.
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If min(A) = 0, then A can be written in the form A00A′, with A0 ∈ S1. Let

ι(A′) = α̂

Then by induction hypothesis, ~β ² A′ if and only if ~β º α̂. As A0 ∈ S1, we
have o(A0) = ωγ , where γ = o(A−

0 ). Thus,

ι(A0) = (ωγ , γ, e(γ), e(e(γ)), ...)

And by the induction hypothesis, ~β ² A0 if and only if ~β º ω̂γ . Using Lemma
2.4.5, we have

~β ² A00A′ ⇐⇒ (~β ² A0 & ~β ² 0A′)

We know exactly when ~β ² A0; To see when ~β ² 0A′, we have:

~β ² 0A′ ⇐⇒ ∃~β′(~βR0
~β′ & ~β′ ² A′)

⇐⇒ ∃~β′(~βR0
~β′ & ~β′ º α̂)

⇐⇒ β0 > α0

We can thus conclude, ~β ² A00A′ if and only if ~β º ω̂γ and β0 > α0.

On the other hand, o(A) = o(A′) + ωo(A−

0
) = α0 + ωγ . So,

ι(A) = (α0 + ωγ , γ, e(γ), e(e(γ)), ...)

Hence, ~β º ι(A) if and only if ~β º ω̂γ and β0 ≥ α0 + ωγ . It remains to show
β0 > α0 is equivalent to β0 ≥ α0 + ωγ .

The right-to-left direction is obvious. For the other direction, if β0 > α0,
then β0 = α0 + δ for δ > 0. Since e(β0) = e(δ), it follows

δ ≥ ωe(δ) = ωe(β0) ≥ ωβ1 ≥ ωγ

And so β0 ≥ α0 + ωγ , thus concluding the basic case.
Finally suppose min(A) > 0. Since 0 does not occur in A, ~β ² A if and only

if ~β′ ² A−, where ~β′ := (β1, β2, ...) (each coordinate shifted once to the left).

By the induction hypothesis (on min(A)), this is equivalent to ~β′ º ι(A−). Let

ι(A−) = α̂. Then ι(A) = ω̂α. But clearly ~β º ω̂α if and only if ~β′ º α̂. Putting
all of this together:

~β ² A ⇐⇒ ~β′ ² A− ⇐⇒ ~β′ º α̂ ⇐⇒ ~β º ω̂α ⇐⇒ ~β º ι(A)

This concludes the inductive step. ⊣

Proposition 2.4.7 is of central importance. One immediate consequence is
that U is optimal in the sense that it does not have any superfluous points:24

24In the proof of Lemma 2.4.8, as elsewhere, we write α
β
n to mean an n-stack of α’s with a

β as the top exponent, rather than, e.g. (αn)β , which would denote an n-stack of α’s raised
to the power of β.

27



Lemma 2.4.8. For any distinct points ~α and ~β in U , there is a word A such
that U , ~α ² A but U , ~β 2 A.

Proof. Without loss of generality, suppose ∀i < n, αi = βi, and αn > βn. Let

γ̂ := (ωβn
n , ..., ωβn , βn, e(βn), e(e(βn)), ...)

and suppose o(A) = γ = ωβn
n . Then clearly U , ~α ² nA (since ~αRn

~δ for ~δ exactly
like ~α up to the n-th coordinate and like ~γ from the n-th on). But we cannot

have U , ~β ² nA, because if ~βRn
~δ, for some appropriate ~δ, then δn < βn = γn. ⊣

We are also now in a position to prove Ignatiev’s strengthening of complete-
ness, to the effect that it is possible to falsify any non-theorem of GLP0 on the
main axis.

Theorem 2.4.9. If GLP0 0 φ, there is α̂ ∈ M such that U , α̂ 2 φ.

Proof. If GLP0 0 φ, then by Theorem 2.3.13, U 2 φ. By Corollary 2.4.1, we
can assume φ is in conjunctive normal form, where each “atom” is a word or
the negation thereof. It follows that U 2 A → (A1 ∨ ... ∨ Aj) for some such
conjunct of φ. I.e, there is some point ~α such that ~α ² A, but ~α 2 (A1∨ ...∨Aj).
By Proposition 2.4.7, ~α º ι(A), and ~α ² ι(Ai), for each i ≤ j. Putting these
together gives ι(A) ² ι(Ai), for each i ≤ j, so ι(A) 2 (A1 ∨ ... ∨ Aj). In other
words, ι(A) 2 A → (A1 ∨ ... ∨ Aj), and hence ι(A) 2 φ, as desired. ⊣

3 The Canonical Frame of GLP0

Recall the definition of the canonical frame:

Definition 3.0.10. The canonical frame for GLP0 is defined:

C0 := (W 0, R0
n : n < ω)

• W 0 is the set of maximal-GLP0-consistent sets.

• xR0
ny if and only if for all closed formulas φ, φ ∈ y implies 〈n〉φ ∈ x.

A very natural question, given completeness and soundness of GLP0 with
respect to U , is what the relationship is between U and C0. Certainly every
finite GLP0-consistent set is a subset of the formulas true at some point in
U . But we might also wonder whether every maximal GLP0-consistent set is
satisfiable at a single point. The answer turns out to be no, as we shall see.

After discussing the relationship between descriptive frames and canonical
frames, we will be able to show that U is not the canonical frame of GLP0.
The rest of the section will be dedicated to turning U into a descriptive frame
Vc whose logic is still GLP0. We will show that Vc is isomorphic to C0, and
will thereby have obtained a detailed, coordinate-wise definition of the latter.
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3.1 Descriptive General Frames

3.1.1 Basic Facts

Definition 3.1.1 (General Frames). A general frame25 in the basic modal
language is a pair (F, A) such that F = (F,R) and A ⊆ P(F ), which is closed
under finite union, finite intersection, complement, and R−1.

In other words, a general frame is simply a frame along with a distinguished
set of subsets, which also defines an algebra over the frame. For the extension
to the polymodal case, we must simply add closure under R−1

n for each n.

Remark 3.1.2. Though we will not be concerned with valuations in this sec-
tion, as we are only dealing with the closed fragment, it is worth mentioning
that a so called admissible valuation on a general frame, giving rise to a model
based on a general frame, is one whose values are restricted to sets in A. For any
logic L, if we consider the canonical frame CL and let C be the set of sets of the
form {Γ : φ ∈ Γ,Γ is maximal-L-consistent}, with φ ranging over all formulas,
it is easily seen that (CL, C) is a general frame. From this it follows that any
logic is sound and complete with respect to some class of general frames.26 This
of course means that we do have a very abstract completeness result for full
GLP. However, a challenge would be to describe what such a class looks like in
some detail, analogous to our treatment of C0 in the coming pages.

The algebraic flavor of general frames is by no means merely superficial.
Given a general frame G = (F, A), we can form a modal algebra G∗, taking A
as the underlying set and R−1 as an operator. A formula φ will be valid in G
just in case the identity φ = ⊤ is a valid identity of G∗, so G and G∗ are in a
sense modally equivalent.

In the other direction, it is also always possible to form a general frame
from a modal algebra. From a modal algebra A we obtain the so called general
ultrafilter frame A∗, the underlying set being the set of ultrafilters of A, with
relations and the set A defined appropriately. As before, for a formula φ, φ = ⊤
is an identity of A if and only if φ is valid in A∗.

This explanation is of course far from comprehensive, but the details of this
correspondence are not crucial. An important fact about these operations is
that the following isomorphism always holds, where A is any modal algebra:

(A∗)
∗ ∼= A

That is, if we form the general ultrafilter frame and then take the associated
algebra of this general frame, we will always end up with something isomorphic
to A. The converse, however, does not hold for arbitrary general frames:

(G∗)∗ ∼= G

25The definitions and background results in this section are drawn from a combination of
[Blackburn et al., 2001] and [Chagrov and Zakharyaschev, 1997].

26See [Blackburn et al., 2001] for details.
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General frames that satisfy this condition are called descriptive general frames.
Descriptive frames can be distinguished by three properties:27

Definition 3.1.3. A general frame G = (F, A) is differentiated if for all distinct
points x and y there is some X ∈ A such that x ∈ X, but y /∈ X.

Definition 3.1.4. A general frame is tight if for all points x, y, xRy if and only
if: y ∈ X implies x ∈ R−1(X) for all X ∈ A.

Definition 3.1.5. A general frame (F, A) is compact if for every subset A0 of
A with the finite intersection property,

⋂
A0 is non-empty.

Theorem 3.1.6 (Descriptive Frames). A general frame is descriptive if and
only if it is differentiated, tight, and compact.28

3.1.2 Descriptive Frames and Canonical Frames

Consider the canonical frame CL for an arbitrary logic L in a variable-free
language. The general frame defined on CL in Remark 3.1.2 by letting C consist
of sets of the form,

{Γ : φ ∈ Γ,Γ is maximal-L-consistent}

with φ ranging over all formulas of the language, can also be defined by letting
C := {Sφ : φ is a closed formula}.29 These two definitions are clearly equivalent,
since the above set is simply the set of points in the frame, themselves maximal
consistent sets, where φ is valid.

When the algebra A of a general frame (F, A) is simply the set of closed
formula definable subsets of F, the definitions of differentiated and tight become
more perspicuous:30

Definition 3.1.7. A general frame (F, A) is differentiated if for all distinct
points x and y there is some (closed) formula φ such that F, x ² φ, but F, y 2 φ.

Definition 3.1.8. A general frame (F, A) is tight if for all points x, y in F, xRy
if and only if: F, y ² φ implies F, x ² ♦φ for all φ.

The following fact then becomes clear:

Fact 3.1.9. For any logic L, the general frame (CL, C), where CL is the canon-
ical frame and C is the set of formula definable subsets of CL, is descriptive.

27Here we follow [Chagrov and Zakharyaschev, 1997] in defining descriptive frames by their
duality with modal algebras, and taking these to be properties of such general frames, rather
than the other way around as in [Blackburn et al., 2001]. However, as we are not proving the
equivalence, it does not really matter.

28For proofs, see [Blackburn et al., 2001] or [Chagrov and Zakharyaschev, 1997].
29Recall Sφ is the set of points where φ is valid.
30As usual, the adjustment to the polymodal case is obvious.
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Proof Sketch. Obviously (CL, C) is differentiated, since every two maximal-L-
consistent sets differ by at least one formula. It is clearly tight because the
definition of tightness coincides exactly with the definition of a relation in CL.
To see that it is compact, consider the following intuition: If C0 ⊆ C has the fi-
nite intersection property, this just means for some (possibly infinite) collection
of formulas, every finite set of these formulas is consistent. By a familiar argu-
ment, this means the whole collection is consistent since any contradiction would
follow from some finite subset. Consequently there is a maximal-L-consistent
set containing all of the formulas. ⊣

Recall the definition of the Lindenbaum-Tarski Algebra:

Definition 3.1.10. The Lindenbaum-Tarski Algebra TL of a logic L is defined
as the set of formulas of L, modulo L-equivalence, along with boolean operations
and an operation ♦ for each modality, bringing an element φ to the element ♦φ.

The 0-generated Lindenbaum-Tarski Algebra T0
L is the free subalgebra of TL

obtained from the constant ⊤ by closing under all operations. Otherwise put,
T0
L is the Lindenbaum-Tarski Algebra of the closed fragment of L.

Lemma 3.1.11. Given a logic L, suppose for all closed formulas φ, L ⊢ φ if
and only F ² φ. Then (F, A)∗ ∼= T0

L, where A = {Sφ : φ is a closed formula}.

Proof. As we said above, (F, A)∗ is the algebra on A with the operator Q. The
desired isomorphism should then be clear. Let i be the function that sends every
closed formula to the set of points on F where the formula is valid: i : φ 7→ Sφ.
Then i is a bijection, because

L ⊢ φ ↔ ψ ⇐⇒ F ² φ ↔ ψ

⇐⇒ Sφ = Sψ

⇐⇒ i(φ) = i(ψ).

Obviously i respects boolean operations. Finally, since A is the set of formula
definable subsets, R−1(Sφ) = {x : F, x ² ♦φ}. That is, i(R−1(Sφ)) = ♦(i(Sφ)).

⊣

Proposition 3.1.12. Given a logic L and frame F, suppose L ⊢ φ ⇐⇒ F ² φ
for all closed formulas φ. Then F ∼= CL if and only if (F, A) is descriptive.

Proof. The left-to-right direction is obvious given Fact 3.1.9. For the other
direction, suppose (F, A) is descriptive. Then ((F, A)∗)∗ ∼= (F, A). By Fact
3.1.9, (CL, C) is also descriptive, so ((CL, A)∗)∗ ∼= (CL, C). By Lemma 3.1.11,

(F, A) ∼= ((F, A)∗)∗ ∼= (T0
L)∗ ∼= ((CL, C)∗)∗ ∼= (CL, C)

From this it obviously follows that F ∼= CL. ⊣
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3.2 The Frame Vc

Proposition 3.1.12 provides us with a convenient test to see whether U , or any
other purported structure, is isomorphic to C0. While we know U and C0 are
modally equivalent, we must check whether (U , A) is descriptive.

Lemma 2.4.8 tells us that (U , A) is differentiated, in fact stronger, that every
two points differ by a word.

Proposition 3.2.1. (U , A) is differentiated.

However, (U , A) is neither tight nor compact. To see that it is not tight,
consider the very top part of U , the substructure Uω. Given any formula φ, it
is easily seen that if U , (ω, 0) ² φ, then U , (ω, 1) ² 〈0〉φ. But as things stand, we
do not have (ω, 1)R0(ω, 0). Similarly, compactness fails, since the following set,
while finitely satisfiable, is not satisfiable at any single point:

{〈n〉⊤ : n < ω}

Therefore, U is not descriptive, so it cannot be isomorphic to C0.
Intuitively, this tells us that U does not have “enough” points for all maximal

consistent sets to be satisfied, and that the relations are a proper subset of
what we have in the canonical frame. Put otherwise, not all ultrafilters over
the algebra on A are represented in U , and the relations Rn are not closed in
the topology associated with (U,A) (see below). As a consequence, the dual
of (U , A)∗, which by Lemma 3.1.11 is isomorphic to the dual of T0

L, is not
(isomorphic to) (U , A). In pictorial form, we would like to know what it takes
to get directly from (U , A) to (C0, C). Knowing that A and C give rise to

(C0, C)
∗ //

T0
L∗

oo

(U , A)

∗

77ooooooooooooo

?

OO
O²
O²
O²

isomorphic algebras, this will only require modification of the frame U itself,
and it will correspond exactly to turning (U , A) into a descriptive frame.

3.2.1 Compactness

The most natural way to approach this problem is to address it at the topological
level. In that direction, recall the standard interval topology on an ordinal λ.
This topology is generated by the subbasis of open rays of the form, for β < λ:

{α : β < α}

{α : β > α}

Alternatively, the same topology can be defined by a basis of such open rays in
addition to all open intervals:

{α : β < α < γ}
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It is well known that such a topology is compact if and only if λ is a successor
ordinal ([Willard, 1970]). Now consider the following topological space:

Definition 3.2.2. Let (E , τE) be such that E :=
∏

i<ω(ǫ0), and τE is the product
topology on E . That is, where πi : E → (ǫ0)i is the standard projection function,
open sets of τE correspond to cylinder sets, or finite intersections of sets of the
form π−1

i (I), where I is an open interval or ray of ǫ0.

At the same time, we can define a space (U, τU ) by declaring sets of the form
Sφ ∈ A to determine a clopen subbase. Then we have the following theorem:

Theorem 3.2.3. (U, τU ) is a subspace of (E , τE).

Proof. Let Dβ := {~α : ~α º β̂} and Dβ := {~α : ~α ² β̂}. We first observe
that by Lemma 2.4.7, an equivalent subbasis for τU would consist of all sets
Dβ and Dβ , for β < ǫ0. Therefore, it suffices to show that every such set Dβ ,
or Dβ , is τE -open, and conversely that every τE -subbasic ray {~α : β < αi}, or
{~α : β > αi}, is τU -open.

First suppose we have some set Dβ = {~α : ~α º β̂}. Notice the last non-zero

coordinate βi of β̂ cannot be a limit ordinal. Thus βi = γ + 1 for some γ.
Suppose β has the following Cantor Normal Form:

κi + ω...κ1+ωγ+1

Let κ be the ordinal,

κi + ω...κ1+ωγ

Then we take the set {~α : α0 > κ} ∩ {~α : αi > γ}, clearly equivalent to Dβ .

Next suppose we have some set Dβ = {~α : ~α ² β̂}. Let βi be the last non-

zero coordinate of β̂. Then our equivalent set is obtained as in the last case:
{~α : α0 < β0} ∪ {~α : αi < βi}.

For the other direction, take some set {~α : αi > β}. Then we consider the
following root point:

γ̂ := (ωβ+1
i , ..., ωβ+1, β + 1, 0, ...)

That is, γ̂ is the ¹-least root point with β + 1 as the i-th coordinate. Our
equivalent set is thus Dγ .

If we have a set {~α : αi < β} for some ordinal β, take the root point δ̂ with
β as the i-th coordinate:

δ̂ := (ωβ
i , ..., ωβ , β, e(β), ...)

Then, {~α : αi < β} = Dδ. ⊣

Theorem 3.2.3 suggests a probable cause of incompactness, as well as a natu-
ral solution. Instead of ǫ0, consider ǫ0 +1, and let (E ′, τE′

) be the corresponding
product, which is compact by Tychonoff’s Theorem. We will obtain a closed
subspace of (E ′, τE′

) if we augment U to the following frame V:31

31Something similar to this was done in [Ignatiev, 1992] to a different end.

33



Definition 3.2.4. Let V = (V,Rn : n < ω) be defined exactly like U , except
that in V the αi’s range over all ordinals less than or equal to ǫ0. That is,

V := {~α : ∀i, αi ≤ ǫ0, αi+1 ≤ e(αi)}

The relations Rn are defined exactly the same as in U .

All of our work on U carries over without change, as we have not added any
root points:32

Proposition 3.2.5. For all words A ∈ S and points ~β ∈ V ,

V, ~β ² A ⇔ ~β º ι(A)

Proposition 3.2.6. For any distinct points ~α, ~β in V , there is a word A such
that V, ~α ² A but V, ~β 2 A.

Proposition 3.2.7. For all closed formulas φ, GLP0 ² φ, if and only if V, α̂ ²

φ, for all root points α̂ ∈ M .

If we let (V, τV ) be the space with τV the subspace topology inherited from
τE′

, then as a closed subspace of a compact space, (V, τV ) becomes compact.
Moreover, as Theorem 3.2.3 carries over without change, we can think of A as
exactly the clopen sets of τV , and we have:33

Corollary 3.2.8. (V, A) is a differentiated, compact general frame.

The frame V mimics the structure of U in a certain sense. We obviously
have an isomorphic copy of U as a subframe of V. Let V0 := {~α ∈ V : α0 =
ǫ0 & α1 < ǫ0} and V0 be the frame with relations restricted to points in V0.
Then it is clear that V0 is isomorphic to U+, and all elements of V0 are R0-
related to all points in (the isomorphic copy of) U . We can then define V1 to
be {~α ∈ V : α0 = α1 = ǫ0 & α2 < ǫ0}, and we notice that V1 is isomorphic to
U++, with each element of V1 R1-related to all points in V0. We can continue in
this way obtaining a series of natural subframes of V, with each point in Vn+1

Rn+1-related to each point in Vn, and so on. Finally, when we consider the
set Vω := {~α ∈ V : ∀i, αi = ǫ0}, there is but one point: ǫ̂0. A picture of the
situation can be seen in Figure 5.

Of course, V inherits from U the problem that it is not tight. We still do
not have, for example, (ω, 1)R0(ω, 0). Or, to take a curious example, it is easy
to see that whenever (ω, 0) ² φ, we have (ω, 0) ² 〈0〉φ. This means, after we
tighten V, there will actually be reflexive points.

32One could consider the point ǫ̂0 as a root point since it formally satisfies the definition.
However, there is obviously no word A such that ι(A) = ǫ̂0. Thus, all of our work on validity
in U really is left unchanged.

33Strictly speaking, the set of subsets Sφ in U is not the same as that in V. However, as
they give rise to isomorphic modal algebras, we use the same letter A to denote this algebra.
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Figure 5: The Frame V

3.2.2 Tightness

In general we have the following sufficient condition for tightness, stated for an
arbitrary general frame (F, A):

Proposition 3.2.9 ([Blackburn et al., 2001]). If (F, A) is differentiated and
compact, it is descriptive if and only if Rx is closed in τF for all x.

Proof. For the left-to-right direction, we refer the reader to the text cited. We
prove the other direction, but only for the case where A is the set of formula-
definable subsets.34

Suppose for all formulas φ, if y ² φ then x ² ♦φ. We must show xRy.
Consider an enumeration of formulas valid at y: φ0, φ1, φ2, .... By hypothesis,
for each such formula φk there is a point yk such that xRyk and yk ² φk. Since
Rx is closed in τF , and (F, A) is compact, it follows that (Rx, B) is compact,
where B is the restriction of A to Rx. For each k, let Bφk

:= Rx∩Sφk
, and define

B′ := {Bφk
: k > 0}. As B′ is closed under finite intersection, and (Rx, B) is

compact, it follows
⋂

B′ is not empty, say z ∈
⋂

B′. This means, for each φk,
z ² φk. But as (F, A) is differentiated, this means z = y, and so xRy. ⊣

Once again, the generalization to multiple modalities is unproblematic. We
are now ready to introduce the final amendment to our universal frame. The
following we claim is isomorphic to the canonical frame:

Definition 3.2.10. Let Vc be the frame (V,Rc
n : n < ω), where,

~αRc
n
~β ⇐⇒ ~αRn

~β, or ∃k ≥ n,∀m ≤ k, αm = βm & e(αk) > βk+1

Thus, Vc is exactly like V, with the exception of new pairs added to each Rn.

34This proposition holds for the more general case that A is any algebra over F and τF is
the corresponding topology. However we are only concerned with this particular case.
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Lemma 3.2.11. Rc
n,~α is closed in τV .

Proof. We prove this indirectly by showing that V \ Rc
n,~α is open in τV . We

consider two cases: when αn is a successor ordinal, and when αn is a limit
ordinal.

Suppose αn = γ + 1. Then e(αn) = 0, and there is consequently no ~β such

that e(αk) > βk+1 for any k ≥ n. We let U := {~β : βn > γ}. Let

Y :=
⋃

m<n

{~β : βm < αm} ∪
⋃

m<n

{~β : βm > αm} =
⋃

m<n

{~β : βm 6= αm}

Then we clearly have
V \ Rc

n,~α = Y ∪ U

If αn is a limit ordinal, then, for any ~β, if βm = αm for all m ≤ n, then
~β ∈ Rc

n,α if and only if there is some k > n such that e(αk) > βk+1, and
βm = αm for all m ≤ k. Let p be greatest such that e(αp) 6= 0, so that we have
a bound on how high we check whether e(αk) ≤ βk+1. Our desired set is thus,

Z :=
⋂

n≤k≤p

({~β : e(αk) < βk+1 + 1} ∪
⋃

m≤k

{~β : βm 6= αm})

Note that this intersection is finite, so that Z is still open. We have, then,

V \ Rc
n,~α = Z

In both cases, as V \ Rc
n,~α is open, Rc

n,~α is closed. ⊣

Corollary 3.2.12. (Vc, A) is a descriptive general frame.

Lemma 3.2.13. For all words A and points ~α ∈ V

V, ~α ² A ⇐⇒ Vc, ~α ² A

Proof. By induction on the length of A. The basic case is obvious, as is the
left-to-right direction of the inductive case, since Rc

n extends Rn.

Suppose Vc, ~α ² nA. Moreover, suppose the reason is that ~αRc
n
~β, where

e(αk) > βk+1 for some k ≥ n, and βm = αm for all m ≤ k, and Vc, ~β ² A.

Otherwise, we would have ~αRn
~β, which would give us the result immediately by

the inductive hypothesis. Consider ι(A) = γ̂. Since γ̂ ¹ ~β, we have γk+1 ≤ βk+1,
which implies γk < βk, since βk+1 < e(βk) and γ̂ is a root point. As a matter

of fact, γm < βm = αm for all m ≤ k. From this we conclude ~αRn
~δ where,

~δ := (α0, α1, ...αn−1, γn, γn+1, ...)

As therefore V, ~δ ² A, we have V, ~α ² nA. ⊣

Corollary 3.2.14. For all closed formulas φ and points ~α ∈ V

GLP ⊢ φ ⇐⇒ V, ~α ² φ ⇐⇒ Vc, ~α ² φ

Proof. By Corollary 2.4.1 and Lemma 3.2.13. ⊣

Theorem 3.2.15. Vc ∼= C0.
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4 Topological Models

In the previous section, we considered a single topology τV on the frame Vc,
which allowed us to prove that Vc gives rise to a descriptive frame and is isomor-
phic to the canonical frame of GLP0. In this final section, τV will be divided
into infinitely many topologies, which will allow us to interpret the modalities
of our language directly in topological terms. Topological semantics of a given
modal logic is often simpler than relational semantics, and the topological model
of GLP0 we will obtain in this section will be no exception.

Ordinarily, when modal logics are interpreted topologically, the diamond
operator is translated to topological closure: ♦ becomes c in the language of
topology. However, this only works if the logic in question contains the reflex-
ivity axiom T, since every set is a subset of its closure. For logics that do not
contain T, of which GL and GLP are of course examples, ♦ can instead be
translated to the topological derivative operator, an idea originating with McK-
insey and Tarski and explored thoroughly by the “Tbilisi Group.”35 Recall the
definition of derivative:

Definition 4.0.16 (Derived Set). The derivative of a set A, written d(A), is
the set of points x, such that, for all open neighborhoods Ix of x, Ix \ {x} has
non-empty intersection with A. These points x are called limit points of A.

The closure operator is easily definable in terms of the derived set operator:

cA = A ∪ dA

Definition 4.0.17 (Topological Validity). Given a topological space X and
a point x ∈ X , let us say, X , x, f ° φ if f(φ) is true at x and f is a function
from modal formulas to P(X ) such that:

f(p) ⊆ P(X )

f(⊤) = X

f(¬φ) = X \ f(φ)

f(φ ∨ ψ) = f(φ) ∪ f(ψ)

f(♦φ) = d(f(φ))

Correspondingly, X , x ° φ if X , x, f ° φ for all such f . Finally, X ° φ if
X , x, f ° φ for all f and x ∈ X .

Remark 4.0.18. When working in the closed fragment, f does not vary. So
these definitions can be somewhat simplified. E.g. X ° φ iff f(φ) = X .

Topological semantics of GL in terms of derivative was first investigated by
Leo Esakia, who proved that the logic corresponds to a natural class of spaces.

35An interesting overview of the development of this work can be found in [Esakia, 2003].
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Definition 4.0.19. A space is scattered if every subspace has an isolated point.

Theorem 4.0.20 ([Esakia, 1981]). GL ⊢ φ, if and only if φ is valid in all
scattered spaces.

This result was later improved, independently by Andreas Blass and Merab
Abashidze. As in the previous section, we consider ωω as an ordinal space with
the interval topology. Every subspace of ωω has some <-least point, say β, so
the ray {α : α < β + 1} isolates β. In other words, ωω is clearly scattered, so
GL is sound. In fact, it is also complete.36

Theorem 4.0.21 ([Abashidze, 1985],[Blass, 1990]). GL ⊢ φ, iff ωω ° φ.

One can imagine obtaining topological models of GLP by generalizing this
theorem. Since the logic of each [n] considered separately is exactly GL, one
could start with τ0 as the interval topology on some sufficiently large ordinal,
and we will automatically have soundness and completeness for this particular
fragment of the logic. Then, for τn, n > 0, we would find stronger and stronger
topologies that enforce completeness for the fragment containing only [n], and
that “fit together” exactly right with all the topologies τm, m < n, so that the
two “bridge axioms” (iv) and (v) are also valid. In the next section, we will
show that something very similar to this idea is possible in the case of the closed
fragment. In fact, our earlier work on U and Vc will bring us a long way toward
such a result, and (perhaps unsurprisingly) we will only need to go up to the
ordinal ǫ0. In the case of the full fragment the situation is quite different. By
results of Beklemishev and Blass, if we begin with τ0 as the interval topology,
obtaining a stronger, non-trivial topology τ1 with the appropriate properties
will already require going up to the first uncountable ordinal. The question
of completeness even for the restricted fragment of GLP containing only the
modality [1] hinges on facts about large cardinals independent of ZFC.

4.1 Ordinal Completeness of GLP0

4.1.1 The Space Θ

We saw in Section 2.4 that every non-theorem of GLP0 is falsifiable somewhere
on the main axis M of either Vc or U , which suggests that in a sense both frames
contain “too many” points. This is of course necessary in relational models. But
by moving to topological models, it can be avoided, and the underlying space
will become much simpler. Instead of a subspace of the product topology on
ǫ0 + 1, we will be able to take ǫ0 + 1 itself as the underlying set. In doing so,
we will be rid of all points outside of the main axis.

The most obvious way of defining a polytopology on Vc is to let τn consist
of all Rn-upsets of Vc. Then we will have,

~αRn
~β ⇐⇒ for all τn-open Rn-upsets A of ~α, ~β ∈ A

⇐⇒ ~α ∈ dn({~β})

36For a very readable proof of this theorem, see [Bezhanishvili and Morandi, 2008].
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So modal validity and topological validity will coincide, trivially. This is nothing
more than an alternative way of talking about Vc as a relational model. To
obtain a more interesting polytopology, recall the single topology τV defined on
the underlying set V of Vc. As in all spaces, closed sets correspond to those of
the form X ∪ d(X). This suggests a definition of a more fine-grained topology,
based on τV , that will allow us to differentiate among derivative operators. We
adopt the convention that [n]+φ := φ ∧ [n]φ.

Definition 4.1.1. Let Λ = (V, νn : n < ω) be defined so that νn is generated
by the open basis of sets S[n]+φ, with φ ranging over closed formulas.

The following proposition reinforces the suggestion that this is a reasonable
topology to consider.

Proposition 4.1.2. For all points α̂ ∈ M , Λ, α̂ ° φ if and only if Vc, α̂ ² φ.

Proof. We check the case of 〈n〉φ.

Suppose Vc, α̂ 2 〈n〉φ. Then for all ~β such that α̂Rc
n
~β, Vc, ~β 2 φ. To show

Λ, α̂ 1 〈n〉φ, we must find some νn-open neighborhood of α̂ such that all other
elements of this neighborhood falsify φ. By the definition of νn, it suffices to
identify an appropriate formula. Because α̂ is a root point, there is some word
A such that ι(A) = α̂. Let

ψ := (A ∨ ¬φ) ∧ [0]¬A

Clearly, Vc, α̂ ² [n]+ψ, so this formula defines an open neighborhood of α̂. We

must now show, if ~β ² [n]+ψ, then ~β 2 φ. Assume for a contradiction ~β 6= α̂ and
~β ² A ∧ [0]¬A (since otherwise ~β ² ¬φ and we are done). This means ~β º α̂,

but also β0 = α0, because otherwise we would have ~βRc
0α̂, which would imply

~β ² 〈0〉A. As we are assuming ~β 6= α̂, this implies ~β cannot be a root point.
That is, there is some k ≥ 0 such that e(βk) > βk+1. By the definition of Rc

n,

this means in fact ~βRc
0
~β, which gives the desired contradiction. We conclude

that if ~β ² [n]+ψ and ~β 6= α̂, then ~β 2 φ. That is to say, Λ, α̂ 1 〈n〉φ.

If Λ, α̂ 1 〈n〉φ, then there is some formula [n]+ψ such that ~β 6= α̂ and
~β ² [n]+ψ imply ~β 2 φ. Given any such formula, it is clear that if α̂ ² [n]+ψ,

then for all ~β such that α̂Rc
n
~β, ~β ² [n]+ψ. Therefore, we automatically have

α̂Rc
n
~β ⇒ ~β 2 φ, i.e. Vc, α̂ 2 〈n〉φ. ⊣

Corollary 4.1.3. GLP0 is complete with respect to Λ.

As the topologies of Λ are defined via validity on Vc, and therefore do not
depend on other points in Λ, Corollary 4.1.3 tells us we may just as well consider
the following subspace:

Definition 4.1.4. Let M := (M ′, νn : n < ω) be the subspace of Λ, where
M ′ ⊂ V is the main axis M of V, in addition to the single point ǫ̂0.
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By Proposition 4.1.2, GLP0 is complete with respect to M, and in fact it
is also sound: If GLP0 ⊢ φ, then Vc, α̂ ² φ for all root points α̂, so Λ, α̂ ° φ by
Proposition 4.1.2, and hence M, α̂ ° φ. Since M ′ only consists of root points
and ǫ̂0, this means M ° φ. We state this as a theorem:

Theorem 4.1.5. GLP0 is sound and complete with respect to M.

Another consequence of dealing only with root points is that we no longer
need to speak about points as vectors; we can refer to root points simply by
their first coordinate, since the rest of the coordinates are thereby determined.
This means that the underlying set M ′ can simply be seen as the ordinal ǫ0 +1.

What we would like now is a more conspicuous definition of the topologies νn,
in particular a definition that does not depend on the frame VC and that relates
in a more natural way to the ordinal ǫ0 + 1. In that direction we introduce:37

Definition 4.1.6 (The Space Θ). Let Θ denote the space (ǫ0 +1, θn : n < ω),
where θn is defined by the subbasis of rays, for m ≤ n, k < n, and β ≤ ǫ0:

38

{α : em(α) < β}

{α : ek(α) > β}

Remark 4.1.7. Recall that for any root point α̂, αn = en(α). Definition
4.1.6 therefore has an equivalent formulation in terms of points α̂ and their
corresponding coordinates. That would be: Θ := (M ′, θn : n < ω), where a
subbasis for θn is the set of all n-cylinder sets of (M ′, τV ),39 in addition to all
rays of the following form (restricted to root points),

{α̂ : αn < β}

This means the topology τV on the canonical frame (restricted to root points)
is the union of all such topologies:

τV =
⋃

n<ω

θn.

In the proof of the following theorem, let us assume we are working with this
definition, so as to keep the notation consistent among Θ, M, and Vc.

Lemma 4.1.8. Θ and M are homeomorphic.

Proof. Take some νn-basic set S[n]+φ. By Theorem 3.2.3, we know S[n]+φ is
equivalent to some cylinder set of V , i.e. some finite intersection of rays of the

37Leo Esakia has observed that the bimodal fragment of GLP, that is, the fragment con-
taining only [0] and [1], is sound with respect to a similar space to this one, taking τ0 to be
the topology of “downsets” and τ1 to be the interval topology, on ωω .

38We write em(α) to mean e(...(e(α))...), m times e. So e0(α) = α.
39In an n-cylinder set we only allow finite intersections of sets π−1

m (I) for m < n, instead
of for arbitrary m as in Definition 3.2.2 of τV .
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form {~α : β < αm} or {~α : β > αm}. To prove this cylinder is equivalent to a θn-
open set, it suffices to show that any ray {~α : β < αm} with m ≥ n is equivalent
(as a subset of S[n]+φ) to one with m < n, and that any ray {~α : αm < β} with
m > n is equivalent (as a subset of S[n]+φ) to one with m ≤ n. For the case
of {~α : β < αm}, this is obvious, because this set is equivalent tout court to
{~α : ωβ

m < α0}. In the other case, if m > n, we claim,

S[n]+φ ⊆ {~α : αm < β} ⇐⇒ S[n]+φ ⊆ {~α : αn < ωβ
m−n}.

The right-to-left direction is obvious. Suppose for a contradiction α̂ ² [n]+φ

and αm < β, but αn > ωβ
m−n. We observe α̂Rc

n~γ, where

~γ := (α0, ..., αn−1, ω
β
m−n, ..., β, ...).

So ~γ ² [n]+φ, which is a contradiction since γm = β.
For the other direction, let I = {~α : β < αm} be any θn-open ray, so that

m < n. Define,
δ̂ := (ωβ

m, ..., ωβ , β, e(β), ...).

Stipulate ι(A) = δ̂ and φ := mA. We show α̂ ² [n]+φ if and only if α̂ ∈ I.
First note αm > β if and only if α̂ ² mA: If αm > β, then α̂Rc

m~κ, where
~κ := (α0, ..., αm−1, β, e(β), ...), so ~κ ² A and α̂ ² mA. On the other hand, if
α̂ ² mA, then α̂Rc

m~κ for some ~κ identical to α̂ up to the m-th coordinate, and
either αm > κm ≥ β, or there is a k ≥ m such that κk+1 < e(κk). If the latter,
then αm ≥ κm > β.

Thus, α̂ ∈ I if and only if α̂ ² φ. This in turn is true if and only if α̂ ² [n]+φ.
For, if α̂ ² mA and α̂Rc

n~κ, since αk = κk for all k < n, also ~κ ² mA.
Let J = {~α : αm < β} be any θn-open ray, so that m ≤ n. Define,

η̂ := (ωγ
m, ..., ωγ , γ, e(γ), ...).

Let ι(B) = η̂ and φ := ¬mB ∧ ¬B. We show α̂ ² [n]+φ if and only if α̂ ∈ J .
Observe αm < γ if and only if α̂ ² φ: Supposing αm < γ, obviously α̂ 2 B,

and if α̂Rc
m~κ, then κm ≤ αm < γ, so ~κ 2 B. Conversely, if αm ≥ γ, then αk ≥ ηk

for all k < m, since η̂ is the ¹-minimal root point with ηm = γ. If αm = γ,
then α̂ ² B; if αm > γ, then α̂Rc

m~κ, where ~κ := (α0, ..., αm−1, γ, e(γ), ...). Since
~κ ² B, α̂ ² mB. Either way, α̂ ² mB ∨ B, so α̂ 2 φ.

Finally we show α̂ ² φ ⇒ α̂ ² [n]+φ: Since α̂Rc
n~κ implies αk = κk for all

k < n and αn ≥ κn, it follows α̂ 2 mB ⇒ ~κ 2 mB. For ¬B we use the previous
fact: If α̂ ² φ, then αm < γ, so if α̂Rc

n~κ, then κm ≤ αm < γ, and ~κ 2 B.
We conclude that every θn-basic-open interval is equivalent to some set

S[n]+φ, basic in νn. ⊣

Thus we come to our central theorem of this section.

Theorem 4.1.9 (Topological Completeness). GLP0 ⊢ φ ⇐⇒ Θ ° φ.
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The space Θ can be seen simply as a condensed version of the canonical
frame of GLP0. It consists of root points and nothing else, yet topological
validity is defined so that an ordinal α of Θ and the corresponding root point α̂
of Vc are modally equivalent. To see what Θ looks like in more detail, we end
our discussion with a short investigation into the θn-derived sets of ǫ0 + 1.

4.1.2 Limit Points in Θ

We prove that the θn-non-isolated points of ǫ0 +1 generalize the notion of limit.
Of course, the only point that is θ0-isolated from ǫ0 + 1 is 0. The set of θ1-
non-isolated points is exactly the set of ordinary limit points, as θ1 coincides
with the interval topology on ǫ0 + 1. As we shall see, θ2-non-isolated are those
ordinals that are limits of limits of limits..., infinitely many times. And so on
for all greater n. First we prove a number of auxiliary lemmas.

Definition 4.1.10 (Fundamental Sequences). Suppose α = κ + ωλ is any
limit ordinal greater than 0, less than ǫ0. We define α[n] by recursion on e(α) =
λ, noting that for any α, there is some m such that em(α) is a successor ordinal:

• If λ = µ + 1, α[n] = κ + ωµ · (n + 1).

• If λ is a limit ordinal, α[n] = κ + ωλ[n].

Let FSα denote the set {α[n] : n < ω}. Clearly limn<ω α[n] = α.

Lemma 4.1.11. For n > 0, if en(α) > 0 = en+1(α), then α ∈ dn(FSα).

Proof Sketch. Suppose en(α) > 0 = en+1(α). Say, en(α) = λ = µ + 1, and:

α = κn + ω...κ1+ωλ

Take any θn-open I. Clearly I contains such an interval, for some m:

(κn + ω...κ1+ωµ
·m

, α]

That is, I contains infinitely many ordinals in any fundamental sequence of α,
which is to say α ∈ dn(FSα). ⊣

In the previous lemma, we can omit the requirement that en+1(α) = 0, since
dn+1(A) ⊆ dn(A) for all A ⊆ ǫ0.

Lemma 4.1.12. For n > 0, if en(α) > 0, then α ∈ dn(FSα).

Definition 4.1.13. We define a sequence of classes, Lα, indexed by the ordinals:

• Every ordinal is L0.

• An ordinal α is Lβ+1 if there is a strictly increasing sequence of ordinals
γ0, γ1, γ2, ..., such that limn<ω γn = α and, for all n, γn ∈ Lβ .

• An ordinal α is Lλ, for λ a limit ordinal, if α is Lκ for all κ < λ.
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Thus L1 is the set of ordinary limits, L2 is the set of “limits of limits,” L3

the set of “limits of limits of limits,” and so on.

Lemma 4.1.14. For n ≥ 0, Lωn
= {α : en+1(α) > 0}.

Proof Sketch. The case of n = 0 is straightforward, so consider n + 1.
If α ∈ Lωn+1

, then there is a sequence of ordinals λ0, λ1, λ2, ..., such that
limi<ω λi = α and each λi ∈ Lωn

. By inductive hypothesis, en+1(λi) > 0. Since
the λi’s are strictly increasing and limi<ω λi = α, this forces en+1(α) to be a
limit ordinal, which is to say en+2(α) > 0.

Conversely, if en+2(α) > 0, then en+1(α) is some limit ordinal λ. Given any
κ such that ωn < κ < ωn+1, we can always find a fundamental sequence n0 <
n1 < n2..., such that each α[ni] ∈ Lκ. Then limi<ω α[ni] = α, so α ∈ Lωn+1

. ⊣

Proposition 4.1.15. For n ≥ 0, dn+1(ǫ0 + 1) = Lωn
.

Proof. If α ∈ Lωn
, then by Lemma 4.1.14, en+1(α) > 0, so using Lemma 4.1.12,

α ∈ dn+1(FSα) ⊆ dn+1(ǫ0 + 1).
If α /∈ Lωn

, then en+1(α) = 0, which means en(α) is either a successor
ordinal or equal to 0. Suppose α is of the form,

κn + ω...κ1+ωβ+1

.

Then take the following θn+1-open set:

{δ : β < en(δ) < β + 2} ∩ {δ : κ1 < en−1(δ) < κ1 + ωβ+1 + 1}

∩ ...

∩ {δ : κn < δ < α + 1}

Certainly α is the only element of this set. If en(α) = 0, then some κm, m ≤ n
is a successor ordinal and we can take the same isolating set. ⊣

4.2 GLP-Spaces

In this last part, we consider topological models of full GLP. We first discuss
what properties such spaces would have to satisfy, and then we make some
speculative remarks concerning the prospective of an analog of the Abashidze-
Blass Theorem for the full fragment of GLP.

Each of the axioms of GLP corresponds to a reasonably simple topological
condition. Theorem 4.0.20 tells us exactly which spaces satisfy Löb’s Axiom,
namely the scattered spaces. The following theorems give analogous conditions
for axioms (iv) and (v):

Lemma 4.2.1. For all A ⊆ X , dn+1(A) ⊆ dn(A), if and only if τn ⊆ τn+1.

Proof. Suppose τn ⊆ τn+1 and take any point x ∈ dn+1(A) and τn-open neigh-
borhood Ix. Since Ix is also a τn+1 neighborhood, we know Ix \ {x} ∩ A 6= ∅.
Thus x ∈ dn(A). Conversely, suppose B is τn-open but not τn+1-open. Since
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B is not τn+1-open there must be some x ∈ B such that, for any τn+1-open Ix

containing x, Ix ∩X \B 6= ∅. Let A := X \B. Then what we have seen is that
B ∩ dn+1(A) 6= ∅. Yet B ∩ dn(A) = ∅. Thus dn+1(A) * dn(A). ⊣

Theorem 4.2.2. X ° [n]φ → [n + 1]φ, if and only if τn ⊆ τn+1.

Remark 4.2.3. In the following, we adopt the convention that

tn(A) := X \ (dn(X \ A))

In other words, tn is the interpretation of [n]: f([n]φ) = tn(f(φ)).

Lemma 4.2.4. For all A ⊆ X , dn(A) ⊆ tn+1(d1(A)), if and only if dn(A) is
τn+1-open.

Proof. For the right-to-left direction we must show, for any x ∈ dn(A), there
is some τn+1-neighborhood Ix containing x such that Ix ⊆ dn(A). However,
assuming dn(A) itself is τn+1-open, this is immediate. For the converse direction,
suppose for any x ∈ dn(A) there is an open neighborhood Ix such that Ix ⊆
dn(A). Then let,

I :=
⋃

x∈dn(A)

Ix

As I is the union of τn+1-open sets, it too is open. And clearly I = dn(A). ⊣

Theorem 4.2.5. X ° 〈n〉φ → [n + 1]〈n〉φ, if and only if dn(A) is τn+1-open
for all A ⊆ X .

These results give rise to a natural definition of GLP-space.

Definition 4.2.6. A GLP-space is a polytopological space (X , τn : n < ω), in
which τn is scattered, τn ⊆ τn+1, and dn(A) is τn+1-open, for all A ⊆ X and n.

It is still an open question whether full GLP is complete with respect to
its topological semantics. However, we do have limitative results that show a
wide class of commonly considered spaces cannot be non-trivial GLP-spaces.
Because of the duality between relational structures and Alexandrov topological
spaces, a corollary of Theorem 2.1.6 is the following:

Corollary 4.2.7. Every GLP-space in which τ0 and τn, n > 0, are both
Alexandrov must be τn-discrete.

Given a topology τ0 on some space, there is always a weakest topology τ1

that is generated by τ0 and sets of the form d0(A). To find non-trivial GLP-
spaces we must ensure that our τ0 does not force such a τ1 to be discrete. A
corollary of the following theorem is, in case τ0 is the interval topology on an
ordinal, this ordinal must be at least uncountable for τ1 to be non-discrete.40

40Observations in Theorems 4.2.8 and 4.2.14 are due to Lev Beklemishev.
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Theorem 4.2.8. If (X , τn : n < ω) is a GLP-space and τ0 is Hausdorff and
first-countable, then τn is discrete for all n > 0.41

Proof. By Theorem 4.2.2, it suffices to show that τ1 is discrete.
To prove this we show for every x ∈ d0(X ), there is some A ⊆ X such that

d0(A) = {x}. By Theorem 4.2.5, this will imply that every such singleton is
τ1-open. However, since d1(X ) ⊆ d0(X ), d1(X ) = ∅, i.e. τ1 is discrete.

Consider any such x ∈ d0(X ), and let I0, I1, I2, ..., be a basis of open neigh-
borhoods of x with In ⊂ Im whenever n > m. For each such In, we know there
is some in ∈ In such that in 6= x, since x ∈ d0(X ). So let A := {in : n ≥ 0}.

Clearly, x ∈ d0(A), since for any neighborhood J of x there is an n such that
x ∈ In ⊆ J , and so in ∈ J ∩ A.

It remains to show that y 6= x implies y /∈ d0(A). If y 6= x, then since τ0 is
Hausdorff there are neighborhoods I ∋ x and J ∋ y such that I ∩ J = ∅. Take
some m such that Im ⊆ I. Then for all n ≥ m, in ∈ I, which means in /∈ J . As
therefore J contains at most m elements of A, J ∩ A is finite. Again using the
fact that τ0 is Hausdorff, it is possible to select a smaller neighborhood J ′ ⊆ J
of y such that J ′ ∩ A = ∅. Hence y /∈ d0(A). ⊣

On the other hand, if one is willing to give up one of these properties, it
becomes possible to define non-trivial GLP-spaces. For example, the bitopology
defined on ωω with τ0 the Alexandrov topology of downsets and τ1 the interval
topology is a GLP-space, in which τ0 is not first-countable.42 However, there
is obviously no hope for completeness as the 0-linearity axiom becomes valid:

[0]([0]φ → ψ) ∨ [0]([0]+ψ → φ).

A different approach to circumvent Theorem 4.2.8 would to be to move to un-
countable ordinals. In the following, we shall assume τ0 is always the interval
topology on any given ordinal. The following definitions and facts are standard:

Definition 4.2.9. A set A is cofinal in λ if ∀γ < λ,∃ξ ∈ A, such that γ < ξ < λ.

The cofinality of λ, cf(λ), is the smallest cardinality of a cofinal subset of λ.

Definition 4.2.10. A set A is unbounded in λ if ∀γ < λ,∃ξ ∈ A, such that
γ ≤ ξ < λ. Otherwise A is bounded in λ.

Definition 4.2.11. A set A is closed unbounded, or simply club, in λ if it is
τ0-closed and unbounded in λ.

We shall use the notation ℵ1 to denote the first uncountable ordinal, and
assume the successor ℵ1 + 1 can be written ℵ1 ∪ {ℵ1}.

Fact 4.2.12 ([Jech, 1978]). A countable intersection of clubs is club in ℵ1.

We are now ready to define a GLP-space in which τ1 is non-trivial.

41A space is first-countable if for every x there is a sequence of neighborhoods I0, I1, I2,...,
such that, for any neighborhood J of x, Ik ⊆ J for some k.

42This is the space mentioned above in Footnote 37, due to Leo Esakia.
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Definition 4.2.13. Let (ℵ1 +1, τn : n < ω) be defined so that τ0 is the interval
topology on ℵ1 + 1, and A ⊆ ℵ1 + 1 is τ1-open if whenever ℵ1 ∈ A there is a
club set C ⊆ A ∩ ℵ1. All other τn are discrete.

By Fact 4.2.12, τ1 gives rise to a well defined topology. And τ1 is not discrete,
since d1(ℵ1 + 1) = {ℵ1}.

Theorem 4.2.14. (ℵ1 + 1, τn : n < ω) is a GLP-space.

Proof. Obviously τ0 ⊆ τ1, since every set A ⊆ ℵ1 + 1 is τ1-open unless ℵ1 ∈ A.
In that case, if (α,ℵ1) is a τ0-open interval, then it contains a club [α + 1,ℵ1)
and is therefore τ1-open. As τ0 is scattered, it thus follows that τ1 is as well.

Finally, to show d0(A) is τ1-open for all A, first note that d0(A) is always
τ0-closed.43 If A∩ℵ1 is bounded, then ℵ1 /∈ d0(A), so d0(A) is τ1-open. If A∩ℵ1

is unbounded, we claim d0(A) ∩ ℵ1 is as well.
Indeed, for any α < ℵ1, we can find a sequence α < α0 < α1 < α2 < ... in

A. Let β := limn<ω αn, so that β ∈ d0(A). Clearly β < ℵ1, since our sequence
is countable. Consequently, d0(A) ∩ ℵ1 itself is club in ℵ1, so d0(A) ∈ τ1. ⊣

This leaves us with two obvious questions. The first is how to obtain yet
stronger topologies in order to interpret 〈2〉, 〈3〉, and so on. The second, more
immediate question is how high we would need to go in order to obtain more
τ1-non-isolated points. Our answer to the second question should cast doubt on
the likelihood of a satisfactory answer to the first question.

A topology identical to our τ1 has been considered by Blass in the context
of topological interpretations of GL ([Blass, 1990]). For an arbitrary ordinal κ,
the interpretation of 〈1〉 is simply, for A ⊆ κ:

d1(A) = {λ < κ : cf(λ) > ℵ0, and for all club sets C of λ, C ∩ A 6= ∅}.

In a sense, club sets take the place of open intervals. To introduce further
terminology, a set A is called stationary in λ if A intersects all club sets of λ.
So derived set can instead be written,

d1(A) = {λ < κ : cf(λ) > ℵ0, and A is stationary in λ}.

Blass proves that GL is sound with respect to any ordinal under such an inter-
pretation and considers the question whether it is also complete for a suitably
large ordinal. Surprisingly, he shows the answer to this question is independent
of ZFC. In fact, completeness of GL is shown to be equiconsistent with a large
cardinal hypothesis, the existence of a so called Mahlo cardinal.44 In particular,
he isolates two well known infinitary combinatorial principles (Jensen’s ¤ Prin-
ciple and the Stationary Reflection Principle), both independent from ZFC, one

43As Guram Bezhanishvili has pointed out to us, necessary and sufficient conditions for d(A)
to be closed are that τ is a so called TD-space, which means every singleton is the intersection
of a closed and an open set. Our τ0 clearly satisfies this requirement.

44For the definition, and discussion, of Mahlo cardinals, see [Jech, 1978].
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of which implies the completeness and the other the incompleteness of GL.45

Thus, from Blass’ result we know that it is consistent with ZFC that GLP be
incomplete as well. However, we cannot conclude from his work any positive
result on topological completeness of GLP. Whether it is consistent with ZFC
that GLP be complete is left for future work.
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