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Abstract

We provide a detailed analysis of very weak fragments of modal logic.
Our fragments lack connectives that introduce non-determinism and
they feature restrictions on the modal operators, which may lead to
substantial reductions in complexity. Our main result is a general
game-based characterization of the expressive power of our fragments
over the class of finite structures.

1 Introduction

The search for computationally well-behaved fragments of classical lan-
guages such as first-order and second-order logic has a long history. Early
in the twentieth century, Lowenheim already gave a decision procedure for
the satisfiability of first-order sentences with only unary predicates. Some
familiar fragments of first-order logic are defined by means of restrictions
of the quantifier prefix of formulas in prenex normal forms. Finite-variable
fragments of first-order logic are yet another family of fragments whose com-
putational properties have been studied extensively, with decidability results
going back to the early 1960s [14], while the late 1990s saw detailed com-
plexity analysis of the two-variable fragment [9, 10, 12]. Despite the fact
that the computational properties of prenex normal form and finite vari-
able fragments have been (almost) completely investigated, these fragments
leave something to be desired: their meta-logical properties are often poor,
and, in particular, they usually do not enjoy a decent model theory that
helps us to understand their computational properties. To overcome these
drawbacks, there are ongoing research efforts to identify fragments of first-
order logic that manage to combine good computational behavior with good
logical properties.



One such effort takes modal logic as its starting point. Through the stan-
dard or relational translation, modal languages may be viewed as fragments
of first-order languages [3]. Modal fragments are computationally very well-
behaved; their satisfiability and model checking problems are of reasonably
low complexity, and they are so in a robust way [16, 8]. The guarded frag-
ment [1] was introduced as a generalization of the modal fragment, one
that retains the good computational properties of modal fragments as much
as possible. On top of that, good computational behavior of modal and
guarded fragments has been explained in terms of the tree model property.

In this paper we also search for well-behaved fragments of first-order
logic by considering modal and modal-like languages, but we aim at a more
fine-grained analysis. We start by taking a computationally well-behaved
logic that can be translated into first-order logic, and try to generalize what
we believe to be the main features responsible for the good computational
behavior. Instead of modal logic, however, our starting point is taken from
description logic. The description logic L~ may be viewed as a restriction
of the traditional modal language, where disjunctions are disallowed and the
diamond operator is severely constrained. The restrictions built into FL™
yield significant reductions in computational complexity.

The aim of the paper is to provide a systematic exploration of the logical
aspects of the restrictions built into FL~. We define a family of modal
fragments inspired by FL™, briefly survey the computational complexity of
their satisfiability problems, and spend most of the paper on providing a
game-based characterization of their expressive power.

2 Description Logics and FL™

Description logics have been proposed in knowledge representation to spec-
ify systems in which structured knowledge can be expressed and reasoned
with in a principled way [2]. They provide a logical basis to the well-known
traditions of frame-based systems, semantic networks and KL-ONE-like lan-
guages, and now also for the semantic web. The main building blocks of
languages of description logic are concepts and roles. The former are inter-
preted as subsets of a given domain, and the later as binary relations on
the domain. Description logics differ in the constructions they admit for
building complex concepts and roles.

Our starting point here is the logic FL£~ [4]; its language has universal
quantification, conjunction and unqualified existential quantification. That
is, the legal concepts are generated by the following rule: C := A | CNC |



VR.C | 3R.T, where A is an atomic concept, and R is an atomic role. In
traditional modal logic notation, this production rule would be written as
du=p|dANd|[R]$|(R)T, or directly ¢ :=p | ¢ A ¢ | Op | OT when
considering only one role.

Interpretations for description logics such as FL™ are pairs Z = (A, I),
where A is a non-empty set, and I is a mapping that takes concepts to
subsets of A and roles to subsets of A x A. In (uni-)modal notation, a
model is a tuple A = (W, R, V') where W is a non-empty set, R is a binary
relation on W, and V is a function assigning subsets of W to proposition
letters respectively.

3 Taking a Cue from FL™

The logic FL~ was carefully designed to control two important sources of
computational complexity: non-determinism and deep model exploration.
This aim shows up clearly in the syntactical constrains imposed on the
language. The elimination of negation and disjunction deals with non-
determinism (partial information cannot be expressed), while the restric-
tion to unqualified existential quantification reduces deep model exploration
to the bare minimum. As we will see in detail in Section 4 these design
decisions have a crucial impact on computational complexity, making satis-
fiability checking trivial and subsumption checking polynomially tractable.

In contrast, standard modal logics (allowing full Boolean expressivity
and qualified existential quantification) have PSPACE-complete satisfiabil-
ity problems, as they allow for the coding up of models that are exponential
in the size of the input formula [3]. The fact that restrictions on modal op-
erators (the modal counterparts of description logic’s quantifiers) produce
computationally well behaved languages has also been studied in the modal
logic community. Specifically, bounding the depth of nesting of modal opera-
tors may bring the complexity of the satisfiability problem down in dramatic
ways, especially if one restricts the language further to having only finitely
many proposition letters (see [11]).

Despite the considerable computational impact of restricting non-deter-
minism and existential quantification, a thorough analysis of its logical as-
pects, and especially of the expressive power, has been missing so far. The
following definitions allow us to capture not just 7L~ but also a wide variety
of additional fragments. In it we take the Boolean restrictions as they occur
in L~ mostly for granted (but we do include T, L), and focus instead on
its modal restrictions in a systematic way.



First and as we saw above, description and modal languages encode
two kinds of information: local information depending only on the current
node of evaluation, and non-local or relational information requiring model
exploration (in controlled ways).

Definition 1 (Local Formulas) A formula ¢ is a local formula if it is in
the set of formulas LF generated by: ¢ :=T | L |p| ¢ A ¢ | OT, where p
is a proposition letter.

Second, we generalize the notion of unqualified existential quantification, by
allowing complete control on which quantifiers are permitted at each level
of nesting.

Definition 2 (Fragment of ML modulo f) Let X be either N or an ini-
tial segment {1,...,k} of N. Let f: X — {<,0,8}. The fragment of ML
modulo f (notation: ML') is defined inductively as

ME(); = LF (the set of local formulas)
M/.',{L 41 = the closure under taking conjunctions of (LF
U{O¢| ¢ e ML and f(n+1) =0} U
U{O¢ | ¢ € ML! and f(n+1) =0} U
U{0¢,06 | ¢ € MLL and f(n +1) = ©}).

The language ML is defined as ML = J, . x MLL.

A few comments are in order. First, the definition of our M£/-fragments
depends on the choice of LF, the set of local formulas; in Section 7 we will
vary this set.

Second, the function f used in the definition allows us to precisely control
the legal arguments of the modalities at each node of the construction tree
of formulas in M£S. In this manner we are able to cut up the full modal
language in novel ways; the present definition does not yet allow us to define
all of the standard modal language ML; see Section 7 for more on this.

Third, let f7 : N — {<, 0,8} be such that f(n) = O for all n. Obvi-
ously, if we were to allow T and L in F£~, we would have ML/ S =FL.
Our definition captures FL£~ in a very natural matter: the function f° dic-
tates that the modal box (and only the modal box) can have arguments of
arbitrary complexity.



4 Computational Aspects

In this section we provide a brief overview of the computational aspects of
our MLS-fragments. First of all, recall that the satisfiability problem for
the standard modal logic K is PSPACE-complete. By going down to FL™,
that is, by disallowing disjunction (as well as negation, T and 1) and by
restricting to unqualified existential quantification, the satisfiability problem
becomes trivial as all formulas in FL™ are satisfiable. More interesting is
the fact that deciding subsumption (given two formulas ¢,9 € FL™ decide
whether ¢ — 1 is a theorem) is solvable in polynomial time [5]. We refer
the reader to [7] for further discussion on the computational aspects of FL~
and its extensions.

In [11], Halpern shows that finiteness restrictions (both on number of
propositional symbols and on nesting of operators) also lowers the complex-
ity of the inference tasks. Satisfiability of the basic modal logic K becomes
NP-complete when we only allow finite nesting of modalities, and it drops
to linear time when we furthermore restrict the language to only a finite
number of propositional symbols.

These results can immediately be extended to the appropriate MLS
fragments. For example, the results for £~ directly implies similar results
for the fragment ML/ " defined above. The following two results are more
general, but also straightforward.

Theorem 3 Let f : X — {<,0,8}, where X is an initial segment or
X = N. The problem of deciding whether a formula in ML' is satisfiable
is in co-NP.

Proof. For each MLS -fragment, we can reduce its satisfiability problem to
the satisfiability problem for the description logic ALE. ALE extends FL™
by allowing atomic negation, T, 1, and qualified existential quantification.
That is, its set of legal concepts is given by C == T | L | A | CNC |
VR.C | 3RC. The satisfiability problem for ALE is known to be co-NP-
complete [7]. o

Theorem 4 Let X be N or an initial segment of N, and let f : X —
{<©,0,8} be such that |[{n | f(n) = O or f(n) = B}| is finite. Assume
that the set of local formulas LF is built using only finitely many proposition
letters. Then deciding if a formula in ML’ is satisfiable can be done in
linear time.



Proof. The proof follows the lines of the similar proof in [11]. Let k£ be the
maximal n such that f(n) = ¢ of f(n) = ©. Given a formula ¢ in ML/,
define ¢* by replacing every O-subformula of ¢ that occurs at depth & + 1
or deeper by O1. It is easy to see that ¢ is satisfiable iff ¢* is. Hence, we
only have to consider the fragment with formulas of modal depth at most
k + 1. A straightforward induction shows that there are only finitely many
non-equivalent formulas in such fragments. Using this, one can find a fixed
number of finite models such that a formula is satisfiable iff it is satisfiable
on one of these models. This can be checked in time linear in the size of the
formula being checked. o

5 A Game-Based Characterization

Our next aim is to obtain a precise semantic characterization of the ML7-
fragments. Games are a flexible and popular tool for obtaining results of
this kind; see e.g., [6] for an introduction at the textbook level. Given an
appropriate function f we define a game G/ that precisely characterizes
MLT; in Section 6 below we build on this to capture the expressive power
of our ML/ -fragments.

Definition 5 Let A be a model, and let X and X’ be two subsets of its
universe. We use A, X = ¢ to denote that A, w = ¢, for all w € X.

The children of w in A are those v such that Rwv. We say that X RT X’
iff for every z in X there exists z/ in X’ with zRz’. We say that X R*X’
if for all z’ of X’ there exists z in X with zRz' (i.e., X' is a subset of the
children of X).

Let A, B be models with domains W, and W}, respectively, and let Xy C W,
Yy C Wp. Let f be such that dom f = {1,...,k} or dom f =N, and assume
n in the domain of f. We write G/ (A, Xo, B, Yy, n) to denote the following
game. The game is played by two players, called Di and Si, on relational
structures A and B (intuitively, Di is trying to proof that A and B are
different, while Si wants to show they are similar). A position in the game
Gf (A, Xy, B, Yy, n) is given by a pair (X,Y) such that X is a set of elements
in A and Y a set of elements in B; (Xy,Yp) is the initial position. During
the (¢ + 1)-th round, the current position (Xj;,Y;) will change to the new
position (X;1,Y;11) according to the following rules.

Rule 1 If f(n — i) = O then Di has to choose a set Y;1; C W} such that
YiRTYiH, a counter-move of Si consists of choosing a set X;1 C W,
such that X;RT X, ;.



Rule 2 If f(n — i) = © then Di has to choose a set X;11 C W, such that
X;R*X; 1. Si has to answer by choosing a set Y;,; C W, such that
YiRM;s1.

Rule 3 If f(n—1i) = €& then Di can choose any of the previous rules to play
by during this round.

The game ends on position (X;,Y;) when one of the following conditions
fires:

Condition 1 There is a formula ¢ € LF, A, X; = ¢ but B,Y; [~ ¢.
Condition 2 7 < n and Si cannot move.
Condition 3 7 < n and Di cannot move.

Condition 4 Both players have made n moves (i = n) and none of the
conditions above holds.

We say that Si wins the game if the game finishes because of conditions 3
or 4, otherwise Di wins. Two important characteristics of the definition of
GY are its directness (in the rules and in Condition 1), and in its use of sets,
instead of elements, to represent positions. We will see that they are crucial
in the following example.

Example 6 To illustrate this definition we will play G¥ (A, {a1}, B, {b1},1)
with A and B as shown in the figure below for different values of f.

Figure 1: Playing a game.

First take f(1) = O, then Si has a winning strategy: Di has to move in B
with Y' = {by}. Si can choose either {a;}, {a2} or {ai,as}, and win the
game. Note that all formulas O¢ with ¢ local that are satisfied in (A, a;)
are satisfied in (B,b;). Now take f(1) = <; this time Di has a winning
strategy: choose {as} or {as}. In any of the two possibilities Si can only
choose Y’ = {by} and in both cases there is a local formula, namely p or ¢
such that B, {b2} [~ p or B, {b2} [~ g, respectively.



The definition of G/ has been specially tailored to the restricted expres-
sivity of the language ML/. We will now show that making the definition
less tight would produce an expressive power mismatch.

Suppose we weaken Condition 1 to make it symmetric, requiring that
there is a formula ¢ € LF such that either A, X; = ¢ but B,Y; [~ ¢; or
B,Y; E ¢ but A, X; = ¢. Under this definition Di has a winning strategy
for G/(A,{a1},B,{b1},k) for any f and k. This would be the case, in
general, whenever two states disagree on formulas in LF they make true.
But this would be equivalent to allow atomic negation in LF! Under the
new definition, the game G/ would be too discriminating for the expressive
power of MLf. More generally, making Rules 1 to 3 symmetric would
correspond to allowing full negation.

In a similar way, restricting positions to singleton sets (or equivalently,
elements in the domain) the game would be sensible to disjunctions, allowing
Di to define a winning strategy on two models that only differ on disjunctive
statements.

Games provide a mechanism to identify differences between two models.
Such differences may also be captured by formulas (in some language) that
are true in one model but not in the other. The following theorem relates
these two ideas for G/-games and ML -equivalence.

Theorem 7 Fiz k and n such that k > n > 0, and let f : {1,...,k} —
{<, 0,8} be given.

1. 8% has a winning strategy for the game G¥ (A, X, B,Y,n) iff for every
formula ¢ € ML, if A, X |= ¢ then B,Y = ¢.

2. Di has a winning strategy for the game G¥ (A, X, B,Y,n) iff there is a
formula ¢ € ML{:, such that A, X = ¢ and B,Y [~ ¢.

Proof. 1. (=) We will prove this direction using induction on n < k. We
only discuss the induction step.

Assume that Si has a winning strategy for the game G7/(A, X, B,Y,0).
The theorem says that all the formulas in LF that are satisfied in all the
elements of X have to be satisfied in all the elements of Y. As Si has
a winning strategy, Cond. 3 or Cond. 4 should hold. Cond. 3 does not
apply and hence Cond. 4 ensures the needed condition. Assume that the
result holds for G/(A, X,B,Y,n). Let ¢ in Mﬁfiﬂ such that 4, X = ¢.

We first consider the case f(n + 1) = . Let ¢ € ME{LH be a formula
such that A, X = ¢. If ¢ is a formula in LF the truth of ¢ in B is given



by Rule 1. If ¢ is a conjunction ¢1 A ¢2, we can use a second inductive
argument (on the number of A-signs) to establish the claim. Next, ¢ may
be of the form O¢; with ¢; € MLL. Since A, X |= O, we have that every
element z € X has an R-child 2’ such that A,z' = ¢1. Let us play with
Di choosing X' = {z' | A,z = ¢1}. Since Si has a winning strategy for
GY(A, X, B,Y,n+1), he will counter-play with a set Y’ such that Y RTY” and
will still have a winning strategy for G¥ (A, X, B,Y,n). Using the induction
hypothesis we have that B,Y' |= ¢ since A, X' = ¢1. Hence, B,Y = ¢.

Suppose f(n+ 1) = O. Di has to move in B. Suppose that ¢ = O¢; and
B,Y £ ¢. Then there is a set Y’ such that YRTY' and B,Y’ [£ ¢;. Let this
Y’ be the set chosen by Di.

Since Si has a wining strategy it will choose a set X’ such that X RTX".
X' will be such that B, X' = ¢,

Si has a winning strategy for the game G/(A, X', B,Y’,n), using this
and inductive hypothesis we can conclude that X’ and Y’ do satisfied the
same set of formulas, a contradiction.

The f(n + 1) = © case reduces to one of the two cases above.

(<) Assume that for every ¢ € ML A, X |= ¢ implies B,Y, = ¢. We have
to define a winning strategy for Si when he plays the game G/ (A, X, B,Y,n).
The proof is by induction on 7.

For n = 0 we need to check that Gf (A, X, B,Y,0) starts with a winning
position for Si. This is true because by hypothesis we have that formulas
in LF valid in X are also valid in Y.

Assume the theorem is true for n. Suppose that f(n + 1) = < and that
Di has chosen a set X’ such that XRYX'. Let ® = {¢ € ML | A, X' = ¢}.
Let Si choose a set Y’ such that YR'Y’ and B,Y’ |= ®. The existence of
such a set is given by hypothesis. After this move all the formulas in ML',{L
satisfied in X’ are also satisfied in Y’, and by induction Si can complete
the strategy. For f(n + 1) = O, Di has to move in B. Let us suppose that
Di has chosen a set Y’'. Define ® as before. Let X’ be a set of elements in
A such that A, X’ = ¢. X' will be the move of Si, again using induction
hypothesis we have the complete strategy.

The f(n + 1) = € case reduces to one of the two cases above.

2. (=) The left-to-right implication is similar to item 1, left-to-right. To
prove the right-to-left implication one can build the required strategy for Di
by induction on the size of the formula ¢.

If the formula is an atomic proposition letter then Si wins immediately
because of Rule 1. For the inductive case, we should decide the move for Di
in the current position and the induction hypothesis will provide the rest of



the winning strategy. Since B,Y [~ ¢, there is an element w’ € Y such that
B,w' [~ ¢. Suppose that ¢ = O¢y, since B,w’' = O¢; implies that there
is w} such that w'Rw] and B,w] [~ ¢;. Following the rules of the game,
Di has to move in B: Di has to choose any subset of the neighbors of Y
such that w; is included. Suppose that ¢ = <@y, then there exists a set
YR'YY' such that B,Y' [~ ¢;. By inductive hypothesis, Di has a winning
strategy for the game GY (A, X', B,Y",n). Y’ as a first move together with
the previous strategy, gives Di the complete strategy. o

Corollary 8 For every game G7(A,X,B,Y,n) either Di or i has a win-
ning strategy, i.e., the game Gf (A, X, B,Y,n) is deterministic.

6 The Expressive Power of ML/

Van Benthem [15] proved the following preservation result: a class of models
defined by a first-order sentence is closed under bisimulations iff it can be
defined by a modal formula. Rosen [13] proved that this result remains true
over the class F of finite structures. Below we prove that this theorem will
remain true for a new relation based on games over F. Our proof follows
the structure of Rosen’s proof.

For the formulation of our results it is convenient to work with so-called
pointed models (A,c?); these are models with a distinguished element.

Definition 9 Let A and B two models with distinguished elements ¢ and
cB respectively. We write A ~¢s B to denote that Si has winning strate-
gies for both games G/ (A, {c*}, B, {c?},n) and G/ (B, {c?}, A, {c*},n). We

writk td dellpte that Si has winning strategies for the correspond-

ing infinite games.

The first key theorem in Rosen’s paper is the following.

Theorem 10 (Rosen [13]) Let C be any class of models (each model A
with a distinguished node C'A), closed under isomorphism. Let C' be any
subclass of C, also closed under isomorphism. Then for all n, the following
conditions are equivalent:

1. Forall AeC',BeC—-C', AA"B.

2. There is a modal formula of quantifier rank < n that defines C' over C

We extend this theorem to be able to cope with our restricted fragments.

10



Theorem 11 Let C be any class of models (each model A with a distin-
guished node c*), closed under isomorphism. Let C' be a subset of C also
closed under isomorphism. For every n, let M, be the biggest subset of Mﬁ,’;
such that all the formulas in M, are satisfied in ¢* by all the models A in
C'. If My, # 0 then the following conditions are equivalent:

1. Forall AcC',BeC—C, Ay, B.
2. There is a formula ¢ in M, such that ¢ defines C' over C.

Observe the following relations between the two theorems. The set ML
in Rosen’s theorem is given by all modal formulas in which the maximal
number of nested modal operators is at most n. The set M,, (of formulas
satisfied in all elements of C') is never empty: the set of modal formulas
containing at most n nested modal operators is logically finite, and every
model in C' will satisfy ¢ or —¢ for ¢ with modal depth less or equal than n.
Form the disjunction of one such formula ¢ per model in C, and this formula
will be true in all the elements of C'.

Proof of Theorem 11. (1 = 2) Suppose that M, # () and suppose that for
alAel,BeC-C, A #%s B. By Theorem 7 this implies that for all
A€, BeC—C there is a formula ¢ in M, such that A,c* = ¢ but
B,cB |~ ¢. Let A be any model in C’, we define ® 4 by putting &4 = A{¢ €
MLL | A= ¢ and B [~ ¢ with B € C — C'}. Note that since ML} is finite,
® 4 is a finite conjunction. Note also that ® 4 belongs to ME£ and that it
is satisfied by all the models in C (it belongs to M,,) but not by any model
in C'. Hence @ 4 is the needed definition.

(2 = 1) Suppose that M, # () and that there is a formula ¢ in M, such
that ¢ defines C' over C. By Theorem 7, Di will have a winning strategy for
the appropriate games and for all A € C', B € C — (', it will be true that
A 762;,1 B. —

We need some further terminology. Given a model A and a node w in A,
we say that w is a descendant of v if wR*v, where R" is the transitive
closure of R. The family of w in A, written FY is the submodel of A
with universe {w} U {v | v is a descendant of w}. We say that w and v are
disjoint iff F{ N FY = 0. The r-neighborhood of a node w, denoted N, (w),
is defined inductively. Ny(w), is the submodel of A with universe {w}. For
all v+ 1, v € Npji(w) iff v € N (w) or there is a w' € N, (w) such that
A = Rw'vV Rvw'. An r-tree is a directed tree rooted at u of height < r.
An r-pseudotree is a model such that N,.(u) is a tree such that all distinct

11



pairs of its leaves are disjoint, as defined above. As is standard, = denotes
isomorphism.

Proposition 12 Let (A, ¢?) and (B, cB) be two models such that (A, c?) ~e
(B, cB). Then there are n-pseudotrees (A',c*') and (B',c?) such that (A, c?)
NOGO)(A',CA'), (B, B) Ngo)(B’,cB') and Ny (c?) = N, (P).

Proof. We will specify an algorithm that transforms the two pointed models
into models with isomorphic n-neighborhoods. After each step s, s < n,
we have models (A;,c!) and (Bs,c?) such that (A,cA) ~Cr (As, c) and
(B, cP) ~Bs, c®) and ¢ and ¢® have isomorphic s neighborhoods. At
each step s + 1, As41 (resp Bsy1) is obtained from A (B;) by adding or
removing copies of families of nodes of distance s + 1 from their root.

Let {a1,...,a;,b1,...,by} be the set of children of ¢* and cB. We will
build the models using the two following rules: If f(n) = O then for con-
structing A; and By we just choose one a; and b; and drop all the the remain-
ing children. We will redefined the set of local formulas satisfied in a; and b;
as the local formulas that are common to all states {a1,...,a;,b1,...,bn}.

All the formulas in MLJ will either start with a box or will be local
formula. If a formula ¢ = O¢, is satisfied in A then ¢; will be satisfied in
all children of ¢# particularly in a; hence ¢ will be satisfied in c.

If f(n) = < The relation N’é}l induces an equivalence classes on the set
{a1,...,a;,b1,...,by}. Note that each equivalence class does not necessarily
have a member in each A4 and B. An example of such a configuration is as

in (a) below:

A B A B
/D\ —> A
5 \D
(P, P} (P} B, B} (P, P} (P, P}
(a) (b)

To obtain A; and By with isomorphic 1-neighborhoods of ¢ such that A Né £
A1 we have to do two things. First we should add enough copies of families of
the children a; and b; such that each equivalence class has an equal number
of members in 4; and in By. Second, if an element d is not related by Ngf
to an element in the opposite model, we just drop its family.

We should now verify that we are not throwing away some states that

provide the only way to satisfy a certain formula. Suppose for contradiction

12



that this is the case: there is a state b; and a formula ¢ such that Bi,b; = ¢
(hence B, cP |= ©¢) and b; is the only child of ¢ that satisfies this formula.
Since A, c* |= ©O¢ there is a child a; of ¢ such that A, a; = ¢. By hypothesis
a; is not N’é}l-related to b, meaning that there is a formula ¢; such that
A,a; = ¢ but B, bj = d1. As pA 1 € MLS there is another children of ¢?
that satisfies ¢, a contradiction. The f(n + 1) = & case reduces to one of
the two cases above. Next step on the algorithm is to move to each of the
elements in the isomorphic neighborhoods and apply the same schema for
each pair of nodes related by the isomorphism.

The models As; and B constructed during the proof will be both iso-
morphic and ~77;-related to A and B respectively as needed. -

Before we can formulate our main expressiveness result, we need one more
auxiliary result, due to Rosen. In formulating it, we write A =" B to denote
that A and B satisfy the same first-order sentences with at most n nested
quantifiers.

Theorem 13 (Rosen [13]) Let A and B be (2H (n))-pseudotrees such that
N n) () = Ny (cP), where H(z) is the Hanf function. Then there are
A" and B' such that A~ A', B~ B', and A' =" B'.

Actually, Rosen used ~ (bisimulation) in his theorem instead of ~&, but if
two models are related by ~ they will be related by ~7

Theorem 14 Let C be a class of finite pointed models and C' be a subclass
of C such that the set of formulas ¢ C ML' that are satisfied in all the
models in C' is non-empty. Let C' be defined by a first order formula «. If
C' is closed under ~3then C' is definable by a formula in MLl

Proof. Suppose that C' is defined by a first-order sentence and closed under
~gput not definable by a formula in MLS. We want to prove that for
all n there are pointed models (A,c*) € C' and (B, cP) € C — C’' such that
(A,c*) =" (B,cB) which would contradict the hypothesis. For any n €
N, Theorem 11 says that for H(n) there are models (A’,¢*) and (B',c?)
such that (A, c?) Ng;n) (B',c*). Proposition 12 lets us construct models
such that (A", c?") ~EB, M), and Ny (c?”) = Ny (c®). Finally,
we apply Theorem 13 to obtain the needed (A,c?) and (B, cB) and the
contradiction. -
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7 Extensions

In this section we discuss some possible extensions of ML for which Theo-
rem 14 still holds. Such extensions involve two main issues: modifying ML/
and finding the corresponding game.

First of all, we can easily cater for atomic negations, simply by expand-
ing the definition of local formulas to also include negations of proposition
letters. In this case the game definition is not affected.

Next, adding disjunctions is straightforward. The new fragment ML/ (V)
will be given by: MLJ(V) = LF, MLl (V) = the closure under A
and V of (LFU{C¢ | ¢ € MLL(V)and f(n +1) = 0}U{0O¢ | ¢ €
MLL(V) and f(n+1) =0} U{C¢,0¢ | ¢ € MLL(V) and f(n+1) = T}).
Di and Si will have to play using singletons. In other words, the first des-
ignated position in each model will be a singleton and both Di and Si have
to choose singletons in following moves. Note that once we have added the
usual connectives and modal operators, ~2; is equivalent to bisimulation
and Theorem 10 is actually equivalent to Theorem 11.

Another obvious extension is to go multi-modal; this can be done in
many different ways. The obvious one is to replace O with [R;] in each of
the production rules in Definition 2. This method will not control the modal
depth at which a particular relation is used. Alternatively, we can let our
functions f choose which subset of modal operators is to be considered legal
at each level in the definition of ML/. Our main complexity, characteriza-
tion, and expressiveness results hold for both ways of going multi-modal.

Finally, we can go a step further and allow unqualified number restric-
tions. These are formulas of the form O<"T that are true in a state w iff
there are wq, ..., w with k& < n such that wRw1, ..., wRwg. Unqualified
number restrictions are still very local, and because of that it is easy to
extend our setup to deal with them: we can simply add them to the set
of local formulas, and our characterization and expressiveness results will
continue to hold.

8 Conclusions and Future Work

We have introduced a novel mechanism for decomposing modal logic into
fragments. Each of these fragments can be specified in a very fine-grained
manner, and for each of them we have defined a notion of game that allows
us to characterize the fragment’s expressive power. We have also provided
uniform upper bounds for the complexity of the satisfiability problem for
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each fragment. Our games provide a natural tool to understand the frag-
ments and the constructors they admit.

The first natural next step is to extend our fragment so as to also cap-
ture more expressive modal logics, especially ones with unqualified number
restrictions. We also aim to further explore how these fragments behave
computationally: not only by given better upper bounds for the complex-
ity of the satisfiability problem, but also by considering different reasoning
tasks, for example model checking.
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