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ABSTRACT

In [18], Visser shows that a first-order theory is sequential (has ‘global coding’) iff (roughly) it directly
interprets a weak set theory, AS. The programme behind Visser’s result is to find coordinate free ways
of thinking about notions of coding. In this thesis, we add some results to Visser’s programme for the
case of ‘local coding’.

Since Robinson’s arithmetic, Q, is mutually interpretable (but not directly) with AS (see [14], [4], [8],
[18]) and Q is in a sense the minimal arithmetical theory that yields enough coding to prove Gödel’s
Second Incompleteness Theorem, we propose whether a theory interprets Q as a characterization of the
notion of ‘local coding’.

We also investigate other candidates in place of Q. We show that a basic theory of strings, TCQ interprets
Q.

We, in addition, verify that the classical result of Nelson [10] works in the constructive case by showing
that iQ interprets iI∆0 +Ω1. This result entails that our characterization of ‘local coding’ also works in
the constructive case.
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1. INTRODUCTION

This Master’s thesis is concerned with research at the junction of many distinct, yet connected,
ideas and programmes in metamathematics. Five of which are particularly important.

Weak theories. The first is the study of weak theories. The notion of weak theory is somewhat
informal in the literature and in parlance amongst metamathematicians. It is not fully clear which
theories are ‘weak’. Nonetheless, the notion is robust and amenable to precise and independently
motivated definition: Historically, the most significant of such theories is Robinson’s arithmetic,
Q. The theory Q is formulated in the language of arithmetic, {0,S,+, ·}, whose axiomatization
consists of seven axioms: Three axioms stating that the successor symbol represents an injective
function with a range containing all numbers except 0, and four other axioms about + and ·, two
stating how + and · interact with 0 and two stating how the sum x+Sy and product x ·Sy intuitively
interact with and are uniquely determined by the sum x+y and the product x ·y. Peano arithmetic,
PA, is an extension of Q formulated in the same language by adding the induction schema to the
axioms of Q. Many treatments enrich Q by adding ≤ to the language and an additional axiom
that defines it; by convention, this definitional extension retains the name Robinson’s arithmetic
and is denoted by Q. The presence of ≤ makes the definition possible of a bounded formula
and fragments of PA, like I∆0, where induction is restricted to bounded formulas. Aside from
its historical significance, Q has many important metamathematical properties: First, Q is finitely
axiomatizable. Second, Q is essentially undecidable — that is, each consistent extension of Q is
undecidable. Third, Q is mathematically very weak — it does not even prove the commutativity
and associativity of +. Lastly, despite its weakness, it is, strikingly, capable of interpreting many
much stronger theories like I∆0 and certain extensions thereof, like I∆0 + Ω1. Visser, in [19],
defines weak theories as those mutually interpretable with Q (or alternatively, those mutually
locally interpretable with Q) and provides the following useful survey of such theories:

a. Arithmetical theories like Q, I∆0, Buss’s theory S1
2 and I∆0 +Ω1.

b. Various theories of concatenation like Szmielew and Tarski’s theory F ([14], p.86) and Grze-
gorczyk’s theory TC ([5]).

c. Theories of sequences, like the one introduced by Pavel Pudlák in [11].

d. Various weak set theories like adjunctive set theory AS, a set theory introduced by Pudlák in
[11] (see also: [9]). Pudlák’s theory is modulo some inessential details, the same as a weak
set theory introduced and studied by Tarski and Szmielew, minus extensionality. See [14]
and [15].

Much of the focus in Visser’s related work has been on theories in (c.) and (d.). In this Master’s
thesis, we will be focusing on theories like those in (a.) and (b.).

Interpretability. The notion of interpretability, developed extensively into refined concepts in the
work of (most notably) Pudlák, Friedman and Visser, is central to the definition of weak theories
and also their propitiousness as tools in metamathematics. Different concepts of interpretability
provide metamathematicians different means of comparing theories (e.g., as a measure of relative
mathematical strength) and formulating sufficient conditions in metamathematical theorems. More
precisely, we define a basic notion of interpretability as follows: We first need the notions of
a translation between formulas and a translation between symbols.1 A translation of formulas,

1We use the definition of interpretation found in Svejdar [13].
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F , from a theory U to formulas of a theory V is determined by a definitional extension V′ of
V, a translation of symbols and a domain. A translation of symbols, τ, is a function that maps
each symbol in the language of U to a symbol of the same arity and kind in the language of the
definitional extension V′. A domain is a formula δ(x) of V′ with one free variable used to relativize
quantifiers in the given translation of formulas: It translates (∀xφ)τ as ∀x(δ(x)→ φτ) and (∃xφ)τ

as ∃x(δ(x)∧φτ). It is important to note that logical connectives are preserved under the translation
F . Finally, we call a translation of formulas an interpretation of U in V if its domain δ(x) satisfies:

V′ ` ∃x δ(x) and,

V′ ` ∀x1, ...,xn((δ(x1)∧ ...∧δ(xn))→∃y(δ(y)∧∀z( f τ(x1, ...,xn,z)↔ z =τ y))

for each function symbol f in the language of U — i.e., the domain is provably non-empty and
closed under the interpreted functions. Moreover, V′ must prove the translation of every axiom φ

of U — that is:

V′ ` φτ for each axiom φ of U.

A theory U is interpretable in V if there exists an interpretation of U in V. We call an interpretation
unrelativized if the domain formula is δ(x) :↔ (x = x). Moreover, an interpretation has absolute
identity if identity in U is mapped to identity in V. Finally, we call an interpretation direct if it is
unrelativized and has absolute identity.

Incompleteness without arithmetization. The third item this Master’s thesis is concerned with is
a programme, taken up by Grzegorczyk [5] and seminal in the work of Szmielew and Tarski [14]
and Quine [12], is to base the explanation of the phenomena of incompleteness and undecidability
on axiomatic theories different from Q and PA. In particular, Grzegorczyk uses a weak theory of
concatenation TC. Indeed, a theory of concatenation might be considered a more natural setting
to place the explanation of such phenomena, especially given the special role off coding in the
proofs of such metamathematical results. In [17], Visser highlights the supervenience of struc-
tured objects on strings, and how other theoretically important objects, e.g., sets, emerge out of
our reasoning about strings and concatenation.

Nelson’s programme. The fourth is Nelson’s programme. Nelson in [10] uses Q as a basis for
his philosophy of mathematics and predicative arithmetic. Buss in [3] characterizes, we think
accurately, Nelson’s philosophy of mathematics as a combination of formalism and radical con-
structivism. Nelson is a formalist in the sense that he doubts the existence of platonic mathematical
objects, in particular the existence of the set of all integers; further, he is a radical constructivist
since the method he innovated to build up his predicative arithmetic from Q is rather constructive:
Nelson objects to the fact that on the one hand, the set of integers is defined as the set of numbers
for which induction is valid, and on the other hand, the formulas for which induction must hold
involve quantification over the set of all integers. Instead, Nelson’s predicative arithmetic avoids
the platonic assumption about the existence of an infinite set of integers that satisfy induction. It
does so by starting with a pre theoretic notion of an infinite set of integers which satisfy the axioms
of Q, what Buss [3] and Burgess [1] call the set of proto-integers. The set of proto-integers is then
refined into more refined notions of integer by taking subsets of the proto-integers that satisfy more
and more properties of the integers, starting with basic properties such as the commutativity and
associativity of + and eventually working up to induction for bounded formulas. This technique
is known as Solovay’s method of shortening cuts (also known as inductive cuts). Using these
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techniques to their limit, Nelson showed that Q interprets I∆0 +Ω1.

Aside from being philosophically interesting, this result is also metamathematically significant
from a methodological point of view since it says that Q interprets the mathematically stronger
theory I∆0 + Ω1. This result means that we can use interpretability in Q as a reasonably simple
sufficient condition to satisfy in many metamathematical theorems while at the same time we have
I∆0 + Ω1 at our disposal in doing the grunt work for establishing such metamathematical theo-
rems. In this sense, Nelson’s theorem is what Visser calls a bridging theorem in [19].

Visser’s programme. Lastly, we outline Visser’s programme which interestingly incorporates many
of the insights of the ideas and programmes mentioned above (cf. [18] and [19]). Visser’s pro-
gramme is to find coordinate-free ways of defining the notions of coding needed in order to yield
the associated metamathematical results. By coordinate-free, we mean independent of the choice
of signature. In [19] and [18], Visser shows (roughly) that if a theory U directly interprets an
appropriate weak set theory or sequential theory (cf. (c.) and (d.) above), then:

(i) U has enough coding abilities to prove the incompleteness theorems for any choice of
domain for U and,

(ii) U has enough coding abilities to prove its own restricted consistency statements.

We call this coding ability, global coding. The theories in (a.) and (b.) do not directly interpret
the theory AS that Visser proposes and hence, do not characterize global coding. However, the
theories in (a.) and (b.) do provide us with another characterization of coding — local coding:
Roughly, if a theory U interprets Q, then U has enough coding abilities to prove the incompleteness
theorems for some choice of domain for U.

In what follows, we will propose a weak theory of strings, TCQ as an analogue of Q, and show that
TCQ interprets Q. This result contributes to Grzegorczyk’s programme and Visser’s programme
by providing a simple theory in the language of concatenation that, effectively, yields the same
metamathmatical benefits as Q. That is, as a corollary of the mutual interpretability of TCQ and
Q, we can now use TCQ as a base theory to show that any theory interpreting TCQ has certain
welcome coding capabilities — i.e., has local coding.

In addition, we verify that the classical result of Nelson [10] works in the constructive case by
showing that iQ interprets iI∆0 + Ω1. This result entails that our characterization of local coding
also works in the constructive case.

This Master’s thesis is structured as follows: In section 2, we present a constructive proof of Nel-
son’s classic result that Q interprets I∆0 + Ω1. In section 3, we show that the weak theory of
concatenation TCQ interprets Q.

The techniques used in this Master’s thesis, as far as the author is aware, are due primarily to
the following: Tarski, Mostowski and Robinson [15], unpublished work of Solovay, Nelson [10],
Hájek and Pudlák [7], and Visser [19].

Acknowledgements: I would like to especially thank my supervisor Albert Visser for his gener-
ous help, hospitality and patience without which this thesis would not have been written. I would
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also like to thank the ILLC and the great people there that make it all happen — especially, of
course, Benedikt Löwe and Tanja Kassenaar. Finally, it would be impossible to withhold thanks
to Marcello Di Bello for his continuous support and companionship during my time in Amsterdam.

2. CONSIDERING CONSTRUCTIVITY: iQ INTERPRETS iI∆0 +Ω1

In this section, we begin by presenting a slightly altered version of Q needed in order for the
constructive proof of Nelson’s result to go through. In the first subsection, we attempt to inde-
pendently motivate this alteration by considerations about the decidability of identity and equality
with 0 in the intuitionistic case. Next, in the second subsection, we present what is essentially
Nelson’s original proof that Q interprets I∆0, however in, we hope, a more intuitive format (along
similar lines as [7] with a few crucial corrections — cf. Lemma 6). Recall the method of short-
ening cuts mentioned in association with Nelson in the introduction, it will be used extensively
throughout. Finally, at the end of the section, we outline the coding of the function ω1 and claim
that the proofs found in Nelson [10] and Hájek and Pudlák [7] go through constructively. This
yields the result of the final subsection: iQ interprets I∆0 +Ω1.

2.1. A BETTER VERSION OF Q

The theory Q, well-known as Robinson’s arithmetic, is a theory in the language of arithmetic with
the following axioms:

q1. Sx = Sy→ x = y

q2. Sx 6= 0

q3. x 6= 0→∃y(x = Sy)

q4. x+0 = x

q5. x+Sy = S(x+ y)

q6. x ·0 = 0

q7. x ·Sy = x · y+ x

Moreover, we define:

q8. x≤ y :↔∃u(u+ x = y)

Let I(x) be a formula. We treat {x : I(x)} as a virtual class and write I for {x : I(x)}. In this way,
we can use a simple virtual class notation (e.g., ∈,⊆) to aid in presentation. We assume the reader
is aware of the simple relationship between the two notations (e.g., x ∈ I is virtual class notation
for I(x), J∩ I for (J(x)∧ I(x))). (Note that we will use a mixture of the two notations according to
their intuitive roles in use.)

I is an initial segment if I is closed under 0,S and downwards closed under ≤.

iQ is the usual axiomatization of Q with the intuitionistic predicate calculus as the underlying logic.
Let IDENTITY:= {x : ∀y(x = y∨ x 6= y)} and ZERO:= {x : x = 0∨ x 6= 0}. That is, let IDENTITY
be the property that identity for x is decidable and ZERO be the property that identity for 0 is
decidable. We conjecture that ZERO(x) and hence, IDENTITY(x) are not provably instantiated on
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any initial segment of iQ, but that they are provable under a slightly different axiomatization of iQ.
We term this new axiomatization, the constructive or disjunctive version of Q, and write iQd. More
precisely, iQd will be taken to be Q plus the following classically equivalent, but intuitionistically
stronger formula replacing (q3):

q3∗. x = 0∨∃y(x = Sy).

Conjecture 1. ZERO(x) and IDENTITY(x) are not provably instantiated in iQ on any initial seg-
ment.

Proof. We leave the crucial part of the proof — namely, that ZERO(x) is not provably instantiated
in iQ as an open question. That IDENTITY(x) is not provably instantiated in iQ is a corollary of
the former conjecture: Suppose iQ ` I(x)→ IDENTITY(x). We have that iQ ` IDENTITY(x)→
ZERO(x) by universal instantiation. Moreover, by intuitionistic logic, we have that:

iQ ` (I(x)→ IDENTITY(x))→ ((IDENTITY(x)→ ZERO(x))→ (I(x)→ ZERO(x)).

But this is a contradiction since by implication elimination we have that iQ ` I(x)→ ZERO(x)
and if ZERO(x) is not provably instantiated in iQ, we have that iQ 6` I(x)→ ZERO(x) and hence,
iQ 6` I(x)→ IDENTITY(x) too.

Proposition 1. ZERO(x) is provable in iQd.

Proof. Reason in iQd. By (q3∗), x = 0∨∃y(x = Sy). If x = 0, then x = 0∨ x 6= 0. If x = Sy for
some y, then by (q1) we have that x 6= 0. Whence, x = 0∨ x 6= 0. Thus, iQd ` x = 0∨ x 6= 0. This
means precisely that ZERO is decidable in iQd.

Proposition 2. IDENTITY(x) is provably instantiated in iQd on an initial segment.

Proof. We postpone the proof until Section 3.2, Corollary 9.

Henceforth, we will refer to iQd by simply iQ. Next, we go on to the main result of section 3.

2.2. iQ INTERPRETS iI∆0

The schema for bounded induction under the signature of Q is as follows:

(φ(0)∧∀y≤ x(φ(y)→ φ(Sy)))→ φ(x)

where φ is a bounded formula of the language of arithmetic.

Define I∆0 to be Q together with the schema of bounded induction. iI∆0 is the usual axiomatiza-
tion of I∆0 where the underlying logic is the intuitionistic predicate calculus.

First, we present the proof of a lemma needed in the proof of Theorem 15 at the end of this section.
We follow Burgess [1] in calling this lemma the absoluteness principle and follow Nelson [10] in
giving its proof by induction on the complexity of φ.
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Lemma 3 (Nelson [10]). Suppose U is a theory with the binary predicate symbol ≤ and I is
provably downwards closed under ≤ and provably closed under the functions of U. Let φ(~z) be a
bounded formula of U. Then U proves:

~z : I→ (φ(~z)↔ φ(~z)I).

Proof. Call a U-formula φ absolute if U proves:

~z : I→ (φ(~z)↔ φ(~z)I).

Atomic formulas are absolute since if φ is atomic, then φI is just φ so that I→ (φ↔ φI) is a tau-
tology.

Next, suppose φ is absolute, then since φ and ¬φ have the same free variables and relativizations,
we have that ¬φ is absolute.

Suppose φ1 and φ2 are absolute. We have that the free variables of φ1 ∨φ2 are precisely those of
φ1 and φ2. Moreover, (φ1∨φ2)I is just φI

1∨φI
2. Thus, φ1∨φ2 is absolute.

Suppose φ1 and φ2 are absolute. We have that the free variables of φ1 ∧φ2 are precisely those of
φ1 and φ2. Moreover, (φ1∧φ2)I is just φI

1∧φI
2. Thus, φ1∧φ2 is absolute.

Suppose φ(~z) is absolute and ψ is ∃x(x ≤ t ∧ φ) where x does not occur free in t. Then the free
variables of ψ are those free in t (call these ~y) and those free in φ. Since I is closed under all the
function symbols of U, we have that U proves:

~y : I∧~z : I→ I[t].

Moreover, since I is downwards closed under ≤, we have that U proves:

~y : I∧~z : I→ (∃x(x≤ t ∧φ(~z))↔∃x(I(x)∧ x≤ t ∧φ(~z))).

Since φ is absolute and (~y : I∧~z : I∧ I(x))→~z : I is a tautology, we have that U proves:

~y : I∧~z : I→ (∃x(x≤ t ∧φ(~z))↔∃x(I(x)∧ x≤ t ∧φ(~z)I))

which is precisely the condition for ψ’s absoluteness. Ergo, ψ is absolute.

Suppose φ(~z) is absolute and ψ is ∀x(x ≤ t → φ) where x does not occur free in t. Then the free
variables of ψ are those free in t (call these ~y) and those free in φ. Since I is closed under all the
function symbols of U, we have that U proves:

~y : I∧~z : I→ I[t].

Moreover, since I is downwards closed under ≤, we have that U proves:

~y : I∧~z : I→ (∀x(x≤ t→ φ(~z))↔∀x(I(x)∧ x≤ t→ φ(~z))).

Since φ is absolute and (~y : I∧~z : I∧ I(x))→~z : I is a tautology, we have that U proves:

~y : I∧~z : I→ (∀x(x≤ t→ φ(~z))↔∀x(I(x)∧ x≤ t→ φ(~z)I))



9

which is precisely the condition for ψ’s absoluteness. Ergo, ψ is absolute.

This completes the induction and hence we have established the absoluteness principle for U.

Now, we go on to prove the remainder of the lemmas needed for Theorem 15.

A number x is L-successive1 iff ∀y∀z(y+ z = x→ Sy+ z = Sx). We call the class of L-successive
numbers I0.

Lemma 4 (in iQ). The class I0 is closed under 0 and S.

Proof. We first show that x + y = 0→ x = y = 0 is a theorem of iQ. If y = 0, then x + 0 = 0→
x = y = 0 by (q4). If y = Su for some u, then x+Su = S(x+u) 6= 0 by (q5) and (q1). But this is
a contradiction, so we have that y 6= Su which implies by (q3∗) that y = 0.

Suppose y+z = 0, then y = z = 0 by the theorem just proved in iQ. Moreover, Sy+z = S0+0 = S0.
Ergo, 0 ∈ I0.

Suppose y + z = Sx and x is L-successive. We want to show that Sy + z = SSx. If z = 0, then we
find that y = Sx and hence Sy + 0 = Sy = SSx by (q4). If z = Su for some u, then y +Su = Sx.
Ergo, S(y + u) = Sx by (q5). This means that y + u = x by (q2) and so since x is L-successive,
we have Sy + u = Sx. Finally, by the functionality of S, we have that S(Sy + u) = SSx so that
Sy+Su = SSx by (q5). We conclude that Sx ∈ I0.

A number x is an o-commutator2 iff ∀y∀z(y + z = x → z + y = x). A number x is a strong
o-commutator iff x is L-successive and x is an o-commutator. We call the class of strong o-
commutators I1.

Lemma 5 (in iQ). The class I1 is closed under 0 and S.

Proof. We already showed that 0 is L-successive. Hence, suppose y + z = 0, then y = z = 0 by
the theorem of iQ proved above. Ergo, we have that 0 = 0+0 = z+ y by (q4) so that 0 is also an
o-commutator.

Suppose x is a strong o-commutator. By the argument in Lemma 4, Sx is L-successive. Suppose
y+ z = Sx. If z = 0, then y = y+0 = Sx. Hence, we need to show that 0+Sx = Sx. By (q4), we
have that x+0 = x. Since x is an o-commutator, we find that 0+x = x and hence that 0+Sx = Sx
by the functionality of S. Now, if z = Su for some u, then we have that y +Su = Sx. Moreover,
we have that y + u = x by (q5) and (q2). Since x is an o-commutator, we find that u + y = x and
hence since x is also L-successive, Su+ y = Sx.

Proposition 6 (in iQ, Visser [16]). Suppose the elements of an initial segment I are all o-commutators.
Then I verifies (q3∗) and (q8).

1Note that the ‘L’ is mnemonic for “left”. We will use similar mnemonics throughout to mitigate confusion.
2Note that the ‘o’ is mnemonic for “output”.
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Proof. Suppose Sx ∈ I. We have that x + S0 = Sx by (q4) and (q5). Thus, since x is an o-
commutator, we have that x ≤ Sx. Hence, x ∈ I. This means that any non-zero number in I has a
predecessor in I, whence (q3∗) holds.

Suppose x≤ y and y ∈ I, then for some z, z+ x = y. Since y is a o-commutator, we find x+ z = y,
and so z≤ y. Thus, z ∈ I.

A number x is an o-associator iff ∀w∀y∀z(w +(y + z) = x↔ (w + y)+ z = x). Let the class of
o-associators be I2.

Lemma 7 (in iQ). The class I2 is closed under 0 and S.

Proof. It is easy to see that 0 is an o-associator by the theorem of iQ proved in Lemma 4:

w+(y+ z) = 0↔ w = y+ z = 0

↔ w = y = z = 0

↔ w+ y = z = 0

↔ (w+ y)+ z = 0.

Suppose x is an o-associator. In case z = 0, we find that w+(y+0) = w+y = (w+y)+0 by (q4).
So, we have that w+(y+0) = Sx↔ (w+ y)+0 = Sx. Now, in case z = Su for some u, we have
by (q5), (q2) and the functionality of S that:

w+(y+Su) = Sx↔ S(w+(y+u)) = Sx

↔ w+(y+u) = x

↔ (w+ y)+u = x

↔ S((w+ y)+u) = Sx

↔ (w+ y)+Su = Sx.

Proposition 8 (in iQ). Suppose I ⊆ I2 and I is closed under 0 and S. Let:

J := {x ∈ I | ∀y≤ x(y ∈ I)}.

Then J is an initial segment.

Proof. Let I be as specified.

We first show that x ≤ 0→ x = 0 is a theorem of iQ. Suppose x ≤ 0, then for some z, z + x = 0.
Hence, by the theorem of iQ proved in Lemma 4, we have that x = 0.

Now, since I is closed under 0, we have that 0 ∈ I. Moreover, since ∀y≤ 0(y ∈ I) is equivalent to
0 ∈ I by the theorem of iQ just proved, we have J is closed under 0.

Suppose x ∈ J and y≤ Sx, then for some u, u+y = Sx. In case y = 0, then y ∈ I since we assume I
is closed under 0. In case y = Sv for some v, we have S(u+ v) = Sx by (q5) and hence, u+ v = x
by (q2). Ergo, v ≤ x and hence v ∈ I. Finally, since I is closed under S, we have that Sv = y ∈ I.
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We conclude that J is closed under S.

We want to show that (x ∈ J ∧ y≤ x)→ y ∈ J. Hence, suppose x ∈ J, y≤ x and z≤ y, then there
are u,v such that u+y = x and v+ z = y by (q8). Hence, u+(v+ z) = x. Since x is an o-associator
(since J ⊆ I ⊆ I2 and x ∈ J), we have that (u + v) + z = x. Ergo, z ≤ x and z ∈ I. Thus, since
∀z≤ y z ∈ I holds, we have that J is downwards closed under ≤.

As promised in Section 3.1, we now show that IDENTITY(x) is provably instantiated on an initial
segment.

Corollary 9 (in iQ). IDENTITY(x) is provably instantiated in iQd on an initial segment.

Proof. Let I := I2∩ IDENTITY and J := {x ∈ I | ∀y≤ x(y ∈ I)}.

We first verify that IDENTITY is closed under 0 and S to ensure that I2 ∩ IDENTIY is closed
under 0 and S: We have that 0 ∈ IDENTITY by Proposition 1. Suppose IDENTITY(x), then
∀y(x = y∨ x 6= y). Let y be arbitrary. By (q3∗), y = 0∨∃z(y = Sz). If y = 0, then Sx 6= y by
(q2) and hence, ∀y(Sx = y∨Sx 6= y)). If y = Sz, then by assumption we have that x = z∨ x 6= z
and hence, Sx = Sz∨Sx 6= Sz by the functionality and injectivity of S. But Sz is just y and thus,
we have shown that Sx = y∨Sx 6= y. This proves that IDENTITY is closed under S.

We have that I is an initial segment by Proposition 8. Moreover, since J ⊆ I ⊆ IDENTITY, we have
that iQ ` J(x)→ IDENTITY(x). Thus, IDENTITY(x) is provably instantiated on the initial segment
J.

Proposition 10 (in iQ). Suppose I ⊆ I2 and I is closed under 0 and S. We define J := {x∈ I | ∀y∈
I (y + x ∈ I)}. (i) Then J is closed under 0,S and +. Suppose further that I is downwards closed
under ≤ and I ⊆ I1∩I2 := I3. (ii) Then J is downwards closed under ≤.

Proof. Let I be as specified for (i).

Suppose y ∈ I, then y = y+0 implies that y+0 ∈ I so 0 ∈ J. Hence, J is closed under 0.

Suppose x ∈ J and y ∈ I, then y + Sx = S(y + x) implies that S(y + x) ∈ I since x ∈ J implies
y+ x ∈ I. Thus, J is closed under S.

Suppose x,z ∈ J and y ∈ I, then we have that y + x ∈ I. We want to show that x + z ∈ J. Let
(y + x)+ z = u, then u ∈ I since y + x ∈ I and z ∈ J. Ergo, u is an o-associator, and we have that
y+(x+ z) = u. Finally, since y ∈ I and u ∈ I, we have that x+ z ∈ J. Thus, J is closed under +.

Now suppose the further conditions on I for (ii).

Suppose z≤ x ∈ J and y ∈ I. We want to show that y+ z ∈ J. We have by the former supposition
that u + z = x for some u by (q8). Hence, y +(u + z) = y + x ∈ I since x ∈ J. Since y + x is an
o-associator and o-commutator, we have that:

y+(u+ z) = (u+ z)+ y = u+(z+ y).
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Thus, z + y ≤ y + x by (q8). Moreover, since z + y is a o-commutator, y + z ∈ I, whence J is
downwards closed under ≤.

We define:

I4 := {z | ∀x∀y(x+(y+ z) = (x+ y)+ z)}
I5 := {z ∈ I4 | ∀x ∈ I4∀y ∈ I4(x · (y+ z) = x · y+ x · z)}
I6 := {z ∈ I5 | ∀x ∈ I5∀y ∈ I5(x · (y · z) = (x · y) · z)}.

We call the elements of the classes I4,I5 and I6 respectively a-associators, strong L-distributors
and strong m-associators.

Lemma 11 (in iQ). The classes I4, I5 and I6 are closed under 0 and S.

Proof. It is clear that I4 is closed under 0. Suppose z ∈ I4. We have by (q4) that:

x+(y+Sz) = x+S(y+ z)
= S(x+(y+ z))
= S((x+ y)+ z)
= (x+ y)+Sz.

It is clear that I5 is closed under 0. Suppose x,y ∈ I4 and z ∈ I5. We have by (q4) and (q7) that:

x · (y+Sz) = x ·S(y+ z)
= x · (y+ z)+ x

= (x · y+ x · z)+ x

= x · y+(x · z+ x)
= x · y+ x ·Sz.

It is clear that I6 is closed under 0. Suppose x,y ∈ I5 and z ∈ I6. By (q7), we have that:

x · (y ·Sz) = x · (y · z+ y)
= x · (y · z)+ x · y
= (x · y) · z+ x · y
= (x · y) ·Sz.

Proposition 12 (in iQ). Suppose I ⊆ I6 and I is closed under 0,S and +. Let:

J := {x ∈ I | ∀y ∈ I y · x ∈ I}.

(i) Then J is closed under 0,S,+ and ·. Suppose further that I is downwards closed under ≤.
(ii) Then J is downwards closed under ≤.
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Proof. Let I be as specified for (i).

We have that 0 ∈ J since 0 ∈ I and y ·0 = 0.

Suppose x ∈ J and y ∈ I, then y ·Sx = y · x+ y by (q7). Hence, I(y ·Sx) since I is closed under +.
Thus, Sx ∈ J.

Suppose x,z ∈ J and y ∈ I, then we have that y · x ∈ I and y · z ∈ I. Moreover, y · x + y · z ∈ I
since I is closed under +. Since z ∈ J ⊆ I ⊆ I5, we have that z is a strong L-distributor. Hence,
y · x+ y · z = y · (x+ z) ∈ I. It follows that x+ z ∈ J and so J is closed under +.

Suppose x,z ∈ J and y ∈ I, then we have that y · x ∈ I. This implies that (y · x) · z ∈ I since z ∈ J.
Moreover, since z ∈ J ⊆ I ⊆ I6, we have that (y · x) · z = y · (x · z) ∈ I. Thus, x · z ∈ J which means
precisely that J is closed under ·.

Further, let I be as specified for (ii).

Suppose z ≤ x and x ∈ J. We want to show that z ∈ J. Suppose further that y ∈ I, then y · x ∈ I.
Since z ≤ x, we have that u + z = x for some u. Hence, y · (u + z) ∈ I. Since z ∈ J ⊆ I ⊆ I5, we
have that y · (u+ z) = y ·u+y · z ∈ I. Moreover, y ·u+y · z = y ·x implies that y · z≤ y ·x. It follows
that y · z ∈ I since I is closed downwards w.r.t. ≤. Finally, since y was an arbitrary element of I,
we conclude that z ∈ J.

Let φ1(x), ...,φn(x) be given ∆0-formulas where x occurs free. For each j = 1, ...,n, we define:

T j := {x ∈ I1 | (φ j(0)∧∀y≤ x(φ j(y)→ φ j(Sy)))→ φ j(x)}

Moreover, we let T :=
Tn

j=1 T j.

Lemma 13 (in iQ). T is closed under 0 and S.

Proof. We first demonstrate that each T j is closed under 0 and S.

Suppose φ j(0)∧∀y ≤ 0(φ j(y)→ φ j(Sy)), then each T j is closed under 0 since 0 ∈ I1 and φ j(0)
is trivially the case for each j. Hence, 0 ∈

Tn
j=1 T j = T.

To show that each T j is closed under S, we need to prove that if x is an o-commutator, then
y ≤ x→ y ≤ Sx is a theorem of iQ: Suppose x is an o-commutator and y ≤ x — that is, u + y = z
for some u. By (q5) and the functionality of S, we find that u +Sy = S(u + y) = Sx. Moreover,
since x is an o-commutator , we have that S(y + u) = y + Su = Sx. Ergo, y ≤ Sx since the o-
commutators are closed under S.

Suppose x ∈ T j and φ j(0)∧∀y ≤ Sx(φ j(y)→ φ j(Sy)). We want to show that φ j(Sx). We have
that:

φ j(0)∧∀y≤ x(φ j(y)→ φ j(Sy))

by the assumption that φ j(0)∧∀y≤ Sx(φ j(y)→ φ j(Sy)) and the theorem of iQ just shown. Thus,
we find that φ j(x) by implication elimination. Moreover, since x ∈ I1, we have that x ≤ x which



14

implies that x≤ Sx again by the theorem of iQ shown above. This implies that φ j(Sx) by implica-
tion elimination since ∀y ≤ Sx(φ j(y)→ φ j(Sy)). Finally, we know by Lemma 5 that I1 is closed
under S. Thus, T j is closed under S and hence, T is closed under S.

Proposition 14 (in iQ). Suppose I ⊆ T∩I2∩I6 and I is closed under 0 and S. (i) Then there is a
J ⊆ I closed under 0,S,+ and ·. Suppose further that I ⊆ I1 and I is downwards closed under ≤.
(ii) Then J is downwards closed under ≤.

Proof. Let I be as specified for (i). Define:

J0 := {x ∈ I | ∀y ∈ I y+ x ∈ I}
J := {x ∈ J0 | ∀y ∈ J0 y · x ∈ J0}.

By Proposition 10 (i), we have that J0 is closed under 0,S and + since I ⊆ I2 and I is closed under
0 and S.

By Proposition 12 (i), we have that J is closed under 0,S,+ and · since J0 ⊆ I6 and J0 is closed
under 0,S and +.

Now, let I be as specified for (ii) and let J0,J be as above.

By Proposition 10 (ii), we have that J0 is downwards closed under ≤ since I ⊆ I2, I ⊆ I1 and I is
downwards closed under ≤.

By Proposition 12 (ii), we have that J is downwards closed under ≤ since J0 ⊆ I6 and J0 is
downwards closed under ≤.

Theorem 15. iQ locally interprets iI∆0.

Proof. Let I := T∩I2 ∩I6 and let J := {x ∈ I ∩I1 | ∀y ≤ x(y ∈ I)}. By Proposition 8, J is an
initial segment since I ⊆ I2 and I is closed under 0 and S. Further, by Proposition 14, J is closed
under 0,S,+, · and downwards closed under ≤ since J ⊆ T∩I2 ∩I6, J is an initial segment and
J ⊆ I1.

We claim that J determines an interpretation of induction for φ1, ...,φn. It suffices to show that:

(i) For each j, J ⊆ T⊆ T j by the absoluteness principle (Lemma 3) since J is closed under
0,S,+, · and downwards closed under ≤.

(ii) J verifies the nonlogical axioms of iQ.

Ad (i). J ⊆ T ⊆ T j for every j is trivially the case by the way we defined J (i.e., since J ⊆
T∩I2∩I6 and T =

Tn
j=1 T j).

Ad (ii). J verifies all the nonlogical axioms of iQ since J ⊆ I1 implies that J verifies (q3∗) and
(q8) by Proposition 6. (q1)−(q2) and (q4)−(q7) are open formulas of iQ. Hence, the remaining
axioms of iQ are verified by any domain formula, inclusive of J.
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Now, since we can choose any φ1, ...,φn ∈ ∆0 we have that iQ locally interprets iI∆0.

2.3. iQ INTERPRETS iI∆0 +Ω1

In this brief subsection, we first outline the coding of the function ω1 (also known as the smash
function # — cf. [2], [10] and [7]), and second, we claim that the original proof that Q interprets
I∆0 +Ω1, given in [10] and [7], goes through constructively.

Define the following function:

ω1(x) := 2|x|·|x|

where |x| is the length of (the binary representation of) x.

Further, let iI∆0 +Ω1 be the theory iI∆0 with the following axiom:

Ω1. ∃y(x = ω1(y))

where “x = ω1(y)” is replaced by the appropriate ∆0-formula. Next, we outline the crucial features
of how to define such a ∆0-formula.

The main part of the coding of ω1 is the computation of base two exponentiation. This is tricky
since the naı̈ve approach to the ∆0-definition of the computation of “2z = y” does not turn out to be
polynomially bounded. The naı̈ve approach is to compute y by doing a recursion on the exponent
using the successor function so that the sequence encoding the graph of the computation would
look something like the following:

〈0,1〉,〈1,2〉,〈2,2 ·2〉, ...,〈z,
z︷ ︸︸ ︷

2 · · ·2〉

where the first argument of each pair counts up to z and the second argument multiplies the output
of the previous pair by 2. The problem with this particular algorithm is that the size of the sequence
encoding the computation is not bounded by a polynomial in y. More precisely, given that each
pair encodes roughly a computation of the order of the multiplication occurring in the pair, the
size of the sequence encoding the naı̈ve computation is roughly of the order:

2 ·22 ·23 · ... ·2|y| = 21+2+...+|y| ≈ 2|y|
2
= ω1(y)

which is clearly not polynomial in y.

In [10] and subsequently in [7], the authors use a trick to avoid the pitfalls of the naı̈ve approach.
The trick is to encode the exponent in binary so that the recursion can be carried out more effi-
ciently. Once z is in base 2, we can use the digits of the binary representation of z to indicate
how to alter the second argument. In simplest terms, an admissible computation looks as fol-
lows: The first input is 〈0,1〉, and if we have a stage 〈m,n〉 the next stage is either 〈2 ·m,n2〉 or
〈2 ·m+1,2 ·n2〉. So that we have 2m = n if there is a computation ending in 〈m,n〉.
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In this way, the size of a smallest sequence encoding the new computation is bounded by a poly-
nomial in y — its size is approximated by:

2 ·22 ·24 ·28 · ... ·2z = 21+2+4+8+...+z ≈ 22·z = y2.

To see how it works lets consider the simple example of a computation of 29. One possible
sequence computing 29 would, thus, be as follows:

〈0,1〉,〈1,2 · (1)2〉,〈2,22〉,〈4,(22)2〉,〈9,2 · (24)2〉.

For the sake of comparison, consider the difference in size between the above sequence and a
shortest sequence yielded by the naı̈ve computation:

〈0,1〉,〈1,2〉,〈2,22〉,〈3,23〉,〈4,24〉,〈5,25〉,〈6,26〉,〈7,27〉,〈8,28〉,〈9,29〉

Once the coding of base two exponentiation is in place, it is easy to see that we can define ω1 as a
special case of exponentiation given that the size function, | · |, is clearly ∆0-definable.

We can, thus, proceed with the interpretability of iI∆0 +Ω1 in iI∆0.

Theorem 16. iQ interprets iI∆0 +Ω1.

Proof. We refer the reader to the proofs given by Hájek and Pudlák ([7], pp.295-304) and Nelson
([10], pp. 36-59), and claim that they go through constructively given our new axiomatization of
Q.

We now end our investigation into Nelson’s result and turn to the main result of this Master’s thesis.

3. ALTERNATE THEORIES: TCQ INTERPRETS Q

In this section, we begin by proposing a weak theory of concatenation that is meant to be the direct
analogue of Q in the language of concatenation, we call the theory TCQ. The main result of this
section (and this Master’s thesis) is that TCQ interprets Q. In order to arrive at this result, there
are several intermediate steps: First, we demonstrate that TCQ with the axiom stating the associa-
tivity of concatenation is interpretable in TCQ. Next, we interpret the analogue of I∆0, TCI∆0 , in
TCQ with the associativity of concatenation. The associativity axiom is needed in order to achieve
closure under concatenation in the shortening cuts used to define the interpretation of TCI∆0 . We
use the stronger theory TCI∆0 to do the coding of multiplication in the language of concatenation.
Finally, we show that TCI∆0 interprets Q, which entails that TCQ does.

3.1. WEAK THEORIES OF CONCATENATION

We work in a basic theory of concatenation, TCQ which is meant to be the analogue of Q for con-
catenation theory. The language of TC has three constant symbols 2, a and b, two unary function
symbols Sa and Sb, and one binary function symbol ∗ .

The theory TCQ is given by the following axioms:



17

tc1. Sax 6= 2
Sbx 6= 2

tc2. Sax 6= Sbx

tc3. Sax = Say→ x = y
Sbx = Sby→ x = y

tc4. x = 2∨∃y(x = Say∨ x = Sby)

tc5. x∗2 = x

tc6. x∗Say = Sa(x∗ y)
x∗Sby = Sb(x∗ y)

In TCQ, we define the following useful abbreviations:

• a := Sa2, b := Sb2, ab := a∗b, etc.

• x⊆ini y :↔∃z(x∗ z = y)

• x⊆end y :↔∃z(z∗ x = y)

• x⊆∗ y :↔∃u∃v((u∗ x)∗ v = y)

• tally(x) :↔¬b⊆∗ x

We can add the substring relation as a primitive rather than as a defined relation. In this case we
need the extra axiom.

tc7. x⊆∗ y↔∃u∃v((u∗ x)∗ v = y)

A formula of the language of concatenation is ∆
p
0 iff all quantifiers are ⊆∗-bounded.

The schema for bounded induction in concatenation theory is as follows:

(φ(2)∧∀y⊆∗ x(φ(y)→ (φ(Say)∧φ(Sby)))→ φ(x)

where φ is a bounded formula of the language of concatenation.

Let TCI∆0 be TCQ together with the schema of bounded induction.

A set I of strings is called an initial segment iff I is closed under 2,Sa and Sb, and I is downwards
closed under ⊆∗.

Here we present the proof of the absoluteness principle for the language of concatenation, needed
for the proof of Theorem 26 in section 3.2.

Lemma 17. Suppose U is a theory with the binary predicate symbol ⊆∗ and I is U-provably
closed. Let φ(~z) be a bounded formula of U. Then U proves:

~z : I→ (φ(~z)↔ φ(~z)I).

Proof. Call a U-formula φ absolute if U proves:

~z : I→ (φ(~z)↔ φ(~z)I).
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Atomic formulas are absolute since if φ is atomic, then φI is just φ so that I→ (φ↔ φI) is a tau-
tology.

Next, suppose φ is absolute, then since φ and ¬φ have the same free variables and relativizations,
we have that ¬φ is absolute.

Suppose φ1 and φ2 are absolute. We have that the free variables of φ1 ∨φ2 are precisely those of
φ1 and φ2. Moreover, (φ1∨φ2)I is just φI

1∨φI
2. Thus, φ1∨φ2 is absolute.

Suppose φ(~z) is absolute and ψ is ∃x(x ⊆∗ t ∧φ) where x does not occur free in t. Then the free
variables of ψ are those free in t (call these ~y) and those free in φ. Since I is closed under all the
function symbols of U, we have that U proves:

~y : I∧~z : I→ I[t].

Moreover, since I is downwards closed under ⊆∗, we have that U proves:

~y : I∧~z : I→ (∃x(x⊆∗ t ∧φ(~z))↔∃x(I(x)∧ x⊆∗ t ∧φ(~z))).

Since φ is absolute and (~y : I∧~z : I∧ I(x))→~z : I is a tautology, we have that U proves:

~y : I∧~z : I→ (∃x(x⊆∗ t ∧φ(~z))↔∃x(I(x)∧ x⊆∗ t ∧φ(~z)I))

which is precisely the condition for ψ’s absoluteness. Ergo, ψ is absolute.

This completes the induction and hence we have established the absoluteness principle for U.

3.2. TCQ INTERPRETS TCI∆0

We first show that TCQ interprets TCQ with the associativity of concatenation. A string x is a
c-associator iff ∀y∀z((y∗ z)∗ x = y∗ (z∗ x)). We call the class of c-associative strings S0.

Lemma 18 (in TCQ). S0 is closed under 2,Sa,Sb,∗ and predecessors.

Proof. S0 is obviously closed under 2 by (tc5).

Moreover, S0 is closed under Sa (and analogously Sb) by (tc6).

Suppose x and x′ are both c-associators, then the following is the case:

y∗ (z∗ (x∗ x′)) = y∗ ((z∗ x)∗ x′)
= (y∗ (z∗ x))∗ x′

= ((y∗ z)∗ x)∗ x′

= (y∗ z)∗ (x∗ x′).

In other words, x∗ x′ is a c-associator.
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Finally, S0 is closed under predecessors: Suppose Sax ∈S0, then the following is the case:

Sa((y∗ z)∗ x) = (y∗ z)∗Sax

= y∗ (z∗Sax)
= y∗Sa(z∗ x)
= Sa(y∗ (z∗ x)).

Hence, by (tc3), we have that x is a c-associator. Analogously for the case of Sb.

We define TCQ +Assoc∗ to be TCQ plus the following axiom:

Assoc∗.(y∗ z)∗ x = y∗ (z∗ x).

Lemma 19. TCQ interprets TCQ +Assoc∗.

Proof. The signature of TCQ remains the same — that is, τ is the identity translation. Let I :=
S0. By Lemma 18, I is closed under 2,Sa,Sb and ∗. Hence, I is an appropriate domain of
interpretation. Next, we verify that the translation of the nonlogical axioms of TCQ +Assoc∗ are
valid in TCQ. We verify only the case of (tc4) and Assoc∗:

(tc4) TCQ ` I(x)→ (x = 2∨∃y(x = Say∨ x = Sby)) since it suffices to show that there exists
a y ∈S0 such that Say = x or Sby = x, and we have such a y by the fact that S0 is closed
under predecessors.

(Assoc∗) TCQ ` (I(x)∧ I(y)∧ I(z))→ (y∗ z)∗ x = y∗ (z∗ x) since I(x).

Thus, I and τ determine a relative interpretation of TCQ +Assoc∗ in TCQ.

Henceforth, we will work in TCQ +Assoc∗. Note, however, that this is not strictly necessary: An
analogous construction to the one we used in the case of iQ (cf. §2.2), would work here as well.

Lemma 20 (in TCQ +Assoc∗). Suppose I is closed under 2,Sa and Sb. Define

J := {x ∈ I | ∀y,u,v (y∗ x = u∗ v→
∃z ((y∗ z = u∧ x = z∗ v)∨ (y = u∗ z∧ z∗ x = v)))}.

Then J is closed under 2,Sa,Sb and ∗. Moreover, if I is also closed under predecessors, then so is
J.

Proof. Assume y∗2 = y = u∗ v. Then the second disjunct of the consequent of the condition for
membership in J is always satisfied when we choose z := v since y = u ∗ v and v ∗2 = v. Thus,
since 2 ∈ I and there is such a z, we have that 2 ∈ J.

Suppose x ∈ J. Assume y∗Sax = u∗ v. We want to show that there is a w such that:

(y∗w = u∧Sax = w∗ v)∨ (y = u∗w∧w∗Sax = v)
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is satisfied. By (tc4), we may assume that v = 2∨∃v0(v = Sav0 ∨ v = Sbv0). If v = 2, then we
choose w := Sax since y∗Sax = u∗2 = u and Sax = Sax∗2.
If v = Sav0, then y ∗ Sax = u ∗ Sav0 implies y ∗ x = u ∗ v0 by (tc6) and (tc3). Since x ∈ J, we
have that there exists a z such that y ∗ z = u∧ x = z ∗ v0 or y = u ∗ z∧ z ∗ x = v0. In the case
of the former, we choose w := z, then y ∗ z = u and Sax = Sa(z ∗ v0) = z ∗ Sav0 = z ∗ v. Thus,
(y∗w = u∧Sax = w∗ v)∨ (y = u∗w∧w∗Sax = v) is satisfied whenever y∗Sax = u∗ v:

y∗Sax = y∗ (z∗ v) = (y∗ z)∗ v = u∗ v

by (Assoc∗). In the case of the latter, if we choose w := z, then y = u∗ z∧ z∗Sax = v is satisfied
whenever y∗Sax = u∗ v:

u∗ v = u∗ (z∗Sax) = (u∗ z)∗Sax = y∗Sax

by (Assoc∗) (I is closed under Sa).
If v = Sbv0, then we have that Sa(y ∗ x) = y ∗Sax = u ∗Sbv0 = Sb(u ∗ v0) by (tc6). But this is a
contradiction since Sa(y∗ x) 6= Sb(u∗ v0) by (tc2).
Finally, with all cases covered, we may conclude that Sax ∈ J. By similar reasoning, we find that
Sbx ∈ J. Thus, J is closed under Sa and Sb.

Suppose x0,x1 ∈ J. Assume that y ∗ (x0 ∗ x1) = u ∗ v. We want to show that there exists a w such
that:

y∗w = u∧ x0 ∗ x1 = w∗ v or y = u∗w∧w∗ (x0 ∗ x1) = v.

By (Assoc∗), we have that (y∗ x0)∗ x1 = u∗ v. Moreover, since x1 ∈ J, we have that there exists a
z0 such that (y∗ x0)∗ z0 = u∧ x1 = z0 ∗ v or y∗ x0 = u∗ z0∧ z0 ∗ x1 = v.
In the case of the former, we take the desired w := x0 ∗ z0 so we have that:

y∗w = y∗ (x0 ∗ z0) = (y∗ x0)∗ z0 = u

by (Assoc∗), and w∗ v = (x0 ∗ z0)∗ v = x0 ∗ (z0 ∗ v) = x0 ∗ x1 by (Assoc∗).
In the case of the latter, we have a z1 ∈ S0 such that (i) y ∗ z1 = u∧ x0 = z1 ∗ z0 or (ii) y =
u ∗ z1 ∧ z1 ∗ x0 = z0 since x0 ∈ J. If (i) is the case, then we choose w := z1 so we have that:
y∗w = y∗ z1 = u and w∗v = z1 ∗v = z1 ∗ (z0 ∗x1) = (z1 ∗ z0)∗x1 = x0 ∗x1 since x1 is a c-associator
by (Assoc∗). If (ii) is the case, then we choose w := z1 so we have that: u ∗w = u ∗ z1 = y and
w∗ (x0 ∗ x1) = z1 ∗ (x0 ∗ x1) = (z1 ∗ x0)∗ x1 = z0 ∗ x1 = v by (Assoc∗).
Finally, with all cases covered, we may conclude that x0 ∗ x1 ∈ J (I is closed under ∗). Thus, J is
closed under ∗.

Define:

S1 := {x | ∀y,u,v (y∗ x = u∗ v→
∃z ((y∗ z = u∧ x = z∗ v)∨ (y = u∗ z∧ z∗ x = v)))}

and define S2 := {x |2∗ x = x}.

Lemma 21 (in TCQ +Assoc∗). S2 is closed under 2,Sa,Sb and ∗.
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Proof. It is obvious that 2 ∈S2 by (Assoc∗) and since 2∗2 = 2 by (tc5).

Suppose x ∈S2, then by (tc6), we have that 2 ∗Sax = Sa(2 ∗ x) = Sax. Hence, Sax ∈S2. The
same holds mutatis mutandis for Sb.

Suppose x,y ∈S2. Then, by (Assoc∗), we have that 2∗ (x∗ y) = (2∗ x)∗ y = x∗ y since x ∈S2.
Thus, we may conclude that x∗ y ∈S2.

Lemma 22 (in TCQ +Assoc∗). Suppose I ⊆S2 and I is an initial segment. Then I verifies (tc4)
and (tc7).

Proof. Suppose Sax ∈ I. We have that x∗Sa2 = Sax by (tc5) and (tc6). Moreover, 2∗x∗Sa2 =
Sax since x ∈S2 and hence, we have that x⊆∗ Sax. Thus, x ∈ I since I is downwards closed under
⊆∗. Similarly for the case of Sb. This means that any non-empty string in I has a predecessor in I,
whence (tc4) holds.

Suppose x⊆∗ y and y ∈ I, then for some u,v, (u∗x)∗v = y. Hence, it suffices to show that u,v ∈ I.
We have that (u∗x)∗v∗2 = y by (tc5) and hence, v⊆∗ y. Thus, v∈ I since I is downwards closed
under ⊆∗. Moreover:

y = 2∗ y

= 2∗ ((u∗ x)∗ v)
= (2∗ (u∗ x))∗ v

= ((2∗u)∗ x)∗ v

= (2∗u)∗ (x∗ v)

since y ∈ I ⊆ S2 and v,x ∈ I ⊆ S0 by (Assoc∗). Thus, u ⊆∗ y and we have that u ∈ I since I is
downwards closed under ⊆∗. Finally, we have that ∃u,v ∈ I ((u∗ x)∗ v = y).

Lemma 23 (in TCQ +Assoc∗). Suppose I ⊆S1 and I is closed under 2,Sa,Sb and ∗. Let J :=
{x ∈ I | ∀y⊆∗ x (y ∈ I)}. Then J is an initial segment and J is closed under ∗.

Proof. By (tc5) and (Assoc∗), we have that for all y ⊆∗ 2, y = 2. Hence, J is closed under 2
since 2 ∈ I.

Suppose x∈ J. Assume y⊆∗ Sax. Then there exists u,v such that (u∗y)∗v = Sax = x∗Sa2 = x∗a.
Since a ∈ I, we have that there exists a z0 such that:

(u∗ y)∗ z0 = x∧ v = z0 ∗a or u∗ y = x∗ z0∧ z0 ∗ v = a.

In the former case, y⊆∗ x so that y∈ I. In latter case, we note that v = 2∨∃v0(v = Sav0∨v = Sbv0)
by (tc4).
If v = 2, then we find that z0 = Sa2 = a and hence, u∗ y = x∗a. Since a ∈ I, we have that there
exists a z1 such that (i) u ∗ z1 = x∧ y = z1 ∗a or (ii) u = x ∗ z1 ∧ z1 ∗ y = a. If (i) is the case, then
z1 ⊆∗ x, y = Saz1 and the fact that I is closed under Sa implies that y ∈ I. If (ii) is the case, then
y⊆∗ a implies y ∈ I.
If v = Sav0, then z0 ∗ v0 = 2 by (tc6) and (tc3). So we have that z0 = 2 by the theorem of TCQ
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shown above. By our case supposition this gives u∗y = x∗2 = x which implies that y⊆∗ x. Thus,
y ∈ I.
If v = Sbv0, then we have a contradiction since z0 ∗ v = Sb(z0 ∗ v0) 6= Sa2 by (tc2) but we have
that z0 ∗ v = Sa2 from our case supposition.

Suppose y ⊆∗ x and x ∈ J. We want to show that y ∈ J. Assume y0 ⊆∗ y. Then there exists u0,v0
such that (u0 ∗y0)∗v0 = y. Moreover, since y⊆∗ x, there exists u,v such that (u∗y)∗v = x. Hence,
(u∗u0)∗ y0 ∗ (v0 ∗ v) = x by (Assoc∗). Thus, y0 ⊆∗ x so that y ∈ I.

Suppose x0,x1 ∈ J and x0∗x1⊆∗ y. Then, for some u,v, we have that (u∗y)∗v = u∗(y∗v) = x0∗x1
by (Assoc∗). Since x1 ∈ I ⊆S1, there exists a z0 such that:

x0 ∗ z0 = u∧ x1 = z0 ∗ (y∗ v) or x0 = u∗ z0∧ z0 ∗ x1 = y∗ v.

In the case of the former, we have that y⊆∗ x1 by the second conjunct, whence y ∈ I.
In the case of the latter, since x1 ∈ I ⊆S1, we have that there exists a z1 such that:

(i) z0 ∗ z1 = y∧ x1 = z1 ∗ v or (ii) z0 = y∗ z1∧ z1 ∗ x1 = v.

If (i) is the case, we note that z0 ⊆∗ x0 by the first conjunct of the above and z1 ⊆∗ x1 by the second
conjunct of (i). Hence, z0,z1 ∈ I. Thus, y = z0 ∗ z1 ∈ I since I is closed under ∗. If (ii) is the case,
then we find that y⊆∗ z0 ⊆∗ x0 by the first conjunct of (ii) and the first conjunct of the above. So,
y ⊆∗ x0: there exists w0,w1 such that w0 ∗ y ∗w1 = z0 and w′0,w

′
1 such that w′0 ∗ z0 ∗w′1 = x0 and

hence, (w0 ∗w′0)∗ z0 ∗ (w1 ∗w′1) = x0 by (Assoc∗). Thus, we have that y ∈ I.

Let φ1(x), ...,φn(x) be given ∆
p
0-formulas where x occurs free. For each j = 1, ...,n, we define:

T j := {x ∈S2 | (φ j(2) ∧ ∀y⊆∗ x(φ j(y)→ φ j(Say)∧φ j(Sby)))→ φ j(x)}.

Moreover, we let T :=
Tn

j=1 T j.

Lemma 24 (in TCQ). T is closed under 2,Sa and Sb.

Proof. Suppose φ j(2)∧∀y ⊆∗ 2(φ j(y)→ φ j(Say)∧ φ j(Sby)), then each T j is closed under 2
since 2 ∈S2 and φ j(2) is trivially the case. Hence, 2 ∈

Tn
j=1 T j = T.

To show that each T j is closed under Sa and Sb, we need to prove that:

y⊆∗ x→ y⊆∗ Sax∧ y⊆∗ Sbx

is a theorem of TCQ: Suppose y ⊆∗ x. By (tc6) and the functionality of Sa and Sb, we find that
(u∗ y)∗Sav = Sa((u∗ y)∗ v) = Sax and similarly for Sb Thus, y⊆∗ Sax and y⊆∗ Sbx.

Suppose x∈T j and φ j(2)∧∀y⊆∗ Sax(φ j(y)→ φ j(Say)∧φ j(Sby)). We want to show that φ j(Sax).
We have that:

φ j(2)∧∀y⊆∗ x(φ j(y)→ φ j(Say)∧φ j(Sby))

by the assumption that φ j(2)∧∀y ⊆∗ Sax(φ j(y)→ φ j(Say)∧ φ j(Sby)) and the theorem of TCQ

just shown. Thus, we find that φ j(x) by implication elimination. Moreover, since x ∈ S2, we
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have that x ⊆∗ x which implies that x ⊆∗ Sax again by the theorem of TCQ shown above. This
implies that φ j(Sax) since we have that ∀y⊆∗ Sax(φ j(y)→ φ j(Say)∧φ j(Sby)). Finally, we know
by Lemma 21 that S2 is closed under Sa. Thus, T j is closed under Sa and hence, T is closed under
Sa. The same proof works for the case of Sb. Therefore, we also have that T is closed under Sb.

Proposition 25 (in TCQ +Assoc∗). Suppose I ⊆ T and I is closed under 2,Sa and Sb.
(i) Then there is a J ⊆ I closed under 2,Sa,Sb and ∗. Suppose further that J ⊆S1.
(ii) Then there is a J′ ⊆ J closed under 2,Sa,Sb and ∗ that is downwards closed under ⊆∗.

Proof. Since I ⊆ T and I is closed under 2,Sa and Sb, by Lemma 20, we have that there is a J ⊆ I
closed under 2,Sa,Sb and ∗.

Since J ⊆ I ⊆ T∩S1 and J is closed under 2,Sa and Sb, by Lemma 23, we have that there is a
J′ ⊆ J closed under 2,Sa,Sb and ∗ that is downwards closed under ⊆∗.

Theorem 26. TCQ locally interprets TCI∆0 .

Proof. By Lemma 19, it suffices to show that TCQ +Assoc∗ interprets TCI∆0 . We let I := T∩S0,

J := {x ∈ I | ∀y,u,v(y∗ x = u∗ v→
∃z((y∗ z = u∧ x = z∗ v)∨ (y = u∗ z∧ z∗ x = v)))}

and let J0 := {x ∈ J | ∀y ⊆∗ x(y ∈ J)}. By Lemma 20, J is closed under 2,Sa,Sb and ∗ since
J ⊆ S0 and I is closed under 2,Sa and Sb. Further, by Lemma 23, J0 is an initial segment and
closed under ∗ since J0 ⊆ T∩S1 ⊆S1 and J is closed under 2,Sa,Sb and ∗.

We claim that J0 determines an interpretation of induction for φ1, ...,φn. It suffices to show that:

(i) For each j, J0 ⊆ T ⊆ T j by the absoluteness principle (Lemma 17) since J0 is closed
under 2,Sa,Sb,∗ and downwards closed under ⊆∗.
(ii) J0 verifies the nonlogical axioms of TCQ.

Ad (i). J0⊆T⊆T j for every j is trivially the case by the way we defined J0 (i.e., since J0⊆T∩S1
and T =

Tn
j=1 T j).

Ad (ii). J0 verifies all the nonlogical axioms of TCQ since J0 ⊆S2 implies that J0 verifies (tc4)
and (tc7) by Lemma 22. (tc1)− (tc3) and (tc5)− (tc6) are open formulas of TCQ. Hence, the
remaining axioms of TCQ +Assoc∗ are verified by any domain formula, inclusive of J0.

Now, since we can choose any φ1, ...,φn ∈ ∆
p
0 we have that TCQ +Assoc∗ locally interprets TCI∆0 ,

which implies that TCQ does.

It is also possible to show that TCQ globally interprets TCI∆0 by adapting a trick due to Alex
Wilkie. However, we will not pursue this line of investigation here.
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3.3. DEVELOPING ARITHMETIC IN CONCATENATION THEORY

In order to show that multiplication is definable in TCQ, we first code finite relations between
tally numbers as strings over the alphabet {a,b}. We construct our coding as follows: A finite
relation is coded as a sequence of tuples satisfying that relation with specific strings between each
element of the tuple and between each element of the relation itself. This can be done in numerous
ways. The elements of relations in our case are strings of a’s so that coding becomes rather
simple. Let c1 := bb and c2 := ba be the seperators between elements of the relation and elements
of the tuples respectively. Under this coding, a finite binary relation between tallies (strings of
a’s), s1, t1,s2, t2, ...,sk, tk (where si, ti are paired) is, thus, represented by any string r containing the
following pairs as substrings:

bb∗ s1 ∗ba∗ t1 ∗bb,bb∗ s2 ∗ba∗ t2 ∗bb, ...,bb∗ sk ∗ba∗ tk ∗bb

unless one of the pair happens to be an endstring of the string in question r; in which case, bb ∗
si ∗ba∗ ti ∗bb needn’t be a substring of r, but merely bb∗ si ∗ba∗ t1 or bb∗ si ∗ba∗ ti ∗b need be
endstrings of r. Note that this coding does not uniquely pick out a relation for any given set of
pairs: In particular, the pairs might appear in any order yielding different strings representing the
relation. Moreover, they might appear many times throughout giving still different representations
of the relation. What is more, there might be “garbage” substrings between any of the pairs
yielding still different representations of the relation.
More precisely, we code the pairs and relations in a definitional extension of TCQ as follows:

pair(x) :↔ ∃t1, t2 (tally(t1)∧ tally(t2)∧ x = bb∗ t1 ∗ba∗ t2)

u[x]v :↔ tally(u)∧ tally(v)∧ (bb∗u∗ba∗ v⊆end x∨bb∗u∗ba∗ v∗b⊆end x∨
bb∗u∗ba∗ v∗bb⊆∗ x)

The relations that define a computation of multiplication, “x · y = z”, are given by those strings r
such that the empty pair is part of r and for all tallies u and v that form a pair that is part of r, we
have that u = v = 2 or there are tallies u′,v′ such that u = u′ ∗ a and v = v′ ∗ x. For example, r
might be one of the following (amongst others) if x = 2 and y = 3:

- bb2ba2∗bbabaaa∗bbaabaaaaa∗bbaaabaaaaaaa
- bbabaaa∗bbaaabaaaaaaa∗bb2ba2∗bbaabaaaaa
- bb2ba2∗bbabaaa∗bbaabaaaaa∗bbaaabaaaaaaa∗bbabaaa∗baabaaaaa∗baabaaaaa
- bb2ba2∗bbabaaa∗bababababababababababababbbbbbbbbbb∗bbaabaaaaa∗bbaaabaaaaaaa
- babababababbbbb∗bbabaaa∗bbaaabaaaaaaa∗bb2ba2∗bbaabaaaaab∗bb2ba2

More precisely, the computation of multiplication is encoded by the following:

multrel(u,x) :↔ tally(x)∧2[u]2∧∀s, t (s[u]t→
((s = 2∧ t = 2)∨∃s′, t ′ (s′[u]t ′∧ s = s′ ∗a∧ t = t ′ ∗ x)))

x� y = z :↔ ∃u (multrel(u,x)∧ y[u]z)
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For the remainder of this subsection, we aim to prove that our coding preserves the structural
properties of multiplication (Proposition 30).

Lemma 27 (in TCI∆0 ). The following is provable:

∀u,y,z (x = y∗ z∧u⊆∗ x→ (u⊆∗ y∨u⊆∗ z∨∃v,w (v⊆end y∧w⊆ini z∧u = v∗w))).

Proof. We show the desired fact by ∆
p
0-induction over φ with:

φ(x) :↔ ∀u,y,z ((x = y∗ z∧u⊆∗ x)→
(u⊆∗ y∨u⊆∗ z∨∃v,w (v⊆end y∧w⊆ini z∧u = v∗w))).

Note that φ(x) can easily be rewritten as a ∆
p
0-formula.

We have that φ(2): If y ∗ z = 2 and u ⊆∗ 2, then we have that u ⊆∗ y since u = 2. Hence, the
consequent of φ(2) is trivially satisfied.

Assume φ(x). We want to show that φ(Sax) and φ(Sbx).

Ad φ(Sax). Let y be fixed. We show that:

∀u,z ((Sax = y∗ z∧u⊆∗ Sax)→ (u⊆∗ y∨u⊆∗ z∨∃v,w (v⊆end y∧w⊆ini z∧u = v∗w)))

by induction on z. Define:

ψ(z) :↔ ∀u((Sax = y∗ z∧u⊆∗ Sax)→
(u⊆∗ y∨u⊆∗ z∨∃v,w (v⊆end y∧w⊆ini z∧u = v∗w))).

We have that ψ(2): Suppose Sax = y∗2 and u⊆∗ Sax. Then we have that u⊆∗ y by (tc5). Hence,
the consequent of ψ(2) holds.

Assume ψ(z). We want to show that ψ(Saz) and ψ(Sbz).

For ψ(Saz): Suppose Sax = y∗Saz and u⊆∗ Sax. Then there exist s,s′ such that:

s∗u∗ s′ = Sax = y∗Saz.

By (tc4), we have that s′ = 2∨∃s′0(s′ = Sas′0∨ s′ = Sbs′0).

In case s′ = Sas′0, we have that Sa(s ∗ u ∗ s′0) = Sax = Sa(y ∗ z) by (tc6). By (tc3), we have that
s∗u∗ s′0 = x = y∗ z. So, u⊆∗ x and x = y∗ z. Thus, by the induction hypothesis φ(x), we have that:

u⊆∗ y, u⊆∗ z or ∃v,w (v⊆end y∧w⊆ini z∧u = v∗w)).

If u ⊆∗ y, then the consequent of ψ(Saz) holds and hence, ψ(Saz) does. If u ⊆∗ z, then since
z ⊆∗ Saz, we have that u ⊆∗ Saz, so that ψ(Saz) holds. If ∃v,w (v ⊆end y∧w ⊆ini z∧ u = v ∗w)),
then we have that w⊆ini Saz and so we have that ∃v,w (v⊆end y∧w⊆ini Saz∧u = v∗w)) and so,
ψ(Saz) holds.
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In case s′= Sbs′0, we have a contradiction since Sb(s∗u∗s′0) = Sax by (tc6), but Sb(s∗u∗s′0) 6= Sax
by (tc2).

In case s′ = 2, we have that s∗u = Sax and again by (tc4) that u = 2∨∃u0(u = Sau0∨u = Sbu0).
If u = 2, then u = 2 ⊆∗ y so that the consequent of ψ(Saz) is trivially satisfied. If u = Sbu0,
then we have a contradiction since Sax = s ∗Sbu0 = Sb(s ∗ u0), but by (tc2), Sax 6= Sb(s ∗ u0). If
u = Sau0, then Sa(s∗u0) = Sax = Sa(y∗ z). Hence, by (tc3), s∗u0 = x = y∗ z so that u0 ⊆∗ x and
x = y∗ z. Thus, by the induction hypothesis φ(x), we have that:

u0 ⊆∗ y∨u0 ⊆∗ z∨∃v0,w0(v0 ⊆end y∧w0 ⊆ini z∧u0 = v0 ∗w0).

We consider each disjunct in turn. When u0 ⊆∗ y, then there exist r,r′ such that r ∗u0 ∗ r′ = y, and
by (tc4) we have that r′ = 2∨∃r′0(r′ = Sar′0 ∨ r′ = Sbr′0). If r′ = 2, then there exists v,w such
that v⊆end y∧w⊆ini z∧u = v∗w) — namely, v := u0 and w := a. If r′ = Sar′0 or r′ = Sbr′0, then
u⊆∗ y since u0 ⊆∗ y, r′ 6= 2, y⊆∗ x and u⊆∗ x.When u0 ⊆∗ z, we have that u⊆∗ Saz since u0 ⊆∗ z,
u0 ⊆ini u, z ⊆∗ Sax and u ⊆∗ Sax. When ∃v0,w0(v0 ⊆end y∧w0 ⊆ini z∧ u0 = v0 ∗w0), then there
exist v,w such that v⊆end y∧w⊆ini z∧u = v∗w) — namely, v := v0 and w := Saw0.

For ψ(Sbz): No matter what the value of u, the antecedent is always false and hence, the implica-
tion is trivially satisfied.

Therefore, we may conclude that φ(Sax). Ad φ(Sbx) we use an analogous argument mutadis
mutandis.

Lemma 28 (in TCI∆0 ). The following is provable:

∀r,u,v ∃s ∀x,y ((x[s]y∧ tally(u)∧ tally(v))↔
(tally(u)∧ tally(v)∧ (x[r]y∨ (x = u∧ y = v)))).

Proof. Let r,u and v be arbitrary strings. Choose s := r∗(bb∗u∗ba∗v) and let x and y be arbitrary
strings. We show that (x[s]y∧ tally(u)∧ tally(v))↔ (tally(u)∧ tally(v)∧(x[r]y∨(x = u∧y = v))).

Suppose x[s]y∧ tally(u)∧ tally(v) – that is, u,v,x and y are tallies, and:

(bb∗ x∗ba∗ y⊆end s∨bb∗ x∗ba∗ y∗b⊆end s∨bb∗ x∗ba∗ y∗bb⊆∗ s).

This yields three cases to consider.

Case 1: If bb∗ x∗ba∗ y⊆end s, then by Lemma 27 we have that bb∗ x∗ba∗ y⊆end bb∗u∗ba∗ v
or there exist w1 and w2 such that:

w1 ⊆end r∧w2 = bb∗u∗ba∗ v∧bb∗ x∗ba∗ y = w1 ∗w2.

In case bb ∗ x ∗ ba ∗ y ⊆end bb ∗ u ∗ ba ∗ v, then there exists a z such that z ∗ bb ∗ x ∗ ba ∗ y = bb ∗
u ∗ ba ∗ v. By (tc4), we have that z = 2∨ ∃z0(z = Saz0 ∨ z = Sbz0). If z = 2, then we have
that bb ∗ x ∗ ba ∗ y = bb ∗ u ∗ ba ∗ v, and hence, x = u∧ y = v. If z = Sbz0, then we have that
z0 ∗b∗bb∗ x∗ba∗ y = bb∗u∗ba∗ v, but since bbb 6⊆∗ bb∗u∗ba∗ v, we have a contradiction. If
z = Saz0, then z0 ∗a ∗bb ∗ x ∗ba ∗ y = bb ∗ u ∗ba ∗ v, but abb 6⊆∗ bb ∗ u ∗ba ∗ v means we have a
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contradiction.
In case there are w1 and w2 such that:

w1 ⊆end r∧w2 = bb∗u∗ba∗ v∧bb∗ x∗ba∗ y = w1 ∗w2,

then by (tc4) we have that w2 = 2∨∃w′1(w1 = Saw′1∨w1 = Sbw′1). If w1 = 2, then bb∗x∗ba∗y =
2∗bb∗u∗ba∗v, and hence x = u∧y = v. If w1 = Sbw′1, then we have that w′1 ∗b∗bb∗u∗ba∗v =
bb ∗ x ∗ba ∗ y, but since bbb 6⊆∗ bb ∗ x ∗ba ∗ y, we have a contradiction . If w1 = Saw′1, then we
have a contradiction since w′0 ∗a∗bb∗u∗ba∗ v = bb∗ x∗ba∗ y and abb 6⊆∗ bb∗ x∗ba∗ y.
Hence, if bb∗ x∗ba∗ y⊆end s, then x = u∧ y = v.

Case 2: If bb ∗ x ∗ ba ∗ y ∗ b ⊆end s, then we have a contradiction since: bb ∗ x ∗ ba ∗ y ∗ b ⊆end s
implies that ∃z(z∗bb∗ x∗ba∗ y∗b = s). So that, by (tc6):

Sb(z∗bb∗ x∗ba∗ y) = r ∗bb∗u∗ba∗ v

where tally(v). If v = 2, then we have that Sb(z∗bb∗ x∗ba∗ y) = Sa(r ∗bb∗u∗b) by (tc5) and
(tc6), but then we have a contradiction by (tc2) since Sb(z∗bb∗ x∗ba∗ y) 6= Sa(r ∗bb∗u∗b). If
v = Sav0, then we have that Sb(z∗bb∗x∗ba∗y) = Sa(r∗bb∗u∗ba∗v0), but this is a contradiction
since Sb(z∗bb∗ x∗ba∗ y) 6= Sa(r ∗bb∗u∗ba∗ v0) by (tc2).

Case 3: Finally, if bb∗ x∗ba∗ y∗bb⊆∗ s, then by Lemma 27 we have the following bb∗ x∗ba∗
y∗bb⊆∗ r, bb∗x∗ba∗y∗bb⊆∗ bb∗u∗ba∗v or there exist w and w′ such that w⊆end r∧w′ ⊆ini

bb∗u∗ba∗ v∧bb∗ x∗ba∗ y∗bb = w∗w′.
In case bb∗ x∗ba∗ y∗bb⊆∗ r, then we have that x[r]y since tally(x), tally(y) and bb∗ x∗ba∗ y∗
bb⊆∗ r.
In case bb∗ x∗ba∗ y∗bb⊆∗ bb∗u∗ba∗ v, then we have a contradiction since bb⊆end v implies
that b⊆∗ v, but tally(v) implies that ¬b⊆∗ v.
In case there exists w and w′ such that w⊆end r∧w′ ⊆ini bb∗u∗ba∗v∧bb∗x∗ba∗y∗bb= w∗w′,
then by (tc4), Lemma 27 and (tc2) we have that w′ = 2∨w′ = b∨w′ = bb since tally(v), tally(y)
and bb⊆end bb∗ x∗ba∗ y∗bb. If w′ = 2, then x[r]y since bb∗ x∗ba∗ y∗bb⊆∗ r. If w′ = b, then
bb∗x∗ba∗y∗b⊆end r and hence, x[r]y. Finally, if w′ = bb, then bb∗x∗ba∗y⊆end r so that x[r]y.

Hence, we have that tally(u)∧ tally(v)∧ (x[r]y∨ (x = u∧ y = v)).

For the other direction of the biconditional, suppose tally(u)∧ tally(v)∧ (x[r]y∨ (x = u∧ y = v)).
We want to show that x[s]y∧ tally(u)∧ tally(v).

If x[r]y – that is, x and y are tallies and:

bb∗ x∗ba∗ y⊆end r∨bb∗ x∗ba∗ y∗b⊆end r∨bb∗ x∗ba∗ y∗bb⊆∗ r,

then we obviously have that:

bb∗ x∗ba∗ y⊆end s∨bb∗ x∗ba∗ y∗b⊆end s∨bb∗ x∗ba∗ y∗bb⊆∗ s

since s := r ∗ (bb∗u∗ba∗ v). Thus, we have that x[s]y.
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If x = u∧ y = v, then x[s]y since bb∗ x∗ba∗ y⊆end s by the way we defined s.

Hence, we conclude that x[s]y∧ tally(u)∧ tally(v).

Lemma 29 (in TCI∆0 ). � is functional — i.e., the following is provable:

x� y = z∧ x� y = w→ z = w.

Proof. Suppose x� y = z and x� y = w. Then by the definition of �, we have that there exists r
and s respectively such that multrel(r,x)∧ y[r]z and multrel(s,x)∧ y[s]w.

We show by bounded induction on u ⊆∗ y that ∀v,v′((u[r]v∧u[s]v′)→ v = v′) since then, in par-
ticular, we have that z = w.

Suppose that u = 2 and let v and v′ be arbitrary. Suppose further that 2[r]v and 2[s]v′. Then since
multrel(r,x) and multrel(s,x), we have respectively that:

v = 2∨∃u0,v0(u0[r]v0∧2 = u0 ∗a∧ v = v0 ∗ x) and,

v′ = 2∨∃u′0,v′0(u′0[s]v′0∧2 = u′0 ∗a∧ v′ = v′0 ∗ x).

If ∃u0,v0(u0[r]v0∧2 = u0 ∗a∧v = v0 ∗x) or ∃u′0,v′0(u′0[s]v′0∧2 = u′0 ∗a∧v′ = v′0 ∗x) is the case,
then we have a contradiction by (tc1). Hence, we have that v = 2 = v′ as desired.

Assume as inductive hypothesis that ∀v,v′((u[r]v∧u[s]v′)→ v = v′). We prove that ∀v,v′((Sau[r]v∧
Sau[s]v′)→ v = v′)

Let v and v′ be arbitrary and suppose that Sau[r]v and Sau[s]v′. Then since Sau 6= 2 by (tc1) and
since multrel(r,x) and multrel(s,x), we have respectively that:

∃u0,v0(u0[r]v0∧Sau = u0 ∗a∧ v = v0 ∗ x) and,

∃u′0,v′0(u′0[s]v′0∧Sau = u′0 ∗a∧ v′ = v′0 ∗ x).

Thus, since u0 = u′0 = u, we have that u[r]v0 ∗x and u[s]v′0 ∗x. Finally, by our inductive hypothesis,
this implies that v = v0 ∗ x = v′0 ∗ x = v′ as desired.

This completes our induction, so we have that z = w since y⊆∗ y, y[r]z and y[s]w.

Proposition 30 (in TCI∆0 ). (m.1) (x�2 = z∨2� y = z)↔ z = 2;
(m.2) x�Say = z↔∃v(x� y = v∧ z = v∗ x).

Proof. Ad (m.1). Suppose x�2 = z. By the definition of �, we have that there exists a u such
that:

multrel(u,x)∧2[u]z.

Moreover, by the definition of multrel(u,x), we have that 2[u]2. Hence, we have that 2[u]z
and 2[u]2. As a particular instance of the induction carried out in Lemma 29, we have that
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(2[u]z∧2[u]2)→ z = 2. Thus, we conclude that z = 2.

Suppose 2� y = z. By the definition of �, we have that there exists a u such that:

multrel(u,2)∧ y[u]z.

Moreover, by the definition of multrel(u,2), we have that:

tally(2)∧2[u]2∧
∀s, t (s[u]t→ ((s = 2∧ t = 2)∨∃s′, t ′ (s′[u]t ′∧ s = s′ ∗a∧ t = t ′ ∗2))).

We show by induction on s that ∀t (s[u]t→ t =2). Suppose s =2 and s[u]t, then since multrel(u,2)
we have that s = 2∧ t = 2 or ∃s′, t ′ (s′[u]t ′ ∧ s = s′ ∗a∧ t = t ′ ∗2). In case s = 2∧ t = 2, then
t = 2. In case ∃s′, t ′ (s′[u]t ′∧s = s′∗a∧t = t ′∗2), we have that there exists a s′ such that 2 = s′∗a.
But this is a contradiction by (tc1). Hence, t = 2.
Assume as inductive hypothesis that ∀t (s[u]t→ t = 2).
Ad Sas. Suppose that Sas[u]t where t is arbitrary. Then we have that Sas = 2 ∧ t = 2 or
∃s′, t ′ (s′[u]t ′ ∧ Sas = s′ ∗ a∧ t = t ′ ∗2). In case Sas = 2∧ t = 2, we have a contradiction by
(tc1). In case ∃s′, t ′ (s′[u]t ′ ∧Sas = s′ ∗a∧ t = t ′ ∗2), we have that s[u]t since s′[u]t ′, s′ = s and
t = t ′. Hence, by the inductive hypothesis we have that t = 2.
Ad Sbs. Suppose that Sbs[u]t where t is arbitrary. Then we have a contradiction. Hence, ∀t (Sbs[u]t→
t = 2) holds trivially since the antecedent is always false.
Therefore, we conclude that for any s[u]t in multrel(u,2), we have that t = 2. Finally, since in
particular x[u]z, we have that z = 2.

The other direction of the biconditional is trivial and hence, we have that (m.1).

Ad (m.2). Suppose x�Say = z — that is:

multrel(u,x)∧Say[u]z.

We want to show that there exist v and u′ such that:

multrel(u′,x)∧ y[u′]v

where z = v∗ x. Choose u′ := u. We show that each of the two conjuncts multrel(u′,x) and y[u′]v
holds in turn.

For multrel(u′,x): We automatically have that multrel(u′,x) since multrel(u,x).

For y[u′]v: Since multrel(u,x) and Say[u]z, we have that there exists s, t such that s[u]t ∧ Say =
s∗a∧ z = t ∗ x. Hence, since y = s and v = t, we have that y[u]v. Thus, we conclude that y[u′]v.

Now, suppose ∃v(x�y = v∧z = v∗x) — that is, z = v∗x and moreover, there exists a u′ such that:

multrel(u′,x)∧ y[u′]v.

We want to show that x�Say = z — that is, there exists a u such that:

multrel(u,x)∧Say[u]z.
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Choose u := u′ ∗ (bb ∗ Say ∗ ba ∗ z). We show that each of the two conjuncts multrel(u,x) and
Say[u]z holds in turn.

For multrel(u,x): We must show that (i) tally(x), (ii) 2[u]2 and:

(iii) ∀s, t (s[u]t→ ((s = 2∧ t = 2)∨∃s′, t ′ (s′[u]t ′∧ s = s′ ∗a∧ t = t ′ ∗ x))).

We demonstrate each in turn.

(i) tally(x) since multrel(u′,x).

(ii) 2[u]2 since 2[u′]2.

(iii) Suppose s[u]t, then we have that s[u′]t or bb ∗ s ∗ba ∗ t = bb ∗Say ∗ba ∗ z by Lemma 28. In
case s[u′]t, we have that (s = 2∧ t = 2)∨∃s′, t ′ (s′[u′]t ′∧s = s′ ∗a∧ t = t ′ ∗x) since multrel(u′,x).
Hence, we conclude that:

(s = 2∧ t = 2)∨∃s′, t ′ (s′[u]t ′∧ s = s′ ∗a∧ t = t ′ ∗ x).

In case bb ∗ s ∗ ba ∗ t = bb ∗Say ∗ ba ∗ z, we have that ∃s′, t ′ (s′[u]t ′ ∧Say = s′ ∗ a∧ z = t ′ ∗ x) —
namely, s′ = y and t ′ = v since y[u′]v implies that y[u]v.

For Say[u]z: We have that Say[u]z since bb∗Say∗ba∗ z⊆end u by the way we defined u.

3.4. TOTALITY OF �

Notice that our coding of x�y = z is not bounded. As a consequence, we cannot use ∆
p
0-induction

to prove that � is total; rather, we will again use the method of shortening cuts. In [13], Svejdar
interprets Q in a weak relational variant of Q. The main insight of his proof is how to get the total-
ity of multiplication out of the relational variant via shortening cuts. We use analogous methods
here to achieve the totality of �.

We follow Svejdar [13] in using the following notation !(x� y) to indicate that x and y do have a
tally product — i.e., x� y is defined. Note that if a term is defined, then all of its subterms are.

Let T := {x | tally(x)}. It is easy to verify that T is closed under 2,Sa and ∗.

Lemma 31 (in TCI∆0 ). Define:

B := {x ∈ T | ∀z,u ∈ T !(z� x)∧
∀z,y ∈ T (!(z� y)→ z� (y∗ x) = (z� y)∗ (z� x))}.

Then B is closed under 2 and Sa.

Proof. Let z be an arbitrary tally, then z�2 = 2 by Proposition 30 (m.1), so that !(z�2). More-
over, now let z and y be arbitrary tallies and assume !(z� y). Then we have that z� (y ∗2) =
z� y = (z� y) ∗2 = (z� y) ∗ (z�2) by Proposition 30 (m.1), (tc5) and since !(z� y). Hence,
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2 ∈ B.

Assume x ∈ B – that is, ∀z,u ∈ T !(z� x) and:

∀z,y ∈ T (!(z� y)→ z� (y∗ x) = (z� y)∗ (z� x)).

We first show that !(z�Sax) for an arbitrary tally z. We have that !((z�x)∗z) since !(z�x). Now,
by Proposition 30 (m.2), we have that (z� x) ∗ z = z�Sax, so that !(z�Sax). Second, we show
that !(z� y)→ z� (y∗Sax) = (z� y)∗ (z�Sax) for arbitrary tallies y and z. Assume !(z� y). By
(tc6), Proposition 30 (m.2), our initial assumption and (Assoc∗), it follows that:

z� (y∗Sax) = z�Sa(y∗ x)
= (z� (y∗ x))∗ z

= ((z� y)∗ (z� x))∗ z

= (z� y)∗ ((z� x)∗ z)
= (z� y)∗ (z�Sax)

So we have that Sax satisfies both conditions in the definition of B and thus, we conclude that
Sax ∈ B.

Lemma 32 (in TCI∆0 ). Define

C := {x ∈ B | ∀y,z ∈ B((z� y)� x = z� (y� x))}.

Then C is closed under 2 and Sa.

Proof. Since y ∈ B, we have that !(z� y) and hence, (z� y)�2 = 2 = z�2 = z� (y�2) by
Proposition 30 (m.1). Thus, 2 ∈C.

Assume that y,z ∈ B and that x ∈C. Then by Proposition 30 (m.2), the fact that x ∈C and y ∈ B,
and (Assoc∗), we have the following:

(z� y)�Sax = ((z� y)� x)∗ (z� y)
= (z� (y� x))∗ (z� y)
= z� ((y� x)∗ y)
= z� (y�Sax)

Moreover, note that since y satisfies the first condition in the definition of B, we have !(((z� y)�
x)∗ (z� y)) and !((z� (y� x)∗ (z� y)). Thus, Sax ∈C.

Lemma 33 (in TCI∆0 ). Define

K := {x ∈ T | ∀u ∈ T∀v ∈C(u∗ v = x→ u ∈C)}.

Then K is closed under 2 and Sa, and K is progressive.
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Proof. Note that K ⊆C: Assume x ∈ K, then by (tc5) we have that x∗2 = x so that x ∈C.

Assume u∗v = 2 and v∈C. By (tc4), we have that u = 2∨∃y(u = Say∨u = Sby). If u = 2, then
u ∈C by (tc5). If u = Say for some y, then we have that Say∗v = Sa(y∗v) = 2 since ∀y(Say∗v =
Sa(y∗ v)) is provable using ∆

p
0-induction. But this is a contradiction since Sa(y∗ v) 6= 2 by (tc1).

If u = Sby for some y, then we also have a contradiction since u ∈ T . Thus, 2 ∈ K.

Now, assume x ∈ K and let u ∈ T and v ∈C be such that u∗v = Sax. Again, by (tc4), we have that
u = 2∨∃y(u = Say∨u = Sby). If u = 2, then u ∈C by (tc5). If u = Say for some y, then we have
that Say∗ v = Sa(y∗ v) = Sax since ∀y(Say∗ v = Sa(y∗ v)) is provable using ∆

p
0-induction. So, by

(tc3), y∗ v = x and we have that y ∈C since x ∈ K. Since C is closed under Sa, we conclude that
Say ∈C and hence, Sax ∈ K.

Assume Sax ∈ K and let u,v be such that v ∈C and u∗ v = x. Then u∗Sav = Sax and Sav ∈C, so
that Sax ∈ K which yields u ∈C. Thus, x ∈ K.

Lemma 34 (in TCI∆0 ). Define

I := {x ∈ T | ∀y(y ∈ K↔ y+ x ∈ K)}.

Then I is closed under 2,Sa and ∗.

Proof. Note that I ⊆ K: Let x ∈ I and choose y := 2 so that 2∗ x ∈ K. From this and 2∗ x = x, it
follows that x ∈ K.

2 ∈ I by (tc5) and (tc6).

Assume x ∈ I. We want to show that ∀y(y ∈ K↔ y∗Sax ∈ K).
For the → direction of the biconditional: Suppose y ∈ K, then y ∗ x ∈ K since x ∈ I. Moreover,
since K is closed under Sa and by (tc6), we have that Sa(y∗ x) = y∗Sax ∈ K.
For the ← direction of the biconditional: Suppose y ∗ Sax ∈ K, then by (tc6) we have that
y ∗ Sax = Sa(y ∗ x). Since K is progressive (cf. the last lemma), we have that y ∗ x ∈ K and
thus, y ∈ K since x ∈ I.

Assume x1,x2 ∈ I. We want to show that x1 ∗ x2 ∈ I – that is:

∀z(z ∈ K↔ z∗ (x1 ∗ x2) ∈ K).

For the → direction of the biconditional: Assume z ∈ K, then x1 ∈ I yields z ∗ x1 ∈ I, and this
together with x2 ∈ I yields (z ∗ x1) ∗ x2 ∈ K. Now since (z ∗ x1) ∗ x2 = z ∗ (x1 ∗ x2), we have that
z∗ (x1 ∗ x2) ∈ K.
For the← direction of the biconditional: Assume z ∗ (x1 ∗ x2) ∈ K, then this together with x2 ∈ I
yields z∗ x1 ∈ K, and this together with x1 ∈ I yields z ∈ K. Thus, x1 ∗ x2 ∈ I.

Lemma 35 (in TCI∆0 ). Define

J := {x ∈ T | a� x = x∧∀y ∈ I(y� x ∈ I)}.

Then J is closed under 2,Sa,∗ and �, and J is progressive.
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Proof. Note that J ⊆ I: Assume x ∈ J, then ∀y ∈ I(y� x ∈ I). Choose y := a so that a� x = x ∈ I
since a� x = x.

2 ∈ J since a�2 = 2 and y�2 = 2 ∈ I by Proposition 30 (m.1).

Suppose x ∈ J. Then a�Sax = Sax follows from a� x = x and Proposition 30 (m.2). Moreover,
if y ∈ I, then we have that y�x ∈ I so that !((y�x)∗x). Since y�Sax = (y�x)∗x by Proposition
30 (m.2) and I is closed under addition, we have that y�Sax ∈ I. Thus, Sax ∈ J.

Suppose x1,x2 ∈ J. Since !(a� x1) and x2 ∈ B, we have that:

a� (x1 ∗ x2) = (a� x1)∗ (a� x2) = x1 ∗ x2.

Moreover, if y ∈ I, then since !(y� x1), x2 ∈ B and I is closed under addition, we have that
(y� x1)∗ (y� x2) = y� (x1 ∗ x2) ∈ I. Thus, x1 ∗ x2 ∈ J.

Suppose x1,x2 ∈ J. Then a�(x1�x2) = x1�x2 since x2 ∈C. Let y ∈ I. From x1 ∈ J and y ∈ I, we
have that y� x1 ∈ I, and moreover from this and x2 ∈ J, we have (y� x1)� x2 ∈ I. Finally, since
x2 ∈C, this yields y� (x1� x2) ∈ I. Thus, x1� x2 ∈ J.

Assume Sax∈ J. From J⊆K and the fact that K is progressive, we have that x∈K ⊆ B, so !(a�x)
and hence, a� Sax = (a� x) ∗ a. Then from a� Sax = Sax we have a� x = x. Assume y ∈ I.
Similarly, from x ∈ K ⊆ B, we have that !(y�x), and from (Assoc∗) and Proposition 30 (m.2), we
have that (y�x)∗y = y∗Sax ∈ I. Finally, from the fact that ∀x1,x2(x1 ∗x2 ∈ I→ (x1 ∈ I∧x2 ∈ I))
(cf. the last lemma), we obtain in particular that y� x ∈ I. Thus, x ∈ J.

3.5. TCQ INTERPRETS Q

Finally, we conclude this section by demonstrating our main result.

Theorem 36. TCQ interprets Q.

Proof. It suffices to show that TCI∆0 interprets Q since we have that TCQ interprets TCI∆0 by
Theorem 26.

We translate the signature of Q into the signature of TCI∆0 via the relative translation τ : {0,S,+, ·}→
{2,Sa,Sb,∗}.

(0)τ := 2

(Sx)τ := Sax

(x+ y)τ := x∗ y

(x · y)τ := x� y.

Let J be as defined in Lemma 35. Then J is closed under 2,Sa,∗ and�, and so J is an appropriate
domain of interpretation.

Next, we check that the translation of the nonlogical axioms of Q are valid in TCI∆0 :
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(q1): TCI∆0 ` (J(x)∧ J(y))→ (q1)τ by (tc3).

(q2): TCI∆0 ` J(x)→ (q2)τ by (tc1).

(q3): TCI∆0 ` J(x)→ (q3)τ by (tc4).

(q4): TCI∆0 ` (J(x)∧ J(y))→ (q4)τ by (tc5).

(q5): TCI∆0 ` (J(x)∧ J(y))→ (q5)τ by (tc6).

(q6): TCI∆0 ` (J(x)∧ J(y))→ (q6)τ by Proposition 30 (m.1) and Lemma 35.

(q7): TCI∆0 ` (J(x)∧ J(y))→ (q7)τ by Proposition 30 (m.2) and Lemma 35.

(q8): TCI∆0 ` (J(x)∧ J(y))→ (q8)τ since J is downwards closed under ⊆∗.

Thus, J and τ determine an interpretation of Q in TCI∆0 and hence, in TCQ.

4. CONCLUSION

This thesis has two main results: The first is a revised axiomatization of Q in light of consid-
erations about the decidability of identity and equality with zero in the intuitionistic case and a
constructive proof of Nelson’s classic result that Q interprets I∆0 + Ω1. The second result of this
thesis is a proof that a basic theory of concatenation based on Q, TCQ, interprets Q. This result
provides a weak axiomatic theory different from Q, but which yields the same metamathematical
benefits since it has what we called local coding. In this sense, the result contributes to both Grze-
gorczyk’s programme and Visser’s programme. In [17], Visser uses the latter result to show that
Grzegorczyk’s theory TC with the empty string 2 added, is mutually interpretable with Q, which
strengthens Grzegorczyk and Zdanowski’s result in [6] that TC is essentially undecidable.
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