
HyLoRes: A Hybrid Logic Prover
Based on Direct Resolution

Carlos Areces Juan Heguiabehere
Faculty of Science. University of Amsterdam

{carlos,juanh}@science.uva.nl

Abstract: In recent years, an important number of theoretical results concerning axiom-
atizability, proof systems (tableaux, natural deduction, etc.), interpolation, expressive power,
complexity, etc. for hybrid logics has been obtained. The next natural step is to develop provers
that can handle these languages. HyLoRes is a direct resolution prover for hybrid logics imple-
menting a sound and complete algorithm for satisfiability of sentences in H

�
@ ����� . The most

interesting distinguishing feature of HyLoRes is that it is not based on tableau algorithms but
on (direct) resolution.

1 Hybrid logics and HyLoRes

Hybrid languages are modal languages that allow direct reference to the elements of
a model. The basic hybrid language (H � @ �) extends the basic modal language sim-
ply by the addition of a new set of atomic symbols called nominals (usually denoted
as i � j � k �
	
	
) which name particular points in the model (i.e., the interpretation of a
nominal i in a model M �
� W � R � V � is an element iM � W), and for each nominal i
a satisfiability operator @i. This extension already increases the expressive power of
the language as we can now explicitly check whether the point of evaluation w is the
specific point named i in the model M :

M � w � i iff w � iM 	
And from any point in the model we can check whether a point named i satisfies a
given formula ϕ:

M � w � @iϕ iff M � iM � ϕ 	
The extended expressivity allows one to define elegant decision algorithms, where
nominals and @ play the role of labels, or prefixes, which are usually needed during
the construction of proofs in the modal setup [10, 5]. Note that they do so inside
the object language. All these features we get with no increase in complexity: the
complexity of the satisfiability problem for H � @ � is the same as for the basic modal
language, PSPACE [3].

When we move to very expressive hybrid languages containing binders, we obtain
an impressive boost in expressivity, but usually we also move beyond the boundaries
of decidability. Classical binders like � and � (together with @) make the language as
expressive as first-order logic (FOL) while the language H � @ ����� which includes the
more “modal” binder � gives a logic weaker than FOL [2] (but still undecidable). See
the Hybrid Logic site at http://www.hylo.net for a broad on-line bibliography.

1

In recent years, an important number of theoretical results concerning axioma-
tizability, proof systems (tableaux, natural deduction, etc), interpolation, expressive
power, complexity, etc. for hybrid logics has been obtained. The next natural step is
to develop provers that can handle these languages. HyLoRes is a direct resolution
prover for hybrid logics implementing a sound and complete algorithm for satisfiabil-
ity of sentences in H � @ ����� ; it implements the algorithm presented in [5]. The most
interesting distinguishing feature of HyLoRes is that it is not based on tableau algo-
rithms but on (direct) resolution. HyLoRes implements a version of the “given clause”
algorithm, which has become the skeleton underlying most first-order provers. In con-
trast to translation based provers like MSPASS [17], HyLoRes performs resolution
directly on the modal (or hybrid) input, with no translation into background logics.

It is often said that hybrid logics combine interesting features from both modal
and first-order logics. In the same spirit, HyLoRes fuses ideas from state-of-the-art
first-order proving with the simple representation of the hybrid object language.

HyLoRes and the Tcl/Tk interface xHyLoRes shown in the picture above are available
for downloading at http://www.illc.uva.nl/˜carlos/HyLoRes, where you can
also use HyLoRes on-line.

2 Direct resolution for hybrid logics

Designing resolution methods that can directly (without translation into large back-
ground languages) be applied to modal logics, received some attention in the late 1980s
and early 1990s. But even though modal languages are sometimes viewed as “simple
extensions of propositional logic,” direct resolution for modal languages has proved a

2

difficult task. Intuitively, in basic modal languages the resolution rule has to operate
inside boxes and diamonds to achieve completeness. This leads to more complex sys-
tems, less elegant results, and poorer performance, ruining the “one-dumb-rule” spirit
of resolution. In [5] we presented a resolution calculus that uses the hybrid machin-
ery to “push formulas out of modalities” and in this way, feed them into a simple and
standard resolution rule.

To handle the hybrid operators, we need just notice that nominals and @ introduce
a limited form of equational reasoning: a formula like @i j is true in a model iff i and
j are nominals for the same state. A paramodulation rule similar to the one used by
Robinson and Wos [22] lets us handle nominals and @.

Briefly, our resolution algorithm works as follows. Define the following rewriting
procedure nf on formulas of H � @ ��� � . Let ϕ be a formula in H � @ ����� , nf � ϕ � is obtained
by repeated application of the following rewrite rules until none is applicable.

ϕ
� �
ψ � θ � � nf� ϕ

� ��� � � ψ � �
θ ��� �

ϕ
� � � R � ψ � � nf� ϕ

� ���	�
R � � ψ � �

ϕ
� ���
�

ψ � � nf� ϕ
� �
ψ � �

ϕ
� ���

@tψ � � nf� ϕ
� �
@t

�
ψ � �

ϕ
� ��� � x 	 ψ � � nf� ϕ

� � � x 	 � ψ � �
Clauses are sets of formulas of this form. To determine the satisfiability of a formula
ϕ � H � @ ����� we first notice that ϕ is satisfiable iff @tϕ is satisfiable, for a nominal t
not appearing in ϕ. Define the clause set ClSet corresponding to ϕ to be ClSet � ϕ � ����

@t nf � ϕ ��
�
 . Next, let ClSet � � ϕ � – the saturated clause set corresponding to ϕ – be
the smallest set containing ClSet � ϕ � and closed under the rules in Figure 1.

����� Cl �
� @t
�
ϕ1

�
ϕ2

���
Cl �
� @tϕ1

�
Cl �
� @tϕ2

�
����� Cl �
� @t � � ϕ1

�
ϕ2

���
Cl �
� @tnf

� � ϕ1
���

@tnf
� � ϕ2

���

(RES)
Cl1 �
� @tϕ

�
Cl2 �
� @t � ϕ

�
Cl1 � Cl2

���
R � � Cl1 �
� @t

�
R � ϕ � Cl2 �
� @t � �R � � s

�
Cl1 � Cl2 �
� @sϕ

� ���
R � Cl �
� @t � �R � ϕ �

Cl �
� @t � �R � � n
�

Cl �
� @nnf
� � ϕ

��� , for n new.

�
@
� Cl �
� @t @sϕ

�
Cl �
� @sϕ

�
(SYM)

Cl �
� @ts
�

Cl �
� @st
� (REF)

Cl �
� @t � t
�

Cl
(PARAM)

Cl1 �
� @ts
�

Cl2 �
� ϕ � t ���
Cl1 � Cl2 �
� ϕ � t ! s

���

Figure 1: Resolution Rules

The computation of ClSet � � ϕ � is in itself a sound and complete algorithm for
checking satisfiability of H � @ � , in the sense that ϕ is unsatisfiable if and only if the
empty clause

�
 is a member of ClSet � � ϕ � (see [5]).

3

The hybrid binder � binds variables to the point of evaluation, i.e., for a model M ,
an assignment g and a state w,

M � g � w � � � x 	 ϕ iff M � gx
w � w � � ϕ �

where gx
w is the assignment that coincides with g, but maps x to w. For example,

a state w satisfies the formula � x 	�� x if and only if w can reach itself through the
accessibility relation. Extending the system to account for hybrid sentences using � is
fairly straightforward. Consider the rule ����� below

��� � Cl � �
@t � x 	 ϕ

Cl � �
@tϕ � x � t ��
 .

As � is self dual (i.e.,
� � x 	 ϕ is equivalent to � x 	 � ϕ) we don’t need a rule for its negation

(the same is true for @). Notice also that the rule transforms hybrid sentences into
hybrid sentences. The full set of rules is a sound and complete calculus for checking
satisfiability of sentences in H � @ ����� .

Example. We prove that � x 	 � R � � x � p ��� p is a tautology. Consider the clause set
corresponding to the negation of the formula:

1. � @i
� � � x �
	�� R �
	 � x � p � ��� 	 p ��� by (�)

2. � @i � x �
	�� R �
	 � x � p ��� , � @i 	 p � by (�)
3. � @i 	�� R � 	 � i � p ��� , � @i 	 p � by (� R �)
4. � @i 	�� R �
	 j � , � @ j

�
i � p ��� , � i: 	 p � by (�)

5. � @ ji � , � @ j p � , � @i 	 p � by (PARAM)
6. � @i p � , � @i 	 p � by (RES)
7. ��� .

3 The “given clause” algorithm for hybrid resolution

HyLoRes implements a version of the “given clause” algorithm [24] shown in Fig-
ure 2. The implementation preserves the soundness and completeness of the calculus
introduced in Section 2, and ensures termination for H � @ � . As an example of the
execution of the prover, we show how HyLoRes solves the formula in the previous
example:

Example The following are dumps of the input formula and the execution of the
prover (minimally formatted for presentation).

Input file:

begin
!((down (x1 dia (x1 & p1))) -> p1)
end

Execution:

(carlos@guave 149) hylores -f test.frm -r
Input:

{[@(N0, (-P1 & Down(X1, -[R1]-(P1 & X1))))]}
End of input

Given: (1, [@(N0, (-P1 & Down(X1, -[R1]-(P1 & X1))))])

4

CON: {[@(N0, -P1)][@(N0, Down(X1, -[R1]-(P1 & X1)))]}
Given: (2, [@(N0, -P1)])
Given: (3, [@(N0, Down(X1, -[R1]-(P1 & X1)))])
ARR: {[@(N0, -[R1]-(P1 & N0))]}
Given: (4, [@(N0, -[R1]-(P1 & N0))])
DIA: {[@(N-2, (P1 & N0))][@(N0, -[R1]-N-2)]}
Given: (5, [@(N-2, (P1 & N0))])
CON: {[@(N-2, P1)][@(N-2, N0)]}
Given: (6, [@(N-2, N0)])
PAR (0,-2): {[@(N-2, (P1 & N-2))][@(N-2, -[R1]-(P1 & N-2))]
[@(N-2, Down(X1, -[R1]-(P1 & X1)))][@(N-2, -P1)]
[@(N-2, (-P1 & Down(X1, -[R1]-(P1 & X1))))]}
Given: (7, [@(N-2, P1)])
Given: (8, [@(N-2, -P1)])
RES: (7, [])

We discuss now some of the salient characteristics of the prover.

Programing language. HyLoRes is implemented in Haskell, and compiled with the
Glasgow Haskell Compiler (GHC) Version 5.02. GHC generates fairly efficient C code
which is afterwards compiled into an executable file. Thus, users need no additional
software to use the prover.

The HyLoRes site provides executables for Solaris (tested under Solaris 8) and
Linux (tested under Red Hat 7.0 and Mandrake 8.0). The original Haskell code is also
made publicly available under the GPL license [12] (the code, though, is still unstable,
being under active development). We will soon provide also the intermediate C source
which could then be compiled under a wider range of platforms.

In addition to HyLoRes, a graphical interface called xHyLoRes implemented in
Tcl/Tk was developed. It uses HyLoRes in the background and provides full file access
and editing capabilities, and a more intuitive control of the command line parameters
of the prover.

Data structures. The design of the algorithm is modular with respect to the internal
representation of the different kinds of data. We have used the Edison package (a
library of efficient data types provided with GHC) to implement most of the data types
representing sets. But while we represent clauses directly as UnbalancedSet, we have
chosen different representations for each of the clause sets used by the algorithm: new
and inuse are simply lists of clauses (as they always have to be examined sequentially,
one by one) and clauses is an UnbalancedSet of clauses.1 In particular, clauses is
ordered by our selection criterion, which makes for an efficient selection of the given
clause. The selection order can be specified from the command line. Four complexity
measures are computed for each clause C: v the maximum number of propositional
variables in a formula in C, d the maximum modal depth of a formula in C, p the
minimum prefix of a formula in C and s the size of the C (number of formulas in C).
Different combinations of this measures can be chosen as order for clauses. Selection
of different orders can have an important effect on the performance of the prover (see
Figure 3 b)).

The internal state of the given clause algorithm (the sets clauses, inuse and new,
the data structures used for subsumption checking, etc) is represented as a combination

1While List provides efficient sequential access to their elements, UnbalancedSet implements sets
as unbalanced search trees to optimize search of single elements.

5

input: init: set of clauses
var: new, clauses, inuse: set of clauses
var: given: clause

clauses :=
�
 ; inuse :=

�
 ; new := init
new := normalize(new)
if

�
 � new then return “unsatisfiable”
clauses := computeComplexity(new)
while clauses �� �
 do�

* Selection of given clause *

given := select(clauses)
clauses := clauses –

�
given
�

* Inference *

new := infer(given, inuse)
new := normalize(new)
if

�
 � new then return “unsatisfiable”�
* Subsumption deletion *

new := simplify(new, inuse � clauses)
inuse := simplify(inuse, new)
clauses := simplify(clauses, new)�
* Initialization for next cycle *

if notRedundant(given) then
inuse := inuse � �

given

clauses := clauses � computeComplexity(new)

return “satisfiable”� normalize(A) applies nf to formulas in A and handles trivial tautolo-
gies/contradictions.� computeComplexity(A) determines length, modal depth, number of literals,
etc. for each of the formulas in A; these values are used by select to pick the
given clause.� infer(given,A) applies the resolution rules to the given clause and each clause
in A. If the rules

� � � , ��� � , � � R � � or
� ��� are applicable, no other rule is applied

as the clauses obtained as conclusions by their application subsume the
premises.� simplify(A,B) performs subsumption deletion, returning the subset of A which
is not subsumed by any element in B.� notRedundant(given) is true if none of the rules

� � � , ��� � , � � R � � or
� ��� was

applied to given.

Figure 2: Given clause algorithm implemented in HyLoRes

of a state and an output monads (see [25]); the former provides transparent access to
the internal state of the algorithm from the monadic functions that perform inference,
while the latter handles all printing services with no need of further parameters in
the function signatures. In addition, the use of monads allows the addition of further
structure (hashing functions, etc.) to optimize search, with minimum re-coding. We
have already experienced the advantages of the monad architecture as we have been
able to check different data structures and improve the performance of some of the

6

most expensive functions with great ease.

Extensibility. With respect to the addition of further resolution rules, our main aim
was to take advantage of the inherent modularity of the given clause algorithm. New
rules can simply be added in the infer function without the need for any further mod-
ification of the code. One of the main extensions we are planning for version 2.0 of
the prover is the addition of the universal modality A [13]. The logic H � A ����� is as
expressive as FOL and would turn HyLoRes into a full first-order prover. But inter-
estingly, the language is now split in a radically new way: a decidable part (H � A �
with an EXPTIME-complete satisfiability problem, see [3]) and an undecidable, but
intrinsically local part (H � @ ��� � is equivalent in expressivity to the fragment of FOL
invariant under generated submodels, see [4]).

Subsumption Checking. Subsumption checking (i.e., deciding whether a clause in
the clause set is redundant and can be deleted) is one of the – or perhaps “the” –
most expensive operations in resolution based theorem provers [23]. HyLoRes uses
a simple version of subsumption checking where a clause C1 subsumes a clause C2 if
C1 � C2. Early versions of the prover implemented this test very inefficiently, checking
the subset relation element by element, and clause by clause. Since Version 0.9 a set-
at-a-time subsumption checking algorithm which uses a clause repository structured
as a trie [23] is implemented, with notorious improvements (see Figure 3 a)).

Paramodulation. As we said in Section 2, we need some kind of paramodulation to
handle nominals and @. We can once more take advantage from FOL experience in
resolution based theorem proving here. In [7], Bachmair and Ganzinger develop in de-
tail the modern theory of equational reasoning for first-order saturation based provers.
Many of the ideas and optimizations discussed there can and should be implemented
in HyLoRes. In the current version, paramodulation is done naively. The only “op-
timization” being the orientation of equalities so that we always replace nominals by
nominals which are lower in a certain ordering.

4 Comparison and Testing

The prototype is not yet meant to be competitive when compared with state of the
art theorem provers for modal and description logics like MSPASS [17], DLP [20],
FaCT [16], RACER [14] or *SAT [11]. On the one hand, the system is still in a pre-
liminary stage of development (only very simple optimizations for hybrid logics have
been implemented), and on the other hand hybrid and description languages are re-
lated but different. H � @ ��� � is undecidable while the implemented description lan-
guages are mostly decidable. And even when comparing the fragment H � @ � for
which HyLoRes implements a decision algorithm, the expressive powers are incom-
parable (H � @ � permits free Boolean combinations of @ and nominals but lacks the
limited form of universal modality available in the T-Box of DL provers [2]).

Figure 3 shows ongoing work on preliminary testing with the random modal QBF
generator (plots a) and b)), the hand-tailored set of Balsiger et al. (plots c) and d)), and
the random modal CNF generator (plots e) and f)).

The first two plots use the random modal QBF generator described in [19]. This
generator produces random formulas by first generating a random quantified Boolean

7

2 4 6 8 10 12 14 16
10

−2

10
−1

10
0

10
1

Random Modal QBF: C=1−16, V=2, D=1

Number of clauses

T
ot

al
 u

se
r

tim
e

/ S
at

is
fia

bl
e

fr
ac

tio
n

HyLoRes 0.5
HyLoRes 0.9
HyLoRes 1.0
SPASS Std
*SAT
RACER
MSPASS
Satisf. fraction

5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

Random Modal QBF: C=1−50, V=3, D=2

Number of clauses

M
ed

ia
n

us
er

 ti
m

e
/ S

at
is

fia
bl

e
fr

ac
tio

n

HyLoRes 0.9
HyLoRes 1.0
Satisf. fraction

a) Comparison with different provers - Modal QBF b) Comparison with different versions - Modal QBF.

 branch_pbranch_n d4_p d4_n dum_p dum_n grz_p grz_n lin_p lin_n path_p path_n ph_p ph_n poly_p poly_n t4p_n t4p_p
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

In
st

an
ce

s
so

lv
ab

le
 in

 le
ss

 th
an

 1
00

 s
ec

on
ds

Balsiger, Heuerding and Schwendimann test set HyLoRes 1.0
MSPASS
*SAT
RACER

 branch_p branch_n d4_p d4_n dum_p dum_n grz_p grz_n lin_p lin_n path_p path_n ph_p ph_n poly_p poly_n t4p_n t4p_p
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
Balsiger, Heuerding and Schwendimann test set

In
st

an
ce

s
so

lv
ab

le
 in

 le
ss

 th
an

 1
00

 s
ec

on
ds

Min. prefix
Max. variables
Min. modal depth
Min. clause size

c) Comparison with different provers - BHS d) Comparison with different orderings - BHS

2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

Test in Modal CNF, C=2.25, N=4, D=1, L/N=1−20

M
ed

ia
n

us
er

 ti
m

e

L/N

HyLoRes 1.0
MSPASS
*SAT
RACER

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test in Modal CNF, C=2.25, N=4, D=1, L/N=1−20

L/N

S
at

is
fia

bl
e/

U
ns

at
is

fia
bl

e
F

ra
ct

io
ns

HLR sat
Others sat
HLR unsat
Others unsat
HLR total
Others total

e) & f) Comparison with different provers - Modal CNF.

Figure 3: Testing HyLoRes on random and hand-tailored formulas

formula and then using different satisfaction preserving encodings into the modal lan-
guage. The random modal QBF generator has been previously used for system com-
parison, but see [15] for its limitations. Different parameters allow the generation of
formulas in different areas of the input space (the parameters used are specified at
the top of each plot). The x-axis varies with the number of clauses generated (from

8

under-constrained, mostly satisfiable problems to the left to over-constrained, mostly
unsatisfiable problems to the right). The y-axis shows the median CPU-time in a set
of 25 instances for each setting. The unmarked line shows the relative frequency of
satisfiable formulas (moving from 1 in the left to 0 in the right).

In plot a) we investigate very simple modal problems and we compare HyLoRes
with *SAT [11] (a modal prover that interleaves modal steps with efficient proposi-
tional reasoning), RACER [14] (one of the most developed description logic provers),
SPASS [1] (one of the best first-order provers based on resolution) and MSPASS [17]
(which implements an optimized translation of modal formulas into first-order logic,
and then calls SPASS on this output with fine tuned configuration options). The per-
formance of three different versions of HyLoRes is shown. HyLoRes 0.5 uses the
clause-at-a-time subsumption checking strategy. HyLoRes 0.9 already implements a
clause-at-a-time subsumption checking strategy. HyLoRes 1.0 simply improves the
performance of some of the most expensive functions by fine-tuning the Haskell code.
It is interesting to notice how the performance of HyLoRes improves when the problem
is over-constrained (as expected in a resolution based theorem prover).

In plot b) we compare HyLoRes 0.9 and HyLoRes 1.0 on harder instances of the
random modal QBF test, observing a similar behavior as in plot a). The differences
between HyLoRes 0.9 and HyLoRes 1.0 peak on satisfiable problems, where the prover
needs to perform a full exploration of the clause set to reach saturation.

Plots c) and d) use the hand-tailored test set defined in [9]. This test set consists
of 9 different kinds of problems, each kind itself split into satisfiable and unsatisfiable
test cases (the different test sets are listed on the horizontal axis, the postfix n identify
satisfiable problems, while p identify unsatisfiable problems). Finally, each of these
groups of problems contains 21 instances, each one designed to be twice as difficult as
the previous one. The test is run with a timeout of a 100 seconds per problem, plotting
the number of problems solved in each class.

In plot c) we compare HyLoRes with RACER, *SAT and MSPASS. Here we can
clearly see that DL provers like RACER have still a huge lead. RACER is able to
solve almost all problems within the timeout of 100 seconds per problem. HyLoRes
compares more favorably with MSPASS, with MSPASS surpassing HyLoRes in most
test sets except in lin p.

In plot d) we run HyLoRes alone, using different orderings for the selection of the
given clause. We see that resolution can be quite sensitive to the order used, both on
satisfiable and unsatisfiable instances (see the columns for dum p, dum n, grz p and
grz n). We only plot “simple” orderings where we sort clauses by the minimum prefix,
the maximum number of variables, the minimum modal depth or the minimum clause
size. Apparently, setting the orderings to minimum modal depth and minimum clause
size provides best performance. HyLoRes allows any combination of these measures,
and in some cases the combination of two of them provides better results than the ones
obtained using each of them separately.

Finally, plots e) and f) use the random modal CNF generator introduced in [21].
The random modal CNF directly generates sets of modal clauses (no translation is in-
volved), and its many parameters permit the full exploration of the complete test space.
Furthermore, its flexibility allows precise control of the overall problem difficulty.

The plots show a run of HyLoRes, MSPASS, *SAT and RACER. In e) the y-axis
shows once more median CPU-time (50 instances per datapoint, timeout of 30 sec-

9

onds), while the x-axis shows the ratio of number of clauses (L) and number of vari-
ables (N). In f) we show the ratio of satisfiable and unsatisfiable formulas for each
datapoint and the sum these two ratios. The points where the ratios do not add to one
show timeouts. The problems generated are very easy for the other provers, but they
already cause some timeouts for HyLoRes, specially in the hard section of maximal
uncertainty.

To close this section, one thing to bear in mind is that the testings we have been able
to perform up to now are not really representative of the capabilities of HyLoRes, as
they are purely modal and do not require hybrid reasoning. No hybrid test collection or
random generator of hybrid formulas is available. We plan to develop such a resource
(by extending the random modal CNF to encompase nominal, satisfiability operators
and binders) in the near future.

5 Conclusions and Future Work

There remain many things to try and improve in HyLoRes, but the main goal we pur-
sued while developing Version 1.0 of the prover has been largely achieved: direct
resolution can be used as an interesting, and in the future perhaps even competitive,
alternative to tableaux based methods for modal and hybrid logics. Among the things
that will be improved in the next versions of HyLoRes are the following.

We are investigating both the theoretical and practical issues involved in perform-
ing direct ordered resolution for hybrid logics, where the resolution rules are restricted
to the maximum literals in the clauses [8].

We want to make the prover much more aware of the characteristics of its input.
At the moment, the prover simply check which formulas appear in the input (proposi-
tional, modal, basic hybrid, and binders) and uses the appropriate rules of the calculus.
Particular rules/heuristics for certain inputs (e.g., SLD resolution and horn clauses)
can provide important improvements in performance. Some of the heuristics presented
in [6] can be adapted for our calculus. Also, more effective normal form transforma-
tions should be applied to the input before proceeding to resolution. An example of
this: formulas prefixed by @ are global and can be pushed outside modalities. This
transformation can greatly affect the performance of paramodulation.

Another important extension for future versions is to extend the language with the
universal modality A. As we said above, this would give us full FOL expressivity. Also
the language H � A � is interesting as it let us perform inference in terms of full Boolean
knowledge bases of the description logic ALC in HyLoRes (see [2]).

Finally, we would like to improve the output of the prover, making in able to
display a concise refutation proof in case it finds one, or a model satisfying the input
otherwise.

As we said in the introduction, HyLoRes fuses nicely some ideas from state-of-
the-art first-order proving with the simplicity of hybrid languages; and it provides the
basis for future developments on computational tools for hybrid logic. Already in its
actual state, users find the tool useful for better understanding the formalisms.

Acknowledgment. C. Areces is supported by the NWO project # 612.069.006.

10

References

[1] B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt, D. Topić,
and C. Weidenbach. System description: SPASS Version 1.0.0. In Automated
deduction—CADE-16 (Trento, 1999), pages 187–201. Springer, Berlin, 1999.

[2] C. Areces. Logic Engineering. The Case of Description and Hybrid Logics. PhD
thesis, Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands, October 2000.

[3] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In J. Flum and M. Rodrı́guez-Artalejo, editors, Computer Science Logic,
number 1683 in LNCS, pages 307–321. Springer, 1999. Proceedings of the 8th
Annual Conference of the EACSL, Madrid, September 1999.

[4] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characterization, interpo-
lation and complexity. The Journal of Symbolic Logic, 66(3):977–1010, 2001.

[5] C. Areces, H. de Nivelle, and M. de Rijke. Resolution in modal, description and
hybrid logic. Journal of Logic and Computation, 11(5):717–736, 2001.

[6] Y. Auffray, P. Enjalbert, and J. Hebrard. Strategies for modal resolution: results
and problems. Journal of Automated Reasoning, 6(1):1–38, 1990.

[7] L. Bachmair and H. Ganzinger. Equational reasoning in saturation-based theorem
proving. In Automated deduction—a basis for applications, Vol. I, pages 353–
397. Kluwer Acad. Publ., Dordrecht, 1998.

[8] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

[9] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for
the propositional modal logics K, KT, S4. Journal of Automated Reasoning,
24(3):297–317, 2000.

[10] P. Blackburn. Internalizing labelled deduction. Journal of Logic and Computa-
tion, 10(1):137–168, 2000.

[11] F. Giunchiglia and R. Sebastiani. A sat-based decision procedure for ALC . In
L. Aiello, J. Doyle, and S. Shapiro, editors, Proceedings of the 5th International
Conference on Principles of Knowledge Representation and Reasoning (KR’96),
pages 304–314, Cambridge, USA, 1996.

[12] GNU General Public License. http://www.gnu.org/copyleft/gpl.html.

[13] V. Goranko and S. Passy. Using the universal modality: gains and questions.
Journal of Logic and Computation, 2:5–30, 1992.

[14] V. Haarslev and R. Möller. RACE system description. In Lambrix et al. [18],
pages 130–132.

11

[15] J. Heguiabehere and M. de Rijke. The random modal QBF test set. In Proceed-
ings IJCAR Workshop on Issues in the Design and Experimental Evaluation of
Systems for Modal and Temporal Logics, pages 58–67, 2001. refereed.

[16] I. Horrocks. FaCT and iFaCT. In Lambrix et al. [18], pages 133–135. FACT
is available under the GNU public license at http://www.cs.man.ac.uk/
˜horrocks.

[17] U. Hustadt, R. A. Schmidt, and C. Weidenbach. MSPASS: Subsumption testing
with SPASS. In Lambrix et al. [18], pages 136–137.

[18] P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider, editors.
Proceedings of the 1999 International Workshop on Description Logics (DL’99),
1999.

[19] F. Massacci. Design and results of the Tableaux-99 Non-Classical (Modal) Sys-
tems Comparison. In N. Murray, editor, Proceedings of the Third International
Conference on Analytic Tableaux and Related Methods (TABLEAUX’99), volume
1617 of Lecture Notes in Artificial Intelligence, pages 14–18. Springer-Verlag,
1999.

[20] P. Patel-Schneider. DLP system description. In E. Franconi, G. De Giacomo,
R. MacGregor, W. Nutt, and C. Welty, editors, Proceedings of the 1998 Inter-
national Workshop on Description Logics (DL’98), pages 87–89, 1998. DLP is
available at http://www.bell-labs.com/user/pfps.

[21] P. Patel-Schneider and R. Sebastiani. A new very-general method to generate
random modal formulae for testing decision procedures. Journal of Artificial
Intelligence Research, 2002. Submitted.

[22] G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order
theories with equality. In Machine Intelligence, 4, pages 135–150. American
Elsevier, New York, 1969.

[23] A. Voronkov. The anatomy of Vampire. Journal of Automated Reasoning,
15(2):237–265, 1995.

[24] A. Voronkov. Algorithms, datastructures, and other issues in efficient automated
deduction. In R.Goré, A. Leitsch, and T. Nipkow, editors, Automated Reasoning.
1st. International Joint Conference, IJCAR 2001, number 2083 in LNAI, pages
13–28, Siena, Italy, June 2001.

[25] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, edi-
tors, Advanced Functional Programming, number 925 in LNCS. Springer Verlag,
1995.

12

