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1 Introduction

- Tea or Coffee?

- Yes

- Huh? No, I mean, would you like tea or coffee?

- Yes

- Christ! Do you want tea?

- Yes

- So. . . no coffee?

- I’d prefer coffee.

- But. . . alright, so coffee it is. Milk or sugar?

- Yes

- . . . , milk?

- no

- One lump or two?

- Yes

- No, I mean. . . , how many do you want?

- Three

- Would you like some biscuits or choc. . . never mind. . .

One could wonder if it’s such a good idea to use logic to study natural
language. Actually one could wonder if it is such a good idea to study logic
at all. But, let’s suppose it is.

Many people with a more practical disposition in life consider it a lost
cause to say anything logical about language because it’s too intuitive.
They’re probably right. But, let’s suppose they aren’t.

The art would be to capture the intuitive part of language in logic.
Clearly language doesn’t quite behave as strictly logical as, well, logic does.
If I want coffee, logically the sentence “I want tea or coffee” is true. Somehow
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“Yes” doesn’t quite do it for us as a response to the question: “Would you
like tea or coffee?”.

There is a difference between the semantical content of an utterance and
the conversational intentions of the speaker of an utterance. When I ask you
if you want tea or coffee, I give you three options to choose from namely tea,
coffee or nothing. I expect you to choose precisely one of those options. This
is the conversational intention but it’s not part of the semantical content. In
the field of linguistics these conversational intentions are commonly referred
to as conversational implicatures or just implicatures.

There are many different approaches to give a formal account for impli-
catures. Paul Grice has been most influential in this area (if not only for
coining the term implicatures).1 Much contemporary research is based on
the findings of Grice.

Grice suggested that a speaker obeys certain conversational conventions.
For instance, someone wants to say something he believes is true and rel-
evant. The speaker has an intended meaning and by means of these con-
versational conventions this intended meaning is mapped to an utterance.
The hearer of the utterance can infer the intended meaning by taking the
speakers perspective into account.

Grice proposed a list of four conversational conventions (maxims). In
[1] Maria Aloni proposes to formalize these maxims in bidirectional opti-
mality theory (BiOT). With this paper I try to investigate how well Aloni’s
approach works and how to improve Aloni’s findings.

This paper contains nine sections. The first three set out the field. Dis-
cussing some common ways of dealing with implicatures. Section four and
five build up to Aloni’s approach. In section six the problems with Aloni’s
approach are discussed. This leads to some suggestions to improve this ap-
proach (worked out in section seven). The last two chapter are reserved for
the conclusion and discussion of the suggested improvements.

2 What are implicatures?

First things first. What is the problem we’re facing?
It is not hard to come up with a sentence where the meaning of the

sentence and the conversational intentions are not the same. Consider the
utterance (1).

(1) John is married or in love.

1In [12] for example
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This sentence is true if John is married but not in love and vice versa.
Similarly, if John is both married and in love the sentence is logically true.
This is, however, not how we tend to interpret such a sentence. There are a
number of conclusions we draw when we hear such a sentence that are not
explained by the meaning. For instance, the speaker holds it possible John
is married and he also holds it possible that John is in love. He doesn’t
know which one of the two is the case. If the speaker would had that John
is married, he would simply have stated:

(2) John is married

If the speaker had known that John is in love, he would have said:

(3) John is in love

Another conclusion we draw is that the speaker doesn’t know that John is
both married and in love. Even if this were a realistic situation, the speaker
would have said:

(4) John is married and in love

So, after hearing a sentence like “John is married or in love” we draw a
number of conclusions on what the speaker believes. These intentions are
typically not logically implied by the meaning of the sentence. However,
they are implicated by the speaker2.

Grice One could dream up many kind of implicatures. And of course,
finally we would like to have an analysis that can account for all imaginable
implicatures, as we would like to live in a world of peace and prosperity.
This paper will be mainly concerned with disjunctive sentences (sentences
containing the word ‘or’) and its implicatures.

As said before Grice offered a general way of reasoning about such sen-
tences that accounts for implicatures. Before studying Grice’s approach
further, let’s have a look at the kind of sentences we’re considering.

2The implicatures of an utterance are generally not part of the meaning. But, as Kent
Bach (in [?]) notes, there are some exceptions. Consider example (5).

(5) Q Nobody voted Berlusconi I hope?

A Well, Alessia voted for Berlusconi.

⇒ Someone voted for Berlusconi.

The implicature that someone voted for Berlusconi is actually implied by the sentence
“Allessia voted for Berlusconi”.
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Disjunctive sentences have been thoroughly studied. Most research seems
to have reached some consensus on what implicatures of a simple disjunc-
tion should be. The examples of inferences here are taken from [4]. Though
much related research uses very similar examples and inferences ([?], [?],
. . . ). Consider the sentence “John is married or in love”.

(6) The implicatures for “John is married or in love”:

(a) Basic meaning:
Either John is married or in love or both.

(b) Ignorance inferences:
The speaker does not know that John is married.
The speaker does not know that John is in love.

(c) Scalar implicatures:
John is not both married and in love.

(d) Further consequences:
The speaker thinks it’s possible that John is married
The speaker thinks it’s possible that John is in love

I adopted the terminology (ignorance inferences and scalar implicatures)
from Fox. Not all research uses the same terminology. Sauerland refers
to ignorance inferences as primary implicatures and scalar implicatures as
secondary implicatures. Gazdar and Schulz & van Rooij use the term clausal
implicatures rather than ignorance inferences.

2.1 Classic Gricean reasoning

These implicatures arise from the inference of the ‘direct’ meaning of a sen-
tence and general communication principles. These principles as formulated
by Grice confine the way we communicate information.

Quantity Be as informative as needed, but not more than that

Quality Be correct

Manner Be brief and orderly

Relation Be relevant

The implicatures as described in (6) are generally taken to be the conse-
quence of the quantity principle3. Suppose the speaker utters a disjunctive

3Sauerland, Fox, van Rooij
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sentence:
A ∨B

Does the speaker know that A? No, A is stronger then A ∨ B. By the
quantity principle the speaker should have said A. Similarly the speaker
doesn’t know B. So we derive:

¬�A ∧ ¬�B

The same goes for A∧B. If the speaker would have known A∧B he would
have said so. He didn’t, so:

¬�(A ∧B)

Let’s assume the speaker to be competent on the issue. When he doesn’t
know something it is because it isn’t true. This requires some consideration.
By saying A ∨ B the speaker already indicates that there are things he
doesn’t know. Assuming the speaker has full knowledge of the world would
lead to contradictions. If we assume that ¬�A implies ¬A and ¬�B implies
¬B, we would derive ¬(A∨B). This is inconsistent with the initial sentence
A ∨B. We can however consistently derive

¬(A ∧B)

With this last assumption (competence) we have to be careful. We sup-
pose that a speaker is well informed, but only if this doesn’t give rise to
contradictions. Not all research agrees on how to deal with this.

2.2 Alternatives

Until now we only considered the alternatives A∧B, A and B to A∨B. But
we can not just take any φ and compare it to A∨B. Consider (A∨B)∧¬(A∧
B). This is stronger thenA∨B. So by quantity we get ¬�[(A∨B)∧¬(A∧B)].
Together with �¬(A∧B) this yields ¬�(A∨B). Freely applying the quantity
principle on any sentence leads to contradictions. Sauerland refers to this
as the symmetry problem.

A common way to deal with this is by defining a set of alternatives for
a sentence. The alternatives for φ (generally written as Alt(φ)) are the
sentences that could have been uttered in stead of φ. The example above
will work well if we take Alt(A ∨ B) = {A,B,A ∧B}. To define this set of
alternatives is not straightforward, many different approaches can be found
in the literature.
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2.3 Applications

Most theoretical research based on Grice’s maxim’s goes along these lines.
They all use the maxim of quantity, quality and relevance. (With the ex-
ample above we implicitly assumed the speaker to say something correct
and relevant.) Manner is generally ignored. In [1] Aloni proposes a system
that incorporates this Manner principle as well. This proposal forms the
foundation of the research presented in this paper. But before that we take
a look at some alternative approaches.

3 Some Gricean Approaches

There are many solutions to the problem of implicatures. To set out the
field, I’ll briefly discuss two solutions. They’re far enough apart to at least
give an impression of the field that makes up the context of my research. In
the following I’ll discuss Fox’s syntactic approach to the problem. Then I’ll
discuss a more ‘classical’ solution by Schulz & van Rooij.

3.1 Fox

Normally to find scalar implicatures one first derives ignorance inferences.
Those ignorance inferences together with the assumption that the speaker
is competent leads to the scalar implicatures.

But, this kind of analysis causes problems with the free-choice inferences.
This is the main reason for Fox to dismiss any such analysis. To show how
such an analysis can go wrong consider Sauerlands definition of alternatives4.
He suggests a system that generates the alternatives

{A,B,A ∧B}

for A ∨ B. So for A ∨ B this generates the right implicatures. But it
doesn’t work for free choice. I’ll take ♦D and �D as the deontic modals.
For ♦D(A ∨B) it gives the alternatives

♦DA,♦DB,♦D(A ∧B)

Quantity yields the ignorance inferences ¬�♦DA and ¬�♦DB. This is un-
wanted. It contradicts the standard free choice implicature �(♦DA∧♦DB).

Fox observes that scalar impicatures can be derived in a syntactical way.
The implicatures arise when we reinterpret the sentence as if it contained

4In [?], Sauerland (2004)
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the word ‘only’. When we say “John send a love letter to Mary or Sue” we’d
interpret the sentence as “John send a love letter to only Mary or Sue”.

It should be clear that for a simple disjunct this gives the right read-
ing. This turns the whole reasoning around. The neo-gricean approach first
determines the ignorance inference and derives the scalar implicatures from
there. Fox turns this around. The ‘only’ operator gives the scalar implica-
tures, and from this strong reading (basic meaning + scalar implicatures)
we derive the ignorance inferences. A∨B will be read as only(A∨B). This
gives the exclusive reading A▽B. When we apply the quantity maxim to
the strong reading A▽B we find the right ignorance inferences.

3.1.1 The syntactic solution

Fox assumes that there is a covert exhaust operator. Intuitively, when we
apply this operator to a sentence S (Exh(S)) it gives something in the likes
of “S and nothing else(/stronger)”

Trying to avoid some obstacles on the way, the final definition that Fox
comes up with is:

[[Exh]](Ast,t)(pst)(w) ⇔ p(w) & ∀q ∈ I-E(p,A) → ¬q(w)

That is, the exhaustive interpretation of a sentence p given a set of alterna-
tives A is the set of worlds w where:

• (1) p is true

• And (2) if q is innocently excludable given A (can be excluded without
deriving any contradictions) then q doesn’t hold in w.

Innocently excludable (I-E) is defined as:

I-E(p,A) =
⋂

{A′ ⊆ A|A′ is a maximal set in A such that A′¬∪{p} is consistent}

(with S¬ = {¬x|x ∈ S})

This is a rather convoluted definition. I’ll use an example to illustrate the
idea. Consider the sentence X∨Y then A = {X,Y,X∧Y }. Then {X,X∧Y }
is a maximal set such that {X ∨ Y,¬X,¬(X ∧ Y )} is consistent. The same
holds for {Y,X ∧Y }. The set {X ∨Y,¬Y,¬X,¬(X ∧Y )} is inconsistent. So
the maximal sets that are consistent are {X,X ∧ Y } and {Y,X ∧ Y }. The
intersection gives I-E(X ∨ Y,A) = {X ∧ Y }.

Applying this exh operator gives a stronger reading of the sentence.
Sometimes after applying the exh operator we don’t get a strong enough
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reading. In these cases the exh should be recursively reapplied till it gives a
strong enough reading. We’ll return to this issue below.

The set of alternatives is defined syntactically in terms of horn clauses.
Horn clauses are sets of similar operators. In this case: {♦,�} and {∧,∨, L,R}.
The alternatives of φ (Alt(φ)) can be generated by replacing one or more
operators in φ with an operator from the same horn clause. Note that L and
R are not actual operators. They’re just a means to get rid of one of the
disjuncts/conjuncts in a disjunction/conjunction (φLψ = φ and φRψ = ψ).

Simple disjunction One application of exh operator directly gives the
right results for a simple disjunction. Take A∨B. The set of alternatives is
{A,B,A ∧B}. As shown before, the only innocently excludable alternative
is A ∧B. So we get the strong reading (A ∨B) ∧ ¬(A ∧B).

After establishing the strong reading application of the quantity maxim
should give the right ignorance inferences. In this case A and B are both
stronger then the strong reading (A ∨ B) ∧ ¬(A ∧ B). The speaker didn’t
say them, so he doesn’t know that they are true. This gives the ignorance
inferences ¬�A and ¬�B.

Free choice For the free choice effect a single application of exh doesn’t
suffice. Take ♦D(A∨B). The alternatives for this sentence are {♦DB,♦DA,♦D(A∧
B)}. The only innocently excludable alternative is ♦D(A∧B). So, the strong
reading after one pass of exh is ♦D(A ∨B) ∧ ¬♦D(A ∧B).

For a second application of exh we have to determine the strong reading
for all the alternatives in Alt (the alternatives of ♦D(A ∨B)):

1. Exh(Alt)(♦D(A ∨B)) = ♦D(A ∨B) ∧ ¬♦D(A ∧B)

2. Exh(Alt)(♦DA) = ♦DA ∧ ¬♦DB

3. Exh(Alt)(♦DB) = ♦DB ∧ ¬♦DA

4. Exh(Alt)(♦D(A ∧B)) = ♦D(A ∧B)

The innocently excludable (strong) alternatives are 2 and 3. So the second
pass of exh gives the strong reading ♦D(A ∨ B) ∧ ¬♦D(A ∧ B) ∧ ¬(♦DA ∧
¬♦DB)∧¬(♦DB ∧¬♦DA). This, together with the original sentence, gives
the free choice reading: ♦DA ∧ ♦DB (∧¬♦D(A ∧B)).
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3.2 Problems with Fox

So, according to Fox, scalar implicatures are the result of exhaustification
and primary implicatures are derived from the strong meaning. This so-
lutions works to explain free choice implicatures. However, this syntactic
solution has its vices.

Ad hoc First of all I’d like to point out a minor weakness in Fox’ argument
for why his approach is better then many other approaches. Fox suggests
that his approach is less ad-hoc then many others. Fox starts out by pointing
out that neo-gricean solutions rely on a rather “arbitrary” set alternatives
to get ignorance inferences. These sets of alternatives are indeed ad-hoc
and a solution that can avoid them would be very welcome. And, indeed,
given the scalar implicatures of a sentence, Fox doesn’t need such a set of
alternatives to derive ignorance inferences. However, to compute the scalar
implicatures he does need alternatives. So indirectly they’re also used to
derive the ignorance inferences.

This is not to say that it is bad thing to use alternatives. But I don’t
see how this solution can be considered less ad-hoc the any other solution.
Above that Fox defines this rather obscure ‘innocently excludable’, to make
sure we don’t get any contradictory implicatures. If anything that makes it
even more ad-hoc then the classical gricean approach.

Pragmatic A more fundamental problem is the way the exh operator is
applied. To get the right implicatures, the exh operator should sometimes
applied once (A∨B), sometimes twice (♦(A∨B), and sometimes not at all.

To see that you don’t always have an exhaustive interpretation, consider
example (8).

(7) Who voted (of Allessia, Maria and Jean-Louis?)

Not Allessia and Maria

It is not directly clear what the implicatures of such a sentence should be,
but it doesn’t necessarily get an exhaustive interpretation. The sentence
¬(A ∧B) (or equivalently ¬A ∨ ¬B) generates the alternatives:

Alt(¬A ∨ ¬B) = {¬A,¬B,¬A ∧ ¬B}

The only innocently excludable alternative is ¬A∧¬B. So we derive ¬(¬A∧
¬B) or

A ∨B

12



But intuitively the utterance “Not Allessia and Maria” does not give rise to
the exhaustive interpretation that “Allessia or Maria” voted. Often Gricean
reasoning gives an exhaustive interpretation of a sentence. But it doesn’t
always need to.

Fox accounts for this by saying that we pragmatically decide whether or
not to apply the exh operator. We first interpret the sentence without any
exh operator. If that gives a pragmatically implausible reading we reevaluate
the sentence with the application of exh. If that still gives an implausible
reading we apply exh again, etc. . .

But what does this intuitively mean? The exh operator is based on the
Gricean maxims. One application of exh is saying as much as ‘interpret the
utterance as if the speaker obeys Grice’s maxims’.

But then, as a consequence by saying that exh should by pragmatically
applied as needed, means that the speaker sometime does obey Grice’s max-
ims and sometimes doesn’t depending on the particular sentence.

Why would a speaker decide to obey Grice when he says A ∨ B, but
ignore Grice when he says ¬(A ∧B)?

And, even worse, what does the double application of exh mean for the
sentence ♦D(A ∨B)? The speaker obeys the Gricean maxims doubly?

Grice’s maxims are intended as general rules of conduct in communica-
tion. If they’re used to explain certain implicatures they can not be dis-
carded of when they’re in the way.

Indeed, we don’t always get an exhaustive interpretation. In Fox’ ap-
proach this is explained by supposing that sometimes Gricean reasoning is
used and sometimes it isn’t. I think that defies the point of Grice’s maxim’s.
It would be more systematic to suppose the Gricean maxims and, explain
how they sometimes give rise to an exhaustive interpretation and sometimes
don’t.

3.3 Schulz & van Rooij

Schulz & van Rooij offer an alternative approach in [?]. They propose to
unify the competence and quantity principle in one operator they call eps.
Their eps operator can be seen as an exhaustivity operator as well, but
differs much in dynamic from Fox’ exh.

Alternatives according to Schulz & van Rooij are alternative answers to
a background question. This avoids the need for the syntactic hustle with
alternatives. Intuitively, if a sentence φ is the response to a question Q
any sentence that could have been a response to the same question is an
alternative for φ (relative to question Q).
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The eps operator selects the worlds that best explain a utterance φ. First
it selects those worlds for which sentence φ respects the quantity maxim.
From the worlds left those are selected that maximize the knowledge of the
speaker. Formally:

epsC(A,P ) =def {w ∈ griceC (A,P )|∀w′ ∈ griceC(A,P ) : w 6⊏A,P w
′}

Where epsC(A,P ) is the set of worlds that best explain sentence A. A is
the sentence of interest, C = 〈W,R〉 is the context in which this sentence is
uttered and P is the background question. The quantity part is taken care
of by the griceC operator. w ∈ griceC(A,P ) means that w is a world where
A is true and A obeys quantity in that world. And ⊏ is the competence
ordering. If w ⊏A,P w

′ then the speaker knows more about A relative to P
in w then in w′. First let’s look at the definition of grice.

griceC(A,P ) =def {w ∈ [KA]C |∀w′ ∈ [KA]C : w �P,A w
′}

[KA]C =def {w|∀v ∈ R(w) : v |= A}

w1 �P,A w2 iffdef ∀v2 ∈ R(w2)∃v1 ∈ R(w1) : v1 ≤P,A v2

where

v1 ≤P,A v2 iffdef [P ](v1) ⊆ [P ](v2) and [Φ](v1) = [Φ](v2)

with Φ is any non-logic vocabulary [sic]5(except for P of course). To break it
down: v1 ≤P,A v2 holds if less of P is true, for instance if [P ](v1) = {a, b} and
[P ](v2) = {a, b, c} Then w1 �P,A w2 if as little as possible knowledge about
P is assumed. For instance if R(w1) = {v1, v2} and R(w2) = {v1}. The
grice operator selects those worlds where the speaker know A, and doesn’t
know anything else that’s relevant.

The second part of the eps operator is to maximize competence. We
assume the speaker to be as well informed as consistent with what he said.
This is done with the ⊏ ordering

w1 ⊏A,P w2 iffdef ∀v2 ∈ R(w2)∃v1 ∈ R(w1) : v1 ≡P,A v2

With v1 ≡P,A v2 iff v1 ≤P,A v2 & v2 ≤P,A v1. This basically prefers worlds
which have less security. If we take R(w1) = {v1} and R(w2) = {v1, v2}
then w1 ⊏A,P w2.

5Schulz & van Rooij do not specify this non-logic vocabulary. Is suppose it means only
predicates (nothing containing any logical operators like ¬,∧, . . .)
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As we can see in the formal definition of eps, it first selects those models
that account for the ignorance inferences with grice. From the models left
the most competent one is selected. Fox used the innocently excludable
principle to ensure consistency of the implicatures. Schulz & van Rooij
don’t have to worry about consistency, models are consistent by definition.

3.4 Problems Schulz & van Rooij

With this approach the problem of using exhaustification becomes even more
apparent then with Fox. Consider the sentence 8.

(8) I know that John voted

The exhaustive interpretation doesn’t give the right predictions. There is
some exhaustification going on. But not in the way Schulz & van Rooij
intended it. To put it in terms of ‘only’, intuitively, this sentence should
read:

(9) I only know that John voted

However, the way Schulz & van Rooij define their exhaustification it reads:

(10) I know that only John voted

It is not the factual information but the speakers knowledge that is ex-
hausted in 8. This is more formally worked out in appendix A.

Schulz & van Rooij run into to trouble explaining modal sentences. Now,
for them it doesn’t matter. Schulz & van Rooij were only out to show how
exhaustification could explain scalar implicatures. But precisely this is the
problem. They devised a formalism that is specifically tailored to derive
scalar implicatures, they don’t give a general formalism of Grice’s Maxims.

In [2] Benjamin Spector argues that exhaustification (at least as defined
by Schulz & van Rooij) can not be used as the basis of scalar implicatures.
Consider the example given by Spector:

(11) Q Among the chemists and the philosophers, who came?

A Less than two of the chemists

Here exhaustivity would predict the wrong implicature:

(12) Exactly one chemist and all the philosophers came.

15



Grice made four assumptions about conversational behavior in general.
The objective is to formalize these four assumptions and show how they ex-
plain implicatures. By using the exhaustivity operator both Fox and Schulz
& van Rooij covertly assert two other assumptions:

1. Grice’s maxims always give rise to an exhaustive interpretation

2. All of the further implicatures can be explained in terms of this ex-
haustive interpretation

It seems to me that we should limit our assumptions to Grice’s maxims
and the way they’re formalized, and show how a proper formalization of
these maxims account for both scalar implicatures and exhaustivity.

3.5 Comparison Schulz & van Rooij and Fox

Before studying the BiOT approach in the next sections it might be useful
to take a look at how the above mentioned approaches relate. I started out
be showing how the classical gricean reasoning worked. Here I’ll show how
the two approaches of Fox and Schulz & van Rooij diverge from this classical
approach.

There are three main points where Fox and Schulz & van Rooij differ
from the classical approach. First of all there is the way competence is
dealt with. The classical approach assumes competence of the speaker if it
doesn’t contradict any of the earlier made ignorance inferences. Fox and
Schulz & van Rooij, assume competence where it doesn’t contradict any
other competence assumption that could be made.

A second point of disagreement are the way alternatives are defined.
Fox uses the syntactical definition of alternatives (using horn clauses) from
the classical approach. Schulz & van Rooij consider an utterance to be the
answer to a (covert) question. The alternatives are defined as alternative
answers to these questions.

Thirdly the three approaches compute the implicatures differently. Fox
first determines the scalar implicatures of a sentence. The basic meaning
plus the scalar implicatures make up the strong meaning of the sentence.
The ignorance inferences are derived from this stronger meaning. Schulz &
van Rooij use the more classical approach. They first determine ignorance
inferences and derive scalar implicatures from there. Figure 1 shows the
main differences.

Both Fox and Schulz & van Rooij solve the problems they set out for
themselves. But both solution are very specifically tailored and tweaked
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Classical ap-
proach

Fox Schulz & Van
Rooij

Competence Only if consistent
with ignorance in-
ferences

Only if consistent with other com-
petence assumptions

Alternatives Syntactical definition. Using Horn
clauses

Depending on is-
sue

Computation order Ignorance infer-
ences → scalar
implicatures

Scalar implica-
tures → ignorance
inferences

Ignorance infer-
ences → scalar
implicatures

Figure 1: ...

around those problems. They need quite some ad-hoc moves to get the
right implicatures. Both approaches take exhaustivity as the basis. Which,
as I argued before, is an additional assumption. And neither definition of
the exhaustivity operator is very intuitive. This paper aims to develop a
system that does not assume exhaustivity. The aim is to give an intuitive
as possible formalization of Grice’s maxims and show how exhaustivity and
scalar implicatures follow from these maxim’s.

Granted, we’ll still have to make some assumptions on how to formalize
the maxims, but they’re isolated and relatively easy to study independently
(this will become clear later on).

4 Grice and reasoning with constraints

In the previous sections I introduced the problem of implicatures and we’ve
seen some ways of dealing with them. We’re heading for a very different
approach. Building upon the work of Aloni in [1] I’ll be using bidirectional
optimality theory (BiOT) to formalize the gricean constraints. For this we’ll
have to sidestep a bit and study BiOT itself first. The next chapter we’ll
be mainly concerned with a more formal studies of BiOT. In the chapter
to follow (chapter 6) we’ll see how BiOT can be used to implement Grice’s
maxims. Before going into the technical details of BiOT, I’ll first try to
explain the kind of reasoning we’d like to formalize at an intuitive level.

Aloni’s approach doesn’t rely on a formal definition of exhaustification.
Aloni proposed to take Grice’s maxims at face value. No ad-hoc moves.
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No rummaging about with alternatives, but rather a direct formalization of
reasoning with Grice’s maxims.

To see how this could work consider the following example. Suppose the
hearer (mr. H) asked the question:

(13) Who voted for Berlusconi (of Alessia and Maria)?

And the speaker (mr. S) is well informed on this matter. He knows that
only Alessia voted and he wants to communicate this. He’d have to look for
a good sentence to communicate this. Obviously he would’t say:

(14) Alessia and Maria.

It’s just not true. So he could choose between

(15) Alessia and not Maria.

and simply

(16) Alessia.

Clearly 15 is more precise then 16. So by the Quantity maxim of Grice mr.
S should opt for 15. On the other hand there is the Manner maxim that
dictates that mr. S should be brief and orderly. According to the Manner
maxim mr. S should go for option 16.

So the Manner and Quantity principles do not agree on which utterance
is best. We have to choose which one is more important. Normally most
people would take option 16 so apparently Manner wins this battle. So,
finally, mr. S chooses to say

(17) Alessia.

Now it is up to mr. H to determine what mr. S could have meant by
saying “Alessia”. Clearly it is the case that Alessia voted for Berlusconi.
But what about Maria? Mr. H has two options to consider.

(18) 1. Alessia and Maria voted Berlusconi.

2. Alessia voted Berlusconi and Maria didn’t.

So now mr. H takes the speakers perspective. What would I have said in
both cases?

Suppose that Alessia and Maria both voted for Berlusconi then he wouldn’t
have said Alessia voted. Rather he would have said “Alessia and Maria”.
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Mr. H realizes this so he considers it unlikely that Alessia and Maria both
voted.

Suppose that Alessia voted Berlusconi but Maria didn’t. Then using the
same reasoning as mr. S did, mr. H comes to the conclusion that he would
have said “Alessia”. Since mr. S indeed said “Alessia”, it is probably correct
to conclude that Alessia voted but Maria didn’t.

There are two elements in this scenario that led to successful communi-
cation.

• Reasoning with Grice maxims.

• Considering the other’s perspective.

To successfully formalize Grice we need to consider both aspects. Bidi-
rectional optimality (BiOT) does precisely this. The rest of this section will
cover BiOT. The next section explains Aloni’s approach.

4.1 Definition BiOT

Given a utterance f we’d like to have a way to find a meaning m that best
explains the utterance (respecting Grice’s maxims). Bidirectional optimality
offers a way to do this.

Bidirectional optimality is a way to match an input with an optimal
output (in our case the input is a sentence and the output is it’s meaning).
Generally speaking BiOT is a formal system to reason about constraints.
There are constraints on the input and output. The more of those constraints
are violated, the less good an output matches an input. In this paper we
use logical sentences as input and models as output. For the constraints we
take the gricean maxims. One (quite trivial) constraint for example is that
a model should be correct for an output (the QUALITY constraint).

Not all constraints are equally important. They are ranked. For instance
in Aloni’s proposal QUALITY is more important than MANNER. It is more
important to be correct than to be brief. So QUALITY will be a higher
ranked constraint than MANNER (notation: QUALITY ≺ MANNER. In
BiOT, higher ranked constraints take absolute precedence over lower ranked
constraints. Take A,B and C constraints with ranking A ≺ B ≺ C. A
violation of A is worse than one of B or C even if the violation of B or C is
much stronger than the one of A.

For the remainder of the paper I’ll stick to Jäger’s ([5]) definition of
bidirectional optimality. We use GEN to denote the possible input/output
pairs. In our case, if f is a sentence in modal logic and m is a model then
〈f,m〉 ∈ GEN.
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Along the lines of Jäger we suppose that the constraints yield an ordering
over GEN. Where 〈f,m〉 < 〈f ′,m′〉 means that 〈f,m〉 is preferred over
〈f ′,m′〉. How this ordering is obtained precisely will be explained below.
Given such an ordering the optimal pairs can be calculated. There are
two different definitions of which pairs are optimal, strong optimality and
weak optimality. In this paper we’ll only be using weak optimality, but for
completeness sake, I’ll give both definitions. Strong optimality:

Definition 〈f,m〉 is strongly optimal iff

• there is no 〈f ′,m〉 such that 〈f ′,m〉 < 〈f,m〉

• there is no 〈f,m′〉 such that 〈f,m′〉 < 〈f,m〉

Weak optimality:

Definition 〈f,m〉 is weakly optimal iff

• there is no weakly optimal 〈f ′,m〉 such that 〈f ′,m〉 < 〈f,m〉

• there is no weakly optimal 〈f,m′〉 such that 〈f,m′〉 < 〈f,m〉

Weak optimality has an additional recursive part. In [5] Jäger shows that
if 〈GEN, <〉 is well founded this recursive definition is well defined (i.e. for
every pair 〈f,m〉 ∈ GEN it is defined if it is weakly optimal or not).

To see the difference between weak optimality and strong optimality
consider figure 2. In this figure GEN = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉}. The

〈0, 0〉(SO,WO) 〈0, 1〉(X)

〈1, 0〉(X) 〈1, 1〉(WO)

Figure 2: Example, optimality. SO: Strongly optimal, WO: Weakly optimal,
X: Neither

arrows show the ordering over GEN. The pair 〈0, 0〉 is both weakly optimal
and strongly optimal, simply because there isn’t a smaller pair. The pairs
〈1, 0〉 and 〈0, 1〉 are neither weakly nor strongly optimal. They’re blocked
by 〈0, 0〉. Pair 〈1, 1〉 isn’t strongly optimal. It is blocked by both 〈1, 0〉 and
〈0, 1〉. But since 〈1, 0〉 and 〈0, 1〉 aren’t weakly optimal, 〈1, 1〉 is weakly
optimal. (Note that 〈0, 0〉 doesn’t block 〈1, 1〉 even though 〈0, 0〉 < 〈1, 1〉;
they differ in both arguments.)

20



One of the main challenges with optimality theory is to define the or-
dering on GEN. There are two kind of constraints, markedness constraints
and faithfulness constraints. Markedness constraints are constraints on ei-
ther only the input or the output. Faithfulness constraints are constraints
on the relation between the input and output. For instance MANNER is a
markedness constraint (a brief and orderly sentence is preferred over a more
verbose sentence). This doesn’t say anything about the relation between
input and output (sentence and model). QUALITY, on the other hand is a
faithfulness constraint (a sentence-model pair that is consistent is preferred
over an inconsistent pair).

Take F to be the set of all possible inputs (sentences) and M the set of all
possible outputs (models)6. Markedness constraints are orderings on either
F or M . Faithfulness constraints are (in it’s most general sense) orderings
on F ×M .

The overall ordering on GEN is the lexical composition of all those
orderings. So, if the ordering is determined by A ≻ B ≻ . . . ≻ N then:

t < t′ iff t <A t
′

∨ t 6<A t
′ ∧ t 6>A t

′ ∧ t <B t

∨ . . .

∨ t 6<A t
′ ∧ t 6>A t

′ ∧ t 6<B t′ ∧ t 6>B t′ ∧ . . . ∧ t <N t

With the note that if two constraints A and B are equally ranked we get
that:

t <A,B t
′ iff t <A t

′ ∧ t ≤B t
′

∨ t ≤A t
′ ∧ t <B t

′

4.2 Weak optimality: Markedness implies Markedness

For the rest of the paper we’ll be using weak optimality. We’ll see later on
that weak optimality captures the dynamics of the implicatures of interest
better. In weak optimality, a marked input is not entirely blocked for any
output but will generally be optimal for a marked output.

Consider figure 3. In this example there are two markedness constraint,
one for input f and one for output m. I use ⊙ to indicate that a pair is

6The definition of both strong and weak optimality is symmetric. Considering a sen-
tence input is taking the hearers perspective. But, due to it’s symmetry we can just as
easily turn it around and say that the model is the input (and thus taking the speakers
perspective)
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optimal and ⊗ to indicate non optimality. f∗ indicates marked input and
m∗ indicates marked output. With strong optimality (figure 3(a)), only the
pair 〈f,m〉 is optimal. With weak optimality (figure 3(b)) both 〈f,m〉 and
〈f∗,m∗〉 are optimal.

f ⊙ ⊗

f∗ ⊗ ⊗

m m∗
(a) Strong optimal-
ity

f ⊙ ⊗

f∗ ⊗ ⊙

m m∗
(b) Weak optimal-
ity

Figure 3: Markedness implies markedness

Here we see that the marked input takes a marked output. In appendix
B a more complete and formal study can be found of this.

4.3 Lexical indifference

The ranking of constraints can in general make a big difference for any BiOT
analysis. In some cases it doesn’t however. If we have two constraints <M
and <F on M and F (I’ll drop the subscripts if it’s clear about which order
we’re dealing with), the respective ranking of the two constraints doesn’t
matter. This follows almost directly from the definitions.

〈f,m〉 is w-opt iff

• there is no 〈f ′,m〉 <t 〈f,m〉 where 〈f ′,m〉 is w-opt.

• there is no 〈f,m′〉 <t 〈f,m〉 where 〈f,m′〉 is w-opt.

Depending on which constraint is higher ranked <t is defined as follows:

• <t,lex1: 〈f,m〉 <t 〈f
′,m′〉 iff f <f f

′ ∨ (f 6<f f
′ ∧ f 6>f f

′ ∧m <m m′)

• <t,lex2: 〈f,m〉 <t 〈f
′,m′〉 iff m <m m′ ∨ (m 6<m m′ ∧m 6>m m′ ∧ f <f

f ′)

We see that:

Lemma 1. 〈f,m, 〉 is weakly optimal with respect to <t,lex1 iff it is weakly
optimal with respect to <t,lex2

Proof. Lexical indifference
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〈f ′,m〉 <t,lex1 〈f,m〉 iff (since m = m) f ′ <f f iff 〈f ′,m〉 <t,lex2
〈f,m〉.

〈f,m′〉 <t,lex1 〈f,m〉 iff (since f = f)m′ <m m iff 〈f,m′〉 <t,lex2 〈f,m〉

It directly follows that 〈f,m, 〉 is weakly optimal with respect to <t,lex1
iff it is weakly optimal with respect to <t,lex2

In a weakly optimal system without faithfulness constraints we can
rewrite the definition of weak optimality as: 〈f,m〉 is w-opt iff

• there is no f ′ < f where 〈f ′,m〉 is w-opt.

• there is no m′ < m where 〈f,m′〉 is w-opt.

The order of these constraints doesn’t make any difference. The relevance
of this will become clearer later on.

5 Aloni’s BiOT approach

In [1], Aloni uses BiOT to account for the implicatures we’ve seen. Let’s
take another look at example 16, repeated here:

Q Who voted for Berlusconi (of Alessia and Maria)?

A Alessia voted.

⇒ Maria didn’t vote.

In the third section of this paper we’ve seen two approaches that use ex-
haustification to account for these kind of implicatures. Exhaustification
essentially means that the answer “Alessia voted” should be interpreted as
if it says “only Alessia voted”. The main objection I discussed is that these
approaches can be a bit ad hoc. Besides one can think of sentences that can
not be explained in terms of exhaustification (like: “Not both Alessia and
Maria voted.”).

In this section I’ll discuss Aloni’s approach. As with the other approaches
we assume a logical representation of the sentences we’re taking into con-
sideration. In this case we use a propositional modal logic. The meaning of
the logical sentence is determined by a semantical and a pragmatical part.
The semantics are not part of this research (nor of Aloni’s) so I won’t go
into more detail than needed to study the pragmatical side.
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5.1 Semantics

First of all we’d need to find a logic system to represent the sentences. For
the examples we’re considering modal proposition logic suffices. Aloni uses
the update semantics as defined by F. Veltman in [10] with ♥ as additional
operator. The ♥ is a modal operator that is used to indicate if someone
cares about something. “Cares if φ is the case” is written as ♥?φ. This is
needed to formalize the RELATION maxim.

The update semantics is defined over a set of worlds W and a valuation
V a function from worlds and propositions to truth values. The contexts
that are updated encode the knowledge and interests of the speaker. A
context is a pair 〈s,Q〉. s is the state (a set of possible worlds that encodes
the speakers knowledge) and Q is the issue (an equivalence relation over
W ). If C = 〈W,W 2〉 the speaker knows nothing and cares about nothing.
If C = 〈{w}, {〈x, x〉|x ∈W}〉 the speaker knows everything and cares about
everything.

Definition [Updates]

• C[p] = C ′ iff sC′ = {W ∈ sC |V (p)(w) = 1} & QC′ = QC

• C[¬φ] = C ′ iff sC′ = sC\sC[φ] & QC′ = QC

• C[φ ∧ ψ] = C[φ][ψ]

• C[�φ] =

{

C if C[φ] = C
〈∅, QC 〉 otherwise

• C[?φ] = C ′ iff sC′ = sC & QC′ = {(w, v) ∈ QC |〈{w}, QC 〉[φ] =
〈{w}, QC 〉 iff 〈{v}, QC 〉[φ] = 〈{v}, QC 〉}

• C[♥?φ] =

{

C if C[?φ] = C
〈∅, QC 〉 otherwise

Other operators can be derived in the normal way. Entailment is defined in
terms of updates as follows:

Definition [Entailment] C |= φ iff C[φ] = C

To see how this works, consider (again) example 16. Let W be the set of
worlds we take into consideration and s ⊆W the set of worlds that encode
the speakers knowledge. We start out without any issue (Q = W 2). First
the issue is determined by the question:
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Q Who voted for Berlusconi (of Alessia and Maria)?

This question updates the context with C = 〈s,W 2〉[?A∧?M ] (A means
“Alessia voted” and M means “Maria voted”). The first update 〈s,W 2〉[?A]
divides the issue into two equivalence classes: those worlds where Alessia
voted and those where she didn’t. The second update 〈s,W 2〉[?M ] further
divides the issue into worlds where Maria voted and where she didn’t. So
QC contains four equivalence classes: The one where neither Alessia nor
Maria voted, the one where only Alessia voted, the one where only Maria
voted and the one where they both voted. For the issue we can derive:

C |= ♥?A (19)

C |= ♥?M (20)

C |= ♥?A ∧M (21)

C |= ♥?A ∨M (22)

Now consider the second part of the dialogue, the answer:

A Alessia voted.

Let C ′ be the update of the context C with the answer A (C ′ = C[A]).
The state s′C thus (according to the definition) contains only those worlds
(w ∈ s) where Alessia voted (V (A)(w) = 1).

We’re interested in the speakers knowledge. I.e. what are the possible
contexts C that can explain the utterance “Alessia voted”. These are the
contexts where:

C |= A

In other words (according to the definition) those contexts C for which
the update with A doesn’t change anything (C[A] = C). Thus (in this case)
those contexts where sC only contains worlds where Alessia voted.

One of the contexts that explains the utterance A could for instance be
〈[wAM , wA], Q〉, a context with a world where only Maria voted and one
where both Maria and Alessia voted. For this context it doesn’t hold that
¬M . However we want to be able to explain the implicature ¬M . Clearly
this semantics alone isn’t enough. This is where the pragmatics come in.
With the help of BiOT we’ll select those context that are not only correct
but also explain the implicatures.

For the rest of the paper I’ll adopt Aloni’s shorthand Q?φ to denote
W 2[?φ] and Q?φ?ψ to denote Q?φ[?ψ].
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5.2 Pragmatics

So for the sentence A we’re interested in finding those sentence-context pairs
〈A,C〉 where not only C |= A but also C |= ¬M . The above mentioned
semantics doesn’t explain this exclusive reading. Using Grice’s maxims, the
pragmatics part is going to find an optimal context for a sentence (i.e. a
model that best explains an utterance). To do so, every Gricean constraint
needs to be formulated as an ordering.

Quantity Be as informative as needed, but not more than that

Quality Be correct

Manner Be brief and orderly

Relation Be relevant

Relation and quality are clearly to be encoded as faithfulness constraints.
Both are taken to be binary constraint. Either a sentence is true (or known
as true by the speaker) or not; and it is either relevant or not. Manner and
Quantity are markedness constraints on the logical sentence. Aloni intro-
duces an additional markedness constraint: The Minimal Model Principle.
This last constraint specifies which contexts (models) are preferred. All the
markedness constraints are gradual constraints.

With these constraints we want to find optimal models for a sentence.
For the sentence-context pair 〈φ,C〉 the faithfulness constraints are defined
as binary constraints.

Definition [Faithfulness]

Quality (QUAL): C |= �φ

Relation (REL): C |= ♥?φ

The markedness constraints over φ and C are gradient constraints.

Definition [Markedness]

Quantity (QUAN): φ <Q ψ iff φ |= ψ and ψ 6|= φ.

Manner (MAN): If m(φ) is the number of occurrences of modal operators
and negations in φ then φ <M ψ iff m(φ) <M m(ψ).

Minimal models (MM): The minimal model principle is defined as follows:

C ≤MM C ′ iffdef QC = QC′ & ∀v ∈ sC∃v
′ ∈ sC′v ≤C v

′
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Context C is smaller then C ′ if they’re about the same issue and all worlds
in C are smaller then some world in C ′. Of course we still need to define an
ordering over worlds (≤Q):

v <C v
′ iffdef ∀p s.th. p is atomic and C |= ♥?p : v |= p⇒ v′ |= p

Figure 4 shows an example of what this ordering looks like. The arrows
indicate the ordering.

wA wAB

w∅ wB wAC wABC

wC wBC
(a) ordering worlds

w∅ [wA] [wA, wB ] [wAB ]

[w∅, wA] [w∅, wA, wB ] [w∅, wAB ]

[wB ] . . .

[w∅, wB ]
(b) ordering contexts

Figure 4: Minimal model ordering for issue Q?A?B

5.3 Ranking

The semantics and constraints are defined. The last thing that needs our
attention is the ranking of the constraints. As above we’ll use ≺ for de
ordering of the constraints. Quality and Relation are taken to be the most
important constraints. For practical reasons, that will become apparent later
on, Aloni chooses Manner to be more important Quantity. This last part
doesn’t directly appeal to our intuitions and is only chosen as such for the
very practical reason that otherwise we won’t get the right results. As shown
earlier in the section on BiOT, the ranking of the Minimal Models constraint
doesn’t matter as long as it doesn’t precede the faithfulness constraints. So
we get:

Definition [Ranking] QUAL,REL ≻ MAN ≻ QUAN ≻ MM

(Which is equivalent to QUAL,REL ≻ MAN ≻ MM ≻ QUAN and to
QUAL,REL ≻ MM ≻ MAN ≻ QUAN).

This gives us enough information to determine if a pair 〈φ,C〉 is weakly
optimal.
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Definition [Implicature]
We say that ψ is an implicature of φ (write φ |≈ ψ) if for all C such that
〈φ,C〉 is weakly optimal C |= ψ

For the rest of the paper I’ll use the following formulations:

• Verbosity: f <M f ′ (manner ordering): f is less verbose then f ′

• Strength : f <Q f
′ (quantity): f is stronger then f ′

• Size : m <MM m′ (minimal models): m is smaller then m′

To see how this works take another look at example 16. For now, suppose
that we have only three sentences to consider, A, A ∧M and A ∧ ¬M ; and
two models [wA] and [wAM ] (For this example we’ll forget the issue). The
sentences A and A ∧M are minimally verbose (there are no sentences that
are less verbose). The sentence A ∧ ¬M is more verbose (it contains a
negation). The sentence A is the weakest sentence. The sentence A ∧M
and A ∧ ¬M are incomparable as to strength. The model [wA] is smaller
than [wAM ]. According to the definition of weak optimality the pair

〈A ∧M, [wAM ]〉

is weakly optimal. There is no pair that is smaller (〈A, [wAM ]〉 is dispreferred
by strength and 〈A ∧M, [wA]〉 violates Quality). The pair

〈A, [wA]〉

is also weakly optimal. The pair 〈A ∧ ¬M, [wA]〉 is dispreffered by Manner.
Since [wA] is the only optimal model for A, we get that:

A |≈ ¬M

This example is quite trivial. In the next section I’ll work out some ex-
amples to show that the principle also works if we take all possible sentences
and all possible models into account.

6 Discussion of Aloni’s approach

To give an idea of how the approach works I’ll start out with working out
some examples. This should make the definitions above a bit more insightful.
The second part of this section discusses where this approach goes wrong.
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6.1 Examples

For the remainder of the paper I’ll drop the issue if it is not relevant. When
I write [w0, w1, . . . wn] as a context instead of 〈[w0, w1, . . . wn], Q〉, I suppose
that we have some issue Q such that for all sentences φ we take into con-
sideration we have 〈[w0, w1, . . . wn], Q〉 |= ♥?φ. In other words if the issue is
dropped, we suppose that the relation constraint is not violated.

6.1.1 Exhaustification

Consider example 23.

(23)

Q Who voted (of John and Mary)?

A John

|≈ not Mary

The issue is QJ?M?. The sentence of interest J . I’ll use the common BiOT
practice of tables to show which contexts are optimal for J . ⇒ marks the
optimal pairs. ∗ marks the violation of a constraint (relative to the other
pairs in the table). To proof that J, 〈QJ?M?, [wJ ]〉 is optimal requires to

QUAL REL MAN QUAN MM
⇒ J 〈QJ?M?, [wJ ]〉 *

M 〈QJ?M?, [wJ ]〉 * *
J ∧M 〈QJ?M?, [wJ ]〉 *
J ∧ ¬M 〈QJ?M?, [wJ ]〉 *
J ∨M 〈QJ?M?, [wJ ]〉 **
Z 〈QJ?M?, [wJ ]〉 * * *

J 〈QJ?M?, [wM ]〉 * *
⇒ M 〈QJ?M?, [wM ]〉 *

J 〈QJ?M?, [wJ , w∅]〉 * *

J 〈QJ?M?, [wJM ]〉 * *
⇒ J ∧M 〈QJ?M?, [wJM ]〉 *

J 〈QJ?M?, [wJM , wJ ]〉 * *

Figure 5: Table for J . If row X contains more * then row Y for a certain
constrain, it means that the corresponding pair X violates that constraint
more then pair Y.
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list all possible models and sentences. Table 5 shows how other candidate
models for J violate more constraints. This obviously does not constitute a
proper proof. It does, however, illustrate the principle.

We can see that 〈J, 〈QJ?M?, [wJ ]〉〉 is weakly optimal. The context 〈QJ?M?, [wJM ]〉
is dispreferred on grounds of Minimal Models, and above that it is blocked
by the stronger sentence J ∧M . The context [wJM , wJ ] ins’t optimal for J
either (by Minimal Models). So, the model [wJ ] is preferred.

But, this is not all we need to check. We’re dealing with bidirectional
optimality. So we also have to check that there is no sentence φ that is
preferred over J by the model [wJ ]. J is already minimal as to Manner,
so φ can not contain any negations and modals. So even though J ∧ ¬M
is stronger then J , it isn’t optimal for this model since it violates Manner.
(Here we see why it is important that Manner is a higher ranked constraint
then Quantity). J ∧M simply violates Quality. �J also violates Manner.
So we cannot find a sentence φ that is stronger then J , that doesn’t violate
Manner. So we get an exhaustive reading for J (namely J |≈ ¬M).

6.1.2 Exclusive reading of disjuncts

For the reading of disjuncts look at the example 24

(24)

Q Who voted (of John and Mary)?

A John or Mary

|≈ not both John and Mary

Besides the exclusive reading we’d also like to conclude that the speaker
holds it possible that John voted and that Mary voted. This example is
worked out in table 6

The sentence J ∨M is optimal for the context 〈QJ?M?, [wJ , wM ]〉. This
gives the implicatures we aimed for. Namely the exclusive reading: J∨M |≈
¬(J ∧M) and also J ∨M |≈ ♦J ∧ ♦M

6.1.3 Modals

We saw that exhaustivity can run into problems with modal sentences.
Aloni’s account does not explicitly apply exhaustivity. It does follow when
required (as in the above examples), but the effect is not always there.
Unfortunately we do run into problems with modals with Aloni’s system.
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QUAL REL MAN QUAN MM

⇒ J ∨M 〈QJ?M?, [wJ , wM ]〉 **
J 〈QJ?M?, [wJ , wM ]〉 * *

J ∨M 〈QJ?M?, [wJ ]〉 **
⇒ J 〈QJ?M?, [wJ ]〉 *

J ∨M 〈QJ?M?, [wJM ]〉 ** *
⇒ J ∧M 〈QJ?M?, [wJM ]〉 *

J ∨M 〈QJ?M?, [wJ , wM , wJM ]〉 ** *

Figure 6: Table for J

This, however is not due to the exhaustivity effect but rather a contingent
problem.

Consider the example 25

(25)

Q Who voted (of John and Mary)?

A I know that John voted

|≈ Mary might or might not have voted

We’d like to find that �J is optimal for the model 〈QJ?M?, [wJM , wJ ]〉. In
this case �J |≈ ♦M ∧ ♦¬M . We don’t have to fear anything from J ,
this sentence already takes the smaller model [wJ ]. But, there is another
sentence that blocks 〈QJ?M?, [wJM , wJ ]〉, the stronger sentence J∧♦M (with
the current update semantics φ ⇔ �φ holds). According to the definition
of Manner �J and J ∧ ♦M are equally verbose. However if we’d say that
J ∧ ♦M is dispreferred by manner, we would get the right implicatures for
�J . So the fact that �J doesn’t get the right implicatures is just due to
the definition of Manner. This is not a fundamental problem with the BiOT
solution. It can be solved by defining Manner differently.

6.2 What doesn’t work

As a butterfly in China could theoretically cause a tornado in Europe, one
small change somewhere in the BiOT system can have big overall conse-
quences (though, I fear, the BiOT-effect will never become as popular an
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expression). In order to explain the implicatures of sentences we’re inter-
ested in, we have to consider the optimal pairs for sentences we’re not at
all interested in, sentences we might not have any intuitions about to begin
with. This makes any analysis in BiOT rather involved. For example, to
know the implicatures of �A we need to know what happens with A ∧ ♦B.

With Aloni’s approach we run into some problems due to this effect. In
this section I’ll discuss these problems. In the sections to follow, I’ll finally
come up with a proposal that aims to fix these problems.

6.2.1 Problems with the definition of Manner

Since there is no straightforward definition of manner, and the definition
that is given by Aloni, lacks an independent motivation, it is not surprising
that this definition yields some problems. It is not my intention to come
up with a better founded definition, but I’ll propose one that I think should
work slightly better. Here, I’ll point out some problems we run into with
the current definition. Manner is defined as “be brief and orderly”. This
intuitive notion of manner is implemented as the constraint “Modals and
negations should be avoided”. So A <m �A and ¬C <m ¬C ∧�B. Clearly
this does not give a complete account for the intuitive interpretation of
manner.

This of course needn’t be a problem. We’re only studying certain (rela-
tively simple) implicatures. It might be that for those examples a definition
purely in terms of modals suffices. The problem is that even for the impli-
catures we’re considering here this definition runs in to trouble. Consider
the following two examples:

(26) Q Who voted (Paul and Maria)?

A I know that Paul voted

|≈ Paul and possibly Maria voted

(27) Q Who voted (Paul and Maria)?

A Paul and possibly Maria

|≈ Paul and possibly Maria voted

As we have seen before, �P should take [wMP , wP ] as optimal model but
it doesn’t. The phrase P ∧ ♦M is preferred by quantity over �P (they’re
equal as to manner). Since P ∧ ♦M is w-opt for [wMP , wP ] it blocks this
model for �P .

We can find many similar problems. For instance �(A∨B) should take
[wA, wB , wAB ], but this one is blocked by (A ∨B) ∧ ♦(A ∧B)
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6.2.2 Manner always precedes quantity

Not only the definition of Manner itself yields problems but also the ranking
of the constraint. As it is defined by Aloni it always precedes Quantity. This
is done to get the right results (for instance to ensure that the sentence A∧
¬B is not preferred over A). This ranking, however, causes come problems
as well.

Example 1 Let’s take another look at example 26 and 27. Both expres-
sions should yield the same optimal model, namely [wPM , wP ]. Above we
saw that [wPM , wP ] is blocked for �P by P ∧ ♦M . This could trivially
be solved by defining the manner constraint such that �P is preferred by
manner over P ∧ ♦M . But in this case P ∧ ♦M will not get [wPM , wP ] as
optimal model.

As said before, we’re not particulary interested in the implicatures of
the utterance “Paul and possibly Maria voted”. So why not just accept that
this utterance doesn’t get the right model?

As also said before, the disadvantage of BiOT is that a small change
in some part of the system can have great overall effects. If P ∧ ♦M
doesn’t take the model [wPM , wP ] it will take a more marked model, like
[wPMJ , wPM , wP ]. This could lead to undesired effects.

So we’ve got two contesting sentences (�P and P ∧ ♦P ) for the some
model. However we’ll define manner, either �P will block P ∧ ♦P or the
other way around. Not all can be solved by finding the right definition for
manner.

Let’s look at another example that makes the same point:

Q Who voted (Paul and Maria)?

A Paul voted

|≈ Paul and not Maria

Q Who voted (Paul and Maria)?

A Paul voted, Maria didn’t

|≈ Paul and not Maria

The model we would like both sentences (P and P ∧ ¬M) to take the
model [wP ] as optimal. Unfortunately P can only take [wP ] if P is preferred
by manner over P ∧ ¬M . But in this case P ∧ ¬M cannot take [wP ] as
optimal model.
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So, there are some problems that arise with the current definition of
Manner that can not be solved by changing the definition. The ranking of
Manner causes problems as well.

Example 2 Sometimes we don’t mind being more verbose, if that allows
us to be clearer to the speaker. With the previous example we saw that
the sentences “I know that Paul voted” and “Paul and maybe Maria voted”
get the same model. For this example both sentences mean the same. The
second one leaves less to the interpretation of the hearer. At the cost of being
more verbose we can be more precise (leaving less up to interpretation).
This tendency is not accounted for by Aloni. Similar problems arise with
¬C (representing, for instance, the sentence “Carl didn’t vote”). Only here
our intuitions on what the proper implicatures should be, are less clear. The
example might be useful to illustrate the point nonetheless.

Figure 7 gives us a list of possible models for ¬C7. Which ones of these
are optimal? For every model we will have to consider if there exists a
sentence that is smaller than ¬C but doesn’t have a smaller optimal model
itself.

1 [wAB ] A ∧B
2 [wAB , w0] . . .
3 [wAB , wB ] B ∧ ♦A ∧ ¬C
4 [wAB , wB , w0] . . .
5 [wAB , wA ] . . .
6 [wAB , wA, w0] . . .
7 [wAB , wA, wB ] . . .
8 [wAB , wA, wB , w0] . . .

Figure 7: Some possible models for ¬C

Some of the models in this example are not optimal for ¬C. For instance
let’s take model 1. A∧B holds in this model. There is clearly not a smaller
model where A∧B holds and A∧B is preferred by manner over ¬C. Hence,
Model 1 is not weakly optimal for ¬C.

For the other proposed models it isn’t as easy to find a proper formula.
Let’s take model 3. B ∧ ♦A ∧ ¬C holds in model 3. And, is preferred by
quantity over ¬C. But, on the other hand, depending on your definition
of manner, it could very well be dispreferred by manner. Let’s say that all

7I left out all models that don’t contain wAB . Those models are all smaller and it’s
easy to show that they’re not optimal for ¬C
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formula’s for model 3 are dispreferred either by manner or quantity. Then
model 3 is an optimal model for ¬C.

Which models are optimal for ¬C heavily depends on the definition of
Manner. To make the point, let’s suppose we have such a definition of
Manner that the models 2 to 8 are all optimal for ¬C.

When the speaker says ¬C the hearer doesn’t know which one of the
models 2 to 8 represents the knowledge of the speaker. It might not mat-
ter. It might be that the speaker did not intend to communicate all his
knowledge. The speaker might for instance know that A and B always vote
together, if they vote. In this case the model that represents the knowledge
of the speaker is model 2 ([wAB ,W∅]).

If the speaker would want to be more precise and communicate this,
he’d have to say something like “Carl didn’t vote and I’m not sure about
Alessia and Bert but they always go together”. This would be represented by
something hideously verbose like ¬C∧((A∧B)∨(¬A∧¬B)). Unfortunately,
this sentence cannot be optimal for model 2. The sentence ¬C already blocks
¬C ∧ ((A ∧B)∨ (¬A ∧ ¬B)), since it’s preferred by Manner. The only way
for the speaker communicate model 2, is by saying ¬C.

So, having multiple optimal models for one sentence represents the un-
certainty of the hearer (the hearer doesn’t know which model it precisely is
that the speaker wants to communicate). This in itself is not a problem.
Often we don’t care to be so precise. But, with the current setup it is not
possible for the speaker to be more precise at the cost of being more verbose.

Initially this is not something Aloni wanted to model, so it doesn’t need
to be a problem. But, this problem is closely related to the formentioned
problems. It is another consequence of having Manner taking priority over
Quantity. As we will see in the coming sections, we can solve all these
problems at once by changing the way Manner is dealt with.

General problem If the intuitions for the above examples (for ¬C and
�P ) are correct we should conclude that Manner is less strict a constraint
than it is taken for. We have two orderings. The one for manner and the
one for quantity (<M and <Q). With the current setup if some sentence
S is dispreferred by manner over S′, it is dispreferred in general S <M
S′ ⇒ S < S′. Though the above examples lead us to conclude that if S′ is
dispreferred by manner over S but preferred by quantity, they might very
well be equally good candidates for a certain model. This is currently not
accounted for with Aloni’s approach. I’ll try to offer a solution for this in
the sections to follow.
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6.2.3 Ordering of the models

There’s one last problem I’d like to point out. The current ordering on de
models (the minimal model principle) works and is needed to get some of
the implicatures right. But, we don’t have any independent argument for
using minimal models. Why would it be a good constraint?

The whole point of using BiOT is that we can avoid ad-hoc moves. To
preserve this spirit, I think it to be needed to find a definition that is more
closely tied to our intuitions.

7 New proposal: Separate form and meaning &

use the competence principle

Most problems mentioned above are not really fundamental problems. That
is to say, the concept seems to work. A little tweaking could give us the
proper results. Tweaking, however, is not a very highly regarded waste of
time in the world of academics.

A more highly regarded waste of time is to find independent arguments
for the assumptions we make and then show that those assumptions give
the expected results.

If the observations in the previous section are correct, I think the prob-
lems we’re facing can be summarized as follows:

1. Manner does not always precede Quantity. (discussed in section 6.2.2)

2. The current definition of Manner does not give the right results (dis-
cussed in section 6.2.1)

3. There is no independent argument for using the minimal model prin-
ciple

In this section I’ll give solution for these problems. I aim to get the
interaction between Manner and Quantity right, and, secondly I’d like to
replace the markedness constraint on the models by a definition that is
closer to our intuition.

As for the definition of Manner, I’ll make some assumptions on how
it should be defined; but, I’ll conveniently ban a proper treatment of this
constraint from the scope of this paper.
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7.1 Separate form and meaning

As seen in the examples above, a lot hinges on the definition of manner.
The definition of manner in its turn depends on the specific kind of logic
we choose to use. In this case we’re working with propositional modal logic.
Manner is defined in terms of modals and negations. But what if we had
opted for some other logic; say, predicate logic?

Take a sentence like 28

(28) Some student

This can be very easily coded into predicate logic:

∃x : S(x)

In propositional logic this will however give a very long disjunct, listing all
students:

s1 ∨ s2 ∨ s3 ∨ . . . ∨ sn

If we define the manner constraint in terms of the chosen logic we would
have to account for the fact that both ∃x : S(x) and s1 ∨ s2 ∨ s3 ∨ . . . ∨ sn
are equally verbose.

Another point of concern is the fact that one phrase with the same
semantical content can be uttered in different ways; not all being equally
verbose. Consider example 29.

(29) • Balkenende is a wuss.

• It is true that Balkenende is a wuss.

Both sentences have the same semantical content, but the second utterance
is clearly more verbose then the first. This should lift the meaning. “It
is true that Balkenende is a wuss” seems to implicate that something else
which is to be expected isn’t true. This could implicate something like:
“But, that doesn’t make him a bad politician.”

The precise implicatures don’t really matter for the point I’m trying to
make. The point is that by linking manner directly to the logical sentence,
this can not be accounted for. The same semantical content can come from
different phrases.

The final point of concern involves the interaction between quantity and
manner. In the discussion of Aloni’s approach we saw that we don’t want to
punish being overly precise. For issue QA?B? the sentence A takes [wA] as
optimal model. But, A∧¬B should also take [wA] as optimal model. With
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the current analysis this doesn’t work out. The sentence A ∧ ¬B is more
verbose, so A is preferred even though A ∧ ¬B is stronger.

If the above two points are valid and relevant, I think we should introduce
‘verbosity’ as a separate dimension in our analysis. This way we can have
a less strict relation between the logical sentence and the verbosity. One
logical sentence can be expressed in more and less verbose ways.

To do so we have two options. We could consider take the input to be
tuples 〈φ, f〉 (with φ as the semantical content and f the form/verbosity.

Another option is to consider form to be a third dimension in the OT
analysis and redefine OT such that it can deal with three dimensions. As
we will see the two approaches amount to more or less the same. But, for
reasons that will become clear, I’ll be using the later approach.

7.1.1 Redefine OT to deal with three dimensions

It is fairly straightforward to redefine OT for three dimensions:

Symmetric 〈a, b, c〉 is weakly optimal iff there is no:

• 〈a′, b, c〉 < 〈a, b, c〉 s.th. 〈a′, b, c〉 is w-opt

• 〈a, b′, c〉 < 〈a, b, c〉 s.th. 〈a, b′, c〉 is w-opt

• 〈a, b, c′〉 < 〈a, b, c〉 s.th. 〈a, b, c′〉 is w-opt

Unfortunately with this definition we run into problems right away. This
system is symmetrically defined. If we’d apply this definition to natural
numbers, 〈1, 2, 3〉 is super optimal. But since the definition is entirely sym-
metric 〈3, 2, 1〉 is also super optimal. For our purpose this is unwanted.
We’d like to model the behavior that a weak and verbose sentence takes a
relatively big model. With this symmetric definition this is not always the
case.

It might be useful to have a look at how this definition behaves with
natural numbers. Here below we see a part of the resulting tree for this
definition. All the blotted out pairs are not weakly optimal. The other pairs
are. The bold w-opt pairs are the ones we actually want. The unwanted
triples can block wanted triples. For example 〈1, 1, 2〉 is blocked by 〈1, 1, 0〉.
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While we would like the first one and not the later to be w-opt.

〈0,0,0〉
BLOCK BLOCK

〈1, 0, 0〉———— 〈0, 1, 0〉———— 〈0, 0, 1〉————

〈1, 1, 0〉
BLOCK

〈1,0,1〉 〈0,1,1〉

〈1, 1, 2〉———— 〈2, 2, 0〉 〈2,0,2〉 〈0,2,2〉

〈3, 3, 0〉〈3, 2, 1〉〈2, 3, 1〉〈3,0,3〉〈3, 1, 2〉〈2,1,3〉〈0,3,3〉〈1,2,3〉〈1, 3, 2〉

〈4, 4, 0〉 〈4,0,4〉 〈0,4,4〉

Though we introduced an extra dimension (the one that encodes the ver-
bosity of a sentence), we don’t want all dimension to be treated symmetri-
cally. The first two are both input, the last one is the output. We need an
alternative definition.

Asymmetric 〈a, b, c〉 is w-opt iff there is no:

• 〈a′, b′, c〉 < 〈a, b, c〉 s.th. 〈a′, b′, c〉 is w-opt

• 〈a, b, c′〉 < 〈a, b, c〉 s.th. 〈a, b, c′〉 is w-opt

The resulting tree of optimal pairs does look much more like what we’d want
for later definition:

〈0, 0, 0〉

〈0, 1, 1〉 〈1, 0, 1〉

〈0, 2, 2〉 〈1, 1, 2〉 〈2, 0, 2〉

〈0, 3, 3〉 〈1, 2, 3〉 〈2, 1, 3〉 〈3, 0, 3〉

〈0, 4, 4〉 〈1, 3, 4〉 〈2, 2, 4〉 〈3, 1, 4〉 〈4, 0, 4〉

(30)
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The dynamics we’re after is that a weaker sentence enforces a bigger
model, a more verbose sentence should also give a bigger model, but higher
strength and higher verbosity should cancel each other out. We see this
pattern emerge in the tree.

If we stick to natural numbers we get that 〈a, b, c〉 is w-opt iff a+ b = c

Proof: 〈a, b, n〉 is w-opt iff a+ b = n. By induction on c:

Initial step. 〈0, 0, 0〉: 0+0=0

Induction hypothesis ∀c < n : 〈a, b, c〉 is w-opt iff a+ b = c

⇒ Suppose 〈x, y, n〉 is w-opt.

To show x+ y = n. Suppose not. x+ y 6= n. Then either:

x+y < n. Take z = x+y. We know z < n, so by i.h 〈x, y, z〉
is w-opt. So 〈x, y, n〉 isn’t. Contradiction.

x+ y > n. Take x′ + y′ = n s.th. neither x′ > x nor y′ > y
(evidently this is always possible). Then 〈x′, y′, n〉 is not w-
opt (otherwise it would block 〈x, y, n〉). But the either:

· there is n′ < n s.th. 〈x′, y′, n′〉 is w-opt. But x′ + y′ < n,
so according to i.h. not w-opt. Contradiction

· or x′′ < x′ or y′′ < y′ (or both) s.th. 〈x′′, y′′, n〉 is w-
opt. But x′′ < x and y′′ < y so 〈x, y, n〉 isn’t w-opt.
Contradiction.

Contradiction. So x+ y = n

So 〈x, y, n〉 is w-opt ⇒ x+ y = n.

⇐ Suppose x+ y = n.

To show 〈x, y, n〉 is w-opt. Take 〈x′, y′, n′〉 w-opt s.th. n′ < n.
Then x′ + y′ = n′ either x′ < x or y′ < y (or both) assume
w.l.o.g. that x′ < x then both x′ < x and n′ < n. So 〈x′, y′, n′〉
cannot block 〈x, y, n〉. Our only assumption was that 〈x′, y′, n′〉 is
w-opt. No w-opt triple can block 〈x, y, n〉. So 〈x, y, n〉 is w-opt.

In principle one could obtain the same results by using two dimensional
BiOT and take tuples as input. So rather the determining the optimality
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of something 〈a, b, c〉 we could define the constraints and determine the op-
timality of something like 〈〈a, b〉, c〉. The advantage of separating the three
dimensions in BiOT is that we can define the structure of the first two
arguments in terms of faithfulness constraints between a and b.

7.2 Minimal model principle vs. competence

Aloni uses the minimal model constraint to ensure we get ‘reasonable’ models
for a certain sentence. When we say:

(31) Alessia voted for Berlusconi

We’d like to conclude that Maria didn’t do so. Quantity takes partly care
of this. All the models that make A ∧M true are blocked by the sentence
A ∧M . Because of quantity:

[wAM ] is not optimal for A

Unfortunately quantity itself is not enough to conclude that Maria didn’t
vote. The model

[wA, wAM ]

can still be optimal for A. There is no phrase φ that is preferred over A that
holds in [wA, wAM ].

This is where Minimal Models come in. This constraint says that [wA]
is a better (smaller) model then [wA, wAM ]. Without Minimal Models we
can derive the ignorance inferences but not the scalar implicatures. But
why would we use Minimal Models and not some other ordering over the
models?

The minimal model principle basically states that as little as possible
should be true. But is this an assumption that corresponds to our intuitions?

Indeed exhaustiveness suggest that we tend to assume that all that is
not affirmed is not true. But this dynamic is already explained by Quantity.
Just as with the other Gricean solutions, Quantity derives the ignorance
inferences.

Standard gricean accounts use the competence assumption to get scalar
implicatures. As discussed earlier, gricean reasoning and Aloni’s system
work very similarly. Figure 8 suggests the relation with gricean based rea-
soning and OT. It is the competence principle that yields the scalar impli-
catures. Without any constraint on the models, it’s precisely those scalar
implicatures that can’t be derived. Therefore I propose to use the compe-
tence principle as a constraint on the models rather then the minimal model
principle.

41



Neo Gricean account OT account

1 Determine all ψ ∈ Alt(φ) Manner/Relation
2 Get ignorance inferences ¬�ψ Quantity
3 Competence, if possible: ¬ψ ?

Figure 8: Relation between Neo Grice account and OT account

How can we formalize the competence principle? A model that assumes
more knowledge of the speaker is preferred. So one obvious definition would
be:

Bad definition C <Q C ′ iff QC = Q′
C ∧ ∀φ : C |= ♥?φ : C ′ |= �φ ⇒ C |=

�φ

Unfortunately this definition does not work for this particular semantics.
With thee current semantics we have that C |= �φ ⇔ C |= φ. Thus this
definition reduces to:

Bad definition’ C <Q C
′ iff QC = Q′

C ∧∀φ : C |= ♥?φ : C ′ |= φ⇒ C |= φ

This is surely not what we want. The definition should for instance yield that
[wA] < [wA, w∅] (In [wA] there’s no doubt about the truth value of A). The
current definition does not achieve this: [wA, w∅] |= ♦¬A and [wA] 6|= ♦¬A.

This is clearly not what we want. This problem could be solved by
considering only non-modal sentences, but this is a rather ad-hoc solution.
Fortunately such an ad-hoc solution isn’t needed.

A better formulation of competence would be: “If the speaker thinks
something is possible, he knows it is the case.”

Better definition C <Q C ′ iff QC = Q′
C ∧ ∀φ : C |= ♥?φ : C ′ |= (♦φ →

�φ) ⇒ C |= (♦φ→ �φ)

Note that this definition is equivalent to C <Q C ′ iff QC = Q′
C ∧ ∀φ : C |=

♥?φ : C ′ |= (�φ ∨ �¬φ) ⇒ C |= (�φ ∨ �¬φ). (This might be a more
intuitive definition to some.)

What are the consequences of this definition? In general if a context
contains less worlds there is less doubt about the truth values of the propo-
sitions. This intuition is reflected in the fact that the competence ordering
is more or less the same as the inclusion relation.
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If we take the issue to be a conjunction of atomic questions (i.eQ?A?B...?N )
and we only consider contexts containing worlds that make a subset of those
atoms true, then we can derive:

C ′ <Q C iff C ′ ⊂ C ∨ |C ′| = 1

So, if C contains only one world8 it is automatically smaller than any other
context and otherwise <C behaves like the subset relation.

This is a very limited case but suffices since, for the examples to come,
the issue is always such a conjunction of atoms. A complete account of the
behavior of competence can be found in appendix C.

This gives a different ordering than minimal models. Though, as I’ll show
later on, with little practical difference. This ordering has two advantages.
(1) It is easy to analyze (as subset ordering). And, (2) it is based on a well
established assumption: Competence.

7.3 How not to define manner

With Aloni’s approach, manner was considered a property of the logical
sentence. By separating the two, a logical sentence can have any verbosity.
That is to say, a natural sentence decomposes into a logical representation
and a level of verbosity.

Though verbosity is not a property of a logical sentence anymore, for
further analysis we’d still need to know the minimal level of verbosity a
logical sentence can have. A sentence φ can be the logical representation of
a number of natural language utterances. We need to know what verbosity
the least verbose utterance of φ has. This will be a constraint in the system
called Minimal Verbosity

To give an independent argument for some definition of Manner would
require much more research. First of all one would have to establish what
manner precisely is.

In this paper I’m referring to the verbosity of a sentence in relation to
manner. Suggesting that the Manner constraint has something to do with
the information density of the sentence. This is hardly, if at all, accurate.

One could go many ways in defining manner. Could it be expressed in
terms of the length of a sentence? The cognitive effort it takes to analyze
the sentence? The relative frequency of the expression in natural language?
The number of occurrences of the word ‘supercalifragilisticexpialidocious’ in
the sentence?

8Contexts with only one world form an exception since ♦ and � coincide. So, for such
contexts m |= ♦φ → �φ is trivially true.
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In any case, it would require quite some empirical research to establish
a proper definition. This is far beyond the scope of this paper (not in the
last place because I defined the scope myself).

Finding a good definition of manner hardly falls within the realm of logic
anymore. But, to be able to study some examples we’ll have to give some
kind of definition.

The easiest way to look at it might be in terms of alternatives. As we saw
in the discussion of Aloni’s approach, A ∧B can block the model [wAB ] for
A. In other words, A ∧B is an alternative to A. This can only be achieved
if A ∧B is not worse in terms of Manner (A ∧B ≤M A).

It would be very counter intuitive if A ∧ B <M A, so it seems reason-
able to assume that conjunction contributes nothing to the verbosity of the
sentence (i.e. A ∧B ≡M A).

On the other hand we saw that A∧♦B should be more verbose then �A.
Otherwise �A doesn’t get the model [wAB , wB ]. So it should be the case
that �A <M A ∧ ♦B. So in this case using the conjunction does increase
the verbosity of a sentence.

So the contribution of conjunction to the overall verbosity of the sen-
tences A∧♦B and A∧B is not the same. Perhaps the easiest way to explain
this difference is that the first is a list of different types of sentences (A and
♦B don’t have the same modality) and the second is a list of sentences of a
similar type (A and B do have the same type of modality).

I’ll first formulate some intuitions which will be used to give a definition
of Manner:

• Atomic sentences are the least verbose kind of sentences.

• If a conjunction lists sentences of the same modality it doesn’t con-
tribute to the overall verbosity. (i.e. A and A ∧B ∧ C have the same
verbosity)

• If a conjunction lists sentence of different modalities it does contribute
to the overall verbosity. (i.e. A ∧ ♦B is more verbose then ♦A).

• Adding modals and negations increases the verbosity. A <M ¬A <M
¬A ∧ �B

• Using disjuncts increases the verbosity (”A or B” doesn’t really seem
a better way of saying then ”Maybe A”).

If one is to come up with a better (properly investigated) version of
Manner, it is relatively easy to plug it into the current system.

44



For this purpose it suffices to just assign a natural number to a sentence
as a score for it’s verbosity. I can imagine that in a more complete analysis
this isn’t sufficient, but for now it will do. We need a formal definition of
the minimal verbosity of any logical sentence.

We need a formal definition to work with, so for now M(φ) = n iff:

• n = 1 iff φ atomic

• n = max(M(ψ),M(ξ)) iff φ = ψ ∧ ξ and ψ and ξ are of the same
modality.

• n = max(M(ψ),M(ξ)) + 1 iff φ = ψ ∧ ξ and ψ and ξ are of a different
modality.

• n = max(M(ψ),M(ξ)) + 1 iff φ = ψ ∨ ξ

• n = M(ψ) + 1 iff φ = Cψ (with C ∈ {¬,�,♦})

The function M stands for Minimal Verbosity. So a logical sentence φ
can have any verbosity n such that n ≥M(φ)

7.4 Summary model

To summarize the above, the new system differs from the one of Aloni in
three points. The sentence in natural language has a semantical content
and a form (level of verbosity). The two are separate dimensions in the
OT system. The Minimal Model principle is replaced by the Competence
principle. And for practical reasons Manner is redefined.

For the rest the system is the same. So we still use the update semantics
as defined on (page ??.)

For the pragmatical part we use a weak optimality system. The elements
that make up the OT system are: Sem the set of all modal logic sentences,
Form the set of “ways of saying” (which we, for now, assume to be the
set of natural numbers) and Model is the set of all possible models. The
markedness constraints are simply orderings over Sem, Form and Model.
The faithfulness constraint are binary relations.

The markedness constraints are:

• Quantity, <q over Sem. φ,ψ ∈ Sem: φ <q ψ iff φ |= ψ and ψ 6|= φ

• Manner, <m over Form. <m is defined as the usual order over N
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• Competence, <c over Model. C <c C
′ iff for all relevant φ (C ′ |= ♦φ→

�φ) ⇒ (C |= ♦φ → �φ) (I.e. knowledge in C ′ implies knowledge in
C)

Faithfulness constraints:

• Quality, m |= �φ

• Relation, m |= ♥?φ

• Minimal Verbosity. φ can be expressed with verbosity f . (And, if φ
and f don’t violate MV then φ and f ′ such that f ′ > f doesn’t violate
MV either.)

The ordering of the constraints:

Relation,Quality,Minimal Verbosity ≻ Quantity, Manner ≻ Competence

Not that the ranking of Competence is irrelevant with respect to Quan-
tity and Manner. In the next section I’ll go through some examples to show
how the system as defined here behaves. For most examples the faithfulness
constraints are never violated. If such is the case they’ll be left out. So, for
most examples we’ll only be concerned with the constraints:

Quantity, Manner ≻ Competence

Which is equivalent to:

Competence ≻ Quantity, Manner

8 Examples

We studied the system of Aloni. This system gives quite accurate predic-
tions. Though there were implicatures that did not come out right in this
system. This is caused by several problems: The nature of the minimal
model constraint was one, the definition of Manner another. Even if we
would redefine this constraint, we would run into trouble. This is mainly
caused by the fact that Manner takes absolute precedence over Quantity
(i.e. Manner is a higher ranked constraint then Quantity).

The system we defined in this paper solves these problems. Rather than
using BiOT on tuples we use the same principles but then on triplets. The
main reason to do this is the intuitive notion that the logical form of a
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sentence has very little to do with its verbosity. That is to say to express
A ∧ B one could say “A and B” but also “I know that A and B are both
true”. Both sentences have the same semantics, but the later is much more
verbose then the first. Of course, there is some relation between the two.
Logical sentences do have a minimal verbosity. That is, the easiest way to
express A is “A”. The easiest way to express �A is “I know that A”. We
find this relation back in the minimal verbosity constraint.

Now we will look at some examples to see if these changes indeed solved
the problems. Since the determination of optimality in BiOT is quite in-
volved, I’ll use a couple of shorthand to keep everything manageable. We’re
interested in the optimality of triplets like 〈φ, f,C〉 (where φ is the logical
sentence, f the verbosity and C the context).

I’ll use tables to compare the triples with all other possible triples. So
〈A, 0, 〈QA?B?[wA]〉〉 is represented in a table like:
Sent Verb Model Qual Rel Min verb Mann Quan Comp

A 0 〈QA?B?[wA]〉

The tabular doesn’t only mention the values of the triple but also the con-
straints (equally ranked constraints are not separated by |). I’ll use a star
to denote a violation of the corresponding constraint:
Sent Verb Model Qual Rel Min verb Mann Quan Comp

A 0 〈QA?B?[wA]〉
A 0 〈QA?B?[wB ]〉 *

In this table the triple 〈A, 0, 〈QA?B?[wB ]〉〉 violates quality.
When the tuples that violate any of the faithfulness constraints (Qual-

ity, Relation and Minimal Verbosity) are not relevant for the example, the
respective columns are left out:
Sent Verb Model Mann Quan Comp

A 0 〈QA?B?[wA]〉
B 0 〈QA?B?[wB ]〉

The number of ∗’s indicate the amount of violation relative to other con-
straints:

Sent Verb Model Mann Quan Comp

A 0 〈QA?B?[wAB]〉 *

A ∧B 0 〈QA?B?[wAB]〉

A ∧B 1 〈QA?B?[wAB]〉 *

A ∧B 2 〈QA?B?[wAB]〉 **

In this table, the triple 〈A, 0, 〈QA?B?[wAB ]〉〉 violates quantity more then 〈A∧
B, 0, 〈QA?B?[wAB ]〉〉. The triples 〈A, 0, 〈QA?B?[wAB ]〉〉,〈A∧B, 0, 〈QA?B?[wAB ]〉〉
violate manner less then 〈A∧B, 1, 〈QA?B?[wAB ]〉〉. The triple 〈A∧B, 2, 〈QA?B?[wAB ]〉〉
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violates manner even more.
If all examples have the same issue, it will be left out:
Sent Verb Model Mann Quan Comp

A 0 [wAB] *

A ∧B 0 [wAB]

A ∧B 1 [wAB] *

A ∧B 2 [wAB] **

And, rather then reserving a column for the verbosity it will be denoted
by the number of ∗’s in front of the sentence. This results in the table:

Sent Model Mann Quan Comp

A [wAB ] *

A ∧B [wAB ]

∗(A ∧B) [wAB ] *

∗ ∗ (A ∧B) [wAB ] **

The ⇒ marks the optimal tuples:
Sent Model Mann Quan Comp

A [wAB ] *

⇒ A ∧B [wAB ]

∗(A ∧B) [wAB ] *

∗ ∗ (A ∧B) [wAB ] **
Now let’s have a look at some examples. For the examples below the

issue will be QA?B? unless explicitly mentioned otherwise.

8.1 Basic examples: A, A ∧ B, A ∨ B

First of all consider the very basic cases A, A∧B and A∨B. Those already
worked in Aloni’s system. Let’s see if they still work. Table 9 shows the
dynamic of these examples:

Though these examples are simple enough to be more or less self-evident.
They can be explained as follows:

• A takes the model [wA]. It cannot take [wAB ] since it’s already blocked
by A ∧ B. (This requires that the minimal verbosity of A ∧ B is the
same as the one for A)

• A∨B takes [wA, wB ]. The alternative candidates [wA],[wB ],[wAB , wB ]
and [wAB , wA] are blocked by A,B,∗A,∗B. Note that here the value of
disconnecting verbosity and meaning of a sentence becomes important.
A ∨ B doesn’t take [wAB , wA] since it is blocked by the stronger ∗A.
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Sentence Model Manner Quantity Competence

⇒ A [wA] *
A [wAB ] *
A [wAB, wA] * *

⇒ ∗A [wAB, wA] * * *

⇒ A ∧B [wAB ]

A ∨B [wA] * **
A ∨B [wAB ] * **

⇒ A ∨B [wA, wB ] * ** *
A ∨B [wAB, wA] * ** *

Figure 9: Basic examples

If verbosity would be a property of the logical sentence, we wouldn’t
have ∗A available.

• A∧B takes [wAB ] since it’s the smallest (and only model for this issue)
that doesn’t violate Quality.

So we get the implicatures: A |≈ ¬B, A ∨ B |≈ ¬�A,¬�B,¬(A ∧ B).
In other words for these examples we get the right exhaustivity, ignorance
inferences and scalar implicatures.

8.2 Epistemic examples: �A, ♦A

Next we get the simple modal cases. These didn’t work quite correctly in
Aloni’s system. Consider tabel 10.

Observe that ∗A and �A take the same model. This shouldn’t be sur-
prising. With the update semantics we’re using A and �A are semantically
equivalent. The only difference is that the minimal verbosity of �A is higher
then the one of A. Basically �A is just a marked version of A. This examples
show the following predictions:

• �A takes [wAB, wA]. So, �A |≈ ♦B ∧ ♦¬B,

• ♦A takes [wA, w∅]. The model [wB , wA] is blocked by the stronger
♦A ∧ ♦B

So for �A we automatically get the right implicatures. For ♦A the implica-
tures highly depend on manner. This uncertainty might reflect the lack of
intuition we have for this example.
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Sentence Model Manner Quantity Competence

⇒ A [wA]
�A [wA] *
♦A [wA] * **

⇒ ∗A [wAB, wA] * *
⇒ �A [wAB, wA] * *

♦A [wAB, wA] * ** *

⇒ ♦A [wA, w∅] * * *

⇒ A ∨B [wA, wB ] * * *
♦A [wA, wB ] * ** *

⇒ ♦A ∧ ♦B [wA, wB ] * * *

Figure 10: Simple modals

8.3 Being overly verbose: A ∧ ♦B, A ∧ ¬B

Finally we get to some examples where the difference between Aloni’s system
and the one proposed here very clearly come to bear. As a matter of personal
preference some people like to be overly precise. In spite of being tedious and
boring, those people aren’t wrong. The system should allow for this. Table
11 and 12 show what happens with A∧♦B andA∧¬B. The sentence A∧♦B

Sentence Model Manner Quantity Competence

⇒ A [wA] **
⇒ �A [wAB, wA] * ** *
⇒ ∗A [wAB, wA] * ** *

⇒ A ∧ ♦B [wAB, wA] ** * *
A ∧ ♦B [wAB ] ** *

⇒ A ∧B [wAB ] *

Figure 11: Being to verbose

Sentence Model Manner Quantity Competence

⇒ A [wA] *
⇒ A ∧ ¬B [wA] *

Figure 12: Being to verbose
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is stronger then �A. On the other hand it’s more verbose. Better in terms
of Quantity, worse in terms of Manner. As we can see. These two cancel
each other out. Both sentences take the same model. Fortunately. . . this
was one of the main reasons to change the system to begin with. It would
have been a rather ghastly waist of time, if this wouldn’t come out right.

Similarly A ∧ ¬B and A take the same model.

8.4 Free choice, indifference, ignorance A∨B, ♦(A∨B), �(A∨
B)

Now back to the difference between indifference and ignorance. Table 13
shows the ignorance analysis. Here we assume (as with all the previous
examples) the issue QA?B? As we can see, �(A ∨ B) takes [wAB , wA, wB ]

Sentence Model Manner Quantity Competence

⇒ A ∨B [wA, wB ] * *
�(A ∨B) [wA, wB ] ** *
♦(A ∨B) [wA, wB ] ** **

⇒ ♦(A ∧B) [wAB , w∅] *
♦(A ∨B) [wAB , w∅] ** **

⇒ ∗A [wAB , wA] *
�(A ∨B) [wAB , wA] ** *
♦(A ∨B) [wAB , wA] ** **

⇒ ♦(A) [wA, w∅] * *
♦(A ∨B) [wA, w∅] ** **

⇒ �(A ∨B) [wAB , wA, wB ] ** * *

⇒ ♦(A ∨B) [wA, wB , w∅] ** ** *

⇒ *♦(A ∧B) [wAB, wA, w∅] ** * *

⇒ *♦(A ∧B) [wAB , wB , w∅] ** * *

Figure 13: Ignorance

and ♦(A ∨ B) takes [wA, wB , w∅]. All possible smaller models are already
blocked by better sentences. These predictions are exactly the same as the
ones for Aloni’s proposal.

Indifference is much easier to analyze. We take the issue Q?(A∨B). In this
case anything that is stronger then A ∨ B violates the relation constraint.
Due to the fact that anything stronger then A ∨ B violates relation, A ∨
B takes all the smallest models that don’t violate Quality. Now �(A ∨
B) and ♦(A ∨ B) are very easy to establish. �(A ∨ B) is semantically
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Sentence Model Relation Manner Quantity Competence

⇒ A ∨B [wA] * *
A [wA] *

⇒ A ∨B [wB ] * *
B [wB ] *

⇒ A ∨B [wAB ] * *
A ∧B [wAB ] *

Figure 14: Indifference

equivalent to A ∨ B. It takes the smallest models for which �(A ∨ B)
doesn’t violate quantity and which are not already blocked by A ∨B (that
is: [wA, wB ],[wAB , wB ],[wAB , wA]).

Similar reasoning shows that ♦(A∨B) takes [wA, w∅], [wB , w∅], [wAB , w∅].

8.5 Problems for larger contexts: ¬A, �A

As the context grows the number of sentences we have to take into con-
sideration explodes. This has the nasty downside that the definition of the
Manner constraint becomes more important. Since this definition is not
part of the research and we’d like to depend on it as little as possible, I’ll
show that the implicatures we get are relative insensitive to the definition of
Manner. This requires a lot of ‘what if?”s and a very lengthy explanation.
For this, my apologies.

As pointed out before we do run into problems with sentences that cancel
the competence principle. The competence principle states that the speaker
has as much knowledge on the issue as we can consistently assume. Why
else would we ask someone a question to begin with?

The sentence “I know that A”, kind of implies that I don’t know anything
else that is relevant. This can be explained in two ways:

• By quantity: Suppose that the speaker says �A. If the speaker would
have known �A∧�B then the quantity maxim would have forced the
speaker to say �A ∧ �B. He didn’t, so we can derive ¬(�A ∧ �B.

• By explicit canceling: As soon as someone says “I know that . . . ” it
cancels the competence constraint.
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If the later would be the proper explanation, this system cannot account
for it. Competence is one of the presupposed constraints. Having to change
the constraints depending on the kind of sentence we have, would be very
problematic.

So if we’re to explain this behavior it should be on grounds of quantity.
This, however, yields another problem. There is the natural tendency in
the system that bigger worlds take more verbose sentences9. But the size of
the models that go with �A (which has a fixed verbosity) grows with the
size of the issue. The examples in table 15 and 16 show how this needn’t
be a big problem. In table 15 we see that �A doesn’t have the same model

Sentence Model Relation Mann Quan Comp

�A 〈QA?B?C?, [wAB , wA]〉 *
⇒ A ∧ ¬C 〈QA?B?C?, [wAB , wA]〉
⇒ �A 〈QA?B?, [wAB , wA]〉 *

A ∧ ¬C 〈QA?B?, [wAB , wA]〉 !*

Figure 15: Canceling competence 1

for different context. A ∧ ¬C can block �A. But in the context QA?B? the
sentence A ∧ ¬C violates relation, so for this context it doesn’t block.

Indeed we get that �A does take other (bigger) models with larger con-
text. So at least partly the canceling of competence works. Though the
precise models that are optimal for �A are very sensitive to the precise
definition of manner. Table 16 lists all models that don’t violate quality.
As we can see, the models that are optimal for �A depend greatly on the
definition of Manner. All the logical sentences in the table are stronger then
�A. If there is a way to express them in natural language that isn’t more
verbose then “I know . . . ” can block the model in question. For instance,
we consider the expression “A and B” an alternative of “A”. Suppose this
holds under modals as well. Then ‘I know that A and B” is an alternative
of “I know that A”. So �(A ∧ B) blocks [wABC , wAB ] for �A. But what
about A ∧ (B ↔ C)? This could come from the expression “A came and B
and C always come together”. Maybe. . . It is surely not clear whether or not
this sentence is an alternative to �A. What can we say though about the
implicatures? We don’t need to know precisely which models are optimal in
order to say something about the implicatures. If we scratch all the models
that are obviously blocked, we’re left with the models 7,9,11,13,14 and 15
for �A. Some of these models will be optimal for �A. ¬�B holds in all

9I’m purposely a bit vague. This is not always the case
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Sentence Model Relation Mann Quan Comp

1 A [wA] *
2 A ∧ C [wAC ]
3 A ∧ ¬B [wAC , wA] * *
4 A ∧B [wAB ]
5 A ∧ ¬C [wAB , wA] * *
6 A ∧ (B ∨ C) [wAB , wAC ] * *
7 A ∧ ¬(B ∧ C) [wAB , wAC , wA] ? **
8 A ∧B ∧ C [wABC ]
9 A ∧ (B ↔ C) [wABC , wA] ? *
10 �(A ∧ C) [wABC , wAC ] * *
11 �A? [wABC , wAC , wA] * * **
12 �(A ∧B) [wABC , wAB ] * *
13 �A? [wABC , wAB , wA] * * **
14 ∗(A ∧ (B ∨ C)) [wABC , wAB , wAC ] ? **
15 �A? [wABC , wAB , wAC , wA] * * ***

Figure 16: �A for issue QA?B?C?

those models. So however the precise definition of manner, �A |≈ ¬�B.
Similarly for ¬�C, ¬�(B ∧ C) and ¬�(B ∨ C). So we get the kind of
ignorance inferences we would expect.

9 Conclusion

Along the lines of Aloni’s research I’ve developed a formalization of Grice’s
maxims. Grice’s maxims offer a general procedure to compute scalar impli-
catures. Some research uses grice’s maxims.

I’ve discussed some other approaches that I think are not entirely sat-
isfactory. They also use Grice’s ideas. And, though they get at least some
of the implicatures right, they need to make some ad hoc moves, they don’t
incorporate all maxims and the formalizations of the maxims they do incor-
porate are not always very intuitive. Aloni’s approach formalizes all maxim’s
in a more intuitive way. But, this approach runs into some practical prob-
lems. The ranking of the constraints she chooses cause some unwanted
effects. And, she uses the minimal model principle, which works but lacks
independent motivation.
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A study of the behavior of BiOT let to reconsidering the ranking of
the constraints Manner and Quantity. The studies discussed earlier use the
competence principle to derive scalar implicatures from ignorance inferences.
Inspired by this, I formalized the competence principle as a BiOT constraint.
This, together with a slightly altered definition of Manner, lead to the system
as I proposed.

The examples show that this solves some problems we encountered with
Aloni’s approach. Some of the problems that are solved are mere technical
details. Others are slightly more fundamental. For instance my proposal
accounts for the fact that the sentences ”John voted” and ”John voted and
Pete didn’t” can in a certain context mean the same thing.

With these improvements I hope to give a better formalization of Grice’s
theory. A proper formalization will make Grice’s maxims testable. This
can lift his theory out of the philosophical realm. If this can help with
seeing if Grice’s theory works it can help us understand the dynamics of
communication a bit better in general.

This proposal raises some further questions. The most urgent one is how
to give a proper account of Manner. Manner stays some kind of Joker card,
that can be played when one needs to confine the alternatives. The lack
of a proper (independently motivated) formalization prevents any strong
conclusion from being drawn.

Another interesting research would be to investigate BiOT more closely.
In the paper we’ve stumbled upon the problem that BiOT is very sensitive
to small alterations. If we make a small change in some part of the system
how does this affect the rest? Can we say something about it on a formal
level? What happens if the hearer and the and speaker don’t use exactly
the same constraints? How does that influence the communication?
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A Wrong predictions with exhaustification

Schulz & van Rooij have difficulties with getting the right reading for exam-
ple 32.

(32) I know that John voted

The exhaustive interpretation doesn’t give the right predictions in both
cases. It shouldn’t be to hard to solve. There is some exhaustification
going on with example 8. The exhaustification of knowledge. To put it in
terms of “only”: This example could be read as

(33) I only know that John voted

However, the way Schulz & van Rooij define their exhaustification it reads.

(34) I know that only John voted

As we have seen in the BiOT system �J |≈ ♦M ∧♦¬M . Schultz & van
Rooij don’t get this.

Proof For this proof we suppose the epistemic axiom ��φ ↔ �φ. Fur-
thermore take the background question “Who voted, John or Mary?”. The
speaker said “I know that John” (�J).

First we need to determine the result of applying grice:

griceC(A,P ) =def {w ∈ [KA]C |∀w′ ∈ [KA]C : w �P,A w
′}

First we should determine the worlds where ��J holds. Since we have
��J ↔ �J we are interested in the worlds where �J hold. This reduces
the problem to the example used by Schulz & van Rooij themselves in [?].
The worlds of interest are graphically represented in 17.

We get that wi � w1 for all i. The world w1 is the only not minimal
world so the grice operator selects world w2, w3, w4. Now we can apply the
eps operator:

epsC(A,P ) =def {w ∈ griceC (A,P )|∀w′ ∈ griceC(A,P ) : w 6⊏A,P w
′}

The only maximal world is w3. So we get that epsC(�J, P ) = {w3}. This
gives a too strong reading: w3 |= ¬M
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•w1 w1 : P = {J,M} •w2 w2 : P = {J,M}

•v v : P = {J}

•w3 w3 : P = {J} •w4 w4 : P = {J}

•u u : P = {J,M}

Figure 17: Possible worlds for �J

B Some properties of weak optimality

B.1 Division of Pragmatic Labor

In this paper weak optimality is chosen over strong optimality for the fact
that markedness implies markedness. That is, if the input is marked then so
will the output be. This tendency (Division of Pragmatic Labor, or DoPL)
is pointed out by Blutner in [6].

However, he never really formalizes it. With binary constraints its self
evident of how DoPl could be formally defined, but gradual constraints take
a bit more of consideration. In this section Ill try to give a formal definition
of DoPL.

To get a general idea consider figure 18. In this example there are two

f ⊙ ⊗

f∗ ⊗ ⊗

m m∗
(a) Strong optimal-
ity

f ⊙ ⊗

f∗ ⊗ ⊙

m m∗
(b) Weak optimal-
ity

f ⊙ ⊗

f∗ ⊗ ⊙

m m∗
(c) Strong optimal-
ity with F∗ ↔ M∗

Figure 18: Blutner: Strong optimality with ‘markedness implies markedness’

markedness constraint, one for input f and one for output m. I use ⊙ to
indicate that a pair is optimal and ⊗ to indicate non optimality. f∗ indicates
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marked input and m∗ indicates marked output. With strong optimality
(figure 18(a)), only the pair 〈f,m〉 is optimal. With weak optimality (figure
18(b)) both 〈f,m〉 and 〈f∗,m∗〉 are optimal. If we strongly optimal system
and add the constraint that input and output should be equally marked (the
DoPL constraint) then it seems to simulate the behavior of weak optimality
(figure 18(c)).

Does DoPL always work? First of all it should be noted that DoPL
does not always work. We can easily define a system where markedness does
not imply markedness. Consider figure 19. In this example the input and

1 ⊙ ⊗

2 ⊗ ⊙

1 2
(a) Only
markedness
constraints

1 ⊗ ⊙

2 ⊙ ⊗

1 2
(b) Added
faithfulness
constraint:
f 6= m

Figure 19: No DoPL

output are either 1 or 2 with the habitual ordering as markedness constraints.
Normally this would give a picture like in figure 19(a). But we can add a
new faithfulness constraint that explicitly counters the DoPL effect like the
constraint f 6= m.

It should intuitively be clear (though it should be proven) that we can
create any kind of relation between input and output with the help of faith-
fulness constraints. These relations can completely overrule the dynamics of
a BiOT system. The dynamics of BiOT can be much more easily studied if
we ignore faithfulness constraints and focus on the markedness constraints.
For the rest of this section we’ll only consider systems with nothing but
markedness constraints.

If F is the set if inputs and M is the set of outputs, we’ll suppose that
all constraints are encoded in two orders <F and <M over respectively the
input an the output. We’re free to define any number of constraints with
any ranking in OT. In the next two sections I’ll argue that we can reduce
any BiOT system with markedness constraints to a system with only one
constraint for the input and one for the output. After that I’ll give a formal
definition of DoPL.
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Well founded orders It is sufficient to only consider BiOT systems with
one ordering on the input and one on the output. Any system without
faithfulness constraints can be reduced to this. First let’s establish the kind
of orderings we’re dealing with.

To proof that weak optimality is well defined Jäger assumed the ordering
<t over F ×M to be well founded. In this case <t is only determined by <F
and <M . It is defined as 〈f ′,m′〉 <t 〈f,m〉 iff f < f ′∨(f 6< f ′∧f 6> f ′∧m <
m′). Or, (equivalently as shown above), it is defined as 〈f ′,m′〉 <t 〈f,m〉 iff
m < m′ ∨ (m 6< m′ ∧m 6> m′ ∧ f < f ′). In both case it holds that10:

〈F ×M,<t〉 is well founded iff 〈F,<f 〉 and 〈M,<m〉 are well founded

For the rest of this section we take <F and <M to be well founded orders.

Well orders We’re out to define fossilization in BiOT. In the previous
sections I argued that only considering a system with two markedness con-
straints suffice (one on the input and one on the output) and that those
constraints are well founded. To simplify matters, I’ll first show how fos-
silization works for well orders (i.e. total well founded orders).

The general idea of fossilization is that markedness implies markedness.
For well orders this comes down to an isomorphism between the two orders
as represented in figure 20 (the double lines connect the optimal pairs and
the arrows symbolize the orderings).

F M

• •

• •

• •

• •

Figure 20: Optimal pairs, well orders

Let’s first consider natural numbers only. Let F and M be initial seg-
ments of N with their usual orders.

Lemma 1. 〈f,m〉 is weakly optimal iff f = m

10Note that this does not need to be the case when we have faithfulness constraints.
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Proof. By induction on f +m.

Basis: 〈0, 0〉 is weakly optimal.

Induction hypothesis: Suppose for all f + m < n : 〈f,m〉 is weakly
optimal iff f = m

Take f +m = n

⇒: Let 〈f,m〉 be w-opt.

Suppose m < f . Then m +m < n. So i.h. gives 〈m,m〉 is
weakly optimal. This blocks 〈f,m〉. Contradiction

Suppose m > f . Similar.

⇐: Suppose f = m. Then for all f ′ < f : f ′ 6= m so (by i.h.)
〈f ′,m〉 isn’t w-opt. The same for all m′ < m. Hence 〈f,m〉 is
w-opt.

This proof can be trivially extended to any ordinal. If λ is a limit ordinal
the proof still works.

Lemma 1. Let W0 and W1 be well orders. Take w0 ∈ W0 and w1 ∈ W1

then trivially: 〈w0, w1〉 is w-opt iff o.t.(w0) = o.t.(w1). (where o.t. denotes
the order transformation of the well order)

(Odd note: the set OPT of weakly optimal pairs of two well orders is an
order isomorphism between the two well orders.)

Collary 1. Let F and M be well orders. Take the system WO with only
the constraints <F and <M . Take the system SO with only the constraint
o.t.(f) = o.t.(m). The pair 〈f,m〉 is weakly optimal in WO iff it is strongly
optimal in SO.

I use the concept of order transformation since this also hold for the
transfinite case. Order tranformations map a well order to the unique order
isomporphic ordinal. Ordinals are a set theoretic abstraction of natural
numbers. If we ignore the transfinite case we can consider o.t. the mapping
of an element in a well order to natural number (where the smallest element
is 0, the next smallest is 1, etc. . . ). So basically lemma 1 states that the
smallest element in F is optimal for the smallest element in M , the second
smallest in F for the second smallest in M , etc. . . . With the final lemma
this is used to define the DoPL constraint.
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Well founded non total order For well orders (total) the proof is
straightforward. The problem for well founded orders (not total) can be
reduced to that of well orders by defining a linear extension. Not any kind
of linear extension from a well founded order to a well order works. In this
section the proper linear extension will be defined and I’ll show it’s correct-
ness. Let 〈F,<〉 be a well founded order. Let’s define a linear extension λF .
If S ⊆ F , min(S) denotes the set of minimal elements of S. Since F , is well
founded, every subset contains at least one minimal element so min(S) is
well defined.

F0 = F (35)

Fn+1 = Fn − min(Fn) (36)

x ∈ min(Fn) iff λF (x) = n (37)

Clearly x < y ⇒ λF (x) < λF (y). But this is not the only property of
interest. This specific extension has the (for this case) important property
∀y∀n < λF (y)∃x < yλF (x) = n. Which is to say for any yn there is an
descending chain y0 < y1 < y2 < . . . < yn such that yi ∈ min(Fi).

Lemma 1. Let F and M be well founded orders. With f ∈ F , m ∈ M .
Then 〈f,m〉 is weakly optimal iff 〈λF (f), λM (m)〉 is weakly optimal.

In figure 21 we can see how this works. The function λ is represented by
∼>, = links the optimal pairs. In figure 21(a) we can see how λ projects the
well founded order on a well order. Figure 21(b) shows the optimal pairs
between the well founded orders.

F λ[F ] λ[M ] M

• ◦ ◦ •

• • ◦ ◦ • •

• • ◦ ◦ •

• ◦ ◦ •

(a)

F M

• •

• • • •

• • •

• •

(b)

Figure 21: Partial well founded orders.
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Proof. Since 〈λF (f), λM (m)〉 is w-opt iff λF (f) = λM (m), we only have to
proof: 〈f,m〉 is w-opt iff f ∈ min(Fi) and m ∈ min(Mi) for some i.

⇒ 〈f,m〉 is w-opt ⇒ f ∈ min(Fi) and m ∈ min(Mi) for some i

Basis: Clearly, f ∈ min(F0) ⇔ m ∈ min(M0)

Induction hypothesis: For all j < i: f ∈ min(Fj) ⇔ m ∈
min(Mj)

⇒ Take f ∈ min(Fi) and m ∈ min(Mk).

k < i: By i.h. 〈f,m〉 w-opt implies that f ∈ min(Fk).
Contradiction.

k > i: There exists an m′ < mM ∈ min(Mi). Now
〈f,m′〉 is not w-opt. So there is a f ′ < f such that
〈f ′,m′〉 is w-opt. f ′ ∈ min(Fl)withl < i. By i.h. l = k.
So k < i. Contradiction.

So k = i.

⇐ Same proof. Swap all m and f .

⇐ f ∈ min(Fi) and m ∈ min(Mi) for some i ⇒ 〈f,m〉 is w-opt.
Take f ∈ min(Fi) and m ∈ min(Mi). if 〈f,m〉 isn’t w-opt. Then
either:

– There is f ′ < f such that 〈f ′,m〉 is w-opt. This implies that
f ′ ∈ min(Fj) for some j < i but according to the first part of the
proof m ∈ min(Mj). Which is a direct contradiction.

– Or, there is m′ < m such that 〈f,m′〉 is w-opt. Same proof yields
contradiction.

So 〈f,m〉 is w-opt.

Corollary 1. Let F and M be well founded orders. Take the system WO
with only the constraints <F and <M . Take the system SO with only the
constraint λF (f) = λM (m). The pair 〈f,m〉 is weakly optimal in WO iff it
is strongly optimal in SO.

This reduction can not be used to simply reduce any weakly optimal sys-
tem. Most systems will make use of faithfulness constraints. It does however
formalize and confirm the intuition of DoPL. The fact that markedness im-
plies markedness is heavily used within Aloni’s system and in the system
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proposed in this paper. The above proof should be seen as an argument for
why this is reasonable.

B.2 The BLOCK constraint

There is another way to analyze weak optimality in terms of string opti-
mality. In [3], Beaver suggests a constraint BLOCK that simulates the
behavior of weak optimality in a strong optimality system.

Take CON to be a sequence of ranked constraints that results in the
order <CON . Now define a new constraint BLOCK.

Definition 〈f,m〉 violates BLOCK iff

• there is a 〈f ′,m〉 <CON 〈f,m〉 such that 〈f ′,m〉 does not violate
BLOCK

• or there is a 〈f,m′〉 <CON 〈f,m〉 such that 〈f,m′〉 does not violate
BLOCK

If we now take CON+BLOCK to be the sequence of constraints of CON

but with BLOCK as additional (and highest ranked) constraint, it is easy
to see that:

Lemma 1. 〈f,m〉 is weakly optimal with respect to CON iff it is strongly
optimal with respect to CON +BLOCK

For completeness sake the proof for this can be found here below. But
the point I wanted to make is that this reduction is correct but it doesn’t
help us much. We only moved the complexity of weak optimality from one
place to another.

Proof Take CON to be a sequence of ranked constraints that results in
the order <CON . Define a new constraint BLOCK.

Definition 〈f,m〉 violates BLOCK iff

• there is a 〈f ′,m〉 <CON 〈f,m〉 such that 〈f ′,m〉 does not violate
BLOCK

• or there is a 〈f,m′〉 <CON 〈f,m〉 such that 〈f,m′〉 does not violate
BLOCK

If we now take CON+BLOCK to be the sequence of constraints of CON

but with BLOCK as additional (and highest ranked) constraint, it is easy
to see that:
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Lemma 2. 〈f,m〉 is weakly optimal with respect to CON iff it is strongly
optimal with respect to CON +BLOCK

Let <CON be the resulting order for the constraints CON and <CON+

the resulting order for the constraints CON+BLOCK. <CON and <CON+

are well-orders.

Definition Define 〈S,<〉n recursively as:

• 〈S,<〉0 is the set of minimal elements of S

• 〈S,<〉n+1 is 〈S,<〉n ∪ the set of minimal elements of S − 〈S,<〉n

This is used for the induction in the proof. 〈S,<〉0 are the smallest elements
of S,〈S,<〉0 are the smallest and second smallest elements of S, etc. . .

To show: 〈f,m〉 ∈ GEN is weakly optimal with respect to CON iff
〈f,m〉 is not marked by BLOCK in CON +BLOCK. By induction we’ll
show that for all n: 〈f,m〉 ∈ 〈GEN,<CON 〉n is weakly optimal with respect
to CON iff it is not marked by BLOCK.

Proof. by induction on n:

• Basis: 〈f,m〉 ∈ 〈GEN,<CON 〉0 is w-opt iff 〈f,m〉 is not marked by
BLOCK.

Proof. By definition all 〈f,m〉 ∈ 〈GEN,<CON 〉0 are w-opt. Also by
definition all 〈f,m〉 ∈ 〈GEN,<CON 〉0 are not marked by BLOCK.
So this trivially holds.

• Induction: Suppose all 〈f,m〉 ∈ 〈GEN,<CON 〉n is w-opt iff 〈f,m〉 is
not marked by BLOCK. To show: 〈f ′,m′〉 ∈ 〈GEN,<CON 〉n+1 is
w-opt iff 〈f ′,m′〉 is not marked by BLOCK

Proof. ⇒ Suppose 〈f ′,m′〉 ∈ 〈GEN,<CON 〉n+1 is w-opt. So for all
〈f ′′,m′〉 < 〈f ′,m′〉 it holds that 〈f ′′,m′〉 is not w-opt. Similarly
for all 〈f ′,m′′〉. By induction hypothesis we get that all 〈f ′′,m′〉 <
〈f ′,m′〉 and 〈f ′,m′′〉 < 〈f ′,m′〉 are marked by BLOCK. Thus
by the definition of BLOCK, 〈f ′,m′〉 is not marked by BLOCK.

⇐ Suppose 〈f,m〉 is not marked byBLOCK. Then for all 〈f ′′,m′〉 <
〈f ′,m′〉 it holds that 〈f ′′,m′〉 is marked by BLOCK. Simi-
larly for all 〈f ′,m′′〉. By induction hypothesis we get that all
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〈f ′′,m′〉 < 〈f ′,m′〉 and 〈f ′,m′′〉 < 〈f ′,m′〉 aren’t w-opt. Thus by
the definition of weak optimality, 〈f ′,m′〉 is weakly optimal.
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C Behavior competence

The competence ordering behaves more or less like the subset relation. This
appendix formalizes this notion of ‘more or less like the subset relation’.
Remember that the definition of competence:

Definition C < C ′ iff QC = Q′
C ∧ ∀φ : C |= ♥?φ : C ′ |= (♦φ → �φ) ⇒

C |= (♦φ→ �φ)

Two contexts are only comparable if they have the same issue. To make
analysis easier I’ll fix the issue Q and only talk about the ordering on the
models (sets of possible worlds). For a fixed issue Q, m′ < m denotes
〈m′, Q〉 <C 〈m,Q〉.

We suppose that an issue is determined by a formula definable in the
update semantics.

Definition For all Q it holds that there is a sentence ξ such that Q = W 2[ξ]

This definition yields that every equivalence class has a determining sen-
tence (a sentence that holds for all worlds in that equivalence class and in
no other world):

Lemma 1. For issue Q and any world w there is a formula supQ(w) such
that

∀w′ : w′ |= supQ(w) ⇔ w′Qw

Proof. We can simply recursively construct supQ(w). Let Q be an issue
such that Q = W 2[ξ] and w be any world w ∈W .

If ξ =?φ then define supQ(w) as follows:

If w |= φ then supQ(w) = φ.

If w |= ¬φ then supQ(w) = ¬φ.

• If ξ = ψ∧?φ and for we already have a sup′Q(w) for all w and Q′ =

W 2[ψ] then define supQ(w) as follows:

If w |= φ the supQ(w) = sub′Q(w) ∧ φ.

If w |= ¬φ the supQ(w) = sub′Q(w) ∧ ¬φ.

ξ = ¬?φ and ξ = �?φ reduce to ξ =?φ.
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Another property that follows from this definition is that the truth value
of every relevant sentence is determined by the supQ(w) formulas.

Lemma 2. For any Q, φ and w if Q |= ♥?φ then either supQ(w) |= φ or
supQ(w) |= ¬φ.

Proof. Take φ and w such that supQ(w) 6|= φ and supQ(w) 6|= ¬φ. Then
there is a world w1 and a world w2 such that w1 |= supQ(w) and w2 |=
supQ(w), but w1 |= φ and w2 |= ¬φ. Since w1 |= supQ(w) we have that
w1Qw and since w2 |= supQ(w) we have that w1Qw (as a consequence of
lemma 1). Q is an equivalence relation, so w1Qw2. Since w1 |= φ and
w2 |= ¬φ, the update Q[?φ] = Q′ yields that Q′ 6= Q. So Q 6|= ♥?φ

Definition [Subset relative to Q] m ⊆Q m
′ iff ∀w ∈ m : ∃w′ ∈ m′ : w′Qw

Note that if Q is taken to be the identity relation then ⊆Q is indeed a normal
subset relation.

Definition [Cardinality relative to Q] |m|Q = |m/Q| (i.e. the number of
equivalence classes in m with respect to Q).

Note that if Q is taken to be the identity relation then |m|Q = |m|.
With the above definition we can formalize the notion of ’a more or less

subset relation:

Theorem 3. m <Q m
′ iff |m′|Q > 1 and (|m|Q = 1 or m ⊂Q m

′)

The following three lemmas will that the competence ordering behaves
as such.

Lemma 4. If |m|Q = 1 then ∀m′ : m ≤C m
′

Proof.

If |m|Q = 1 then for all w,w′ ∈ m w′Qw.

So, for all w ∈ m we have ∀w′ ∈ m : w′ |= supQ(w).

Take φ such that Q |= ♥?φ

Then supQ(w) |= φ or supQ(w) |= ¬φ (lemma 2).

Suppose m |= ⋄φ then there is a w′ ∈ m : w′ |= φ
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Thus, supQ(w) |= φ

Since ∀w′ ∈ m : w′ |= supQ(w) so ∀w′ ∈ m : w′ |= φ, so m |= �φ

So for all φ such that Q |= ♥?φ: m |= ♦φ→ �φ.

Lemma 5. If m ⊆Q m
′ then m ≤C m

′.

Proof.

Take m ⊆Q m′ (i.e. ∀w ∈ m : ∃w′ ∈ m′ : w′Qw) and φ such that
Q |= ♥?φ and m′ |= �φ

To show: m |= �φ ∨ ¬�φ

1. By counter position. Suppose m 6|= φ & m 6|= ¬φ

2. Then there’s a w ∈ m such that w |= ¬φ

3. We had that m ⊆Q m
′, So there is a w′ ∈ m′ such that w′Qw.

4. w′ |= ¬φ (since Q |= ♥?φ).

5. So m′ 6|= �φ. Contradiction.

So m |= �φ ∨ ¬�φ.

Lemma 6. If |m|Q > 1, |m′|Q > 1 and m <C m
′ then m ⊂Q m

′

Proof.

Take |m|Q > 1 and |m′|Q > 1 and m 6⊂Q m′ (i.e. ∃w ∈ m : ¬∃w′ ∈
m′ : w′Qw)

To show: ∃φ such that m′ |= ♦φ→ �φ and m |= ♦φ and m |= ¬�φ.

1. Take w ∈ m such that ¬∃w′ ∈ m′ : w′Qw.

2. ∀w′′ : w′′ |= supQ(w) → w′′Qw (lemma 1)

3. (1+2) ∀w′ ∈ m′ : w′ |= ¬supQ(w)

4. m′ |= ♦¬supQ(w) → �¬supQ(w)

5. Since |m|Q > 1 there is a w′′′ ∈ m such that ¬w′′′Qw
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6. w′′′ |= ¬supQ(w) (lemma 1)

7. m |= ♦¬supQ(w)

8. w |= supQ(w) so m |= ¬�¬supQ(w)

So m 6<C m
′.

Lemma 4, 5 and 6 together form the proof of theorem 3, the claim that:

m <Q m
′ iff |m′|Q > 1 and (|m|Q = 1 or m ⊂Q m

′)

This can make further analysis much easier. We’re mostly interested in
issues that consists of a conjunct of atoms (like Q?A?B...?N ). If we confine
ourselves to the models that contain worlds with only relevant atoms, then
Q becomes the identity relation.

Consquence 7. If we consider only those worlds such that Q is the identity
relation (wQw′ iff w = w′) then m < m′ iff |m′| > 1 and (|m| = 1 or
m ⊂ m′).

So for the examples we’re studying the competence ordering over the
model can be more or less regarded as the subset relation.
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