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Overview of the thesis

The present thesis is concerned with inquisitive semantics and its logic. In-
quisitive semantics is a system (or rather a class of systems) for modelling the
effect of utterances in a cooperative dialogue; the crucial feature of inquisitive
semantics is that it regards propositions as real proposals of one or more pos-
sible updates for the common ground of a conversation, thus allowing for the
representation of both inquisitive and informative content as two aspects of a
unique notion of meaning. We start with a general overview of the structure
and the contents of the thesis.

Chapter 1: an introduction to inquisitive semantics. We introduce the
reader to the ideas that motivate and guide the development of an inquisitive
semantics. We first mention a traditional approach to the modelling of the
exchange of information in a dialogue. We then illustrate a different perspec-
tive on cooperative information exchange, namely the propositions-as-proposals
view which informs the construction of inquisitive semantics. We conclude the
chapter with some historical notes, clarifying how the present thesis relates to
previous and ongoing work on the subject.

Chapter 2: propositional inquisitive semantics. We set out to imple-
ment the ideas expounded in the previous chapter for a propositional language.
We evaluate formulas over sets of valuations, conceived of as information states.
The semantics is based upon the relation of support between states and propo-
sitional formulas: via the notion of support, we associate each formula with a
set of possibilities, defined as maximal states supporting the formula. This set
of possibilities represents the proposal put forward by a formula.

We identify two effects of a proposal: an informative effect consisting in the
suggestion to eliminate some possible worlds from the common ground, and an
inquisitive effect consisting in the specification of alternative updates. We define
assertions and questions as formulas that serve only one of these purposes and
discuss the properties of these classes of formulas, in particular showing that
each formula can always be decomposed into a question and an assertion, its
assertive part coinciding with its classical meaning.

We discuss several other properties of the semantics, such as expressive com-
pleteness and normal form results, point out a tight connection linking inquisi-
tive semantics to intuitionistic Kripke semantics, and suggest an intuitive inter-
pretation of the notion of support as ‘knowing how’.

Chapter 3: inquisitive logic. We investigate the logic InqL stemming from
the semantics discussed in the previous chapter. We show that it is a sort of
intermediate logic lacking the property of closure under uniform substitution:
in particular, the double negation law holds for atoms but fails in general.

We first obtain a sound and complete axiomatization for IngL by expanding
intuitionistic logic with the Kreisel-Putnam scheme (-x — ¢ V ¢) — (—x —
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©) V (mx — 9) and the double negation axiom ——p — p restricted to atoms:
the completeness proof exploits canonical model techniques from the field of
intermediate logics, relying on the connection between inquisitive semantics and
intuitionistic Kripke models to transfer counterexamples into the inquisitive
setting.

We then develop some machinery to deal with non-substitution closed inter-
mediate logics and show how to obtain a purely syntactic completeness proof
exploiting the fact that, in InqL, any formula can be represented as a disjunction
of negations. This proof is not only speedier and more transparent, but also
more general, yielding a whole range of intermediate logics that, when expanded
with the atomic double negation axiom, axiomatize InqL.

Using the same methods we also prove that, just as classical logic coincides
with the negative fragment of intuitionistic logic, so inquisitive logic coincides
with the disjunctive-negative fragment, that is, the fragment consisting of dis-
junctions of negations.

We also show that the schematic fragment of InqL —the set of formulas that
are schematically valid— coincides with Medvedev’s logic ML of finite problems.
This establishes an interesting link between derivability in ML and derivability in
other, better understood logics such as the Kreisel-Putnam logic; furthermore,
it allows us to give an exact characterization of the intermediate logics that
axiomatize InqL when expanded with atomic double negation: these are precisely
the logics included between a weak variant of the Kreisel-Putnam logic and
Medvedev’s logic.

Finally, the connection with ML is used to establish the independence of the
connectives in inquisitive semantics.

Chapter 4: the inquisitive hierarchy. In the original implementation of
inquisitive semantics, formulas were evaluated not on states but on ordered
pairs of valuations. We show that that semantics is obtained as a special case
of the semantics discussed in this thesis when we restrict ourselves to states of
cardinality at most two.

Thus, the ‘pair’ semantics can be regarded as an element of a sequence of
semantics obtained by restricting the ‘generalized’ semantics to states of size an
most n. We show how to extend our axiomatization of IngL to obtain axioma-
tizations of the logics connected to the layers of this hierarchy of semantics.

We conclude showing that all of the restricted semantics fail to yield the
intended notion of possibilities and arguing in favour of the generalized system.

Chapter 5: intermediate logics with negative atoms. We take a more
general perspective on the following problem we encountered in chapter 3: if
we expand an intermediate logic A with the double negation axiom ——p — p
restricted to atoms, do we create new schematic validities, and if so, which ones?

We show that the operation of taking the schematic validities of the expanded
logic is a closure operator on the lattice of intermediate logic, which additionally
preserves the disjunction property. We solve the mentioned problem for the best-



known intermediate logics, finding that many of them are in fact stable under
this ‘negative closure’ operation.

Chapter 6: first-order inquisitive semantics. We turn to the problem of
setting up inquisitive semantics for a first-order language. Information states
will now be sets of first-order models, over a domain that we assume to be fixed.
While the extension of the notion of support is unproblematic, the definition of
possibilities as maximal states supporting a formula fails, in general, due to the
infinitary character of the semantics.

This leads us to reconstruct our system right from the propositional case,
basing it on an inductive definition of possibilities. The resulting semantics,
which we name possibility semantics, is an extension of the system discussed in
the previous chapters, of which it retains most features, including the logic. In
addition, we encounter a new logical notion, dealing with how a formula can be
resolved, a sound and complete axiomatization of which is established.

We find that the way in which formulas provide information and raise issues
in the new system remains exactly the same. The only novelty is that a formula
may now propose possibilities that are strictly included in other possibilities;
we hypothesize that such possibilities may be conceived of as suggestions of the
shape might p, and we identify a third (and last) dimension of meaning in the
potential of formulas to put forward such suggestions. We then define three
classes of formulas (assertions, questions and conjectures) that serve only one
of these three purposes, and discuss the properties of these classes.

Possibility semantics is extended in an obvious way to a first-order language,
leading to very satisfactory predictions about the inquisitive behaviour of the
existential quantifier; furthermore, we show that who-questions can be defined in
the resulting system and that their treatment is in accordance with the partition
semantics of Groenendijk’s logic of interrogation.

We conclude with some remarks on first-order inquisitive logics and its con-
nections to intuitionistic predicate logic.

vi



Chapter 1

An introduction to
inquisitive semantics

1.1 Information states and the classical update
perspective

Any introduction to Inquisitive Semantics starts from the observation that, tra-
ditionally, logic has been concerned with the study of the use of language in
argumentation. In order to judge the correctness of an argument moving from
a set of premises to a conclusion, one has to check whether the utterances oc-
curring in the argument are related to the previous ones in such a way as to
insure the preservation of truth.

As a consequence of this approach, the meaning of a sentence has been iden-
tified with its truth conditions. The central notion to arbitrate the soundness
of an argument is that of entailment: a formula ¢ entails a formula v in case
the truth conditions for 1) are at least as weak as the truth conditions for .

However, argumentation is neither the only nor the primary use of language.
Much more common is the use of language in dialogue, for the purposes of
information exchange. A first, important step in the direction of the modelling
of the dynamics of this use of language has been undertaken by Stalnaker (1978).
There, starting from the classical truth-conditional perspective on sentences,
meaning is identified with its potential to change the common ground of a
conversation.

The common ground models the conversational participants’ shared infor-
mation as a set of possible worlds (i.e., models for the given formal language),
which are conceived of as the configurations of reality that are consistent with
the information which is common knowledge among the participants.

Following this interpretation, we refer to a set of models as an information
state. Clearly, larger information states reflect a greater uncertainty about the
configuration of reality, since a broader set of alternatives is contemplated; the
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limit case is the state consisting of all models, which reflect a state of complete
ignorance about the issues at stake. Conversely, a narrow state reflects abun-
dance of information, as many conceivable configurations are ruled out: the
limit case is that of a singleton state, in which the information about the issues
at stake is complete.

The empty state has a special status: no configuration is considered possi-
ble for reality; this reflects the fact that (the agent is Gorgias or) inconsistent
information has been acquired.

Now, according to its truth conditions, a sentence splits an information state
into two substates, consisting, respectively, of the models in which it is true, and
those in which it is false. Now, in Stalnaker’s approach, a sentence is regarded as
an operator that, when applied to an information state s, returns the substate
s[¢] consisting of the models in which it is true. The state s[¢] is often referred
to as the update of s with ¢.

If the information state in question is taken to represent the common ground
of a conversation, this update process is understood as follows: after a sentence
has been uttered, the fact that it is true becomes part of the participants’ com-
mon knowledge; consequently, all the worlds in which the sentence is false are
not consistent with the shared information anymore, and are therefore elimi-
nated from the common ground.

The utterance of a sentence has the effect of shrinking down the common
ground, making it more informed. We can thus say that, in this approach, the
meaning of a sentence coincides with its informative content.

1.2 Limitations of the classical picture

The picture we have presented in the previous paragraph is limited in several
respects.

1. First of all, only some of the utterances in a dialogue have the effect of
providing information. Many others, such as questions, exclamations, and
imperatives, do not (primarily) serve this purpose. Such sentences can-
not be given a traditional truth-conditional account. Still, they make an
essential contribution in dialogues. Questions, for instance, are typically
used by agents to specify an issue that they would like to resolve through
the interaction with the other dialogue participants; thus, questions give
dialogue a direction.

2. Secondly, the classical picture does not reflect the cooperative nature of
the process of updating of the common ground of a conversation: as soon
as a sentence is uttered, the update takes place “automatically”, regard-
less of the other participants’ reactions. In particular, critical moves like
disagreeing or doubting cannot be accounted for.

3. Another important limitation of the classical framework is that —essentially
because of its inability to model questions and issues in general— it com-
pletely fails to provide proper tools to analyse how utterances of a dialogue
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relate to one another and whether the dialogue is coherent. As far as the
classical analysis is concerned, an arbitrary sequence of unrelated —but
consistent and informative— assertions would constitute a perfectly ac-
ceptable development for a conversation.

4. Finally, in a dialogue, even informative sentences can serve other purposes
as well. In particular, it is has often been observed that disjunctions and
indefinites are frequently used in order to raise issues: sentences displaying
this feature are called hybrids. We will say more on this further on.

1.3 The inquisitive programme: propositions as
proposals

The aim of Inquisitive Semantics is to devise a formal system capable of mod-
elling a broader range of meanings, such as those attached to questions and
hybrid sentences, by allowing the representation of issues, together with infor-
mation; such a system provides the tools for the study of dialogue as a process of
raising and resolving issues, and the analysis of whether and how an utterance
in a dialogue relates to the preceding ones.

Crucial in this study is the notion of compliance, judging whether a sentence
makes a significant contribution to the process of resolution of a given issue.
However central in the inquisitive programme, this notion will not be treated
in this thesis. For the precise definition of compliance and its implementation
in Inquisitive Semantics, the reader is referred to Groenendijk and Roelofsen
(2009) and Ciardelli et al. (2009a).

The starting point in the construction of Inquisitive Semantics is the above
observation that (at least in usual circumstances) a dialogue is a cooperative
process that sees the participants collaborate in order to resolve one another’s
issues. The acknowledgement of the cooperative nature of information exchange
naturally leads to regarding meanings as proposals: any sentence has the effect
of proposing one or more possibilities, i.e. possible ways to update the common
ground.

If the sentence proposes a single possibility, then it is an assertion, i.e. purely
informative; still, for the proposed update to take place it is necessary that the
other participants react in a positive way to the proposal - for instance, by
nodding or confirming - or at least that they do not object to it, in which case
the update does not take place.

If on the other hand the sentence proposes more than one possibility, then
it is inquisitive, i.e. it invites a choice from the other participants aimed at
choosing, ideally, exactly one of the proposed alternatives. If this happens, we
say that the sentence is resolved. Of course, the other agents may not have
sufficient information to pick exactly one alternative, in which case they may
opt for less demanding responses, such as the union of some of the proposed
alternatives.
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Whatever the response of the other agents to the utterance of ¢ is, as soon
as it is compliant with ¢ the common ground is ultimately updated to a subset
of the union of the possibilities proposed by ¢; in the worst case, if no dialogue
participant is in the position to make an even partial contribution to the choice
invited by ¢, the common ground will be updated to the union of the possibilities
proposed by ¢. This shows that even an inquisitive formula has a (possibly
trivial) informative component, as it proposes to eliminate from the common
ground those worlds that are not included in any of the specified alternatives.

1.4 Sources of inquisitiveness: questions, dis-
junctions and indefinites

For an example of the inquisitive approach, consider the polar question ?p (“is
it the case that p?”): in Inquisitive Semantics, this formula will be interpreted
as inviting a choice between p and —p aimed at updating the common ground
with either assertion. Analogously - moving to the predicate setting - a who
question like 72 P(x) will be interpreted as inviting a choice between alternatives,
corresponding to the possible complete answers.

But questions are not the only linguistic entities that have the power to
raise issues. Besides their traditional role in dealing with informative content,
disjunction and the existential quantifier (the latter in the form of indefinite
pronoun) are widely acknowledged to serve other purposes in natural language.
It is an observation that goes back at least to Grice (1989) that a standard
use of disjunction consists in the specification of alternative possibilities. This
function is striking in alternative questions, like:

(1)  Is Caracas in Colombia or in Venezuela?
(2)  Should we call her, or should we wait?
Groenendijk (2009b), Mascarenhas (2008) and van Gool (2009) have argued

that indicatives like (3) also specify alternatives if uttered with an intonation
pattern that emphasizes the disjuncts.

(3)  Alf or Bea will go to the party.

This is witnessed by the fact that (4) sounds a perfectly acceptable response to
such an utterance.

(4)  Yes, Bea will go.

Inquisitive Semantics assigns to disjunction a hybrid behaviour, that consists in
informing that at least one of the disjuncts is the case, and proposing (in the
basic case) two alternatives, corresponding to the disjuncts.

The inquisitive employment is even more common in the case of the existen-
tial quantifier. Think of sentences like the following.

(5) I put my wallet somewhere. ..



CHAPTER 1. AN INTRODUCTION TO INQUISITIVE SEMANTICS 5

The purpose of an utterance of (5) is clearly not an informative one, as the
informative content of the sentence is trivial. Rather, the sentence is used in
order to raise the same issue expressed by question (6).

(6)  Where did I put my wallet?

The same point can be made about the utterance of (7) after the bell has rung
in a house.

(7)  There is someone at the door!

Other people in the room are obviously already aware of the fact that someone
is at the door; again, the indefinite pronoun seems to be used in order to raise
the underlying who-issue.

This inquisitive behaviour also shows up when the existential occurs in a
question. For example, in most situations the following is not interpreted as a
yes-no question.

(8) Is anybody going to the bike trip?
Rather, a natural answer to (8) would be of the following form.
(9) Yes, Mia and I are going.

The treatment of the existential quantifier in Inquisitive Semantics is analogous
to that of disjunction: an existential Jxp(x) informs that ¢(d) is the case for
at least one individual d, and proposes (in the basic case) the alternatives op(d)
for d an element of the domain.

A pleasant and perhaps surprising feature of inquisitive semantics is that the
treatment of questions does not require an extension of the usual logical language
with additional operators: once the inquisitive behaviour of disjunction and the
existential quantifier has been recognized and modelled, meanings for questions
can be constructed using the expressive power of those connectives. This makes
Inquisitive Semantics and its logic easy to relate and compare with other familiar
semantics and logics.

1.5 Historical notes

Inquisitive semantics was first conceived by Groenendijk (2009b) and Mascaren-
has (2008), who implemented a propositional system in which formulas are
evaluated against pairs of valuations; we will refer to that system as the pair
semantics. The associated logic was axiomatized by Mascarenhas (2009), while
a sound and complete sequent calculus was established by Sano (2008).
Shortly afterwards, Groenendijk (2008a) and, independently, Ciardelli (2008)
realized that the pair semantics could be easily generalized to a system in which
formulas are evaluated against arbitrary sets of valuations, and Ciardelli (2008)
argued that the pair semantics is affected by shortcomings that can be overcome
in the generalized setting. It is this version of the semantics (together with a



CHAPTER 1. AN INTRODUCTION TO INQUISITIVE SEMANTICS 6

variant of it that will be required in order to deal with the first-order case) that
is discussed, explored and used in this thesis.

Groenendijk (2008a) and Ciardelli (2008) remarked the existence of a tight
connection between generalized inquisitive semantics and intuitionistic Kripke
semantics (Kripke, 1965)!; this connection was exploited by Ciardelli and Roelof-
sen (2009) to establish a sound and complete axiomatization of the logic asso-
ciated to inquisitive semantics. This was obtained by augmenting intuitionistic
logic with the addition of the Kreisel-Putnam axiom scheme (Kreisel and Put-
nam, 1957) and the law of double negation restricted to atomic proposition
letters alone. This result will be presented in section 3.2.2, where it will also be
obtained independently as a particular case of a much more general and simpler
theorem.

The semantics investigated in this thesis is at present being used as a frame-
work for several linguistic applications:

1. Groenendijk and Roelofsen (2009), on inquisitive pragmatics and the no-
tion of compliance;

2. Ciardelli et al. (2009b), on the modelling of might and free choice effects;

3. van Gool (2009), on the modelling of different intonation patterns for
disjunctive questions;

4. Ciardelli et al. (2009a), on the computational aspects of compliance.

Another extensive linguistic work based on inquisitive semantics is being devel-
oped by Balogh (2009), who is using the pair version of inquisitive semantics to
study phenomena related to focus in dialogue and question-answer relations.

! Mascarenhas (2008) discussed an analogous connection for the pair semantics.



Chapter 2

Propositional inquisitive
semantics

2.1 Propositional inquisitive semantics and its
properties

In this chapter we put the ideas exposed in the introduction into effect. We
define an inquisitive semantics for a propositional language and discuss the
properties of the resulting system.

We assume a language Lp, whose expressions are built up from | and a
(finite or countably infinite) set of proposition letters P, using binary connectives
A,V and —. We will also make use of three abbreviations: —¢ for ¢ — L, lp
for ==, and ?¢ for ¢V -g. The first is standard, while the role of the second
and the third will clarified at the end of the present section.

2.1.1 Indices, States, and Support

The basic ingredients for the semantics are indices and states.

Definition 2.1.1 (Indices). A P—indez is a subset of P. The set of all indices,
p(P), will be denoted by Zp. We will simply write Z and talk of indices in case
P is clear from the context.

Definition 2.1.2 (States). A P—state is a set of P—indices. The set of all
states, pp(P), will be denoted by Sp. Again, reference to P will be dropped
whenever possible.

The meaning of a sentence will be defined in terms of the notion of support (just
as, in a classical setting, the meaning of a sentence is usually defined in terms
of truth). Support is a relation between states and formulas defined as follows.

Definition 2.1.3 (Support).
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l.sEp iff Vwes:pew

skEL iff s=10

sEpeAy iff sEypandsEY
sEeve i skgorsky
sEp—Y iff VtCs:iftlE=pthentp

It is clear that according to this definition, the empty state supports any formula
o, and moreover, it is the only state for which this is the case. Thus, we also
refer to () as the inconsistent state. The following two basic facts about support
can be established by a straightforward induction on the complexity of ¢:

R R

Proposition 2.1.4 (Persistence). If s = ¢ then for every t C s: t = ¢

Proposition 2.1.5 (Singleton states behave classically). For any index w and
formula ¢:

{ulFy = wke
where w = ¢ means: ¢ is classically true under the valuation w. In particular,
{w} E ¢ or {w} E —y for any formula ¢.

It follows from definition 2.1.3 that the support-conditions for —¢ and ! are as
follows.

Proposition 2.1.6 (Support for negation).
1.sE—p iff Ywes:wE-p
2. sElp iff Ywes:wkEgp

Proof. Clearly, since ! abbreviates double negation, item 2 is a particular case
of item 1. To prove item 1, first suppose s = —p. Then for any w € s we have
{w} = —¢ by persistence, and thus w = —¢ by proposition 2.1.5.

Conversely, if s = -, then there must be ¢t C s with ¢ = ¢ and ¢ [~ L. Since
t & L, t # 0: thus, taken w € ¢, by persistence and the classical behaviour of
singleton states we have w = . Since w € ¢t C s, it is not the case that v - —p
for all v € s. O

The following construction will often be useful when dealing with cases where
the set of propositional letters is infinite.

Definition 2.1.7. Let P C P’ be two sets of propositional letters. Then for
any P’ —state s, the restriction of s to P is defined as s[p := {fwNP|w € s}.

The following fact, which can be established by a straightforward induction on
the complexity of ¢, says that whether or not a state s supports a formula ¢
only depends on the ‘component’ of s that is concerned with the letters in .
In other terms, this insures that, when considering the meaning of a formula ¢,
we might just as well restrict our attention to states for the propositional letters
occurring in ¢.
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Proposition 2.1.8 (Restriction Invariance). Let P C P’ be two sets of propo-
sitional letters. Then for any P’—state s and any formula ¢ whose propositional
letters are in P:

sEe = slpkFy

2.1.2 Inquisitive meanings

In terms of support, we define the possibilities for a formula ¢ and in turn the
meaning of p. We also define the truth-set of ¢, which embodies the classical
meaning of .

Definition 2.1.9 (Truth sets, possibilities, meanings). Let ¢ be a formula.

1. The truth set of ¢, denoted by |¢|, is the set of indices where ¢ is classically
true.

2. A possibility for ¢ is a maximal state supporting ¢, that is, a state that
supports ¢ and is not properly included in any other state supporting ¢.

3. The meaning of ¢, denoted by [¢], is the set of possibilities for ¢.

Notice that |p| is a state, while [¢] is a set of states. We have seen in the
introduction that in inquisitive semantics, the term proposition is taken literally,
in the sense that a formula ¢ is seen as proposing one or more ways to enhance
the common ground. Formally, these ‘ways’ correspond to the possibilities for ¢,
and therefore the meaning [p] represents the proposition expressed by : this is
in fact the terminology adopted in the more linguistically-oriented presentations
of inquisitive semantics.

It may be expected that the meaning of ¢ would be defined as the set of all
states supporting ¢. Rather, though, it is defined as the set all mazimal states
supporting ¢, that is, the set of all possibilities for ¢. This is motivated by the
fact that meanings in inquisitive semantics are viewed as proposals consisting
of one or more alternative possibilities. If one state is included in another, we
do not regard these two states as alternatives. This is why we are particularly
interested in mazimal states supporting a formula. Technically, however, the
two approaches are equivalent: for, the next proposition shows that the meaning
of ¢ is sufficient to determine which states support ¢ and which states do not.

Proposition 2.1.10 (Support and Possibilities). For any state s and any for-
mula ¢:
sE¢ <= sisincluded in a possibility for ¢

Proof. If s C t and ¢ is a possibility for ¢, then by persistence s = . For the
converse, first consider the case in which the set P of propositional letters is
finite. Then there are only finitely many states, and therefore if s supports ¢,
then obviously s must be contained in a mazimal state supporting ¢, i.e. in a
possibility.
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If P is infinite, given a P—state s |= ¢, consider its restriction s [ p_ to the
(finite!) set P, of propositional letters occurring in ¢. By proposition 2.1.8,
s[p, F ¢, and thus s[p_ Ct for some P,—state ¢ which is a possibility for ¢.
Now, consider t* := {w € Ip |wN P, € t}. For any w € s we have wN P, €
(sIPy) Ct,s0w € tt by definition of ¢*; this proves that s C ¢t*. Moreover,
we claim that ¢* is a possibility for ¢.

First, since t* [p_ =t and ¢ |= ¢, it follows from proposition 2.1.8 that ¢t |= ¢.
Now, consider a state u D ¢ with u |= ¢: then u[p_ 2 tt [ p, = t and moreover,
again by proposition 2.1.8, u [ p_ [= ¢; but then, by the maximality of ¢ it must
be ulp, =t Now, for any w € u, wNPy, Eulp, =1t, 50w € t* by definition
of tT: hence, u = t*. This proves that t* is indeed a possibility for ¢. O

Note that, as any formula is supported at least by the empty state, this fact
implies that all formulas have at least one possibility. Thus, an inquisitive
meaning is always a non-empty set of states.

Now, suppose a sentence ¢ is uttered: assuming the dialogue develops ac-
cording to the compliance rules (cf. Groenendijk, 2008b; Ciardelli et al., 2009a),
if the proposal expressed by ¢ is not rejected, then the common ground will
eventually be updated to the union of a set of possibilities proposed by ¢, in the
worst case to |J[¢]; therefore, indices not in J[p] will ultimately be eliminated
from the common ground as a consequence of the utterance of .

In this effect lies the informative power of a formula ¢: ¢ proposes to elim-
inate indices not in |J[y], as its acceptance implies the removal of such indices.
In other words, a formula ¢ provides the information that the “actual world”
lies in |J[].

In a classical setting, the informative content of ¢ is captured by |¢|. Hence,
the following result can be read as stating that inquisitive semantics agrees with
classical semantics as far as informative content is concerned, that is, inquisitive
semantics gives a classical treatment of information.

Proposition 2.1.11. For any formula ¢: J[¢] = |¢|.

Proof. According to proposition 2.1.5, if w € |¢|, then {w} = ¢. But then, by
proposition 2.1.10, {w} must be included in some ¢t € [p], whence w € |J[¢].
Conversely, any w € (J[p] belongs to a possibility for ¢, so by persistence and
the classical behaviour of singletons we must have that w € |¢p|. O

As a consequence of this result, the informative effect of the utterance of a
formula ¢ can simply be rephrased as ‘informing that ¢ is the case’.

Example 2.1.12 (Disjunction). Inquisitive semantics crucially differs from
classical semantics in its treatment of disjunction. This is illustrated by fig-
ures 2.1(a) and 2.1(b). These figures assume that P = {p,q}; the index 11
makes both p and ¢ true, index 10 makes p true and ¢ false, etcetera. Fig-
ure 2.1(a) depicts the truth set—that is, the classical meaning—of p V ¢: the

!In some presentations of inquisitive semantics, such as (Groenendijk, 2009a), the empty
state is excluded from the semantics, and consequently meanings may be empty.
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00 01 00
(a) [p V| (b) [pV 4]

Figure 2.1: Classical and inquisitive meaning of p V q.

set of all indices that make either p or ¢, or both, true. Figure 2.1(b) depicts
the proposition associated with pV ¢ in inquisitive semantics. It consists of two
possibilities. One possibility is made up of all indices that make p true, and the
other of all indices that make ¢ true. So in the inquisitive setting, pV q proposes
two alternative ways of enhancing the common ground, and invites a response
that is directed at choosing between these two alternatives.

The following inequalities, first observed by Groenendijk, provide an upper
bound for the number of possibilities for a formula in terms of the number of
possibilities for its immediate subformulas. If X is a set, denote its cardinality

by #X.
Proposition 2.1.13 (Groenendijk’s inequalities).

L #l] = #[1] =1
2. #p v 0] < #lo) + #10]
3. #lp NY] < #pl#([Y)]

4. #[p — P] < #[e]*]

Proof. We already established the basic cases. The other inequalities follow
from the following observations, whose straightforward verification is omitted.

1. Any possibility for ¢ V 1 is a possibility for at least one of ¢ and . This
gives an injection from [ V 9] into the union [¢] U [¢].

2. Any possibility for ¢ A ¢ is of the form s Nt for some s € [p] and some
t € [¢]. This gives an injection from [p A 9] into the cartesian product

(0] x [¢].

3. Any possibility for ¢ — 1 is of the shape II; for some function f : [¢] —
[¢], where ITy = {w] for all s € [¢], if w € s then w € f(s)}. This gives
an injection from [p — 1] into the set [¢][¥] of functions from [¢] to [¢)].

O

In particular, we have the following corollary, that we could also have concluded
from the proof of proposition 2.1.10.

Corollary 2.1.14. Any formula has a finite number of possibilities.
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2.1.3 Inquisitiveness and Informativeness

Recall once again that in inquisitive semantics, a meaning [¢] is thought of as a
proposal to change the common ground of a conversation. If [¢] contains more
than one possibility, then it invites a choice between alternative possibilities,
and thus we say that ¢ is inquisitive.

On the other hand we have seen that as soon as |J[p] # Z —that is, if the
possibilities for ¢ do not cover the entire space— the formula ¢ proposes the
elimination of some indices from the common ground: in this case we say that
p is informative.

Definition 2.1.15 (Inquisitiveness and informativeness).

e o is inquisitive iff [¢] contains at least two possibilities;

e o is informative iff [p] proposes to eliminate certain indices: |J[¢] # T
Definition 2.1.16 (Questions and assertions).

e  is a question iff it is not informative;

e ¢ is an assertion iff it is not inquisitive.
Definition 2.1.17 (Contradictions and tautologies).

e © is a contradiction iff it is only supported by the inconsistent state, i.e.,

[p] = {0}
e o is a tautology iff it is supported by all states, i.e., [¢] = {Z}

It is easy to see that a formula is a contradiction iff it is a classical contradiction.
This does not hold for tautologies. Classically, a formula is tautological iff it
is not informative. In the present framework, a formula is tautological iff it is
neither informative nor inquisitive. Classical tautologies may well be inquisitive.

Example 2.1.18 (Questions). Figure 2.2 depicts the propositions expressed
by the polar question ?p, the conditional question p — 7¢, and the conjoined
question 7p A 7q. For instance, consider the first question: ?7p = pV —p is an
example of a classical tautology that is inquisitive: it invites a choice between
two alternatives, p and —p. As such, it reflects the essential function of polar
questions in natural language.

Example 2.1.19 (Disjunction, continued). It is clear from figure 2.1(b) that
p V q is both inquisitive and informative: [p V ¢] consists of two possibilities,
which, together, do not cover the set of all indices. This means that p V ¢ is
neither a question nor an assertion.

Groenendijk’s inequalities immediately entail the following corollaries, which
provide sufficient syntactic conditions for being an assertion.

Corollary 2.1.20. For any propositional letter p and formulas ¢, 1:
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(a) ?p (b) p —7¢ (c) 7pA7q

Figure 2.2: A polar question, a conditional question, and a conjoined question.

1. p is an assertion;

2. L is an assertion;

3. if p, 1 are assertions, then ¢ A 1 is an assertion;

4. if 1 is an assertion, then ¢ — v is an assertion.
Corollary 2.1.21. Any negation is an assertion.

Of course, a declarative !y is also always an assertion. Using corollary 2.1.20
inductively we obtain the following corollary showing that disjunction is the
only source of inquisitiveness in our propositional language.?

Corollary 2.1.22. Any disjunction-free formula is an assertion.

We will now look more closely at the properties of questions and assertions and
at the role of the operators ? and !, which was not duly clarified until now.

Definition 2.1.23 (Equivalence).
Two formulas ¢ and ¢ are equivalent, in symbols ¢ = 1, in case [¢] = [¢].

It follows immediately from proposition 2.1.10 that ¢ = ¢ if and only if ¢ and
1 are supported by the same states.

Proposition 2.1.24 (Characterization of questions).
For any formula ¢, the following are equivalent:

1. ¢ is a question
2. p is a classical tautology

3. —p is a contradiction

4. p=Tp

2In the first-order case there will be a close similarity between disjunction and the existen-
tial quantifier, and the latter will be a source of inquisitiveness as well.
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Proof. Equivalence (1 < 2) follows from the definition of questions and propo-
sition 2.1.11. (2 < 3) and (4 = 3) are immediate from the fact that a formula
is a contradiction in the inquisitive setting just in case it is a classical contra-
diction. For (3 = 4), note that for any state s, s = 7p iff s |= ¢ or s | —¢.
But since -y is a contradiction, the latter case is excluded (unless s = (), but
then s supports everything) and thus s = 7¢p <= s | ¢. In other words,
p ="7p. O

Note that an interrogative 7¢p = ¢ V - is always a classical tautology, and
therefore, by the equivalence (1 < 2), always a question. Furthermore, the
equivalence (1 < 4) guarantees that 7¢ = 7?7, which means that ? is idempo-
tent.

Proposition 2.1.25 (Characterization of assertions).
For any formula ¢, the following are equivalent:

1. ¢ is an assertion

2. if sj Epforall jeJ, thenJ, ;55 F o

3. el ¢
4. p=lp
5. [l = {lel}

Proof. (1 = 2) Suppose p is an assertion and let ¢ be the unique possibility for
@. If s; = ¢ for all j € J, then by proposition 2.1.10 each s; must be a
subsets of t, whence also |J jes s; C t. Thus, by persistence, | jes 55 = ¢.

(2 = 3) By proposition 2.1.5, {w} = ¢ iff w € |p|. Then if ¢ satisfies condition
(2), lel = U welpiiw} E o

(3 = 4) Suppose |p| = ¢; by proposition 2.1.10, |¢| must be included in some
possibility s for ¢; but also, by corollary 2.1.11, s C |p|, whence |p| =
s € [¢]. Moreover, since any possibility for ¢ must be included in |p| we
conclude that |p| must be the unique possibility for ¢. Thus, [¢] = {||}.

(4 = 1) Immediate, since we remarked above that a declarative !y is always an
assertion.

(1< 5) If ¢ is an assertion, it has only one possibility, and by the equality
Ule] = |¢| (proposition 2.1.11) this unique possibility must be |¢|. The
converse is trivial.

O

Note that (1 < 5) states that a formula is an assertion if and only if its meaning
consists of its classical meaning. In this sense, assertions are precisely those
formula that behave classically. Also note that (1 < 4), together with the fact
that !y is always an assertion, implies that !¢ = 1. That is, ! is idempotent.
Moreover, let us remark that by corollary 2.1.21 and proposition 2.1.25, the
assertion !¢ expresses precisely the informative content of the formula (.
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We have seen that the operators ! and ?
applied to a formula produce, respectively,
an assertion and a question. Proposition
2.1.25.4 shows that the application of ! to
an assertion does not alter its meaning, and @ =lpATp
proposition 2.1.24 shows the same thing for
the question mark operator. As a conse-
quence, we have seen that these operators
are idempotent.

In all these respects 3, the operators ! and
7 act like projections on the ‘planes’ of as-
sertions and questions, respectively. More- lp
over, the following proposition shows that
the inquisitive meaning of a formula ¢ is
completely determined by its ‘purely infor-
mative component’ lp and its ‘purely inquisitive component’ 7.

Questions

Assertions

Proposition 2.1.26 (Decomposition in pure components). For any formula ¢,
p=lpATe.

Proof. We must show that for any state s, s = p iff s = lp A ?¢. Obviously, it
suffices to consider non-empty states. Suppose s # () supports !¢ A ?¢. Then,
since s |= 7p, s must support one of ¢ and —; but since s = =y, s cannot
support —p. Thus, we have that s = ¢. The converse is immediate by the
definitions of ! and 7 and proposition 2.1.6. O

2.2 Inquisitive semantics and intuitionistic Kripke
semantics

In this section we notice the existence a tight connection between inquisitive
semantics and intuitionistic Kripke semantics, a connection which will turn out
to be an important tool for the study of the logic that inquisitive semantics
gives rise to.

Both inquisitive and intuitionistic semantics have a natural interpretation
in terms of information and information growth. For, inquisitive states and
points of an intuitionistic Kripke model can both be conceived of as information
states. Formulas are evaluated with respect to such information states, and
support/satisfaction at a state is defined partly in terms of the information
available at the state, and partly (namely, implications) in terms of possible
future information states, represented by substates in inquisitive semantics and
by successors in Kripke semantics.

The reader familiar with intuitionistic logic will have noticed the close sim-
ilarity between clauses in the recursive definition of support and those defining

3And others: in section 3.1.1 we shall see that, in terms of entailment, !¢ is the assertion
that “best approximates” ¢.
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satisfaction on intuitionistic Kripke models. This analogy has a formal counter-
part: in fact, inquisitive support amounts to satisfaction on a suitable Kripke
model.

Definition 2.2.1 (Kripke model for inquisitive semantics). The Kripke model
for inquisitive semantics is the model M; = (W;, 2, V;) where W; := S — {0}
is the set of all non-empty states and the valuation V; is defined as follows: for
any letter p, Vi(p) ={s € Wi |s = p}.

Observe that M; is a Kripke model for intuitionistic logic. For, the relation 2
is clearly a partial order. Moreover, suppose s 2 t and s € V;(p): this means
that s = p, and so by persistence ¢ |= p, which amounts to ¢t € Vi(p). So
the valuation V; is persistent. The next lemma shows that the two semantics
coincide on every non-empty state.

Proposition 2.2.2 (Inquisitive support coincides with Kripke satisfaction on
My).
For every formula ¢ and every non-empty state s:

sEp <= M,slko

Proof. Straightforward, by induction on ¢. The inductive step for implication
uses the fact that an implication cannot be falsified by the empty state, as
the latter supports all formulas, so that restricting the semantics to non-empty
states does not make a difference. O

2.3 Inquisitive semantics over an arbitrary com-
mon ground

In section 2.1.2 we saw how the notion of support gives rise to the inquisitive
meaning of a formula, consisting of a set of possibilities interpreted as the pos-
sible updates that the formula proposes. However, since there we took into
account all indices, in fact those are the updates proposed by a formula with
respect to a completely ignorant common ground, that is, a common ground in
which no possible configuration of the world has been excluded.

In practice, one wants to be able to study the effect of utterances on any
possible state of the common ground: to this end, it is important to relativize
the notions of inquisitive semantics to an arbitrary information state. This is
what we are going to do in this section. Since this thesis focuses mostly on the
logical aspects of inquisitive semantics rather than on its applications, we will
keep our discussion concise and avoid dwelling too much on these issues. These
have in any case been studied in some depth by Groenendijk (2009a).

Definition 2.3.1 (Meaning relative to a state). Let ¢ be a formula, and s a
state.

o A possibility for ¢ in s is a maximal substate of s supporting ;
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e The meaning of ¢ in s, denoted [¢]s, is the set of possibilities for ¢ in s.

It should be clear that possibilities for a formula ¢ are simply possibilities for ¢
in the ignorant state Z, and that [p] = [¢]z. Just like in the absolute case, it is
possible to verify that a substate of a state s supports a formula ¢ if and only
if is included in a possibility for ¢ in s. In particular, since the empty state is
a substate of any other state and supports all formulas, a relative meaning [p]
is always non-empty.

In analogy with the absolute case, we call a formula inquisitive in a state s
in case - when uttered in s - it proposes more than one possible update, and
thus it invites a choice; we call a formula informative in s in case —when uttered
in s— it proposes to eliminate indices.

Definition 2.3.2 (Informativeness and inquisitiveness relative to a state).

@ is informative in s iff J[p]s # s;

 is inquisitive in s iff [¢]s contains at least two possibilities.

Needless to say, the absolute notions are the particular case of the relativized
ones when s = Z. Since [p]; represents the effect of the utterance of ¢ when the

common ground is in state s, if [¢]s = [¢]s then ¢ and v are equivalent when
the common ground is in state s.

Definition 2.3.3 (Equivalence relative to a state). We write ¢ =, ¢ in case

[pls = [¢]s-

Observe that if ¢ = 1, then ¢ and 1 are supported by the same states, so
p =, ¢ for any state s: thus, absolute equivalence does not only capture the
notion of ‘having the same behaviour on the ignorant common ground’ but also
that of ‘having the same behaviour under any circumstance’.

We have the following alternative characterizations of relative informative-
ness and inquisitiveness, analogous to propositions 2.1.24 and 2.1.25; the easy
proofs closely resemble those given above for the absolute notions, and will be
omitted.

Proposition 2.3.4 (Alternative characterization of informativeness). For any
formula ¢, the following are equivalent:

1. ¢ is not informative in s;
2. 5 Cel;
3. p=s 7.

Proposition 2.3.5 (Alternative characterization of inquisitiveness). For any
formula ¢, the following are equivalent:

1. ¢ is not inquisitive in s;

2. ift; Csand t; =g forallie I, then Ut E ¢.
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3. JelNs = ¢
4 [els = {lel Ns};
5. p =g lp.

It is worth paying some attention to the following fact, that casts some light
on the intuitive meaning of the support relation. For, perhaps contrarily to the
expectation of the reader, support should absolutely not be thought of as spec-
ifying conditions under which an agent with information state s can truthfully
utter a sentence ¢, as customary in dynamics semantics (cf. Groenendijk et al.,
1996).

Proposition 2.3.6 (Support, inquisitiveness, and informativeness).
A state s supports a formula ¢ iff ¢ is neither informative nor inquisitive in s.

Proof. Suppose s = ¢: then s itself must be the unique possibility for ¢ in s,
that is, [p]s = {s}; so @ is neither informative nor inquisitive in s.

Conversely, suppose ¢ is neither informative nor inquisitive in s. Since ¢
is not informative in s, |J[p]s = s; and since ¢ is not informative in s, [p]s is
a singleton, so it must be [¢] = {s}. Thus by definition of possibility, s must
support . O

This proposition shows that inquisitive support is essentially a notion of redun-
dancy of a formula in a state: the definition of support can be thought of as
specifying the conditions under which an utterance of ¢ has no effect whatsoever
when the common ground is in state s.

2.4 Support as ‘knowing how’

We have already seen that states in inquisitive semantics can be conceived of as
information states. Traditionally, an information state s is taken to support a
formula ¢ iff it it is known in s that ¢ is true. As we have already remarked, this
is not how support should be thought of in the present setting. However, there
is a closely related interpretation that is appropriate: s = ¢ can be thought of
as saying that it is known in s how ¢ is realized.

The idea is that a formula can be realized in different ways: for instance,
pV q can be realized by p being true or by ¢ being true. Thus, in order to know
how pV q is realized, one must either know that p, or that q. Note that, in this
sense, ‘knowing how ¢’ means knowing a reason for the truth of ¢, not all. The
clauses in the definition of support can be read as stating exactly what it takes
to know how a formula ¢ is realized.*

Under this perspective, the basic clause in the definition of support states
that atoms can only be realized in one way: the fact that they name must obtain.

4This intuition can be formalized: the ‘ways of being realized’ of a formula are simply a
set of assertions that can be defined recursively. We shall pursue this approach in chapter 6,
seeing that indeed these ‘ways of being realized’ correspond to possibilities, so that a formula
is supported if and only if one of its realizations is known in the state.
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This special character of atoms explains the fact that, as we shall see, inquisitive
logic is not closed under uniform substitution: in inquisitive semantics, atoms
are not placeholders denoting arbitrary meaning, but really represent “atomic”
meanings, that is, singletons, lacking any inquisitive complexity.

Atoms are simply names for possible configurations of the world. Then,
syntax provides a way to build complex entities that express and require infor-
mation about such configurations.

In regards to this, proposition 2.5.2, that we will see shortly, insures that
each of the alternatives proposed by a formula is expressible and thus can in fact
be selected by the dialogue participants through an utterance. This is certainly
a desirable feature of the system that would be lost if we were to allow atoms
to be inquisitive.

Returning to the definition of support, the recursive clauses can be read as
follows: one never knows ‘how 1’ unless his information state is inconsistent;
one knows ‘how ¢ V1)’ by either knowing ‘how ¢’ or knowing ‘how 1)’; one knows
‘how ¢ A1’ by knowing ‘how ¢’ and ‘how 1’

Finally, let us consider the support-clause for implication, which becomes
particularly perspicuous under this perspective. A state s supports ¢ — o iff
every substate of s that supports ¢ also supports . That is, we know how
p — 1) is realized iff in every future information state where we know how ¢
is realized, we also know how v is realized. Thus, knowing ‘how ¢ implies 1’
requires to know not only that if ¢ is realized then so is 9, but also how the way
1) is realized depends on the way ¢ is realized. In other words, what is required
is a method for turning knowledge as to how ¢ is realized into knowledge as
to how 1 is realized, just like in intuitionistic logic having a proof for ¢ — ¥
amounts to having a method for turning a proof for ¢ into a proof for .

The different ways in which a formula ¢ may be realized are mirrored by the
possibilities for ¢. A possibility for ¢ is a mazimal state in which ¢ is known to
be realized in a particular way. In other words, all states in which ¢ is known
to be realized in the same way are included in the same possibility. Thus, every
possibility for ¢ corresponds with a particular way in which ¢ may be realized,
and vice versa.

In the light of this intuitive interpretation, the conversational effect of an ut-
terance can be rephrased as follows. An utterance of ¢ provides the information
that @ is true and it raises the issue about how ¢ is realized.

2.5 Expressive completeness and disjunctive nor-
mal form

We conclude this chapter on the semantics with some results concerning the
expressive power of connectives in inquisitive semantics. We are going to show
that any possible inquisitive meaning is expressible by a formula and indeed that
it can be expressed by means of negation and disjunction alone; in particular, we
will see that any formula can be represented as a disjunction of assertions in such
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a way that its possibilities coincide with the classical meaning of the disjuncts.
Moreover, we shall see that all classical meanings —that is, consisting of one
possibility only— can be expressed by means of negation and conjunction.

In order to undertake this investigation we first need to specify what a mean-
ing in a given set of propositional letters is. In inquisitive semantics, the meaning
of a formula is the set of maximal states supporting it: thus, it is a non-empty
set of pairwise incomparable states. We can then take this as the abstract
definition of a meaning.

Definition 2.5.1. Let P be a finite set of propositional letters. A meaning in
P is a (non-empty) antichain of the powerset algebra (p(Zp),C). We say that
a meaning is classical in case it contains only one element.

Clearly, the meaning [¢] of a formula ¢ whose propositional letters are in P is a
meaning in P. The following proposition shows that, conversely, every meaning
in P is the meaning of some formula whose propositional letters are in P.

Proposition 2.5.2 (Expressive completeness of V,—). Any meaning IT in the
propositional letters p;,...,p, can be expressed by a formula x7 € Ly, . p.}
that contains only the connectives — and V.

Proof. Let II be a meaning in P. Consider an element 7 € II: since the set of
connectives {—,V} is complete in classical logic, we can let ¥, be a formula in
Lp that contains only disjunction and negation, such that || = 7. According
to proposition 2.1.6, for any state s we have s =1, < s C |¢;| = 7.

Now consider the formula x7 := \ rem!®¥;. Note that this is a well-defined
formula: for, as the set P of propositional letters is finite, so is p(Zp) = pp(P),
and therefore so is IT; hence, the \/ rc 7!, is a finite disjunction.

Clearly, x 7 contains only the connectives — and V. Moreover, by definition
of support, a state s supports x 7 if and only if s ), for some 7 € II, that is,
according to what we saw, if and only if it is included in some element of II.

Since II is a meaning, no element of IT can be included in another, so each 7 €
IT must be a mazimal state supporting x 7, i.e. a possibility for x ;7. Moreover,
since we have seen that any state supporting x 7 is included in an element of II,
elements of II are the only possibilities for x 7. In conclusion, [x ] = II. O

In particular, any meaning is expressible by a disjunction of assertions, and in
fact by a disjunction of negations. This perfectly matches our intuitive under-
standing that meanings in inquisitive semantics are sets of alternatives, which
are incomparable classical meanings. Classical meanings are expressed by as-
sertions (and always expressible by negations) while disjunction is the source of
alternativehood, in the sense that a disjunction applied to incomparable classical
meanings yields the proposition consisting of those meanings as alternatives.

Recall that according to corollary 2.1.22, any formula containing only nega-
tions and conjunctions is an assertion, that is, expresses a classical meaning. We
are now going to see that, conversely, any classical meaning can be expressed
by means of negations and conjunctions alone.
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Proposition 2.5.3 (Completeness of A, - for classical meanings). Let {7} be a
classical meaning. Then there is a formula £, that contains only the connectives
— and A and such that [£,] = {7}.

Proof. Since the set of connectives {—, A} is complete in classical logic, we can
find a formula &, which contains only negations and conjunctions and such that
|€x| = m. Now since &, does not contain disjunctions, by 2.1.22 it is an assertion
in inquisitive semantics, and thus by 2.1.25 we have [£,] = {|¢x]} = {7 }. O

This proposition shows that a formula is an assertion if and only if it is equivalent
to a formula containing only negations and conjunctions. In other words, up
to equivalence, the (semantic) assertive fragment of the language coincides with
the (syntactic) {—, A}-fragment.

Observe that proposition 2.5.2 comes with an associated normal form result.
For, we can choose a normal form for formulas in classical logic so that the
formulas 1, which we use in the proof of proposition 2.5.2 are uniquely deter-
mined; moreover, given a meaning II, we can simply fix an order of its elements:
D= {ns,...,7n}

Then the formula x 7 = W, V- -V, expressing II is uniquely determined:
we call this formula the normal representation of the meaning II. For any
formula ¢, the disjunctive normal form of ¢ is simply the normal representation
of its meaning [p].

Knowing the disjunctive normal form of a formula is particularly useful, as it
allows to read off easily (and to compute efficiently) the meaning of the formula:
for, the possibilities for the formula simply correspond to the classical meanings
of the disjuncts.

However, the bottom-up way we have described for producing the normal
form of a formula ¢ requires the knowledge (or the computation) of the mean-
ing of ¢, and so it neutralizes the advantages of the normal form representa-
tion. This inconvenient can be avoided by getting at a disjunctive normal form
through a merely syntactic, top-down procedure on the formula ¢. Such an
algorithm, called disjunctive negative translation, will be presented in the next
chapter and will play a crucial role in the study of inquisitive logic.



Chapter 3

Inquisitive logic

3.1 Inquisitive Logic

3.1.1 Definitions and basic properties

In the present chapter we shall investigate the logic that inquisitive semantics
gives rise to. We begin by specifying the notions of entailment and validity
arising from inquisitive semantics.

Definition 3.1.1 (Entailment and validity). A set of formulas © entails a
formula ¢ in inquisitive semantics, © =nqL ¢, if and only if any state that
supports all formulas in © also supports ¢. A formula ¢ is valid in inquisitive
semantics, [=ingL @, if and only if ¢ is supported by all states.

If no confusion arises, we will simply write |= instead of =jnq - We will also
write ¥y7,...,¢¥, | ¢ instead of {¢,...,¥,} E ¢. Note that, as expected,
p=v¢iff o Eyand Y .

It is clear that ¢ entails 1) precisely in case any possibility for ¢ is included
in a possibility for 1. So we can think of ¢ | ¢ as meaning that 1) is resolved
whenever ¢ is resolved.

In case ¥ is an assertion, this simply means that ¢ already provides the
information carried by %, so inquisitive entailment boils down to classical en-
tailment.

Proposition 3.1.2. If ¢ is an assertion, ¢ =¥ <= |p| C |¢)|.
Proof. Follows from proposition 2.1.25 and the definition of entailment. U

We have already seen that the exclamation mark operator turns any formula ¢
into an assertion ! expressing the informative content of ¢. Moreover, in terms
of entailment, the assertion !¢ can be characterized as the most informative
assertion entailed by .

Proposition 3.1.3. For any formula ¢ and any assertion x, ¢ E x <
|
lp = x.

22
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Proof. Fix a formula ¢ and an assertion x. The right-to-left implication is
obvious, since it is clear from proposition 2.1.6 that ¢ |= . For the converse
direction, suppose ¢ |= x. Any possibility s € [¢] supports ¢ and therefore also
X, whence by proposition 2.1.10 it must be included in a possibility for y, which
must be |x| by proposition 2.1.25 on assertions. But then also |¢| = J[¢] C |x|
whence !¢ | x by proposition 3.1.2. O

Most naturally, since a question does not provide any information, it cannot
entail informative formulas.

Proposition 3.1.4. If ¢ is a question and ¢ = ¢, then ¢ must be a question
as well.

Proof. If ¢ is a question, it must be supported by each singleton state. If
moreover ¢ = 1, then ¢ must also be supported by each singleton state. But
then, since singletons behave like indices, 1) must be a classical tautology, that
is, a question. U

Definition 3.1.5 (Logic). Inquisitive logic, InqL, is the set of formulas that are
valid in inquisitive semantics.

Clearly, a formula is valid in inquisitive semantics if and only if it is both a
classical tautology and an assertion. Thus, InqL coincides with classical logic as
far as assertions are concerned: in particular, InqL has the same disjunction-free
fragment as classical logic.

Remark 3.1.6. If ¢ is disjunction-free, ¢ € InqL <= ¢ € CPL.

Also, note that while InqL is closed under the modus ponens rule, it is not closed
under uniform substitution. For instance, -—p — p € InqL for all proposition
letters, but == (p V —p) — (p V —p) & InqL.

IngL s, however, closed under a special kind of substitution: for, substituting
propositional letters by assertions is always an operation that preserves validity,
as we shall see. This is related to the fact that, in inquisitive semantics, atoms
have the special property of being assertions (that is, if satisfying the double
negation law) so it is only sound to replace them with formulas that enjoy the
same property.

3.1.2 Disjunction Property, Deduction Theorem, and Com-
pactness

In this section we will discuss a few basic properties of inquisitive logic and
entailment. The first observation is an immediate consequence of the fact that
support is persistent.

Proposition 3.1.7. For any formula ¢, ¢ € InqL <= T E ¢

In combination with the support clause for disjunction, this proposition yields
the following corollary.
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Corollary 3.1.8 (Disjunction Property). IngL has the disjunction property.
That is, whenever a disjunction ¢ V v is in InqL, at least one of ¢ and v is in
IngL as well.

Proposition 3.1.9 (Deduction theorem). For any formulae 0;,...,0,, ¢:
O1,....0, B0 <= O;N---NO,— pEInqL

Proof. 04,...,0, = ¢

< forany s € S,if s =0, for 1 <i<n, then s =y

< forany s€ S,if sE0; A---ANO,, then s = ¢

— IEON--NO,— ¢

<~ O;N---NO, = ¢ ElngL O

Theorem 3.1.10 (Compactness). For any set of formulae © and any formula
©, if © = ¢ then there is a finite set Oy C © such that O [ ¢.

Proof. Since our set P of propositional letters is countable, so must be O, so
we can write @ = {0 |k € w}. Now for any k € w, let v, =0y A--- A, and
define I' = {y; |k € w}. Tt is clear that I" and © are equivalent, in the sense
that for any state s, s ' <= s | 0O, so we have I" = . Moreover, for
k > k' we have v |E vg. If we can show that there is a formula v, € T' such
that vy | ¢, then this will mean that {6y,...,0;} = ¢, and since {0, ...,04}
is a finite subset of ©® we will be done.

For any k € w let Py, be the set of propositional letters occurring in ¢ or in yy.
By the definition of the formulas ~g, it is clear that for &k < k' we have Py, C Py..
Now, towards a contradiction, suppose there is no k € w such that v, = .
Define Ly := {t|t is a Py—state with ¢ = v but t & ¢}: our assumption
amounts to saying that Ly # @ for all k. Then put L := {0} U geo, Lg. Define
a relation < on L by putting:

o ) <tiff t € Ly;
o s=tiffse Ly, t€ Lyy;s and t]p, =s.

Now, consider t € Ly ;. This means that t = vy54; and ¢ = ¢; as ver1 E Vi,
we also have ¢ |= 7. But then, since both 5 and ¢ only use propositional
letters from Py, by proposition 2.1.8 we have t[p, = v and t[p, & ¢, which
means that ¢[p, € Ly.

From this it follows that (L, <) is a connected graph and thus clearly a tree
with root (). Since L is a disjoint union of infinitely many non-empty sets, it
must be infinite. On the other hand, by definition of <, all the successors of a
state s € Ly, are Py s-states, and there are only finitely many of those as Py ;
is finite. Therefore, the tree (L, =) is finitely branching.

By Konig’s lemma, a tree that is infinite and finitely branching must have
an infinite branch. This means that there must be a sequence (t; |k € w) of
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states in L such that for any k, tx4s [p, = tx. This naturally defines a P-state
that is the “limit” of the sequence. Precisely, this state is:

t = {w € p(P) | there are wy, € ty with wgy; NPy = wg and w = U kewWr }

It is easy to check that for any k, t [ p, = tx. Now, for any natural k, since
tp, = tx E Vi, by proposition 2.1.8 we have ¢t |= v4; hence, t = T'. On the
other hand, for the same reason, since t[p, =ty [~ ¢, also t & ¢.

But this is contradicts the fact that I' = ¢. So for some k we must have

Vi . O

We close this section on the basic properties of InqL with a simple remark about
decidability.

Remark 3.1.11 (Decidability). InqL is obviously decidable: given a formula
©(p1,--.,pn) whose propositional letters are among py, ..., p,, by propositions
2.1.8 and 3.1.7 we only have to test whether the Py,, . ., 1-state Ty, . 1
supports ¢, and this is a finite procedure since Zy,, ., 1 is finite and so has
only finitely many substates that have to be checked to determine the support
for implications.

3.2 Axiomatizing InqL

In section 2.2 we showed that inquisitive semantics coincides with Kripke se-
mantics on a suitable intuitionistic Kripke model M ; that we called the Kripke
model for inquisitive semantics, based on the set of non-empty states.

This observation suffices to show that the logic IngL contains intuitionistic
propositional logic IPL. For suppose that ¢ ¢ InqL. Then there must be a non-
empty state s such that s & ¢. But then we also have that My, s I} ¢, which
means that ¢ ¢ IPL.

On the other hand, InqlL is contained in classical propositional logic CPL,
because any formula that is not a classical tautology is falsified by an index and
therefore - by the classical behaviour of singleton states - by a singleton state
in inquisitive semantics. So we have:

IPL C IngL C CPL

Moreover, both inclusions are strict: for instance, p V —p is in CPL but not in
IngL, while =—p — p is in InqL but not in IPL.

Our task in the present section is to investigate exactly where InqlL sits
between IPL and CPL, exploring its relations to several intermediate logics and
characterizing it either semantically, as the logic of a particular class of Kripke
models, or syntactically, through an axiomatization.

In this section we will accomplish both tasks, and indeed in more than
one way. In section 3.2.2 we will develop the connection between inquisitive
semantics and intuitionistic Kripke semantics provided by the model M ; we
will characterize IngL as the logic of a class nSAT of Kripke models that share
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certain features of M, and we will show how this connection can be exploited
to use the canonical model construction typical of intuitionistic logic to prove
completeness of an axiomatization for InqgL obtained by expanding intuitionistic
logic with the Kreisel-Putnam axiom scheme and the double negation axioms
restricted to atoms.

This completeness proof has the advantages of being totally self-contained
and of explicitly constructing a canonical model, but on the other hand it is quite
cumbersome and not totally transparent. A much speedier and neater proof will
be given in section 3.2.3. Our approach there will be much more syntactic: we
will disregard M ; completely and focus on the crucial fact that in InqL we can
represent each formula as a disjunction of negations; an analysis of the syntactic
ingredients needed to justify this translation will lead to a nicer result providing
not one, but a whole range of possible axiomatizations for InqL. Surprisingly,
this will even result in an exact characterization of all the axiomatizations of
IngL (the precise meaning of this statement will become clear later on).

But first we will need to introduce some theoretical machinery designed to
deal with objects like IngL, that is, non substitution-closed analogues of inter-
mediate logics.

3.2.1 Intermediate logics and negative variants

Recall that an intermediate logic is defined as a consistent set of formulae that
contains IPL and is closed under the rules of modus ponens and uniform substi-
tution, where consistent simply means ‘not containing 1’.

Intermediate logics ordered by inclusion form a complete lattice whose meet
operation amounts to intersection and whose join operation, also called sum, is
defined as follows: if A;, ¢ € I is a family of weak logics, then ¥;c;A; is the
logic axiomatized by |J;erA;, that is, the closure of |J;erA; under the rules
of modus ponens and uniform substitution. For more details, see Chagrov and
Zakharyaschev (1997). The sum of two intermediate logic A and A’ will also be
denoted by A + A’.

In our investigation, however, we will meet several logics that, just like InqL,
are not closed under uniform substitution. We shall refer to such logics as weak
intermediate logics.

Definition 3.2.1. We say that a set of formulas L is a weak logic in case
IPL C L and L is closed under modus ponens. If, additionally L C CPL, then
we call L a weak intermediate logic.

Both weak logics and weak intermediate logics ordered by inclusion form
complete lattices as well, where again meet is intersection and the join (or sum)
of a family is the weak logic axiomatized by the union, i.e. the closure of the
union under modus ponens.

If L is a weak logic, we write ¢ =, ¢ in case ¢ <> ¥ € L.

Definition 3.2.2. Let K be a class of Kripke models (resp. frames). If © is a
set of formulae and ¢ is a formula, we write © = k¢ in case at any point in
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any model in K (resp. any model based on a frame in K), the following holds:
if all formulas 6 € © are forced, then so is .

We denote by Log(K) the set of formulae that are valid on each model
(frame) in K, that is: Log(K) = {¢| Ex ¢}

Tt is straightforward to check that for any class K of Kripke models, Log(K) is a
weak logic, and that for any class K of Kripke frames, Log(K) is an intermediate
logic.

Notation. For any formula ¢, we denote by ¢™ the formula obtained from ¢
by replacing any occurrence of a propositional letter with its negation.

Definition 3.2.3 (Negative variant of a logic). If A is an intermediate logic,
we define its negative variant A™ as:

A" ={p|p™ € A}

In general, A™ will not be an intermediate logic: in fact, for any intermediate
logic A we have =—p — p € A™ for any propositional letter p; so, A will not be
closed under uniform substitution unless A™ = CPL, where CPL denotes classical
logic.

It is, however, the case that A™ is always a weak intermediate logic containing
A; this is the content of the following remark.

Remark 3.2.4. For any intermediate logic A, its negative variant A™ is a weak
intermediate logic including A.

Proof. Fix an intermediate logic A. Since A is closed under uniform substitution,
@ € A implies ™ € A and so ¢ € A™. This shows A C A™.

Moreover, if both ¢ and ¢ — v belong to A™, then both ¢™ and (¢ — ¥)™ =
™ — 1™ are in A which is closed under modus ponens; therefore, ¢™ € A, which
means that ¢ € A™. This shows that A™ is closed under modus ponens.

Finally, if ¢ € A™ then ¢™ € A C CPL; but then, since CPL is substitution-
closed, ™" € CPL and therefore also ¢ € CPL because the double negation law
holds in CPL. This shows that A™ C CPL and therefore that A™ is indeed a weak
intermediate logic. O

The following immediate observation will turn out useful later on.
Remark 3.2.5. If a logic A has the disjunction property, then so does A™.

For, if p V1) € A™, then ¢™ V™ € A; thus, by the disjunction property, at least
one of ™ and ¥™ must be in A, which means that at least one of ¢ and ¢ must
be in A™.

Definition 3.2.6 (Negative valuations). Let F' be an intuitionistic frame. A
valuation V is called negative in case for any point w in F' and for any proposition
letter p:

(F,V),wlkp < (F,V),wlF—-—p
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We will call a model negative in case its valuation is negative. Observe that if
M is a negative model, for any point w and formula ¢ we have M, w IF ¢ <—
M, w - ™.

Definition 3.2.7 (Negative variant of a model). If M = (W, R, V) is a Kripke
model, we define the negative variant M™ of M to be model M™ = (M, R, V™)
where

V™(p) :={weW|M,wl —p}

that is, V™ makes a propositional letter true precisely where its negation was
true in the original model.

A straightforward inductive proof yields the following result.

Proposition 3.2.8. For any model M, any point w and formula ¢:
M,wlk " <= M" wlk
Remark 3.2.9. For any model M, its negative variant M™ is a negative model.

Proof. Take any point w of M and formula ¢. According to the previous propo-
sition and recalling that in intuitionistic logic triple negation is equivalent to
single negation, we have M, wl-p < M,wlF—p < M,wlF -——p <=
M™ w Ik —=—p. O

Definition 3.2.10. Let K be a class of intuitionistic Kripke frames. Then
we denote by nK the class of negative K-models, i.e., negative Kripke models
whose frame is in K.

Proposition 3.2.11. For any class K of Kripke frames, Log(nK) = Log(K)".

Proof. If ¢ & Log(K)™, i.e. if ™ & Log(K), then there must be a K-model M
(i.e., a model based on a K-frame) and a point w such that M,w If ¢™. But
then, by proposition 3.2.8 we have M™, w ¥ ¢, and thus ¢ ¢ Log(nK) since M™
is a negative K-model.

Conversely, if ¢ ¢ Log(nK), let M be a negative K-model and w a point
in M with M,w I ¢. Then since M is negative, M, w I ©™". Therefore, by
proposition 3.2.8, M™ w I ©™. But M"™ shares the same frame of M, which is
a K-frame: so ™ & Log(K), that is, ¢ ¢ Log(K)™. O

The following result states that for any intermediate logic A, its negative variant
A™ is axiomatized by a system having A and all the atomic double negation
formulas ——p — p as axioms, and modus ponens as unique inference rule.

Proposition 3.2.12. If A is an intermediate logic, A™ is the smallest weak
logic containing A and the atomic double negation axiom ——p — p for each
propositional letter p.
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Proof. We have already observed (see remark 3.2.1) that A™ is a weak logic
containing A; moreover, for any letter p we have -——p — —p € IPL C A, so
each atomic double negation formula is in A™.

To see that A™ is the smallest such logic, let A’ be another weak logic contain-
ing A and the atomic double negation axioms. Consider ¢ € A™: this means
that ¢™ € A. But clearly, ¢ is derivable by modus ponens from ¢" and the
atomic double negation axioms for letters in ¢: hence, as A’ contains A and the
atomic double negation formulas and it is closed under modus ponens, p € A'.
Thus, A™ C A'. O

With just a slight abuse of notation, we can thus identify A™ with a derivation
system as follows.

Definition 3.2.13. We denote by A™ the following derivation system.
Axioms:

e all formulas in A

e ——p — p for all letters p € P
Rules:
e Modus ponens

If © is a set of formulae and ¢ is a formula, we will write © =4» @ in case @ is
derivable from the set of assumptions © in the system A™.

In the following, we will think of A™ either as set of formulas or as a deriva-
tion system depending on which approach is more convenient.

As we saw, negative variants are not in general closed under uniform substi-
tution; there is, however, a special kind of substitutions under which they are
closed. This is a general version of the aforementioned (and not yet proven) fact
that InqlL is closed under substitution of the atoms by assertions.

Definition 3.2.14 (Negative substitutions). We say that a substitution ()* is
negative in a weak logic L in case p* =5, —=—(p*) for all letters p.

For instance, a map that substitutes each atom by a negation is always negative.
Now, the point is that in a negative variant A™, atoms are essentially negations.
Thus, if we want to preserve validity, it is crucial that we substitute them by
formulas that enjoy the same property, namely, formulas that are equivalent to
negations in A™.

Proposition 3.2.15 (Closure of negative variants under negative substitu-
tions). Let A be an intermediate logic. If ¢ € A™ and ( )* is a substitution
which is negative in A”, then (¢)* € A™.
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Proof. For the sake of simplicity, let us omit the brackets when dealing with
multiple substitutions and write, for instance @™ for ((¢p™)™)*.

First observe that since ( )* is negative in A", ©* =4» ¢"*: for, the latter
formula is obtained from the former by putting a double negation in front of
each substitute p* of a letter p.

Now, since ¢ € A™ we have ¢™ € A; then since ¢ is a substitution
instance of ™ we have ¢""*™ € A, whence p"* € A™. But we saw that
P =0 ¥, 80 * € A™ and we are done. O

nn*xn

3.2.2 Completeness by canonical model

As anticipated, in this section we will work our way up to a completeness result
by exploiting the semantic connection between InqL and IPL provided by the-
orem 2.3.6, stating that inquisitive semantics amounts to intuitionistic Kripke
semantics on the model M.

We first isolate some features of the Kripke model M; embodying inquisi-
tive semantics and characterize InqL as the logic of the class nSAT of Kripke
models that share such features. We then propose an axiomatization and, in
order to prove completeness, we build a canonical model based on the set of
consistent theories with the disjunction property. Finally, we prove that this
models belongs to the class nSAT and can therefore be used as a countermodel
to inquisitive validity.

Saturated models

We start our investigation by isolating two properties of the frame F; underlying
M ;. One striking aspect of F; is that any point in it can see an endpoint.

For, consider a point s € W;: this is a nonempty state, so there is an index
v € s; thus {v} C s, which means that {v} is a successor of s in F;. But clearly,
the singleton states are precisely the endpoints of F7.
We will call frames with this property E-SATURATED. The mnemonic is that
such frames have enough endpoints.

Notation. If F = (W, R) is a Kripke frame and s is a point in F', we denote
by E; the set of terminal successors of s, that is, E, = {t € W| sRt & t is an
endpoint}.

Definition 3.2.16 (E-saturation). A frame F' = (W, R) is E-SATURATED iff for
any point s € W, F # (.

The second feature of F; that we identify is the following: if s is a point in Fj
and F, is a nonempty set of terminal successors of s, then there is always a
‘mediating point’ ¢ which is a successor of s and has precisely F, as its set of
terminal successors.

To see this, note that the terminal successors of s are precisely the singletons
subsets of s. Thus, for any non-empty subset £, C Fy, the state t := |J F is
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a successor of s (E, # () guarantees that ¢ is nonempty and thus a point in F7)
and clearly F; = F,.

We will call frames with this property I-SATURATED; the mnemonic is that
I-SATURATED frames have enough intermediate points.

Definition 3.2.17 (Saturated frames). We say that a Kripke frame F' = (W, R)
is saturated in case it is both E-SATURATED and I-SATURATED. We denote by
SAT the class of saturated frames.

Now, the fact that IngL is not closed under uniform substitution already shows
that we cannot hope to characterize it as the logic of a class of Kripke frames.

Indeed, the model M; is endowed with a special valuation function Vi, a
striking feature of which is to be negative, in the sense defined in the previous
section. This is precisely the feature that gives rise to the validity of the atomic
double negation law —=—p — p in inquisitive logic.

In order to see that V; is negative, suppose s € Vi(p), that is, suppose s £ p.
This means that there is an index i € s with p ¢ i; but then by the classical
behaviour of singletons we have {i} = —p, whence My, {v} I —p; finally, since
v € s, the state {v} is a successor of s, so My, s | =—p. This shows that p and
——p are forced at exactly the same points in M.

We are now ready to show the crucial result that paves the way to the
completeness proof: InqL is precisely the logic of the class nSAT of negative
saturated models. In fact, something stronger holds: inquisitive entailment
coincides with entailment on negative saturated models.

Theorem 3.2.18 (Correspondence theorem). For any set of formulae © and
any formula :

C] ':InqL 2 — S ':nSAT "2

In the course of the present section we have seen that M itself is a negative
saturated model. But there is more to it: the following, crucial lemma states
that M7 is also the “most general” negative saturated model, in the sense that
any situation arising in a negative saturated model is in fact already present in
M;.

Lemma 3.2.19. For any negative saturated model M, there is a p-morphism
n from M to Mj.

Proof. Let M = (W, R, V) be a finite negative saturated model. For any end-
point e of M, denote by i, the valuation i, = {p € P|e € V(p)} consisting of
those letters true at e. Define our candidate p-morphism 7 as follows:

n(w) = {icle € Ey}

In the first place, since M is E-SATURATED, for any w € W we have E,, # () and
so n(w) # 0; this insures that indeed n(w) € Wy, so that the map n: W — W
is at least well-defined. It remains to check that n is a p-morphism. Fix any
we W:
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e Propositional Letters. Take any propositional letter p. If M, w IF p,
then by persistence we have M, e IF p for any e € F,,; this implies p € ¢
for any index ¢ € n(w) and so n(w) = p, whence M, n(w) IF p.

Conversely, suppose M, w If p. Then since the valuation V is negative,
M, w If ==p, so there must be a successor v of w with M, v IF —=p. Exploit-
ing again the fact that M is finite, take a point e € F,: by persistence it
must be M, e I —p, whence p & i.. But by the transitivity of R we also
have e € E,;, s0 i, € n(w): thus n(w) £ p, whence M, n(w) Iff p.

e Forth Condition. Suppose wRv: then since our accessibility relation is
transitive, £, 2 F, and thus also n(w) 2 n(v).

e Back Condition. Suppose n(w) 2 ¢: we must show that there is some
successor v of w such that n(v) = t.

Now, since ¢ is a non-empty subset of n(w) = {i. | e € E,}, there must be
some non-empty subset F, C E,, such that t = {i.|e € E.}.

Then, since M is I-SATURATED there must be a successor v of w with
E, = E,.. We thus have: n(v) = {ic|e € E,} = {i.|e € E,} =t. So we
have found a successor v of w with the required properties.

O
This lemma provides the key to the proof of theorem 3.2.18.

Proof of theorem 3.2.18. Suppose © [~ hqL ¢. Then there is some state s such
that s = © but s & ¢. Now, s must be non-empty, because the empty state
supports every formula. So by proposition 2.2.2 we have My, s |- © but My, s Iff
. Since M; is a negative saturated model, this shows that © EnsaT ©.

Conversely, suppose © ~npsaT ¢. This means that, for some negative sat-
urated model M and some point w in M we have M, w I+ © while M, w I ¢.
But according to lemma 3.2.19 there is a p-morphism n : M — M;, and
since satisfaction is invariant under p-morphisms, we have My, n(w) IF © and
My, n(w) If .

Hence, again since support amounts to satisfaction on M;, we have n(w) = ©
but n(w) ¥~ ¢, which shows that © g ¢. The proof of theorem 3.2.18 is thus
complete. O

In particular, the theorem establishes the equality InqL = Log(nSAT), whence
by proposition 3.2.11 we have the following corollary.

Corollary 3.2.20. InqL = Log(SAT)".

If we were willing to input some known facts about certain intermediate logics,
at this point we would already be in the position to give a sound and complete
axiomatization of IngL. For, the following holds.

Proposition 3.2.21. If A = Log(K) where K is a class of Kripke frames with
{F;} C K C SAT, then A™ = InqL.
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Proof. Let A be as above. Since M € n{F;} C nK C nSAT, using theorem
3.2.18 and the fact that M; is a negative model on the frame F; we have:

IngL = Log(M ;) D Log(nK) D Log(nSAT) = InqL
So A™ = Log(K)"™ = Log(nK) = InqL. O

Now, as the experienced reader might know, the Kreisel-Putnam logic KP
(Kreisel and Putnam, 1957) axiomatized by the axiom

K (p—qVr)—=(p—qV(p—r)

is known to be complete for a class FKP of Kripke frames called finite Kreisel-
Putnam frames (see, for instance, Chagrov and Zakharyaschev, 1997, page 55
and theorem 5.44) which is easily seen to satisfy the hypotheses of the previous
proposition, so KP™ = InqL. However, we will not go into the definition of FKP
here: for, in the next section we will give a direct, self-contained proof of this
result; on the other hand, the reader looking for a short and simple proof will
find one in section 3.2.3.!

We can also use our completeness result to show the promised fact that
substituting atoms by arbitrary assertions is sound in InqL.

Corollary 3.2.22 (Closure of IngL under substitution by assertions). Let ( )*
be substitution map such that the substitute p* of each propositional letter is
an assertion. Then if ¢ € IngL also ¢* € IngL.

Proof. Recall that, according to proposition 2.1.25, assertions are precisely the
formulas that are equivalent to their double negation in InqL. This means that
the substitution ( )* is negative in InqgL = Log(SAT)", in the sense of definition
3.2.14. Thus, the claim follows from proposition 3.2.15. O

Completeness proof by canonical model

In this chapter we will prove the equality KP™ = InqL claimed at the end of the
previous section by constructing a canonical model. We start with the matter
of soundness and prove that any substitution instance of the Kreisel-Putnam
axiom KP is valid in inquisitive semantics, whence KP € InqL.

Lemma 3.2.23. KP* € InqL for any substitution instance KP* of KP.

Proof. Consider an instance (- — xV&) — (=) — x)V (=) — &) of the scheme
KP. Suppose towards a contradiction that s does not support this formula. Then
there must be a substate ¢ C s such that ¢t | =9 — x V£ but t £ —p — x and
t ) — &

The fact that ¢ = -1 — x implies that there is a substate u C ¢ with
u = = but u £ x; similarly, since t £ ) — £ there is v/ C t with v’ &= ¢
but u’ p~ £.

I Another logic to which the previous proposition apply is Medvedev logic ML, which we
will discuss in detail in section 3.4.
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According to corollary 2.1.21, —1) is an assertion, so by proposition 2.1.25
we have v U v/ |= ). But w U« cannot support y, otherwise by persistency
we would have u |= x, which is not the case; similarly, « U« cannot support &,
and thus also u Uu’ & x VE.

But since u C ¢t and v’ C ¢ we have uUu’ C ¢: this shows that ¢ & ¢ — x V¢,
contrary to assumption. O

This immediately yields the soundness of the derivation system KP™ for InqL.

Proposition 3.2.24 (Soundness). For any set of formulae © and any formula
©, if © Fkpn ¢ then © |:InqL p.

Proof. Suppose © F gpn : this means that there is a derivation of ¢ from
formulae in O, axioms of intuitionistic logic, atomic double negation axioms
and instances of KP, which uses modus ponens as only inference rule.

But we have already observed that IPL C InqL and that =——p — p € InqL for
p € P. Moreover, according to lemma 3.2.23, any substitution instance of XP is
valid in inquisitive logic.

By the semantics of implication, the set of formulas supported by a state is
closed under modus ponens. Therefore, fixing an arbitrary state s that supports
all formulae in ©, a straightforward induction on the length of the proof suffices
to show that all formulas occurring in the proof of ¢ from © must be supported
by s, in particular ¢ itself. O

Let us now turn to the completeness direction. We shall first prove simple
completeness and only then strengthen this result to strong completeness.

Theorem 3.2.25 (Completeness theorem). InqgL C KP™.

We shortly recall the elementary notions needed for the canonical model con-
struction.

Definition 3.2.26. Let © be a set of formulas.

1. © is a KP"—theory if it is closed under deduction in KP"™: for all ¢, if
O Fkpn @, then p € O.

2. O has the disjunction property if whenever a disjunction ¢ Vv is in O, at
least one of ¢ and ¢ is in ©.

3. ©is (KP™-)consistent in case O lfkpn L.
4. © is complete in case for any ¢, exactly one of ¢ and = is in ©.
We then have the usual Lindenbaum-type lemma:

Lemma 3.2.27. If © /kp» ¢, then there is a consistent KP™—theory I" with
the disjunction property such that © C T and ¢ ¢ T'.
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Proof. The proof is the usual one, but we will spell out the details for the sake
of exhaustiveness. Let (¢, )ncw be an enumeration of all formulae. Define:

'y = ©
S R
n+1 Fn

otherwise
r = U new Fn

Obviously, ® C T'. Tt is immediate to check that by induction that for any n,
I, 1/ ¢, whence I' I/ ¢ and in particular ¢ & T'.

Moreover, I' is an KP"-theory. For, suppose v, € I': then ,, & ", 1 ;, which
is only possible in case I';, U {¢,,} F ¢; but then also ' U {¢,,} F ¢: therefore
I' /4, since otherwise it would follow that I'" - ¢, which is not the case.

Finally, I" has the disjunction property. For, suppose 1,1’ are not in I". This
implies that T U {¢)} F ¢ and T U {¢'} I ¢; but then also T'U {¢) V ¢’} F ¢:
this entails ¢ V ¢’ € T, since otherwise we would have T I ¢, which is not the
case. O

We will proceed through the construction of a canonical model for KP™ in the
way that is customary for intermediate logics: the points will be the consis-
tent KP™-theories with the disjunction property ordered by inclusion, and the
valuation will be given by membership.

Definition 3.2.28 (Canonical model for KP™). The canonical model for KP™
is the model Mkp» = (Wkpn, C, Vikpn ), where:

e Wkpn is the set of all consistent KP™—theories with the disjunction prop-
erty;

e for any propositional letter p, Vipr(p) = {T" € Wikp» |p € T}

Note that C is a partial order and that the valuation Vkpn is persistent, whence
Mkp~ is an intuitionistic Kripke model. As customary in canonical model proofs,
the next step is to prove the truth lemma, stating that for all points in the
canonical model, truth coincides with membership.

Lemma 3.2.29 (Truth Lemma). For all formulas ¢ and points I' € Wkp» we
have Mkpn,I'lF¢p <= @ €T,

Proof. By induction on ¢, using lemma 3.2.27 in the inductive step for impli-
cation. O

Now, in order for Mkp» to be of any use as a countermodel we have to show
that it is a negative saturated model, since according to theorem 3.2.18, InqL
is the logic of negative saturated Kripke models. However, in order to do so we
first need to point out some properties of the canonical model.

Lemma 3.2.30 (Endpoints of Mpr).
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1. The endpoints of Mp» are precisely the complete theories.
2. If two endpoints A and A’ force the same atoms, then A = A/,

3. If the set P of propositional letters is finite, then for any endpoint A there
is a formula v, such that for all endpoints A’, A’ IF y4 < A’ = A.

Proof. 1. If T is a complete theory, then any proper extension of I' must be
inconsistent and thus not a point in M gp~; so I' is an endpoint. Conversely,
if T is consistent but not complete there must be a formula ¢ ¢ I" such
that T' U {¢} is consistent and thus, by the Lindenbaum lemma, can be
extended to a point IV of M; so I is not an endpoint.

2. If two endpoints force the same atoms, then they force the same formulas.
But by the truth lemma, this means that they are the same.

3. For any endpoint A, let Yo = u A v where u is the conjunction of the
atoms forced at A and v the conjunction of the negations of the atoms
not forced at A.

If P is finite then the formula v is well-defined. Obviously, Mgp», A IF
~va; conversely, if an endpoint A’ satisfies v, then it forces ezactly the

same propositional letters as A, so by the previous item A = A’.
O

We are now ready for the core of the completeness proof: showing that, for a
finite set of propositional letters, Mgp~ is a negative saturated model.

Lemma 3.2.31. If the set P of propositional letters is finite, then Mgp» €
nSAT.

Proof. Consider the canonical model M gpn» built for a finite set of propositional
letters. Let us start by showing that the valuation Vkp» of the canonical model
is negative. Consider any I' € Wp» and suppose IV IF ==p. Then, by the truth
lemma, —=—p € I'. By the presence of the double negation axiom ——p — p in
the system KP™, this implies that I' Fgp» p and so that p € T, since I' is an
KP™—theory. Hence - again by the truth lemma - T" I p. This shows that p and
——p are forced exactly at the same points in Mkp», which means that Vipn is
negative.

Next, consider E-SATURATION. Take any point I' € Wkpr. It is easy to see
that I' can be extended to a complete theory A: in order to do so, perform the
procedure described in the proof of lemma 3.2.27 with © =T" and ¢ = L. Now,
I' C A and A is an endpoint by lemma 3.2.30: therefore Er # (). This shows
that Mypn» is E-SATURATED.

Finally, let us come to I-SATURATION. Consider a point I' € Wgp» and let E, be
a non-empty subset of E where, as usual, E denotes the set of endpoints of
I'. We must find a consistent KP™-theory IV D I" with the disjunction property
such that Er = E,.
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Let I be the deductive closure (in KP™) of the set T'U {-x|—-x € N Ex}.
We will make use of the following characterization of elements of I".

Lemma 3.2.32. A formula ¢ is in IV if and only if there are v € T' and
—x € [ E« such that bgpr v A =X — .

Proof. Suppose ¢ € I'': by the deduction theorem for intuitionistic logic, there
are Yz, ..., ¥Yn €L, =X1,---,Xm € U Ex such that

l_KP" Y1 /\./\f)/n/\—\xl /\../\-\Xmﬁw

But now, since all the «; are in I and I' is closed under KP™-deduction, the
formula v :=v; A--- A7, is in . Analogously, for each A € E.,, since all the
—x; are in A and A is closed under KP™-deduction, A also contains the formula
—x where x := x; V-V xn; 80 =x € [ E«. Finally, since —x is interderivable
with =x; A-++ A =xy in intuitionistic logic (and thus in KP™) we can conclude
Fkpr 7 A =x — ¢. The converse implication is trivial. O

Proof. Proof of lemma 3.2.31, continued We are going to show that I' is a
consistent KP™-theory with the disjunction property (hence a point in Mgpn),
that it is a successor of I" and has precisely E, as its set of terminal successors.
Thus TV is exactly the point whose existence we were required to show in order
to establish that Mgpn» is I-SATURATED.

e I’ is a KP™"—theory by definition.

e I’ is consistent. For, suppose towards a contradiction L € I'’. Then by
lemma 3.2.32 there would be v € ', =y € (| B« such that Fgpn YA —-x —
1. Since E, is non-empty, consider a A € FE,: A is a successor of I'
(because E, C Er), so v € A. But also =x € A, because —x € [| E. and
A € FE,. Therefore, since A is an KP™—theory, we would have L € A.
But this is absurd, since A is a point of the canonical model and thus
consistent by definition.

e I" has the disjunction property. Suppose ¢V € I'': then there are v € T
and -y € () E. such that Fxprn YAy — @ V). Since T is a KP™—theory,
(YA—-x — ¢ V1) eT, and so since v € T', also -y — ¢ V¢ is in I.

But now, since KP™ contains all instances of the Kreisler-Putnam axiom,
and since I' is closed under KP"™—deduction, (—xy — ¢ V ¢) € T' implies
(=x — ) V (-x — ¥) €T thus, since T' has the disjunction property, at
least one of =y — ¢ and -y — ¢ isin I'.

Suppose the former is the case: then I' U {=x} Fkp» ¥, and since —x €
() E. this implies ¢ € TV, by definition of I'. Instead, if it is -y — ¢ € T,
then reasoning analogously we come to the conclusion ¥ € T".

In either case, one of ¢, 1 must be in I, and this proves that I has the
disjunction property.

e I is a successor of I', because IV D I by definition.
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e E, C Er/. To see this, take any A € E,; we are going to show that
IV CA.
If ¢ € TV, there are v € T and —x € [ E such that Fgps vy A —x — .
Since F, C Er, we have I' C A and thus v € A; on the other hand, since
A € E,, also =y € A. So, both v,—x are in A which is a KP"-theory,
and therefore ¢ € A.

This shows IV C A, and thus, since A is an endpoint, that A € E .

e Ep/ C E,. Proceed by contraposition. Consider any endpoint A ¢ F.,.
Since the set P of propositional letters is finite, by lemma 3.2.30 there is
a characteristic formula v such that A is the unique endpoint satisfying
YA-
For any A’ € E,, A’ # A and thus Mgpn, A’ I y4; since A’ is an
endpoint, this implies Mgp», A’ I —y,, whence by the truth lemma
YA € A,
But since this is the case for any A’ € E, we have -y4 € [ E,. and
therefore =y € IV by definition of T".

On the other hand, A | v4 and thus, by the truth lemma, =y ¢ A.
We conclude that =y is in IV — A, and thus IV € A, which means that
AdEp.

O

Proof of theorem 3.2.25 (concluded). Suppose ¢ ¢ InqL. Build the
canonical model Mp» for the set P, of propositional letters in ¢: by lemma
3.2.27 there is a point I' € Wipr with ¢ € I'. Then, the truth lemma implies
Mypn, 'V .

But by the previous lemma, since P, is finite, Mxpr € nSAT: thus, by
theorem 3.2.18 stating that InqL = Log(nSAT) we have ¢ ¢ IngL. O

We can now exploit the compactness of InqL to strengthen this result to a strong
completeness theorem.

Corollary 3.2.33 (Strong completeness of KP™ for InqL). For any set of for-
mulas © and any formula ¢,

@ ’:|nq|_ 80 < @ }_Kpn QO

Proof. We have already shown the soundness direction (proposition 3.2.24).
For the completeness direction, suppose © =g ¢: by compactness (the-
orem 3.1.10) there are 64,...,6; € © such that 6;,...,0; =inqL ¢, which by
the deduction theorem amounts to ; A--- A0y — ¢ € IngL. Then by our
completeness theorem 8; A--- A b — @ € KP™, whence O Fgpr . O
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3.2.3 Completeness via disjunctive-negative translation

In this section we will define a translation DNT that turns any formula into an
equivalent disjunction of negations, preserving logical equivalence with respect
to inquisitive semantics. An analysis of what ingredients are needed to justify
this translation will yield a whole range of different axiomatizations of InqL, one
of which coincides with the one found in the previous section.

Definition 3.2.34 (Disjunctive-negative Translation).

—_

DNT(p) = =—p

DNT(Ll) ==L

DNT(% V x) = DNT(¢)) V DNT(X)

DNT(1 A x) = V{n(w: V x;) [1<i<n, 1< 5 <m}
where:

e DNT(¢)) == V...V =)y,
e DNT(x) =—x1 V...V Xm
5. DNT(¢¥ = X) = V i,k A A r<i<n (X, — ¥i) |1 < by <m}
where:

e DNT(¢) = by V...V =,
e DNT(x) =—xz V...V Xm

Ll

Clearly, DNT always returns a disjunction of negations. Moreover, the following
proposition states that DNT preserve the inquisitive meaning of formulas.

Proposition 3.2.35. For any ¢, ¢ =jhqL DNT(p).

Proof. By induction on . The atomic case amounts to the validity of the atomic
double negation axiom. The inductive step for disjunction is trivial, while the
one for conjunction follows from the fact that IPL C InqL, so that intuitionistic
equivalences like the instances of the distributive laws hold in the inquisitive
setting.

Finally, for the inductive step for implication we need - in addition to some
intuitionistically valid equivalences - the equivalence

) \/ 1<i<k Wi ZingL \/ 1<i<k(mX — i)

to hold for any formulas x,%;,...,9,. Since the entailment from the right
term to the left holds intuitionistically, what is needed is that any substitution
instance of each of the following formulas be valid in InqL:

(-0 =\ 1<i<ima) = \/ 1<i<k(-p — =)

But each of these formulas (except for the case kK = 1 which is trivial) is an
instance of the Kreisel-Putnam axiom KP, and therefore it is valid in inquisitive
semantics according to lemma 3.2.23. O
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The following proposition states that the ability to justify the “soundness” of
the translation DNT is really the essential feature of InqL. Moreover, it says that
IngL is the unique weak logic that justifies DNT and has the disjunction property.

Theorem 3.2.36. Let L be a weak intermediate logic. If ¢ = DNT(yp) for
all formulas ¢, then InqL C L. If, additionally, L has the disjunction property,
then L = InqL.

Proof. Let L be a weak intermediate logic for which any formula ¢ is equivalent
to DNT(¢p).

Suppose ¢ € IngL. Then DNT(p) € IngL. Write DNT(p) = —wy V -+ V —wy:
since IngL has the disjunction property, we must have —v; € InqL C CPL for
some 1 < i < k. But IPL coincides with CPL as far as negations are concerned
(Chagrov and Zakharyaschev, 1997, corollary 2.49), so —v; € IPL C L. Hence,
obviously, DNT(¢) € L, and since ¢ = 1 DNT(yp), also ¢ € L. This shows
IngL C L.

Moreover, suppose L also has the disjunction property. Consider a formula
¢ € L: since ¢ =1, DNT(p) we have DNT(p) € L. But L has the disjunction
property and therefore again —using the same notation as above— —v; € A™ for
some 7. Then again because all weak intermediate logics agree about negations,
—-w; € InqlL, whence DNT(y) € IngL and also ¢ € InqL. This proves L C InqlL
and therefore L = InqL. O

This proposition shows that together, disjunctive-negative translation and dis-
junction property uniquely characterize InqL. This facts paves the way to a neat
and more general completeness result.

In order to get there, let us go back to the proof of proposition 3.2.35. The
argument used there shows that from the logical point of view, the ingredient
needed to justify the translation DNT are all intuitionistically valid formulas,
all instances of each axiom ND, and atomic double negation axioms =—p — p.
Any system containing those axioms and equipped with the modus ponens rule
will be able to prove the equivalence between a formula ¢ and its translation
DNT(¢). This suffices to prove proposition 3.2.38.

Definition 3.2.37 (ND). ND is the intermediate logic axiomatized by the for-
mulas NDy for k € w.

Proposition 3.2.38. For any logic A D ND and any formula ¢, ¢ =4» DNT(¢p).

This proposition immediately yields a whole range of intermediate logic whose
negative closure coincides with inquisitive logic.

Theorem 3.2.39 (Completeness theorem). A™ = InqlL for any logic A D ND
with the disjunction property.

Proof. Let A be an extension of ND with the disjunction property. Then ac-
cording to the previous proposition we have ¢ =,» DNT(¢p) for all ¢; moreover,
A™ has the disjunction property (see remark 3.2.5). Hence by theorem 3.2.36
we have A™ = IngL. O
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Observing that ND C KP and recalling that both ND and KP have the disjunc-
tion property (cf. Maksimova, 1986) we immediately get two concrete instances
of axiomatizations of InqL, one of which coincides with the one we found in the
previous section.

Corollary 3.2.40. ND™ = KP™ = InqL.

Theorem 3.2.25 gives a sufficient condition on an intermediate logic A for the
equality A™ = InqL to hold. Is this condition also necessary? The answer, as we
shall see in chapter 5, is no.

However, in section 3.4.2 we shall return to this issue and we will be able
to give an interesting characterization of the intermediate logics whose negative
variant is InqL: for, we will see that the equality A™ = InqL holds for an inter-
mediate logic A if and only if ND C A C ML, where ML denotes Medvedev’s
logic of finite problems, which will be introduced in section 3.4.1.

3.3 IngL as the disjunctive-negative fragment of
IPL.

The meanings of inquisitive semantics are sets of alternatives, where alternatives
are incomparable classical meanings. This essential feature of the semantics
is mirrored on the syntactic, logical level by the fact that any formula ¢ is
equivalent to a disjunction of negations DNT(¢p).

In a way, the main result of the previous section shows that the ability to
justify DNT constitutes the essence of the logic InqL. But there is even more to
say: in this section we will prove that DNT is in fact a translation of InqL into
IPL.

We will then show that the disjunctive-negative fragment of InqL coincides
with the one of IPL, and that InqL is in fact isomorphic to the disjunctive-
negative fragment of IPL through the translation DNT (just as CPL is isomorphic
to the negative fragment of IPL through the translation mapping ¢ to =—).

Definition 3.3.1 (Translations between logics). Let L, L’ be two logics arising
from entailment relations =, and =1 respectively. We say that a mapping
t from formulas in the language of L to formulas in the language of L’ is a
translation from L to L’ in case for any set of formulas © and any formula ¢
we have:

O Ly > t6] Fu t(y)

where t[0] = {t(0) |0 € ©}.

Let us call a formula disjunctive-negative in case it is a disjunction of negations.
The following proposition says that inquisitive entailment and intuitionistic en-
tailment agree as far as disjunctive-negative formulas are concerned.

Proposition 3.3.2. If ¢ is a disjunctive-negative formula and © a set of
disjunctive-negative formulas, © =jhqL ¢ <= O =pL .
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Proof. Consider an arbitrary set © of disjunctive-negative formulas and a disjunctive-
negative formula ¢ = =&; V-V =§j. If © EnqL ¢, then by compactness and
the deduction theorem there must be 6;,...,60, € © such that 8; A--- A0, —
© € IngL.

Now since each 6 is a disjunction of negations and since the distributive
laws hold in intuitionistic logic, in IPL we can turn 8; A---Af,, into a disjunction
of conjunctions of negations. In turn, a conjunction of negations is equivalent
to a negation in intuitionistic logic. So we can find formulas x;,..., Xm such
that 01 A A Gn =IPL X1 VeV “Xm- HCHCC,

(01 AN A0y — @) =ipL (FX1 VooV oXm — @) =ipL Azgigm(ﬁxi — @)

Equivalence in IPL implies equivalence in InqL, so 8; A--- A6, — ¢ € InqL

implies that A s1<i<m(—x: — ¢) € Ingl, which in turn means that for each
1 <4 < n we have =x; — ¢ € InqL.
Writing out ¢, this amounts to —y; — —&; V ---V =€ € IngL. But since InqL
contains the Kreisel-Putnam axiom, it follows that \/ ;<j<x(=x; — =) € InqL,
and therefore, as InqL has the disjunction property, for some 1 < j < k we must
have that —x; — —&; € InqgL C CPL.

Now, =x; — =& =pL 7 (=X — &;), and since CPL and IPL agree about
negations (Chagrov and Zakharyaschev, 1997, corollary 2.49), also —x; — —¢; €
IPL, whence a fortiori —x; — ¢ € IPL.

But since this can be concluded for each ¢, we have A j<i<m(—x: — ¢) €
IPL, and therefore also the equivalent formula 8; A---A8,, — ¢ must be in IPL.
But then obviously © EpL ¢.

The converse implication is trivial, as InqL extends IPL. O

As a particular case of this proposition, let us remark that for any disjunctive-
negative formula ¢ we have ¢ € IngL <= ¢ € IPL.

Corollary 3.3.3. DNT is a translation of InqL into IPL.

Proof. We have to show that for any © and any ¢:

O EingL ¢ <= DNT[O] =pL DNT(¢p)

where DNT[O] = {DNT(0) |0 € ©}. It follows from proposition 3.2.35 that © =
IngL ¢ <= DNT[O] |=jnqL DNT(y). But DNT(¢)) is always a disjunctive-negative
formula. So, by proposition 3.3.2, DNT[O] |=nqL DNT(¢) <= DNT[O]
ipL DNT(¢p) and we are done. O

Observe that if the map ¢ is a translation from a logic L to another logic L, then
t naturally lifts to an embedding ¢ : £/=, — L/=, of the Lindenbaum-Tarski
algebra of L into the Lindenbaum-Tarski algebra of L', given by t([¢)]=,) =

[t())=,

2For more details on the issues of translations between logics we refer to (Epstein et al.,
1995, chapter 10)
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{-pV ]

[——p]

Figure 3.1: Embedding of the Lindenbaum-Tarski algebra of InqL (on the left),
into the Lindenbaum-Tarski algebra of IPL (the Rieger-Nishimura lattice, on
the right), for the singleton set of proposition letters P = {p}.

Since we have seen that DNT is a translation from InqlL to IPL, the map DNT
defined by DNT([]=,,, ) = [DNT(¢)]=,, is an embedding of the Lindenbaum-
Tarski algebra of IngL into the one of IPL. For the singleton set of propositional
letters, this embedding is depicted in figure 3.1.

Now, for any 1, DNT(¢) is a disjunctive-negative formula. Conversely,
consider a disjunctive-negative formula 1. Since ¥ = |nq. DNT(3)) but both
1 and DNT(%) are disjunctive-negative, it follows from proposition 3.3.2 that
¥ =pL DNT(¢); in other words, we have [¢)]=,, = [DNT(¥)]=z, = DNT([¥]=4.),
S0 [t)]=p, 18 in the image of the embedding DNT.

This shows that the image of the embedding DNT is precisely the set of
equivalence classes of disjunctive-negative formulas. In other words, just like
CPL is isomorphic to the negative fragment of IPL, for InqL we have the following
result.

Proposition 3.3.4. InqlL is isomorphic to the disjunctive-negative fragment of
IPL.

As a corollary of the well-known fact that CPL is isomorphic to the negative
fragment of IPL we know that, for any n, there are exactly 27%7 intuitionisti-
cally non-equivalent negative formulas in Ly, .1, just as many as there are
classically non-equivalent formulas in Ly, . ;.3

Analogously, our result that InqL is isomorphic to the disjunctive-negative
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fragment of IPL comes with the corollary that there are exactly as many intu-
itionistically non-equivalent disjunctive-negative formulas in Ly, ., 1 as there
are inquisitively non-equivalent formulas in L¢,, ., 3.

It follows from the expressive completeness of the connectives (proposition
2.5.2) that the number of inquisitively non-equivalent formulas in Ly, . 5.3
coincides with the number of distinct inquisitive meanings built up from indices
in Zy¢y,, .. p.y, Which by definition are precisely the antichains of the powerset
algebra ©(Zyp, .. p.3)- This algebra is isomorphic to ©(2"), since Zy¢p,, . ,3 =
o({p1,...,pn}) contains 2" elements. Therefore, letting D(n) denote the num-
ber of antichains of the powerset algebra p(n), we have the following fact.

Corollary 3.3.5. For any n, there are exactly D(2") intuitionistically non-
equivalent disjunctive-negative formulas in Ly, ., 3

The numbers D(n) are known as Dedekind numbers (Dedekind, 1897), and
although no simple formula is known for their calculation, their values for small
n have been computed and are available online, see for instance: www.research.
att.com/~njas/sequences/A014466.

The number of inquisitive meanings in one propositional letter is 5, as dis-
played by the above picture; with two letters we have 167 meanings, and with
three the number leaps to 56130437228687557907787.

3.4 Schematic Fragment of Inquisitive Logic

We have already remarked that inquisitive logic is not closed under uniform
substitution; it is natural to ask, then, what the schematic fragment of InqL is,
what is the set of formulas that are schematically valid in inquisitive logic. In
this section we will address this issue and we will find out that this fragment
coincides with the well-known Medvedev logic of finite problems.

3.4.1 Medvedev logic

Definition 3.4.1 (Medvedev frames). A Medvedev frame consists of all the
non-empty subsets of some finite set X, ordered by the superset relation. In
other words, a Medvedev frame is a frame of the shape (p(X) — {0}, D), where
X is some finite set. The class of Medvedev frames will be denoted by Med.

The frame F; underlying the Kripke model for inquisitive semantics is (p(p(P))—
{0}, 2): so, Fy is a Medvedev frame whenever the set P of proposition letters
is finite.

Remark 3.4.2 (Medvedev frames are saturated). Med C SAT.

Proof. Medvedev frames are finite, so they are obviously E-saturated. For I-
saturation, let Y be a point of a Medvedev frame, and let £ # 0 be a set of
endpoints of Y. Then any element of E is a subset of Y, and so also | JE C Y/,
that is, |J E is a successor of Y. Moreover, it is clear that in Medvedev frames,
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the endpoints are precisely the singleton sets; using this fact it is straightforward
to check that the set of endpoints of | J E coincides precisely with E, and thus
that |J £ is the point whose existence is required by the I-saturation condition.

O

Definition 3.4.3 (Medvedev Logic). Medvedev logic is the logic of the class
Med of Medvedev frames: ML := Log(Med).

3.4.2  Sch(lngL)=ML

Definition 3.4.4 (Schematic fragment of a weak intermediate logic). If L is a
weak intermediate logic, let Sch(L) the set of formulas that are schematically
valid in L, i.e., those formulas ¢ such that ¢* € L for all substitution instances

©* of .

It is immediate to see that for any weak intermediate logic L, the set Sch(L) is
the greatest intermediate logic included in L.

The following theorem establishes the main result of this section, namely
that the schematic fragment of InqL coincides with Medvedev logic. There is,
however, a subtlety that should be remarked: whereas so far we assumed that
the set of atomic proposition letters P may be finite or countably infinite, it is
at this stage important to stipulate that P is in fact countably infinite.

Theorem 3.4.5. Sch(IngL)=ML.

Proof. Suppose ¢ ¢ Sch(IngL): then there is a substitution instance ¢* of ¢
such that ¢* ¢ IngL. But then it follows from proposition 2.1.8 that ¢* can
be falsified in a point of the model M; for inquisitive semantics relative to the
finite set of propositional letters P,-; and since this model is a Medvedev model,
p* ¢ ML . But then, as ML is closed under uniform substitution, also ¢ & ML.
This shows that ML C Sch(InqL).

For the converse inclusion, suppose ¢(py,...,pn) € ML. This means that
there is a model M = (F,V), where F is a Medvedev frame, and a point w
in this model, such that M,w If ¢. Recall that by theorem 3.2.18, InqL =
Log(nSAT), so in order to falsify something in InqL we just need a negative
saturated countermodel.

Now, by our earlier remark, M is a saturated model. There is, however, no

reason why the valuation V' should be negative. Therefore, what we want to
do is replace V' by a negative valuation V, and pay the price for this by having
to simulate the behaviour of the propositional letters py,...,p, with complex
formulas ¥, ..., ¢,
In order to do this, associate any point u in M with a distinct propositional
letter g,: this can be done since M is finite and we are assuming an infinite set
of propositional letters. Define a new valuation V' as follows: for any point v,
v€V(qy) < v Cu. Then put M = (F,V).

Notice that the valuation V is indeed negative. For, take any letter ¢, and
suppose that a certain point v is not in V(g,): then v € u, so we can take
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an element # € v — u. Since {2} Z u, {z} & V(qu), and since singletons are
endpoints and thus behave classically we have M, {z} IF —q,; finally, since
{z} C v, {z} is a successor of v, and therefore M,v If ——g,. So indeed

M € nSAT.

We now turn to the second task, namely, find a complex formula ¢; that
simulates in M the behaviour of the atom p; in M. For 1 < ¢ < n, define
Vi =\ vev(p,) qv- We are going to show that for any point w:

M,ulFp;, <= M,ulFb;

If M,ulkF p;,ie. if u € V(p;), then since ]\/Z,U IF g, we immediately have that
M, ulFV yevip, qv- That is, M, u I ;.
Conversely, if ]TJ\,u IF %);, then there is a point v € V(p;) such that u € IA/(qU),

which in turn, by definition of 177 means that u C v. But then, by persistence,
u € V(p;), that is, M,u |- p;. This proves the above equivalence. Now, it
follows immediately that for any point wu:

Mulk o(pr,....pn) <= Mulko(thq,... ")

In particular, J/W\,w W o(bs,...,0y), whence p(v;,...,1¥,) ¢ Log(nSAT) =
InqL. O

Observe that the given proof in fact establishes something stronger than the
equality Sch(lngL) = ML. It shows that in order to falsify a formula ¢ &
Sch(lngL) we do not have to look at arbitrary substitution instances of ¢; it
suffices to take into consideration substitutions of atomic proposition letters
with arbitrarily large disjunctions of atoms. In other words, we have proved the
following interesting corollary.

Corollary 3.4.6. For any formula ¢(py,...,ps), the following are equivalent:

1. ¢(p1,...,pn) € ML;
2. o(\V 1<i<k phs---V i<i<k ph) € InqL for all k € w.

3. oV 1<i<k 0%, ..,V 1<i<k —ph) € A for all k € w, where A is an in-
termediate logic with A™ = IngL, such as ND,KP or, as we shall see, ML
itself.

3.4.3 Characterization of the intermediate logics whose
negative variant is InqL

In section we will strengthen the completeness result obtained in section 3.2.3
by giving a simple characterization of the logics whose negative variant is InqL.
We start by noticing that Medvedev logic contains the Kreisel-Putnam logic.

Proposition 3.4.7. KP C ML.
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Proof. This is the case because ML = Log(Med) and the Kreisel-Putnam axiom
KP is valid on any Medvedev frame. The latter fact is proven by the same argu-
ment we used to show lemma 3.2.23 stating that KP is valid in inquisitive logic.
In fact, one can easily checked that the only fact about inquisitive semantics
that was used in that proof is the underlying powerset structure of the model
M, or in other words the fact that the underlying frame F; is a Medvedev
frame. O

At this point, we have at least three ways of proving the following fact.
Proposition 3.4.8. ML"™ = InqL.

Proof. First, we can notice that {F;} C Med C SAT and invoke proposition
3.2.21.3

Second, we can combine the previous proposition informing that ML 2 KP 2
ND with the fact that ML is known to have the disjunction property (Maksimova,
1986) and then invoke theorem 3.2.39.

Third, we can proceed directly. Since ND C ML, according to proposition
3.2.38, for any ¢ we have ¢ =pmi» DNT(¢). So by theorem 3.2.39, IngL C ML™.

On the other hand, we just saw that ML = Sch(IngL) C IngL, so InqL is a
weak logic containing ML and each atomic double negation axiom, whence by
proposition 3.2.12 we have ML™ C InqL. Hence ML™ = InqL. O

If we are interested in “concrete” derivation systems for InglL, the equality
ML™ = IngL is not of much use. For, as we shall discuss later on, no recur-
sive axiomatization for ML is known. Therefore, differently from KP™ and ND",
the logic ML™ cannot really be implemented as a derivation procedure. Nonethe-
less, we will see in a moment that the equality ML™ = InqL plays an important
role.

Consider a logic ND C A C ML: since the operation of taking the negative
variant of a logic is clearly monotone, we have InqL = ND™ = A™ = ML"™ = InqL
and so A™ = IngL. The surprising fact is that the condition ND C A C ML is
not only sufficient, but also necessary in order to have A™ = InqL.

Theorem 3.4.9 (Characterization of the logics whose negative variant is InglL).
For any intermediate logic A,

A"=InqL < NDCACML

Proof of theorem 3.4.9 concluded. We have already seen the right-to-left direc-
tion. For the converse implication, the next two lemmata together show that
A™ = IngL implies ND C A C ML. O

Lemma 3.4.10. For any intermediate logic A, if A™ = InqL, then ND C A.

3To be precise, here we need F to be finite; however, given a formula ¢ we can always
restrict to the finite set of propositional letters P, so that this is the case.
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Proof. By contraposition, suppose ND ¢ A. Then there is a number & for which
the formula NDj := —p — \/ 1<i<x—¢; is not in A. Note that this formula is
nothing but ¢™ where ¢ denotes the formula p — \/ ;<;<xq;.

But then ¢™" cannot be in A, since if it were - being A closed under uniform
substitution - also ¢™"" should be in A, and so should be the equivalent formula
™. But ¢™ is not in A.

Thus, ¢™ & A, whence ™ ¢ A™. On the other hand, ¢™ = ND; € InqL. So,
A™ # IngL. O

Lemma 3.4.11. For any intermediate logic A, if A™ = InqL, then A C ML.

Proof. We know that A is always included in A™, so if A" = IngL we have
A = Sch(A) C Sch(A™) = Sch(IngL) = ML, where the first equality uses the fact
that A is closed under uniform substitution. O

Note that as a nice corollary of theorem 3.4.9 we can derive easily a well-
known result due to Maksimova.

Corollary 3.4.12. If A O ND is a logic with the disjunction property, then
A C ML. In particular, ML is a mazimal logic with the disjunction property.

Proof. According to theorem 3.2.39, if A O ND is a logic with the disjunction
property, then A™ = IngL and thus, by the previous theorem, A C ML. O

It is also easy to strengthen this most general version of the completeness the-
orem to a strong completeness result.

Corollary 3.4.13 (Strong completeness of axiomatizations of InqL). Let A be
an intermediate logic with ND C A C ML. For any set of formulas © and any
formula ¢,

(C] ’:InqL Y <~ Q] ':/1" ©

Proof. The soundness direction is obvious since A C ML C InqL, =—p — p €
IngL and the set of formulas supported by a state is closed under modus ponens.
For the completeness direction proceed exactly as in the proof of corollary 3.2.33
concerning the strong completeness of KP™. O

3.4.4 More on Medvedev logic

The idea to interpret propositional formulas as finite problems goes back to
Kolmogorov’s approach to intuitionistic logic. Based on Kolmogorov’s interpre-
tation, Medvedev (1962) developed a formal finite problem semantics, and in
(Medvedev, 1966) he showed that the associated logic could be characterized in
terms of Kripke models as the logic of the class Med.

The quest for an axiomatization of ML did not produce significant results
until Maksimova et al. (1979) proved that ML is not finitely axiomatizable and
indeed not axiomatizable with a finite number of propositional letters. The ques-
tion of whether ML admits a recursive axiomatization (equivalently, of whether
ML is decidable) is a long-standing open problem.
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This makes the results we just established rather interesting. For, in the first
place we have seen that ML = Sch(IngL) = Sch(KP™) = Sch(ND"™), which means
that both systems ND™ and KP™ give a sort of recursive pseudo-axiomatization
of ML: they derive ‘slightly’ more formulas than those in ML, but if we restrict
our attention to the schematic theorems, then we have precisely Medvedev’s
logic.

In the second place, corollary 3.4.6 provides a connection between Medvedev’s
logic, Inquisitive Logic, and other well-understood intermediate logics such as
the Kreisel-Putnam logic, which might pave the way for new attempts to solve
the decidability problem for ML.

For instance—since InglL is decidable—if it were possible to find a finite
bound b for the maximum number k of disjuncts that we need to use in or-
der to falsify a non-schematically valid formula ¢ (possibly depending on the
number of propositional letters in ) then ML would be decidable. For, to de-
termine whether ¢ € ML it would then suffice to check whether the formula
oV 1<i<k Pi,...,\ 1<i<k ph) is in InqL for all k < b, and this procedure can
be performed in a finite amount of time.

We will show that at least for formulas containing a single proposition letter
p, such a bound exists and equals 2. As a consequence, the one-letter fragment
of ML is decidable.

This was already known, since it was known (Medvedev, 1966) that the one-
letter fragment of Medvedev logic coincides with Scott logic, axiomatized by
((==p — p) — pV —p) — —pV —p, and Scott logic is known to be decidable
(see Chagrov and Zakharyaschev, 1997, theorem 11.58); but our argument is
new and could perhaps be generalized.

Theorem 3.4.14. For any formula ¢(p) with only one propositional letter, the
following are equivalent:

1. p(p) € ML

2. p(—pV ~q) € A where A is any intermediate logic with ND C A C ML

3. p(pVq) €lIngL

The equivalence (2) <= (3) is an immediate consequence of the characteriza-
tion theorem (theorem 3.4.9) stating that if ND C A C ML then A™ = InqL. The
implication (1) = (3) follows from theorem 3.4.5 stating that ML = Sch(InqL).
So it just remains to prove that one of (2) or (3) implies (1). In order to do so,
we first need some definitions and lemmas.

Definition 3.4.15. The Scott formula, or Scott axiom, denoted S is the for-
mula:

S ((—|—|p—>p)—>p\/—|p)—>—|p\/—|—\p
Lemma 3.4.16. S € ML.

Proof. Towards a contradiction, suppose there were a Medvedev model M where
S does not hold. Then there should be a point a point S with M, S I+ (—=—p —
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Figure 3.2: On the left, a model M3 on the Medvedev frame g(3). On the right,
the Rieger-Nishimura ladder /. The dashed lines represent a frame-morphism
n from Mg to U such that M, w IF —p V —q iff U, n(w) I+ (p).

p) — pV —pbut M,SIf —-p and M, S If =—p. Recalling that on finite frame a
negation holds at a point iff it holds at all its endpoints, this means that there
must exist elements s,t € S with M, {s} IF p but M, {t} IF —p.

Now the only successor of the point {s,¢} where ——p holds is {s}, and there
also p holds. Thus, M,{s,t} IF =—p — p. However, M, {s,t} I p because
{t} is a successor of {s,t} validating ——p, and M, {s,t} If —p because {s} is a
successor validating p. Hence M, {s,t} IV p vV —p.

But since s and ¢ are in S we have {s,t} C S, that is, {s, ¢} is a successor of
S, and therefore we cannot have M, S I+ (=—p — p) — pV —p, which contradicts
our assumptions. O

Lemma 3.4.17. If a formula ¢(p) containing only the propositional letter p is
not in ML, then U, us Iff ¢(p), where U is the Rieger-Nishimura ladder in figure
3.2.

Proof. Recall the crucial property of the Rieger-Nishimura ladder (see Chagrov
and Zakharyaschev, 1997, sections 8.6 and 8.7): any intuitionistic Kripke model
for one letter p can be p-morphically mapped (in a unique way) into U.

Now suppose ¢(p) € ML: then there must be a point w in a Medvedev model
M for the letter p with M, w Iff ¢(p). Now let n be a (the) p-morphism from M
into U: since satisfaction is invariant under p-morphisms, U, n(w) Iff (p).

Now, it is straightforward to check that U, u, I S. But for each ¢ > 5, uy is
a successor of u; and therefore U, u; I S either.
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On the other hand, since M is a Medvedev model according to the previous
lemma we have M, w IF S, so also U, n(w) IF S; and since we have seen that S is
not forced at w; if i =4 or ¢ > 5, it must be n(w) = u; for i =5 or i < 4.

If n(w) = w5, then our claim is true. If on the other hand n(w) = u; for
i < 4, then n(w) is a successor of uz, and thus by persistency again U, us If* p(p).
So in any case ¢(p) is not forced at point w5, which is what we had to show. O

Next, we need to prove a simple generalization of the invariance of satisfaction
under p-morphisms.

Lemma 3.4.18. Consider Kripke models M, M’ and formulas ¢, ..., ©n, %1, ...

Let 7 be a map from M to M’ that satisfies the forth and the back condition
(i.e., that is a frame p-morphism) and such that for any point w in M and any
1<i<n, Mwlp; < M nw)l ;.

Then for any formula x(py,...,p,) whose propositional letters are among
Pi,-..,pn and for any point w in M we have

M,wlEx(@1,..y0n) <= M nw) - x@W1,...,%)

Proof. Straightforward by induction on the structure of x. The atomic case
amounts to the assumption that for each 1 < i < n it is M,w IF ¢; <
M’ w I ;. The inductive steps for L,V, A are trivial, and the one for — uses
the forth and back condition on 7 to trigger the induction hypothesis, just like
for p-morphisms. O

Lemma 3.4.19. Let M3 be the model on the frame p(3) displayed in figure
3.2 and let r be the root of that model. For any formula ¢(p) containing only
the letter p,

U,us IF o(p) <= Mg, r - o(=pV —q)

Proof. Consider the map 7 depicted in figure 3.2. It is immediate to check that
for any point w in Mg we have Mg, wlF —pV ¢ <= U,n(w) IF p.

It is equally straightforward to check that n satisfies the forth and back
conditions, that is, 7 is a frame p-morphism from p(3) to the Rieger-Nishimura
frame. Thus, noting that 7(r) = us, our claim follows from the previous lemma.

O

We are now ready to complete the proof of theorem 3.4.14

Proof of theorem 8.4.14, concluded. It order to prove the theorem, it remained
to show that (2) implies (1). Choosing A = ML in (2), it suffices to show that
p(—pV —q) € ML implies ¢(p) € ML.

Contrapositively, suppose ¢(p) ¢ ML. Then, according to lemma 3.4.17,
U, us I o(p); so, according to lemma 3.4.19, M g, r I o(—pV —q). But M3 is a
Medvedev model, since it is based on the powerset frame (3): so, p(—pV —q) &
ML. O

As a corollary, we immediately get the decidability of the one-letter fragment
of Medvedev logic.
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Corollary 3.4.20 (Decidability of the one-letter fragment of ML). The the
problem of determining whether a formula ¢(p) in one propositional letter be-
longs to ML is decidable.

Proof. We have just seen a number of ways to decide whether a formula ¢(p) is
in ML. For instance:

1. check whether Mg, r Ik o(=p V —q);
2. check whether p(pV q) € InqL;

3. check whether ¢(—pV —q) € KP

3.5 Independence of the connectives

In section 2.5 we saw that the {—, V}—fragment of the language suffices to ex-
press all inquisitive meanings, and therefore that conjunctions and implications
(except for negations) can always be eliminated from a formula preserving its
meaning.

Does this mean that conjunction and implication are superfluous in inquisi-
tive semantics? Not really. For, in this section we will show that in inquisitive
semantics, no connective can be defined in terms of the others.

There is, for instance, no way to simulate the way the conjunction operator
works by means of V and — in a uniform way. Given specific formulas ¢ and v,
we can always find a way of expressing ¢ A ¢ without conjunction. But there is
no way to do so schematically, that is, without knowing what ¢ and 1 are.

For instance, exactly like in classical logic, p A ¢ = —(=p V —¢q). But, for
instance pA(qVr) is not equivalent to ~(—pV—(qVr)), as the latter is an assertion
and the former is not. Still, the conjunction can be eliminated by translating
pA(gVr)as (—pV —q)V(=pV-r). This should give an intuition that the
way conjunction is replaced crucially depends on the number of possibilities for
the conjuncts. The same applies to implication.

Definition 3.5.1. We say that a formula £(py, ..., pn) defines an n-ary connec-
tive o in inquisitive semantics in case o(ay, ..., &) =g {(1, ..., ay) for all
formulas ay,...,a,. We say that o is definable in terms of a set C of connec-
tives in case there exists a formula £(py, ..., p,) containing only the connectives
in C' that defines o.

The following lemma shows that definability in inquisitive semantics amounts
to definability in Medvedev logic.

Lemma 3.5.2. The formula &(py,...,p,) defines o in inquisitive semantics if
and only if o(py,...,pn) =mL E(D1s - Pn)-
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Proof. By the deduction theorem, &(py,...,p,) defines the connective o iff the

formula o(ay,...,an) < &(ay,...,ay,) is in IngL for all formulas ay,...,ap;
clearly, this is equivalent to saying that o(pys,...,pn) < &(ps1,...,pn) must be
in Sch(InglL), which by theorem 3.4.5 equals ML. O

The following propositions show that in inquisitive semantics (and thus in
Medvedev logic as well) all the connectives are independent, i.e. non-interdefinable.

Proposition 3.5.3. L is not definable in terms of A,V and —.

Proof. Let i; be the index making all propositional letters true. It is utterly
straightforward to prove by induction that i; = ¢ for any formula ¢ built up
with the connectives A,V and — only.

Therefore, by the classical behaviour of singletons, the state {i;} supports
any formula not containing |, while it does not support L. Therefore, L is not
equivalent to any formula containing only A,V and —, and thus not definable
in terms of those connectives. O

Proposition 3.5.4. V is not definable in terms of A, — and L.

Proof. According to corollary 2.1.22, any disjunction-free formula is an asser-
tion. Since pV —p is not an assertion, it cannot be equivalent to any disjunction-
free formula. Hence, disjunction is not definable in terms of the other connec-
tives. O

Proposition 3.5.5. A is not definable in terms of V,— and L.

Proof. Towards a contradiction, suppose A were definable in terms of V, — and
L. Let &(p,q) be a formula of minimal length that defines A. Certainly this
formula cannot be any of p, ¢ and L. Therefore, it must be either a disjunction
or an implication.

Observe that both in classical and intuitionistic logic, the conjunction p A ¢
entails either ¥ (p,q) or = (p,q) for any formula ¢ (p,q) containing only the
propositional letters p and ¢, and which one of the two is entailed is determined
truth-functionally according to the classical rules. Hence, the same is true in
Medvedev logic. Now let us reason by cases.

e Suppose £(p,q) is a disjunction ¢(p,q) V ¥(p,q). It cannot be the case
that p A ¢ EmL ~¢ and p A ¢ EmL —; for, otherwise p A ¢ would entail
- A =) and therefore also the equivalent formula —(¢ V ), that is, we
would have pAg Em —€. But this is a contradiction, since by assumption
& defines A and therefore according to lemma 3.5.2 we have p A ¢ =mL &,
so ML would be inconsistent.

Hence, by our previous observation, at least one of p A ¢ EmL ¢ and
p A q EwmL ¥ must hold, and without loss of generality we may assume
that the former is the case.

On the other hand, ¢ EmL ¢ V¢ = £ and by lemma 3.5.2 £ =uL p A g,
s0 ¢ EmL p A ¢. In conclusion we have p A ¢ =mL ¢, which means that ¢
defines p A g.
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But this is a contradiction, since we assumed that ¢ V 1 was a formula of
minimal length defining conjunction. So £ cannot be a disjunction.

e Suppose &(p, q) is an implication ¢(p,q) — ¥(p,q). If p A ¢ EmL ¢, then
since we are assuming that p A ¢ =uL ¢ — ¥ we also have p A ¢ =mL 9.
But on the other hand, ¥ FEinqL ¢ — ¥ =mL PA g, s0 p A ¢ =m ¥, which
means that ¢ defines p A ¢. But this is impossible, since by assumption
@ — 1 was a formula of minimal length defining p A q.

So p A q cannot entail ¢, and thus by the previous observation it must
be p A ¢ EmL —¢. On the other hand, =p EmL ¢ — ¥ =ML P A g, SO
p A g =mL —p, which means that —p(p, ¢) defines conjunction.

But this cannot be the case, since we know that —p(a;, az) is an assertion
for all ay, aig, whereas a; A ap is not an assertion in general: for instance,
?pA?p =7p is not an assertion.

So £ cannot be an implication either, and we have the required contradic-
tion.

O

Proposition 3.5.6. — is not definable in terms of V, A, L and even — if taken
as primitive.

Proof. By lemma 3.5.2, it suffices to show that — is not definable in terms of
the other connectives in ML.

Now, Diego’s theorem (see Chagrov and Zakharyaschev, 1997, theorem 5.37)
asserts that in intuitionistic logic there are only finitely many non-equivalent
implication-free formulas over a finite set of propositional letters is finite, even
when negation is also allowed as a primitive connective. Since equivalence in
IPL implies equivalence in ML the same holds in Medvedev logic.

If implication were definable in terms of V,A, L and = in ML, then any
formula would be equivalent to an implication-free formula, and thus there would
be only finitely many non-equivalent formulas over a finite set of propositional
letters; that is, to put it in technical terms, ML would be locally tabular.

However, ML is not locally tabular: for, it is a well known fact that ML C KC,
where KC is the intermediate logic axiomatized by —p V ——p; and it is equally
well-known (Jankov, 1963, see) that KC is not locally tabular, whence ML cannot
be locally tabular either. O



Chapter 4

The inquisitive hierarchy

As we said in the introduction, the first implementation of inquisitive semantics
—due to Groenendijk (2009b) and Mascarenhas (2008)— was different from the
one considered here: formulas were evaluated with respect to ordered pairs of
indices rather than w.r.t. arbitrary sets of indices. The intuition underlying
that semantics came from the tradition of Groenendijk’s logic of interrogation
(Groenendijk, 1999), where the meaning of a formula consists in an equivalence
relation that connects two models in case the formula is indifferent between
them. We will refer to that system as the pair semantics, and to the system
considered in the present paper as the generalized semantics.

In this chapter we observe that the pair semantics is the particular case of
our generalized semantics in which only states of size at most two are allowed.
Thus, the pair semantics can be viewed as an element in a sequence of semantics
obtained by restricting the generalized semantics to states of cardinality at most
n; we show that these semantics give rise to a hierarchy of strictly shrinking
logics whose limit case is InqgL. We then provide a uniform axiomatization of
the layers of the hierarchy. Finally, we show that all the restricted semantics
have shortcomings that are only avoided by the generalized semantics, which
we argue to be the system that correctly matches our desiderata.

4.1 Generalizing the pair semantics

In the pair semantics, support is a relation between ordered pairs of indices and
formulas defined as follows.

Definition 4.1.1 (Pair semantics). For any indices ¢ and j,
L (Gj)Fp if iEpandjl=p
2. (i,5) £ L
3.(,J) FeAy it (i,j) ¢ and (i,j) E ¢
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4.0 Eeve it (5) e or (i) ¢
5 (i, Ee—v iff forall k,he{i,j}, if (k,h) = ¢ then (k,h) =

It is immediate to see that for any indices v, w and any formula ¢, (v,w) | ¢
amounts precisely to our {v,w} = ¢. In this sense, the pair semantics can be
seen as a fragment of the generalized semantics, namely the fragment dealing
only with states of size one (in case v = w) or two (in case v # w).

In other words, just like it contains a copy of classical semantics given by
states of size one, generalized inquisitive semantics contains a copy of the pair
semantics, given by the states of size one or two.

This restriction on the cardinality of states gives rise to a logic InqLs, much
stronger than InqL, which has been studied and axiomatized by Mascarenhas
(2008).

Definition 4.1.2 (LV). LV is the intermediate logic axiomatized by the following
formulas:

b2 pV(P—qVq

72 (p—=q@V(g—=p)V(p——9A(— D)

It is easy to see that in fact LV is the logic of the two-fork frame \/, that is,
(0(2) = {0}, 2).

Theorem 4.1.3 (Mascarenhas, 2009). InqLy = LV™.

Now, in general, we may consider the logic InqlL,, arising from restricting in-
quisitive semantics by allowing only states of cardinality at most n. As we
shall see shortly, doing so gives rise to a hierarchy of strictly shrinking logics
whose limit is InqL. Throughout this section we assume a countably infinite set
of propositional letters P = {p;|i € w}.

Definition 4.1.4 (Inquisitive Hierarchy).
For k € w, define InqLy = {¢| s = ¢ for any state s with |s| < k}.

The only state of cardinality zero is @), which supports any formula, so InqLy
is the inconsistent logic. Moreover, since singleton states behave like indices,
IngL; is classical logic (the addition of the empty state clearly does not make
a difference). And, according to the previous observations, InqLz is the logic
arising from the pair semantics. The following lemma suffices to prove that InqL
is indeed the limit of the inquisitive hierarchy.

Lemma 4.1.5. Any formula that is not inquisitively valid is falsifiable on a
state of finite cardinality.

Proof. Take ¢ ¢ IngL. We know by corollary 2.1.14 that ¢ has only finitely
many possibilities, say m;,...,m,. Now since ¢ is not valid, none of these
coincides with the full board Z: therefore, for 1 < k < n we can take an index
i & 7. Then the finite state {i;,...,4i,} is not included in any possibility for
o and therefore according to proposition 2.1.10 it does not support (. O
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Corollary 4.1.6. InqL = [ xcwlngly

We will now define, for each k& € w, a formula §; that characterizes the class of
intuitionistic Kripke frames of depth at most k.

We will then show, first, that for any k& € w, d;, is in InqL; — InqLg4 7, which
means that the inquisitive hierarchy is a sequence of strictly shrinking logics,
and second, that for any k € w, adding all substitution instances of d) to an
axiomatization of InglL yields an axiomatization of InqLy.

Definition 4.1.7. The formulas d;, k € w are defined inductively as follows.
L] (50 =1

® Opir =Dir1 V (Prt1 — k)

An easy induction suffices to check that, indeed, for any natural k, §; is valid
on a frame F iff the depth! of F is at most k.

Proposition 4.1.8. For any natural k, 03 € IngLy but 65 ¢ InqLgs ;.

Proof. First let us remark that for any finite non-empty state s, the depth of the
subframe (F7); generated by the point s in the frame F; of the Kripke model
for inquisitive logic is equal to |s|. This can be checked by an easy induction.

Now, first consider any state s with |s| < k: we have to check that s |= dj.
We may assume s # (), as our claim is otherwise trivial. Now as the depth of
the frame (F7)s is |s| < k, the formula dy, is valid on (F7)s, whence in particular
((Fr)s, V1), s Ik 8. But then, since Kripke satisfaction is invariant under taking
generated submodels, we have M, s IF §i, which by proposition 2.2.2 amounts
to s |E ;. This shows that Jy is supported by any state of size at most k.
Hence, d; € Inqly.

Second, we have to show that s [~ 0 for some state s with |s| =k + 1. We
shall proceed by induction on k. For k = 0, simply take sy = {w} where w is
the index making all proposition letters true.

Now, inductively, we can assume that we have a state s; such that |sg| =
k+1, |sg| = 0k, and moreover all indices in s make p; true for all j > k. Now
simply let sp1; := s U {w} where w is the index making a letter p; true iff
Jj > k+2. It is immediate to check that sgy; [~ k41, and since |sg4q| =k +2
and all indices in sj4; make p; true for all j > k + 1, the inductive step is
complete. O

This proves that the inquisitive hierarchy is indeed a hierarchy of strictly shrink-
ing logics: for any k € w, InqL; 2 InqLgy ;. We now turn to the task of axiom-
atizing the logics in the hierarchy.

IThe depth of a finite frame F = (W, <) is defined as the least natural k such that in F
there are no chains of cardinality k.
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4.2 Axiomatizing the inquisitive hierarchy

Definition 4.2.1 (Ag). For any natural k£ we denote by Ay the intermediate
logic axiomatized by the formula Jy.

Theorem 4.2.2 (Axiomatization of the inquisitive hierarchy). Let A be an
intermediate logic with ND C A C ML. Then InqgLy = (A + Ag)™.

In other words, the theorem states that InqLj is soundly and completely axiom-
atized by a derivation system having modus ponens as derivation rule, and the
following axioms:

1. A, or axioms for A in schematic form;
2. Ag, or § as an axiom scheme;
3. -—p — pforp e P.

where A is any logic between ND and ML. For instance, if we choose A = KP,
then the theorem says that we can take our derivation system to have, as axioms,
all substitution instances of the formulas KP and 4y, plus atomic double negation
axioms.

Proof. For the soundness direction, since the set InqlLy is closed under modus
ponens and contains A and the atomic double negation axioms, it suffices to
check that any substitution instance d;* of dj is in InqLg. Consider a state
s with 0 < |s| < k (the case |s| = 0 is trivial): then the generated subframe
(Fr)s of s in the frame F; has depth at most k, so dy is valid on (Ff)s, and
since the logic of a frame is closed under uniform substitution, d;* is valid on
(Fr)s as well. In particular we have ((Fr)s, Vr),s IF 6*, which by invariance
of Kripke-satisfaction under generated submodels yields My, s IF §;* and thus
S ': 51@*-

For completeness, suppose ¢ & (A + Ag)™, that is, assume that Ay an .
By the strong completeness of A™ (corollary 3.4.13) there must be a state s such
that s = Ay but s & . Now in order to conclude ¢ ¢ Ingly, it suffices to show
that s = Ay implies |s| < k. This is the content of the following lemma. O

Lemma 4.2.3. For any k € w, if |s| > k then there is a substitution instance
0™ of the formula dj such that s }= §*

Proof. We will proceed by induction on k. The case for k = 0 is trivial: d9 = L
is not supported by any non-empty state.

Now, assume our claim holds for a number k and consider a state s with
|s] > k 4+ 1. We may assume that s is finite: if not, just replace it by a finite
substate s’ C s with |s’| > k + 1: then by persistence, once we find an instance
of &}, which is not supported by s’, this cannot be supported by s either.

Fix an index w € s: exploiting the fact that w must differ from any other
w’ € s on some letter and that s contains only finitely many indices, we can
easily find a formula ~ such that w = v but w’ £ v for any w’ # w in s.
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Now, since |s — {w}| > k, by induction hypothesis there is a substitution
instance §;* of dy such that s — {w} }& d5. Since 0y contains only the variables
P1,---,DPk, the substitution we need in order to get d;* from J; does not concern
the variable pyy 7, for which we are free to choose a substitute: thus, the formula
Op41* :=—yV (—y — 0x") is indeed a substitution instance of dy+; = prys V
(Ph+1 — Ok)-

Now s [~ —y, because w € s and w & —y; on the other hand, s & -y — §;*,
because s—{w} k£ § while s—{w} |= = by proposition 2.1.6. Thus, s = 054 *
and we are done: we have shown that for any state s with |s| > k + 1 there is a
substitution instance of §;; which is not supported by s.

O

Note that, proceeding in exactly the same way, we could in fact have shown
that, for ND € A C ML, the system (A + Aj)™ provides a strongly complete
axiomatization of Inql, in the sense that it captures the notion of entailment
EinqL, that results from restricting inquisitive semantics to states of size at most
k. For any set © and any formula ¢,

@ ':|nqu %2 < @ l_(A+Ak)71 "2}

4.3 A Plea for the Generalized Semantics

We have seen that in the pair semantics, formulas are evaluated with respect
to ordered pairs of indices. The possibilities for a formula ¢ are then defined
as maximal states such that any pair of indices in that state supports . This
notion of possibilities subtly differs from the one that the generalized semantics
gives rise to. Thus, the pair semantics and the generalized semantics yield a
different notion of meaning. In this section, we compare these two notions
of meaning and argue that the differences speak in favour of the generalized
semantics.

In order to make such a judgment, we must first of all determine a suitable
criterion for comparison. In order to do so, we return to one of the main sources
of inspiration behind inquisitive semantics, the ‘Gricean picture of disjunction’.
Grice (1989, page 68) gives the following picture of the use of disjunction:

A standard (if not the standard) employment of ‘or’ is in the speci-
fication of possibilities (one of which is supposed by the speaker to
be realized, although he does not know which one), each of which is
relevant in the same way to a given topic. ‘A or B’ is characteris-
tically employed to give a partial answer to some [wh]-question, to
which each disjunct, if assertible, would give a fuller, more specific,
more satisfactory answer.

This picture has played an important role in the development of inquisitive
semantics (cf. Groenendijk, 2008b), and indeed, a disjunction p V ¢ is assigned
a meaning consisting of two alternative possibilities, |p| and |g].
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Now, the Gricean picture of disjunction is of course not intended to apply
only to disjunctions with two disjuncts. It applies just as well to disjunctions
with three or more disjuncts. For instance, the idea is that a triple disjunction
pVqVr is used to specify three possibilities, |pl, |¢| and |r|. One criterion, then,
for comparing different implementations of inquisitive semantics, is that the
Gricean picture of disjunction should be captured for disjunctions of arbitrary
length.

This is indeed what the generalized semantics does, unlike any other element
of the inquisitive hierarchy. Let us consider the pair semantics in particular.
This semantics assigns to pV gV r the three possibilities |p|, |¢| and |r|, but also
an additional possibility ¢ = {111,110,101,011} (since every pair of indices in
t supports pV gV r).2

More generally, a disjunction p; V...V p,+; will be problematic for any
element of the inquisitive hierarchy that looks only at states of size at most n.
The Gricean picture is only captured in full generality if states of arbitrary size
are taken into account.

Now let us consider another criterion, which concerns the intuition that the
possibilities for a sentence ¢ correspond to the alternative ways in which the ¢
may be resolved. Again, upon close examination, it turns out that this intuition
is captured by the generalized semantics, but not by any other element of the
inquisitive hierarchy.

It is easy to see that the pair semantics can only disagree with the general-
ized semantics about the meaning of a formula ¢ in case one of the possibilities
that the pair semantics assigns to ¢, call it ¢, does not support ¢; so, according
to proposition 2.3.6, ¢ must be informative or inquisitive in ¢; but it cannot be
informative, since both semantics yield the same, classical treatment of infor-
mation, so it must be inquisitive: for instance, pV ¢V r is inquisitive in the state
{111,110,101,011}, which is a possibility according to the pair semantics.

This means that the issue raised by ¢ is still open in ¢, and ¢ cannot therefore
constitute a possible way of resolving ¢. Still, the pair semantics considers ¢ to
be a possibility for ¢. We conclude that the pair semantics does not yield the
intended notion of possibilities, and the same point can easily be made for any
other element of the inquisitive hierarchy.

On the other hand, if we read support as giving conditions for a formula to be
resolved in a state, then the possibilities we get in the generalized semantics are
by definition maximal states in which the formula is resolved, and as such they
mirror the alternative ways to resolve a formula. This —perhaps obscure— last
passage will be made clearer and more formal in chapter 6 with the introduction
of the notion of resolutions of a formula.

21t does not help trying to justify the presence of t as ‘the possibility that at least two’;
otherwise there would be no reason why we should not also have a ‘possibility that at least
two’ for pV g, which the pair semantics does not give. And this to say nothing of what happens
in the case of four disjuncts!



Chapter 5

Intermediate logics with
negative atoms

In section 3.4.3 we have seen that if ND C A C ML, then adding the double
negation axiom ——p — p for atomic formulas alone and closing under the modus
ponens rule yields new schematic validities.

In this section we are going to undertake a more general investigation of this
issue: given an intermediate logic A, what is the set of schematic validities that
we get by expanding A with atomic double negations? In other words, do we
get a stronger logic if restrict ourselves to deal with negative atoms?

According to proposition 3.2.12, the set of formulas we get by expanding a
logic A with atomic double negations is nothing but the negative variant A"
of A. So, we can define the operation of negative closure that we are going to
study as follows.

Definition 5.0.1. For any intermediate logic A, its negative closure is the set
of schematic validities of its negative variant:

A” = Sch(A™)

In this notation, the result of combining theorems 3.4.9 and 3.4.5 can be formu-
lated as follows: A™ = ML whenever ND C A C ML. Moreover, we shall see in
a moment that for any intermediate logic A we have (A”)™ = A™, so in fact the
following holds for any A:

AV =ML <= NDCACML

In section 5.2 we shall look at the effect of this operation on other well-known
intermediate logics.

But before coming on to that, in the next section we will recall the notion
of a closure operator and some basic facts about it; we will then see that the
operation of negative closure is indeed a closure operator and draw some general
conclusions about the behaviour of ().

61
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5.1 Negative closure of intermediate logics

Definition 5.1.1. A closure operator on a partial order X = (X, <) is a map
c¢: X — X that has the following three properties:

1. Extensivity: for all z € X, z < ¢(x).
2. Monotonicity: for all z,y € X, if z <y then c¢(x) < ¢(y).
3. Idempotence: for all x € X, ¢(c(z)) = c(z).

The notion of closure operator is standard in order theory. Elements of X
such that c¢(x) = z are usually called closed, but in view of our interest in the
operator (), it will be convenient to refer to them as stable elements. Observe
that, by idempotence, the set of stable elements coincides with the image ¢[X]
of X under c.

The facts expressed by propositions 5.1.2 and 5.1.3 are well-known. We will
recall the short proof of the former; for the latter, the reader is referred to Burris
and Sankappanavar (1981), theorem 5.2.

Proposition 5.1.2. Let X be a complete lattice and ¢ a closure operator on X.
Then any meet of stable elements is stable.

Proof. Let k; for i € I be a family of stable elements. Fixed j € I, by mono-
tonicity we have c¢(A ierk;) < ¢(k;) = k;; and since this holds for all j € I,
(N ierki) < Nierk;. The other inequality is immediate by the extensivity of
c. O

Proposition 5.1.3. Let X be a complete lattice and ¢ a closure operator on X.
The set ¢[X] of stable elements with the induced ordering is a complete lattice,
where meet and join are given by:

o [[icrc(xi) = Nierc(z:)
o HieIC(Ii) = C(Viéll'i)
where A and \/ denote, respectively, the meet and join of X.

A prominent example of closure operator in logic is given by the operation map-
ping a set of formulas to its deductive closure for a given consequence relation.

The choice of the term negative closure for ( )” is no accident, as the following
proposition shows.

Proposition 5.1.4. The operation ( )” of negative closure is a closure operator
on the set of intermediate logics ordered by inclusion.

Proof. We first show that A" is indeed an intermediate logic for any intermediate
logic A.

IPL C A¥. This is immediate, since IPL C A and A C AY; the latter inclu-
sion follows from the fact that A C A™ and A is closed under uniform
substitution.
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Closure under modus ponens. Suppose ¢ and ¢ — 1 are in A¥. Then given
an arbitrary substitution map ()*, both ¢* and (¢ — ¥)* = ¢* — ¢* are
in A", and thus since A" is closed under modus ponens, ¥* € A™. Hence,

Ve A

This shows that A” is closed under modus ponens.

Closure under uniform substitution. Suppose ¢ € A¥ and consider a sub-
stitution instance ¢* of ¢. Now, any substitution instance (¢*)* of ¢* is
also a substitution instance of ¢, and therefore it follows from ¢ € A¥ =
Sch(A™) that (p*)* € A™. This shows that ¢* € A” and thus that A" is
closed under uniform substitution.

Consistency. If 1 € AY, then 1L € A", which would mean that 1 = 1™ € A.
But this is impossible as A is an intermediate logic by assumption.

So, A¥ can be characterized as the greatest intermediate logic included in the
negative variant A" of a logic A.

Now let us move on to show that ()" is a closure operator. We have already
seen that ()” is extensive, and monotonicity is immediate from the definition.
To see that () is idempotent, consider an intermediate logic A: it is immediate
by extensivity that A¥ C A"”.

For the converse inclusion, it suffices to show that (A¥)" C A™. So, take
© € (A”)™: this means that ™ € AY = Sch(A™). Thus, in particular, ™" € A™,
which means that ¢ € A. But since in intuitionistic logic triple negation is
equivalent to single negation, """ is equivalent to ¢™, so ¢™ € A, which means
that ¢ € A™. This shows (A¥)™ C A™ and completes the proof. O

An intermediate logic that is stable for the negative closure operator will simply
be called a stable logic. For instance, as a particular case of the above remark
that AY = ML for ND C A C ML we have that Medvedev logic is stable.

It is well-known (see, for instance, Chagrov and Zakharyaschev, 1997, section
4.1) that intermediate logics ordered by inclusion form a complete lattice, where
the meet of a family of logic coincides with the intersection, and the join is the
logic axiomatized by their union (i.e., the deductive closure of the union).

Given this observation, the following two facts are particular cases of propo-
sitions 5.1.2 and 5.1.3 respectively.

Corollary 5.1.5. The intersection of an arbitrary family of stable logics is
stable.

Corollary 5.1.6. Stable logics ordered by inclusion form a complete lattice.
The meet of a family of stable logics coincides with the intersection, while the
join is the negative closure of the logic axiomatized by the union.

This implies that given intermediate logics A; for i € I, the smallest stable
logic containing all of them is the set of schematic validities of the weak logic
axiomatized by adding the atomic double negation axioms to (J;erA;.
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Another interesting feature of the operation of negative closure lies in the fact
that it maps logics with the disjunction property to logics with the disjunction

property.

Proposition 5.1.7 (The negative closure operation preserves the disjunction
property). If an intermediate logic A has the disjunction property, so does A”.

Proof. We have already remarked (see remark 3.2.5) that if A has the disjunction
property so does its negative variant A™.

Now, suppose two formulas ¢, 1 are both not in A¥. This means that there
are two substitution maps ( )* and ()* such that * ¢ A™ and ¢* & A™.

We can then combine ( )* and ( )* into one substitution that falsifies the
disjunction ¢ V1 as follows. Let p, ¢ denote two propositional letters that occur
in neither ¢ nor ¥ and let ( )™ be the substitution defined as follows: for any
letter r, ™ := (pAr*)V (g Ar*). We claim that (¢ V)T & A™.

Since (p V)t = T vapT, and A" has the disjunction property, in order to
conclude (¢ V)T & A™ it suffices to show that neither ¢ nor 1™ is in A™.

Consider for instance ¢T: the argument for 1T is then completely sym-
metrical. To see that ¢ is not in A", consider the simple substitution map
( )[T/P’L/q] that substitutes T for p, L for ¢ and leaves the remaining letters
unchanged. For any propositional letter r # p, ¢ we have:

/e D = (T ATV (LATY) = 1

So, recalling that p and ¢ do not occur in ¢, we have (@*)[T/P’L/q] =pL ©*.

Now, we know that A™ is not closed under uniform substitution. However,
the substitution ( )[T/ v/l s obviously negative with respect to A", since in
A™ the formulas T, L and each atom r are equivalent to their double negation.
Therefore, according to proposition 3.2.15, A™ is closed under this substitution.

Hence, if ¢+ were in A", then so would be (o) /»/d; but this is absurd
since (<p+)[T/p’L/q} is equivalent to ¢* (in IPL and therefore also in A™) and by
assumption ¢* ¢ A". Thus, ¢ & A™.

This proves our claim that (pV)T & A", from which it follows immediately
that ¢ V ¢ & Sch(A™) = A”.

Hence, contrapositively, if the disjunction ¢ V % is in AY then so is at least
one of ¢ and . O

The converse is not true, as we shall see in the next section: there are logics
without disjunction property whose negative closure does have the disjunction

property.
5.2 Stability of intermediate logics
In this section we will get more concrete and undertake an examination of the

effect of the negative closure operation on some of the best-known intermediate
logics. Table 5.2 introduces (or recalls) the definition of the logics we shall be
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Figure 5.1: An overview of the logic discussed in this section.

concerned with in the present section.

Name Axioms or characterization

ND NDg := - p — \/ i<kqi for all ke w

KP KP:=-p—(qVr)—=(p—=qV(p—r)
S §:=((~p—p) —pV-p)—-pVop
ML Log(Med)

GdJ;  Log(k — ary trees)

KC —pV ——p

CPL pV —p

One thing we can immediately see is that classical logic is stable under negative
closure; this can be seen directly, because CPL already contains —=—p — p, so
CPL™ = CPL, but also trivially follows from the fact that ( )” is extensive
on the lattice of intermediate logic and CPL is the top element of the lattice.
Intuitionistic logic is stable as well, but in order to see this some work is required.

Definition 5.2.1 (Everywhere branching trees). We say a tree T is everywhere
branching if no point has only one immediate successor; if, in other words, any
non-terminal point has at least two successors.

The following proposition states that every logic that is characterized by a class
of everywhere branching trees is stable.

Proposition 5.2.2. If K is a class of finite everywhere branching trees then
Log(K) is a stable logic.

Proof. Take a formula ¢ = ¢(py,...,pn) that is not in Log(K'), we have to show
that ¢ € Log(K)¥. Now, according to proposition 3.2.11 we have Log(K)¥ =
Sch(Log(K)™) = Sch(Log(nK)); so, it suffices to show that there is a negative
model over a frame in K that falsifies the formula o(p; V q1,...,0n V qn).

Since ¢ ¢ Log(K') there must be an everywhere branching tree T = (T, <)
where ¢ is falsified, so there must be a point w € T and a valuation V on T
with T, V, w I .
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Figure 5.2: Removal of a criticality in an everywhere branching tree

We are now going to define a new valuation V on T, a valuation that makes
p; V q; true at exactly the same points where p; is true according to V' and that,
moreover, is negative.

Let o be a function that associates to each non-terminal point one of its
immediate successors® Let L := o[T] be the set of points of the shape o(v) for
some v € T, and let R := T — L be the set of the other points. Clearly, the sets L
and R —which we think of, intuitively, as the ‘left’ and the ‘right’ successors—
form a partition of 7.

If S C T, denote by 15 the up-closure of S, that is, 1.5 := {v € T'| there is

au € S with u <wv}. Then define the new valuation V as follows:
o V(p:) = 1(V(p:) N L);
o V(gi) = 1(V(pi) N R).

It is clear that V is defined in such a way as to be persistent. Moreover, 1%
makes p; V ¢; true precisely where V' makes p; true, as shown by the following
two inequalities:

ggmiu%n = 1(V(p:) N L)UT(V (p;) N R) SV (p)UTV (p;) = 1V (pi) =
Dpi);

Vipi) = V(p)) N (LUR) = (V(pi) N L) U (V(pi) N R) € 1(V(pi) N L) U
T(V(ps) NR) = V(ps) UV (qs).

Thus, by lemma 3.4.18, for any point v we have T,V v IF ©(ps,...,pn) <

T, ‘7,1} IFo(p: Vai,...,pn V qn); in particular, T,V w IF .

It remains to show that V is a negative valuation. Towards a contradiction,
suppose there were points validating the double negation of an atom but not
the atom itself; let v be a maximal point at which this happens.

First suppose the atom in question is one of the ¢;. Consider o(v): o(v) is
an immediate successor of v, and since our frame is a tree, no element below
o(v) can force ¢;, otherwise v should force ¢, as well, while by assumption
T,V,v I ¢;. This shows that if o(v) € V(g:), then o(v) must be in V(p;) N R.
But o(v) € R by definition of R, so in fact o(v) € V(q;).

n general, the existence of such a function is guaranteed by the axiom of choice; however,
this is not really needed for the concrete cases that we shall be concerned with.



CHAPTER 5. INTERMEDIATE LOGICS WITH NEGATIVE ATOMS 67

On the other hand, o(v) is a successor of v and T, ‘7,7) IF =—q;, so by
persistence also T, ‘7, o(v) IF ==g,. Thus, o(v) > v validates the double negation
of g; but not ¢; itself, contradicting the maximality of v.

If on the other hand the atom in question is one of the p;, then consider an
immediate successor u # o(v) of v: such a successor exists since T is everywhere
branching. Repeat the same argument as above where now u plays the role
of o(v) to show that u is a successor of v that forces ——p; but not p;, thus
contradicting the maximality of v.

This proves that V' is negative. In conclusion, we have falsified a substitution
instance of ¢ on a negative model (T, V') based on a frame T € K, thus showing
that ¢ & Sch(Log(nk)) O

As a corollary we immediately get the stability of several intermediate logics, in
the first place of intuitionistic logic itself.

Corollary 5.2.3 (Stability of IPL). IPL¥ = IPL.

Proof. Tt is well-known that any formula ¢ that is not intuitionistically valid
can be falsified on a finite tree: for, a finite countermodel can always be turned
into a finite tree by the standard unraveling procedure. Moreover, a model M
on a finite tree can always be expanded into a model M’ on a finite everywhere
branching tree such that there is a p-morphism 7 : M’ — M via the following,
trivial procedure: whenever in M there is a point w that has only one immediate
successor, simply duplicate that successor together with all its generated subtree,
leaving the valuation unchanged.

This shows that IPL is the logic of the class of all finite everywhere branching
trees. An application of the previous proposition yields the stability of IPL. [

Other logics that are stable as a consequence of the previous proposition are the
Gabbay-de Jongh logics.

Definition 5.2.4. For any natural &, let K ;7 denote the class of k-ary trees, i.e.,
trees in which any point has at most & immediate successors. The Gabbay-de
Jongh logic of index k is defined as the logic of k—ary trees, GdJy := Log(K 7).

Corollary 5.2.5 (Stability of the Gabbay-de Jongh logics). (GdJ;)” = GdJy
for all k> 2.

Proof. Tt is known (Gabbay and de Jongh, 1974, see) that if a formula is fal-
sifiable on a k-ary tree then it is falsifiable on a finite k-ary tree; since k > 2,
one can then turn this into an everywhere branching k-ary tree by the simple
duplication procedure described in the proof of corollary 5.2.3. O

Another stable logic is Scott logic, axiomatized by the Scott axiom ((——p —
p) — pV —p) — —pV ——p. The proof of this fact requires some preparation.
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Call F a Scott frame in case the frame Fg in figure Usg
5.3 is not a p-morphic image of a generated subframe
in F'. Scott logic S is known to be sound and complete ‘
with respect to the class of finite Scott frames (see,
for instance, Chagrov and Zakharyaschev, 1997, page ug Uy
55 and theorem 11.58).
Thus, again by 3.2.11, in order to show that the
negative closure does not yield new schematic validi- Uy
ties, it is sufficient to show that any ¢ ¢ S has a sub-
stitution instance that can be falsified on a finite neg- Figure 5.3: Fg

ative Scott model. In fact, just like in all cases con-

sidered so far, we will show that if ¢(p;,...,pn) €S,

then for a substitution instance that is not in S™ it is sufficient to look at the
formula ¢(p; Vqy,...,pnVq,) obtained by replacing any atom by a disjunction
of two atoms.

Recall that the depth of a point in a finite? Kripke frame F' = (W, <) can be
defined inductively as follows:

dp(w) :): {dF(’U) +1 "U > U)}

Lemma 5.2.6 (p-morphisms cannot increase the depth of points). Let 7 :
F — F’ be a p-morphism between finite Kripke frames. For any point w in F,

dr(w) > dr(n(w)).

Proof. Inductively, assume that the claim holds for all proper successors of w.
Towards a contradiction, suppose that dg/(n(w)) > dp(w)+1: then there must
be a successor t of n(w) with dp/(t) > dp(w).

Then by the back condition, there must be a successor v of w in F such
that n(v) = t. By our inductive hypothesis on proper successors of w, dp(v) >
A (n(v)) = s (t) > dp(w).

But this is a contradiction, since v is a proper successor of w and therefore
by definition of depth we have dp(w) > dr(v). O

We will use this simple fact to give an alternative, handier characterization of
Scott frames.

Definition 5.2.7. We say that two endpoints e, e’ in a Kripke model are V-
connected, in symbols eVe', if they are connected by a path touching only points
of depth 0 and 1; when it exists, such a path will be called a V-path.

It is easy to check that on a given Kripke frame, V' is an equivalence relation
between endpoints. If e is an endpoint, we denote by V[e] the equivalence class
of v, that is, the set of endpoints that are V-connected to e.

Definition 5.2.8. We call a Kripke frame V-connected in case any two end-
points are V-connected.

2This finiteness restriction can naturally be lifted accepting infinite ordinals as a measure
of depth, but a greater generality is of no interest for the present purposes.
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Obviously, a Kripke frame is V-connected in case there is only one equivalence
class for the relation V.

Lemma 5.2.9. A finite Kripke frame is a Scott frame iff all of its generated
subframes are V-connected.

Proof. Let F = (W, <) be a finite frame, and suppose that not all of its gen-
erated subframes are V-connected. Take a maximal point w such that F',, is
not V-connected. We will show that F',, can be p-morphically mapped onto the
frame Fg in figure 5.3, which proves that F' is not a Scott frame.

Now, w must have depth at least 2, since rooted frames of depth 0 or 1 are
trivially V-connected. So we must be able to find an endpoint e of w and an
intermediate point ¢ with w < i < e. Since F, is not V-connected, it must be
the case that Ve] # E,, so E,, — V]e] # 0.

Moreover, for any successor v > w it must either be E, C V]e] or E, C
E ., —V]e]. For, suppose towards a contradiction that v saw a point f € Vle] and
a point f' € E,, — Vle]: then in F, there is no path connecting f and f’ that
touches only points of depth 0 or 1; otherwise, the same path would connect f
and f’ in F'y, and therefore we would have f’ € V[e] contrary to assumption; but
this means that F', would not be V-connected, which contradicts the maximality
of w.

We define a map n: F,, — Fg as follows:

u; ifv=w

ug if B, CV]e] and v & Ve
n(v) = ug ifveVle

u, ifE,CE,—V]]

Finally, let us check that 7 is indeed a p-morphism from F',, onto Fg.

1. n(v) is surjective. We have u; = n(w), ug = n(i), us = n(e); moreover,
we know that E,, — Vle] # 0, so u; = n(v) for some v.

2. Forth condition. The verification is utterly straightforward.

3. Back condition. We have to show that for any point v and any successor
t of n(v) in Fg there is a successor u > v with n(u) = ¢.

We distinguish several cases. If n(v) = uy, then v = w and thus the claim
boils down to the surjectivity of 7, which has been proved already. If n(v)
is an endpoint, (either ug or uy) then ¢ must equal n(v) and the claim is
trivial.

It remains to check the case n(v) = ug. If t = ug, then v itself does the job.
Otherwise, t = ug; but by definition of 7, if n(v) = ug then £, C Ve, so
given an endpoint €/ > v we have ¢’ € Vle] and thus n(e’) = us = ¢.

This completes the proof of the left-to-right direction of the lemma. For the
converse implication, suppose F = (W, <) is a finite Kripke frame such that all
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its generated subframes are V-connected. We have to show that no generated
subframe of F' can be p-morphically mapped onto Fg.

In order to show this, consider a point w € W and a p-morphism 7 from
F.,, to Fg. Consider two endpoints e, ¢’ in F,,. Since F,, is V-connected, there
must be a V-pathe=¢p >d; <e; >--->d, <e,=¢.

Now, according to lemma 5.2.6, 1(e) must be an endpoint. First suppose
n(e) = ug. Then, by the forth condition, n(d;) must be a predecessor of ug,
and again by lemma 5.2.6 it must be a point of depth at most 1: so n(d;) must
be either us or ug, and in both cases its unique endpoint will be ug. But now
by the forth condition, e; > d; will be mapped to an endpoint of n(d;), so it
must be mapped to us.

Iterating this argument we conclude that all the endpoints e; must be mapped
to ug, and in particular that n(e) = n(e’).

In case n(e) = uy, we reach the same conclusion by an analogous argument
showing that all the e;’s in the sequence (and indeed the d;’s as well) must then
be mapped to ug: .

So, in any case e and € are mapped to the same endpoint. And by the
arbitrariness of e and €/, this means that all the endpoints of F',, are mapped
to the same point.

But since F g has two endpoints, one of these —call it u— is not the image
of any endpoint of F',,. But then no point v can be mapped to u, otherwise by
the finiteness of F',, we could take an endpoint e > v and by the forth condition
this should be mapped to u.

Hence, 1 is not surjective, and by the arbitrariness of 7 this shows that Fg
is not a p-morphic image of F,; finally, since this holds for any point w, F'is a
Scott frame. O

Definition 5.2.10 (Critical points). A critical point for a letter p in a Kripke
model M is a maximal point where ——p — p fails.

In other words, a point w of a Kripke model is critical for p in case it is not an
endpoint and it does not force p while all of its proper successors do force p.
The following fact is immediate from the definition.

Remark 5.2.11. If M is a finite Kripke model, M is negative iff there are no
critical points.

It is then clear that given a Kripke model, we obtain a negative model by
removing criticalities for each letter. But of course, for this construction to be
useful for our purposes, we must perform this removal in a careful way: first,
we must keep under control the satisfaction of formulas to ensure that this is
not affected too badly by the changes; and in the second place, we must take
care to turn Scott models into Scott models.

We will need to differentiate between the critical points of depth 1 and those
of depth 2 or more. If w is a critical point for p of depth 1, we simply make
a copy €’ of an endpoint e, that imitates e except that we make ¢ true instead
of p, where ¢ is a new letter. If the initial model was a Scott model, then the
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fep f by fma

(%

Figure 5.4: Removal of a critical point of depth > 2 in a Scott frame

model which results from this operation is easily seen via lemma 5.2.9 to be
a Scott model as well, because w itself V-connects the new point €’ to e and
thence to all the other endpoints (we will come back to the details later on).
On the other hand, if v is a critical point of depth 2 or more, we cannot simply
duplicate an endpoint, since the resulting model would not be V-connected.
What we need is a more complicated construction, illustrated in figure 5.4. The
details of the construction are spelled out precisely by the following definition.

Definition 5.2.12. Let M = (W, R, V) be a finite Kripke model.

1. Let wy,...,w, be the critical points of depth one. For 1 < i < n, fix an
endpoint e; of w;.

2. Let vy,...,v,, be the critical points of depth two or more. For 1 < i < m,
fix points d; and f; such that v;Rd;Rf;, d; is an endpoint and f; a point
of depth one.

Now define the model MP = (WP, RP V?P) as follows:

L WP=Wu{e/|1<i<npuld,fi,fi"|1<i<m} where each of e;’,
d;’, fi/ and f,;"” is a new point;

2. RP is the reflexive transitive closure of:

RU{(w;,e;") |1 <i <n}u{(d;, fi'), (vi,di’), (d', fi'), (di', fi") |1 <i <m}

3. VP is defined as follows:

o VP(p)=V(p) U{fi[1<i<m}

o VP(q) =V(gUie/ |1 <i<npuld/, [, f" |1 <i<n}

e for any letter r different from p, ¢, the new points simply imitate their
‘old copies’, that is:
VP(r) = V(r)U{es e € VNI £ | fi € V)YU{di | di € V(r)}

It is clear that in the resulting model MP all the criticalities for p have been
eliminated. Also, no criticality for ¢ has been introduced, since we only introduce
successors validating g for a point v in case v already had a successor, and that
successor does not validate ¢, because ¢ is a new letter.
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So, MP is negative as far as p and ¢ are concerned. Moreover, it is straight-
forward to check that our construction does not alter the depth of the old points:
if a point w had depth d in M, then u has the same depth d in M?. Addition-
ally, the following lemma states that if M is a Scott model, then the model MP
resulting from this construction is a Scott model as well.

Lemma 5.2.13. For any finite Scott model M, the model M? resulting from
the construction described in definition 5.2.12 is a (finite) Scott model.

Proof. Let M be a finite Scott model. According to lemma 5.2.9, all of its
generated submodels are V-connected. Since M? is finite as well, the same
lemma guarantees that our claim will be proved if we can show that also all
generated submodels of the modified model M? are V-connected.

Generated submodels of depth 0 or 1 are trivially V-connected. So, consider
a point v in MP? of depth at least 2. This must be one of the old points, since
points we introduce with our construction have depth 0 or 1.

Consider two endpoints e and ¢’ of u: we have to show that e and ¢’ are
V-connected in (M?),,, that is, that in MP there is a V-path of successors of u
connecting e to ¢/. Here we have to make a distinction according to what e and
€’ are: this case checking is both extremely easy and extremely tedious. We will
go through a couple of cases just to give an example of the kind of argument
required and we will skip the others. The reader might be convinced by looking
at figure 5.4 and noticing how we carefully create V-paths connecting the new
endpoints to the old ones.

1. Case 1: both e and e’ are old points. Then since F', is V-connected, e
and e’ must be connected by a V-path of successors of v in M, and since
our construction does not alter either the accessibility relation on the old
points or the depth of the points in the frame, the same path is a V-path
of successors of u in MP.

2. Case 2: e is an old point and e’ = f,” for some 1 < i < m. By definition
of the accessibility relation R?, since u sees f;”, u must be either d;’ or a
predecessor of v; (possibly v; itself).

But d;’ does not see old points, so u must be a predecessor of v;. Then
u also sees f5;, f;',d; and d;’. Since F',, is V-connected, there is a V-path
P of old successors of u which connects e to f;. Then P will also be a
V-path in F; but from f; we can move to d;, hence to f;’, then to d;’
and finally to f;”, and all these points have depth 0 or 1. This shows that
e can be connected to f;” = ¢’ by a V-path consisting of successors u in
MP.

3. Case 3: ...
O

It remains to check that the modifications operated on M do not affect “too
badly” the satisfaction of formulas.
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Lemma 5.2.14. Let M be a finite model and let w be a point in M. For any
formula ¢,
M,wl- ¢ <= MP wlk@PV/,]

where ¢[PV?/,] denotes the formula resulting from replacing any occurrence of
p with the disjunction p V q.

Proof. Define a map n? : MP — M that maps a point w in M? to the point in
M of which w is intended to be a copy:

1. nP(e;’) = ey;

2. P(fi") =P (fi") = fu

3. P (di") = di;

4. if w is an old point, P (w) = w.

It is utterly straightforward to check that nP is a frame p-morphism from F? to
F and that, additionally, for any point w in M? we have:

e MP wlFpVq <= M,nP(w) I p;
o MP wlkr < M,n?(w)lFr for any r # q.
Our claim follows then immediately from lemma 3.4.18. O

Remark 5.2.15. Note that, in particular, this lemma implies that if ——r — r
was true everywhere in M for r # p, q, then the same holds in M?. This means
that if M was negative for r, then so is MP.

Equipped with these results on the properties of our construction, we are at last
ready to prove the stability of Scott logic.

Theorem 5.2.16 (Stability of Scott logic). S¥ = S.

Proof. Consider a formula ¢(py,...,pn) € S: by the aforementioned fact that
S is complete with respect to finite Scott models there must be a finite Scott
model M and a point w such that M, w I o(ps,...,pn).

Obviously, we can assume that M is only concerned with the atoms p;, ..., py.
Now we can apply our construction for the removal of criticalities for each propo-
sitional letter occurring in ¢ and obtain a model (((MP7)P2)...)P» with the
following properties:

1. (((MP1)P2) . )P» is still a Scott model. This follows from an iterated
application of lemma 5.2.13;

2. (((MPr)Pz) .. )Pn it is a negative model. For, MP! is negative for p; and
q; by construction; (MP?)P2 is negative for ps and g by construction and
it is still negative for p; and ¢; by remark 5.2.15, and so on. In the end,
(((MP1)P2) . )Pn will be negative for all letters, i.e. a negative model.
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3. (((MPr)p2) . )Pr w I o(p; V iy, Pn V qn). For, lemma 5.2.14 com-
bined with the assumption M, w IV ¢(py1,...,pn) yields MP w I} p(p; V
q1,P2,---,Pn).- Repeating the same argument for pg,...,p, we finally
obtain our claim.

Putting things together, v(p; V q1,...,pn V ¢n) is a substitution instance of ¢
that can be falsified on a negative Scott model. Hence, ¢ ¢ Sch(S™) = S”. By
the generality of ¢, the equality S = S” is thus established. O

At the end of the previous section we claimed that while negative closure pre-
serves the disjunction property (theorem 5.1.7), there are logics without dis-
junction property whose negative closure does have the disjunction property.
We will now show how to use our characterization of Scott frames to obtain an
example of such a logic. Recall the following result due to Jankov and de Jongh.

Theorem 5.2.17 (see Jankov (1963) and de Jongh (1968)). For any finite
rooted frame F' there exists a formula x g such that for any frame G we have
G} xr iff F is a p-morphic image of a generated subframe of G.

There are two possible ways to define the formulas

xr: one is due to Jankov, the other to de Jongh;

since either one will do for our purposes, we shall

refer to xr as the Jankov-de Jongh formula of the

frame F. Now, the idea is to use for our proof the

Jankov-de Jongh formulas x r, and x#, of the frames

Fs and F; respectively, where F; is the frame de-

picted in figure 5.5. However, we saw above that the

Scott axiom S acts as a Jankov-de Jongh formula for

the frame Fg, namely, it is valid on a frame G if and

only if Fg is not a p-morphic image of a generated Figure 5.5: F;
subframe of G (see, for instance, Chagrov and Za-

kharyaschev, 1997, page 55 and theorem 11.58): therefore, we can in fact use S
instead of xr,.

Definition 5.2.18. Denote by KP the intermediate logic obtained by expand-
ing KP with the axiom SV xr,.

Proposition 5.2.19. KP, does not have the disjunction property.

Proof. By definition, SV xr, € KP,; however, neither S nor xz, are in KP.

For, having x 7, € KPL would mean that x#, is derivable from SV x#,, and
thus also from 8, in the system KP; that is, it would amount to S — x#, € KP.
Analogously, having S € KP_ would amount to xz, — S € KP. Thus, we just
need to show that S — xr, € KP and xr, — S & KP.

In order to show that a formula is not in KP, it suffices to show the existence
of a frame on which each instance of the Kreisel-Putnam axiom is valid and
the formula in question is not. Now, it is easy to check that any instance of
the Kreisel-Putnam axiom is indeed valid on both Fg and F; (see Chagrov
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and Zakharyaschev, 1997, page 55, for a characterization of the Kreisel-Putnam
frames).

Obviously, Fs £ Sand F; £ xx,, so it just remains to show that Fg = x 7,
and F; = S. But by the properties of Jankov formulas, this amounts to showing
that Fg is not a p-morphic image of a generated subframe of F ; and viceversa.

The “viceversa” direction is immediate: F ; cannot be a p-morphic image of
a generated subframe of Fg, because F; contains more points than Fg.

On the other hand, observe that F ; is clearly V-connected, so F; is a Scott
frame by lemma 5.2.9 above. But by definition, being a Scott frame means
precisely that Fg is not a p-morphic image of a generated subframe. Our claim
is thus proved. O

Clearly, KP C KP4 C KP+S. But we saw that KP C ML (proposition 3.4.7) and
S C ML (lemma 3.4.16), whence KP C KP+S C ML. Therefore, (KP;)” = ML.

This shows that KP. is a logic without disjunction property whose negative
closure does have the disjunction property.

So far, the only non-stable logics we encountered are logics A with ND C A C
ML, whose negative closure is Medvedev logic. However, there is another class
of intermediate logics which are easily seen to be non-stable, and whose closure
is classical logic.

Lemma 5.2.20. Let L be a weak intermediate logic. If p V -p € L, then
L = CPL.

Proof. A straightforward inductive argument suffices to show that ¢ V —p € L
for any formula . O

As an immediate corollary of this fact, the negative closure of the logic KC of
the weak excluded middle, axiomatized by —p V ——p, coincides with classical
logic.

Corollary 5.2.21. KC¥ = CPL

Proof. Since —=pV—-—p € KC we have pV—p € KC™ by definition of negative vari-
ant. So, by the previous proposition KC" = CPL, whence KC¥ = Sch(KC") =
Sch(CPL) = CPL. O

Then, by the monotonicity of the negative closure operator, classical logic is the
negative closure of any intermediate logic A O KC, such as the Gédel-Dummett
logic axiomatized by (p — ¢) V (¢ — p). The following proposition shows that
including KC is not only a sufficient, but also a necessary condition for the
equality A¥ = ML to hold; in other words, KC is the smallest intermediate logic
whose closure is CPL.

Proposition 5.2.22 (Characterization of the logics whose negative closure is
CPL). For any intermediate logic A, A¥ = CPL <= A D KC.



CHAPTER 5. INTERMEDIATE LOGICS WITH NEGATIVE ATOMS 76

< O KJV
IPL (K u+)y Kp”
IPL C S=S¥ - l\ﬂL - KC C C|||3L
MLY CPL¥
<O >

C GdJy = (GdJs)” € GdJy = (GdJs)”

Figure 5.6: Negative closure of intermediate logics. In red the stable logics.

Proof. We have already seen that the right-to-left direction holds. For the
converse implication, fix A and reason contrapositively: if KC € A, then —p V
-—p ¢ A. But by definition of A™ this means that p V -p ¢ A™ and therefore
also pV —p & AV, whence A” # CPL. O

Our findings are summarized by picture 5.2.



Chapter 6

First-order inquisitive
semantics

In this chapter we leave the propositional setting and set out to develop inquisi-
tive logic for a first-order language. This will turn out to be a problematic task,
since in the first-order case the definition of possibilities as maximal supporting
states completely fails to yield an adequate notion of meaning.

An analysis of the causes of this problem will lead us to revise our propo-
sitional semantics and to start over from a different definition of possibilities
which, fortunately, will turn out to be tightly related to the old one, so that
most features of the system we discussed so far will be preserved and most
results —in particular, the logical ones— will carry over to the modified setup.

We will then show that the new definitions extend in a natural way to the
first-order case, allowing for the development of a first-order inquisitive seman-
tics, and we will conclude with some remarks about first-order inquisitive logic.

If our exposition in this chapter becomes somehow more drafty than it
should, it is because the ideas that constitute the subject matter of the present
chapter have been developed only very recently and are still largely in the pro-
cess of evolving towards a satisfactory presentation.

6.1 First-order inquisitive semantics and the max-
imality problem

In this section we consider the notion of support for a first-order language £
and discuss the problems that arise if we try to implement an analogue of the
semantics discussed in chapter 2 based on this notion. We denote by L the set
of function symbols in £, and by Lp the set of predicate symbols. Obviously,
we assume a countably infinite set of variables, that we will usually denote by
LYy Zyenne

We take as primitive the connectives L, A, V,— and both quantifiers 3 and

7
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V. Besides the abbreviations we already had in the propositional case (- for
© — L, 2 for ¢ V- and lp for =) we introduce two new ones, whose role
will become clear in the course of the chapter: we shall write O for p V T and
(Pxy,...,xn)p for Vo, ... Va,e.

For the sake of simplicity (things will prove to be problematic enough even
so) we will consider models over a fixed domain. Interpreting states as infor-
mation states, this amounts to the assumption that there is no uncertainty as
regards the set of individuals that are object of the discourse.

We also assume a fixed interpretation for function symbols (including con-
stants). This amounts to the assumption that it is known who the names used
in the conversation refer to, as well as all values of all functional nouns.

Fix a domain D and an interpretation f” on D of each function symbol f
in £. We denote by D the structure (D, (f | f € LF)).

Definition 6.1.1 (Models). A D-model is simply a model M for the language
L that is based on D), that is, a model whose reduct to the language L is D.
We denote by Zp the set of all D-models.

Definition 6.1.2 (States). A D-state is a set of D-models.

We will use s,t,u as meta-variables for states. Reference to D will be dropped
whenever possible.

Recall that an assignment into D is simply a map g : Var — D. If g is an
assignment into D, x € Var and d € D, we denote by g[z — d] the assignment
mapping x to d and otherwise behaving like g.

Definition 6.1.3 (Classical meaning). Given a formula ¢ and a model M, we
write M, g |= ¢ in case ¢ is true classically in M under the assignment g.

Given a formula ¢, we denote by |p|, the set of all D-models in which ¢ is
classically true under the assignment g. If ¢ = (x4, ..., z,) is a formula whose
free variables are among x;, ..., x,, then obviously all that matters about the
assignment ¢ is the value it assigns to those variables. So, if d;,...,d, are
elements of D, we will also write M = ¢(dy,...,d,) and |p(d;,...,d,)| to
mean, respectively, M, g = ¢ and |p|, where g is an assignment mapping each
xz; to d;.

The definition of support for first-order formulas is a very natural generalization
of its propositional counterpart.

Definition 6.1.4 (Support). Let s be a state and ¢ a valuation.

—_

s,g=¢ iff selp|, for ¢ atomic

s,gE= L iff s=10

s, g eny i s,gk @ and s,
s,gEevy M sgE@ o s,gEY

5. 8,9F¢—y iff VtCs, if t,g=¢ then t,g =

L
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6. s,g =EVzp iff forallde D, s,glz—d] =g
7. s,g =3z iff thereisa d € D such that s,glz—d] = ¢

Notation. Again, if ¢(x;,...,2,) is a formula whose variables are among
Zi,...,Zn, then obviously whether or not s,¢ | ¢ holds depends only on the
behaviour of g on the variables z;,...,z,, so if d;,...,d, are elements of D,
we also write s = ¢(dy,...,d,) to mean s,g | ¢ where g is any assignment
such that g(x;) =d; for 1 <i <mn.

In particular, if ¢ is a sentence we will simply omit any reference to the
assignment and write s = ¢.

Just like in the propositional case, the atomic clause simply requires ¢ to be
true in all models in the given state. Also, like in the propositional case the
empty state is inconsistent and easy inductive arguments suffice to prove the
following two facts.

Proposition 6.1.5 (Persistence). If ¢ C s and s = ¢, then t = ¢.

Proposition 6.1.6 (Classical behaviour of singletons). For any model M, any
assignment g and formula ¢,

M}, gE¢ <= M,gF ¢

Something well-known from chapter 2 that shows up again and will soon turn
out useful is the classical behaviour of negations. For, spelling out the definition
of support for negation, we have the following fact.

Remark 6.1.7. For any D-state s, any assignment g and any formula ¢,
ssgE—w <= M,gE-pforall M €s

In particular, a declarative !y is supported by a state exactly in case all models
in the states make ¢ true.

The maximality problem. Based on the notion of support, we can extend
the propositional definition of informativeness and inquisitiveness to the first-
order case, prove equivalent characterizations of these notions and do other such
things.

But there is something that is crucial to the inquisitive programme that we
cannot do: we cannot associate to a formula a proposal, a set of possible updates,
the equivalent of the inquisitive meaning we had in chapter 2. The reason is
that in the first-order case, the maximalization involved in the definition of
possibilities is extremely problematic.

More precisely, the point is that the equivalent of proposition 2.1.10 fails: a
state supporting a formula may not be included in a maximal one; indeed, there
are even (meaningful) formulas that have no maximal supporting states, as we
are now going to show.
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Proposition 6.1.8. There is a formula ¢ that has no maximal supporting
states.

Proof. Let our language consist of a binary function symbol + and a unary
predicate symbol P; let our domain be the set w of natural numbers and let +
be interpreted as addition. Moreover, let z < y abbreviate 3z(z + z = y).

Consider the formula 3zB(x), where B(x) denotes the formula Vy(P(y) —
y < x). We call 3xB(z) the boundedness formula. By remark 6.1.7, a state s
supports B(n) for a certain number n if and only if B(n) is true in all models
in s; and clearly, B(n) is true iff the number n is an upper bound for the set
of numbers with the property P: for any first-order model M, M | B(n) iff
PM C {0,...,n}, where PM denotes the extension of the predicate P in M.

We will show that any state that supports JzB(x) can be extended to a
bigger state that still supports the same formula. Consider an arbitrary state s
supporting 3zB(z). This means that there is a natural n such that s = B(n);
so B(n) must be true in any model M € s, which means that for any such M,
PM C{o,...,n}.

Now let M* be the model defined by PM™ = {n 4 1}. M* ¢ s since we just
saw that the extension of P in any model in s is bounded by n; hence s U {M*}
is a proper superset of s. It is obvious that for any model M € s U {M*} we
have PM C {0,...,n + 1} and thus M = B(n + 1). Hence, according to our
earlier remark about the behaviour of B(z) we have s U{M*} = B(n + 1) and
therefore sU{M*} = JxB(x). So, sU{M™*} is a proper extension of s that still
supports JxB(zx).

By the arbitrariness of s, this argument shows that no state supporting the
boundedness formula can be maximal. O

In order to gather some clues as to where to head in order to overcome this
difficulty, let us meditate shortly on this example. What possibilities did we
expect to come out of the boundedness example? Now, B(z) is simply supported
whenever it is true, so it has a classical behaviour. The existential quantifier in
front of it, on the other hand, is designed to be satisfied only by the knowledge of
a concrete bound, just like in the propositional case a disjunction (of assertions)
is designed to only be satisfied by the knowledge of a disjunct.

Therefore, what we would expect from the boundedness formula is a hybrid
behaviour: of course, it should inform that there is an upper bound of P; but
it should also raise the issue of what number is an upper bound of P. The
possible resolutions of this issues are B(0), B(1), B(2),etc., so the possibilities
for the formula should be |B(0)|,|B(1)|, |B(2)|, etc.

Now, the definition of possibilities through maximalization has the effect of
selecting alternative ways to resolve the issue raised by a formula. The problem
is that obviously, if 0 is a bound of P, then so are 1,2, etc.; if 1 is a bound,
then so are 2,3, etc. So, the ways in which the issue raised by the boundedness
formula can be resolved cannot be regarded as alternatives. Still, B(0), B(1),
etc. are genuine solutions to the meaningful issue raised by the existential, and
our semantics should be able to model this.
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This indicates that we need to come up with another way of associating a
proposal to a formula; and if we are to be able to deal with the boundedness
example, we need our notion to encompass proposals containing non-alternative
possibilities.

Notice that we cannot hope for a definition of such possibilities in terms
of support. For, consider the following variant of the boundedness formula:
dx(z # OAB(x)). Possibilities for this formula should correspond to the possible
witnesses for the existential, and since 0 is not a witness, we expect |B(0)| not
to be a possibility.

Thus, a system that represents the inquisitive behaviour of the existential
quantifier in a satisfactory way should associate different possibilities to the
formulas 32 B(z) and 3x(z # 0AB(x)). However, as far as support is concerned,
the two formulas are equivalent. This is because, as soon as one knows an upper
bound for the set P, one immediately knows a positive upper bound, so the two
formulas are resolved in exactly the same information states.

The notion of support describes the knowledge conditions under which a
formula is resolved, but it is not sufficiently fine-grained to determine the what
its ways of being resolved are. We shall return to this point more extensively
later on, showing that indeed, support constitutes the ‘extensional shadow’ of
possibilities.

This discussion indicates that we need to devise a direct, support-independent
notion of possibilities. In the next section we turn to this task, starting over
with a new approach right from the propositional case. However, we have not
worked our way through the previous five chapters in vain: we will see that
it is possible to deal with non-alternative possibilities while at the same time
preserving most of the essential features and results discussed in the previous
sections.

6.2 Propositional possibility semantics

6.2.1 Propositions

In this section we are going to redefine possibilities and to devise a new notion of
inquisitive meaning that encompasses the old one. If we are to define possibilities
avoiding recourse to maximalization, the obvious idea is to give an inductive
definition. Looking back at the definition of support, the natural candidate is
clearly the following (cf. the proof of proposition 2.1.13).

Definition 6.2.1 (Propositions).

L [p]=A{lpl} if peP
2.

w
_ == =

{
I=lulvl
[={snt|se[e] and ¢ € [¢]}
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5 lo = o] =l [ f: [e] =[]},
where IT; = {w € I'| for all s € [¢], if w € s then w € f(s)}

We refer to [¢] as the proposition expressed by ¢ instead of the meaning of
® in order to avoid confusion with the notion [p] we had in chapter 2. The
possibilities for ¢ are simply the elements of the proposition [¢].

A first, important feature of the notion of proposition is that it relates to
support in the natural way. The straightforward inductive proof of this fact is
omitted.

Proposition 6.2.2. For any state s and formula ¢,
sE ¢ < s Ct for some possibility t € [¢]

The next proposition shows that as far as maximal possibilities —that is, al-
ternatives— are concerned, the new semantics coincides with the old one. In
particular, all the possibilities we had in chapter 2 are still possibilities under
the new definitions: only, we may now have additional possibilities that are
included in other possibilities.

Proposition 6.2.3. For any state s and formula ¢,
s € [¢p] < s is a maximal element of [¢]

Proof. 1If s € [¢], then s = ¢ and so, by proposition 6.2.2, s C ¢ for some ¢ € [¢];
then again by the same proposition, ¢ |= ¢, whence s = ¢t by the maximality of
s.

On the other hand, if s is a maximal element of [¢], then again by 6.2.2 we
have s |= ¢; now suppose s C t |= ¢: then ¢t must be included in a u € [¢], and
by the maximality of s we have s = u D t D s and therefore s = ¢t. This shows
that s must be a maximal state supporting ¢, whence s € [¢]. O

We will see that, in the propositional case, maximal possibilities embody the
1ssue raised by a formula. Hence, the previous proposition shows that possibility
semantics does not depart from the maximalization semantics in the treatment
of issues.

Moreover, the following corollary shows that, as expected, the new seman-
tics also does not depart from the classical treatment of information. For, as
explained in chapter 2, the union [ J[¢] of the possibilities for ¢ expresses the
informative content of ¢, as the acceptance of ¢ implies the elimination of those
indices that are not contained in any possibility for ¢.

Corollary 6.2.4. J[¢] = ||

Proof. Tt follows from proposition 6.2.3 that any possibility s € [¢] is included
in a maximal one. Thus, J[¢] = U[p] = |¢| where the last equality is given by
proposition 2.1.11. O
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Another thing that is immediately seen from the inductive definitions of possibil-
ities is that Groenendijk’s inequalities carry over the new setting (in particular,
any formula will still have only a finite number of possibilities). Denoting by
#X the cardinality of a set X, we have:

Remark 6.2.5 (Groenendijk’s inequalities).
L #[p] = #[L] =1
- #lo v ol < #le] + #[v]
3. #le Ay] < #[el#[Y]
4. #lp — ¢] < #[y]#M

Call a formula ¢ an assertion in case its proposition consists of only one possibil-
ity (we will later give an “official”, but equivalent, definition of assertions). By
the equality J[¢] = |¢|, this unique possibility must then be |¢|, so assertions
essentially behave classically, in the sense that they simply propose to establish
the corresponding fact.

The previous inequalities immediately entail a few sufficient syntactic con-
ditions on a formula to be an assertion, which the reader will find familiar from
chapter 2.

[\

Corollary 6.2.6. For any propositional letter p and any formulas ¢ and 1,
1. p is an assertion;
2. 1 is an assertion;
3. if both ¢ and v are assertions, then so is ¢ A ¥;
4. if ¢ is an assertion, then so is ¢ — 1.

In particular —just like in chapter 2— disjunction-free formulas and negations
are assertions. Thus, disjunction is the unique source of non-classical behaviour
in the semantics.

Corollary 6.2.7. Disjunction-free formulas are assertions.

Corollary 6.2.8. Any negation —¢ is an assertion.

6.2.2 Resolutions

In order to gather some intuition about the new notion of possibilities, let us go
back to the interpretation of support as ‘knowing how’ discussed in section 2.4.
There we claimed that the possibilities for a formula ¢ mirror the alternative
ways in which a formula may be realized; however, we have not looked at this
side of the mirror, in the sense that we have not specified what these ‘ways of
being realized’ are. The time has come to formalize that intuition and capitalize
on it.
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Interpreting the definition of support, we said that atomic formulas can be
realized in only one way, namely by being true. We said that in order to know
how V1) is realized it suffices to know how either disjunct is realized, so that a
way of realizing the disjunction is a way of realizing either disjunct. We said that
knowing how ¢ A1 is realized amounts to knowing how each conjunct is realized,
so that a way of realizing the conjunction consists of a way of realizing the first
conjunct and a way of realizing the second. Finally, we said that knowing how
an implication is realized means knowing a function that turns information as
to how the antecedent is realized into information as to how the consequent is.

This suggests an inductive definition of the set of ways in which a formula
 is realized. In order to avoid multiple copies of the same realization, we need
to adopt a little device. Let us choose a normal form for formulas in classical
logic such that the normal form of each formula contains only negations and
conjunctions, and denote by ¢, the normal form of a formula ¢; we may
assume that L,; = L and that p,s = p for propositional letters. We can then
define realizations as follows.

Definition 6.2.9 (Realizations/resolutions).
1. R(p) ={p} forpeP

2. R(L)={L}

R V1) =R(p) UR(Y)

R(eAY) ={(pAo)ns|p € R(p) and o € R(y)}

R(e = ¥) = {(A1<i<n(pi = [(pi)))ng | [ : R() = R()}

It is immediate to see inductively that R(y) is finite for all formulas, and this
also insures that the last clause in the definition is well-formulated. Incidentally,
observe that the last clause can also be formulated as follows.

5b. R(p = ) = {(A 1<i<n(pi = 0i))ns

where {p;,...,pn} =R(p) and {o; ...,0,} CR{W)}

ook W

Terminology. Recall that the interpretation of support as ‘knowing how’ is
related to its interpretation in terms of proposals by the last remark of section
2.4: the effect of a formula ¢ can be described as informing that ¢ is true and
raising the issue about how ¢ is realized; in this perspective, the realizations
of ¢ are (up to equivalence) precisely the formulas that resolve the issue raised
by . Therefore, we will also —and in fact mainly— refer to the elements of
R(p) as the resolutions of p; this terminology will help make many results in
this section more intuitively clear.

We said earlier that possibilities mirror the different ways a formula can be
realized, or resolved. This should be understood literally.
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Remark 6.2.10 (Possibilities mirror resolutions). For any formula ¢, the truth-
set map from R(y) to [¢] defined by p — |p| is a one-to-one correspondence; in
particular,

[l = {lpl | p € R(p)}

Proof. The injectivity of the map is guaranteed by the fact that if two resolutions
have the same classical meaning, then they have the same normal form and
therefore they coincide, since resolutions are in normal form by definition. In
view of this remark, the equality [¢] = {|p| | p € R(p)} is then immediately
clear once one compares the inductive clauses in the definition of possibilities
with those in the definition of resolutions. O

Thus, resolutions provide the syntactic counterpart of possibilities, and we can
work with either notion depending on which approach is more convenient for
the purpose at hand. This correspondence also provides a formal ground to our
claim in section 4.3 that the elements of [¢], which as we saw are nothing but
maximal elements of [¢], mirror the alternative ways of resolving the formula
. In terms of resolutions, proposition 6.2.2 can be restated as follows.

Corollary 6.2.11. For any state s and any formula ¢,
sE ¢ < sC|p| for some p € R(p)

This can be read as saying that a formula is supported in a state in case it is
resolved, that is, if a resolution of it is known in the state.

Observe that by definition, resolutions are disjunction-free: thus, according
to corollary 6.2.7, [p] = {|p|} for any resolution p of a formula ¢; this shows
that, as expected, resolutions are assertions, and do not raise further issues.

6.2.3 Strong entailment

It is clear that, while support and maximal possibilities are interdefinable via
the ‘support iff included in a possibility’ connection, support and maximal pos-
sibilities do not completely determine the proposition expressed by a formula.
For instance, both T and T V p are supported by all states, but [T] = {Z}
while [T Vp] = {Z,|p|}. Thus, it will be convenient to have, alongside the usual
notions of entailment and equivalence in terms of support, a finer variant of
them which is sensible to those differences in meaning that are not detected by
support.

Definition 6.2.12. Given formulas ¢ and v, we say that ¢ strongly entails 1),
in symbols ¢ ||~ 4, in case [¢] C [¢]. In case ¢ ||~ ¥ and 9 ||~ ¢ we write
p ~ 1 and say that ¢ and ¥ are strongly equivalent.

Thus, ¢ ~ 9 in case [¢] = [¢]. As expected, strong entailment implies entail-
ment (and thus, strong equivalence implies equivalence).

Remark 6.2.13. If ¢ | ¢ then ¢ |= 1.
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Proof. Tf [¢] C [¢] then by 6.2.2 any state that supports ¢ is included in a
possibility s € [¢] C [¢] and therefore by persistence it supports . O

The difference between entailment and strong entailment can be understood as
follows. Recalling that a state supports a formula in case the formula is resolved
in that state, ‘¢ =1’ means that 1 is resolved whenever ¢ is, so that once we
resolve ¢ we will be able to resolve ¢ as well. Hence, entailment is a notion of
relative resolubility.

On the other hand, ¢ | 1) means that whenever ¢ is resolved, v is resolved
in the same way: any resolution of ¢ also resolves ¥. In other words, plain
entailment is in a sense “extensional” in that it only takes into account when
a formula is resolved, while strong entailment is “intensional”, as it takes into
account not only when, but also how a formula is resolved.

While in the propositional case equivalence boils down to having the same
maximal possibilities, we shall see that things become quite interesting in the
first order case, where we will give two formulas that have no common resolu-
tion/possibility —that is, the responses that they invite are totally different—
and yet they are equivalent, since a solution to the one can always be derived
from a solution to the other.

Clearly, both entailment notions are meaningful and interesting from the in-
quisitive perspective. The formal properties of inquisitive entailment have been
studied in depth in chapter 3; a syntactic characterization of strong entailment
will be discussed in section 6.2.7.

6.2.4 Disjunctive normal form and expressive complete-
ness

The central idea of inquisitive semantics is that formulas propose a choice be-
tween one or more updates. We saw that these updates are named by the res-
olutions of the formula. Moreover, by definition of the semantics, a disjunction
has the effect of introducing choices. Therefore, it should hardly be surprising
that any formula is strongly equivalent to the disjunction of its resolutions.

Proposition 6.2.14. For any formula ¢, ¢ ~ \/ R(p).

Proof. Fix ¢. We saw that [p] = {|p|} for any resolution p € R(y), so
by the definition of possibilities for disjunction, [\ R(¢)] = U per) o]l =

Userioflelt = {lol | p € R(9)}-
On the other hand by remark 6.2.10 also [¢] = {|p| | p € R(¢)}. Thus,

o~ \VR(p). O

Since the disjuncts in \/ R(p) are uniquely determined by the proposition [¢],
this result gives a disjunctive normal form representation for formulas in possi-
bility semantics.

Here we are extremely close to the disjunctive negative translation DNT dis-
cussed in chapter 3. For, it is also easy to check that ¢ ~ DNT(yp); in fact,
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DNT(¢) is nothing but \/ R(¢) “in disguise”, where each disjunct is manipu-
lated into the shape of an equivalent negation.

Whether we use DNT or we simply note that resolutions are assertions and
thus equivalent to their double negation by corollary 6.2.8, we can draw the
following conclusion.

Corollary 6.2.15. Any formula is equivalent to a disjunction of negations.

In particular, any formula is essentially a disjunction of assertions. Moreover,
since negations behave classically, within the scope of negations we can safely
substitute classically equivalent formulas. And since the set of connectives
{=, v} is complete in classical logic, we can replace each disjunct in \/,er(,) !p
with an equivalent one in which only negation and disjunction occur. Thus, any
formula is equivalent to one containing only negations and disjunctions.

As predictable, something slightly stronger can be said if we proceed bottom-
up instead of top-down, namely that any set of states is also the meaning of
some formula, which can be constructed using negation and disjunction only.

Proposition 6.2.16 (Expressive completeness of {—,V}). If P is a finite set of
propositional letters, for any set II of P—states there is a formula ¢ 7 containing
only negation and disjunction with [o ] = II.

Proof. For any state s € II, let x5 be a formula containing only negations
and disjunctions with |xs| = s; by proposition 6.2.8 we have [!xs] = {s}.
Then V semr!xs is a formula containing only negations and disjunctions and
[V sen'xs] = Usenxs] = Usen{s} =1L O

It is also immediate to see that, just like in the maximalization semantics, the
set of connectives {—, A} is “sound and complete” for the classical meanings,
in the sense that a meaning can be expressed by a formula containing only
negations and conjunctions if and only if it consists of one sole possibility.

6.2.5 Inquisitiveness, informativeness, suggestiveness

In section 2.1.3 we saw how inquisitive semantics can be viewed as a system
in which the meaning of formulas consists of a purely informative component
and a purely inquisitive component which, together, fully exhaust the meaning
itself. In the present system, these two components can still be identified and in
fact will behave exactly like in the old system, but they will not fully determine
the proposal associated to a formula: a third dimension of meaning can be iden-
tified, consisting in the potential to suggest certain updates without supplying
information on the matter and without having such updates as integral part
of an issue. Together, these three dimensions fully exhaust the meaning of the
formula.

It will be useful to first introduce the usual notions of tautologies —formulas
that make a trivial proposition— and contradictions —formulas that make an
unacceptable proposition.
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Definition 6.2.17 (Tautologies, contradictions).
1. A formula ¢ is a tautology in case [¢] = {Z};
2. A formula ¢ is a contradiction in case [p] = {0}.

The equality J[¢] = |¢| immediately entails that contradictions are precisely
the classical contradictions; on the other hand, just like in the maximalization
case, classical tautologies may well make meaningful propositions.

We start our analysis of the properties of formulas from the most standard
notion, that of informativeness. We saw above that the treatment of information
amounts to the classical one, so informativeness will be defined as usual: a
formula is informative if it eliminates possible worlds, i.e. if it is not a classical
tautology.

Definition 6.2.18 (Informativeness). A formula ¢ is informative in case |p| #
T.

Since the meaning of the negation of a formula consists in the negation of the
informative content, a formula is informative if and only if its negation is not a
contradiction.

Now let us turn to inquisitiveness. Intuitively, a formula ¢ should be inquis-
itive if it requires information from the other participants, that is, if it can only
be resolved by providing additional information (additional with respect to the
one ¢ itself supplies). Hence, we require that all resolutions p of ¢ be strictly
more informative than ¢, that is, |p| € |p|. But since all resolutions are at least
as informative as ¢, this can be simplified as follows.

Definition 6.2.19 (Inquisitiveness). A formula ¢ is inquisitive in case |¢| &

[l

Proposition 6.2.20 (Alternative characterizations of inquisitiveness). For any
formula ¢, the following are equivalent.

1. ¢ is not inquisitive;
2. @ is classically equivalent to one of its resolutions;
3. [#] has a greatest element;

4. el = @

5. ¢ =lp.

Proof. (1< 2) Follows from the definition of inquisitiveness and proposition
6.2.10.

(1 & 3) Follows from the equality (J[¢] = |¢| (proposition 6.2.4).

(1 & 4) The implication from (1) to (4) is immediate by proposition 6.2.2. For
the converse, suppose |¢| = ¢: by the same corollary, || must be included
in a possibility ¢ € [¢]; but since in turn possibilities for ¢ are included
in || (as follows from 6.2.4) it must be || =t € [¢];



CHAPTER 6. FIRST-ORDER INQUISITIVE SEMANTICS 89

- 11 10

01 00 & &

(@ pVv(pAg) (b) Op=pVvT (c) OpV O-p

Figure 6.1: Three examples of suggestive formulas.

(4 & 5) By proposition 2.1.25.
O

These alternative characterizations suggest further intuitions about the notion
of inquisitiveness. For instance, item (2) states that a formula is not inquisitive
in case it resolves itself, and item (3) shows that ¢ is not inquisitive in case it
offers an obvious, safe choice that can always be chosen by the other participants
regardless of their information state.

Note that according to proposition 2.1.25, the notion we defined coincides
with the notion of inquisitiveness we used to have: a formula is inquisitive
if and only if it has more than one maximal possibility. The reason why we
introduced the notion in slightly different terms is that this presentation will
also make perfect sense in the first-order case. The characterization in terms of
maximal possibilities does not carry over to that setting, where —as we shall
see— a formula can raise issues whose resolutions are not alternative but form
an infinite chain, like in the case of the boundedness example. Nevertheless, the
equivalent of proposition 6.2.20 will still hold.

Observe that item (4) shows that the support conditions of a formula are
sufficient to determine whether or not it is inquisitive, although they do not
determine its resolutions. In particular, just like informativeness, inquisitiveness
is invariant under equivalence.

So far, no surprises: the class of formulas that are informative and inquisitive
are solid enough. For formulas whose proposal only contains maximal possibil-
ities, the new system behaves exactly like the system discussed in chapter 2,
of which we can safely claim to have a good understanding. But how to in-
terpret formulas that do propose non-maximal possibilities? What role do the
additional possibilities play in their meaning?

Unfortunately, this is a question to which we do not have a certain answer.
We suggest a natural interpretation for non-maximal possibilities in terms of
might-suggestions put forward by a formula. Whether or not the actual be-
haviour of the semantics matches this hypothesis is something that will require
further consideration; a little attempt to gather some indications on this ques-
tion will be made in section 6.4, but the results will not prove to be conclusive
in either direction.

Let us move on to explain our suggestion. Consider for instance the formula
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pV (p A q), whose meaning is depicted in figure 6.1(a). It is clear that this
formula informs that p is the case. It is not inquisitive, since it does not raise
an issue: if pV (p A q) is true, it must be true because p is true. As far as
information and issues are concerned, p V (p A q) is exactly equivalent to p.

Still, pV (pAgq) differs from p in that it also proposes the possibility to update
with p A ¢ —without supplying any information about it— thus allowing other
dialogue participants to compliantly react by asserting p A ¢ if they can.

Our hypothesis is that the proposal made by pV (p A ¢) may be understood
as follows: “I assure you that we can update with p; additionally, I would like
to establish p A ¢, but do not have enough information to do so”. If so, the
meaning of this formula could correspond to the effect of the natural language
sentences: “p, and it might be that ¢ as well”, or “p, and perhaps ¢q”.

In view of this interpretation, we refer to non-maximal possibilities as sugges-
tions and say that a formula is suggestive if it proposes one or more suggestions.
In fact, we define suggestive formulas in slightly different terms.

Definition 6.2.21 (Suggestiveness). We call a formula ¢ suggestive in case it
has a possibility s that is strictly included in a maximal possibility ¢. Such a
possibility s will be called a suggestion, or a highlight of .

Since in the propositional setting any possibility is included in a maximal one,
this amounts to saying that a formula is suggestive if it has non-maximal possi-
bilities. However, this definition has the advantage of being appropriate in the
first-order case as well, where non-maximal possibilities need not be suggestions:
they may also form an integral part of a real issue (think of the boundedness
example), and thus they serve a different purpose than being suggestions. We
will come back to this issue in section 6.3.4.

Observe that differently from informativeness and inquisitiveness, the notion
of suggestiveness is intensional, that is, not definable in terms of support alone
and thus not invariant under equivalence.

The following proposition indicates that the three aspects we identified ex-
haust the meaning of a formula.

Proposition 6.2.22. If a formula ¢ is neither informative, nor inquisitive, nor
suggestive, then ¢ ~ T.

Proof. If ¢ is not suggestive, then all of its possibilities are maximal. If ¢ is
also not inquisitive, it has only one maximal possibility, which must coincide
with its truth-set. Finally if ¢ is not informative, its truth-set must be Z, so
o~ T O

6.2.6 Assertions, questions, and conjectures

We used to define assertions as non-inquisitive formulas, and question as non-
informative ones. That is, speaking in informal but evocative terms, assertions
were formulas whose meaning lay entirely on the axis described by empty in-
quisitive component, and questions formulas whose meaning lay on the axis of
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empty informative component (see figure 2.1.3). This will be similar now, but
instead of a plane we will have a cube and one more type of formulas. As-
sertions will be formulas that are purely informative, i.e. non-inquisitive and
non-suggestive; questions will be purely inquisitive, i.e. non-informative and
non-suggestive; finally, conjectures will be purely suggestive, i.e. non-informative
and non-inquisitive.

Let us start considering the notion of assertion. We want assertion to be
formulas whose only effect is (at most) to provide information.

Definition 6.2.23 (Assertions). An assertion is a formula that is neither in-
quisitive nor suggestive.

The following proposition insures, among other things, that the definition given
here coincides with the one given above, of assertions as formulas with a one-
piece proposition. Incidentally, notice that corollaries 6.2.6, 6.2.7, and 6.2.8
supply many examples of assertions.

Proposition 6.2.24 (Alternative characterizations of assertions). For any for-
mula ¢, the following are equivalent:

1. ¢ is an assertion;

2. ¢ has only one possibility;

3. [l = {lel}s
4. o ~lp.
Proof.

(1) = (2) If ¢ is an assertion, then it is not inquisitive, so it has only one
maximal possibility, and it is also not suggestive, so all its possibilities are
maximal; therefore ¢ has only one possibility.

(2) = (3) Follows from the equality J[¢] = |¢| (corollary 6.2.4).
(3) = (1) Immediate by definition of inquisitiveness and suggestiveness.
(3) < (4) Follows from corollary 6.2.8.
O

Analogously, questions will be formulas whose sole effect is (at most) to raise
an issue.

Definition 6.2.25 (Questions). A gquestion is a formula that is neither infor-
mative nor suggestive.

Note that now a formula of the shape 7y will not in general be a question: it
will be if and only if ¢ is non-suggestive. However, if y is a meaningful assertion
(that is, neither tautological nor contradictory) then ?x does express the polar
question whether x.
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Finally, we turn to the notion of conjecture. A conjecture is a formula whose
only purpose is (at most) to highlight one or more possible updates, but without
either providing or requiring any information.

Definition 6.2.26 (Conjectures). A conjecture is a formula that is neither
informative nor inquisitive.

To gather some intuition, let us look at figure 6.1(b). The formula pV T, which
we abbreviate as Op, has the effect of suggesting, or highlighting, the possibility
that p, but without providing any information in regards. As such, it can be
taken as a formal counterpart of the natural language sentences “it might be
that p” or “perhaps p”.

In general, for any assertion y, the formula ¢x = x V T does not provide
information and does not raise issues, but simply “highlights” the possibility
that x so that it can be compliantly picked by the other participants if they
wish; thus, we think of Gy as “it might be that x”.

In the previous section we said that the proposition of p V (p A ¢) can be
taken to represent the natural language utterances “p, and it might be that ¢,
or “p, and perhaps ¢”. Now this comes out of our interpretation of <: for,
it is easy to see that pV (p A q) ~ p A Cg. In general, if both x and £ are
assertions and £ (classically) entails x, then x V& ~ x A OE, so at least in this
case we have a natural interpretation of the role of non-maximal possibilities as
might-possibilities.

More in general, for an arbitrary formula ¢, O has the effect of highlighting
the resolutions of ¢ without providing the information that ¢ is true and without
necessarily requiring a resolution of ¢.

In order to understand better the last remark, let us consider the difference
between the polar question ?p and the formula Op V $—p whose meaning is
depicted in figure 6.1(c). The polar question ?p introduces in the conversation an
issue that is only resolved by asserting either p or —p. The conjecture OpV &—p,
on the other hand, does not introduce an issue: it gives the other participants the
possibility to assert p and —p, but does not require this information, since it is
also resolved by not uttering anything (or nodding, or saying “Ok”, or whatever
non-informative, non-inquisitive and non-suggestive conversational move T is
taken to represent).

Proposition 6.2.27 (Alternative characterizations of conjectures). The fol-
lowing are equivalent:

( is a conjecture;

T € l¢l;

P~ Op;

i is supported everywhere.

Proof.

(1) = (2) If ¢ is a conjecture, then it is not inquisitive, so it has a greatest

possibility, and it is also not informative, so this greatest possibility must
coincide with 7.
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(2) = (3) Follows from the fact that [O¢] = [e V T] = [¢] U [Z].
3)=(4) If p~OCpthen p=Cp =9V T =T, so ¢ is supported everywhere.
(4) = (1) Immediate.

O

Observe that, differently from assertions and questions, conjectures admit a
characterization in terms of support.

Also, notice the following funny fact: item (4) states that a formula is a
conjecture if and only if it used to be a tautology in the maximalization se-
mantics. In chapter 2 we refined the classical notion of meaning and we got a
new class of meanings, what we called then questions, out of formulas that were
classical tautologies; now we refined the notion of meaning even further and we
obtained a new class of meanings, namely conjectures, out of what used to be
the tautologies.

Finally, we remark three closure properties of the class of conjectures.

Remark 6.2.28. For any formulas ¢ and v,
1. &g is a conjecture;
2. if ¢ and v are conjectures, then so is ¢ A ¥;
3. if at least one of ¢ and 1 is a conjecture, so is ¢ V ¥;
4. if 1 is a conjecture, then so is ¢ — .

Proof. Te [T] C[C¢]. ET € [¢] and T € [¢], then Z =ZNZ is in [ A¢] by
definition of propositions. If Z € [¢] or Z € [¢], then Z € [o] U [¢] = [ V ¢].
Finally if Z € [+] then letting f7 : [¢] — [+] be the function mapping each
s € [¢] to Z we have T =TI+ € [ — ¢]. O

This is in tune with the intuition that utterances like “it might be that p and it
might be that ¢”, “p, or it might be that ¢” and “if p, it might be that ¢” are
all conjectures.

Note on the empty set. In possibility semantics, it is often the case that
the empty, inconsistent state shows up among the possibilities for a formula.
Obviously, in a conversation, it is never a meaningful option to choose to update
the common ground to the inconsistent state. Therefore, in my opinion, the
empty state should simply be disregarded when judging the proposal made by
a formula.

Having the empty state in the semantics is handy for several purposes, in the
first place to make the definition of propositions come out right, in particular as
regards negations. But for practical purposes, as soon as a formula has at least
another possibility, we should probably not regard the inconsistent state as a
suggestion of the formula. We should thus also consider two formulas strongly



CHAPTER 6. FIRST-ORDER INQUISITIVE SEMANTICS 94

equivalent if one only differs from the other only for the presence of the empty
state.

There are plenty of examples where this appears in fact to be the reasonable
thing to do. For instance, we would expect the formula ¢p A G—p to highlight
the possibility that p and the possibility that —p, thus being strongly equivalent
to Op VvV O—p: this is indeed what we obtain if we disregard the presence of the
empty set in [Op A O—p]. We will see more convincing examples of this need in
the first-order case.

6.2.7 Axiomatizing strong entailment

In this section we will give a syntactic characterization of the notion of strong
entailment. Let us start from a survey of logical principles that do and do not
hold under this interpretation.

Remark 6.2.29 (Valid and invalid logical laws under strong entailment).

1. The connectives A and V are commutative and associative: @A) ~ P Ay,
(pAY) A x~ oA (Y Ax), and the same for V.

2. Disjunction is idempotent. However, conjunction is not idempotent: ¢ |
@ A @ but in general not viceversa; for a counterexample, take ¢ =pV ¢:
p A q is a resolution for (pV q) A (pV ¢) but not for pV q.

3. Conjunction distributes over disjunction: @ A (¥ V x) ~ (@A) V (@ A X).
However, the other distribution law holds only in one direction: ¢ V (1) A
X) | (V) A(eVx) but in general not viceversa; for a counterexample,
take ¢ = p and ¢ = x = ¢: p A ¢ is a resolution for (pV ¢) A (pV ¢) but
not for p Vv (g A q).

4. Bottom and top interact with conjunction as usual: ¢ A L ~ 1 and
@ AT ~ . However, the same does not hold for disjunction: ¢ | @V L
and ¢ | ¢ V T but, in general not viceversa; for a counterexample, take
@ = p: then L is a resolution for p vV L and T is a resolution for p v T,
but neither is a resolution for p.

5. Neither direction of the deduction theorem holds. For instance (p — T) ~
T but it is not the case that p | T, and p | pV-p but (p — pV-p) £ T.
It is however the case that if ¢ | ¢ then T | ¢ — .

6. If p and ¥ have no common possibility, then (pVY) — x ~ (¢ — X)A(Y —
X)-

7. If p is an assertion, then ¢ — (Y V x) ~ (¢ — ¥) V (p — X).

8. If ¢ and 1 are assertions, then ¢ ~ 9 iff p and 1 are classically equivalent.

We will characterize strong entailment syntactically by a derivation system hav-
ing no azioms, but only a set of derivation rules. We will write ¢ |~ ¢ in case
there exists a derivation of ¢ from ¢ according to the rules, and ¢ ~ @ in case

oy and ¥ .
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Definition 6.2.30 (Rules). We list below the rules of our derivation system.
Rules formulated with a double line can be used in both directions, whereas
rules with a single line can be used only downwards.

.. PAY YV
1. Commutativity: e and T
(eAP)Ax (pVi)vx

2. Associativity: IS an v ovn)
3. Disjunction-free substitution: if x is a disjunction-free subformula
of ¢ and ¢* is obtained from ¢ by replacing x (not necessarily every
occurrence of x) with a classically equivalent disjunction-free formula y’,

then i*
o]
. . eAPVX)
4. Distribution of A over V: ——————
(eAY)V (pAX)
5. Distribution of disjunction in the antecedent of an implication: if
d 1) are disjunction-free and not classically equivalent, — e
© an are disjunction-free and not classically equivalent, T==—="===
6. Distribution of disjunction in the consequent of an implication:
i distnetion free. P00
1I @ 1S disjunction-iree, m

7. Substitution of interderivables: if we have already shown that x ~~ x/
and ¢[X /] denotes the formula obtained from ¢ by replacing any occur-

rence of x by x’, then

’
X

el /x
s - ®
8. Addition of disjuncts: PV
In the following discussion, rules (1) and (2) will always be used tacitly, by
disregarding the order and the parsing of conjunctions and disjunctions. Observe
that since all the rules but the last are reversible, if ¢ was derived from ¥ without
using rule (8), then reversing the derivation yields a derivation of ¥ from .
The following theorem states that the given derivation system soundly and
completely axiomatizes strong entailment.

Theorem 6.2.31 (Soundness and completeness of |~ for strong entailment).
For any formulas ¢ and ¢, ¢ [ <= ¢ .

We start by proving the soundness of the system.
Lemma 6.2.32 (Soundness). If ¢ b 1) then ¢ | 9.

Proof. Consider a formula ¢: we show by induction that any formula occurring
in a v —derivation from ¢ is strongly entailed by ¢.

Since our derivation system has no axioms, the first formula in the derivation
must be ¢, and obviously ¢ ||~ ¢. Now, according to remark 6.2.29, any rule
but the last one turns a formula into a strongly equivalent one; so, if ¢ | x and
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X' is obtained from x by an application of one of the rules (1)-(7), then ¢ |~ X’
by the transitivity of |k. Finally, if ¢ |fv x and x V ¢ is obtained from x by an
application of rule (8), then [¢] C [x] C [x] Y [&] = [x V &]. O

In chapter 3 we saw that an easy way to prove completeness for an axiomati-
zation of inquisitive entailment passes through the analysis of the ingredients
needed to justify the disjunctive-negative translation of a formula.
Analogously, we will get to completeness for strong entailment through the
following lemma which shows that the rules given above are sufficient to justify
the strong equivalence between a formula ¢ and the disjunction of assertions

VR(¢).
Lemma 6.2.33. For any ¢, ¢ ~~ \/ R(p).

Proof. By induction on ¢. The basic cases are trivial.

1. Counsider a disjunction ¢ V ¢. The induction hypotheses guarantees that
v~V R(p) and ¢ ~ \/ R(¢); so, starting from ¢ V4, two applications
of rule (7) yield \V R(p) V V R(p); but VR () VV R(¥) =V R(p V1))
This shows that Vi) | \/ R(¢V1)). The converse is obtained by reversing
the derivation, since rule (8) was not used.

2. Consider a conjunction ¢ A ¢. Again using the induction hypotheses on
both ¢ and v and applying rule (7), from oAy we get (\/ R(p))A(V R(W));
then, using the distribution rule (4) we obtain \/ ,er(p),cer(w)(P A 7).
Now, for any p € R(p) and any o € R(), the formula pAc and its normal
form (p A o)y are classically equivalent disjunction-free formulas. There-
fore, applying rule (3) for each disjunct we obtain \/ ,er (¢),0er (1) (PAT)nf,
which amounts to \/ R(p A v).

Hence, p A i \/ R(p A ). The converse is obtained again by reversing
the derivation.

3. Consider an implication ¢ — 1. By the induction hypotheses and rule
(7), from ¢ — 1 we obtain \/ R(p) — \/ R(¢). Now, by definition all the
elements of R(y) are non-classically equivalent disjunction free formulas;
therefore, using rule (5) we can distribute the disjunction in the antecedent
over the implication, obtaining A ,er () (p — V R(¥)).

Then consider any p € R(p): since p is disjunction-free, starting from p —
\/ R(%) we can use rule (6) to distribute the disjunction in the consequent
over the implication, obtaining \/ ;er(y)(p — o). Conversely, the other
direction of rule (6) allows us to derive p — \/ R(¢) from \/ ;er(y)(p —
o). Thus, for any p € R(yp) we have p — \/ R(¥) ~ V gerp)(p — o).

Hence, we can apply rule (7) for each p to A ,erp)(p — VR(¥)) and
obtain A\ ,er(y) V oer(p)(p — o). Applying again the distribution rule (4)
for conjunction, we obtain \/ r.z(,)—®r ) A per(e)(p — f(p)). Now, since
all resolutions are disjunction-free, each formula p — f(p) is disjunction-
free and classically equivalent to its normal form (p — f(p))ns, which
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is also disjunction-free. Therefore, a number of applications of rule (3)
yields the formula \/ ¢z (o)—=() A per(p) (P = f(p))nf, Which is simply
VR(p — ).

This shows ¢ — ¢ |~ \V R(p — ). As usual, the converse is proved by
the reverse derivation.

O

Proof of theorem 6.2.31. Suppose ¢ |~ 1. By the previous lemma, from ¢ we
can derive \/ R(y¢). Now, since [¢] C [¢/], for any p € R(¢p) there is a classically
equivalent formula o, € R(). Since resolutions are always disjunction-free, we
can use the disjunction-free substitution rule to turn \/ R() into \/ per ()0,

But note that \/ R(1)) is nothing but \/ ,c ()0, With some extra disjuncts,
and thus it can be derived from the latter through several applications of the
rule of addition of disjuncts. Finally we can use the previous lemma once again
to derive ¢ from \/ R(¢). O

6.3 First-order possibility semantics

6.3.1 Propositions

Equipped with our new approach to the meaning of formulas which does not
rely on maximality issues anymore, we can now return to the task of defining
a satisfactory inquisitive semantics for a first-order language £. Recall from
section 6.1 that we assume a fixed structure D consisting of a domain and an
interpretation of the function symbols in £: our semantics is then concerned
with models for £ based on D, and Z denotes the set of all such models.

Obviously, in order to define truth, support, possibilities etc. for a formula
we need to know what elements of D the free variables in the formula refer to;
for this reason, all the notions introduced in this section are relativized to an
assignment g.

As usual, if ¢ = p(z,...,2,) is a formula whose free variables are among
Ti1,...,Tn and if dy,...,d, are elements of D, we will also write things such as
[e(ds,....dy)], or “o(dy,...,dy,) is an assertion” to mean, respectively, [¢],

and “p is an assertion relative to g” where g is any assignment mapping each
xT; to dl

Having remarked this, we are ready to introduce the semantics. The obvious
analogous of definition 6.2.1 is the following.

Definition 6.3.1 (Propositions). Define the proposition associated to a formula
relative to an assignment g as follows:

1. [elg = {lelg} if ¢ is atomic;
2. [L]y = {0}
3. [evely = el U [¥ly;
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4. [endlyg={sntls€[ply and t € [¢]s};
5 [ — ¢]]g = {Hf | f: [[‘P]]g - [[1/1]]9}7 where

Iy ={w e I| forall s € [p]y, if we sthen we f(s)}

6. [Fz¢ly = U denlel gz ar;
7. [Brely = {Naepsalsa € [¢]gza) for all d € D};

It is easy to check by induction that, with this definition of possibilities, we have
the desired connection between support and possibilities.

Proposition 6.3.2. For any assignment g, any state s and any formula ¢ we
have
s,9 ¢ <= sCt for some t € [¢],

As usual, this comes with the associated corollary that information is treated
classically.

Corollary 6.3.3 (Classical treatment of information). For any assignment g
and any formula ¢,
Ulel, = Il

Proof. If s € [¢], then by the previous proposition s, g = ¢ and therefore, by
persistence and the classical behaviour of singletons, s C |¢|,. Hence, [J[¢], C
lolg. Conversely, if M € |¢|4, then by the classical behaviour of singletons and
the previous proposition M must be contained in some s € [¢], and therefore
it must belong to [J[¢],- O

Of course —unlike in the propositional setting— now the proposition associated to
a formula may well consist of infinitely many possibilities in case the domain D
is infinite, as the recursive clause for the existential quantifier shows. However, it
is immediate to verify inductively that, with the caveat that infinite cardinalities
may be involved, the analogue of Groenendijk’s inequalities still holds.

Proposition 6.3.4. For any assignment g,
L #[ply = #[L], =1
2. #leVvyly < #lely + #[¥],

#lo N bly < #elo#[¥]y

p — ]y < #[p]#

Jze]y < Baep#[elgjo—ad)

Vaply < Maep#[olglzma)

A

[
[
[
[
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Say that a formula ¢ is an assertion relative to an assignment g in case its
proposition [¢], consists of one sole possibility: again, assertions will be rede-
fined later on in a different but equivalent way.

The previous inequalities yield the natural analogues of corollaries 6.2.6,
6.2.7, and 6.2.8, giving sufficient syntactic conditions for a formula to be an
assertion.

Corollary 6.3.5. For any assignment ¢, any propositional letter p and any
formulas ¢ and %, the following holds:

1. p is an assertion relative to g;

2. 1 is an assertion relative to g;

3. if both ¢ and 1 are assertions relative to g, then so is ¢ A ;
4. if 1 is an assertion relative to g, then so is ¢ — ¥;

5. if ¢ is an assertion relative to g[z +— d] for all d € D, then Vzyp is an
assertion relative to g.

Corollary 6.3.6. A formula that contains neither disjunction nor the existen-
tial quantifier is an assertion relative to any assignment.

Thus, disjunction and the existential quantifier are the only sources of non-
classical behaviour in the first-order semantics.

Corollary 6.3.7. A negation is an assertion relative to any assignment.

6.3.2 Entailment and strong entailment

Just like in the propositional case, it is possible to identify two different notions
of entailment.

Definition 6.3.8 (Entailment and strong entailment). Let ¢ and % be two
formulas. Relative to a fixed assignment g, we say that:

1. ¢ entails v, in symbols ¢ =41, in case for any state s, if s,¢g = ¢ then
5,9 F @5

2. ¢ strongly entails 1, in symbols ¢ |y, in case [p], C [¥]4;
3. ¢ and v are equivalent, in symbols ¢ =41, in case ¢ =41 and ¥ =4¢;

4. ¢ and v are strongly equivalent, in symbols ¢ ~ 41, in case ¢ ||~ 41 and

v HVgQD-

It is obvious by proposition 6.3.2 that strong entailment implies entailment, and
strong equivalence implies equivalence.

Remark 6.3.9. For any assignment g, if ¢ |[fvg9 then ¢ =41.
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The difference between the two relations is the same as we discussed for the
propositional case: ¢ =41 expresses the fact that 1 is resolved whenever ¢
is, that is, that a resolution for ¢ can always be obtained from a resolution
of ¢. The relation ¢ ||~ 4%, on the other hand, means that resolutions for ¢
themselves are also resolutions for : whenever ¢ is resolved, 1 is resolved in
the same way.

This difference is well illustrated by the following example.

Example 6.3.10. We will consider two variations of the boundedness formula
that do not share any possibility and still are equivalent, since a resolution of
either of them can always be converted into a resolution of the other.

Consider the language consisting of a binary function symbol +, a constant
1 and a predicate symbol P. Our structure D consists of the natural numbers
with the standard interpretation of + and 1. We will make use of the following
abbreviations:

1. z<yfor Iz(x+2z=1y)
2. E(z) for 13z(z + z = x)
3. O(x) for 13z(z+ 24+ 1 =1x)

It is clear that F(x) and O(z) are assertions meaning, respectively, that z is
even, and that x is odd. Then, like in section 6.1, let B(x) = Wy(Py — y < z):
by corollary 6.3.7, B(z) is an assertion stating that x is an upper bound for P.
Now define sentences Br and B as follows:

1. Bg = 32(E(z) A B(z));
2. Bo = 32(0(z) A B(x));

In words, the sentences in question represent: “There is an even upper bound
to P” and “There is an odd upper bound to P”. If we compute the propositions
associated with these sentences, we obtain:

L [Bg] ={|B(2n)| | n € w};
2. [Bo]l={|B2n+1)||n € w}.

Thus, Bg and B invite different resolutions: indeed, they have no common
resolution at all, since |B(n)| # |B(m)| for n # m. This is in tune with the
fact that it would not be compliant to respond, say, “Oh, yes, seven!” to the
utterance “There is an even upper bound to P”.

However, By = Bo. For, if s = Bg, then it must be s C |B(2n)| C
| B(2n+1)| for some number n by proposition 6.2.2, whence s = Bo. Viceversa,
if for some n we have s C |B(2n + 1), then s C |B(2n + 2)| and so s = Bg.

The point is that given an even upper bound to P we can obviously derive
an odd upper bound by adding one, and viceversa; thus, a resolution for one of
Bpg, Bop can always be deduced from a resolution of the other.
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From the point of view of support, which describes what information is
needed to resolve a formula, the two formulas are the same. Incidentally, note
that also from the point of view of the responder(s), Bg and By are equally
hard to solve, so there is really no point in uttering B after By has already
been uttered (or viceversa).

On the other hand, what we try to model via possibilities is the effect of
utterances in a dialogue. In this respect, By and B are certainly different,
since they invite different responses. What is compliant with By need not be
compliant with Bg, as the example of “Oh, yes, seven!” shows.

The very same difference had been encountered before in Groenendijk’s par-
tition semantics for who questions. Assuming that the relation between the
time in London and the time in Amsterdam is common knowledge, the two
questions “What time is it in London?” and “What time is it in Amsterdam?”
produce the same partition of the space of models, and the information needed
in order to answer them is exactly the same. Nonetheless, the two questions
invite different answers and therefore their utterance produces a different effect
in a conversation.

This discussion should hopefully clarify in what sense we may talk of sup-
port, entailment, and equivalence as the extensional counterpart of propositions,
strong entailment, and strong equivalence.

6.3.3 Resolutions

In the previous section we saw that in the propositional setting, any possibility
s for a formula ¢ could be expressed by a formula ps that we called a resolution
of .

This is clearly not the case in the first-order setting (unless the domain is
finite and there are names for each element). For instance, suppose we are in the
setting of the previous example and consider the formula (?z)P(z) = Va?P(x).

It is easy to check that according to our semantics, this formula represents
the question “which numbers have the property P?”, being associated with the
proposition [Vz?P(z)] = {{My}|Y C w} where My is the D-model defined
by PM =Y.

Since the natural numbers have uncountably many subsets, the formula in
question has uncountably many possibilities, and since the language we are
considering is countable, there will be formulas that cannot be expressed.

However, in order to better denote and understand possibilities, it might be
convenient to simply create all resolutions for a formula by adding constants d
for each element d € D and by allowing infinite conjunctions and disjunctions
(actually, it is only the former that we need, but the latter will come in handy
as well). Truth-sets for this extended language are defined in the obvious way,
and as for propositions, one just needs to allow the union mentioned in the
disjunction clause and the intersection mentioned in the conjunction clause to
be infinite. Note that in this language we do not need the quantifiers anymore,
since we can identify Vz(z) and Jzp(z) with the strongly equivalent formulas
A aepe(d) and \/ 4epp(d), and so we can also get rid of variables.
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Again, we need to insure against multiple copies. We do this by fixing a
normal form ( )¢ for classical logic in which formulas are represented in a
disjunction-free and existential-free form; we also assume that this normal form
leaves atoms and | unchanged. We can then define resolutions as follows.

Definition 6.3.11 (Resolutions).

1. R(p) = {p} if ¢ is atomic;

(
2. R(L) ={Ll}
3. R(Vjesps) = UjesR(g;);
4. R(Njeses) ={(Njeapins | pi € R(g;)};
5. R(¢ — 1) = {(A perip)(p = f(0)))ns | f: R(0) = R(¥)}.

Since we required resolutions to be disjunction-free and existential-free, resolu-
tions are assertions by (an infinitary analogue of) corollary 6.3.6. The following
proposition is nothing but an infinitary version of proposition 6.2.10, but we
can apply it to formulas in the original language to obtain a syntactic represen-
tation of their proposition in terms of resolutions, which are now formulas in
the extended language.

Proposition 6.3.12. For any formula ¢, the map p — |p| from R(¢) to [¢] is
a bijection. In particular, [¢] = {|p||p € R(p)}.

Corollary 6.3.13. For any formula ¢, ¢ ~ \/ R(p).

Obviously, our focus will remain on the original finitary language, as we are in-
terested in human communication; nevertheless, resolutions provide a very intu-
itive representation of the proposal associated to a formula. For instance, resolu-
tions for the who-question Vz?P(z) considered above are —up to equivalence—
precisely the full answers to the who-question, namely formulas of the shape
N\ neoW (W) where, for any n € w, W(n) is either P(7) or =P(m). Of course,
most of these answers cannot be expressed in the finite language, but some can
(provided that we are also equipped with the multiplication symbol, these will
be precisely the arithmetic sets).

Of course, there are also many formulas whose resolutions can all be ex-
pressed in the finite language. For instance, resolutions for the boundedness
formula are formulas of the shape B(%) for n € w, so they can be expressed in
a language having terms for all natural numbers.

Additionally, if the domain D happens to be finite —which is the case in
most dialogue situations— then our construction makes perfect sense without
moving to an infinite language: we just need names for all individuals and the
above definition will provide a notion of resolutions that works just as well as
the propositional one.
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6.3.4 Inquisitiveness, informativeness, suggestiveness

In this section we will follow the path we traced in the propositional case and
see that the meaning of formulas can be analyzed along exactly the same lines,
identifying an informative, an inquisitive and a suggestive potential.

Like in the previous section, relative to an assignment g we call a formula
¢ a tautology in case [p], = {Z}, and a contradiction in case [¢], = {0}.
Thus, tautologies are formulas that make a trivial proposal, while contradictions
make unacceptable proposals. It follows from the equality J[¢], = |¢|, that
a formula is a classical contradiction if and only if it is a contradiction on any
structure D relative to any assignment g. Classical tautologies, on the other
hand, need not be tautologies in the inquisitive sense.

The notion of informativeness is as usual unproblematic. Relative to an
assignment g, a formula is informative if it proposes to eliminate some models;
according to corollary 6.3.3, this amounts to the formula not being true on all
D—models under g.

Definition 6.3.14 (Informativeness). Relative to an assignment g, a formula
@ is informative in case |p|, # L.

As usual, relative to any assignment, a formula is informative if and only if its
negation is not a contradiction: for, a negation - is simply an assertion which
has the effect of denying the informative content of .

We say that a formula ¢ is inquisitive in case it requires information, that
is, if it is only resolved by formulas that supply additional information. As we
argued in the propositional case, this condition can be formulated as follows.

Definition 6.3.15 (Inquisitiveness). Relative to an assignment g, a formula ¢
is informative in case ||y, & [¢],4-

The analogue of proposition 6.2.20 still holds and is proven in the same way.

Proposition 6.3.16 (Alternative characterization of inquisitiveness). For any
assignment g and any formula ¢, the following are equivalent.

1. ¢ is not inquisitive relative to g;
2. ¢ is classically equivalent to one of its resolutions relative to g;

3. [y has a greatest element;

4. |ol, g E .
5 ¢ =lp

The only difference is that now an inquisitive formula need not necessarily pro-
pose alternatives, in the sense of several maximal possibilities; it may also pro-
pose an infinite chain of possibilities included in one another: think of the
boundedness example, whose possibilities are |B(0)] C |B(1)| C |B(2)| C ...;
as expected, it is inquisitive, because it can only be resolved by providing an
upper bound for P.
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The boundedness formula shows very clearly that in the first-order case,
non-maximal possibilities may be needed in order to specify issues. At the same
time, possibilities that are neither maximal —that is, alternatives— nor part of
such an infinite-chain issue are always included in a maximal possibility, and
thus they play the same role as suggestions in the propositional case.

Definition 6.3.17 (Suggestiveness). Relative to an assignment g, a formula ¢
is suggestive in case it has a possibility s that is strictly included in a maximal
possibility ¢. As usual, if this is the case we refer to such a possibility s as a
suggestion, or a highlight of .

If a formula is not inquisitive, then it has a greatest possibility coinciding with
its truth-set; if it is also not suggestive, then this must be its unique possibility;
finally, if in addition the formula is not informative, then its truth-set must
coincide with Z. This shows the following result indicating that there are no
further dimensions to the meaning of a formula.

Remark 6.3.18. If, relative to an assignment g, a formula ¢ is neither infor-
mative, nor inquisitive, nor suggestive, then ¢ ~/T.

Just like in the propositional case, inquisitiveness and informativeness are purely
extensional notions, that is, they can be defined in terms of support alone. This
may at first appear surprising in the case of inquisitiveness, since we saw that
support is not sufficient to determine the issue raised by a formula, but it is not.
For, by definition a formula is inquisitive in case it requires information from
the other participants. Now, two formulas like B and B in example 6.3.10
may raise different issues, i.e. propose different possibilities, but as long as they
are equivalent, the information needed to settle them is the same; thus, if one
requires information from the other participants in order to be settled, so does
the other.

Suggestiveness, on the other hand, is obviously not invariant under equiva-
lence and therefore not definable in terms of support.

6.3.5 Assertions, questions, and conjectures

Like in the propositional case, we isolate three classes of formulas that serve
only one of the three purposes identified in the previous section.

Definition 6.3.19 (Assertions). Relative to an assignment g, a formula is an
assertion if it is neither inquisitive nor suggestive.

Assertions admit the usual alternative characterizations; the proof is the same
we gave for the propositional analogue, proposition 6.2.24.

Proposition 6.3.20 (Alternative characterizations of assertions). For any as-
signment g and any formula ¢, the following are equivalent:

1. ¢ is an assertion relative to g;
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2. ¢ has only one possibility relative to g;

3. lely = {lelg};
4. o ~glo.
Corollaries 6.3.5, 6.3.6 and 6.3.7 provide many examples of assertions.

Definition 6.3.21 (Questions). Relative to an assignment g, a formula is a
question if it is neither informative nor suggestive.

Example 6.3.22. Counsider the formula (?z)x(z) = Vz?x(x), where x(z) is an
assertion relative to any assignment. Resolutions for this formula are complete
answers to the question “for which z is x true?”. Accordingly, possibilities are
of the shape Ay = {M € Z|x™ = Y} for Y C D, where x™ denotes the
extension of x in the model M.

Now, obviously if x™ = Y then x™ cannot be equal to any Y’ # Y, so
all the possibilities Ay are disjoint. Moreover, any model M belongs to some
possibility, namely to A, . Thus, the meaning of (?z)x(x) forms a partition of
the common ground into pieces corresponding to the complete answers to the
who-question.

This means that (?z)x(x) has precisely the same meaning that it used to have
in the partition semantics of Groenendijk’s logic of interrogation (Groenendijk,
1999; ten Cate and Shan, 2007). The same is true of the formula (?z; ... x,)x =
Vzy...Vx,7x. The remarkable thing is that whereas in that system a purpose-
made operator (?z; ...x,) had to be explicitly defined, here we get it for free
from the inquisitive behaviour of the standard logical connectives.

Who-questions provide another reason to choose, as discussed in the previous
section, to disregard the empty state as a possibility and not to consider it a
suggestion. For, who questions of the kind just discussed will produce a partition
which might in general include the empty possibility. Still, we do not want this
to prevent us from calling them questions.

Definition 6.3.23 (Conjectures). Relative to an assignment g, a formula is a
conjecture if it is neither informative nor inquisitive.

Arguing like in the previous section we obtain the following alternative charac-
terization of conjectures.

Proposition 6.3.24 (Alternative characterization of conjectures). For any as-
signment ¢ and any formula ¢, the following are equivalent:

1. ¢ is a conjecture relative to g;
2. I € [¢ly;

3. @~

4. p=,4T.
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For instance, the formula 3z P(x) ~ 3z P(x) is a conjecture that highlights,
for each d € D, the possibility that P(d). The formula ¢!32P(z), on the other
hand, is also a conjecture, but it only highlights one possibility, namely, the
possibility that someone has the property P.

The following proposition remarks some closure properties of the class of
conjectures. We omit the utterly straightforward proof.

Proposition 6.3.25. For any assignment g and any formulas ¢ and 1,
1. O is a conjecture relative to g;
2. if one of ¢ and v is a conjecture relative to g, then so is ¢ V 1;

if both ¢ and v are conjectures relative to g, then so is ¢ A 1;

if 1 is a conjecture relative to g, then so is ¢ — ;

ook W

if ¢ is a conjecture relative to g[z +— d] for some d € D, then Jzp is a
conjecture relative to g;

6. if ¢ is a conjecture relative to g[z +— d] for any d € D, then Vay is a
conjecture relative to g.

6.4 M:ight meets the logical constants

Since in the previous sections we have suggested a possible interpretation of the
role of non-maximal possibilities and the operator < in terms of ‘might’; it is
worth spending at least a few words to discuss how well the formal behaviour
of & matches our intuitive expectations in some particular cases, in regards to
its interaction with the other logical constants.

But before doing so, let us clear the table from a source of easy misappre-
hensions: when we say that & may represent the effect of ‘might’, we are not
talking about the epistemic ‘might’, meaning ‘it is consistent with my infor-
mation state that’. Inquisitive semantics is a very simple system which only
models the information state of the common ground of a conversation relative
to facts in the world. Neither the individual participants’ knowledge, nor the
common knowledge about the participants’ knowledge is modelled in any way.
Perhaps in the future inquisitive semantics may be extended with an epistemic
component and will be able to cope with utterances concerning higher-order
information, but until then there is no space for the modelling of the epistemic
meaning of ‘might’.

Instead, the ‘might’ discussed here is the one used to advance suggestions in
conversation, to invite the other agents to consider certain possibilities, like in

(1):

(1) They are late. They might be stuck in traffic.
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01 00 01 00

(a) [Oop A Oq] (b) [OpV Oq] (¢) [Op N ©O=p] =
[Op Vv O—p]

We call this the suggestive, or highlighting use of ‘might’. These two functions of
‘might’ are distinct, although a connection between the two is probably present
at a pragmatic level, in the sense that a suggestive use of might seems to imply
that the corresponding epistemic might is true for the speaker, as well as the
epistemic might of the negation of the suggestion: under normal circumstances,
the hearer of (1) would conclude that the speaker does not know whether “they”
are in fact stuck in traffic.

We start our test from the boolean connectives. A first thing that is immedi-
ate to see is that the formula =y is always a contradiction. This is satisfactory,
since it does not seem to be possible to deny a might statement in natural lan-
guage: a sentence of the form “it might not p” it is invariably interpreted as
suggesting the possibility that —p, and so it has its formal counterpart in G-,

Let us now consider the interaction with conjunction and disjunction. Fig-
ures 6.2(a) and 6.2(b) show the difference between the meanings of Op A g and
OpV <Oq: we see that both formulas suggest the possibility that p and the possi-
bility that ¢ —as we would expect— but the former also suggests the possibility
that ‘both’, whereas the latter does not.

This may indeed be the desirable behaviour, as the following example pointed
out by Anna Szabolcsi suggests. Suppose someone needs to have a text trans-
lated from Russian to French and is therefore looking for somebody who is a
speaker of both languages. Then (2) would be perceived as a useful recommen-
dation, whereas (3) would not.

(2) Mark might speak Russian and he might speak French.
(3)  Mark might speak Russian or he might speak French.
In this context neither the suggestion that Mark speaks Russian nor the sug-
gestion that Mark speaks French is of interest, but the suggestion that Mark
speaks both is. Including the latter among the suggestions of Op A $g, our
system accounts for the different ways (2) and (3) are perceived.

On the other hand, Zimmermann (2000) has observed that (4) and (5) are
equivalent.
(4) Mark might be in Paris or he might be in London.
(5) Mark might be in Paris and he might be in London.
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In view of what we just saw, this may look in contrast with the predictions of
our system, but it is not. For, being in London and being in Paris are obviously
mutually exclusive propositions, and in (ordinary) conversations this is part of
the common ground. Therefore, we should compute propositions not relative to
the completely ignorant common ground consisting of all indices, but relative
to the common ground from which the index 11 making both propositions true
has been removed.

We have not discussed the generalization of possibility semantics and its
notions to arbitrary common grounds, and we will not do it here either. This
can be done in a straightforward way by restricting the clauses in the inductive
definition of propositions to those indices that are actually there in the common
ground. If we do so, we find out that indeed, relative to the common ground
{10,01, 00}, the formulas Op A g and Op V Og express the same proposition,
namely {| T/, |p|, lq]}, as depicted in figure 6.2(c).

Our system also associates to O(pAgq) the expected proposal, namely {Z, |pA
q|}, and predicts the strong equivalence between ¢V O and O(p V), which
is also remarked by Zimmermann in the case of the above example and seems
unproblematic.

So far so good. Now let us consider the interaction with the quantifiers. Both
sentences JxOP(x) and 3z P(x) have the effect of suggesting the possibilities
P(d) for d € D. Now, consider the following statement.

(6) Someone might have a map.

Apart for the trivial “nodding”-response, the ideal responses to (6) are clearly
of the form “Yes, d has a map”. Thus, the predictions of the systems seem
to be correct.! On the other hand, other sentences of the same form seem
to be better represented by the conjecture connected with the purely assertive
component of the existential. For instance, (7) seems well-represented by the
formula O!3zP(x), which simply suggests the possibility that 3z P(x).

(7 Someone might have stolen your bike.

Unfortunately, things are not as straight in the case of the universal quanti-
fier. According to our system, the formula Va<P(z) proposes not only the
possibilities | P(d)| for d € D, but also all the intersections of such possibilities,
including the possibility that VxP(x). It is not clear to me whether this rep-
resents the meaning of any natural language statement. Consider the following
two sentences.

1Someone might argue that a speaker who utters (6) need not believe that all the possi-
bilities P(d) are in fact possible; he might know, say, that Mark does not have a map. But
remember what was said at the beginning of the section: inquisitive semantics only models
the effect of utterances on the common ground of a conversation; it does not deal with the
individual knowledge.
It may look suspicious that (6) should come out equivalent to the disjunction “Mark might
have a map, or Elaine might have a map, or...”, but it seems plausible that the difference be-
tween the two lies in the different conclusions that the hearer may draw about the knowledge
state of the speaker, conclusions that are out of the scope of inquisitive semantics.
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(8) Anyone might have a map.
(9)  Everyone might have a map.

Statements like (9) seem to be used as equivalents of “It might be that every-
one has a map”, and therefore could simply be represented by the conjecture
OVzP(x), which simply highlights the possibility that VzP(x). It is not so in-
tuitively clear to me what possibilities (8) should suggest. The fact is that the
‘might’ in (8) seems to be essentially an epistemic one: for, the primary use
of (8) is that of conveying information about one’s own (lack of) information
rather inviting the other agents to consider certain possibilities by advancing
positive suggestions.

6.5 An assessment of possibility semantics

In the previous section we discussed the account of ‘might’ arising from the
proposal of interpreting the formula x V T as “it might be that x” if x is an
assertion. We saw that several phenomena relative to the potential of ‘might’ of
highlighting possibilities are accounted for nicely, although there are important
aspects of ‘might’ that cannot be represented in inquisitive semantics as it is.

However, it must be said that there are circumstances in which the inter-
pretation of possibilities included in maximal possibilities as suggestions does
not seem right. For instance, let us consider again the boundedness example:
if we are in a common ground in which it is known that 4 is an upper bound
to P, then the system correctly predicts that an utterance of the boundedness
formula should be neither informative nor inquisitive, but it also predicts that
it should advance the suggestions that 3, 2, 1, and 0 might be upper bounds for
P, whereas our intuition is that it should simply be redundant.

Nonetheless, there is a crucial point that I want to make in favour of possi-
bility semantics: even if the whole idea of interpreting possibilities included in
maximal ones as suggestions should turn out to be altogether wrong, the system
we have devised still allows for a satisfactory treatment of issues and information
also in a first-order context, which is after all what we were originally after.

It extends both the propositional inquisitive semantics of chapter 2 and
Groenendijk’s partition semantics (Groenendijk, 1999) in a very natural way,
it allows for the representation of a broad range of propositions and for the
classification of formulas according to their effect in a dialogue, retains decent
logical properties in virtue of its connection with the notion of support, and most
importantly provides a notion of resolutions, which forms the basis for the study
of notions that are crucial to the inquisitive programme, such as answerhood
and compliance.

If it turns out that we really cannot make sense of possibilities that are
strictly included in maximal possibilities, we can always choose to “filter” propo-
sitions, retaining only those possibilities that are not included in a maximal one.
This is a weak version of the maximalization operation used to obtain meanings
in chapter 2, and may be performed in two different ways: either a posteriori,
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in a single step, defining () = fil([¢]), where fil has the effect of deleting
those possibilities that are included in maximal ones; or in stages, removing the
undesired possibilities inductively, with rules such as:

(o v ) =fil({p V) U e Vi)

In the propositional case both approaches will simply give us back the maxi-
malization semantics of chapter 2; on the other hand, in the first order case,
we will still retain enough possibilities to represent the issues raised by any for-
mula (which, as we saw in example 6.3.10 cannot be defined purely in terms of
support). For instance, none of the possibilities proposed by the boundedness
example would be filtered out, since the boundedness formula has no maximal
possibility. At the same time, we will avoid many of the things that may be
perceived as oddities in possibility semantics, for instance the fact exemplified
above that formulas may still advances suggestions even when they are resolved.

6.6 Notes on first-order inquisitive logic

6.6.1 Definition and basic properties

In this section we will move the first steps towards an investigation of the logic
that first-order inquisitive entailment gives rise to. For the sake of simplicity we
shall make the assumption that our language is not equipped with equality and
does not include function symbols.

Recall that, on a fixed domain D and relative to an assignment g into D, we
say that a formula ¢ entails ¢ in case s, g = ¢ implies s, g |= ¢ for any D—state
s. We can then define a notion of “absolute” entailment as follows.

Definition 6.6.1 (First-order inquisitive entailment). We say that a set of
formulas © entails a formula ¢, in symbols © f=nqqL ¥, if © entails ¢ on every
domain relative to every assignment.

Definition 6.6.2 (Validity and logic). We say that a first-order formula ¢ is
inquisitively valid if |=inqqL ¢ , that is, if for any domain D, any D—state s
and any assignment g into D we have s,g | ¢.

First-order inquisitive logic, denoted by InqQL, is simply the set of inquisi-
tively valid formulas.

Like in the propositional case, inquisitive entailment amounts to classical entail-
ment for assertions: in particular, by corollary 6.3.6 first-order inquisitive logic
has the same disjunction-and-existential-free fragment as classical logic.

Also, like in the propositional case, for any formula ¢ we can characterize
the declarative !¢ as the strongest assertion entailed by ¢.

Obviously, a formula with free variables is inquisitively valid if and only if its
universal closure is. Moreover, persistence implies that to determine validities
we only have to look at the ignorant states Zp for all domains D.



CHAPTER 6. FIRST-ORDER INQUISITIVE SEMANTICS 111

Remark 6.6.3. A formula ¢ is inquisitively valid in case Zp, g = ¢ for any
domain D and assignment g into D.

As one might expect, the deduction theorem still holds.

Proposition 6.6.4 (Deduction theorem). For any formulas 6, ...,60,,¢:
O1,....0n FEmgqQL ¢ <= 01 A--- N0, — ¢ €IngQL

Proof. 01,...,0, FingaL ¢
<= for any domain D, any s € Zp and any assignment g, if s = 6, for

1<i<n,then sk
<= for any domain D, any s € ZTp and any assignment g, if s E=0; A--- A0,

then s | ¢
<= for any domain D and any assignment g, Zp,gE=0; A--- A0, — ¢
<~ 0, AN---NO, — p€lIngQL O

The logic InqQL is closed under modus ponens and under the natural rules for
quantifiers: w“fvjf 5 and Hijv where the variable x does not occur free in ¢.
Like in the propositional case, replacing atoms by arbitrary formulas is not
a sound operation in general: atomic formulas can only be soundly replaced by
assertions, that is, by formulas for which the double negation law holds.
In the next section we are going to show that InqQL lies in between first-order

intuitionistic logic IQL and first-order classical logic CQL.

6.6.2 IQL C InqQL C CQL

We start from the observation that first-order inquisitive logic in included in
classical logic. For, if ¢ ¢ CQL there is a model M and an assignment g such
that M, g = ¢; but then by the classical behaviour of singletons (proposition
6.1.6) we have {M}, g & ¢ and therefore ¢ & InqQL. This shows the following
fact.

Remark 6.6.5. InqQL C CQL

But there is something more to say about the connections of InqQL to CQL.
For, corollary 6.3.7 guarantees that for any formula ¢ we have ——¢ = {|¢|},
and therefore the following fact holds.

Proposition 6.6.6. For any first-order formula ¢,
p e CQL < ——p €InqQL

In other words, Glivenko’s theorem is true for first-order inquisitive logic, which
is interesting since the same theorem does not hold for first-order intuitionistic
logic.

Let us now turn to the connections with intuitionistic logic. We start by
recalling the first-order analogue of the propositional Kripke models we used
throughout the previous sections.
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Definition 6.6.7. A first-order intuitionistic Kripke model is a pair M =
(F, M) where F = (W, <) is an intuitionistic Kripke frame and M is a function
that associates to each point w € W a first-order model M ,, for the language
£.2 The map M must be persistent, that is, if w < v:

1. D, € D, where D,, and D, denote, respectively, the domains of M ,, and
My;

2. RMv C RM+ where RM» and RM+ denote, respectively, the interpretation
of a predicate symbol R in M ,, and M,,.

Satisfaction of first-order formulas on an intuitionistic Kripke model M relative
to an assignment is defined as follows.

Definition 6.6.8 (Kripke satisfaction). For any first-order Kripke model M,
any point w and any assignment g into the model M,,:

1. if ¢ is atomic, M,w, g I ¢ iff M, g £ ¢ classically;

2. the clauses for the Boolean connectives are the usual ones;

3. M,w, g - 3z if there is a d € D,, such that M, w, g[z — d] I ¢;

4. Myw, gk Vzp if for all v > w and all d € D, it is M, v, gz — d] I+ ¢.

We then say that a formula is valid on a model M if it is satisfied everywhere in
M under any assignment. Of course, the crucial feature of such models is that
they provide a sound and complete semantics for first-order intuitionistic logic.

Theorem 6.6.9. For any first-order formula ¢, ¢ € IQL if and only if ¢ is valid
on any first-order intuitionistic Kripke model.

Now, in section 2.2 we saw that in the propositional case, inquisitive support
amounts to satisfaction on a particular intuitionistic Kripke model. Is this the
same for first-order inquisitive support? The answer is yes, although now we
will have one model for any particular choice of the underlying domain D.

Definition 6.6.10 (Kripke models for inquisitive logic). Given a set D, the
Kripke model for inquisitive semantics over D is the model M;P defined as
follows:

1. the underlying frame is simply F;? = (Zp — 0, D);

2. for any state s, the model M consists of the domain D with the interpre-
tation of the predicate symbols given by: RMs := (| yes RV

2If we also had function symbols and equality, the former should be interpreted as partial
functions with a persistence condition, and the latter as a congruence relation that gets less
refined as we go up the accessibility relation.



CHAPTER 6. FIRST-ORDER INQUISITIVE SEMANTICS 113

It is clear that (Zp — @, D) is a partial order. Let us check that the persistence
conditions are satisfied as well. The domains and the interpretation of the func-
tion symbols are constant, so they are obviously persistent. Moreover, consider
a relation symbol R: if s D t we have RMs = N mesRM C N metRM = RM:,

Thus, M;P is indeed a first-order intuitionistic Kripke model. The next
proposition states that inquisitive support on D-states amounts to Kripke sat-
isfaction on M L.

Proposition 6.6.11. For any formula ¢, any non-empty D-state s and any
assignment g,
s,gE @ <= MP. s, glke

Proof. Proceed by induction on the formula .

1. Basic case. Consider an atomic formula R(zy,...,z,) and an assignment
g, and for each i let d; = g(x;).

We have: s,g = R(x;,...,Ty)

< M,gE R(zy,...,z,) for all models M € s

= (dy,....dy) ERM forall M € s < (dy,...,dy) € () mes B
< (dy,...,d,) € RMs = M;P s,glF R(x;,...,2).

2. The induction steps for the Boolean connectives and the existential quan-
tifier are straightforward.

3. Universal quantifier. If M;”_ s, g I Vi, then in particular, for any d € D
we must have M;P s g[lx — d] I ¢, whence by induction hypothesis
s, gz — d] = ¢: thus, s,g = Vayp. Conversely, if s, g = Vap, then for all
d € D we have s, gz — d] E ¢. Now consider a non-empty substate t C s
and an element d in the associated domain, which by definition is simply
D: by persistence, since s, g[z — d] &= ¢ also t,g[z — d] &= ¢. Hence,
MP s glFVap.

O

As a corollary we obtain the above mentioned fact that first-order inquisitive
logic includes intuitionistic logic.

Corollary 6.6.12. IQL C InqQL

Proof. If ¢ & InqQL, there is a domain D, a non-empty D-state s and an
assignment g such that s, g & . Then by the previous proposition M, s, g Iff
¢, and since M ;P is an intuitionistic Kripke model, ¢ ¢ IQL. O

Clearly, both inclusions are proper. For, instance, the law of excluded middle
does not hold in InqQL, while several examples of inquisitively valid formulas
that are not valid in intuitionistic logic are provided by the following remark.
The straightforward proofs have been omitted.

Remark 6.6.13. The following formulas are in InqQL — IQL.
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1. Atomic double negation: ~—R(z;,...,x,) — R(x;,...,z,) for any atomic
formula R(x;,...,z,).

2. Kreisel-Putnam scheme (and in fact any instance of a propositional scheme
which is valid in Medvedev logic):

(X = VY) = (x = @) V(X —9)
3. The infinite equivalent of the Kreisel-Putnam scheme:

(mx = Fzp(x)) — 3z(~x — »(2))
where x is not free in x.

4. The following formula, which characterizes the models with constant do-
mains:

Va(x Ve(x)) — x V Vrp(z)

where x is not free in x.

5. Finally, the axiom scheme that allows the extension of Glivenko’s theorem
to the first-order setting:

It is dubious whether augmenting a Hilbert-style system for IQL with these five
principles would yield a complete axiomatization of InqQL; this is probably not
the case.

There is, however, at least one result we obtained in the propositional case
that can be reproduced in the first-order setting, namely the correspondence
theorem stating that InqlL is the logic of negative saturated models, with the
extra restriction of constant domains.

6.6.3 Correspondence theorem

Definition 6.6.14 (Negative models). We say that a first-order intuition-
istic Kripke model M is negative in case the formula —=—R(z;,...,z,) —
R(xq,...,xy,) is true everywhere on M for any atomic formula R(z;,...,x,).

This amounts to requiring that for any relation symbol R in the language and
any non-terminal point w of the model, RMv = (] ,~, RMv. In case any point
has access to an endpoint, this can be reformulated as RMv = () .cp, RM¢
where F.,, denotes the set of endpoints of w.

This shows that if a model is negative and has enough endpoints, then the
first-order model attached to a point w is determined by the models attached
to the endpoints of w.
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Notation. If K is a class of first-order Kripke models, we denote by NK the
class of negative models in K and by CK the class of models in K with con-
stant domains. Similarly, if K is a class of Kripke frames, we denote by NK
the class of negative models over frames in K and by CK the class of models
with constant domains over frames in K.

Thus, NCSat denotes the class of negative saturated models with constant
domains (saturated frames were defined in 3.2.17). We shall prove the following
fact.

Theorem 6.6.15 (Correspondence theorem). InqQL=Log(NCSat).

One direction of the theorem is easy. For, if ¢ € IngQL, then there must be
a domain D, a D—state s and an assignment g such that s,g £ ¢; then by
proposition 6.6.11 we have M;” s, g If p. But it is immediate to check that
M ;P is indeed a negative saturated model with constant domains (the proof of
saturation is the same as in the propositional case), so ¢ ¢ Log(NCSat). This
proves Log(NCSat) C InqQL. The converse direction relies on an analogue of
lemma 3.2.19 stating that any negative saturated model can be p-morphically
mapped into the Kripke model for inquisitive semantics.

In order to even state such an analogue we need of course to specify a first-
order analogue of the notion of p-morphism. It is not hard to imagine what this
should be.

Definition 6.6.16 (p-morphisms). Call a map n : M — M’ between first-order
Kripke models a p-morphism in case it is a frame p-morphism and, in addition,
for any point w in M the models M, and M’ are isomorphic.

It is straightforward to check that the satisfaction of sentences is invariant under
such morphisms; that is, if n is as above, for any sentence ¢ and any point w
we have M,w IF ¢ <= M’ n(w) I ¢.

Lemma 6.6.17. For any M € NCSat there is a p-morphism 7 : M — M;P,
where D is the particular domain on which the models associated to points in
M are based on.

Proof. Given M € NCSat, define our candidate p-morphism as follows. For
any point w in M, n(w) = {M.|e € E,} where E,, denotes the set of
endpoints of w.

Since all first-order models attached to points in M are based on the same
domain D, n(w) is a D—state. Moreover, F,, # () by the E-saturation condition,
so in fact n(w) is a non-empty D—state, i.e. a point in the Kripke model M.
This shows that 7 is at least a well-defined map into M 7.

It is evident that n satisfies the forth condition. For the back condition,
argue like in the propositional case exploiting the I-saturation condition.

It remains to show that for each point w the first-order models M, and
M ) are isomorphic; in fact, we are going to show that for each relation
symbol R we have RM» = RMnw) | so that the identity itself is an isomorphism

between M., and M, ().
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Fix a point w and a relation symbol R. Since M is negative and any point
in M has access to an endpoint, RMv = .cg, RM¢. Then by definition of the
Kripke model M;? and of the map 1 we have:

RMWW) = m MGn(w)RM = ﬂ eeE,LUARMe = RMW
This completes the proof. O
The missing direction of theorem 6.6.15 follows now speedily from the lemma.

Proof of theorem 6.6.15, concluded. We have shown above that Log(INCSat) C
IngQL. Now consider the other direction: we need just consider sentences, since
the validity of a formula always comes down to the validity of its universal
closure. So, consider a sentence ¢ and suppose ¢ ¢ Log(NCSat): this means
that there is a negative saturated Kripke model M with constant domains and
a point w such that M, w Iff ¢. Now let D denote the domain of the first-order
models associated to points in M: the previous lemma gives us a p-morphism
n: M — M;P. By the invariance of satisfaction under p-morphisms we have
M ;P n(w) I o, whence according to proposition 6.6.11 we have n(w) = ¢ and
therefore ¢ ¢ InqQL. O

In chapter 3 we remarked that the analogue of the previous theorem, stating
that IngL = Log(nSAT) = Log(SAT)", provided a viable path to a sound and
complete axiomatization of InqL. The argument was the following: suppose we
can axiomatize an intermediate logic A for which A = Log(K) for some class
K of Kripke frames with F'; € K C SAT: then we have InqL = Log({M;}) D
Log(nK) D Log(nSAT) = InqgL, and therefore InqgL = Log(nK) = Log(K)™ =
A", which shows that IngL is axiomatized by a system obtained by adding the
principle of atomic double negation to the axioms of A.

Obviously, in the predicate case we can define negative variants in the usual
way. Arguing along the lines of the proof of proposition 3.2.11, one can easily
show that for any class K of Kripke frames, Log(NK') = Log(K)™ and moreover
also Log(NCK) = Log(CK)™.

Corollary 6.6.18. If K is a class of Kripke frames with {F;”|D a set} C
K C SAT, then InqQL = Log(CK)™.

Proof. If {F;P|D aset} C K C SAT, then {M;”|D a set} C NCK C
NCSat, so InqQL = Log({M ;P | D a set}) D Log(NCK) D Log(NCSat) =
IngQL. Hence, InqQL = Log(NCK) = Log(CK)". O

With this corollary we have reduced the problem of axiomatizing InqQL to the
problem of axiomatizing any logic of the shape Log(CK) for some class K of
Kripke frames with {F;P | D aset} C K C SAT.



Chapter 7

Conclusions

This thesis has been concerned with the development of inquisitive semantics
for both a propositional and a first-order language, and with the investigation
of the logical systems they give rise to.

In the first place, we discussed the features of the system arising from the
semantics proposed by (Groenendijk, 2008a) and (Ciardelli, 2008), explored the
associated logic and its connections with intermediate logics and established
a whole range of sound and complete axiomatizations; these are obtained by
expanding certain intermediate logics, among which the Kreisel-Putnam and
Medvedev logics, with the double negation axiom for atoms. We showed that the
schematic fragment of inquisitive logic coincides with Medvedev’s logic of finite
problems, thus establishing interesting connections between the latter and other
well-understood intermediate logics: in the first-place, ML is the set of schematic
validities of a recursively axiomatized derivation system, obtained (for instance)
by expanding the Kreisel-Putnam logic with atomic double negation axioms; in
the second place, a formula ¢ is provable in Medvedev’s logic if and only if
any instance of it obtained by replacing an atom with a disjunction of negated
atoms is provable in the Kreisel-Putnam logic (or indeed in any logic within a
particular range).

These results also prompted us to undertake a more general investigation of
intermediate logics whose atoms satisfy the double negation law.

Furthermore, we showed how the original ‘pair’ version of inquisitive seman-
tics can be understood as one of a hierarchy of specializations of the ‘generalized’
semantics we discussed, and argued in favour of the generalized system.

Finally, we turned to the task of extending inquisitive semantics to a first-
order language and found that a straightforward generalization of our proposi-
tional approach was not viable due to the absence of certain maximal states. In
order to overcome this difficulty, we proposed a variant of the semantics, which
we called inquisitive possibility semantics, based on an inductive definition of
possibilities.

We examined the resulting system, arguing that it retains most of the prop-
erties of the semantics discussed in the previous chapters, including the logic,

117
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and we proposed a possible way to interpret the additional aspects of meaning
that appear in the new semantics. We discussed the distinction between entail-
ment and strong entailment and gave a sound and complete axiomatization of
the latter notion as well. We showed that possibility semantics can be extended
naturally to the predicate case, tested the predictions of the resulting system
and found them satisfactory, especially in regard to the treatment of issues and
information, and we saw that the system comprehends Groenendijk’s logic of
interrogation as a special case. We concluded sketching some features of the
associated predicate logic.

The semantics we have discussed are new, in fact completely new in the case of
possibility semantics and its first-order counterpart. I hope to have managed
to provide some evidence of their great potential for linguistic applications:
in a very simple system and without any ad-hoc arrangement, we can deal
with phenomena such as polar, conditional and who questions, inquisitive usage
of indefinites and disjunction, perhaps even might statements, all of this in
symbiosis with the classical treatment of information. For obvious reasons, in
this thesis we have limited ourselves to remarking that these phenomena can
be modelled: of course, a great deal of work remains to be done in order to
understand what account each of them is given in inquisitive semantics.

Aspects that may be worth particular consideration are the notions of an-
swerhood and compliance that the semantics gives rise to, as well as the type
of pragmatic inferences it justifies. Also, the role of suggestive possibilities (if
any) and their relations to natural language constructions such as might and
perhaps has to be clarified.

From the logical point of view, natural directions of research are a more
in-depth study of inquisitive logic and strong entailment in the first-order case,
possibly leading up to a syntactic characterization.

Beyond the borders of inquisitive semantics, a further possible stream of
research along the lines of chapter 5 would be to study the behaviour of inter-
mediate logics with atoms satisfying special classical properties (say, the Scott
formula or the Goédel-Dummett formula) or perhaps even arbitrary properties.
The resulting objects would be weak logics (weak intermediate logics in the case
of classical properties) and may therefore be studied by means of constructions
analogous to those devised in chapters 3 and 5 for the particular case of the
double negation property.

Finally, we hope that the connections established here between Medvedev’s
logic and decidable logics such as ND and KP may serve as a useful tool to cast
some light on this ever-mysterious intermediate logic and on the long-standing
issue of its decidability.



Bibliography

Balogh, K. (2009). Theme with Variations. Ph.D. thesis, University of Amster-
dam. To be defended in the Fall of 2009.

Burris, S. and Sankappanavar, H. (1981). A course in universal algebra.
Springer.

Chagrov, A. and Zakharyaschev, M. (1997). Modal Logic. Oxford University
Press.

Ciardelli, I. (2008). A generalized inquisitive semantics. Term Paper, University
of Amsterdam.

Ciardelli, I. and Roelofsen, F. (2009). Generalized Inquisitive Logic: Complete-
ness via Intuitionistic Kripke Models. In Proceedings of Theoretical Aspects
of Rationality and Knowledge.

Ciardelli, I., Cornelisse, 1., Groenendijk, J., and Roelofsen, F. (2009a). Com-
puting compliance. Proceedings of Logic and Rational Interaction.

Ciardelli, I., Groenendijk, J., and Roelofsen, F. (2009b). Might and free choice
in inquisitive semantics. In Proceedings of Semantics and Linguistic Theory.

de Jongh, D. (1968). Investigation on the intuitionistic propositional calculus.
Ph.D. thesis, University of Wisconsin.

Dedekind, R. (1897). {iber zerlegungen von zahlen durch ihre grossten gemein-
sammen. In Gesammelte Werke, volume 1.

Epstein, R., Carnielli, W., D’Ottaviano, I., Krajewski, S., and Maddux, R.
(1995). The Semantic Foundations of Logic, Volume 1: Propositional Logics.
Oxford University Press.

Gabbay, D. M. and de Jongh, D. H. (1974). A sequence of decidable finitely
axiomatizable intermediate logics with the disjunction property. Journal of
Symbolic Logic, 39, 67-78.

Grice, H. (1989). Studies in the Way of Words. Harvard University Press.

119



BIBLIOGRAPHY 120

Groenendijk, J. (1999). The logic of interrogation. In T. Matthews and
D. Strolovitch, editors, Semantics and Linguistic Theory, pages 109-126.

Groenendijk, J. (2008a). Inquisitive semantics and dialogue management.
ESSLLI course notes, www.illc.uva.nl/inquisitive-semantics.

Groenendijk, J. (2008b). Inquisitive semantics: Student versions. Lecture notes
for a graduate course at the University of Amsterdam.

Groenendijk, J. (2009a). Inquisitive semantics:  Questions, asser-
tions, and hybrids. Manuscript, Amsterdam, www.illc.uva.nl/
inquisitive-semantics.

Groenendijk, J. (2009b). Inquisitive semantics: T'wo possibilities for disjunction.
In P. Bosch, D. Gabelaia, and J. Lang, editors, Seventh International Tbilisi
Symposium on Language, Logic, and Computation. Springer-Verlag.

Groenendijk, J. and Roelofsen, F. (2009). Inquisitive semantics and pragmat-
ics. In J. M. Larrazabal and L. Zubeldia, editors, Meaning, Content, and
Argument: Proceedings of the ILCLI International Workshop on Semantics,
Pragmatics, and Rhetoric. www.illc.uva.nl/inquisitive-semantics.

Groenendijk, J., Stokhof, M., and Veltman, F. (1996). Coreference and modality.
In S. Lappin, editor, Handbook of Contemporary Semantic Theory, pages 179—
216. Blackwell, Oxford.

Jankov, V. (1963). The relationship between deducibility in the intuitionistic
propositional calculus and finite implicational structures. Soviet Math. Dokl.,
4, 1203-1204.

Kreisel, G. and Putnam, H. (1957). Eine Unableitbarkeitsbeweismethode fiir
den intuitionistischen Aussagenkalkiil. Archiv fiir Mathematische Logik und
Grundlagenforschung, 3, 74-78.

Kripke, S. (1965). Semantical analysis of intuitionistic logic I. In J. Crossley and
M. Dummett, editors, Formal systems and recursive functions, pages 92—130.
North-Holland, Amsterdam.

Maksimova, L. (1986). On maximal intermediate logics with the disjunction
property. Studia Logica, 45, 69-75.

Maksimova, L., Shetman, V., and Skvorcov, D. (1979). The impossibility of a
finite axiomatization of Medvedev’s logic of finitary problems. Soviet Math.
Dokl., 20, 394-398.

Mascarenhas, S. (2008). Inquisitive semantics and logic. Manuscript, University
of Amsterdam.

Mascarenhas, S. (2009). Inquisitive semantics and logic. Forthcoming Master
Thesis, University of Amsterdam.


www.illc.uva.nl/inquisitive-semantics
www.illc.uva.nl/inquisitive-semantics
www.illc.uva.nl/inquisitive-semantics
www.illc.uva.nl/inquisitive-semantics

BIBLIOGRAPHY 121

Medvedev, J. T. (1962). Finite problems. Soviet Math. Dokl., 3, 227-230.

Medvedev, J. T. (1966). Interpretation of logical formulas by means of finite
problems. Soviet Math. Dokl., 7, 857-860.

Sano, K. (2008). Sound and complete tree-sequent calculus for inquisitive logic.
Manuscript, Graduate School of Letters, Kyoto University.

Stalnaker, R. (1978). Assertion. Syntaz and Semantics, 9, 315-332.

ten Cate, B. and Shan, C. (2007). Axiomatizing groenendijk’s logic of interro-
gation. In M. Aloni, A. Butler, and P. Dekker, editors, Questions in dynamic
semantics, pages 63-82. Elsevier Science.

van Gool, S. (2009). Intonation of disjunctive questions. Manuscript, University
of Amsterdam.

Zimmermann, E. (2000). Free choice disjunction and epistemic possibility. Nat-
ural Language Semantics, 8, 255—290.



	An introduction to inquisitive semantics
	Information states and the classical update perspective
	Limitations of the classical picture
	The inquisitive programme: propositions as proposals
	Sources of inquisitiveness: questions, disjunctions and indefinites
	Historical notes

	Propositional inquisitive semantics
	Propositional inquisitive semantics and its properties
	Indices, States, and Support
	Inquisitive meanings
	Inquisitiveness and Informativeness

	Inquisitive semantics and intuitionistic Kripke semantics
	Inquisitive semantics over an arbitrary common ground
	Support as `knowing how'
	Expressive completeness and disjunctive normal form

	Inquisitive logic
	Inquisitive Logic
	Definitions and basic properties
	Disjunction Property, Deduction Theorem, and Compactness

	Axiomatizing InqL
	Intermediate logics and negative variants
	Completeness by canonical model
	Completeness via disjunctive-negative translation

	InqL as the disjunctive-negative fragment of IPL.
	Schematic Fragment of Inquisitive Logic
	Medvedev logic
	Sch(InqL)=ML
	Characterization of the intermediate logics whose negative variant is InqL
	More on Medvedev logic

	Independence of the connectives

	The inquisitive hierarchy
	Generalizing the pair semantics
	Axiomatizing the inquisitive hierarchy
	A Plea for the Generalized Semantics

	Intermediate logics with negative atoms
	Negative closure of intermediate logics
	Stability of intermediate logics

	First-order inquisitive semantics
	First-order inquisitive semantics and the maximality problem
	Propositional possibility semantics
	Propositions
	Resolutions
	Strong entailment
	Disjunctive normal form and expressive completeness
	Inquisitiveness, informativeness, suggestiveness
	Assertions, questions, and conjectures
	Axiomatizing strong entailment

	First-order possibility semantics
	Propositions
	Entailment and strong entailment
	Resolutions
	Inquisitiveness, informativeness, suggestiveness
	Assertions, questions, and conjectures

	Might meets the logical constants
	An assessment of possibility semantics
	Notes on first-order inquisitive logic
	Definition and basic properties
	IQLInqQLCQL
	Correspondence theorem


	Conclusions
	References

