
The Advent of Recursion & Logic in Computer Science

MSc Thesis (Afstudeerscriptie)

written by

Karel Van Oudheusden
–alias Edgar G. Daylight

(born October 21st, 1977 in Antwerpen, Belgium)

under the supervision of Dr Gerard Alberts, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
November 17, 2009 Dr Gerard Alberts

Prof Dr Krzysztof Apt
Prof Dr Dick de Jongh
Prof Dr Benedikt Löwe
Dr Elizabeth de Mol
Dr Leen Torenvliet



1

“We are reaching the stage of development where each new gener-
ation of participants is unaware both of their overall technological
ancestry and the history of the development of their speciality, and
have no past to build upon.”

J.A.N. Lee in 1996 [73, p.54]

“To many of our colleagues, history is only the study of an irrele-
vant past, with no redeeming modern value –a subject without useful
scholarship.”

J.A.N. Lee [73, p.55]

“[E]ven when we can’t know the answers, it is important to see the
questions. They too form part of our understanding. If you cannot
answer them now, you can alert future historians to them.”

M.S. Mahoney [76, p.832]

“Only do what only you can do.”

E.W. Dijkstra [103, p.9]
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Abstract

The history of computer science can be viewed from a number of disciplinary
perspectives, ranging from electrical engineering to linguistics. As stressed by
the historian Michael Mahoney, different ‘communities of computing’ had their
own views towards what could be accomplished with a programmable comput-
ing machine. The mathematical logicians, for instance, had established what
programmable computing machines with unbounded resources could not do,
while the switching theorists had showed how to analyze and synthesize cir-
cuits. “But no science accounted for what finite machines with finite, random
access memories could do or how they did it. That science had to be created.”
–Mahoney [78, p.6].

With the advent of the programmable computing machine, new communities
were created, such as the community of numerical analysts. Unlike the logicians
and the electrical engineers, the numerical analysts, by their very profession,
took programming seriously. Several of them gradually became more involved
in seeking specific techniques to overcome the tediousness in programming their
machines. One such, and important, technique was the recursive procedure.
While logicians had been well-acquainted with the concept of recursion for quite
some time, and the development of mathematical logic had, itself, contributed
to the advent of the programmable computing machine, it is unclear whether
the idea of the recursive procedure entered the arena of programming languages
via the logic community. More generally, it is unclear how and to what extent,
exactly, ideas from logic have influenced the computer pioneers of the 1950-60s.

Both unclarities, described above, are addressed in this thesis. Concerning
the first unclarity, the recursive procedure entered the arena of programming
languages in several ways by different people. Special attention will be paid to
the pioneer Edsger W. Dijkstra who, in 1960, received world-wide recognition
for implementing recursive procedures for the ALGOL60 programming language,
i.e. by building a compiler. While recursive procedures remained highly con-
troversial during the 1960s, Dijkstra was one of its few strong advocates. His
views, led by linguistic ideals, were in sharp contrast to those that were led by
specific machine features. With respect to the second unclarity, it will be shown
that several ideas from logic that did influence some computer pioneers, were
primarily received indirectly and without full comprehension. In fact, these
pioneers, in the aftermath of their successes, openly stressed that they were
not logicians and had not completely understood all of the logic underlying
their sources of inspiration. Similarly, the logicians, themselves, did not ini-
tially grasp the connection between Turing’s 1936 paper and the programmable
computing machine either. Finally, emphasis will be laid on Dijkstra’s ability,
in later years, to connect the unsolvability of Turing’s Halting Problem with the
practical engineering problems that his community faced.
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Disclaimer

An historical-accurate narrative, as attempted here, often implies mathematical
inaccuracy with respect to the current state of the art. In this thesis, the
recursive procedure is described in terms of what computer practitioners of the
late 1950s and early 1960s understood by it. Therefore, the recursive procedure
is presented informally and without any mention of termination proofs.
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Chapter 1

Introduction

Rome, March, 1962: It was a sunny day and the streets were packed with
tourists, many of whom were American. The occasion was Jacqueline Kennedy’s
visit to Pope John XXIII at the Vatican, where she received a beautiful gold
casket. Among those few tourists who were fortunate enough to get a glimpse
of Jacqueline Kennedy and the Pope were the two Americans Sarah Ingerman
and Monica Weizenbaum.

Less fortunate, according to Sarah and Monica, were their husbands. Only
a few blocks away, but inside the “Palazzo dei Congressi”, Peter Ingerman and
Joseph Weizenbaum were attending the International Symposium of Symbolic
Languages in Data Processing. In one of Rome’s largest conference rooms,
filled solely with men, Peter and Joseph sat together listening to the famous
31-year old Dutch man, Edsger W. Dijkstra. To some extent irritated by Dijk-
stra’s arrogance, but equally impressed by his remarks, Peter and Joseph were
trying to make up their minds whether Dijkstra was right. Should a machine-
independent programming language be able to express recursive procedures, as
Dijkstra was advocating for? Or, was the majority of the attendees correct in
claiming that recursive procedures were too inefficient to execute on a machine
and, generally, of little or no practical value?

The Ideal Narrative

In my opinion, the previous two paragraphs represent, with perhaps a slight
exaggeration, the ideal historical narrative for my thesis. Unfortunately, a lot
of it is made up. While Jacqueline Kennedy did1 visit the Vatican in March
1962, I don’t know whether it was a sunny day and whether Sarah Ingerman
and Monica Weizenbaum actually existed and, if they did, whether they were
there that day. In fact, the Symposium was held several days later. What is
true is that Ingerman, Weizenbaum, and Dijkstra attended the International
Symposium of Symbolic Languages in Data Processing, held in Rome at the

1Jacqueline Kennedy: The White House Years –Selections from the John F. Kennedy
Presidential Library and Museum (Columbia Point, Boston).

6



CHAPTER 1. INTRODUCTION 7

“Palazzo dei Congressi” between March 26-31. Also correct is that Dijkstra was
already famous, and, according to some, arrogant. Finally, and most impor-
tantly, the recursive procedure was indeed an important topic of debate during
that symposium, and Dijkstra was one of its strong advocates2.

The Advent of Recursion (Chapter 2)

The recursive procedure, which Dijkstra openly advocated for in Rome 1962,
had already been introduced in 1960 in the definition of the programming lan-
guage ALGOL60, albeit in a peculiar way. Subsequently, but still in 1960, Dijkstra
and his colleague Zonneveld succeeded in being internationally the first to imple-
ment ALGOL60, i.e. by building the first ALGOL60 compiler. Both the definition
of ALGOL60 and its implementation, with respect to the recursive procedure,
constitute the first theme of my thesis, addressed in greater detail in Chapter 2.
The reason to do so lies in my quest to understand how the general concept of re-
cursion entered the arena of programming languages and, hence, also computer
science.

In the previous paragraph, I have used the terms ‘recursive procedure’ and
‘recursion’. The former, to be illustrated later, is an example of the latter. In
general terms, recursion is the act of returning.

In the context of functions, recursion can be described more precisely as the
process for defining new functions from old at work [12, p.67]. For instance, let
h be a function of two arguments and g a function of three arguments. Then,
in accordance with:

h(x, z) = g(x, y, h(x, y))

h is defined by recursion on the basis of g and the symbols in the previous line
denote a recursive definition of the function h.

To illustrate another example of a recursive definition, it is instructive to
consider the classical mathematical definition of a continued fraction (1) and to
compare it with the definition in (2):

1. A continued fraction is a fraction whose numerator is an integer and whose
denominator is an integer plus a fraction, whose numerator is an integer
and whose denominator is an integer plus a fraction and so on . . .

2. A continued fraction is a fraction whose numerator is an integer and whose
denominator is an integer plus a continued fraction.

While the mathematical definition (1) is iterative in form, the definition (2) is
circular, i.e. returning, and hence a recursive definition. As mentioned by Dijk-
stra in 1988, the recursive definition was, conceptually, a quantum leap forward.

2The validity of these claims will follow from Chapter 2. That Dijkstra was considered
‘arrogant’ follows from [45, p.4]. For the location of the symposium, see the proceedings of
the IFIP Congress Münich, Germany, 1962.
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(1) procedure quicksort(A,M,N); value M,N;

(2) array A; integer M,N;

(3) begin

(4) integer I,J;

(5) if M < N then

(6) begin

(7) partition(A,M,N,I,J);

(8) quicksort(A,M,J);

(9) quicksort(A,I,N)

(10) end

(11) end quicksort

Table 1.1: QuickSort [54]

For, even in the 1980s, some mathematicians eschewed the recursive definition
due to its circularity, claiming that circular definitions did not make sense [44].

In the context of recursive procedures, recursion can be described more pre-
cisely as a technique involving the use of a procedure that calls itself one or
more times until a specified condition is met at which time the rest of each
repetition is processed from the last one called to the first [84]. To illustrate
a recursive procedure, it suffices to glance at lines 1, 8, and 9 of Tony Hoare’s
QuickSort algorithm [54], presented in Table 1.1. Lines 8 and 9 each contain a
recursive (i.e. a returning) procedure call to the procedure ‘quicksort’ in line 1.
The algorithm was published in 1961 in the ALGOL60 programming language3.

In 1980, in his Turing-Aware lecture, Hoare expressed the importance of
ALGOL60’s recursive procedures. Being able to use it concisely allowed him to
discover his elegant and efficient QuickSort algorithm [57, p.145]. Likewise,
Perlis in 1978 expressed the positive impact which ALGOL60’s recursive
procedures had had:

“Even though numerical analysis did not make much use of recursive
procedures, inclusion of recursion made the language much more
useful for important applications that would surface in the years
immediately following ALGOL60’s birth.” [101, p.86]

On the other hand, it is important to note that recursive procedures were con-
troversial during the 1950s and 1960s [113, p.193]. Many researchers did not
want to have recursive procedures in the ALGOL60 language; others, such as
Dijkstra, did. Recursive procedures and its controversy are discussed at length
in Chapter 2 with a particular interest in Dijkstra’s views.

Finally, it suffices to mention here that Dijkstra, in his advocation for re-
cursive procedures, was led by what I call ‘linguistic ideals’. Dijkstra, himself,

3The procedure ‘quicksort’, declared in line 1, serves the purpose of quickly sorting a list
of numbers which are stored in array A. An auxiliary procedure ‘partition’ is used in line 7
but its definition has been omitted from Table 1.1.
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used the term ‘linguistic’ to describe his work at the 1962 Rome symposium [27,
p.241]. Likewise, and more generally, Perlis, in 1978, used the term ‘linguistic’ to
distinguish between the research concerning the programming system FORTRAN,
on the one hand, and the programming languages ALGOL58 and ALGOL60, on the
other hand:

“Linguistic growth –unlike FORTRAN, which was designed for a spe-
cific machine, and for which the issues were coding efficiency and
properly so, ALGOL was designed for arbitrary, unknown machines.
Consequently, the design of ALGOL focused on linguistic structure.
They were the first languages, both ALGOL58 and ALGOL60, in which
linguistic issues forged to the front.” [101, p.146]

So far, I have not found any evidence to suggest that Dijkstra was influenced
by the linguist Chomsky. On the other hand, Chomsky’s work (e.g. [18]) may
have influenced Backus, who, in 1959, developed a concise formal notation to
describe the syntax of ALGOL60. This issue is briefly addressed in Section 3.2
and the relationship between Backus’ notation and recursion is described in
Appendix A. To conclude, then, linguistic ideas influenced several computer
pioneers of the late 1950s and early 1960s, but these ideas did not necessarily
originate from Chomsky’s work.

The Advent of Logic (Chapter 3)

In 2001, as a computer-science engineer, I became very interested in logic after
having read Martin Davis’ book, Engines of Logic: Mathematicians and the
Origin of the Computer [24]. One of the first passages in the book states:

”Nowadays, as computer technology advances with such breathtak-
ing rapidity, as we admire the truly remarkable accomplishments of
the engineers, it is all too easy to overlook the logicians whose ideas
made it all possible. This book tells their story.” [24, p.xii]

Chapters are devoted to each of the following scholars: Leibniz, Boole, Frege,
Cantor, Hilbert, Gödel, and Turing. Also Von Neumann and many other com-
puter pioneers are treated towards the end of the book.

Davis’ book has been praised by many, including Andrew Hodges, the biog-
rapher of Alan Turing.

Hodges: “At last, a book about the origin of the computer that goes
to the heart of the story: the human struggle for logic and truth.
Erudite, gripping, and humane, Martin Davis shows the extraordi-
nary individuals through whom the groundwork of the computer came
into being, and the culmination in Alan Turing, whose universal ma-
chine now dominates the world economy.
[24, first page, my italics]
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Andrew Hodges and Martin Davis are two authors who have contributed greatly
to increasing the public awareness of the importance of Alan Turing’s work.
With this objective in mind, Davis started the introduction of his book by
contrasting the words of Howard Aiken4 with those of Alan Turing5.

Aiken, 1956: “If it should turn out that the basic logics of a machine
designed for the numerical solution of differential equations coincide
with the logics of a machine intended to make bills for a department
store, I would regard this as the most amazing coincidence I have
ever encountered.” [24, p.xi]

Turing, 1947: “Let us now return to the analogy of the theoretical
computing machines [. . .] It can be shown that a single special ma-
chine of that type can be made to do the work of all. It could in fact
be made to work as a model of any other machine. The special
machine may be called the universal machine.” [24, p.xi]

Later on in his book, Davis referred to the above words of Aiken:

“Aiken made this remarkable assertion in 1956 when computers that
could readily be programmed to do both of these things were already
commercially available. If Aiken had grasped the significance of Alan
Turing’s paper published two decades earlier, he would never have
made such a preposterous statement.” [24, p.140, my italics]

In an attempt to summarize Davis’ words: the computer pioneer Aiken was
clearly lagging behind on the current events of his time. In contrast, conformity
to Mahoney’s histories of computing [77], leads to a more positive characteri-
zation of Aiken: speaking as a leading figure of his community, Aiken did not
depend on Turing’s 1936 theory of computation to further the research agenda
of his community6.

Inspired by Davis’ book (and the previous quotes in particular), the second
theme of my thesis, presented in Chapter 3, lies in trying to better understand
how Turing, or logic in general, has and has not influenced specific develop-
ments in computer science. It will, for instance, turn out that many computer
pioneers, including logicians such as Martin Davis himself, did not initially see
the connection between Turing’s 1936 paper and programmable computing ma-
chines. In fact, even as late as 1978, Turing’s work had not been received among
some prominent computer pioneers. In short, Howard Aiken’s words, presented

4Aiken was one of the first people to build a programmable computing machine [118, p.31].
5Turing’s 1947 quote implicitly refers to his 1936 paper [122], in which ‘the universal

machine’ was defined.
6Furthermore, according to Copeland [20], Davis has taken Aiken’s quote out of context

and has misunderstood Aiken’s point. Copeland defends the case that Aiken’s quote had
“nothing to do with the theoretical concept of universality and everything to do with the
practicalities of dovetailing hardware to specific applications” [20, p.36].
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above, were not exceptional for various communities of computing. While Tur-
ing had belonged to one community of computing, Aiken belonged to another7.

The computer pioneers of the 1950s and 1960s can be roughly split into
two groups. The first group of pioneers never really became well acquainted
with Turing’s 1936 paper or logic in general. The second group, including Dijk-
stra, did. In particular, Chapter 3 will show that Dijkstra, by grasping the
relationship between the unsolvability of Turing’s Halting Problem and practi-
cal engineering problems, was able to advance the state of the art in his own
community, i.e. that of programming-language design and compiler building, in
several ways. In retrospect then, Dijkstra’s ability to link Turing’s work with
his own may have been exceptional for his time8.

1.1 Related Work

Having described the contents of my thesis in general terms, I now address the
related work.

Micro vs. Macro

Jacqueline Kennedy’s visit to Rome in 1962 occurred at almost the same time
as the Symposium on Symbolic Languages in Data Processing. From a micro-
scopic perspective, this was probably a pure coincidence. Macro-scopically, how-
ever, the two events were related. A year prior, the missile crisis in Cuba had
led to a climax in the Cold War. The West, in response, had intensified their
cooperation on various levels. Jacqueline Kennedy’s visit to the Pope signi-
fied, politically, the cooperation between the USA and Western Europe, while
the symposium exemplified the military cooperation in terms of heavily-funded
computer-science research. It lies beyond the scope of this thesis to grasp the
implications that these world-wide events had on the computer pioneers of the
1950-60s; cf. Krige [70] and Campbell-Kelly [14].

The Contextual Development of Ideas

In the first conference on the history of computing in 1976, a plea was held
by Richard Hamming to pursue the contextual development of ideas, instead
of simply listing names, dates, places, and “firsts” [85, 73]. The historian Lee
stressed this point further in 1996 by noting that, in the literature, ideas are

7The italicized words of Andrew Hodges, presented previously, may deserve some scrutiny
as well. It is all too easy to overlook the engineers whose ideas and efforts made it all possible.
In fact, Davis’ distinction between logicians and engineers (in the very first quote) may not
be the most relevant distinction to highlight. In my opinion, Turing and Von Neumann
were exceptional exactly because they were both well-versed in logic and knowledgeable in
engineering. And, I believe, it is this trait that, not only distinguished them from many
logicians and engineers, but also led to the advent of the programmable computing machine.
This thesis does not tell their story, but I could not refrain myself here from expressing my
personal opinion, which, in retrospect, corresponds with Mahoney’s views [76, 77, 78].

8Another exception was e.g. Hoare; cf. [55, 56].
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almost always presented as one straight line of thought; side alleys or dead ends
are typically not mentioned [73, p.56]. Given an innovation that came about, an
historian should understand its environment by posing revealing questions. The
personal attitudes of the people involved, their backgrounds, prior experiences,
and achievements need to be studied thoroughly, along with the influences of
the known state-of-the-art [73, p.56-57].

In Chapter 2, I will show that there were several pioneers who had, inde-
pendently from each other, implemented recursive procedures for the first time;
Dijkstra was one of them. In addition, I will try to capture Dijkstra’s thoughts
on recursive procedures and explain why he was such a strong advocate of it. A
comparison will be made with e.g. English and German computer pioneers who
were strong opponents of recursive procedures. And, I will try to understand
how their opinions differed from Dijkstra’s. Likewise, I wish to understand
which parts of the state of the art were and which parts were not known among
several computer pioneers of the 1950s and 1960s. To do so, I will start a spe-
cific investigation in Chapter 3, with the purpose of finding out which computer
pioneers had eventually grasped Turing’s 1936 theory of computation and logic
in general.

Hamming, in his 1976 key-note address, also suggested that historians “go
beyond the published documentation and to speculate about those elements of
the history of projects and events that were still unrecorded” [73, p.55]. In
this regard, I will present some general conclusions in Chapter 4. For instance,
as mentioned previously, I speculate that, unlike many of his contemporaries,
Dijkstra was able to apply the unsolvability of Turing’s Halting Problem to
progress the agenda of his research community. Another speculation that will
be presented in Chapter 4 lies in the distinction that can be made between those
pioneers who did not have a programmable computing machine at their disposal
during the early 1950s and those who did. The former group consisted of people
who were mainly led by linguistic ideals (i.e., Dijkstra, Van Wijngaarden, Naur),
while the latter group consisted of people who were primarily concerned with
down-to-earth engineering problems (i.e. Rutishauser, Samelson, Bauer, Stra-
chey, Wilkes). In other words, being one of the firsts to have a programmable
computing machine may have had both its advantages and disadvantages; cf. [1,
p.124,125].

Roots of Computer Science

In his 1990 paper [75], Michael Mahoney marked the electronic digital stored-
program computer as the convergence of two lines of development: (i) the design
of mechanical calculators capable of automatic operation, and (ii) the develop-
ment of mathematical logic. In addition, Mahoney mentioned that neither elec-
trical engineers nor mathematical logicians viewed programming as their main
concern:

“Working with the model of the Turing machine, mathematical lo-
gicians concerned themselves with questions of computability con-
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sidered independently of any particular device, while electrical en-
gineers concentrated on the synthesis and optimization of switching
circuits for specific inputs and outputs.” [75, p.3]

Since programming is a central topic in my thesis, it is important to stress, in
accordance with Mahoney’s observations, the conceptual leap forward that was
made by those computer pioneers who worked on what we now call program-
ming languages and compilers. Many of these pioneers were, not incidentally,
numerical analysts, since they were the ones who “embraced the machine as part
of their subject and hence took programming it as part of their task” [75, p.3].
Several of these numerical analysts are introduced in Section 1.2; Dijkstra was
one of them.

Different Communities of Computing

Mahoney has also stressed the diversity amongst the creators and practitioners9

of what we now call computer science [77, p.120]. Different groups of people
saw different possibilities in computing [77, p.124]. With this in mind, Mahoney
introduced the term communities of computing [77, p.124].

In my thesis, I mainly focus on the community of pioneers who sought tech-
niques to overcome the tediousness in programming their machines. However,
the ideas prevailing in this community were diverse. In Chapter 2, I distinguish
between ideas that were used to advocate for recursive procedures and ideas
that were used to oppose recursive procedures. And, in Chapter 3, I implic-
itly distinguish between those pioneers who eventually became acquainted with
Turing’s work or logic in general, and those who did not. Another, but much
smaller community, is obtained by selecting those few pioneers who were well-
versed in logic at the time that recursive procedures were introduced. Dijkstra,
for instance, did not belong to this select group. As will be concluded in Chap-
ter 4, the recursive procedure was promoted by some of these logically-inclined
researchers, but also eschewed by others.

Histories of Software

For any aspiring historian of computer science, Mahoney’s words describe the
road to follow:

“[Historians] remain largely ignorant about the origins and develop-
ment of the dynamic processes running on [computers], the processes
that determine what we do with computers and how we think about
what we do. The histories of computing will involve many aspects,
but primarily they will be histories of software.” [77, p.127]

An important example of such a process is the recursive procedure, addressed
in Chapter 2. As already illustrated with Hoare’s QuickSort algorithm, the

9While doing so, Mahoney referred to the work of Campbell-Kelly, Cortada, Haigh, and
others; cf. [77].
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advent of recursive procedures changed the way in which computer practitioners
thought about algorithms.

ALGOL60

After LISP, the first programming language to provide recursive procedures was
ALGOL60. Since ALGOL60 is a central topic in Chapter 2, the reader may wish
to study De Beer’s thesis [9] as a secondary source: De Beer’s thesis covers
ALGOL60 in great generality, while my Chapter 2 solely focuses on ALGOL60’s
recursive procedures.

Man-To-Man vs. Man-To-Machine Conversation

In an attempt to understand Dijkstra’s views on recursion, Section 2.1 addresses
the comparison Dijkstra made in 1963, between man-to-man conversation and
man-to-computer conversation. Very briefly: while unpredictability prevails in
man-to-man conversations, Dijkstra stressed that man-to-computer conversa-
tions can be and should be made completely predictable. In a recent paper [87],
De Mol has essentially addressed the same comparison, but from a different an-
gle. De Mol notes that, traditionally, programmers have always tried to reduce
the unpredictability in man-to-machine conversations, and suggests to those in-
terested in artificial intelligence to step away from this tradition. In De Mol’s
words: freer man-to-computer conversations can be obtained by accepting the
unpredictability of the computer.

The Mathematical Community

The advent of the programmable computing machine created new communities,
such as that of the numerical analysts, and influenced others, such as that of
the number theorists. In a very recent article [88], De Mol has studied the com-
puter’s historical impact on mathematics and its practice. In particular, she
has investigated what kind of mathematical problems were implemented on the
ENIAC10 and how these implementations were perceived by two computer prac-
titioners and mathematicians. Her main thesis is that, from its very beginning,
the electronic general-purpose computer was conceived by the numerical analyst
Von Neumann and the number theorist Lehmer as a mathematical instrument
per se.

Influence of Logic on Computer Science

As stated by the logician Martin Davis, concepts and methods from logic have
proved to be important in computer science [22, p.149]. This claim can easily
be backed up by mentioning the work of De Bakker, Scott, Rabin and several
others. Instead of doing so, I prefer to merely present two specific papers. First,
Wadler’s didactic account in [123] of Gentzen’s natural deduction and Church’s

10Electronic Numerical Integrator and Computer.
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lambda calculus shows that (i) proofs and functional programs are one and the
same thing, and that (ii) simplifying a proof corresponds to executing a pro-
gram. At the end of his paper, Wadler explains the practical relevance that
this has with respect to mobile code for the Internet. Second, several computer
scientists in [51] have presented examples from various fields: descriptive com-
plexity, database query languages, type theory in programming languages, and
automatic verification of semiconductor designs. Their main thesis states that:

“[L]ogic has permeated through computer science during the past
thirty years much more than it has through mathematics during the
past one hundred years.” [51, p.215]

1.2 Historical Context

In the rest of this introductory chapter, I introduce various important computer
pioneers of the 1950s and 1960s.

While solving a fundamental problem in mathematical logic, Alan Turing
found a mathematical model of an all-purpose programmable computing ma-
chine, which he published in his 1936 paper: ‘On computable numbers, with
an application to the Entscheidungsproblem’ [122]. Several years later, between
the mid-1940s and mid-1950s, a small group of engineers in the USA and Eng-
land built some of the very first programmable computing machines, which were
primarily used by applied mathematicians to solve numerical problems. Among
those engineers and applied mathematicians were John Mauchly, Presper Eck-
ert, Maurice Wilkes, John von Neumann, Herman Goldstine, Howard Aiken,
and Alan Turing [22, 24].

In Germany, between the mid-1930s and mid-1940s, Konrad Zuse had been
building some machines as well. One of them, the Z4, survived the Allied
bombings [69, p.7]. While the war was ending, Zuse took his Z4 and moved
westwards, away from potential Soviet occupation. Later, the Z4 would end up
in Zürich where it would be used by Heinz Rutishauser, a Swiss mathematician.
By first working on numerical problems, i.e. as a numerical analyst, Rutishauser
started to seek specific techniques to overcome his tedious programming efforts.
While doing so, he introduced algebraic expressions and a technique to translate
them into machine code [69, 9, 118, p.24-25, p.9, p.41-50].

Rutishauser, Samelson, and Bauer

During part of World War II, Rutishauser was a Ph.D. student at the Eidgenös-
sische Technische Hochschule in Zürich (ETH). In 1949, Rutishauser visited the
computer pioneers Howard Aiken at Harvard and John von Neumann at Prince-
ton, in order to acquire the state of the art in computing of that time. During
his stay abroad, Rutishauser’s boss, Eduard Stiefel, had managed in Zürich to
rent Zuse’s Z4 machine. So, after Rutishauser returned to Zürich, he found him-
self in a comfortable position. On the one hand, he was well aware of the state
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of the art in computing and, on the other hand, he had a computing machine
at his disposal [115, p.2].

By 1950, Rutishauser had begun working on numerical methods (i.e. sci-
entific computing). In collaboration with Eduard Stiefel and Ambros Speiser,
he wrote a series of four papers in which he covered topics such as possible
number systems, fixed vs. floating point and complementation, arithmetic pro-
cesses, etc.11. In 1951, Rutishauser submitted his habilitation at ETH, titled
Automatische Rechenplanfertigung, in which he described a machine procedure
for handling various portions of an arithmetic formula and how these could be
combined to produce machine code [115, p.2-3].

Rutishauser’s strong position, in terms of computing machinery and know-
how, attracted his neighbours from Münich, Klaus Samelson and Friedrich
Bauer. Gradually, during the 1950s, these three men increased their cooper-
ation and friendship [115, p.3]. By the late 1950s, they were internationally
respected for their expertise in automatically producing machine code from al-
gebraic expressions12.

The collaboration in scientific computing between Rutishauser, Samelson,
Bauer, and some others, was hindered by the diversity of computing machin-
ery: different machines were being built and used in Zürich and Münich (and
in other parts of Europe). To overcome this diversity, Rutishauser appealed
for a universal programming language in the 1955 GaMM13 meeting (described
in greater detail below). By 1958, The Swiss and Germans were collaborat-
ing with the Americans. This led to a one-week ACM14-GaMM meeting which
was held in May 1958 at ETH. The chosen name for the universal program-
ming language was initially IAL (International Algorithmic Language), later
denoted as ALGOL58, but would by January 1960 change into ALGOL (Algorith-
mic Language) [9, p.31], and denoted as ALGOL60 in this text. As programming
languages, ALGOL58 and ALGOL60 would be drastically different [9, p.35].

The ALGOL Effort

The 1955 GaMM meeting is commonly marked as the start of the ALGOL Effort,
i.e. the international effort involved in creating a universal programming lan-
guage. The ALGOL Effort is associated with the period that ended in 1968 with
the publication of the ALGOL68 report; cf. [9, p.4]. In this text, however, only
the language ALGOL60 (or plain ALGOL) is covered, not the language ALGOL68.

The GaMM meeting was held in Darmstadt, Germany in October 1955.
Several participants of that meeting (e.g. Rutishauser) stressed the need for one
universal and machine-independent algorithmic language [9, p.5]. Programs in
ALGOL were meant to allow people to communicate algorithms with each other

11It is not clear to me how influential these papers were. However, Rutishauser was also
the inventor of the now-famous QD algorithm, which he explained in a 74-page booklet Der

Quotienten-Differenzen-Algorithmus [115, p.3].
12Cf. the comments of the American Perlis in [101] or Chapter 3 in [9].
13Gesellschaft für Angewandte Mathematik und Mechanik.
14Association for Computing Machinery.
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without having to execute them on a machine [11, p.139]. The adjective uni-
versal referred to the aspiration that everybody would communicate with each
other in the same algorithmic language. The machine independence expressed
the desire that the language would be designed without having a specific ma-
chine in mind [9, p.6]. Of equal importance is the adjective algorithmic. It
emphasized the fact that numerical computations were intended to be the main
(if not the only) application domain of the language [91, p.101]. However, while
the European participants of the ALGOL Effort were primarily academic numer-
ical analysts, most of the Americans were not [101, p.141].

In Zürich, between May 27 and June 1, 1958, the Germans, Swiss, and
Americans agreed on the following criteria:

1. The new language shall be as close as possible to standard mathematical
notation and be readable with little further explanation.

2. It should be possible to use it for the description of computing processes
in publications.

3. The new language should be mechanically translatable into machine pro-
grams.

–cited after [100]. The ALGOL Effort would quickly become more international.
For instance, the Dutch Aad van Wijngaarden and Edsger W. Dijkstra and
the Dane Peter Naur would join the ALGOL Effort. The latter was to become
the editor of the ALGOL60 report [4], a document that became the standard for
defining programming languages [9, p.35] for several decades15.

Van Wijngaarden and Dijkstra

Aad van Wijngaarden was, similar to Rutishauser, a specialist in numerical
analysis who went abroad (England and the USA in 1947) to familiarize himself
with the state of the art in computing. Unlike Rutishauser, he did not have a
programmable computing machine at his disposal. Therefore, Van Wijngaarden
and his team in Amsterdam had to build a machine themselves. Their ability
to do so was strengthened by the arrival of Gerrit Blaauw, a Ph.D. graduate of
Howard Aiken at Harvard, who joined the Amsterdam group in November 1952.
By January 1954, the Amsterdammers had their first working programmable
computing machine, the ARRA II [1, p.102-111].

Though it took quite some time (compared to the English, Americans, and
Swiss) before the Dutch could actually run programs on a decent machine, as
early as 1952 programs were written on paper by Edsger W. Dijkstra who had
joined the Amsterdam group in March of that same year. Not being able to
work with a real computer was, in hindsight, a blessing in disguise for Dijkstra
and the rest of the team. Dijkstra could focus mainly on the problem domain

15Even today, ALGOL-like programming languages are being used extensively in industry
(e.g. C and Java), and studied thoroughly in certain branches of theoretical computer science
(e.g. [94, 95]).



CHAPTER 1. INTRODUCTION 18

and attempt to solve corresponding problems by writing his programs, without
having to bother much about machine-related problems [1, 11, p.111,125, p.133].

Only from 1954 and onwards, could the Amsterdammers actually test their
automatic-programming skills by running programs on their ARRA II and sub-
sequent machines. Nevertheless, in 1960, they obtained world-wide recognition
in compiler building: the Amsterdammers Dijkstra and Zonneveld were the first
to implement a compiler for the ALGOL60 programming language [1, 9, p.124-125,
p.40].

Backus, Perlis, McCarthy

In contrast to the Europeans, the Americans already had, prior to 1957, several
(executable) algorithmic languages. This diversity was felt and was the incentive
for the Americans to accept the invitation from the GaMM [9, p.11], resulting
in the joint ACM-GaMM meeting in May 1958 at ETH, as described previously.

One of the available algorithmic programming systems in the USA was
FORTRAN, invented by Backus and his team. Already in December 1953, John
Backus proposed the FORTRAN project to his boss at IBM [5]. In contrast to the
programming language ALGOL60, FORTRAN became a de facto standard program-
ming language for scientific computing [9, p.11]. However, while ALGOL60 was
essentially machine independent, FORTRAN had six machine dependent language
constructs [9, p.15].

Compared to other existing programming languages of the 1950s, FORTRAN
was, in hindsight, the first high-level language that met two seemingly contrast-
ing requirements. First, a FORTRAN program could be translated into machine
code at a sufficiently low cost. Second, the obtained machine code was suffi-
ciently economical in comparison to code that was hand written by an expert
machine-level programmer16. To meet these requirements, Backus and his team
primarily focused on the design of the translator and not on the design of the
language [118, p.233].

While many computer pioneers were sceptical about the FORTRAN project, it
is amusing to note that the creators of FORTRAN were, at times, as impressed by
their achievements as their critics.

Backus: “It was a really exciting period because by late summer
and early fall we were beginning to get fragments of compiled pro-
grams out of the system, and we were often astonished at the code
it produced. It often transformed the source code so radically that
we would think it had made an error, and we’d study the program
carefully, and finally realize it was correct. Many of the changes in
the computation were surprising, even to the authors of the section
responsible for them.” [5, p.59]

After his FORTRAN years, Backus participated in the ALGOL Effort and made a
significant contribution related to formal syntax (cf. Appendix A). Two other

16Both the words ‘cost’ and ‘economical’ refer to the combination of ‘fast in time’ and ‘low
in memory consumption’.
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Americans who contributed substantially to the ALGOL Effort were Alan Perlis
and John McCarthy. Perlis was the chairman of the ACM Programming Lan-
guages Committee in 1957 and a delegate to the meeting in Zürich in 1958 [17].
McCarthy was the inventor of the functional programming language LISP, which
had a large influence on ALGOL60. In particular, recursive procedures were in-
troduced by McCarthy and eventually included in the ALGOL60 language (cf.
Chapter 2).

Naur

In February 1959, Peter Naur from Denmark joined the ALGOL Effort [91, p.92].
He was the editor of the influential ALGOL report [4], and looking back in 1978
at his role, he stated:

“I was led to the conviction that the formulation of a clear and
complete description was more important than any particular char-
acteristic of the language.” [91, p.99]

After the publication of the report, he also initiated an ALGOL Bulletin, which
served the purpose of discussing properties of ALGOL and promoting its use as a
programming language [111, p.6].



Chapter 2

The Advent of Recursion

Rome, March, 1962: Edsger W. Dijkstra was sitting in the “Palazzo dei Con-
gressi”, attending the Panel Discussion on Philosophies for Efficient Proces-
sor Construction at the International Symposium of Symbolic Languages in
Data Processing. Together with Naur, Duncan, and Garwick, he was defending
the case for recursive procedures in the ALGOL60 programming language. Even
though he had become famous more than a year ago by being the first to build
a compiler for the ALGOL60 language1, a large group of panel members remained
sceptical about the usefulness of recursive procedures.

Inspection of the minutes of the panel shows that almost every panel mem-
ber had a slightly different view towards why recursive procedures should or
should not belong to a machine-independent programming language, such as
ALGOL60. For instance, Dijkstra advocated for recursive procedures due to lin-
guistic reasons (cf. Section 2.1), while Garwick was one of those few who was
convinced that there were classes of problems for which recursion would come
in handy [97, p.369].

According to Samelson and Strachey, general programming constructs, such
as the recursive procedure, typically led to inefficient object programs. Their
opinion –which was not shared by e.g. Naur and Van der Poel– made Stra-
chey want to simplify or reduce the ALGOL60 programming language by restrict-
ing (not necessarily discarding) the use of recursive procedures [97, p.368,373].
Samelson, on the other hand, was primarily concerned with the immediate “eco-
nomical” considerations: “the final judge in matters of efficiency is money”.
Samelson wanted to minimize the financial cost of a complete project: design-
ing a programming language, building a compiler, compiling programs, and
executing those programs. According to Samelson, the efficiency of the running
program influenced the total cost the most and, therefore, he preferred to avoid
general program constructs, such as the recursive procedure [97, p.364,372].

The moderator, Van der Poel, in turn, opposed Dijkstra’s quest for gener-
ality, but, on the other hand, did not think that recursive procedures led to

1That is, the ALGOL60 language with recursive procedures. Also, Dijkstra was the first to
build such a compiler, together with his friend and colleague Zonneveld [71].

20
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inefficient object programs2.
The tension between several panel members was apparent [97, p.373]. For

instance, Naur’s views, which were very similar to those of Dijkstra, were in
sharp contrast to Samelson’s economic considerations. And, Seegmüller’s nasty
but loudly applauded comment certainly did not help ease the tension. It was
directed towards those in favor of general language constructs:

“And the question is –to state it once more– that we want to work
with this language, really to work and not to play with it, and I
hope we don’t become a kind of Algol play-boys.” [97, p.375]

2.1 Dijkstra’s Ideology

To understand why Seegmüller’s comment was loudly applauded, it will help to
clarify the extreme views that Dijkstra had on programming-language design.
To do so, I will rely on Dijkstra’s written description of his ideology which he
published only a year later in [29]. In that paper, Dijkstra wanted to concen-
trate on the programming language proper, not on a specific problem that could
be solved by programming in that language3. In particular, Dijkstra wanted to
focus on the linguistic demands that underly the design of a programming lan-
guage [29, p.31]. To do so, he first took English as his language under study
(Section 2.1.1), before he started reasoning about a programming language (Sec-
tion 2.1.2) and ALGOL60 in particular (Section 2.1.3). Finally, by presenting
more excerpts from the 1962 symposium, I will show that Dijkstra’s 1960 im-
plementation of recursive procedures was merely a by-product of his agenda to
pursue simplicity, based on linguistic ideals (Section 2.1.4). In hindsight, Dijk-
stra followed what today we would call a top-down design methodology, while
the many who opposed his linguistic ideals were more in line with what we now
call a bottom-up approach (Section 2.1.5).

2.1.1 The English Language as an Example

Dijkstra suggested to consider any English text that respected five restrictions:

1. Words of more than 15 letters are forbidden.

2. The total number of letters of three consecutive words may not be greater
than 40.

3. Sentences of more than 60 words are not allowed.

4. In one and the same sentence, the same word may not be used twice as a
subject.

2Cf. [97, p.368,375]. On the other hand, Van der Poel later did express strong sympathy
with “the Dijkstra language or another generalized Algol” in [98, p.642].

3Alternatively, I could also have based my exposition on [27], i.e. the paper Dijkstra pre-
sented at the 1962 Rome symposium.
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5. A list of 2000 words is given and each word in that list may not be used.

Given any English text that obeys these five restrictions, Dijkstra remarked
that (i) the readability of that text is not necessarily hindered and (ii) one
can read such a text while being completely ignorant of the existence of the
five restrictions. However, constructing a correct English text can become very
problematic if more restrictions are added to the above list or especially if they
impose highly implicit conditions. “In the extreme case one would need a large
computer with a complicated program to check whether one’s text does not
violate the rules!” [29, p.31].

The previous paragraph already hints at Dijkstra’s preference to avoid as
many restrictions as possible, in the interest of being able to construct texts
that are easy to validate in terms of correctness.

2.1.2 Human vs. Machine

To distinguish between a natural language (e.g. English) and a programming
language, Dijkstra considered two scenarios. In the first scenario, a speaker
communicates with a listener by talking in English. In the second scenario, a
programmer communicates with a computer by programming. Dijkstra then
explained the difference between both scenarios. Briefly, a listener is rather
unpredictable in his reactions, while a computer can, essentially, be completely
understood and, hence, be predictable. To exploit this advantage that a com-
puter can have over a listener (i.e. a human), Dijkstra stressed the importance
of avoiding an unnecessarily complicated computer [29, p.33,34], and expressed
his disappointment with ALGOL60 in this particular respect:

“From this point of view the way in which ALGOL60 is defined is
rather alarming. ‘Pure ALGOL60’ is defined by the official Report
on the Algorithmic Language ALGOL60, edited by Peter Naur, but
reasonably speaking one cannot expect a user of the language to
know this Report by heart. Specific implementations of the language
are defined by translators, etc., of a couple of thousand machine
instructions, a quantity which exceeds our powers of comprehension
even further.” [29, p.34]

2.1.3 Ideology Applied to ALGOL60

Later in his paper, Dijkstra applied his ideology to ALGOL60. Just like the
five restrictions in his English-language example, Dijkstra wanted to reduce the
number of ‘unnecessary’ restrictions in the ALGOL60 language. To do so, he pre-
sented examples (see below) in which he advocated for dynamic instead of static
constructions since they make the language more ‘systematic’ and ‘powerful’.

One of Dijkstra’s examples was based on the switch and procedure declara-
tions in ALGOL60. Both declarations have a hybrid nature; i.e. an undesirable
property, according to Dijkstra. On the one hand, the switch and procedure
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declarations both reserve an identifier for a special sort of object and that ob-
ject is defined statically, i.e. immediately. In this sense, both the switch and
the procedure declarations are similar to the ‘constant’ declaration. On the
other hand, however, while a ‘constant’ number can be used in an assignment
statement which dynamically assigns a value, a switch or procedure declaration
can not be used in such a manner. Dijkstra therefore suggested to extend the
concept of ‘assignment of a value’ so that lists, statements, etc. can also act as
‘assigned values’. This, in turn, would allow one to remove the value-defining
function of the switch and procedure declaration. The result would then be
that the declarators switch and procedure would only be followed by a list of
identifiers, to which suitable assignments would eventually (i.e. at run time) be
made [29, p.35,36]. According to Dijkstra:

“[Such a modification] is an improvement: the language then be-
comes more systematic and more powerful at the same time, as all
value-relations have now become dynamic.” [29, p.36, my italics]

Dijkstra’s ideology led him to the extreme of omitting all type indications and,
hence, transferring all the type checking to the run-time system [29, p.36], which,
as many observed, would have a negative effect on computation time4. Likewise,
for arrays, Dijkstra suggested to remove the explicit specification of an array’s
subscript bounds, since they become determined at run time any way. The
bounds were, in other words, ‘redundant information’ that need not be written
down by the programmer. Omitting the array bounds, in turn, resulted in
more freedom. For, now there was no reason to restrain an array to being
rectangular; it could for instance just as well be triangular. Continuing in this
manner, the homogeneity of an array need not be required either. For instance,
some array elements could now be arrays again, or procedures, etc. [29, p.36]
Dijkstra continued:

“Once the type of a variable is always defined dynamically, there
is not even a reason for it to be constant in time. The power of
expression is increased as the language contains a smaller number
of different kinds of elements and all kinds of artificial barriers have
fallen away. An ordinary variable is nothing but a trivial example
of a parameterless procedure. In short, the programmer now no
longer needs to squeeze the relevant information into the rigid forms
permitted by ALGOL60.” [29, p.36]

With such an ideology in mind, Dijkstra was perceived as someone who totally
neglected efficiency issues. Hence, it is no surprise that Dijkstra and his fellow

4An observation that Dijkstra did not contradict; cf. [29, p.41] and his abstract in [26].
These references also show that Dijkstra believed efficiency problems would be resolved (or
at least become negligible) in the long term. According to Dijkstra, generalization of a pro-
gramming language allowed for simplification in compiler building and this would in the long
term prevail over the short-term engineering problems that concerned people like Samelson,
Bauer, Wilkes, and Strachey.
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‘linguists’ were the laughing stock of Seegmüller’s well-received comment. In-
deed, for most people at the symposium, efficiency was important, or, at least,
to a sufficient extent that it should be mentioned explicitly.

A closer look at Dijkstra’s ideology, however, shows that his agenda was not
to neglect efficiency issues per se, but to focus on the more general objective of
increasing programming comfort:

“In order to get as clear a picture as possible of the real needs of
the programmer, I intend to pay, for a while, no attention to the
well-known criteria ‘space and time’. Those who on the ground of
this remark now doubt the honest fervour with which the following
is written, should remember that, in the last instance, a machine
serves one of its highest purposes when its activities significantly
contribute to our comfort.” [29, p.30, my italics]

In other words, to better understand the real underlying problems of program-
ming, Dijkstra suggested to temporarily ignore (i.e. abstract away) machine-
dependent features. While a decrease in execution time or memory footprint
may, indeed, contribute to an increase in programming comfort, other criteria,
such as program correctness, could contribute much more, according to Dijkstra:

“I am convinced that these problems [of program correctness] will
prove to be much more urgent than, for example, the exhaustive
exploitation of specific machine features, if not now, then at any
rate in the near future.” [29, p.30]

2.1.4 Ideology Leads to Recursive Procedures

Having described Dijkstra’s pursuit for a general language, it is also important
to note that at the 1962 symposium he was not alone. Duncan, for instance,
compared a restricted version of ALGOL60 with the actual ALGOL60 language in
accordance with Dijkstra’s views.

Duncan: “[T]here may be a significant class of problems for which,
because of the restricted language, the source program may need to
be more cumbersome and complicated than it would have been had
the full powers of Algol 60 been available.” [97, p.368]

An example of Duncan’s ‘restricted language’ is ALGOL60 in which procedures
can not call other procedures5. As we shall see in Section 2.2.2, such a restriction
was most notably supported by Samelson and Bauer. Dijkstra, on the other
hand, allowed the programmer to use procedure calls in full generality. In
response to Duncan’s comments, Dijkstra replied:

“[. . .] you are not only hindered by restrictions that prohibit you to
do things [such as calling a procedure from within another proce-
dure], it is even so that you gain by possibilities [such as a recursive

5That is, only the main body of the program can call a procedure.
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procedure] that are not actually used in the program at all.” [97,
p.368]

These words capture Dijkstra’s insistence on generality: he wanted procedure
calls of any kind to be in the language, so that the language would be simple
and, hence, easy to translate. Allowing some kinds of procedure calls and pro-
hibiting others, was in violation of Dijkstra’s linguistic ideals. Once simplicity
was obtained by means of generalization, positive, unexpected results would
follow:

<continued> “One of the great features of our compiler is that it
happens to turn out that it is very easy to have a good recursive
function in it. I am very fond of them. They are hardly used by
customers. Nevertheless, it is very important that they are in. The
reason is that they give us possibilities that make the tool inspir-
ing.” [97, p.368, my italics]

In other words, it seems that Dijkstra’s prime –if not only– concern was to pursue
simplicity by means of general principles6. Finding a way to implement recursive
procedures was merely a by-product of his research agenda. In Section 2.2.2
we will see how Dijkstra, by means of generalization, implemented recursive
procedures.

2.1.5 Bottom-Up vs. Top-Down

Seegmüller’s remark was only one of many that expressed common dissatisfac-
tion with the linguists à la Dijkstra. Another example was Strachey’s comment,
supporting the prevailing doctrine of taking efficiency into account during lan-
guage design.

Strachey: “I think the question of simplifying or reducing a language
in order to make the object program more efficient is extremely im-
portant. I disagree fundamentally with Dijkstra, about the necessity
of having everything as general as possible in all possible occasions
as I think that this is a purely theoretical approach [. . .]” [97, p.368]

Incidentally, it is interesting to note that Strachey used the verb ‘simplifying’
to denote the opposite action of what Dijkstra would have associated with that
verb.

In response to Strachey’s comment, the moderator of the panel, Van der
Poel, responded by characterizing two disjoint groups of panel members. On
the one hand, there were those who wanted to restrict the programming language
(under study, i.e. ALGOL) to make it fast by avoiding recursion. On the other
hand, there were those who wanted a general language, but who also claimed

6In May 2000, a symposium was held at the Department of Computer Science at the
University of Texas to honour Dijkstra. The symposium was called: In Pursuit of Simplicity.
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that their programs could be made just as fast7 [97, p.369]. These two different
schools of thought seem to correspond, more or less, with what Naur in 1978
called the “restrictionists” and the “liberalists” [91].

Instead of contrasting between restrictionists and liberalists, I prefer to dis-
tinguish between bottom-up and top-down design. The bottom or down part
corresponds to the machine, while the up or top part denotes the machine-
independent programming language ALGOL60.

Seegmüller, Strachey, Samelson, Bauer, and many others wanted to indi-
rectly take specific machine features into account while defining the machine-
independent language ALGOL60. For instance, since they believed that recursive
procedures were inefficient to execute, they wanted to restrict the ALGOL60 lan-
guage such that recursive procedures were avoided, without tampering with
ALGOL60’s machine-independence. That is, these people followed, more or less,
what today we would call a bottom-up methodology. They certainly did not
work in accordance with a top-down methodology.

Dijkstra, on the other hand, explicitly abstracted away specific machine
features (cf. Section 2.1.3) and wanted to first concentrate on the language.
Only after having defined the language, did he want to take efficiency issues
into account. Hence, Dijkstra did work in conformance with what we would
now call a top-down methodology.

The reason why Dijkstra followed a top-down methodology8 may, as hinted
in [1, p.124,125], lie in the fact that he did not have a programmable computing
machine during the early 1950s, while those mentioned who worked bottom-up,
did. Those who were “firsts” in having a programmable computing machine
at their disposal, were confronted relatively quickly with its finite limitations.
Presumably, this made them take efficiency to be their prime concern.

2.2 Dijkstra’s Wonderful Year: 1960

The recursive procedure, which Dijkstra openly advocated for in Rome 1962 and
which led to Seegmüller’s nasty comment, had already been introduced in 1960
in the definition of the programming language ALGOL60 by Van Wijngaarden
and Dijkstra via a peculiar telephone call with Naur (Section 2.2.1). Subse-
quently, but still in 1960, Dijkstra and his colleague Zonneveld succeeded in
being internationally the first to implement ALGOL60, i.e. by building the first
ALGOL60 compiler (Section 2.2.2). Both of Dijkstra’s contributions were, as we
shall see, due to his aptitude for linguistics.

7It is true that various participants of the symposium defended the case that recursive
procedures did not lead to inefficient object programs. But Van der Poel’s characterization is,
to say the least, an over-simplification. Recall that Van der Poel, himself, did not believe that
recursive procedures led to inefficient programs but that he was also against Dijkstra’s quest
for generality. Also, as mentioned before, Dijkstra did believe that recursive procedures, or
any general program construct for that matter, incurred a run-time penalty, while he was in
pursuit of a general language.

8Also Naur, van Wijngaarden and other ‘linguists’ followed this approach closely.
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2.2.1 Defining Recursive Procedures

As part of the ALGOL Effort, a subcommittee in November 1959 (consisting of
Rutishauser, Ehrling, Woodger, and Paul) recommended that certain restric-
tions be put in place with respect to the parameters of a procedure. These lan-
guage restrictions automatically prevented recursive procedure activations [91,
p.108,109,151,154]. Such restrictions were exactly what Samelson and Bauer
(and many others) wanted in accordance with their bottom-up methodology
(cf. Section 2.2.2).

In contrast, on the other side of the Atlantic, John McCarthy was trying to
use recursion in his programming. When working at IBM in the summer of 1958,
he tried to use FORTRAN to write a program that would differentiate algebraic
expressions, such as the expression y2. To calculate the derivative of y2 –which
is equal to 2y times another derivative (namely that of y)– McCarthy realized
that he needed recursive conditional expressions. Since FORTRAN did not contain
recursion either, he tried to add it to the language, but without success. This, in
turn, led him to develop his own programming language LISP [116, p.27], heavily
inspired by previous work of Newell, Shaw, and Simon (cf. Section 3.2.3).

In August 1959, McCarthy wrote a letter9 in which he openly advocated
for recursive procedures [80], and, in January 1960, at the final ALGOL60 Paris
conference, McCarthy suggested to add recursive procedures to the ALGOL60

language [116, p.30]. With regards to McCarthy’s proposal to add recursive
procedures, an American representative to the ALGOL60 Conference (perhaps
McCarthy himself but probably not) proposed to add the delimiter recursive
to the language, to be used in the context recursive procedure [91, p.112].
The American’s proposal was, by voting, turned down by a narrow margin [91,
p.112]. According to some, this rejection was interpreted to mean that recur-
sive procedures should not be added to the ALGOL60 language; others, however,
interpreted it to mean that recursive procedures should not be distinguished syn-
tactically from non recursive procedures by means of the proposed delimiter [91,
p.160]. The latter category of people, therefore, did assume that recursive pro-
cedures (introduced by McCarthy) belonged to the ALGOL60 language, while the
former category of people –including Naur and McCarthy [91, p.159-160]– as-
sumed that recursive procedures did not belong to the language. In short, and
in Perlis’ words: “it is not clear what the votes meant!” [91, p.160].

The voting, discussed previously, took place before other issues, concerning
the (informal) semantics of procedures, had been clarified [91, p.160-161]. Af-
ter the voting, and after several modifications were made to the semantics of
procedures, the defined language (ALGOL60) implicitly allowed for recursive pro-
cedures to be expressed syntactically, contrary to the November 1959 decision
(see above) to prohibit this explicitly [91, p.112].

Whether Van Wijngaarden and Dijkstra belonged to the first or the second
category of people, described above, or to neither category, is not entirely clear.
But, on approximately February 10, 1960, Van Wijngaarden, alongside Dijkstra,

9Unfortunately, I have not been able to find this letter, so I have not read it. But Perlis
refers to this letter in [101, p.86].
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called the ALGOL editor, Naur, by telephone to point to a lack of definition in
Naur’s report [91, p.112]. The Dutch had stumbled upon the possibility to syn-
tactically express recursive procedure activations, noting that it was nowhere
stated in the ALGOL report whether recursive procedures activations were indeed
intended semantically or not. Therefore, Van Wijngaarden, after consulting
Dijkstra, suggested to Naur to add one sentence to the ALGOL report so that it
would be clear that recursive procedure activations were allowed in ALGOL60.
The fact that the alternative, of preventing recursive procedure activations by
means of several language restrictions, would be cumbersome, was also men-
tioned by Van Wijngaarden [91, p.112]. In line with Dijkstra’s linguistic ideals,
described in Section 2.1, it is clear that Van Wijngaarden and Dijkstra were
primarily reasoning along linguistic lines and not in terms of specific machine
features. Simplicity for them meant less language restrictions. Naur, being lin-
guistically inclined as well, was charmed by the one-sentence clarification of the
Dutch and added it to the ALGOL report.

Naur in 1978: “I got charmed with the boldness and simplicity of
this [one-sentence] suggestion and decided to follow it in spite of the
risk of subsequent trouble over the question (cf. Appendix 5, Bauer’s
point 2.8 and the oral presentation).” [91, p.112-113]

Naur’s reference to Bauer shows that he was well aware of the Germans’ strong
will to prohibit recursive procedures from the language, in accordance with the
November 1959 meeting.

2.2.2 Implementing Recursive Procedures

Dijkstra’s ability to implement an ALGOL60 compiler in such a short time span,
was, as we shall see, again due to his pursuit for simplicity. Fundamental to
this discussion will be the concept of a stack, which Dijkstra borrowed from
Samelson and Bauer (Section 2.2.2.1). I will mainly explain and to some extent
speculate why Samelson and Bauer did not implement recursive procedures
(Section 2.2.2.2), and then explain Dijkstra’s generalization on how a stack
could be used in order to implement recursive procedures (Section 2.2.2.3).
Many examples presented below are conceptualizations of the actual translation
techniques used by Samelson, Bauer, and Dijkstra.

2.2.2.1 Illustration of Samelson and Bauer’s Stack

Samelson and Bauer’s stack principle [6] can be illustrated by means of the
algebraic expression:

A + (B − C) × (D/E + F )

which was first translated into postfix notation:

A B C −D E / F +×+
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by a trivial algorithm10.
In postfix notation, the operators (e.g. −) are placed after the operands (e.g.

B, C). The presented postfix expression was subsequently read from left to right
and, while doing so, the stack was used to store information, as is illustrated
below. In the meantime, corresponding object code was also generated, as
desired, but I shall not illustrate this explicitly11. In this simple example, the
important thing to remember is that the stack was solely used prior to executing
the object program; i.e. solely at what today we would call compile time.

A stack was merely a part of the memory of the computing machine, con-
sisting of successive memory locations: v0, v1, v2, . . .:

v4

v3

v2

v1

v0

Scanning the postfix expression from left to right implies that the first symbol
scanned is the symbol A. This symbol was placed on the stack by the translation
algorithm12, resulting in:

v4

v3

v2

v1

v0 A

The second scanned symbol is B and was likewise placed on the stack:

v4

v3

v2

v1 B
v0 A

Similarly, scanning the next two symbols resulted in:

v4

v3 −
v2 C
v1 B
v0 A

10This explicit translation step is already a simplification of Samelson’s and Bauer’s actual
approach.

11For a more thorough example, see Knuth [69].
12The translation algorithm is illustrated in this section but the definition of the algorithm

is not; cf. [69].
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Contrary to the previous cases, we now have an operator on top of the
stack13. This meant that enough information had been gathered on the stack to
perform the corresponding operation. To be more precise, the minus sign was
removed from the stack, together with the two operands C and B. (Then, the
machine code instruction of B−C was generated and placed into the instruction
memory of the computing machine.) The ‘result’ of the subtraction was placed
on the stack14:

v4

v3

v2

v1 B − C
v0 A

Next, the symbols D, E, and / were placed on the stack:

v4 /
v3 E
v2 D
v1 B − C
v0 A

Again, because an operator topped the stack, this meant that enough infor-
mation had been gathered to perform the corresponding operation. That is, the
division symbol was removed from the stack, together with the two operands E
and D. (Then, the machine code instruction of D/E was generated and placed
into the instruction memory of the computing machine.) The ‘result’ of the
division was placed on the stack:

v4

v3

v2 D/E
v1 B − C
v0 A

Next, symbol F was read and placed on top of the stack:

v4

v3 F
v2 D/E
v1 B − C
v0 A

13Strictly speaking, the operator did not have to be put on the stack, but for simplicity I
have chosen to do so here any way.

14This is strictly speaking incorrect. The ‘result’ can only be known if the actual values of
B and C are known at compile time, which, of course, was typically not the case. So, instead
of the ‘result’, it was e.g. a register name n that was stored in stack cell v1, with n being the
name of the register that, at run time, would contain the result of B − C.
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Then the + sign was read, placed on top of the stack, consequently removed
from the stack, along with F and D/E . . ., resulting in:

v4

v3

v2 D/E + F
v1 B − C
v0 A

Next, the symbol × was read, placed on top of the stack, . . ., resulting in:

v4

v3

v2

v1 (B − C)×(D/E + F )
v0 A

Finally, the last symbol + resulted in:

v4

v3

v2

v1

v0 A + (B − C)×(D/E + F )

and the entry of v0 was removed, resulting in an empty stack.

The previous illustration is, I stress again, a conceptualization. The transla-
tion process started at the left most symbol in the postfix notation and with an
empty stack. The translation process ended at the right most symbol and with
an empty stack. In the meantime, machine code was generated and placed in
the instruction memory of the computing machine, while the stack was used for
administrative purposes. The actual values of A, B, C, . . ., F were, of course,
not known during the translation. The crux lies in that the stack was only used
prior to executing the object program. In other words, the generated machine
code did not need a stack to execute; it only used a constant number of regis-
ters15 to store the values of A, B, . . . and to store intermediate results, such as
the values of B − C and D/E.

The algebraic expression, presented above, is a very simple example of a
program that was written in a machine-independent programming language,
such as ALGOL60. In general, the program could contain multiple algebraic
expressions, and also for loops and other kinds of control-flow constructs. Let
us denote such a program by “main”, and depict it by an empty rectangle:

15Or, in more general terms, a fixed amount of memory.
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"main" program

This representation will come in handy in the next section.

2.2.2.2 Extending Samelson and Bauer’s Approach to Incorporate
Procedure Calls

The previous example can now be extended. Instead of only considering a
“main” program as above, we now also have some procedures. Each procedure,
internally, contains an algebraic expression (or multiple algebraic expressions
in general), similar to the one used in the previous discussion. Some of the
algebraic expressions in the “main” program, however, contain procedure calls
to one or more of the procedures. Conceptually, we have:

"main" program procedure 1

procedure 2

procedure 3

Each box denotes text in the machine-independent programming language, and
each arrow denotes a procedure call from the “main” program to one of the pro-
cedures. Note, in particular, that each procedure does not contain procedure
calls. For instance, procedure 1 does not call any of the procedures, including
itself. Indeed, Samelson and Bauer did not allow procedures to call other pro-
cedures, in accordance with the November 1959 meeting (cf. Section 2.2.1). We
will shortly see why they enforced this language restriction. That is, a program-
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mer was not allowed to write a program in which one procedure was called from
within another procedure: only the “main” program could contain arrows that
pointed outwards.

A natural way to compile a program that was composed of a “main” program
and three separate procedures, as pictured above, was to, conceptually speak-
ing, compile each piece of text in conformance with the stack-based scheme
addressed previously. That is, the “main” program was, essentially16, trans-
lated as explained before, and each of the procedures was translated in a similar
manner. The net effect was, again, that no stack was needed at run time, but,
now, not only did the translated “main” program have its own working space,
also each translated procedure had its own private fixed working space (which
it would use at run time).

In other words, Samelson and Bauer treated each procedure statically, by
providing each of them with their own fixed working space17. This approach
naturally prevented a procedure to be activated more than once during the
execution of the program, because only one fixed working space was available
for each procedure. In particular, Samelson and Bauer’s approach could not
handle a procedure that recursively called itself. Dijkstra summarized Samelson
and Bauer’s approach:

“If every subroutine [i.e. procedure] has its own private fixed work-
ing spaces, this has two consequences. In the first place the storage
allocations for all the subroutines together will, in general, occupy
much more memory space than they ever need simultaneously, and
the available memory space is therefore used rather uneconomically.
Furthermore –and this is a more serious objection– it is then impos-
sible to call in a subroutine while one or more previous activations
of the same subroutine have not yet come to an end, without losing
the possibility of finishing them off properly later on.” [26, p.312]

As the previous words indicate, and as Samelson and Bauer, themselves,
admitted at the 1962 Rome symposium, their implementation led to excessive
use of memory:

[. . .] it was decided [to minimize run time], to assign static data
storage to each procedure separately within the block containing the
procedure, which of course rules out recursive procedures. The waste
of static storage, in conflict with our original cellar [i.e., stack] prin-
ciple, was considered regrettable. [112, p.214, my italics]

The first sentence in the quote stresses that Samelson and Bauer did not want
to use a stack at run time –contrary to Dijkstra, as we shall see later– because
they were afraid that it would increase the execution time of their programs.

16Some additional book-keeping was needed to implement the arrows in the figure.
17Today, we would say that Samelson and Bauer statically allocated memory space for their

procedures. Dijkstra, as we shall see, advocated for dynamic memory management.
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Therefore, they decided to avoid a run-time stack and, instead, statically as-
signed memory space to each procedure separately. This implementation choice,
in turn, forced them to impose their language restriction: a programmer was not
allowed to write a program in which one procedure called another procedure.
In particular, recursive procedure activations were ruled out.

The last sentence in the quote is a bit ironic since Samelson and Bauer
were strong advocates of practical (i.e. efficient) engineering-based solutions.
Samelson and Bauer openly distanced themselves from people such as Dijkstra,
Van Wijngaarden, and Naur who did not seem to care much about efficiency,
but, instead, primarily advocated for ALGOL60 to be as general as possible.
The irony, thus, lies in the fact that Samelson and Bauer’s own technique was
not very good, even though they had restricted the use of the programming
language, while Dijkstra, for instance, had not.

As mentioned before, the previously presented quote was stated by Samelson
and Bauer [112] in the proceedings of the 1962 Rome symposium. It is important
to note that this was two years after Dijkstra had already explained in his
1960 paper [26] how Samelson and Bauer’s original stack principle [6] could be
generalized in order to implement recursive procedures. It is not unthinkable
that Samelson and Bauer, prior to 1960, did not know how to handle recursive
procedures. On the other hand, this conjecture can be countered in two ways.

First, Samelson and Bauer explicitly stated, in their 1962 paper [112, p.214],
that they simply did not see why recursion was important for numerical applica-
tions in the first place. As mentioned in Chapter 1 by citing Perlis, it is indeed so
that the usefulness of recursion was questioned by many. For instance, only by
1963, did Rutishauser find two examples of recursion for numerical computations
that he, himself, found convincing, i.e. in which recursion was indispensable. He
also contrasted these examples with others18 in which recursion could, and in
his opinion should, be replaced by iteration [110].

Second, Rutishauser, who was Samelson and Bauer’s close friend, may have
had already implemented recursive procedures on his ERMETH several years
earlier. In this regard, however, it is worth noting that Dijkstra, in his 1960
paper [26], mentioned that one of the referees had sent him a copy of a report19

in which Rutishauser’s ideas on recursion were described. Dijkstra insisted that
his work was essentially different from that described in the report:

“The author [i.e., Dijkstra] of the present paper thinks, however, that
[in that report] the principle of recursiveness has not been carried
through to this ultimate consequences [sic] which leads to logically
unnecessary restrictions like the impossibility of nesting intermediate
returns and the limitation of the order of the subroutine jump (cf.
section F 44 of the report).” [26, p.313]

18An example Rutishauser gave was calculating the factorial of a positive number n. It is
more economical (both in space and time) to calculate it by iteration by means of a for loop
(0, 1, 2, . . ., n) than by recursive procedure activations (n, n− 1, n− 2, . . ., 0).

19The report ‘Gebrauchsanleitung für die ERMETH’ of the Institut für Angewandte Math-
ematik der ETH, Zürich –a description by Heinz Waldburger of some of the techniques devel-
oped by H. Rutishauser in his lectures.
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So, in retrospect, while Dijkstra may not necessarily have been the sole inven-
tor on how to implement recursive procedures20, the previous quote leads to
the conjecture that Dijkstra’s approach was more generally applicable or sim-
pler than many other existing implementation techniques (cf. Chapter 4). His
approach is described next.

2.2.2.3 Dijkstra’s Approach

Samelson and Bauer’s stack-based technique (cf. Section 2.2.2.1), denoted as
T in the sequel, was extended by Dijkstra in a ‘simple elegant’ fashion [107,
p.181]. To illustrate this, recall the algebraic expression:

A + (B − C) × (D/E + F )

which, for brevity, we shall shorten to:

A + (B − C)

along with the corresponding post-fix notation:

A B C −+ (2.1)

Translating 2.1 in accordance with technique T would result in the following
stack-based behavior, presented as a sequence of stacks:

v4

v3

v2

v1

v0 A

v4

v3

v2

v1 B

v0 A

v4

v3

v2 C

v1 B

v0 A

v4

v3 −

v2 C

v1 B

v0 A

. . .

Dijkstra pondered about the applicability of technique T in the case that
variable B was, instead, a compound term, such as:

B = (P/Q)

The corresponding algebraic expression would then be:

A + ((P/Q) − C)

which, in post-fix notation, would amount to:

A P Q / C −+

The stack-based behavior, in accordance with T , would then be:

20In fact, in Section 2.3 we shall see that several people had invented ways to implement
recursive procedures; Dijkstra was only one of them.
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v4

v3

v2

v1

v0 A

v4

v3

v2

v1 P

v0 A

v4

v3

v2 Q

v1 P

v0 A

v4

v3 /

v2 Q

v1 P

v0 A

v4

v3

v2

v1 P/Q

v0 A

v4

v3

v2 C

v1 P/Q

v0 A

v4

v3 −

v2 C

v1 P/Q

v0 A

. . .

Now, if B were to be substituted for P/Q in the previous sequence of stacks,
then this would result in a third sequence of stacks:

v4

v3

v2

v1

v0 A

v4

v3

v2

v1 P

v0 A

v4

v3

v2 Q

v1 P

v0 A

v4

v3 /

v2 Q

v1 P

v0 A

v4

v3

v2

v1 B

v0 A

v4

v3

v2 C

v1 B

v0 A

v4

v3 −

v2 C

v1 B

v0 A

. . .

By comparing the first and the third sequence of stacks, Dijkstra concluded
that: regardless of whether B is ready-made or whether a number of next stack
locations is needed for its evaluation, the net result is the same [26, p.314].
Likewise, whether B is ready made or whether it is a call to some procedure
that contains the expression P/Q, the net effect remains the same. In Dijkstra’s
exact words:

“[I]t is immaterial to the ‘surroundings’ in which the value B is
used, whether the value B can be found ready-made in the memory,
or whether it is necessary to make temporary use of a number of
the next stack locations for its evaluation. When a function occurs
instead of B and this function is to be evaluated by means of a
subroutine [i.e. procedure], the above [illustration] provides a strong
argument for arranging the subroutine in such a way that it oper-
ates in the first free places of the stack, in just the same way as a
compound term written out in full.” [26, p.314]

To arrange the procedure in such a way that it operates in the first free places
of the stack, Dijkstra subsequently, in his paper, explained how one run-time
stack could do the job. That is, while Samelson and Bauer solely used a stack21

prior to execution, Dijkstra, on the other hand, suggested to use a stack during
execution; i.e., at run time. As a by-product of Dijkstra’s pursuit for simplic-
ity, illustrated by the previous quote, recursive procedure activations became
feasible:

“The subroutine only has to appear in the memory once, but it may
then have more than one simultaneous ‘incarnation’ from a dynamic
point of view: the ‘inner-most’ activation causes the same piece of
text to work in a higher part of the stack. Thus the subroutine
has developed into a defining element that can be used completely
recursively.” [26, p.317]

21Samelson and Bauer, in fact, used more than one stack (prior to execution) [6]. But my
emphasis lies in explaining when the stack was used, rather than how many stacks were used.
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2.3 Several Pioneers Implemented Recursive Pro-

cedures for the “First Time”

Dijkstra’s 1960 paper [26], in which he generalized Samelson and Bauer’s original
stack principle [6] and thereby found a way to implement recursive procedures,
became a very influential paper in subsequent years [107, p.181]. More generally,
Dijkstra’s successful pursuit for simplicity did not go unnoticed internationally,
as illustrated by Wilkes’ comments in the 1962 Rome symposium:

“[Dijkstra] has indicated, and with good reason, that compiler writ-
ing may well become trivial, and is becoming trivial, and he has
illustrated this very brilliantly in his compiler. [. . .] Dijkstra has re-
duced the writing of [an] Algol compiler to a triviality, in terms of
his notations [. . .]” [96, p.198-199]

Wilkes was, very likely, referring to [27], the paper Dijkstra presented at the 1962
Rome symposium. Also Rosen’s comment in his 1966 book on Programming
Systems and Languages credits Dijkstra:

“Recursive programming by Professor Dijkstra is an early and im-
portant contribution to the art of writing compilers. The problems
involved in permitting recursive calls on subroutines are attacked
and handled in a simple elegant fashion. Almost everyone involved
in writing an Algol compiler has used some of the ideas developed
in connection with the Algol Compiler written by professor Dijk-
stra and his colleagues at the Mathematisch Centre in Amsterdam.”
[107, p.181, my italics]

Nevertheless, several people had, by 1960, invented ways to implement recursive
procedures. For instance, Irons and Feurzeig [61] came up with essentially the
same idea as Dijkstra and in the same year [9, p.51]. Rutishauser, in his 1963
paper [110, p.50], did not only credit Dijkstra as the inventor of a technique to
implement recursion, but also the Americans Sattley and Ingerman [114]. Also
in the USA, the list processing language IPL of Newell, Shaw, and Simon [92, 93],
which had recursion and a stack built in [83, p.192-193], already existed in 1957!
Whether Dijkstra was aware of IPL or not is not clear. McCarthy, however,
was inspired by IPL which, contrary to his own invented LISP, was a machine
language [83, p.187]. McCarthy’s LISP [81] was perceived by many as innovative
partly due to its built-in recursion [113]. Recall that McCarthy had joined the
ALGOL Effort after already having worked on LISP and that it was McCarthy
who had advocated for recursion in ALGOL60 in August 195922. Perlis even
stated in 1978 with respect to the ALGOL Effort that:

“The implications of recursion were not really understood, except by
McCarthy.” [91, p.160]

22See [101, p.86], [116, p.30], and [80].
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Finally, Turing, in the late 1940s, had already thought through the idea of using
a stack for recursive procedures23. In fact, Bauer, confirmed this and also men-
tioned Rutishauser24, Van der Poel, and Huskey as people who had implemented
recursive procedures prior to 1960 [8, 7, p.39,-]. In a very recent paper [53], the
suggestion has been made that Dijkstra may have become acquainted with Tur-
ing’s work on ‘Reversion Storage’ (i.e. Turing’s stack principle) via Huskey, who
had visited Van Wijngaarden and Dijkstra prior to Dijkstra’s publication in
1960. In fact, at the end of his 1960 paper [26], Dijkstra thanked Huskey for
the inspiring conversations that he had had with him in Amsterdam during the
summer of 1959. More research is required to carefully investigate this matter.

23See [15] and [24, p.188, 237].
24Rutishauser, himself, mentioned in a 1963 paper [110, p.50] that he had implemented

recursive subroutines for the ERMETH in the “pre-ALGOL days”.



Chapter 3

The Advent of Logic

As stated by the logician Martin Davis:

“There are many examples of important concepts and methods first
introduced by logicians which later proved to be important in com-
puter science.” [22, p.149]

The objective of this chapter is to start a broad investigation in understanding
how mathematical logic has and has not influenced various developments in
computer science.

While Alan Turing and John von Neumann were both involved in building
some of the very first programmable computing machines and were well versed
in mathematical logic, most of their contemporaries were not. In Section 3.1, I
will show that logic, in general, and the theory of computation, in particular,
were not directly received by many computer pioneers of the 1950-60s. Also,
logicians, themselves, did not initial see the connection between Turing’s 1936
theory of computation and programmable computing machines. Finally, I will
show that many computer pioneers, in the aftermath of their successes, openly
distanced themselves from the mathematical-logic community. Nevertheless,
in Section 3.2, I will stress that some ideas from logic did positively influence
certain early developments in computer science, albeit in an indirect manner.
Finally, in Section 3.3, special attention will be paid to Dijkstra who, unlike
many of his contemporaries, not only became acquainted with Turing’s 1936
theory of computation, but also was able to apply the unsolvability of Turing’s
Halting Problem to progress the agenda of his research community.

3.1 Theory of Computation vs. Programmable

Computing Machines

While solving a fundamental problem in mathematical logic, Alan Turing found
a mathematical model of an all-purpose programmable computing machine,

39
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which he published in his now-famous 1936 paper [122]. Several years later, a
small group of engineers built some of the very first programmable computing
machines. Among them were Alan Turing and John von Neumann, two men
who were well-versed in mathematical logic [22, 24].

Unlike Turing and Von Neumann, many computer pioneers did not see the
connection between Turing’s 1936 paper and modern electronic computers. For
instance, recall from Chapter 1 that Martin Davis mentioned in [24, p.140] that
even as late as 1956, there were pioneers, such as Howard Aiken, who clearly
had not read or grasped the significance of Turing’s 1936 paper. Davis also
made a similar statement with respect to Herman Goldstine [22, p.167].

3.1.1 Sammet & Hopper

Even though the theory of computation became more popular during the 1950s
and 1960s among some pioneers1, whether the computing community at large,
grasped Turing’s theory, is another matter. In this respect, it is worthwhile
to consider a fragment from Sammet’s 1969 book, Programming Languages:
History and Fundamentals.

Sammet: “Recursive procedures were introduced by ALGOL. They
certainly should be considered a significant contribution to the tech-
nology, but it is not clear how great a one. The advocates of this
facility claim that many important problems cannot be solved with-
out it; on the other hand, people continue to solve numerous impor-
tant problems without it and even in a few cases manage to handle
(sometimes in an awkward way) some of the problems which the
recursion proponents claim cannot be done.” [113, p.193]

Given that ALGOL60’s definition allows one to express potentially unbounded
while loops [4, p.308], it follows from Kleene’s normal form theorem2 that re-
cursive procedures are not needed. In other words, the expressive power of
ALGOL60 is not reduced by discarding recursive procedures. This immediately
settles the question Sammet described in the above fragment and, therefore,
illustrates that certain implications of the theory of computation, that are con-
sidered trivial today, were not understood by a respectable group of computer
pioneers in the 1960s.

Grace Murray Hopper was one of the first people to develop a compiler [68,
p.42]. Her pioneering work, however, was slowed down by her superiors who did
not believe that computers could do more than plain arithmetic [58, p.9]. In
1978, she reflected upon these difficulties by stating:

“I think I can remember sometime along in the middle of 1952 that
I finally made the alarming statement that I could make a computer

1Several examples, presented later, will support this claim. For instance, Rice (Sec-
tion 3.2.5) and Dijkstra (Section 3.3).

2Presented in Minsky’s 1967 book [86, p.184], but already published by Kleene in 1936
in [65]. See also Harel’s [52] in which he explains the relationship between Kleene’s normal
form theorem and the while construct.
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do anything which I could completely define. I’m still of course
involved in proving that because I’m not sure if anybody believes
me yet.” [58, p.9]

The last sentence shows that, even as late as 1978, Hopper and, hence, also many
of her colleagues, were not well acquainted with Turing’s theory of computation.
For, the crux of Turing’s 1936 paper is that there are well-defined problems that
cannot be computed. In fact, Dijkstra wrote in [42, p.13] that, even in 1978,
Turing may have been unknown among many computer scientists.

3.1.2 Logicians Did Not Initially Connect Turing’s 1936

Paper With Computing Machines Either

While many computer pioneers were either not aware of Turing’s 1936 paper, or
did not see the connection between Turing’s paper and modern electronic com-
puters, the following words from the logician Martin Davis show that logicians
did not necessarily see the connection either:

“My experience as an ORDVAC programmer led me to rethink what
I had been doing with Turing machines in the course I had just
finished teaching. I began to see that Turing machines provided
an abstract mathematical model of real-world computers. (It wasn’t
until many years later that I came to realize that Alan Turing himself
had made that connection long before I did.) I conceived the project
of writing a book that would develop recursive function theory (. . .)
in such a way as to bring out this connection. I hardly imagined that
seven years would go by before I held in my hand a printed copy of
Computability & Unsolvability.” [23, p.60]

Davis also mentioned that one of the reviewers of his book Computability &
Unsolvability [21], published in 1958, derided the connection he was proposing
with actual computers [23, p.66]. In other words, around more or less the
same time when Aiken made his “preposterous” statement (according to Davis;
cf. Chapter 1), a reviewer of Davis’ book essentially made a similar “mistake”.
Presumably, this reviewer was well-versed in logic while Aiken was not. Finally,
the previous quote also shows that the logician Davis, himself, did not initially
see the connection between Turing’s 1936 work and programmable computing
machines.

Blaricum, 1961

To illustrate how much the logicians were separated from the computer practi-
tioners during the 1950s, it is worthwhile to mention the 1961 conference that
was held in Blaricum, the Netherlands, and organized by the logicians. Among
the attendees were Beth, Wang, McCarthy, Burks, and Chomsky –just to name
a few (see [19]). Their goal was to address the implications that the computer
might have on their own profession. In more specific terms, their objectives
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were to (i) survey various non-numerical applications of computers (e.g. lan-
guage translation, theorem proving) and (ii) address some aspects of the theory
of formal systems. Selected works were published in a book [19] in 1963 with a
preface stating:

Symbol manipulation plays an important role both in the theory
of formal systems and in computer programming and one would
therefore expect some important relationships to exist between these
domains. It may therefore seem surprising that specialists in the
two fields have only recently become interested in one another’s tech-
niques. This situation is probably due to an original difference in
motivation and to a phaseshift in time. [my italics]

The book shows how the logicians were discovering and sometimes rediscovering3

the fruitful interplay between mathematical logic and the programming of a real
(i.e. finite) computing machine. For example, Beth rediscovered the finiteness
of practical computing and discussed the implications this had on conducting
proofs in mathematical logic (see [19, p.29-30]).

The seventh chapter of the book, ‘Programming and the Theory of Au-
tomata’, written by A.W. Burks, deserves further comment for later (cf. Sec-
tion 3.3.1). In that chapter, Burks explained the relationship between a “Tur-
ing Machine” and Von Neumann’s cellular automaton and then formalized the
notion of automatic programming4. One of Burks’ main conclusions was the
within-limits interchangeability of software and hardware [19, p.114].

3.1.3 Emphasis That They Were Not Logicians

In the late 1970s, many computer pioneers of the 1950s and 1960s took the effort
to stress that they were not mathematical logicians, and that their pioneering
work was either not based on logic, or, if it was, that they did not completely
understand how. The following examples come from the 1978 symposium on
‘History of Programming Languages’.

Perlis

Alan Perlis, while discussing the ALGOL60 language in 1978, emphasized that
the word ‘types’ did not come from the mathematical-logic community:

“But clauses, blocks, types –types for example. Where did that come
from? Did it come from a prolonged contact with logicians? Not at
all! Types, in a sense, came into programming because we needed a

3Indeed, Turing and Von Neumann would have been well aware of some of the addressed
issues if they had still been alive in 1961.

4Automatic programming served the purpose to make the programmer more effective in
his programming by letting the computing machine take over the responsibilities of the pro-
grammer. E.g., the purpose of the ALGOL Effort, and ALGOL60 in particular, was to improve
the state of the art in automatic programming.
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word to indicate types, and we used it the same way logicians did;
they don’t own it.” [101, p.145]

Perlis also mentioned that it took until 1967 when he, together with Galler,
actually discussed constructive type theory in accordance with mathematical
logic [101, p.80].

Hopper

One of Grace Hopper’s main career objectives was to provide a means for or-
dinary people (e.g. engineers and business people), not programmers, to solve
problems on a computer. In 1978, she hoped that the programming-language
community at large would recognize the great variety of people who wanted
to solve problems on a computer. In this regard, she mentioned the need for
different languages “rather than trying to force them all into the pattern of the
mathematical logician”, and subsequently emphasized that a lot of computer
people were not mathematical logicians [58, p.11].

McCarthy

John McCarthy, while discussing his LISP programming language in 1978, stated
that, though he had borrowed Church’s lambda notation to design LISP, he had
not completely understood Church’s lambda calculus. In particular, he had
not understood Church’s higher order functionals and, therefore, had chosen to
use conditional expressions in LISP instead [83, p.176]. McCarthy continued by
explaining that he did not know that his conditional expressions, together with
recursion, were sufficient to express any computable function:

”And so, the way in which to do that was to borrow from Church’s
Lambda Calculus, to borrow the lambda notation. Now, having bor-
rowed this notation, one of the myths concerning LISP that people
think up or invent for themselves becomes apparent, and that is that
LISP is somehow a realization of the lambda calculus, or that was
the intention. The truth is that I didn’t understand the lambda cal-
culus, really. In particular, I didn’t understand that you really could
do conditional expressions [and] recursion in some sense in the pure
lambda calculus. So, it wasn’t an attempt to make the lambda
calculus practical, although if someone had started out with that
intention, he might have ended up with something like LISP.” [83,
p.190, my italics]

In retrospect, while McCarthy stressed that he was not a mathematical logician,
he had, to some extent, been influenced by Church’s lambda calculus and, hence,
by logic in general. Section 3.2 will present more of such examples.
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Strachey

Around 1965, Strachey wrote a letter to the editor of the Computer Journal,
titled, ‘An impossible program’ [120]. In this letter, Strachey presented his own
proof of the unsolvability of Turing’s Halting Problem, which Turing of course
had already published in his 1936 paper [122]. The letter is so short that most
of it is duplicated below, albeit in separate passages. As the following excerpts
will show, Strachey expressed the acquaintance he had had with Alan Turing,
but also, indirectly, made clear that he had not read Turing’s 1936 paper.

Strachey started his letter with mentioning the unsolvability of Turing’s
Halting Problem:

“A well-known piece of folk-lore among programmers holds that it is
impossible to write a program which can examine any other program
and tell, in every case, if it will terminate or get into a closed loop
when it is run.” [120]

It is not entirely clear what Strachey meant with a ‘program’ and a ‘closed
loop’. Let us first unrealistically assume that Strachey only wanted to consider
‘programs’ that could run on a pre-defined programmable computing machine.
In this case, the previous passage would be definitely incorrect, since the Halt-
ing Problem is trivially decidable if only programs are considered that can fit
into a pre-defined finite machine. Therefore, let us then assume that Strachey
associated a ‘program’ with what we today call a Turing Machine or something
equivalent. Then, the previous passage is still, strictly speaking, incorrect: a
program (i.e. a Turing Machine) can go on forever by either running in a ‘closed
loop’ (forever), or by using an unbounded amount of memory space5.

Disregarding the inaccuracy of Strachey’s introduction, we continue with his
letter:

<continued> “I have never actually seen a proof of this in print,
and though Alan Turing once gave me a verbal proof (in a railway
carriage on the way to a Conference at the NPL in 1953), I unfortu-
nately and promptly forgot the details. This left me with an uneasy
feeling that the proof must be long or complicated, but in fact it is
so short and simple that it may be of interest to casual readers. The
version below uses CPL6, but not in any essential way.” [120]

The first sentence in the previous quote strongly suggests that Strachey had not
read Turing’s 1936 paper. On the other hand, Strachey’s ability to reproduce
the essentials of the proof7 is equally noteworthy. To do so, he introduced T [R]

5A more accurate wording would have been: “A well-known piece of folk-lore among pro-
grammers holds that it is impossible to write a program which can examine any other program
and tell, in every case, if it will terminate or not.” Dijkstra and Minsky, just to name two
people, did present more accurate wordings of the unsolvability of Turing’s Halting Problem;
cf. Section 3.3.2.

6CPL is an abbreviation for Combined Programming Language, invented by Strachey.
7By implicitly relying on the Church-Turing thesis; details omitted here.
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as a Boolean function taking a routine (or program) R with no formal or free
variables as its argument such that, for any R:

• T [R] = True if R terminates if run, and

• T [R] = False if R does not terminate if run.

He then asked the reader to consider the routine P which he defined in CPL as:

rec routine P

\L: if T[P] to to L

Return \

Finally, he noted that, if T [P ] = True, then the routine P will loop, and it
will only terminate if T [P ] = False. Therefore, in each case, T [P ] has exactly
the wrong value and this contradicts, in turn, the existence of the function T .
In short, Strachey had, presumably on his own, essentially re-invented Turing’s
diagonal argument.

3.2 Indirect Reception of Logic

Even though the connection between Turing’s theory of computation and pro-
grammable computing machines was not well understood, logic in general did
indirectly influence various early developments in computer science.

3.2.1 Bauer

Around the turn of the year 1950/51, Bauer had made a wiring diagram for
a “logic calculator”, called STANISLAUS, which he built by 1956. The calcula-
tor, containing a hardware stack, could directly evaluate a propositional for-
mula, given a truth value for each variable in the formula. In 1955, inspired by
STANISLAUS’ stack, Samelson and Bauer invented their stack-based translation
technique [6], published in 1959 in German and in 1960 in English, which Dijk-
stra subsequently generalized (cf. Section 2.2.2). The bottom line of this small
exposition is that propositional logic was Bauer’s first application domain, not
numerical analysis, and it indirectly led to his invention of the stack, which, in
turn, would have a strong impact on international compiler design in subsequent
years [8, 9, p.30-32, p.41].

3.2.2 Wang

As confirmed by Minsky [86, p.200], Hao Wang was the first researcher to explic-
itly connect, in his 1957 publication [124], Turing’s 1936 theoretical work with
that of the computer practitioners of the 1950s. As an aside, note that this was
one year after Aiken had made his “preposterous” statement (according to Davis,
cf. Chapter 1). To conclude, Wang made a clear connection between Turing’s
theory of computation and programming-language design, thereby illustrating
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that Turing’s paper and logic in general, did influence computer science to some
extent8.

3.2.3 Newell, Shaw, and Simon

As stated in Section 2.3, McCarthy with his LISP language was greatly influ-
enced9 by the list processing language IPL of Newell, Shaw, and Simon [92, 93].
By 1957, these three men had implemented a system for automatic theorem
proving. Their system was called the Logic Theory Machine (LT) and it served
the purpose of trying to better understand how effective human problem solv-
ing works in reality, such as finding a proof of a mathematical theorem, playing
chess, or discovering scientific laws from data [93, p.218,219]. IPL was the pro-
gramming language used to implement the system LT [92, p.232].

In contrast to the many numerical programs implemented during the 1950s,
LT was symbolic in nature. While numerical programs were primarily “static”
in the sense that e.g. the set of variables and constants (to be used at run
time) could be determined in advance (i.e. prior to program execution), LT
was primarily “dynamic”. For instance, the number, kind, and order of logical
expressions used in LT were completely variable. Therefore, run-time translation
was needed and carried out by an interpreter [92, p.230,231,235].

Flexibility of Memory Assignments

IPL was a very flexible programming language. A user could express the creation
of a list during the course of computation10. In addition, a user could create lists
that consisted of other lists or lists of lists, etc. Adding, deleting, inserting, and
rearranging items in a list at any time was possible. Finally, it was also feasible
for an item to appear in any number of lists simultaneously11 [92, p.231].

Flexibility in the Specification of Processes

IPL was not only flexible in terms of memory assignments, but also in terms
of defining processes. There was no limitation on the size and complexity of
hierarchical definitions. Likewise, no restriction was enforced on the number of

8It is interesting to note that Wang did not think that Turing’s theory of computation had
influenced much the actual construction of computing machines [124, p.63]. Minsky, however,
advocated for a thorough historical investigation of the matter.

Minsky: “While it is often said that the 1936 paper did not really much affect
the practical development of the computer, I could not agree to this in advance
of a careful study of the intellectual history of the matter.” [86, p.104]

In fact, decades later, Davis has defended the case that Turing’s 1936 paper has influenced
(via Von Neumann) the actual construction of computing machines [22, 24]. I do not wish to
address this controversial topic any further, except to remind the reader of Zuse’s work during
World War II (cf. Chapter 1).

9At the time of this writing, I have not studied LISP in sufficient detail to understand how
different it was from IPL besides that it was a high-level programming language.

10Also known today as dynamic memory management.
11Also known today as aliasing.
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references in the instructions or on what was referenced. Of particular interest
is that processes could be defined implicitly, e.g. by recursion [92, p.231]. In
more general terms:

“[T]he programmer should be able to specify any process in whatever
way occurs naturally to him in the context of the problem. If the
programmer has to ‘translate’ the specification into a fixed and rigid
form, he is doing a preliminary processing of the specifications that
could be avoided.” [92, p.231]

The previous quote in particular and this section as a whole, shows that Newell
and Shaw (and Simon12) published ideas in 1957 that were similar to those that
Dijkstra published in 1960 and 1963, as described in Section 2.1.

Flexibility First, Efficiency Second

Just like Dijkstra, Newell and Shaw were focused more on the flexibility of their
language IPL than on efficiency issues. Their first pseudo code was developed
in a machine-independent way with the purpose of precisely specifying a logic
theory machine. Only afterwards did they define IPL and in accordance with
the RAND JOHNNIAC machine [92, p.232]. In other words, they followed a top-
down methodology. Not surprisingly, IPL had some shortcomings in terms of
memory space and computation time, shortcomings which were not considered
too problematic:

“[F]or it seemed to us that these costs could be brought down by later
improvements, after we had learned how to obtain the flexibility we
required.” [92, p.232]

Unlike Samelson, Bauer, and many others (cf. Chapter 2), the prime concern
here was the language and the ease of being able to express oneself in that
language for the problem at hand.

Recursion

The problem domain of theorem proving, i.e. mathematical logic, contains many
natural examples of recursion. For instance, the definition of a proof in a given
logic is typically stated recursively. Likewise, the syntax of a logic is defined
recursively, similar to the BNF notation described in Appendix A. Therefore, in
retrospect not surprisingly, LT had recursion built in as well.

A first form of recursion in LT was in its matching routine, which served
the purpose of comparing two logical expressions. The matching routine would
traverse recursively down the syntax trees of both expressions and pairwise
compare syntactic entities. Details are omitted here; it suffices to note that the
authors explicitly mentioned that their matching routine could just as well have

12Simon co-authored [93] but did not co-author the other paper [92] that is of interest here.
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been implemented iteratively but, in their opinion, this would have been less
elegant [92, p.239].

A second, and more fundamental, form of recursion in LT was situated in
its executive routine, which governed the whole problem-solving behavior of
the automatic theorem prover. In a nutshell, a problem (i.e. a theorem that
had to be proved) was decomposed into subproblems (i.e. lemmas), which, in
turn, were decomposed further, etc. The corresponding programming technique
used was, thus, truly recursive in nature, since there was no guarantee that the
complete process would terminate. To obtain program termination, a trivial
stop criterion in terms of execution time was added to LT as well [92, p.239].

Conclusion

The previous discussion shows that the notion of recursion from mathematical
logic heavily influenced the design of the IPL programming language which,
in turn, would influence McCarthy and, consequently, the ALGOL Effort (cf.
Chapter 2).

3.2.4 Backus

In 1959, Backus presented a formal notation to describe the syntax of machine-
independent programming languages, such as ALGOL60 [3]. His notation, later
called Backus Normal Form, was a major contribution to the ALGOL Effort and
to programming-language design in general [9, 66]. It was based indirectly on
either Chomsky’s or Post’s work and, hence, on logic:

“There’s a strange confusion here. I swore that the idea for studying
syntax came from Emil Post because I had taken a course with Mar-
tin Davis at the Lamb Estate [an IBM think tank on the Hudson].
. . . So I thought if you want to describe something, just do what
Post did. Marin Davis tells me he did not teach the course until
long afterward [1960-61 according to Davis’s records]. So I don’t
know how to account for it. I didn’t know anything about Chomsky.
I was a very ignorant person. [Martin Davis speculates that Richard
Goldberg, a Harvard-trained logician and part of the Fortran team,
may have discussed Post’s or Chomsky’s work with Backus.].”

The previous words of Backus also stress that he too was not a mathematical
logician. The entire previous quote, including the words in between the square
brackets, is from [116, p.17].

The immense success of the Backus Normal Form notation suffices as a single
example to conclude that logic did, indeed, have a great impact on computer
science, even though Backus, himself, was not well-versed in mathematical logic.
Appendix A briefly connects Backus Normal Form notation with recursion.
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3.2.5 Rice

In Chapter 2, I have distinguished between some of those computer pioneers who
were for and some who were against recursive procedures. From Section 3.2.3,
it follows that there were also pioneers (Newell, Shaw, and Simon) who were
acquainted with logic and who used recursion extensively in their work. In this
section, it will follow that the recursive-function theorist, Rice, opposed the use
of recursive procedures.

In his two-page letter to the editor of the Communications of the ACM [105],
published in September 1960, Rice made an explicit connection between re-
cursion in a programming language13 and recursive function theory (i.e. com-
putability theory). Therefore, similar to Sammet’s 1969 remark (cf. Sec-
tion 3.1), Rice addressed the hype around recursion as well, albeit nine years
earlier. Unlike Sammet, however, Rice, having expertise in recursive function
theory, addressed the issues head on, as illustrated below14.

Rice considered efficiency to be more important than mathematical elegance
and, therefore, suggested not to use recursion if possible:

“When to recur? Never if you can avoid it. Recursive definitions
provide a neat way for mathematicians to define functions, and are
very convenient for proving things about functions by mathemati-
cal induction. However, they are a poor form in which to specify
functions for computation.” [105]

Rice also made an analogy: computing a function from a recursive definition is
like looking up its value in a serial memory, while computing a function from a
closed form or analytical expression is like looking up its value in a random access
memory and, hence, far more efficient [105]. So, recursion was not promoted
by the recursive-function theoretician Rice15 for efficiency reasons, while it was
promoted by Dijkstra (and others) based on linguistic ideals (cf. Chapter 2).

Rice continued by noting that some form of recursion (not necessarily re-
cursive procedures) was, however, needed in order to be able to compute any
computable function. He then addressed the question of how to recur, if re-
cursion was indeed needed for the problem at hand. He suggested to recur
iteratively, whenever possible, again due to efficiency reasons [105].

Rice ended his letter by implicitly referring to the linguists, such as Dijkstra:

“There are circumstances, other than the computing of functions
from recursive definitions, in which the problem arises of a sub-
routine operating simultaneously on more than one level. Usually

13Even though he did not mention ALGOL60 in his letter, he may just as well have referred
to it since LISP and ALGOL60 were the only two high-level programming languages that had
recursion built in by 1960.

14A similar exposition was presented by Rice five years later in a short paper: ‘Recursion
and Iteration’ [106]. In that paper, Rice referred to a paper by Peter [99] which I have yet to
read in future work.

15Students who study recursive function theory today learn Rice’s Theorem [117, p.191],
thereby illustrating Rice’s expertise in recursive function theory.
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the question is one of producing extremely general and unrestricted
program components, which may be interconnected with complete
freedom. The preceding remarks of course do not apply here.” [105,
my italics]

In other words, Rice understood the point of view taken by the linguists; in
particular, the linguists’ appeal for generality, regardless of whether recursive
procedures were of practical use or not.

Finally, it is important to note, again, that recursive procedures in ALGOL60

were not needed in order to be able to compute any computable function. This
follows from Kleene’s Normal Form Theorem and ALGOL60’s facility to express
potentially unbounded while loops. Rice seems to have been well aware of this
fact.

3.3 Dijkstra and the Halting Problem

Like many computer pioneers, Dijkstra too, was not a logician [46, p.346]. Af-
ter graduating from the Gymnasium Erasmianum in Rotterdam, he obtained a
degree in 1956 in mathematics and theoretical physics from the University of
Leiden [45, p.88]. In the meantime, starting from 1952, Dijkstra also worked
as a programmer at the Mathematisch Centrum in Amsterdam in the Comput-
ing Department of Aad van Wijngaarden, an expert in numerical analysis (cf.
Section 1.2).

Between 1952 and 1969 Dijkstra was primarily a computer programmer,
and between 1970 and 1999 he was mainly occupied with formal mathematics.
The two occupations were, of course, strongly related. During the 1960s, Dijk-
stra had consistently advocated that programming “would and should become
a mathematical activity”, and, by for instance making a case against the goto
statement (cf. Section 3.3.2), he had “(re)arranged the programming task so
as to make it better amenable to mathematical treatment” [46, p.346]. But
in order to actually apply formal reasoning himself, Dijkstra first had to be-
come convinced by his contemporaries. For instance, Tony Hoare’s 1969 article
‘An Axiomatic Basis for Computer Programming’ [55] showed Dijkstra how a
programming-language semantics could be defined in terms of the axioms that
were needed to prove program properties [46, p.346].

The purpose of this section is three-fold. First, I will try to roughly esti-
mate when Dijkstra had most definitely become acquainted with Turing’s 1936
paper16. Second, I will show that Dijkstra’s work on high-level programming
languages and compilers was positively influenced by his understanding of the
unsolvability of Turing’s Halting Problem. Third, I will end by very briefly ad-
dressing the difficult relationship that Dijkstra had with logicians who worked
in computer science.

16I have received comments from people who claim that Dijkstra had already understood
Turing’s work during the 1950s. I do not contradict this claim in this text, but I currently do
not have any evidence to support it either.
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3.3.1 Dijkstra’s Reception of Turing’s 1936 Paper

While, during the 1950s at the Mathematisch Centrum, Dijkstra was mainly a
computer practitioner (and not yet a theoretical computer scientist), he did have
the opportunity to become acquainted with Turing’s 1936 paper at a relatively
early stage in his career. For, in March 1953, the mathematician Tamari gave a
presentation, most likely in French, at the Mathematisch Centrum about Turing
Machines and Post’s word problems [121]. Nothing related to this presentation
is, however, mentioned in the 1953 scientific annual report of the Mathematisch
Centrum [64], nor any sign of reception of those ideas.

In 1962 at the IFIP congress in Münich, Dijkstra gave an invited talk, ti-
tled: ‘Some Meditations on Advanced Programming’ [28]. In this talk, Dijkstra
showed that he was aware of some of the work of Turing and Von Neumann:

“However, as I told you, the sky above the programmers’ world is
brightening slowly. Before I go on to draw your attention to some
discoveries that are responsible for this improvement, I should like
to state as my opinion that it is relatively unimportant whether
these are really new discoveries or whether they are rediscoveries
of things perfectly well known to people like, say, Turing or von
Neumann.” [28, p.536]

As we have seen previously, many computer pioneers did not see the connection
between Turing’s work and practical computer problems. While logicians, such
as Wang and Davis, had to make that connection themselves, so did computer
practitioners such as Dijkstra:

<continued> “For in the latter case, the important and new thing
is that a greater number of people become aware of such a fact,
and that a greater number of people realize that these are not just
theoretical considerations but that they may have tangible, practical
results.” [28, p.536]

Dijkstra was, in 1962, well aware of the message conveyed by Burks in 1961,
discussed previously, that hardware and software are (within limits) interchange-
able:

“One important rediscovery is that of the well-known equivalence of
designing a machine and making a program.” [28, p.536]

While it is not clear whether Dijkstra had, by 1962, become fully acquainted
with Turing’s 1936 theory of computation; he clearly had done so by 1964.
For in April of that year, Dijkstra gave a Dutch presentation [32] in which he
talked about the practical (i.e. finite) limitations of electronic computers. In
the beginning of his talk, he briefly but explicitly mentioned17 Turing and his
theory of computation, “Turing machines”, and unsolvable problems [32, p.55].

17Dijkstra did not refer to Turing’s 1936 paper, however.
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3.3.2 Dijkstra Applies the Unsolvability of the Halting

Problem

In 1962, after his IFIP address in Münich, Dijkstra became Professor of Mathe-
matics at the Eindhoven University of Technology. The 1960s were, in general,
the years in which Dijkstra strongly advocated for a mathematical treatment
of programming; e.g. by making a case against the goto programming-language
construct [46, p.346].

Dijkstra’s Goto Unraveled

As professor, Dijkstra often received letters from practitioners in the field. Of
particular interest is that, during the mid-1960s, two different programming
department managers, on their own initiative, contacted Dijkstra to convey the
same concern: that, in general, the quality of their programmers was inversely
proportional to the density of goto statements in their programs [33, p.9].

Dijkstra reacted accordingly by conducting programming experiments him-
self. For several ALGOL60 programs that contained goto statements, he wrote
functionally-equivalent programs without using goto statements. While the lat-
ter programs were initially more difficult to make, they typically turned out to
be “shorter and more lucid” [33, p.9].

In other words, Dijkstra’s strive for elegance was leading him the way, once
again. But, Dijkstra knew that experiments could, at best, merely be indications
of a deeper underlying problem. Therefore, he tried to understand whether and
why it was, in general, beneficial not to use goto statements. To do so, Dijkstra
resorted to his theoretical knowledge of computing, by applying the unsolvability
of Turing’s Halting Problem18:

“The origin in the increase in clarity is quite understandable. As
is well known there exists no algorithm to decide whether a given
program ends or not. In other words: each programmer who wants
to produce a flawless program must at least convince himself by in-
spection that his program will indeed terminate. In a program, in
which unrestricted use of the goto statement has been made this
analysis may be very hard on account of the great variety of ways
in which the program may fail to stop. After the abolishment of
the goto statement there are only two ways in which a program may
fail to stop: either by infinite recursion –i.e. through the procedure
mechanism– or by the repetition clause. This simplifies the inspec-
tion greatly.” [33, p.10, my italics]

In short, Dijkstra used the unsolvability of the Halting Problem to infer a cri-
terion of elegance in higher-level programming. In retrospect, this may have
been an unprecedented application of the Halting Problem. Dijkstra did not,

18The italicized words describe the Halting Problem by implicitly relying on the Church-
Turing thesis.
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however, use the previous explanation in his official 1968 publication ‘Go To
Statement Considered Harmful’ [34]. In fact, he did not mention the Halting
Problem at all.

The Halting-Problem argument in the previous quote explains that, due to
the “great variety of ways in which the program may fail to stop”, the goto clause
is inferior to the procedure mechanism and the repetition clause. Dijkstra’s let-
ter ‘Go To Statement Considered Harmful’ conveys the same message but implic-
itly. The thesis of Dijkstra’s letter is that every programming-language clause
“should satisfy the requirement that a programmer independent coordinate sys-
tem can be maintained to describe the process in a helpful and manageable way”.
By first showing how this can be accomplished by various clauses, including the
procedure mechanism and the repetition clause, Dijkstra then explained why
goto clauses make it “terribly hard to find a meaningful set of coordinates in
which to describe the process progress” [34].

Dijkstra was not the first person to make a case against the goto statement.
Naur already did so in 1963 [89], and Van Wijngaarden had illustrated in 1964
how to get rid of gotos to labels by replacing them with calls to procedures
generated from the corresponding labels [13, 72, p.27,-]. Finally, Knuth also
mentions that Schorre and Forsythe were pioneers in trying to avoid using goto
statements in their programs [67, p.264]. However, Dijkstra may well have been
the first to motivate a case against the goto by relying on the unsolvability of
Turing’s Halting Problem.

Correct-by-Construction Programming

In 1967, Marvin Minsky published his book Computation: Finite and Infinite
Machines [86], in which he explained the concept of ‘effective procedure’ by in-
troducing the work of the logicians Turing, Post and others to the non-logician.
Dijkstra had read the book between 1967 and 1971 because he explicitly re-
ferred to it in his 1971 lecture notes A Short Introduction to the Art of Pro-
gramming [35]. Dijkstra’s reference to Minsky’s book was made in Chapter 2 of
his lecture notes where he re-applied Turing’s diagonal argument to prove the
unsolvability of the Halting Problem. Dijkstra’s application of the diagonal ar-
gument, however, was not conducted with Turing Machines but in the high-level
programming language ALGOL60, and was, hence, similar to Strachey’s proof19

discussed in Section 3.1.3.
In writing Chapter 2 of A Short Introduction to the Art of Programming [35],

Dijkstra first distinguished between a proper algorithm, which halts on all in-
puts, and an improper algorithm, which does not halt on all inputs. As the
names suggest, Dijkstra only considered algorithms that halt on all inputs to

19Minsky’s proof of the unsolvability of the Halting Problem was conducted at the low level
of Turing Machines, not at the higher level of ALGOL60 programs (see Section 8.2, page 148
in [86]). Minsky did show in his book the computational equivalence between Turing Machines
and various other systems, including “Universal Program Machines with Two Registers” on
page 255, but he did not prove the unsolvability of the Halting Problem directly in any of
those computationally equivalent systems.
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be practically relevant20. Afterwards, he explained that it is not possible to
algorithmically distinguish between a proper and an improper algorithm, by
explicitly referring to the unsolvability of Turing’s Halting Problem [35, p.15].

Dijkstra subsequently proved the unsolvability of the Halting Problem, as
mentioned previously, and then interpreted it in his own original way:

“The moral of this story is that it is an intrinsic part of the duty
of everyone who professes to compose algorithms to supply a proof
that his text indeed represents a proper algorithm.” [35, p.16]

The originality of this statement follows by contrasting it with Minsky’s inter-
pretation:

“[. . .] it is impossible to devise a uniform procedure, or computer pro-
gram, which can look at any computer program and decide whether
or not that program will ever terminate. This means that computa-
tion scientists cannot aspire to evolve a completely foolproof ‘debug-
ging’ program.” [86, p.153, my italics]

Both Dijkstra and Minsky only considered programs that halt on every input to
be practically relevant. But, while Minsky stressed a negative implication of the
unsolvability of the Halting Problem, Dijkstra provided a more positive conclu-
sion. Minsky stated that it is not possible to completely automate a posteriori
verification of an arbitrary program. Dijkstra, on the other hand, aware of this
negative result, used it to motivate that programming and correctness proving
should go hand in hand, also known as correct-by-construction programming.
According to Dijkstra, the programmer should restrict his programs so much
that he can prove that they halt. Dijkstra’s approach would become one of the
cornerstones of the field of activity called programming methodology [36, p.6].

Dijkstra’s Advice to Industry

On Friday, March 3, 1978, Dijkstra wrote an open letter [41] to a Lt. Col.
William A. Whitaker, to comment on the design documentation of Ironman21,
that he had received a few days earlier, presumably from Whitaker himself. In
his letter, Dijkstra explained the practical infeasibility of Ironman’s requirement
which stated that:

“There shall be no language restrictions that are not enforceable by
translators.” [41, p.0]

To do so, Dijkstra again used the unsolvability of the Halting Problem in a
non-trivial manner (see Appendix B).

20Contrary to the computer practitioner, the recursive-function theorist (i.e. mathematical
logician) was primarily interested in algorithms that did not halt on every input.

21Ironman was the next version of the requirement specifications for the high-level program-
ming language Ada [43, p.3].
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Similar to his lecture notes A Short Introduction to the Art of Program-
ming [35], discussed in the previous section, Dijkstra stressed the responsibility
of the user (i.e. programmer) and, hence, conveyed the infeasibility of completely
automating a translator (i.e. compiler) that would respect all of the requirements
stated in Ironman’s documentation:

“[W]e need to distinguish between the notion of ‘a legal program’ and
the notion of ‘a correct program’. From translators we can require
that they reject illegal programs; for legal programs the language
definition should define the proof obligations to be met [by the user]
in order to make the legal program also a correct program.”
[41, p.2, my italics]

In summary, Dijkstra applied the unsolvability of the Halting Problem to il-
lustrate the infeasibility of one of Ironman’s requirements. Based on Dijkstra’s
first words to the colonel:

“[T]his letter is an almost immediate reaction to the 4 kg. of lan-
guage design documentation that reached me last Monday; it was
written because –at least in those few days– I failed to discover an
adequate treatment of an issue that now seems to be in urgent need
of clarification.” [41, p.0, my italics]

Dijkstra may, perhaps yet again, have provided a novel application of the unsolv-
ability of the Halting Problem in the fields of higher-level programming-language
design and compiler building.

3.3.3 Dijkstra vs. Logic

From 1970 and onwards, Dijkstra became more and more occupied with for-
mal reasoning. And in the mid-1970s, he realized that many researchers were
sceptical about axiomatic-based systems, and, hence about the kind of work he
himself was conducting:

“[. . .] over the past years I have discovered that many people are very
suspicious about either the legitimacy or the adequacy of axiomatic
methods. And recently I came to the conclusion that I could not
understand why.” [39, p.0]

Those people included of course the logicians whose suspicion was based on
Gödel’s Incompleteness Theorem. Dijkstra wanted to understand whether this
suspicion was justified in his domain of computer programming:

“It begins with Gödel’s Theorem, and here I start already with a
display of ignorance. [. . .] That I did not study [Kleene’s ‘Introduc-
tion to Metamathematics’], but only read (parts of) it, was caused
by the fact that the reading of it did not give me the feeling that its
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contents really concerned me. [. . .] Is it, because Gödel’s Theorem
denied the possibility of a form of perfect understanding that had
never been my ideal in the first place?” [39, p.0]

The above quote was written by Dijkstra some time22 between 1973 and 1975.
In a letter, written in 1974, Dijkstra acknowledged Hoare’s 1969 article ‘An
Axiomatic Basis for Computer Programming’ [55] as a source of inspiration
for him to start working on formal methods, but at the same time he again
expressed concerns:

“[Tony Hoare’s] article attracted me in the sense that it tied in with
the syntactical structure of the program text, but the separation
in axioms and rules of inference –a logical tradition, but not my
tradition– worried me.” [37, p.2]

“The only thing the traditional logicians did was to try find a model
for the real world, but, since in the form of computing science[,] logic
has also become an engineering activity, I prefer the real world to
provide a model for my dreams.. . .” [37, p.10]

In short, while Dijkstra was, on the one hand, inspired by some of the ideas
from mathematical logic, as for instance some of those presented in Hoare’s
paper [55], he was also careful only to use those ideas which he was able to
justify for his own cause, namely that of computer programming.

Further research is required to understand Dijkstra’s perspective on logic
for computer science. It is already clear, however, that Dijkstra had a troubled
relationship with the logicians: Broy has written two pages on this particular
topic in [13, p.90-91] and Apt has mentioned in [2] the devastating review23 of
Dijkstra’s 1990 book Predicate Calculus and Program Semantics, co-authored
by Scholten.

22Dijkstra did not put a date on all of his EWDs. But the Dijkstra Archive at the University
of Texas [25] does provide an approximated date for each EWD.

23Egon Börger in Science of Computer Programming 23, pp. 1-11, 1994.



Chapter 4

Conclusions & Future Work

Two themes have been addressed in my thesis: the Advent of Recursion and the
Advent of Logic in computer science. Conclusions and future work are presented
for each theme, followed by other future work which I hope to pursue as well.

4.1 Recursion

The recursive procedure, as a particular but important example of recursion,
entered the arena of programming languages and, hence, computer science in
several ways by different people. Particular attention has been paid to Edsger
W. Dijkstra, who was one of the first to implement recursive procedures by
building an ALGOL60 compiler and, who, in later years, strongly advocated for
recursive procedures while many of his contemporaries opposed them.

Dijkstra, along with some of his colleagues, were primarily led by linguistic
ideals and did not necessarily see the direct practical applicability of the re-
cursive procedure. Furthermore, it seems that Dijkstra’s sole purpose was to
pursue simplicity in language design and subsequent compiler building. As a
by-product, he obtained a language that could express recursive procedures and
a simple compilation technique for that language. Other proponents of recursive
procedures were Newell, Simon, and Shaw. They did introduce and subsequently
use recursive procedures for practical programming problems. Nevertheless, the
end product of Dijkstra’s efforts and those of Newell, Simon, and Shaw were
very similar: a flexible programming language, i.e. a language implemented by
means of what we would today call dynamic memory management.

Indeed, in technical terms, the advent of the recursive procedure implied the
advent of dynamic memory management, cf. a run-time stack. Many opposed
the recursive procedure, because, in their opinion, the run-time management
was too expensive in terms of execution time –a claim that was not contra-
dicted by Dijkstra. For instance, Samelson and Bauer preferred to statically
allocate all procedures (i.e. prior to execution), in the name of efficiency. Un-
fortunately for them, their implementation choice led to a dramatic usage of

57
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memory space: all their procedures had to be allocated statically, while Dijk-
stra’s method, essentially, only allocated space when a procedure was activated
at run time. In addition, Samelson and Bauer’s implementation choice forced
them to restrict the ALGOL60 language by disallowing procedures to call other
procedures and, hence, recursive procedures in particular. Presumably, another
reason why Samelson and Bauer did not implement recursion was because they
simply did not see why it would be useful in practice.

Bottom-Up vs. Top-Down

The previous paragraph illustrates that Samelson and Bauer followed what we
today would call a bottom-up approach: their implementation choice influenced
the design of the language. Dijkstra, Newell, Simon, and Shaw, on the other
hand, pursued a top-down approach by first solely studying the language, prior
to incorporating machine features into their study.

The reason why Dijkstra followed a top-down approach may, as hinted in [1,
p.124,125], lie in the fact that he did not have a programmable computing ma-
chine during the early 1950s, while many of those who worked bottom-up, did.
After some further reflection, however, this reasoning is probably too simplis-
tic. For instance, Newell, Shaw, and Simon may well have had a programmable
computing machine at their disposal during the early 1950s1 and they did work
top-down.

Dijkstra’s Extreme Stance

While Dijkstra had made a great contribution to language design and compiler
building by the end of 1960, his ideology was considered to be too impractical ac-
cording to many participants of the 1962 Rome symposium. Dijkstra’s ideology
led him, for instance, to the extreme of omitting all type indications and, hence,
transferring all the type checking to the run-time system, which, as many ob-
served, would have a negative effect on computation time –an observation that
Dijkstra did not contradict. In fact, Dijkstra believed that efficiency problems
would be resolved, or at least become negligible, in the long term. According to
Dijkstra, generalization of a programming language allowed for simplification in
compiler building and this would in the long term prevail over the short-term
engineering problems that concerned people like Samelson, Bauer, Wilkes, and
Strachey.

Nevertheless, with such an ideology in mind, Dijkstra was perceived as some-
one who totally neglected efficiency issues. Hence, it is no surprise that Dijkstra
and his fellow ‘linguists’ were the laughing stock of Seegmüller’s well-received
comment at the Rome symposium. A closer look at Dijkstra’s ideology, how-
ever, shows that his agenda was not to neglect efficiency issues per se, but to

1A statement that needs to be checked in future work. In retrospect, however, Newell,
Simon, and Shaw were not as linguistically inclined as Dijkstra. Recall that they pursued a
flexible language in order to implement their theorem prover, not because they were interested
in language per se.
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avoid as many language restrictions as possible, in the interest of being able to
construct texts that were easy to validate in terms of correctness.

Many “Firsts”

While Dijkstra was clearly not the sole inventor of a technique to implement
recursive procedures, it seems that Dijkstra’s approach was more generally ap-
plicable or simpler than many others. Why else, would Dijkstra’s 1960 paper [26]
stand out during the 1960s, compared to the other approaches? Further research
is required to understand how Dijkstra’s notations, as illustrated in [27], sim-
plified the task of compiler building. Also some other papers of Dijkstra require
further investigation in this regard, namely [30, 31].

Logic in General

While there were both proponents and opponents of the recursive procedure, it
is also interesting to zoom in on those pioneers who were well-versed in logic
at the time the recursive procedure was introduced. Dijkstra, Samelson, and
Bauer, for instance, did not belong to this select group2. As we have seen,
the recursive procedure was promoted by Newell, Shaw, and Simon who were
well-acquainted with logic, but it was also eschewed by the recursive-function
theorist Rice.

Dijkstra Discards his own Invention

To conclude the discussion on recursive procedures, it is fascinating to note that
in October 1974, by the time the recursive procedure had presumably become
generally accepted, Dijkstra casted doubts upon it [38].

Dijkstra, March, 1975: “The other day I heard that by casting doubts
on the central role of recursion, I had caused commotion at some
places [. . .]” [40]

Dijkstra, April, 1975: “The discovery that doubts may have to be
casted [sic] upon recursion –in Computing Science for more than a
decade the hallmark of academic respectability!– was something of
a shock for me. [. . .]”. [36, p.9]

Understanding Dijkstra’s line of thought, undoubtedly, requires further research.
Clearly, he was a man who wanted to understand the fundamentals of his dis-
cipline and, therefore, was willing to discard his own research contributions.

2If Samelson and Bauer had grasped Rice’s 1960 paper and applied Kleene’s Normal Form
theorem, then they would have had a strong argument not to implement recursive procedures
for the ALGOL60 language.
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4.2 Logic and Turing’s Halting Problem

As stressed by the historian Michael Mahoney, different ‘communities of com-
puting’ had their own views towards what could be accomplished with a pro-
grammable computing machine. The mathematical logicians belonged to one
such community, while Howard Aiken, for instance, belonged to another.

As I have shown, many computer pioneers belonged to a computing com-
munity in which Turing’s 1936 paper was not read. In fact, even those who did
read Turing’s paper, including logicians, did not initially grasp the connection
between the paper and programmable computing machines. Therefore, Martin
Davis’ negative characterization of pioneers, such as Howard Aiken and Her-
man Goldstine, and Andrew Hodges’ positive characterization of Alan Turing,
are misleading.

During the late 1970s, many computer pioneers of the 1950s and 1960s took
the effort to stress that they were not mathematical logicians, and that their
pioneering work was either not based on logic, or, if it was, that they did not
completely understand how. Nevertheless, even though the connection between
Turing’s theory of computation and programmable computing machines was not
well understood, logic in general did indirectly influence various early develop-
ments in computer science; most notably, Backus’ notation and Newell, Shaw,
and Simon’s IPL language.

Finally, I speculate that, unlike many of his contemporaries, Dijkstra was
able to apply the unsolvability of Turing’s Halting Problem to progress the
agenda of his research community. Three historical events support this claim.
First, in the mid-1960s, Dijkstra’s understanding of the unsolvability of the
Halting Problem led him to write his now-famous 1968 letter ‘Goto Considered
Harmful’ even though he did not mention it in his letter. Second, in his 1971
lecture notes, A Short Introduction to the Art of Programming, Dijkstra provided
a constructive and alternative interpretation of the unsolvability of the Halting
Problem by advocating for correct-by-construction programming. Third, in
a 1978 letter, he applied the unsolvability of the Halting Problem in a non-
trivial manner to prove the practical infeasibility of a programming-language
design requirement which he had obtained from industry. In future work, I
hope to further investigate to what extent Dijkstra was and was not influenced
by mathematical logic.

4.3 More Future Work

In addition to the above, I hope to continue this historical line of research in
several ways. First, Chomsky’s influence on the computer pioneers of the 1950s
deserves investigation3. Second, Dijkstra’s contributions in later years are of
particular interest to me and many other people. In fact, while writing this last
chapter, I became aware of two more secondary sources: a thesis written by G.
van den Hove [59] in which he covers Dijkstra’s scientific contributions between

3Naturally, I will first have to acquaint myself with secondary sources.
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the years 1951 and 1968, and a Ph.D. thesis of P.M. Priestley [102] in which
logic is covered extensively with respect to the development of programming
languages. Unfortunately, I have not yet been able to study these two sources.
Third, I am also eager to study various developments in Complexity Theory
between 1936 and 1971, in an attempt to understand how those developments
were and were not related with the ALGOL Effort. Finally, if the reader shares
some of my interests, I would be most grateful to hear from him or her.
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Appendix A

Backus Naur Form

Prior to 1959, the syntax of a programming language, such as FORTRAN and IAL,
was described informally, e.g. in plain English. Table A.1 illustrates a fragment
of the definition of FORTRAN’s syntax. In (i) the syntax of real numbers is defined
(informally) and in (ii) some examples are provided. Note, in particular, that
the numbers 1038 and 10−38 express a machine-dependent characteristic, thereby
illustrating that FORTRAN was a machine-dependent language.

Table A.2 defines the syntax of real numbers for the machine-independent
programming language IAL (later known as ALGOL58). Here, too, the definition
is provided informally. Unlike the definition in Table A.1, however, this defini-
tion is machine independent. I.e., it does not contain specific numbers such as
1038 or 10−38.

As is illustrated in de Beer’s thesis [9, p.26-27], informal definitions are, in
general, ambiguous and incomplete, not to mention lengthy. Therefore, the
definitions in Tables A.1 and A.2 were problematic to use in practice.

In 1959 at the IFIP congress in Zürich [3], Backus came to the rescue by
introducing a notation which was later called Backus Normal Form. Naur no-
ticed the power of the notation and, after making some small but important
modifications, used it to define ALGOL60’s syntax. The corresponding notation
is therefore often called Backus Naur Form (BNF) [66].

BNF is illustrated in Table A.3 on the same running example of real numbers.
Line 1 defines the syntactic category <digit> to be either 0 or 1 or 2 or . . . or
9. That is, | denotes ‘or’ and a digit is defined syntactically to be any number
between 0 and 9. Line 2 recursively defines an integer to be either a digit or a
concatenation of an integer and a digit. For example, the digit 5 is an integer.
And, 57 is an integer but not a digit. Finally, line 3 merely defines a real to be
either an integer (without a decimal point) or an integer followed by a decimal
point and another integer. For example, the integer 5 is a real. And, 5.9 is a
real but not an integer.

An important remark concerning Table A.3 is that the recursiveness in line 2
allows an arbitrary large (but finite) integer to be denoted. That is, line 2 only
works if the finiteness of the machine is abstracted away. So, Table A.3 is the
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(i) General Form:
Any sequence of decimal digits with a decimal point preceding or inter-
vening between any 2 digits or following a sequence of digits, all of this
optionally preceded by a plus or minus sign.

The number must be less than 1038 in absolute value and
greater than 10−38 in absolute value.

(ii) Examples:
17.0
5.0

256.32
0.0033

Table A.1: The description of real numbers in the FORTRAN report [63].

Form: N ∼ G.G10 ± G where each G is an integer as defined above.
G.G is a decimal number of conventional form. The scale factor 10 ± G is
the power of ten given by ±G. The following constituents of a number may
be omitted in any occurrence:
The fractional part .00 . . . 0 of integer decimal numbers;
the integer 1 in front of a scale factor;
the + sign in the scale factor;
the scale factor 10 ± 0.
Examples: 4711 137.06 2.99971010 10 − 12 310 − 12

Table A.2: The description of real numbers in the IAL report [100], with G
denoting a string of digits.

(1) <digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
(2) <integer> := <digit> | <integer><digit>
(3) <real> := <integer> | <integer>.<integer>

Table A.3: An example in Backus Naur Form.
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SYNTAX finite infinite
informal FORTRAN IAL

BNF (formal) ‘clumsy’ ALGOL60

Table A.4: Various ways to describe the syntax of a programming language.

formal equivalent of Table A.2 but not of Table A.1. Using BNF notation to
capture the formal equivalent of Table A.1 is only possible by enumerating all
possibilities, as opposed to using recursion. For example, suppose we have
<digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

and we wish to define any integer that is smaller than 10000. Then we would
have to explicitly write:
<integer> := <digit> | <digit><digit> | <digit><digit><digit> |

<digit><digit><digit><digit>
Likewise, if we wish to define any integer that is smaller than 9999, then we
would have to write –even more cumbersomely– all possibilities explicitly.

Table A.4 summarizes the previous discussion. FORTRAN’s syntax was de-
fined informally and with respect to the finiteness of a particular machine. IAL’s
syntax was defined informally as well, but infinite capacity (of some abstract
machine) was assumed. I.e., the infiniteness expressed machine independence1.
ALGOL60’s syntax was defined formally by using BNF notation and BNF’s power
to express recursion concisely under the assumption that arbitrarily large num-
bers can be stored (in the abstract machine). Finally, the entry ‘clumsy’ in
Table A.4 expresses that BNF is cumbersome (in many cases, impractical) to use
if abstraction of the finiteness of the machine is not allowed.

Finally, we cite from Backus’ 1959 paper:

“[T]here must exist a precise description of those sequences of sym-
bols which constitute legal IAL programs. [. . . But,] heretofore there
has existed no formal description of a machine-independent lan-
guage.” [3, p.129]

Backus’ formal notation was not applicable to his very own machine-dependent
programming language FORTRAN. The advent of a machine independent pro-
gramming language, such as IAL, was what was required for Backus to apply
his formal notation. In Perlis’ words in 1978, linguistics entered the arena of
programming-language design with the advent of machine independence:

“Linguistic growth –unlike FORTRAN, which was designed for a spe-
cific machine, and for which the issues were coding efficiency and
properly so, ALGOL was designed for arbitrary, unknown machines.
Consequently, the design of ALGOL focused on linguistic structure.

1Perhaps the infiniteness also served the purpose of closing the gap between the pro-
gramming language IAL and the intended application domain of numerical analysis, where
arbitrarily large mathematical objects prevail.
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They were the first languages, both ALGOL58 and ALGOL60, in which
linguistic issues forged to the front.” [101, p.146]



Appendix B

On language constraints

On Friday, March 3, 1978, Dijkstra wrote an open letter [41] to a Lt. Col.
William A. Whitaker, to comment on the design documentation of Ironman,
that he had received a few days earlier.

In his letter, Dijkstra explained the practical infeasibility of Ironman’s re-
quirement:

“There shall be no language restrictions that are not enforceable by
translators.” [41, p.0]

To do so, Dijkstra first addressed the meaning of the statement:
(1) “the integer procedure f is free from side effects” [41, p.0]

To keep his exposition simple, Dijkstra assumed that f was an integer proce-
dure without formal parameters. In addition, calling f would result, in general,
in a value functionally dependent on the initial values of some of its global
variables.

Dijkstra’s first proposal in capturing the meaning of (1) was:
(2) Within its scope, the inner block

begin integer h; h := f end
is semantically equivalent to the empty statement

He justified this choice by remarking that when f is free of side effects in ac-
cordance to (2), then the following transformations might be undertaken as
harmless by an optimizing compiler:

(i) transform y := f ∗ f into begin integer h; h := f ; y := h ∗ h end
(ii) transform b or f = 1 into if b then true else f = 1
(iii) transform a ∗ f into if a = 0 then 0 else a ∗ f

Dijkstra then argued as follows. Either severe and undesirable restrictions
are made on the text of the procedure f , e.g. by defining a language that pro-
hibits all possible side effects1, or

1Dijkstra showed in his letter that there are procedures that have side effects and are
practically relevant.
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“it is impossible for a translator to ‘enforce’ that the function pro-
cedure f is in the above sense [e.g. (i)-(iii)] free of side effects, as it
would require the solution of the halting problem, [. . .]

[begin integer h; h := f end] is not equivalent to the empty
statement under all circumstances in which the calling of f leads
not to a properly terminating computation!

In general, f computes a partial function and calling f only leads
to a properly terminating computation provided some condition D
–describing its domain– is initially satisfied.” [41, p.1]

Given the inadequacy of (2), Dijkstra provided a second proposal to capture the
meaning of (1):
(3) if D

then begin integer h; h := f end
else skip

and concluded:

“In general, the condition D with respect to which a function pro-
cedure is free of side effects needs to be stated explicitly; and the
user of the function procedure has to ensure that this condition is
satisfied wherever the function procedure may be invoked.”
[my italics] [41, p.1-2]

Similar to his lecture notes A Short Introduction to the Art of Programming [35],
discussed in the previous section, Dijkstra stressed the responsibility of the user
(i.e. programmer) and, hence, conveyed the infeasibility of completely automat-
ing a translator (i.e. compiler) that would respect all of the requirements stated
in Ironman’s documentation:

“[W]e need to distinguish between the notion of ‘a legal program’ and
the notion of ‘a correct program’. From translators we can require
that they reject illegal programs; for legal programs the language
definition should define the proof obligations to be met [by the user]
in order to make the legal program also a correct program.”
[my italics] [41, p.2]

In summary, Dijkstra applied the unsolvability of the Halting Problem to il-
lustrate the infeasibility of one of Ironman’s requirements. Based on Dijkstra’s
first words to the colonel:

“[T]his letter is an almost immediate reaction to the 4 kg. of lan-
guage design documentation that reached me last Monday; it was
written because –at least in those few days– I failed to discover an
adequate treatment of an issue that now seems to be in urgent need
of clarification.” [my italics] [41, p.0]

Dijkstra may, perhaps yet again, have provided a novel application of the unsolv-
ability of the Halting Problem in the fields of higher-level programming-language
design and compiler implementation.


