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Introduction

The aim of this thesis is an analytical study of algebraic canonicity of a fam-
ily of logics whose language consists of constants and implications. More
specifically, the logics to which this study applies are those associated with
certain distinguished sub-quasivarieties of (bi-)implicative algebras, the best
known of which are the varieties of (bi-)Hilbert algebras and (bi-)Tarski al-
gebras, Hilbert and Tarski algebras being the pure → reducts of intuitionistic
and classical propositional logics respectively.

There are two reasons for this line of research. The first is that the recent
developments in the algebraic theory of canonical extensions have greatly
expanded the range of logics to which it is applicable, far beyond the best
known family of lattice-based logics such as classical modal logics, and so
it is natural to try and explore its potential and limitations in interesting
case studies that are detached from the lattice setting, but to which the
methodology and results obtained via canonical extensions potentially apply.
The second reason is rooted in the content of these recent developments, that
are briefly described in what follows.

Canonical extensions were first introduced by Jónsson and Tarski in the
1950s for Boolean algebras with operators in their papers [25] and [26]. In
this Boolean setting, canonical extensions provide an algebraic formulation of
the Stone representation theorem for Boolean algebras which is alternatively
achieved via Stone duality. In [18, 23] and [24] Jónsson and Gehrke showed
that topological duality for distributive lattices can similarly be captured
algebraically. Since then, significant applications of the theory of canonical
extensions to modal logic have been discovered both in the classical and dis-
tributive cases as witnessed in [19]. In [15] the theory of canonical extensions
was extended to the case of non-distributive lattices. This has proven partic-
ularly useful as the completion obtioned is much simpler to work with than
the available duality theories.

The first step of any theory of canonical extensions is the existence theorem.
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In the Boolean and distributive settings the existence of the canonical exten-
sion can be proven via the Stone (resp. Priestley) duality, however existence
can also be proven constructively (and therefore independently from a dual-
ity). Indeed, in the lattice case, existence is shown by means of a construction
that involves the families Fi(P ) and Id(P ) of (proper) filters and ideals of P .
The proof of the existence of canonical extensions for posets can be based
on the same construction, but in this greatly generalised setting there is no
default or established choice as to what the right notion of filter and ideal of
a poset P should be.

The first appearance of the theory of canonical extensions for posets was
in [11], where it was applied to a fragment of the full λ-calculus consisting
of a binary, associative and completely join preserving fusion operator and
its two residuals. The filters and ideals in the construction of the extension
in this paper were chosen to optimise the mathematical properties of the
extension rather than for any logical reasons.

In [16] a parametrised theory of canonical extensions is developed. For every
set of upsets containing the principal upsets F , and every set of downsets
containing the principal downsets I , the existence of a unique (F ,I )-
canonical extension constructed from F and I is shown. It is also shown
how different choices of F and I (endowed with certain properties) guaran-
tee different features of the corresponding extensions (such as commutativity
with products or order-dualisation) each of which is desirable for the devel-
opment of a smooth theory. (The theory of canonical extensions for posets
has also been developed in a different direction in [22] where the canoni-
cal extension is viewed as one in a hierarchy of completions.) Of course,
the choice between alternative notions of filters and ideals can be based on
their satisfying or not satisfying certain properties of particular interest in
special contexts, but what is important to remark here is that an ultimate,
all-purpose notion of filter or ideal does not emerge from this analysis.

In [17] the first attempt was made at linking canonical extensions with AAL.
The underlying motivation for connecting these two, up to now, separate
algebraic methods in logic is that in all the successful applications of the
theory of canonical extensions (to, for example, the canonicity issues of cer-
tain classes of modal logics) the chosen filters are uniformly identified by
means of a fundamental notion in AAL, that of logical filter or S-filter for
the appropriate associated logic S. This suggests that, when an all-purpose
choice of filters and ideals is not available, the “right” choice could depend,
in different settings, on the different logical systems at hand, and on their
properties.
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Unfortunately the definition for canonical extensions of Hilbert algebras pre-
sented in [17] has certain drawbacks. A detour was taken through the meet
semi-lattice of finitely generated S-filters before applying the parametrised
theory with F and I as the sets of down-directed upsets and up-directed
downsets respectively. This gives a canonical extension which is not symmet-
ric in its relationship to the logical filters and ideals; moreover, it is an ad-hoc
construction which really utilises the powerful axiomatisation of Hilbert al-
gebras and is not applicable in more general contexts. Furthermore, the
canonicity result obtained is not analytical, as all four Hilbert axioms are
lifted together in one step.

One goal in this thesis is to apply the parametrised method directly with
logically motivated choices of F and I . As we briefly mentioned above, in
order to be able to clearly see the power and limitations of the logic-based
choice we need to get away from the lattice setting, since there the logical
and the mathematically optimal choices overlap. This justifies our choice of
a signature with only constants and implications.

All previous work on canonical extensions for the signature {⊺,→} has fo-
cused on Hilbert (and Tarski) algebras. In order to attempt to apply to
the widest possible setting, an extended class of algebras, the implicative
algebras, will be considered. Another reason to generalise to the level of
implicative algebras is to facilitate a more modular investigation into the
canonicity of the Hilbert axioms taken individually rather than all together,
as has been done in previous work.

The natural logical choice of filters for the signature {⊺,→} is that of im-
plicative filters, upsets closed under ⊺ and →. In order to allow a similarly
logical choice of ideals, we choose a signature which also contains a binary
subtraction operator ←. The set of ideals can then be taken to be those
downsets which are closed under � and ←.

In any complete, distributive, dually algebraic lattice, a subtraction operator
can always be defined as the left residual of the join (just as implication is
the right residual of the meet in a heyting algebra) by letting:

a← b =⋀{c ∶ a ≤ c ∨ b}

As discussed in [30], the subtraction operator gives rise to a second negation
defined by x = ⊺← x in addition to the usual ¬x = x→ �. Interestingly, both
of these negations seem to occur naturally in ordinary English with different
meanings, as: “It is not false that p” and “It is false that not p”. Note that
the concept of subtraction has particular intuitive relevance in a (semi-)
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boolean algebra (of sets), where it is just the very familiar set difference
operator (see [12]).

The natural starting point of this project is then that of bi-implicative alge-
bras. The axiomatization of bi-implicative algebras essentially says that the
binary relation ≤ defined on A equivalently as

a→ b = ⊺ iff a ≤ b iff a← b = �

is a partial order and (A,≤,⊺,�) is a bounded poset. Since these algebras are
special posets, the theory of canonical extensions for posets can be applied
to them. Further, the same order has two different but equivalent algebraic
descriptions in terms of the two arrows. This is very similar to what happens
in lattices with the algebraic operations ∧ and ∨ giving two different but
equivalent descriptions of the lattice order as

a ∧ b = a iff a ≤ b iff a ∨ b = b.

One major restriction to the applicability of the theory of canonical exten-
sions in all settings is that the basic operations of the algebras to be con-
sidered either preserve or reverse the order in each coordinate. Since in any
bi-Hilbert algebra → is order reversing in the first coordinate and order pre-
serving in the second and ← is order preserving in the first coordinate and
reversing in the second, these are the most natural assumptions to make
in the more general setting so that the maps → and ← can be extended.
A positive consequence of basing the canonical extension contruction on the
implicative filters and subtractive ideals is that the operation commutes with
both products and duals. This makes it possible to define the π and σ exten-
sions of → and ← coordinate-wise and this is done in the same way as for the
boolean, distributive, and non-distributive lattice cases. In general, → and
← are not smooth (see [20]), so a choice between π and σ needs to be made
for each. The choice has been made to take the π-extension for → and the
σ-extension for ← because in the case of a residuated lattice, the extensions
will then be residuated with the meet and join respectively in the extension.

The opening chapter of this thesis gives some preliminaries from the field
of abstract algebraic logic. In chapter 2, the details of the construction of
parametrised canonical extensions for posets are outlayed and some charac-
terists of filters and ideals which induce important properties in the exten-
sions are given. Following this, in chapter 3, background is given on π and
σ-extentions of maps that are order preserving or reversing in each coordi-
nate. In chapter 4, bi-implicative algebras are defined and their relationship
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to bounded posets is explained. Following this, a number of important ex-
tensions (including bi-Hilbert algebras) are introduced and the relationship
between the additional axioms is investigated. The chapter is rounded off
with some examples. In chapter 5, our choices of filters F and ideals I are
discussed along with some additional assumptions that are required to define
the (F ,I )-extension in the setting of bi-implicative algebras, namely the
axioms (Det), (OP2), (OR1) and their subtractive counterparts. The fact
that extensions commute with products and duals is shown and the final
definitions of the extensions of the operations are given. In chapter 6, we
present our canonicity results. In the final chapter, 7, conclusions are made
and some ideas for further work explained.



Chapter 1

Introduction to Abstract
Algebraic Logic

1.1 Closure Systems/Operators

Definition Given a set A, a closure operator on A is a function
cl ∶ P(A) −−→ P(A) such that for every X,Y ⊆ A:

1. X ⊆ cl(X)

2. If X ⊆ Y , then cl(X) ⊆ cl(Y )

3. cl(cl(X)) = cl(X)

Call a set X ⊆ A closed if cl(X) =X.

A closure system C on a set A (also referred to as a topped intersection
structure in [8]) is a set of subsets of A that includes A and is closed under
arbitrary intersection.

Proposition 1.1.1. If cl is a closure operator on A, then the set of all closed
subsets of A, C, is a closure system.

Proof. A ⊆ cl(A) ⊆ A implies A is closed and hence A ∈ C. Let Xi for i ∈ I be
closed subsets of A. Then for each i, cl(⋂iXi) ⊆ cl(Xi) = Xi, so cl(⋂iXi) ⊆

⋂iX. But we also know that ⋂iXi ⊆ cl(⋂iXi) so cl(⋂iXi) = ⋂iXi and hence

⋂iXi ∈ C.

Proposition 1.1.2. If C is a closure system on A, then cl defined for all
X ⊆ A by cl(X) = ⋂{Y ∈ C ∶X ⊆ Y } is a closure operator on A.

6
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Proof. 1. X ⊆ Z for each Z ∈ {Y ∈ C ∶X ⊆ Y }, implies X ⊆ ⋂{Y ∈ C ∶X ⊆
Y } = cl(X)

2. Let X ⊆ Z. Take any Y ∈ C such that Z ⊆ Y . Then X ⊆ Y also, so
cl(X) ⊆ Y . Hence cl(X) ⊆ ⋂{Y ∈ C ∶ Z ⊆ Y } = cl(Z).

3. If Y = cl(X). Then Y ∈ C, and thus, since Y ⊆ Y , cl(Y ) ⊆ Y . Then
since by 1 Y ⊆ cl(Y ) so cl(Y ) = Y ie. cl(cl(X)) = cl(X).

1.2 Connecting algebra and logic

Let L be a propositional language, that is, a set of connectives and FmL

consists of all terms over L made up from a denumerable set of variables V .
A logic over L is then a pair ⟨FmL,⊢⟩ where ⊢ is a consequence relation on
FmL, meaning that ⊢⊆ P(FmL) ×FmL which satisfies for all φ ∈ FmL, and
Γ,∆ ∈ P(FmL):

1. φ ∈ Γ implies Γ ⊢ φ

2. If ∆ ⊢ φ and Γ ⊢ δ ∀δ ∈ ∆, then Γ ⊢ φ

Alternatively L can be viewed as a set of function symbols and FmL as
the term algebra of L over V , the absolutely free L-algebra over V . A
consequence relation is then a closure operator cl⊢ ∶ P(FmL) → P(FmL)
defined by φ ∈ cl⊢(Γ) iff Γ ⊢ φ which is invariant under substitutions ie. for
every σ ∈ Aut(FmL):

σ[cl⊢(Γ)] ⊆ cl⊢(σ[Γ])

The following is a property of consequence relations that we will find useful
later on. It holds for any consequence relation ⊢⊆ P(FmL)×FmL, φ ∈ FmL

and Γ,Γ′ ∈ P(FmL).

Lemma 1.2.1. If Γ ⊆ Γ′ and Γ ⊢ φ, then Γ′ ⊢ φ.

Proof. Assume Γ ⊆ Γ′. Then by the first condition in the definition of con-
sequence relation, Γ′ ⊢ γ for all γ ∈ Γ. If, in addition, Γ ⊢ φ then the second
defining clause for consequence relations can be applied to give Γ′ ⊢ φ.

Note that if a consequence relation ⊢ only contains pairs (Γ, φ) such that
Γ = {γ} is a singleton, we will call it a restricted consequence relation and
will drop the use of the brackets, saying γ ⊢ φ rather than {γ} ⊢ φ.
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1.2.1 The Detachment Theorem

The detachment theorem is a property held by many well-known logics. Here
we introduce two different versions, D1 and D2, and show their equivalence.

Definition Given a logic ⟨FmL,⊢⟩, D1 holds in ⟨FmL,⊢⟩ if for all formulas
φ,ψ ∈ FmL and sets of formulas Γ ∈ P(FmL):

Γ ⊢ φ→ ψ implies Γ, φ ⊢ ψ (D1)

D2 holds in ⟨FmL,⊢⟩ if for all formulas φ,ψ ∈ FmL and sets of formulas
Γ ∈ P(FmL):

Γ ⊢ φ→ ψ and Γ ⊢ φ, implies Γ ⊢ ψ (D2)

Proposition 1.2.2. D1 iff D2

Proof. (⇒). Fix Γ, φ and ψ and assume that Γ ⊢ φ → ψ and Γ ⊢ φ. Let
∆ = Γ ∪ {φ}. Then by lemma 1.2.1, ∆ ⊢ φ → ψ so by D1, ∆, φ ⊢ ψ. So since
∆ ∪ {φ} = ∆, ∆ ⊢ ψ and (by the first condition for consequence relations)
for all δ ∈ ∆, Γ ⊢ δ so the second condition for consequence relations can be
applied to give Γ ⊢ ψ, as required.
(⇐). Again fix Γ, φ and ψ. Assume that Γ ⊢ φ → ψ. Let ∆ = Γ ∪ {φ}. Then
by the lemma and the first consequence relation condition, ∆ ⊢ φ → ψ and
∆ ⊢ φ. So by D2, ∆ ⊢ ψ, ie. Γ, φ ⊢ ψ.

D2 is equivalent to D1 in the most general setting but it has the advantage
that it is expressable using only sequents of the form Γ⇒ φ.

1.2.2 Logics of implicative algebras

In this section we define a restricted consequence relation with particular
relevance to this thesis. Let L = {→,⊺} and let A be an implicative algebra
(defined in section 4.1). Define ⊢A ⊆ FmL × FmL by:

φ ⊢A ψ iff ∀h ∈Hom(FmL,A), h(φ) ≤ h(ψ)

where ≤ is the order associated with A (defined in section 4.1).

The next proposition shows that ⟨FmL,⊢A⟩ is a logic.

Proposition 1.2.3. ⊢A is a restricted consequence relation.

Proof. 1. Since ≤ is reflexive, for all h ∈ Hom(FmL,A) and all φ ∈ FmL,
h(φ) ≤ h(φ), hence φ ⊢A φ.
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2. Assume δ ⊢A φ and γ ⊢A δ. Fix some h ∈ Hom(FmL,A), then by
assumption h(δ) ≤ h(φ) and h(γ) ≤ h(δ). So by the transitivity of ≤,
h(γ) ≤ h(φ). Hence γ ⊢A φ.

Finally, we show the relationship between the detachment theorem and a
condition on implicative algebras:

a ≤ b→ c and a ≤ b⇒ a ≤ c (Det)

Proposition 1.2.4. In any implicative algebra A, if A satisfies (Det) then
⊢A satisfies D2 for Γ = {γ}

Proof. Take some γ,φ,ψ ∈ FmL and assume γ ⊢A φ → ψ and γ ⊢A φ. Fix
some h ∈ Hom(FmL,A). By assumption h(γ) ≤ h(φ → ψ) = h(φ) → h(ψ)
and h(γ) ≤ h(φ). Then by Det, h(γ) ≤ h(ψ). So γ ⊢A ψ, as required.



Chapter 2

Preliminaries on Canonical
Extensions

2.1 Parameterised Canonical extensions of posets

In this chapter the parametrised method for generating canonical extensions
of posets is outlined. Unlike in the boolean and distributive lattice case,
where existence is given by a topological duality, the existence of canonical
extensions of posets must be shown explicitly. In the lattice case this con-
struction is based on the sets of (proper) filters and ideals of the lattice and a
similar construction can also be done for posets. The reason for parametris-
ing is that while in the lattice case there is a single natural choice of filters
and ideals, at the level of posets it is unclear what that choice should be. This
section shows that we can in fact use any set of upsets F and downsets I
which contain the principal upsets and downsets respectively. The canonical
extension constructed using F and I is then called the (F ,I )-completion.
The first section includes an abstract definition of (F ,I )-completion while
the second proves existence. The third shows uniqueness of the extension for
fixed F and I , and the final section outlines certain properties of the choice
of filters and ideals give rise to important properties of the extension.

10
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2.2 Defining the (F ,I )-extension

Definition An extension of a poset P is a pair (e,Q ) where Q is a poset and
e ∶ P → Q is an order embedding ie. for all a, b ∈ P , a ≤ b iff e(a) ≤ e(b). A
completion of a poset P is an extension (e,Q ) where Q is a complete lattice.

An upset in a partial order P is a set X ⊆ P such that x ∈X and x ≤ y implies
y ∈X. Dually a downset of P is a set X ⊆ P such that x ∈X and y ≤ x implies
that y ∈ X. For each p ∈ P , let ↑p = {a ∈ P ∶ a ≥ p} and ↓p = {a ∈ P ∶ a ≤ p}
denote the principal upset and downset of p respectively.

Let F be a collection of upsets of P and I be a collection of downsets. We
say that an extension (e,Q ) of a poset P is (F ,I )-compatible iff:

1. For every F ∈ F there exists an a ∈ Q such that ⋀ e[F ] = a and F = Fa

where Fa = {p ∈ P ∣ e(p) ≥ a} and

2. For every I ∈ I there exists a b ∈ Q such that ⋁ e[I] = b and I = Ia

where Ia = {p ∈ P ∣ e(p) ≤ a}.

This means that for each F ∈ F , ⋀ e[F ] exists in Q and identifies F as
exactly the elements of P whose images lie above ⋀ e[F ]. Similarly for each
I ∈ I , ⋁ e[I] exists in Q and identifies I as exactly the elements of P whose
images lie below ⋁ e[I].

We say that an (F ,I )-compatible extension (e,Q ) of a poset P is (F ,I )-
compact iff for each F ∈ F and I ∈ I , if ⋀ e[F ] ≤ ⋁ e[I] then F ∩ I ≠ ∅.

In an (F ,I )-compatible extension of a poset P, we call an element F -closed
if a = ⋀ e[F ] for some F ∈ F or I -open if a = ⋁ e[I] for some I ∈ I . The
collection of F -closed and I -open elements of (e,Q ) will be denoted by
KF
e (Q ) and OI

e (Q ) respectively.

We say that an (F ,I )-compatible extension (e,Q) is (F ,I )-dense iff every
element q ∈ Q is both the join of a set of F -closed elements and the meet of
a set of I -open elements.

We call an (F ,I )-compatible extension an (F ,I )-extension if it is both
(F ,I )-compact and (F ,I )-dense. Finally, an (F ,I )-completion is a
complete (F ,I )-extension.
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2.3 Existence

In this section, we take a set of upsets ordered by reverse inclusion F = (F ,⊇)
and a set of downsets ordered by inclusion I = (I ,⊆) and show the existence
of an (F ,I )-extension F⊕ I under the additional assumptions that ↑p ∈ F
and ↓p ∈ I for every p ∈ P. We will then see that by taking its Macneille
completion, F⊕ I, we get an (F ,I )-completion.

2.3.1 The Amalgamation

First we define a binary relation ≤+ on F ⊎I . Let:
F ≤+ F ′ iff F ′ ⊆ F
I ≤+ I ′ iff I ⊆ I ′

F ≤+ I iff F ∩ I ≠ ∅
I ≤+ F iff for every i ∈ I, f ∈ F i ≤ f .

Lemma 2.3.1. ≤+ is a preorder on F ⊎I

Proof. Clearly ≤+ is reflexive. For transitivity take F,F ′ ∈ F and I, I ′ ∈ I .
Two cases will be shown, the others are straight forward to check.
(1.) If F ≤+ I ≤+ F ′ then there exists an x ∈ F ∩ I. Also x ≤ y for all y ∈ F ′,
so ↑x ⊇ F ′. But since F is an upset ↑x ⊆ F so F ′ ⊆ ↑x ⊆ F . Hence F ≤+ F ′.
(2.) I ≤+ F ≤+ I ′. Since F ≤+ I ′ there must exist an x ∈ F ∩ I ′. Together with
the fact that I ≤+ F this tells us that i ≤ x for all i ∈ I. Hence I ⊆ ↓x ⊆ I ′. So
I ≤+ I ′.

Let ≡ be the equivalence relation induced by ≤+ (i.e. G ≡ H iff G ≤+ H and
H ≤+ G). Then clearly ≤, defined as ≡ / ≤+, is a partial order such that for
all G,H ∈ F ⊎I , [G] ≤ [H] iff G ≤+ H.

The next lemma illustrates the crucial role played by the principal upsets
and downsets in ensuring that P embeds into F ⊕ I. From here on we will
assume that ↑p = {a ∈ P ∶ a ≥ p} ∈ F and ↓p = {a ∈ P ∶ a ≤ p} ∈ I , for each
p ∈ P.
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Lemma 2.3.2.

1. For all p ∈ P , [↑p] = [↓p].

2. These are the only non-equal elements identified by ≡.

3. [↑] ∶ P→ F⊕ I is an order embedding.

Proof.
(1.) For all q ∈ ↓p and r ∈ ↑p, q ≤ p ≤ r so ↓p ≤+ ↑p. Also p ∈ ↑p∩↓p so ↓p ≤+ ↑p.
(2.) Let G,H ∈ F ⊎ I and assume [G] = [H]. If G,H ∈ F or G,H ∈ I
then clearly G = H so let G ∈ F and H ∈ I . Then there is some x ∈ G ∩H
and for all g ∈ G,g ≥ x and for all h ∈H,h ≤ x. Therefore since G is an upset
containing x, G = ↑x and since H is a downset containing x, H = ↓x.
(3.) p ≤ q iff ↑q ⊆ ↑p iff ↑p ≤+ ↑q iff [↑p] ≤ [↑q]

Finally, we define the amalgamation F⊕ I as (F ⊎I / ≡,≤). The next three
subsections will show that ([↑],F⊕ I) is an (F ,I )-extension of P.

2.3.2 Compactness

This lemma essentially shows that every filter is the meet of its elements,
and every ideal is the join of its elements.

Lemma 2.3.3. For every F ∈ F , I ∈ I :

1. ⋀{[↑ p]∣p ∈ F} = [F ]

2. ⋁{[↑ p]∣p ∈ I} = [I]

Proof.
(1.) For every p ∈ F , ↑p ⊆ F ⇒ [F ] ≤ [↑p]. Now assume there is some
[G] ≤ [↑p] for every p ∈ F . If G ∈ F then F ⊆ G and hence [G] ≤ [F ].
Otherwise, if G ∈ I , then for every g ∈ G, g ≤ p for every p ∈ F . Hence
[G] ≤ [F ].
(2.) Can be proven exactly dually to (1) since [↑p] = [↓p] for each p ∈ P .

Proposition 2.3.4. F⊕ I is (F ,I )-compact.

Proof. For every F ∈ F , I ∈ I :

⋀[↑][F ] = ⋀{[↑p]∣p ∈ F} = [F ] and ⋁[↑][I] = ⋁{[↑p]∣p ∈ I} = [I] by the
lemma. So ⋀[↑][F ] ≤ ⋀[↑][F ]⇒ [F ] ≤ [I] and therefore F ∩ I ≠ ∅.
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2.3.3 (F ,I )-compatibility

This lemma shows that the members of P lie above a filter F (below an ideal
I) in the amalgamation, if and only if they belong to F (belong to I).

Lemma 2.3.5. For every F ∈ F , I ∈ I :

1. F[F ] = F .

2. I[I] = I.

Proof. (1.) For every p ∈ P , p ∈ F[F ] iff ↑p ≥ [F ] iff ↑p ⊆ F iff p ∈ F
(2.) Can be proven exactly dually to (1).

Proposition 2.3.6. F⊕ I is an (F ,I )-compatible extension of P.

Proof. Follows directly from lemmas 2.3.3 and 2.3.5.

2.3.4 Denseness

Proposition 2.3.7. F⊕ I is (F ,I )-dense.

Proof. For x ∈ F ⊎I , there are two cases:
(1.) If x = [F ] for some F ∈ F , then clearly x = ⋁{[F ]} and as seen in
lemma 2.3.3 x = ⋀ e[F ] = ⋀{[↓p] ∶ p ∈ F}.
(2.) Similarly, if x = [I] for some I ∈ I , then x = ⋀{[I]} and as seen in
lemma 2.3.3 x = ⋁ e[I] = ⋁{[↑p] ∶ p ∈ I}.

2.3.5 Taking the MacNeille completion

Definition Let ⟨P,≤⟩ be a partially ordered set. For any A ⊆ P let
Au = {p ∈ P ∶ p ≥ a for all a ∈ A} and Al = {p ∈ P ∶ p ≤ a for all a ∈ A}. The
MacNeille completion of P, denoted by P, consists of the collection
{A ∈ P(P ) ∶ (Au)l = A} with the inclusion ordering and the embedding ↓
which sends a ∈ P to ↓a.

The special defining characteristics of the MacNeille completion, (given as
Theorems 7.40 and 7.41 in [8]) are the following:

� Taking the MacNeille Completion of a poset preserves all its (existing)
joins and meets

� A poset P is both join dense and meet dense in its MacNeille completion



CHAPTER 2. PRELIMINARIES ON CANONICAL EXTENSIONS 15

� If (i,L) is a completion of P such that P is both join dense and meet
dense in L, then L is isomorphic to the MacNeille completion of P via
an order isomorphism fixing P.

Let P be a poset, let (e,Q ) be an (F ,I )-compatible extension of P and
let (e,Q) be the completion of P consisting of MacNeille completion of Q
together with the embedding e = ↑ ○ e.

The following lemma shows that since MacNeille completions preserve ex-
isting meets and joins, closed elements in Q remain closed in Q and open
elements in Q remain open in Q .

Lemma 2.3.8.

1. KF
e (Q) ⊆KF

e (Q)

2. OI
e (Q) ⊆ OI

e (Q)

Proof.
(1.) If a is closed in Q , then a = ⋀Q e[F ] for some F ∈ F . Then since
MacNeille completions preserve meets, a = ⋀Q e[F ], so a is closed in Q.
(2.) Dual to 1.

The next proposition shows the crucial facts that Macneille completions
preserve the properties of (F ,I )-compatibility, (F ,I )-compactness and
(F ,I )-denseness.

Proposition 2.3.9. For every poset P and (F ,I )-compatible extension
(e,Q):

1. (e,Q) is an (F ,I )-compatible extension of P.

2. If (e,Q) is (F ,I )-compact, then (e,Q) is (F ,I )-compact.

3. If (e,Q) is (F ,I )-dense, then (e,Q) is (F ,I )-dense.

4. If (e,Q) is an (F ,I )-extension of P, then (e,Q) is an (F ,I )-completion
of P.

Proof.
(1.) Since (e,Q) is an (F ,I )-compatible extension, for every F ∈ F there
exists an a ∈ Q such that ⋀Q e[F ] = a and F = Fa. Then ↑ a ∈ Q and since
Macneille completions preserve meets, ⋀Q e[F ] = ↑a. Then simply because ↑
is an embedding, we see that p ∈ F iff e(p) ≤ a iff e(p) ≤ ↑a. The proof for
I ∈ I is dual.
(2.) Assume ⋀Q e[F ] ≤ ⋁Q e[I] for some F ∈ F and I ∈ I . Since (e,Q) is an
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(F ,I )-compatible extension, this meet and join already exist in Q, and are
preserved (along with their relationship) in the MacNeille completion. So by
denseness of (e,Q), F ∩ I ≠ ∅.
(3.) By the lemma, it is enough to show that for each x ∈ Q, x = ⋀A = ⋁B for
A ⊆K(Q) and B ⊆ O(Q). Since Q is meet and join dense in Q, x = ⋀Y = ⋁Z
for Y,Z ⊆ Q. Then as Q is dense, for each y ∈ Y , z ∈ Z, y = ⋀Ay and
z = ⋁Bz for Ay ⊆ K(Q),Bz ⊆ O(Q). Then A = ⋃{Ay ∶ y ∈ Y } ⊆ K(Q) and
B = {Bz ∶ z ∈ Z} ⊆ O(Q) and x = ⋀A = ⋁B.
(4.) By 1-3.

Corollary 2.3.10. (e,F⊕ I) is an (F ,I )-completion of P.

2.4 Uniqueness

In this section we will assume that (e,Q ) is an (F ,I )-completion of P and
show that it therefore must be isomorphic to (e,F⊕ I). Hence proving the
uniqueness (up to isomorphism) of (F ,I )-completions.

Lemma 2.4.1. Let (e,Q) be an (F ,I )-compatible extension of P. Then
for every a ∈K(Q) and b ∈ O(Q):

1. a = ⋀ e[Fa] and Fa ∈ F

2. b = ⋁ e[Ib] and Ib ∈ I

Proof. (1.) Let a = ⋀ e[F ] for some F ∈ F . Then by (F ,I )-compatibility
there exists an a′ ∈ Q such that a′ = ⋀ e[F ] and Fa′ = F . So a = a′ and hence
Fa = F . Therefore a = ⋀ e[Fa] and Fa = F ∈ F .
(2.) Dual to 1.

The next lemma and the following corollary show that the map
(K(Q) ∪ O(Q),≤Q) Ð→ F ⊕ I defined for a ∈ K(Q) by a z→ Fa and for
b ∈ O(Q) by bz→ Ib is both well-defined and an order embedding.

Lemma 2.4.2. For all a, a′ ∈K(Q) and b, b′ ∈ O(Q):

� a ≤ a′ iff Fa ≤ F ′

a

� b ≤ b′ iff Ib ≤ I ′b

� a ≤ b iff Fa ≤ Ib

� b ≤ a iff Ib ≤ Fa
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Proof.
(1.) Since a′ = ⋀ e[Fa′], we have a ≤ a′ iff ∀p ∈ P(e(p) ≥ a′ ⇒ e(p) ≥ a) iff
F ′

a ⊆ Fa iff Fa ≤ F ′

a.
(2.) Dual to 1.
(3.) a ≤ b implies ⋀ e[Fa] ≤ ⋁ e[Ib]. So by compactness there exists c ∈ Fa∩Ib.
(Implies a ≤ e(c) ≤ b.) Implies Fa ≤ Ib. Conversely, Fa ≤ Ib implies ∃c ∈ P
such that a ≤ e(c) ≤ b and hence a ≤ b.
(4.) b ≤ a iff ⋁ e[Ib] ≤ ⋀ e[Fa] by the lemma
iff (∀p ∈ Ib)(∀q ∈ Fa)(e(p) ≤ e(q)) by definition of ⋁ and ⋀
iff (∀p ∈ Ib)(∀q ∈ Fa)(p ≤ q) since e is an order embedding
iff Ib ≤ Fa.

Corollary 2.4.3. If a ∈K(Q) ∩O(Q), then [Fa] = [Ia]

Then (F ,I )-compatibility shows that it must also be onto. Consequently,
K(Q) ∪O(Q) ≅ F⊕ I.

Theorem 2.4.4. (e,Q) ≅K(Q) ∪O(Q) ≅ F⊕ I

Proof. Denseness of (e,Q), means that K(Q) ∪O(Q) is both join and meet

dense in (e,Q). But we saw above that the MacNeille completionK(Q) ∪O(Q)
must then be isomorphic to (e,Q). So it only remains to put this together
with the above result that K(Q) ∪O(Q) ≅ F⊕ I, which clearly implies that

K(Q) ∪O(Q) ≅ F⊕ I.

2.5 Properties of the (F ,I )-completion

In this section we give conditions which, if satisfied, guarantee that taking
canonical extensions commutes with both duals and products. We also see
conditions which ensure that the canonical extension is join generated by
its completely join irreducibles and meet generated by its completely meet
irreducibles.

Throughout this section, because we will be referring to multiple posets,
the notation F (P) will be used to refer to the chosen set of filters of each
poset P. Similarly I (P) will refer to the chosen ideals of P. It will be
assumed that the principal filters and ideals are included in F (P) and I (P)
respectively, so that the (F (P),I (P))-completion, which we will call Pσ, is
always defined. Further, we will assume that P is included in (rather than
just embeddable in) its canonical extension, and reference to the filters and
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ideals when talking about closed and open elements will be dropped; they
will be denoted by K(Pσ) and O(Pσ) respectively.

2.5.1 Commuting with duals

For any partial order P, let Pδ denote its order dual.

Proposition 2.5.1. For every partial order P, if F (Pδ) = I (P) and
I (Pδ) = F (P) then:

1. K((Pδ)σ) = O(Pσ)δ

2. O((Pδ)σ) =K(Pσ)δ

3. (Pδ)σ = (Pσ)δ

Proof.
(1.) For every a ∈ K((Pδ)σ), a = ⋀δ F = ⋁F for some F ∈ F (Pδ) = I (P).
Hence a ∈ O(Pσ). Conversely, for every b ∈ O(Pσ), b = ⋁ I = ⋀δ I for some
I ∈ I (P) = F (Pδ), so b ∈K((Pδ)σ). So, as sets, K((Pδ)σ) = O(Pσ). But the
order on O(Pσ) is that of ⊆, whereas the order on K((Pδ)σ) is that of ⊇, so,
as ordered sets, K((Pδ)σ) = O(Pσ)δ.
(2.) Dual to 1.
(3.) To see this we need to show that K((Pδ)σ) ∪ O((Pδ)σ) is isomorphic
to O(Pσ) ∪K(Pσ) as it sits inside (Pσ)δ, that is, to (O(Pσ) ∪K(Pσ))δ. To
this end just notice that the conditions that uniquely determine the order on
the union, see lemma 2.4.2, are self-dual in the sense that one gets the exact
same conditions if closed is replaced by open, open by closed, and the order
is reversed.

2.5.2 Commuting with products

Proposition 2.5.2. For every pair of partial orders P1 and P2, if
-for every F ∈ F (P1×P2) πi[F ] ∈ F (Pi) for i = 1,2 and for every Fi ∈ F (Pi),
F1 × F2 ∈ F (P1 × P2)
-for every I ∈ I (P1 ×P2) πi[I] ∈ I (Pi) for i = 1,2 and for every Ii ∈ I (Pi),
I1 × I2 ∈ I (P1 × P2)
then:

1. K((P1 × P2)σ) =K(Pσ1) ×K(Pσ2)

2. O((P1 × P2)σ) = O(Pσ1) ×O(Pσ2)
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3. (P1 × P2)σ = Pσ1 × Pσ2

Proof.
(1.) (⊆) Let u = (u1, u2) ∈ K((P1 × P2)σ). Then u = ⋀F , for some F ∈
F (P1 × P2), so πi[F ] ∈ F (Pi), i = 1,2. Hence ⋀πi[F ] ∈ K(Pσi ), so it is
enough to show that u = (⋀π1[F ],⋀π2[F ]): As u ≤ v for every v ∈ F ,
then ui ≤ ⋀πi[F ]. Conversely, as ⋀πi[F ] ≤ vi for every vi ∈ πi[F ], then
(⋀π1[F ],⋀π2[F ]) ≤ v for every v ∈ F , and so (⋀π1[F ],⋀π2[F ]) ≤ ⋀F = u.

(⊇) Let u = (u1, u2) ∈ K(P1,Pσ1) ×K(P2,Pσ2). Then ui = ⋀Fui
and ∅ ≠ Fui

∈
F (Pi), so ∅ ≠ F = Fu1 × Fu2 ∈ F (P1 × P2). Let us show that u = ⋀F : As
ui = ⋀Fui

, then ui ≤ pi for every pi ∈ Fui
, hence u = (u1, u2) ≤ (pi, p2) for every

(p1, p2) ∈ F . If (v1, v2) ≤ (p1, p2) for every (p1, p2) ∈ F , then vi ≤ ⋀πi[F ] =

⋀Fui
= ui, hence (v1, v2) ≤ (u1, u2).

2.5.3 Completely join irreducibles

Definition Let C be a complete lattice. Then j ∈ C is completely join
irreducible iff for every A ⊆ C: j = ⋁A implies j ∈ A. An element m ∈ C
is completely meet irreducible iff: m = ⋀A implies m ∈ A. Let J(C ) and
M(C ) refer to the sets of completely join irreducible and completely meet
irreducible elements of C respectively.

The following gives a condition on F under which Pσ is join generated by its
completely join irreducibles and a condition on I under which Pσ is meet
generated by its completely meet irreducibles.

Proposition 2.5.3. For every partial order P,

1. if F (P) is closed under unions of ⊆-chains, then

(a) for every a ∈ K(Pσ), b ∈ O(Pσ), if a /≤ b, then j ≤ a and j /≤ b for
some j ∈ J(Pσ), and so

(b) for every x ∈ Pσ, x = ⋁{j ∈ J(Pσ) ∣ j ≤ x}.

2. if I (P) is closed under unions of ⊆-chains, then

(a) for every a ∈K(Pσ), b ∈ O(Pσ), if a /≤ b, then m /≥ a and m ≥ b for
some m ∈M(Pσ), and so

(b) for every x ∈ Pσ, x = ⋀{m ∈m(Pσ) ∣ x ≤m}.
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Proof. (1.) Let a ∈ K(Pσ), b ∈ O(Pσ). If ⋀Fa = a /≤ b = ⋁ Ib, then Fa ∩ Ib =
Fa↑ ∩ Ib↓ = ∅. As F (P) is closed under unions of ⊆-chains, then by Zorn’s
lemma there exists F ∈ F that is maximal among the elements in F that are
disjoint from Ib. Let j = ⋀F . As F∩Ib = ∅, then j /≤ b, for if ⋀F = j ≤ b = ⋁ Ib,
then by compactness F ∩ Ib ≠ ∅. Moreover, F = Fj = {p ∈ P ∣ j ≤ p}: indeed,
as j = ⋀F , then F ⊆ Fj. If F ⊂ Fj, then by maximality, Fj ∩ Ib ≠ ∅, hence
there exists p ∈ P such that j ≤ p ≤ b, contradiction.
Let us show that j is join irreducible: By denseness, it is enough to show that
if A ⊆ K(Pσ) such that j = ⋁A, then j ∈ A. Suppose that j ≠ a′ for every
a′ ∈ A. Hence, as j = ⋁A implies that a′ ≤ j for every a′ ∈ A, we get a′ < j,
and so F = Fj ⊂ Fa′ , which implies, by maximality, that Fa′ ∩Ib ≠ ∅, hence for
every a′ ∈ A there exists pa′ ∈ Ib such that a′ ≤ pa′ . Then ⋀F = a = ⋁A ≤ ⋁ Ib
and so, by compactness, F ∩ Ib ≠ ∅, contradiction.

(2.) Let x ∈ Pσ. By denseness x = ⋁{a ∈ K(Pσ) ∣ a ≤ x}, and so by associa-
tivity of the join, it is enough to show that a = ⋁{j ∈ J(Pσ) ∣ j ≤ a} for every
a ∈ K(Pσ). Let a ∈ K(Pσ), y = ⋁{j ∈ J(Pσ) ∣ a ≤ j}, and suppose that a ≠ y.
Then, as y = ⋁{j ∈ J(Pσ) ∣ a ≤ j} ≤ a, we get that a /≤ y. So in order to get
to a contradiction, it is enough to show that a /≤ y implies that there exists
j0 ∈ J(Pσ) such that j0 ≤ a (hence j0 ≤ ⋁{j ∈ J(Pσ) ∣ a ≤ j} = y) and j0 /≤ y.
By denseness, if a /≤ y = ⋀{b ∈ O(Pσ) ∣ y ≤ b}, then there exists b ∈ O(Pσ)
such that y ≤ b and a /≤ b, but then, by item 1 of this proposition, j ≤ a and
j /≤ b for some j ∈ J(Pσ), hence j /≤ y (for if not, then j ≤ y ≤ b).



Chapter 3

Canonical Extensions of
monotone maps

3.1 Defining fπ and fσ for monotone f

Monotone maps are maps that are order preserving or reversing in each
coordinate. In this chapter, canonical extensions are defined for monotone
maps (as in [11]) in the case that the operation of taking canonical extensions
commutes both with products and duals. For each monotone map f , two
alternatives of extension are defined, fπ and fσ.

Definition A monotone map (over P ) is an order preserving function
f ∶ ∏i≤nPi Ð→ P where P is a poset and for each 1 ≤ i ≤ n, either Pi = P or
Pi = P δ.

Let f be a monotone map over a poset P and let P σ = F⊕ I for a choice of
F and I that satisfy the pre-conditions of propositions 2.5.1 and 2.5.2.

Since each closed element F in P σ is the meet of elements in P , and each
open element I in P σ is the join of elements in P , the most obvious way to
extend f to closed and open elements of P σ is as follows:

f(F ) =⋀{f(p) ∶ F ≤ p ∈ P}

f(I) =⋁{f(p) ∶ I ≥ p ∈ P}

Then since each element of the extension is both a meet of open elements
and a join of closed elements, there are two natural ways fπ and fσ to extend
f to each u ∈ P σ:

21
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fπ(u) =⋀{f(I) ∶ u ≤ I ∈ O(P σ)}

fσ(u) =⋁{f(F ) ∶ u ≥ F ∈K(P σ)}

In summary we define:

fπ(u) =⋀{⋁{f(p) ∶ I ≥ p ∈ P} ∶ u ≤ I ∈ O(P σ)}

fσ(u) =⋁{⋀{f(p) ∶ F ≤ p ∈ P} ∶ u ≥ F ∈K(P σ)}

Note that this is also how monotone maps are extended for canonical exten-
sions in lattice settings (see [31]).

3.2 Simplifying the definitions for two special

cases

We now turn our attention to the special cases of two binary maps, f and
g such that f is order reversing in the first coordinate and order preserving
in the second and g is order preserving in the first coordinate and order
reversing in the second, and we show how we can simplify the definitions
given above. Clearly f and g can be viewed as monotone maps such that
f ∶ P δ × P Ð→ P and g ∶ P × P δ Ð→ P . We now show how we can simplify
the definitions of fπ and gσ.

Let ū = (u1, u2) ∈ P δ × P . By the above definition (using ī in place of I):

fπ(ū) =⋀{⋁{f(p̄) ∶ ī ≥ p̄ ∈ P δ × P} ∶ ū ≤ ī ∈ O((P δ × P )σ)}

By propositions 2.5.2 and 2.5.2:

O((P δ × P )σ) = O((P δ)σ) ×O(P σ) = (K(P σ))δ ×O(P σ)

So ī ∈ O((P δ × P )σ) iff ī = (c, o) for some c ∈ (K(P σ))δ and o ∈ O(P σ).

Then ī ≥ p̄ iff c ≤ p1 and o ≥ p2, and ū ≤ ī iff u1 ≥ c and u2 ≤ o.

Hence we can rewrite fπ as:

fπ(u1, u2) =⋀{⋁{f(p1, p2) ∶ p1, p2 ∈ P, p1 ≥ c, p2 ≤ o} ∶ c ∈K,o ∈ O, c ≤ u1, o ≥ u2}

As for gσ, we start with (replacing F with f̄):

gσ(ū) =⋁{⋀{g(p̄) ∶ f̄ ≤ p̄ ∈ P × P δ} ∶ ū ≥ f̄ ∈K((P × P δ)σ)}
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Then propositions 2.5.2 and 2.5.2 tell us that:

K((P × P δ)σ) =K(P σ) ×K((P δ)σ) =K(P σ) ×O((P σ))δ

So f̄ ∈K((P × P δ)σ) iff f̄ = (c, o) for some c ∈ (K(P σ)) and o ∈ O(P σ)δ.

Then f̄ ≥ p̄ iff c ≤ p1 and o ≥ p2, and ū ≤ f̄ iff u1 ≥ c and u2 ≤ o.

So we can rewrite gσ as:

gσ(u1, u2) =⋁{⋀{g(p1, p2) ∶ p1, p2 ∈ P, p1 ≥ c, p2 ≤ o} ∶ c ∈K,b ∈ O, c ≤ u1, o ≥ u2}



Chapter 4

Bi-implicative Algebras and
extensions

In this chapter implicative (and bi-implicative) algebras are introduced and
their relationship to topped (bounded) partially ordered sets is explained. In
particular, every implicative algebra gives rise to a poset and every poset to
a normal implicative algebra. In fact the category of normal implicative alge-
bras with injective homomorphisms is isomorphic to the category of topped
posets with top-preserving order embeddings. Following this, a number of
important extensions to the axiomatization of implicative algebras are dis-
cussed and their relationship to one another is investigated. The first of these
conditions is an algebraic modus tollens which is shown in section 5.1 to be
important for ensuring that an algebra can be embedded in its canonical ex-
tension. Next are conditions expressing that the implication operator is order
reversing in the first coordinate and order preserving in the second, and the
subtraction operator is order preserving in the first and order reversing in the
second coordinate, which are necessary for defining the extensions of these
operators. Then we look at Hilbert (and bi-Hilbert) algebras, a well-known
class of algebras. Finally, (⊺) and (�) are two conditions such that if they
hold in a bi-implicative algebra, its extension will be again a bi-implicative
algebra.

24



CHAPTER 4. BI-IMPLICATIVE ALGEBRAS AND EXTENSIONS 25

4.1 Implicative algebras and their relation-

ship to partially ordered sets

Implicative algebras are the weakest algebras of the signature (→,⊺) such
that the relation defined by a ≤ b iff a → b = ⊺ is a poset with top ⊺. It
is shown below that the class of implicative algebras properly contains the
more well-known class of Hilbert algebras. Note that the class of implicative
algebras is not equationally definable. For a more comprehensive expose of
the theory of implicative algebras see [29].

Definition A set A together with a binary operation → and constant ⊺ is
an implicative algebra iff the following conditions are satisfied for all a, b ∈ A:

a→ a = ⊺ (I1)

If a→ b = ⊺ and b→ c = ⊺, then a→ c = ⊺ (I2)

If a→ b = ⊺ and b→ a = ⊺, then a = b (I3)

a→ ⊺ = ⊺ (I4)

Given an implicative algebra A, define a relation on A by:

a ≤ b iff a→ b = ⊺

Then (I1),(I2) and (I3) imply that ≤ is reflexive, transitive and anti-symmetric
respectively and (I4) implies that ⊺ is a largest element in A. So ⟨A,≤,⊺⟩
which we shall call A∗ is a topped poset.

Alternatively, if we begin with a partially ordered set P = ⟨P,≤⟩ with a
greatest element ⊺, we can define P∗ with an implication → on P by letting

p→ q =

⎧⎪⎪
⎨
⎪⎪⎩

⊺ if p ≤ q

q otherwise
(N)

Then the following proposition shows that this definition always yields an
implicative algebra.

Proposition 4.1.1. If P = ⟨P,≤,⊺⟩ is a topped partially ordered set, then
P∗ = ⟨P,→,⊺⟩ (where → is given by (N)) is an implicative algebra.

Proof. Note that if p = ⊺ then q ≤ p and we are in the first case, so q ≤ p iff
q → p = ⊺. There are four axioms to verify.
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1. q ≤ q⇒ q → q = ⊺.

2. q → p = ⊺ and p→ r = ⊺⇒ q ≤ p and p ≤ r⇒ q ≤ r⇒ q → r = ⊺.

3. q → p = ⊺ and p→ q = ⊺⇒ q ≤ p and p ≤ q⇒ q = p.

4. For all q, q ≤ ⊺ so q → ⊺ = ⊺.

Note that not every implicative algebra can be defined in this way (see ex-
ample just above 4.3.3), and let those that are be called normal. Note also
that an implicative algebra A is normal iff a → b ∈ {⊺, b} for all a, b ∈ A. In
the remainder of this section, the relationships between the implicative alge-
bras, the normal implicative algebras and topped posets is investigated. Let
Imp denote the category of implicative algebras with homomorphisms, Imp∗

denote the category of normal implicative algebras with injective homomor-
phisms, and TPos denote the category of topped posets with top-preserving
order isomorphisms. Earlier in this section it was shown how one can obtain
a topped poset from any implicative algebra. Let us extend this to a functor
( )∗ ∶ Imp Ð→ TPos by letting (A)∗ be defined as before for each object A
and (f)∗ = f for each morphism f . The following proposition shows that this
is well defined. It also clearly preserves identity morphisms and composition
of morphisms, so is in fact a functor.

Proposition 4.1.2. Let f ∶ A → B be an injective homomorphism (A,B ∈
Imp). Then f ∶ A∗ → B∗, is an order embedding that preserves ⊺.

Proof. Immediately we have that f preserves top. Take any a, b ∈ A. If a ≤ b
then f(a→ b) = f(⊺) = ⊺. So f(a)→ f(b) = ⊺ and hence f(a) ≤ f(b). If a ≰ b
then a → b ≠ ⊺ so by injectivity of f , f(a → b) ≠ f(⊺) = ⊺ so f(a) → f(b) ≠ ⊺
and hence f(a) ≰ f(b).

We also saw a way to define a normal implicative algebra P ∗ from any topped
poset P . Let us now also extend ( )∗ to a functor ( )∗ ∶ TPos Ð→ Imp∗,
defining (f)∗ = f for each morphism f . The following proposition shows that
( )∗ is also well-defined. Clearly it also preserves identity morphisms and
composition of morphisms.

Proposition 4.1.3. Let f ∶ P → Q be a top-preserving order embedding.
Then f ∶ P∗ → Q∗, is an injective homomorphism.

Proof. To show that f is a homomorphism we take p, q ∈ P : If p ≤ q ⇒ p →
q = ⊺ and f(p) ≤ f(q) ⇒ f(p → q) = f(⊺) = ⊺ = f(p) → f(q). Otherwise
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p → q = q and f(p) ≰ f(q) ⇒ f(p → q) = f(q) and f(p) → f(q) = f(q). So
in either case f(p → q) = f(p) → f(q). We also know that f preserves top.
To see that f is injective, let f(p) = f(q). So f(p) ≤ f(q) and f(q) ≤ f(p)
which implies that p ≤ q and q ≤ p. Hence p = q.

Note that there also exists the inclusion functor i ∶ Imp∗ Ð→ Imp. The
compositions of ( )∗, ( )∗ and i. The compositions of these functors then
give three more functors ( )∗ ○ i ∶ Imp∗ Ð→ TPos, ( )∗ ○ ( )∗ ∶ ImpÐ→ Imp∗

and i ○ ( )∗ ∶ TPosÐ→ Imp shown in the following diagrams.

Imp TPos-
( )∗

Imp∗

i

�
�
�

��	

( )∗ ○ i
@
@
@
@@R

TPos Imp∗-
( )∗

Imp

( )∗

�
�

�
��	

( )∗ ○ ( )∗

@
@
@
@@R

Imp∗ Imp-
i

TPos

( )∗
�

�
�

��	

i ○ ( )∗
@
@
@
@@R

This gives us the following pairs of functors between TPos, Imp and Imp∗.

Imp∗
( )∗○i

,,
TPos

( )
∗

ll

Imp
( )
∗
○( )∗

,,
Imp∗

i

ll

Imp
( )∗

,,
TPos

i○( )
∗

ll

The following lemma shows that ()∗ ○ i and ()∗ give an isomorphism between
Imp∗ and TPos.
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Lemma 4.1.4.

1. For all A ∈ Imp∗, (A∗)∗ = A

2. For all P ∈ TPos, (P∗)∗ = P

3. (f∗)∗ = f for each morphism f ∈ TPos

4. (f∗)∗ = f for each morphism f ∈ Imp∗

Proof.

1. dom(A) = dom(A∗) = dom((A∗)∗) and for all a, b ∈ A, a → b = ⊺ in A
iff a ≤ b in A∗ iff a→ b = ⊺ in (A∗)∗

2. dom(P ) = dom(P ∗) = dom((P ∗)∗) and for all p, q ∈ P , p ≤ q in P iff
p→ q = ⊺ in P ∗ iff p ≤ q in (P ∗)∗

3. and 4. are trivial since (f)∗ = f∗ = f .

4.2 Bi-implicative algebras

A bi-implicative algebra is an implicative algebra (A,→,⊺) augmented with
a binary subtraction operator ← and constant � such that the algebraic dual
of (A,←,�) is an implicative algebra and for all a, b ∈ A,

a→ b = ⊺ iff a ≤ b iff a← b = �

where ≤ is the partial order associated with (A,→,⊺). The axioms for the
subtraction connective are as follows:

a← a = � (I←1 )

If a← b = � and b← c = �, then a← c = � (I←2 )

If a← b = � and b← a = �, then a = b (I←3 )

�← a = � (I←4 )

Now starting from a bounded poset ⟨P,≤,⊺,�⟩ with topped poset reduct P,
we can define a bi-implicative algebra ⟨P,→,←,⊺,�⟩ where ⟨P,→,⊺⟩ = P∗ and
← given by

p← q =

⎧⎪⎪
⎨
⎪⎪⎩

� if p ≤ q

p otherwise
(N←)
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We call all bi-implicative algebras which can be defined in this way nor-
mal. See section 4.4.2 for an example of a non-normal bi-Hilbert algebra.
Let Bi-Imp∗ be the category of normal bi-implicative algebras with injective
homomorphisms. Let Bi-Imp denote the category of bi-implicative algebras
with injective homomorphisms, Bi-Imp∗ denote the category of normal bi-
implicative algebras with injective homomorphisms, and BPos denote the
category of bounded posets with order isomorphisms that preserve these
bounds. As was done in the previous section for implicative algebras, ( )∗
and ( )∗ can be extended to give functors in the bi-implicative setting. De-
fine ( )∗ ∶ Bi-Imp Ð→ BPos on morphisms f by letting f∗ = f . The following
lemma shows that this definition is well defined. Again obviously ( )∗ pre-
serves identities and commutes with composition.

Proposition 4.2.1. Let f ∶ A → B be an injective homomorphism (A,B ∈
Bi− Imp). Then f ∶ A∗ → B∗, is an order embedding that preserves ⊺ and �.

Proof. f is an injective homomorphism from A to B implies that f is an
injective homomorphism from the implicative reduct of A to the implicative
reduct of B. So by Proposition 4.1.2, f is an order embedding that preserves
⊺. Since f is also a homomorphism between bi-implicative algebras, f(�) = �,
so f preserves �.

( )∗ ∶ BPos → Bi-Imp∗ is also defined on morphisms f by f∗ = f . The follow-
ing proposition shows that this is well defined. Then again it is obviously a
functor.

Let f ∶ P → Q be an order embedding that preserves top and bottom.

Proposition 4.2.2. f ∶ P ∗ → Q∗ is an injective homomorphism.

Proof. Since f is an order embedding that preserves top, Proposition 4.1.3
says that f(⊺) = ⊺, for all p, q ∈ P , f(p→ q) = f(p)→ f(q) and also that f is
injective. By assumption it is also clear that f(�) = � so it only remains to
show that for each p, q ∈ P , f(p ← q) = f(p) ← f(q). If p ≤ q then p ← q = �
and f(p) ≤ f(q)⇒ f(p ← q) = f(�) = � = f(p) ← f(q). Otherwise p ← q = q
and f(p) ≰ f(q) ⇒ f(p← q) = f(q) and f(p)← f(q) = f(q).

Again, there also exists the inclusion functor i ∶ Bi-Imp∗ Ð→ Bi-Imp and the
compositions of the three functors, give three more functors ( )∗ ○ i ∶ Bi-Imp∗

Ð→ BPos, ( )∗ ○ ( )∗ ∶ Bi-Imp Ð→ Bi-Imp∗ and i ○ ( )∗ ∶ BPos Ð→ Bi-Imp
shown in the following diagrams.
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Bi − Imp BPos-
( )∗

Bi − Imp∗

i

�
�

�
��	

( )∗ ○ i
@
@
@
@@R

BPos Bi − Imp∗-
( )∗

Bi − Imp

( )∗

�
�

�
��	

( )∗ ○ ( )∗

@
@
@
@@R

Bi − Imp∗ Bi − Imp-
i

BPos

( )∗
�
�

�
��	

i ○ ( )∗
@
@
@
@@R

Therefore there are the following pairs of functors between BPos, Bi-Imp and
Bi-Imp∗.

Bi − Imp∗
( )∗○i

--
BPos

( )
∗

mm

Bi − Imp
( )
∗
○( )∗ --

Bi − Imp∗

i
mm

Bi − Imp
( )∗

,,
BPos

i○( )
∗

mm

The following lemma shows that ()∗ ○ i and ()∗ give an isomorphism between
Bi-Imp∗ and BPos.

Lemma 4.2.3.

1. For all A ∈ Bi-Imp∗, (A∗)∗ = A

2. For all P ∈ BPos, (P∗)∗ = P

3. (f∗)∗ = f for each morphism f ∈ BPos

4. (f∗)∗ = f for each morphism f ∈ Bi − Imp∗
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Proof.

1. dom(A) = dom(A∗) = dom((A∗)∗) and for all a, b ∈ A, a → b = ⊺ in A
iff a ≤ b in A∗ iff a → b = ⊺ in (A∗)∗ and a ← b = � in A iff a ≤ b in A∗

iff a← b = � in (A∗)∗

2. dom(P ) = dom(P ∗) = dom((P ∗)∗) and for all p, q ∈ P , p ≤ q in P iff
p → q = ⊺ in P ∗ iff p ≤ q in (P ∗)∗ and p ≤ q in P iff p ← q = � in P ∗ iff
p ≤ q in (P ∗)∗

3. and 4. are trivial since (f)∗ = f∗ = f .

4.3 Additional axioms

4.3.1 Bi-Hilbert algebras

Hilbert algebras were introduced by Monteiro in [28]. Diego also made a fun-
damental contribution to the development of the theory of Hilbert algebras
and implicative filters (see [9] and [10]) and in 1960 showed that they are
equationally definable. In the same year, L. Iturrioz proved that (H) and
(F) are independent. Further developments of the theory were introduced by
Busneag, in [4] and [5].

Definition A Hilbert algebra is an implicative algebra in which the following
two extra conditions hold:

a→ (b→ a) = ⊺ (H)

(a→ (b→ c))→ ((a→ b)→ (a→ c)) = ⊺ (F)

The dual conditions which are added to define a bi-Hilbert algebra are:

(a← b)← a = � (H←)

((a← c)← (b← c))← ((a← b)← c) = � (F←)

Lemma 4.3.1. In every Hilbert algebra ⊺→ a = a

Proof. Since (⊺→ a)→ (⊺→ a) = ⊺, an application of F reveals that
((⊺ → a) → ⊺) → ((⊺ → a) → a) = ⊺. But (⊺ → a) → ⊺ = ⊺ so we have
⊺ → ((⊺ → a) → a) = ⊺. Therefore (⊺ → a) → a = ⊺ so ⊺ → a ≤ a. By H
⊺→ a ≥ a so putting this together, ⊺→ a = a.
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To generate examples of Hilbert and bi-Hilbert algebras we make use of the
complex algebra construction which generates a Heyting algebra from any
partially ordered set. Then we take its ⟨→,⊺⟩ reduct, which is a Hilbert
algebra, and define a subtraction operator to be the right residual of the
union, just as the implication operator is the left residual of the intersection.

Given a partially ordered set P = ⟨X,≤⟩, recall its complex heyting algebra
is defined as ⟨P i(X),∩,∪,z→,X,∅⟩ where P i(X) is the set of subsets of X
which are also upsets and for any U,V ∈ P i(X), U z→ V = ⋃{Z ∈ P i(X) ∶
Z ∩U ⊆ V } = {x ∈X ∶ ↑x ∩U ⊆ V }.

Note that by this definition, Z ∩ U ⊆ V iff Z ⊆ U z→ V ie. z→ is the left
residual of ∩. We define the subtraction operator by

U ←Ð [ V =⋂{W ∈ P i(X) ∶ U ⊆ V ∪W}

so that U ⊆ V ∪W iff U ←Ð [ V ⊆W . We shall call P + = ⟨P i(X),X,∅,z→,←Ð [⟩
the complex bi-Hilbert algebra of P , and its implicative reduct, the complex
Hilbert algebra of P .

This lemma gives a more workable definition of ←Ð [, and the following theo-
rem shows that P + is in fact a bi-Hilbert algebra.

Lemma 4.3.2. For any U,V ∈ P i(X), ⋂{W ∈ P i(X) ∶ U ⊆ V ∪W} = {x ∈
X ∶ U ⊈ V ∪X/↓{x}}

Proof. Each direction will be shown contrapositively.

� (⊆) If U ⊆ V ∪X/↓x, then X/↓x is a W ∈ P i(X) such that U ⊆ V ∪W
and x ∉X/↓x so x ∉ ⋂{W ∈ P i(X) ∶ U ⊆ V ∪W}.

� (⊇) If x ∉W for some W ∈ P i(X) such that U ⊆ V ∪W}, then ↓ x∩W = ∅
so W ⊆ X/↓ x. Therefore V ∪W ⊆ V ∪X/↓ x, so U ⊆ V ∪X/↓ x and
hence x ∉ {x ∈X ∶ U ⊈ V ∪X/↓{x}}

Proposition 4.3.3. Given a partially ordered set P = ⟨X,≤⟩,
P + = ⟨P i(X),X,∅,z→,←Ð [⟩ is a bi-Hilbert algebra.

Proof. The fact that ←Ð [ is residuated with ⋃ shows that U ←Ð [ V = ∅ iff
U ⊆ V ∪∅ = V , so P + is a bi-implicative algebra. To see (H←), let x ∈ U ←Ð [ V ,
so U ⊈ V ∪X/↓ x. Hence U ⊈X/↓ x, so there is some u ∈ U such that u ∉X/↓ x
ie. u ≤ x. Then as U is an upset, x ∈ U . So U ←Ð [ V ⊆ U .
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To prove (F←) we make extensive use of the residuation which shows that:
(U ←Ð [W )←Ð [ (V ←Ð [W ) ⊆ (U ←Ð [ V )←Ð [W
iff (U ←Ð [W ) ⊆ (V ←Ð [W ) ∪ (U ←Ð [ V )←Ð [W
iff U ⊆W ∪ (V ←Ð [W ) ∪ (U ←Ð [ V )←Ð [W .
Then we take some x ∈ U . Assume x ∉W and x ∉ V ←Ð [W . Then W ⊆X/↓x
and V ⊆ W ∪X/↓x = X/↓x. So V ∪X/↓x = X/↓x. Then since x ∈ U and
x ∉X/↓x, U ⊈ V ∪X/↓x. Again using the residuation we get U ←Ð [ V ⊈X/↓x.
So U ←Ð [ V ⊈W ∪X/↓x and hence x ∈ (U ←Ð [ V )←Ð [W .

4.3.2 Normality and the Hilbert axioms

The following theorem shows that every normal implicative algebra is a
Hilbert algebra.

Proposition 4.3.4. Let A be a normal implicative algebra, then A is a
Hilbert algebra.

Proof.

� (H) For all a, b ∈ A, b → a = a or b → a = ⊺ so clearly a ≤ b → a and
hence a→ (b→ a) = ⊺.

� (F) Let a, b, c ∈ A. If (a → b) → (a → c) = ⊺ then we are done, so
assume otherwise. Then by proposition 4.3.7, we know b ≰ c. Hence
a→ (b→ c) = a→ c = (a→ b)→ (a→ c).

This result can be extended to show that every normal bi-implicative algebra
is a bi-Hilbert algebra.

To see that this inclusion is proper, we take an example from the class defined
above.
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Example Let P be the poset given below, and let P + be its complex Hilbert
algebra. Clearly ↑c and ↑b belong to P + and ↑cz→ ↑b = {x ∈X ∶ ↑x∩↑c ⊆ ↑b} =
{a, b,⊺} which is neither equal to X, nor ↑b. So P + is a Hilbert algebra that is

not normal.

rb ��
�

ra
@
@
@
�
r

r⊺
A
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A
A
Arc
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�
�
�
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4.3.3 An algebraic version of the detachment theorem

As is shown in section 5.2, the following condition is required to ensure that
each algebra can be embedded in its canonical extension.

If a ≤ b→ c, then for all d such that d ≤ a and d ≤ b , d ≤ c (Det′)

We call it (Det′) because it relates to the Detachment theorem of logic (see
proposition 1.2.4 for details). An alternative version of this axiom used by
Rasiowa which we shall also use is:

a ≤ b→ c and a ≤ b⇒ a ≤ c (Det)

Proposition 4.3.5. (Det′) and (Det) are equivalent.

Proof. (⇒) Replace d with a in (Det′). Then since a ≤ a trivially holds it
can be removed as an antecedent, leaving (Det).
(⇐) Assume a ≤ b → c and d ≤ a and d ≤ b for some d. Then d ≤ b → c and
d ≤ b so (Det) can be applied to get d ≤ c.

The dual condition of (Det)

a← b ≤ c and b ≤ c⇒ a ≤ c (Det←)

.
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Proposition 4.3.6. (F) implies (Det) and (F←) implies (Det←).

Proof. Assume a ≤ b→ c and a ≤ b for some a, b ∈ A. Then (a→ (b→ c)) = ⊺,
so by (F) ⊺ → ((a → b) → (a → c)) = ⊺ and hence (a → b) → (a → c) = ⊺.
Therefore a→ b = ⊺ implies a→ c = ⊺ i.e. a ≤ c.
The rest is proved dually.

4.3.4 Order preserving and reversing properties of →
and ←

The following conditions express that → is order preserving in the second
coordinate and order reversing in the first.

a ≤ b implies c→ a ≤ c→ b (OP2)

a ≤ b implies b→ c ≤ a→ c (OR1)

The duals of these conditions express that ← is order preserving in the first
coordinate and order reversing in the second.

a ≤ b implies a← c ≤ b← c (OP←1 )

a ≤ b implies c← b ≤ c← a (OR←2 )

These assumptions are required in order to be able to define the π and σ-
extensions of → and ← in the canonical extension (see chapter 5). The
following lemmas show that they hold in any bi-Hilbert algebra.

Proposition 4.3.7. (F) implies (OP2)

Proof. a ≤ b implies a → b = ⊺. So for any c, c → (a → b) = ⊺. Hence by (F)
(c→ a)→ (c→ b) = ⊺. So c→ a ≤ c→ b.

Dually (F←) implies (OP←1 ).
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Proposition 4.3.8. (OR1) holds in any Hilbert algebra.

Proof. Assume a ≤ b. By (H) b → c ≤ a → (b → c) and by (F) a → (b →
c) ≤ (a → b) → (a → c). Since a → b = ⊺ we can apply lemma 4.3.1 to get
(a→ b)→ (a→ c) = a→ c. So b→ c ≤ a→ c.

A dual proof shows that (OR←2 ) holds in an bi-Hilbert algebra.

4.3.5 (⊺) and (�)

There are two more axioms that are of interest to us in this work:

x ≠ ⊺⇒ ⊺← x = ⊺ (⊺)

y ≠ �⇒ y → � = � (�)

Intuitively the first expresses that all non-bottom states are consistent and
the second that all non-top states are not tautological(ie. they are informa-
tive).

The next proposition shows that (⊺) and bottom (�) are satisfied in every
normal bi-implicative algebra.

Proposition 4.3.9. (N) implies (�) and (N←) implies (⊺)

Proof. For any a ∈ A, a ≠ � implies a ≰ � implies a → � = �. Similarly a ≠ ⊺
implies ⊺ ≰ a implies ⊺← a = ⊺.

The next proposition gives a characterisation of those posets whose complex
Hilbert algebras satisfy (�).

Proposition 4.3.10. For any partial order P = (X,≤), P + satisfies (�) iff
P is updirected

Proof. Assume P is updirected and let U be a non-empty increasing subset
of X, so there is some u ∈ U . For every x ∈ X, there is some y such y ≥ x
and y ≥ u. So ↑x∩U ≠ ∅ and hence x ∉ U z→ ∅. Therefore U z→ ∅ = ∅. On
the other hand, if P is not updirected then there exists x, y ∈ X such that
↑x ∩ ↑y = ∅. So y ∈ ↑xz→ ∅ and therefore (�) doesn’t hold.

A consequence of this proposition is that one can easily obtain an example of
a Hilbert algebra that doesn’t satisfy (�) (and hence show that (H)+(F )⇏
(�)) by starting with any partial order that is not updirected.
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Example P1 below is an example of a partial order that is not updirected
and P2 is a partial order that is not downdirected, which is shown below to
imply that its complex Hilbert algebra does not satisfy (⊺).

P1

r
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r
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P2
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Note that, since N implies (�), the complex Hilbert algebra obtained from
this partial order is also not normal. The dual correlation between posets
being downdirected and their complex bi-Hilbert algebras satisfying (⊺) also
holds.

Proposition 4.3.11. For any partial order P = (X,≤), P + satisfies (⊺) iff
P is downdirected

Proof. Assume P is downdirected and let U ≠ X be an increasing subset of
X, so there is some y ∈ X such that y ∉ U . For every x ∈ X, there is some
xy such that xy ≤ x and xy ≤ y. xy cannot belong to U as U is upwards
closed, and xy ∈ ↓x implies that xy ∉ X/↓x. Hence xy ∉ U ∪ X/↓x. So
X ⊈ U ∪X/↓x and therefore by lemma 4.3.2, x ∈ X ←Ð [ U . As this holds for
every x ∈ X, X ←Ð [ U = X. Now assume P is not downdirected. Then there
exist x, y ∈X such that ↓x∩ ↓y = ∅. But then X ⊆X/↓x∩ ↓y =X/↓x∪X/↓y.
So y ∉ {z ∈X ∶X ⊈X/↓x ∪X/↓y} =X ←Ð [X/↓x and X/↓x ∈ P i(X).

Now we give a characterisation of those partial orders whose complex Hilbert
algebras are normal. First we must define the characterising order theoretic
condition.

Definition Call a partial order P prime if it satisfies the following for every
p, q ∈ P and V ∈ P i(P ): If ∀r(p ≤ r and q ≤ r implies r ∈ V ), then p ∈ V or
q ∈ V .

The name comes from the fact that if p and q have a join p ∨ q, then the
antecedent reduces to p∨q ∈ V and so the condition gives the usual definition
of primeness of V , ie. p ∨ q ∈ V implies p ∈ V or q ∈ V .
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Proposition 4.3.12. For any partial order P = (X,≤), P + satisfies N iff P
is prime

Proof. Assume P is prime and take U,V ∈ P +. If U ⊆ V then clearly for all
x ∈ X, ↑ x ∩ U ⊆ V , so U z→ V = X. On the other hand, if U ⊈ V , then
there is some u ∈ U −V . Since P + is a Hilbert algebra, we already know that
V ⊆ U z→ V so it only remains to show that U z→ V ⊆ V . Let x ∈ U z→ V .
So ↑x∩U ⊆ V . This means that y ≥ x and y ≥ u implies y ∈ V , so by primeness
and the fact that u ∉ V we can conclude that x ∈ V . Hence U z→ V = V .
Now assume that P is not prime, so there exist some u,x and V such that
y ≥ u and y ≥ x implies y ∈ V but u ∉ V and x ∉ V . Then clearly ↑x ⊈ V .
But the anticedent also tells us that ↑u ∩ ↑x ⊆ V . So u ∈ ↑xz→ V and hence
↑xz→ V ⊈ V .

This proof gives rise to many more examples of Hilbert algebras that are not
normal, by starting with partial orders which are not prime. Combining this
with the previous propositions we can also manufacture examples of Hilbert
algebras which satisfy (�) but not (N). In fact, P1 above is prime, so it gives
rise to a normal implicative algebra. P2 on the other hand is not prime and
so gives rise to an example of a Hilbert algebra which is not normal but still
satisfies (�).

4.4 Relationships between the axioms

The following Hasse diagram shows the axioms introduced in this chapter
and summarises the known dependencies between them. The relationships
represented in the diagram exist in the context of the axioms for implicative
algebras, so φ ≤ ψ means ((I1), (I2), (I3), (I4) and φ) implies ψ, or equiva-
lently, in every implicative algebra A, A ⊧ φ implies A ⊧ ψ. The examples of
Hilbert algebras given earlier in this chapter together with the non-Hilbert
algebras given in the following section prove that the ordering given in the
diagram is anti-symmetric.
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4.4.1 Examples

In this section some important examples of non-Hilbert implicative algebras
are given. They will all relate to the non-distributive lattice:
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�
�
�
�
�
�

To shed some light on the reason why we only need to consider this restricted
class of algebras, we do some sums. This lattice has 5 elements, and hence
25 pairs of elements. 13 of these pairs are of the form (x, y) where x ≤ y and
thus in any implicative (bi-implicative) algebra relating to this lattice x→ y
(and x← y) have the fixed value ⊺ (and �) for these x and y. For each of the
other 12 pairs, the only restrictions on x→ y (and x← y) is that they cannot
be ⊺ (or �) and thus there are 4 remaining options for each. Therefore there
are 412 implicative and 424 bi-implicative algebras which relate to this lattice.
Note that, in each of these groups of algebras, only 1 is normal. This shows
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just how special the normal algebras are. Other calculations show that 48 of
the implicative algebras satisfy (�) and 25.33 = 864 of them satisfy (H). Note
that this gives an upper bound on the number of Hilbert algebras in this
group, showing that they are a tiny proportion of all implicative algebras.

Each example below is of an implicative algebra A = (A,→,⊺) with a bot-
tom element �, that satisfies and falsifies certain conditions. Generating a
bi-implicative algebra from each that further satisfies the duals of the con-
ditions satisfied in A and falsifies the duals of the conditions falsified in A is
easy. First take the dual structure of A (see lemma 5.4.1). This structure then
immediately satisfies and falsifies the right conditions. The problem with us-
ing this definition of← directly is that it relates to the dual of the lattice given

above (see lemma 5.4.2), namely:

ra��
�
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But it is easy to see that the two lattices are isomorphic, so it is only necessary
to apply this isomorphism to the dual of A to get a definition of ← that is
compatible with→. As the satisfaction and falsification of axioms is preserved
under isomorphism, it is now clear that (A,→,←,⊺,�) is a bi-implicative
algebra with the properties described above.

4.4.2 Non-Hilbert algebras with canonical extensions

The significance of the next six examples is that they show that we have
succeeded in this thesis to apply the theory of canonical extensions to a
wider class of algebras than has been done previously, as they each satisfy
the axioms required to define their canonical extensions in our framework
but do not belong to the class of Hilbert algebras.
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The first two examples are implicative algebras that satisfy (Det),(OP2),
(OR1) and (F) but do not satisfy (H). The one of the left additionally satisfies
(�) while the one on the right does not. To see that they do not satisfy (H),
notice that in each: b→ a = c ≱ a.

→ ⊺ c b a �

⊺ ⊺ c � � �
c ⊺ ⊺ � � �
b ⊺ c ⊺ c c
a ⊺ c ⊺ ⊺ c
� ⊺ ⊺ ⊺ ⊺ ⊺

→ ⊺ c b a �

⊺ ⊺ c � � �
c ⊺ ⊺ � � �
b ⊺ c ⊺ c �
a ⊺ c ⊺ ⊺ �
� ⊺ ⊺ ⊺ ⊺ ⊺

The next two implicative algebras satisfy (Det), (OP2),(OR1) and neither
F nor H. The one of the left additionally satisfies (�) while the one on the
right does not. To see that they do not satisfy (F), notice that in each:
a→ (b→ c) = a→ c = c ≰ � = ⊺→ c = (a→ b)→ (a→ c)
To see that they do not satisfy (H), notice that in each: ⊺→ c ≱ c.
→ ⊺ c b a �

⊺ ⊺ � b a �
c ⊺ ⊺ b a �
b ⊺ c ⊺ a �
a ⊺ c ⊺ ⊺ �
� ⊺ ⊺ ⊺ ⊺ ⊺

→ ⊺ c b a �

⊺ ⊺ � b a �
c ⊺ ⊺ b a a
b ⊺ c ⊺ a �
a ⊺ c ⊺ ⊺ �
� ⊺ ⊺ ⊺ ⊺ ⊺

The last two implicative algebras is this subsection satisfy (Det), (OP2),(OR1)
and (H) but not (F). Again, the one of the left additionally satisfies (�) while
the one on the right does not. To see that they do not satisfy (F), notice
that in each: b → (c → a) = b → b = ⊺ ≰ b = c → a = (b → c) → (b → a)
→ ⊺ c b a �

⊺ ⊺ c b a �
c ⊺ ⊺ b b �
b ⊺ c ⊺ a �
a ⊺ c ⊺ ⊺ �
� ⊺ ⊺ ⊺ ⊺ ⊺

→ ⊺ c b a �

⊺ ⊺ c b a �
c ⊺ ⊺ b b b
b ⊺ c ⊺ a �
a ⊺ c ⊺ ⊺ �
� ⊺ ⊺ ⊺ ⊺ ⊺
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Finally, we give an example of an implicative algebra that does not satisfy
any of the additional axioms we have discussed. A proof that each of these
axioms is not satisfied can be given as follows:

� (Det) a ≤ b→ c and a ≤ b but a ≰ c.

� (OP2) a ≤ b but c→ a = c ≰ b = c→ b.

� (OR1) a ≤ b but b→ c = a ≰ c = a→ c.

� (H) b→ c = a ≱ c.

� (�) c→ � = c ≠ �.

� (F) implied by the fact that (Det) is not satisfied.

→ ⊺ c b a �

⊺ ⊺ c b a �
c ⊺ ⊺ b c c
b ⊺ a ⊺ a b
a ⊺ c ⊺ ⊺ a
� ⊺ ⊺ ⊺ ⊺ ⊺



Chapter 5

Defining Aσ

In this chapter we define the canonical extension Aσ of every basic bi-
implicative algebra A, where the basic bi-implicative algebras are those that
satisfy certain minimal conditions which make it possible to define their
canonical extensions (in our chosen framework). We first introduce our
logically motivated choices of filters and ideals. We then show that (Det)
and (Det←) characterise exactly when the prinicipal upsets and downsets are
contained in our sets of filters and ideals respectively. This allows us to de-
fine the domain of Aσ. Following this we show that, under our definition,
duals and products commute with extensions which allows for a straight-
forward definition of the extensions of → and ←, under the assumptions
(OR1),(OP2),(OP←1 ) and (OR←2 ). Motivation is then given for choosing the
π-extension for → and the σ-extension for ←. Finally we show that top and
bottom elements are preserved in the extension, and define Aσ. We conclude
the chapter by showing that the extension is join generated by its completely
join irreducibles and meet generated by its completely meet irreducibles. For
definitions of duals and products see [3].

5.1 Choosing F and I

Definition Given a bi-implicative algebra A = ⟨A,→,←,⊺,�, ⟩, F ⊆ A is an
implicative filter of A if:
⊺ ∈ F and for each a, b ∈ A, a ∈ F and a→ b ∈ F ⇒ b ∈ F .
Similarly, I ⊆ A is a subtractive ideal of A if:
� ∈ I and for each a, b ∈ A, a ∈ I and b← a ∈ I ⇒ b ∈ I.

43
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Let F be the set of implicative filters and I be the set of subtractive ideals
of a bi-implicative algebra.

Proposition 5.1.1. F is a closure system.

Proof. It is always the case that A ∈ F . To show that F is closed under
intersection, take {Fi}i∈I ⊆ F . Clearly ⊺ ∈ ⋂i∈I Fi since ⊺ ∈ Fi for each
i ∈ I. To show that ⋂i∈I Fi is closed under →, assume a, a → b ∈ ⋂i∈I Fi.
Then a, a → b ∈ Fi for each i ∈ I. Hence b ∈ Fi for each i ∈ I and therefore
b ∈ ⋂i∈I Fi.

Similarly I is also a closure system. F and I therefore have associated
closure operators which we shall call cl→ and cl← respectively. In any bi-
implicative algebra A, it is very well-known that the implicative filters are
the S-filters of the implicative reduct of A and the subtractive ideals are the
S-filters of the implicative reduct of the dual of A.

Proposition 5.1.2. Each F ∈ F is an upset.

Proof. Let a ∈ F and take b ≥ a. Then a→ b = ⊺ and so belongs to F . Hence
by definition of implicative filter, b ∈ F .

Dually, each I ∈ I is a downset.

5.2 Existence of the canonical embedding

In chapter 2, we saw the need to have the principal upsets included in F and
the principal downsets included in I to ensure that A could be embedded
into its (F ,I )-extension. This is not in general true for the sets of im-
plicative filters and subtractive ideals. In this section, the conditions (Det)
and (Det←) are shown to characterise exactly when the principal upsets and
downsets are included in the sets of implicative filters and subtractive ideals
respectively.

Theorem 5.2.1. The following are equivalent:

1. For all a ∈ A, ↑a ∈ F

2. If p ≤ a→ b then ∀c(c ≤ p and c ≤ a⇒ c ≤ b)

3. a ≤ b→ c and a ≤ b⇒ a ≤ c



CHAPTER 5. DEFINING Aσ 45

Proof. (1 ⇒ 2): Take p, a and b such that p ≤ a → b. Take some c ∈ A and
assume that c ≤ p and c ≤ a. Then by transitivity c ≤ a → b, so a → b ∈ ↑c.
Then as ↑c is an implicative filter, a ∈ ↑c and a → b ∈ ↑c implies that b ∈ ↑c.
Hence c ≤ b.
(2 ⇒ 1): q ≤ ⊺, so ⊺ ∈ ↑q. Assume a ∈ ↑q and a → b ∈ ↑q. Then as q ≤ a → b,
Det states that for all c ∈ A, c ≤ q and c ≤ a ⇒ c ≤ b. In particular for c = q
we get that q ≤ q and q ≤ a⇒ q ≤ b. Clearly q ≤ q and a ∈ ↑q ⇒ q ≤ a, so this
implies that q ≤ b as required.
(2⇔ 3): given by proposition 4.3.5.

Dually, (Det←) is satisfied in a bi-implicative algebra A iff ↓a ∈ I for all
a ∈ A. This means that those bi-implicative algebras A that satisfy (Det)
and (Det←), are exactly those for which the canonical embedding can be
defined. We shall call such algebras detachable. We are now in a position to
define the domain of our canonical extension for A.

Definition For every detachable bi-implicative algebra A, let Aσ be the
(F ,I )-completion of A∗ where F is the set of implicative filters of A and
I is the set of subtractive ideals of A.

The following property of Aσ will be useful later on.

Lemma 5.2.2. For any set C ⊆ A, ⋁C = cl←({�} ∪C) ∈ I .

Proof. Let ⋁⊕C be the join of C in F ⊕I and let X = cl←({�}∪C). Clearly
c ≤ X for each c ∈ C. If there is some other I ′ ∈ F ⊕I such that c ≤ I ′ for
all c ∈ C then clearly I ′ ∈ I , so {�} ⊆ I ′ and I ′ must be closed under ←.
So X ⊆ I ′ and hence X ≤ I ′. Then, since MacNeille completions preserve all
existing joins, we know that ⋁C = ⋁⊕C and so we are done.

5.3 Monotonicity of → and ←

In chapter 3, extensions were defined only for maps that preserve or reverse
the order in each coordinate. This is a problem for us because maps in bi-
implicative algebras are not in general monotone (for a counter-example see
section 4.4.2). In chapter 4, it was shown that in a bi-Hilbert algebra, →
is order reversing in the first coordinate and order preserving in the second,
whereas ← is order preserving in the first coordinate and order reversing in
the second, but this is not the case in an arbitrary bi-implicative algebra.
Since we need our maps to be monotone and also so that the definition



CHAPTER 5. DEFINING Aσ 46

of canonical extension (where defined) is uniform over bi-implicative and bi-
Hilbert algebras, it is natural to focus on bi-implicative algebras that preserve
and reverse the order in the same way as in a bi-Hilbert algebra, i.e. those
that satisfy (OR1),(OP2),(OP←1 ) and (OR←2 ).

Definition Call a bi-implicative algebra basic if it is detachable (i.e. satisfies
(Det) and (Det←)) and further satisfies (OR1),(OP2),(OP←1 ) and (OR←2 ).

We will now show that Aσ has the properties required for a straightforward
defintion of the extensions of the maps: first that it comutes with duals, then
that it commutes with products.

5.4 Duals

For any bi-implicative algebra A, let Aδ denote its algebraic dual. Similarly
for any poset P let P δ denote its order dual.

The first proposition shows that the dual of a bi-implicative algebra is again
a bi-implicative algebra.

Proposition 5.4.1. For any bi-implicative algebra A, Aδ is a bi-implicative
algebra. Note: A satisfies the → axioms iff Aδ satisfies the ← conditions
(further, one by one)

Proof.

1. a→ a = ⊺ in A iff a← a = � in Aδ

2. a→ b = ⊺ and b→ c = ⊺ in Aδ

⇒ b← a = � and c← b = � in A
⇒ c← a = � in A
⇒ a→ c = ⊺ in Aδ.

3. a→ b = ⊺ and b→ a = ⊺ in Aδ

⇒ b← a = � and a← b = � in A
⇒ a = b in A
⇒ a = b in Aδ.

4. a→ ⊺ = ⊺ in A′ iff �→ a = � in A.

It should also be noted here that since (Det←), (OP←1 ) and (OR←2 ) are the
duals of (Det), (OP2) and (OR1) respectively, that if A is a detached (or
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basic) bi-implicative algebra, then its dual Aδ is also detached (or basic).
This is important because it ensures that for each detached bi-implicative A,
(Aδ)σ is defined.

The next lemma shows that for any bi-implicative algebra A, the order related
to the dual of A is the order dual of the order related to A.

Lemma 5.4.2. For any bi-implicative algebra A, (A∗)δ = (Aδ)∗

Proof. a ≤ b in (A∗)δ iff b ≤ a in A∗ iff b → a = ⊺ in A iff a ← b = � in Aδ iff
a ≤ b in (Aδ)∗.

The next proposition when combined with proposition 2.5.1, shows that duals
commute with extensions i.e. for each detached A, (Aσ)δ = (Aδ)σ.

Proposition 5.4.3. For any X ⊆ A:

1. X is a filter in A iff X is an ideal in Aδ

2. X is an ideal in A iff X is a filter in Aδ

Proof. 1. First note that ⊺ ∈ X in A iff � ∈ X in Aδ. Assume X is a filter in
A and let a, b ← a ∈ X in Aδ. Then a, a → b ∈ X in A, so b ∈ X. Hence X is
closed under ← in Aδ. Similarly, if a, a→ b ∈X in A and X is an ideal in Aδ,
then a, b← a ∈X in Aδ implies b ∈X.
2. Dual to 1.

5.5 Products

For detached bi-implicative algebras A1 and A2, let A1 × A2 denote their
algebraic product. First we show that the class of detached bi-implicative
algebras is closed under taking products.

First note that for all a, b ∈ A1 and a′, b′ ∈ A2:
(a1, a′1) ≤ (a2, a′2)
iff (a1, a′1)→ (a2, a′2) = ⊺
iff (a1 → a2, a′1 → a′2) = (⊺,⊺′)
iff a1 ≤ a2 and a′1 ≤ a

′

2.
In particular, this implies that (A1 ×A2)∗ = (A1)∗ × (A2)∗.

Fact 5.5.1. A1 ×A2 is a detached bi-implicative algebra.
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Proof. That A1 ×A2 is a bi-implicative algebra follows easily from the defi-
nition of product. To see (Det), take a, b, c ∈ A1 and a′, b′, c′ ∈ A2 such that
(a, a′) ≤ (b, b′) and (a, a′) ≤ (b, b′) → (c, c′) = (b → c, b′ → c′). Then a ≤ b,
a′ ≤ b′, a ≤ b → c and a′ ≤ b′ → c′. So since (Det) holds in A1 and A2, a ≤ c
and a′ ≤ c′ which implies that (a, a′) ≤ (c, c′) as required.

Lemma 5.5.2. Each F ∈ F (A1 ×A2) is an upset.

Proof. Take (a1, a′1) ∈ F and (a2, a′2) ≥ (a1, a′1). Then by the above note
a1 → a2 = ⊺ and a′1 → a′2 = ⊺

′. So since ⊺ = (⊺,⊺′) ∈ F , (a1 → a2, a′1 → a′2) =
(a1, a′1)→ (a2, a′2) ∈ F . Therefore since F is closed under →, (a2, a′2) ∈ F .

We now show that taking products commutes with taking canonical exten-
sions, by way of proposition 2.5.2. Below, each of the conditions required for
the application of this proposition are shown to hold in our setting.

Proposition 5.5.3. For each F ∈ F (A1 ×A2) πi(F ) ∈ F (Ai) for i ∈ {1,2}.

Proof. (i = 1) Clearly since (⊺,⊺′) ∈ F , ⊺ ∈ π1(F ). Let a1, a1 → a2 ∈ π1(F ).
Then there exist a′1 and a′2 such that (a1, a′1), (a1 → a2, a′2) ∈ F . By the lemma
this implies that (a1 → a2,⊺′) = (a1 → a2,⊺′ → ⊺′) = (a1,⊺′) → (a2,⊺′) ∈ F .
Also by the lemma, (a1,⊺′) ∈ F . So since F is closed under →, (a2,⊺′) ∈ F .
Hence a2 ∈ π1(F ).

Proposition 5.5.4. For each F1 ∈ F (A1) and F2 ∈ F (A2), F1×F2 ∈ F (A1×
A2).

Proof. Clearly since ⊺ ∈ F1 and ⊺′ ∈ F2, (⊺,⊺′) ∈ F1×F2. Let (a1, a′1), (a1, a′1)→
(a2, a′2) ∈ F1 ×F2. So a1, a1 → a2 ∈ F1 and a′1, a

′

1 → a′2 ∈ F2, which implies that
a2 ∈ F1 and a′2 ∈ F2. Hence (a2, a′2) ∈ F1 × F2.

Similarly, for each I ∈ I (A1 ×A2), πi(I) ∈ I (Ai) for i ∈ {1,2} and for each
I1 ∈ I (A1) and I2 ∈ I (A2), I1 × I2 ∈ I (A1 ×A2).

Corollary 5.5.5. (A1 ×A2)σ = Aσ
1 ×Aσ

1 .

5.6 Choosing π or σ

Let A be a basic bi-implicative algebra. Since we have shown that canonical
extensions commute with products and duals, we can now treat → and ←
as unary, order preserving maps →∶ Aδ ×A Ð→ A and ←∶ A ×Aδ Ð→ A. We
are therefore almost ready to define the extensions of our implications, but
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one decision remains; whether to choose the π-extension or the σ-extension
in each case. The following proposition, related to residuation, sheds some
light on this question.

Proposition 5.6.1.

1. If f is the right residual of j, then fπ is the right residual of jσ.

2. If k is the left residual of g, then kπ is the left residual of gσ.

Proof. Following directly from Proposition 3.6 of [11].

Then we consider the fact that in a bi-Heyting algebra, → is the right residual
of ∧ and ∨ is the left residual of ←.

We also notice that by the asymmetry of the definitions, ∧σ coincides with
the ∧ in Aσ and ∨π coincides with the ∨ in Aσ (but in general ∧π does
not coincide with the ∧ in Aσ and ∨σ does not coincide with the ∨ in Aσ).
Therefore, it is natural to choose the π-extension for → and the σ-extension
for ←, because then in the case where → and ← are residuated in A, →π and
←σ will be residuated in Aσ. This way our definition of canonical extension
can uniformly extend to the bi-Heyting case.

Finally, we apply the simplified definitions (for f and g) given in chapter 3
and this gives us the following definitions for the extensions of our maps →
and ←. For all u, v ∈ Aσ let:

u→π v =⋀{⋁{p→ q ∶ p, q ∈ P, p ≥ a, q ≤ b} ∶ a ∈K,b ∈ O,a ≤ u, b ≥ v}

u←σ v =⋁{⋀{p← q ∶ p, q ∈ P, p ≥ a, q ≤ b} ∶ a ∈K,b ∈ O,a ≤ u, b ≥ v}

5.7 ⊺ and �

Fact 5.7.1. ⊺ ∈ A is the top element in Aσ.

Proof. We know that for any u ∈ Aσ, u = ⋁B for some B ⊆ O. Then since
⊺ = [↓⊺] = [A], we have that for each I ∈ B, [I] ≤ ⊺ and hence ⋁B ≤ ⊺.

Fact 5.7.2. � ∈ A is also the bottom element in Aσ.
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5.8 Defining Aσ

Finally we define the canonical extension of A, which we call Aσ in the
complete signature {→,⊺,←,�}, for each basic bi-implicative algebra A.

Definition Let A = (A,⊺,�,→,←) be a basic bi-implicative algebra. Then
let its canonical extension Aσ be defined as Aσ = (Aσ,⊺,�,→π,←σ).

5.9 Completely join irreducibles

Here we show that Aσ is join generated by its completely join irreducibles
and meet generated by its completely meet irreducibles. The significance of
this condition is that it guarantees that you have enough points to construct
an “ultrafilter frame”, that is, allowing for a “discrete duality” between these
extensions and their dual relational structures. This paves the way for the
development of relational semantics and correspondence theory.

The result follows directly from proposition 2.5.3 and the following proposi-
tion.
Proposition 5.9.1. F and I are closed under unions of ⊆-chains

Proof. That F is closed under unions of chains is given by Theorem 1.3
of [29]. The proof that I is closed under unions of chains can be given in
exactly the same way.



Chapter 6

Canonicity

Throughout this chapter, assume that A is a basic bi-implicative algebra
and Aσ is its canonical extension as defined in chapter 5. To say an axiom
φ is canonical means that A ⊧ φ implies Aσ ⊧ φ. To say φ is canonical in
the presence of ψ means: if A ⊧ φ and A ⊧ ψ then Aσ ⊧ φ. In order to
simplify the notation in this chapter, the following notational conventions
have been adopted. The lowercase letters {p, q, r, s} will be used exclusively
in reference to members of A, while F and F ′ will refer to closed elements of
Aσ and I and I ′ will refer to open elements. {u, v,w, x, y} will be used for
arbitrary elements of Aσ. Note that using F and F ′ for closed elements in
Aσ is actually shorthand for [F ] and [F ′] where F,F ′ ∈ F . F and F ′ shall
also be used in this sence to refer to the underlying filters. Similarly I and
I ′ shall also be used to refer to the underlying members of I .

6.1 I1 and I←1 are canonical

Proposition 6.1.1. For all u ∈ Aσ, u→π u = ⊺.

Proof. u → u = ⋀{F →π I ∶ F ≤ u, I ≥ u}. But F ≤ u and I ≥ u implies that
F ≤ I and hence that F →π I = ⊺. Hence u→π u = ⊺.

Dually, for all u ∈ Aσ, u←σ u = �

51
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6.2 Connecting the order with the operations

The first result relating the order with the → is that (u ≤ v ⇒ u → v = ⊺) is
canonical. We show this first for closed u and open v, and then it is extended
to arbitrary u and v.

Proposition 6.2.1. [F ] ≤ [I] implies [F ]→π [I] = ⊺.

Proof. [F ] ≤ [I] implies F ∩ I ≠ ∅ implies ∃r ∈ A ∶ r ≥ [F ] and r ≤ [I]
⇒ r → r = ⊺ ≤ [F ]→π [I]⇒ [F ]→π [I] = ⊺.

Corollary 6.2.2. u ≤ v implies u→π v = ⊺ for all u, v ∈ Aσ.

Proof. a ≤ u ≤ v ≤ b implies a→ b = ⊺ and hence u→π v = ∧{⊺} = ⊺

It is also the case that (u ≤ v⇒ u← v = �) is canonical. Again we show this
first for closed u and open v, and then extend to arbitrary u and v.

Proposition 6.2.3. [F ] ≤ [I] implies [F ]←σ [I] = �.

Proof. [F ] ≤ [I] implies F ∩ I ≠ ∅ implies ∃r ∈ A ∶ r ≥ [F ] and r ≤ [I]
⇒ r ← r = � ≥ [F ]←σ [I]⇒ [F ]←σ [I] = �.

Corollary 6.2.4. u ≤ v implies u←σ v = � for all u, v ∈ Aσ.

The next proposition shows that, in the presence of (⊺), (a→ b = ⊺⇒ a ≤ b)
is canonical.

Proposition 6.2.5. If for all x ≠ ⊺ ∈ A, ⊺ ← x = ⊺, then for every closed F
and open I, F → I = ⊺⇒ F ≤ I and hence for every u, v ∈ Aσ, u → v = ⊺⇒
u ≤ v.

Proof. Let F → I = ⋁{p → q ∶ p ∈ F, q ∈ I} = ⊺. Then ⊺ ∈ Xn for some
n where Xn+1 = {x ∶ there is some y ∈ Xn such that x ← y ∈ Xn} and
X0 = {p → q ∶ p ∈ F, q ∈ I}. If ⊺ ∈ Xn then ⊺ ← y, y ∈ Xn−1 and either y = ⊺ or
⊺ ← y = ⊺ so ⊺ ∈ Xn−1. Therefore by induction, ⊺ = p → q ∈ X0. Then p ≤ q
implies that q ∈ F and hence F ∩ I ≠ ∅.
For the general case assume u → v = ⋀{F → I ∶ F ≤ u, I ≥ v} = ⊺. So
F → I = ⊺ and hence F ≤ I for each F ≤ u, I ≥ v. Recall that u = ⋁{F ∶ F ≤ u}
and v = ⋀{I ∶ I ≥ v}. Take some I ≥ v. For each F ≤ u, F ≤ I so u ≤ I.
Therefore, as this is for any I ≥ v, u ≤ v.

Dually, in the presence of (�), (a← b = �⇒ a ≤ b) is canonical.
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Putting the results of this section together tells us that, if A is a bi-implicative
algebra which satisfies (�) and (⊺) then Aσ is a bi-implicative algebra.

Corollary 6.2.6. If for each x ≠ ⊺, y ≠ � ∈ A, ⊺ ← x = ⊺ and y → � = �, then
for all u, v ∈ Aσ, u → v = ⊺ iff u ≤ v iff u ← v = � and hence, since ≤ is a
partial order, Aσ is a bi-implicative algebra.

6.3 (⊺) and (�) are canonical

The next two theorems show that these conditions are themselves canonical.

Proposition 6.3.1. If for each x ≠ ⊺ ∈ A, ⊺ ← x = ⊺ then for all v ≠ ⊺ ∈ Aσ,
⊺←σ v = ⊺.

Proof. First take any I ≠ ⊺ ∈ K. Then T ←σ I = ⋀{⊺ ← q ∶ q ∈ I}. Since
I ≠ ⊺, ⊺ ∉ I. So for all q ∈ I, ⊺← q = ⊺ and hence T ←σ I = ⊺.
Now take any v ≠ ⊺ ∈ Aσ and recall that ⊺ ←σ v = ⋁{a ←σ b ∶ a ≤ ⊺, b ≥ v}.
Since v = ⋀{I ∶ I ≥ v}, there must be some I ≥ v such that I ≠ ⊺. Then since
⊺ ≥ ⊺ we have ⊺←σ v ≥ ⊺←σ I = ⊺.

Proposition 6.3.2. If for each x ≠ � ∈ A, x → � = � then for all v ≠ � ∈ Aσ,
v →π � = �.

6.4 (OP2) and (OR1) are canonical

The first lemma in this section shows that →π actually extends →.

Lemma 6.4.1. For p, q ∈ P , p→π q = p→ q

Proof. Let a ∈ K,b ∈ O such that a ≤ p and b ≥ q. Then p → q ∈ {p′ → q′ ∶
p′, q′ ∈ P, p′ ≥ a, q′ ≤ b} so p → q ≤ ⋁{p′ → q′ ∶ p′, q′ ∈ P, p′ ≥ a, q′ ≤ b}. Now
assume there is some x ≤ ⋁{p′ → q′ ∶ p′, q′ ∈ P, p′ ≥ a, q′ ≤ b} for each closed
a and open b with a ≤ p and b ≥ q. Then in particular, since p is closed and
q is open, x ≤ ⋁{p′ → q′ ∶ p′, q′ ∈ P, p′ ≥ p, q′ ≤ q}. Then by the assumptions
on →, p ≤ p′ and q′ ≤ q implies p′ → q′ ≤ p → q. So since p → q also belongs
to {p′ → q′ ∶ p′, q′ ∈ P, p′ ≥ p, q′ ≤ q}, it must be that p → q = ⋁{p′ → q′ ∶
p′, q′ ∈ P, p′ ≥ p, q′ ≤ q} and hence x ≤ p → q which completes the proof that
p→ q = ⋀{⋁{p′ → q′ ∶ p′, q′ ∈ P, p′ ≥ a, q′ ≤ b} ∶ a ∈K,b ∈ O,a ≤ p, b ≥ q}
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Dually, it can be shown that ←σ extends ←, i.e. p←σ q = p← q.

The next lemma, is a very useful fact. It gives a definition of u →π v, for
closed u and open v, as a join of elements in A.

Lemma 6.4.2. [F ]→π [I] = ⋁{p→ q ∶ p ≥ [F ], q ≤ [I]}

Proof. Let a = [G] be closed, b = [H] be open. Then a ≤ [F ] and b ≥ [I]
implies that F ⊆ G and I ⊆ H. Hence {p → q ∶ p ≥ [F ], q ≤ [I]} ⊆ {p → q ∶
p ≥ a, q ≤ b} and hence ⋁{p → q ∶ p ≥ [F ], q ≤ [I]} ≤ ⋁{p → q ∶ p ≥ a, q ≤ b}.
Therefore since [F ] and [I] could also be such a and b, we have that ⋀{⋁{p→
q ∶ p ≥ a, q ≤ b}a ∈K,b ∈ O,a ≤ [F ], b ≥ [I]} = ⋁{p→ q ∶ p ≥ [F ], q ≤ [I]}.

This in turn allows for a definition of u →π v, for arbitrary u and v, as the
meet of implications between closed and open elements.

Corollary 6.4.3. u →π v = ⋀{a →π b ∶ a ∈ K, b ∈ O,a ≤ u, b ≥ v} for all
u, v ∈ Aσ.

Similarly u ←σ v, for closed u and open v, can be defined as a meet of
elements in A and hence for arbitrary u and v, as the join of implications
between closed and open elements.

Proposition 6.4.4. [F ]←σ [I] = ⋀{p← q ∶ p ≥ [F ], q ≤ [I]}

Corollary 6.4.5. u ←σ v = ⋁{a ←σ b ∶ a ∈ K,b ∈ O,a ≤ u, b ≥ v} for all
u, v ∈ Aσ.

Finally we arrive at the main results of this section, which show that (OP2)
and (OR1) (as well as their duals) are canonical.

Theorem 6.4.6. →π is order reversing in the first co-ordinate and order
preserving in the second.

Proof. Assume u ≤ u′ for some u,u′ ∈ Aσ. Then
{a→π b ∶ a ∈K,b ∈ O,a ≤ u, b ≥ v} ⊆ {a→π b ∶ a ∈K,b ∈ O,a ≤ u′, b ≥ v} and
{a→π b ∶ a ∈K,b ∈ O,a ≤ v, b ≥ u′} ⊆ {a→π b ∶ a ∈K,b ∈ O,a ≤ v, b ≥ u} so

⋀{a →π b ∶ a ∈ K,b ∈ O,a ≤ u′, b ≥ v} ≤ ⋀{a →π b ∶ a ∈ K,b ∈ O,a ≤ u, b ≥ v} &

⋀{a →π b ∶ a ∈ K,b ∈ O,a ≤ v, b ≥ u} ≤ ⋀{a →π b ∶ a ∈ K,b ∈ O,a ≤ v, b ≥ u′}.
Hence u′ →π v ≤ u→π v and v →π u ≤ v →π u′.

Dually, ←σ is order preserving in the first co-ordinate and order reversing in
the second.
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6.5 (H) and (H←) are canonical

Theorem 6.5.1. If for every p, q ∈ A, p → (q → p) = ⊺ then for every
u, v ∈ Aσ, u→ (v → u) = ⊺.

Proof. By corollary 3.24, it is enought to show that u ≤ v → u = ⋀{F →π I ∶
F ∈ F , I ∈ I , F ≤ v, I ≥ u}, that is for each F ∈ F and each I ∈ I such that
I ≥ u, u ≤ F →π I where F →π I = ⋁{p→ q ∶ p ∈ F, q ∈ I}.

� Case 1:u ∈ F . Then u ≤ I implies there is some r ∈ A such that
r ∈ u∩ I. Since r → (⊺→ r) = ⊺ ∈ u and r ∈ u and u is an implicative fil-
ter, ⊺ → r ∈ u. But ⊺ → r also belongs to {p → q ∶ p ∈ F, q ∈ I} ⊆ F →π I
so u ∩ F →π I ≠ ∅ and hence u ≤ F →π I.

� Case 2:u ∈ I . Since F →π I ∈ I , we must show u ⊆ F →π I so take
r ∈ u. u ≤ I implies u ⊆ I so ⊺ → r ∈ F →π I. Also r → (⊺ → r) = ⊺
implies that r ≤ ⊺→ r so, since F →π I is downward closed, r ∈ F →π I.

� Case 3: By case 2 we now know that I →π (F →π I) = ⊺ and hence
that I ≤ F →π I. So for each I ≥ u, F →π I ≥ u as required.

6.6 Non-canonicity of Normality

In this section, we provide a counter-example to the canonicity of (N), that
is, a normal bi-implicative algebra A such that Aσ is not normal. The first
lemma shows that every upset is a filter in a normal bi-implicative algebra.

Lemma 6.6.1. Let A be a normal Bi-Hilbert Algebra. Then for every non-
empty subset X ⊆ A, X is an implicative filter iff X is an upset.

Proof. We saw in chapter 5 that every implicative filter is an upset, so it
only remains to show that each non-empty downset X ⊆ A is an implicative
filter. Let x,x → y ∈ X. If x ≤ y, then y ∈ X as X is an upset. Otherwise
x→ y = y, so again y ∈X.

Similarly every non-empty subset X ⊆ A is a subtractive ideal iff X is a
downset.
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The next lemma shows that F →π I satisfies the normality condition for
closed F and open I.

Lemma 6.6.2. For every closed F , and open I, F → I =

⎧⎪⎪
⎨
⎪⎪⎩

⊺ if F ≤ I

I otherwise

Proof. By corollary 6.2.2, F ≤ I gives F → I = ⊺. So assume F ≰ I. Then
F ∩I = ∅. This implies that for any p ∈ F and q ∈ I, p ≰ q (because otherwise q
would also belong to F ) so p→ q = q. Therefore F → I = ⋁{q ∶ q ∈ I} = I.

This lemma just gives a simplification of the definition of →π amongst closed
elements, which is convenient for our specific purpose.

Lemma 6.6.3. For closed F1 and F2, F1 →π F2 = ⋀{F1 →π I ∶ I ≥ F2}

Proof. For every I, F ≤ F1 implies that F1 → I ≤ F → I. So ⋀{F1 →
I ∶ I ≥ F2} is a lower bound on {F → I ∶ F ≤ F1, I ≥ F2}. Assume K is
another lower bound. Then as F1 ≤ F1, for each I ≥ F2, K ≤ F1 → I. Hence
K ≤ ⋀{F1 → I ∶ I ≥ F2}.
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Proposition 6.6.4. (N) is not canonical.

Proof. For an example of a normal Bi-hilbert algebra with non-normal exten-
sion, take the above non-distributive lattice P . Then let A = P ∗ be its asso-
ciated normal Bi-hilbert Algebra. Let F1 = ↑c, F2 = ↑{b, c}. Then F2 ⊈ F1 im-
plies F1 ≰ F2. I ≥ F2 iff I ∩F2 ≠ ∅ iff I ∈ {↓b, ↓c, ↓{b, c}, ↓⊺}. Each I besides ↓b
has a non-empty intersection with F1. So F1 → ↓c = F1 → ↓{b, c} = F1 → ↓⊺ = ⊺
and F1 → ↓b = ↓b = b. Therefore F1 → F2 = ⋀{F1 → I ∶ I ≥ F2} = ⋀{b,⊺,⊺,⊺} =
b ≠ F2.



Conclusion

Let us briefly summarise the results obtained so far. We showed that in
order to define the (F ,I )-extension on a bi-implicative algebra, where F
is the set of implicative filters and I the set of subtractive ideals, the algebra
must also satisfy three additional conditions (and their duals). The first of
these, (Det), (which relates logically to the detachment theorem) is needed to
ensure that the algebra can be embedded in its extension. The others, (OP2)
and (OR1), we assume in order to define the extensions of the implication
operation →. These requirements define our basic setting and we have shown
that the class of (bi-)implicative algebras axiomatized by these conditions,
here called the basic (bi-)implicative algebras, is a strict superclass of the
class of (bi-)Hilbert algebras.

Further, our logically inspired choice of filters and ideals was shown to be
advantageous in that it allowed for a straightforward definition of the π and
σ extensions of the operations. This was due to the fact that our extensions
commute with products and duals. Moreover, the fact that they are closed
under unions of chains ensures the possibility of extracting relational duals to
these extensions. The π extension was chosen for → and the σ for ← because
they then preserve the property of residuation whenever → and ← happen
to be residuated and therefore allow our setting to extend uniformly to the
case of canonical extensions for (bi-)Heyting algebras.

We showed that under these definitions, (OP2),(OR1),(I1), (H) and their
corresponding dual axioms, are canonical. Further the implications u ≤ v ⇒
u → v = ⊺ and u ≤ v ⇒ u ← v = � are canonical, and their converses are also
canonical in the presence of (⊺) and (�), two conditions we defined which
turned out to be both logically meaningful and themselves canonical. We
also showed that Normality is not canonical.

57
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Further Work

Representation theorems Representation theorems for hilbert algebras
have been extensively studied in [9, 10, 29] and more recently in [6] and [7].
A natural question to ask is how to relate these representations with the
canonical extensions for bi-Hilbert algebras developed here.

Relational semantics and correspondence As has been done with modal
logic ( [25,26]) and substructural logic ( [11]) the results given here pave the
way for the development of a uniform relational semantics for the appropriate
family of logics and for research into correspondence theory. As correspon-
dence theory has been a major factor in the success of modal logic, it would
certainly be desirable to develop correspondence in this setting.

Formal Concept Analysis In section 4.4, a partial picture of the depen-
dencies between the axioms was given. With further investigation, using the
methods of formal concept analysis, a complete picture could be developed.

Open canonicity questions Amongst the canonicity results presented
in chapter 6 it was shown that (⊺) is sufficient to ensure the canonicity of
u → v = ⊺ ⇒ u ≤ v, but it is not clear whether it is in fact necessary. Also,
it was shown in [17] that Hilbert algebras are canonical (with respect to a
different definition of canonical extension) but the canonicity of (F) by itself
has yet to be shown in any setting. We intend to investigate this further,
first showing canonicity of (F) in the presence of (N).

Interaction between → and ← The only link between the two impli-
cations in our setting has been the order, but there are also other possible
interactions, for example, axiomatic interactions (analogous to distributivity
in the lattice case, which connects the ∧ and ∨). Because all the axioms we
treated only involved → and ⊺ or only involved ← and �, rather than both
sides together, we took filters related to → and ⊺ and ideals related to the ←
and �. This logically amounts to taking two copies of the implicative side of
the logic (one rightside up and the other upside down). An alternative would
be to consider the S-filters generated by the entire signature (→,⊺,←,�).
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