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Abstract
In the first part of this thesis, we focus on the canonical extension of partially ordered sets, which

was defined by algebraic means by Dunn, Gehrke and Palmigiano [9]. We show that it can be

obtained alternatively via a generalization of Urquhart and Hartung’s maximal filter-ideal pair

construction ([43], [27]). We further give a first-order dual characterization of perfect lattice hemi-

and homomorphisms, in the spirit of, but different from Gehrke [16], and make category-theoretic

observations regarding the canonical extension.

The second part of the thesis concerns the algebraic canonicity proof of the Sahlqvist fragment

for distributive modal logic by Gehrke, Nagahashi and Venema [22]. We pay particular attention

to the additional operation n, which is crucial to that proof, and show that the proof can not

be straightforwardly translated to an algebraic canonicity proof of the inductive fragment for

distributive modal logic [7]. We extract requirements on a new version of the operation n, which

would yield a proof of the canonicity of the inductive fragment, and finish by starting to explore

two new perspectives on the magical nature of the operation n.
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Introduction

1 The canonical extension via duality

Representation theorems are statements of the form: every element of the class of structures X

is isomorphic to some element of the proper subclass Y of X. Representation theorems can be

found in various fields of mathematics: among one of the first and most famous examples is

Cayley’s theorem that every group is isomorphic to a subgroup of a symmetric group, stated and

partly proved by Cayley in 1854 [6]. In functional analysis, Riesz’s theorems, to the effect that

certain linear functionals on a space can be represented as measures, are important instances of

representation theorems, dating from the first decade of the twentieth century [39], [40]. Taking a

leap of roughly fifty years, in 1954 or ‘55, Nobuo Yoneda met Saunders MacLane in a café at the

Gare du Nord in Paris, and told him about the category-theoretic fact, which was later baptized

the Yoneda Lemma ([33], [32]). This fact greatly generalised and unified many of the previous

representation theorems. For instance, when applied to a group regarded as a category, the Yoneda

Lemma yields Cayley’s theorem (Cf. [8], Example 2.7.5).

The conceptual importance of a representation theorem is proportional to the size and complexity

of the proper subclass Y of the general class of structures X: if this subclass is much more

transparent and easy to work with than the general class, then the representation theorem makes

it easier both to conceive and to prove isomorphism-invariant properties of all structures in the

(apparently) larger class X.

Representation theorems are of particular importance in logic because they pave the way to com-

pleteness results, to be made precise below in Section 2. In the field of mathematical logic, the

following theorem, proved by Marshall H. Stone in 1936, is probably the best known representation

theorem.

Stone’s representation theorem (1936) [41]. Every Boolean algebra A can be embedded in the

complete and atomic Boolean algebra Aσ, defined as the power set algebra of the set of ultrafilters

of A.

This statement already looks very significant. For instance, it tells us a lot about the behaviour of

the operations in a Boolean algebra and gives us a very powerful grasp on their meaning. However,

it is fair to say that the abbreviated form in which the theorem is stated here discloses only a tiny

fraction of the true significance and potential of this result, which is mostly concentrated in the

special properties of the embedding of A into Aσ.

These special properties are abstractly encoded in the definition of the central concept of this

thesis: the canonical extension Aσ. Moreover, they are also concretely rooted in the ‘powerset’
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and ‘ultrafilter’ functors, each of which is part of a dual equivalence or duality of categories. Loosely

speaking, a duality is a one-to-one correspondence, or ‘back-and-forth translation’, between two

categories that preserves and reflects the logical information stored in the two categories. It works

in part as a dictionary and in part as a comparative grammar: a duality does not only translate

words (e.g., homomorphism), but it also translates properties (e.g., injective) and constructions

(e.g., product) from the one category into the dual properties (e.g., surjective) and constructions

(e.g., disjoint sum) of the other category.

The following diagram is meant to express how Stone’s representation theorem relies on the exis-

tence of two dualities of categories.

CABA
(·)+ -

�
(·)+

Set

BA

(·)σ

6

(·)∗ -�
(·)∗

(·) •

-

Stone

U

6

Figure 1: Duality and Stone’s representation theorem

Let us take some time to examine this diagram in detail, since its shape is a ‘blueprint’ for some

more such diagrams that we will consider in this thesis. We first describe the categories and

(object components of the) functors involved.

The category BA is that of Boolean algebras with homomorphisms, CABA is the category of

complete atomic Boolean algebras with complete homomorphisms, Stone is the category of Stone

spaces (i.e., compact, Hausdorff, totally disconnected topological spaces) with continuous maps,

and Set the category of sets with functions.

The functor pair (·)+, (·)+ constitutes a dual equivalence between the categories CABA and Set,

which we will refer to as the discrete duality. For a set S, S+ is defined as the power set algebra

of S, and for a complete atomic Boolean algebra A, A+ is the set of atoms of A.

The functors (·)∗, (·)∗ constitute a topological duality between BA and Stone, respectively. To any

Boolean algebra A, the functor (·)∗ associates the ultrafilter space A∗, and for any Stone space X,

X∗ is defined to be the Boolean algebra of clopen sets of that space.

Finally, the canonical extension functor (·)σ is defined as (·)σ := (·)+ ◦ U ◦ (·)∗, and the functor

(·)• is defined to be the composition U ◦ (·)∗.
It is now easy to see that by combining the topological and discrete duality, we actually get two

important results:

(i) Any Boolean algebra A can be embedded in the algebra Aσ, and,

(ii) Any Boolean algebra homomorphism f : A → B can be extended to a complete Boolean

algebra homomorphism fσ : Aσ → Bσ.
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Putting the first item in a slightly different wording, we see that any Boolean algebra is (up to

isomorphism) a subalgebra of a power set algebra: Stone’s representation theorem.

The second item can be generalised: we can actually apply the functor (·)σ not only to Boolean

algebra homomorphisms, but to any (order-preserving) function. This construction will be studied

in a more general context in Chapter 1 of this thesis, and is one of the important ingredients which

enables us to use canonical extensions to study modal logic.

Using this construction, it is possible to devise a diagram, similar to that in Figure 1, in which

Boolean algebras with operators (BAO’s) occupy the lower left corner.

CABACO
(·)+ -�
(·)+

KrFr

BAO

(·)σ

6

(·)∗ -�
(·)∗

(·) •

-

DGF

U

6

Figure 2: Duality and the Jónsson-Tarski representation theorem

A Boolean algebra with an operator (BAO) is a pair 〈A,3〉 where A is a Boolean algebra and

3 : A → A is a function which preserves all finite joins. A unary operator is called complete

if it preserves all joins, so a ‘CABACO’ is a complete atomic Boolean algebra with a complete

operator. KrFr denotes the category of Kripke frames (sets with a relation on the set) and DGF

the category of descriptive general frames, which can also be seen as Stone spaces, equipped with

a relation which is point-closed.1

The following theorem is now the classical starting point for the use of canonical extensions in the

study of modal logic.

Jónsson-Tarski representation theorem (1952) [31]. Any BAO A can be embedded in its

canonical extension Aσ.

In the next section, we will discuss the relevance of canonical extensions for logic in general and

modal logic in particular.

2 Canonical extensions and completeness

From a logical point of view, representation theorems and canonical extensions are relevant because

they yield frame completeness results. Probably the simplest example of this phenomenon is that

Stone’s representation theorem can be used to prove the completeness of classical propositional

calculus with respect to subset semantics.

1For a more comprehensive discussion, the reader is referred to [5].
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We focus on a little bit more involved example from modal logic. Using the Jónsson-Tarski theorem

outlined in the previous section, we can easily prove the completeness of the modal logic K. Say

that K ` φ iff the equation φ = > is valid in all Boolean algebras with operators.

The definition of Kripke semantics immediately gives us the following lemma.

Lemma 2.1. For any Kripke frame 〈S,R〉 and any modal formula φ, 〈S,R〉 |= φ if and only if

〈S,R〉+ |= φ = >.

Using the Jónsson-Tarski representation theorem, we then easily prove the completeness of K with

respect to the class of Kripke frames.

Theorem 2.2. Let φ be a modal formula. Then K ` φ if and only if φ is valid on all Kripke

frames.

Proof. If K ` φ, then in particular φ = > holds on all BAO’s of the form 〈S,R〉+, so, by the

Lemma, 〈S,R〉 |= φ for all Kripke frames 〈S,R〉.
Conversely, suppose K 6` φ, and let A be a BAO which falsifies the equation φ = >. Then, by

the Jónsson-Tarski representation theorem, the algebra Aσ also falsifies the equation φ = >, since

validity of equations is preserved under taking subalgebras. Hence, by the Lemma, A• ∼= (Aσ)+

is a frame falsifying φ.

We hope that this simple example already convinces the reader of the power and relevance to

logic of representation theorems like Stone’s and Jónsson and Tarski’s. However, this example

can be enhanced in several ways. We can ask, for example, if we can give a similiar proof of

the completeness of the logic K4 (that is, the logic of the class of BAO’s in which the inequality

33p ≤ 3p holds) with respect to the transitive frames. An easy inspection of the proof of

Theorem 2.2 shows that the proof carries over, provided that we can make an inference of the

form

If A |= α ≤ β, then Aσ |= α ≤ β.

Inequalities α ≤ β with this property are called canonical. The second part of this thesis, Chap-

ter 2, will be devoted, broadly speaking, to finding canonical formulas, in a more general context

than that of BAO’s. Another generalisation of this example, obtained by moving away from

classical logic, will be introduced in the next section.

3 Beyond classical logic

In recent years, there has been an increasing amount of interest in logics for which the algebras

are not Boolean algebras, but rather more general. For example, [19], [24], [21], [22], and [7]

treat the topics of canonical extension and canonicity in a context where Boolean algebras are

replaced by distributive lattices, building on Priestley’s duality theory [38]. Later, this approach

was generalised to bounded lattices which are no longer required to be distributive ([17], [10]), for

which Urquhart [43] and Hartung [27], among others, (cf. Chapter 1 and the Conclusion for more

details) had developed a duality theory. Finally, in [9] and [16], a theory of duality and canonical

extension is developed for partially ordered sets, and reported on and applied to the study of

substructural logics in [14]. The latter is the most general approach in this line of research so far.
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Importantly, just in the same way in which classical modal logic was treated algebraically as

an expansion of the Boolean signature, a vast number of lattice- or poset-based logics can be

accounted for in a completely analogous way in the lattice or poset setting. As a result, the

algebraic study of canonicity of formulas that was revived by Jónsson for classical modal logic

[30] could be generalised to the context of distributive lattices, as was first done by Ghilardi and

Meloni [24] in a constructive setting for intermediate and intuitionistic modal logics. The work

that we will focus on in Chapter 2 of this thesis is that of Gehrke, Nagahashi and Venema [22],

who prove the canonicity of a Sahlqvist fragment for distributive modal logic (i.e., a modal logic

which is based on distributive lattices). One of the main common points of the works mentioned

in this paragraph is that canonicity is studied independently of correspondence. In Chapter 2,

we will investigate the possibility of extending this approach of ‘proving canonicity independently

of correspondence’ from the Sahlqvist fragment to the inductive fragment for distributive modal

logic, which was introduced and proved to be canonical via correspondence by Palmigiano and

Conradie [7]. We will come back to the links between canonicity and correspondence in Section 3

of the Conclusion of this thesis.

Studying canonical extensions and duality in more general contexts than that of Boolean algebras

is interesting and important, for at least three reasons. The first reason is that we thus obtain

a uniform approach to the theory of duality and canonical extensions. Rather than having to

develop a whole new theory whenever confronted with a unknown logic which is associated with

a certain class of algebras, one can rely on the existing general theory. An example of such an

application of the general theory of canonical extensions is [13], where the canonical extension for

so-called bi-implicative algebras is defined as a direct application the theory of canonical extensions

for posets from [9].

Related to this, moving beyond Boolean algebras is interesting because it enables us to get a

modular picture of the theory of canonical extensions. We then regard Boolean algebras, for

example, as partially ordered sets with a number of additional operations (i.e., ∧, ∨, ¬, >) which

are required to satisfy certain equations. In this view, it becomes apparent that the majority of

the algebraic structures mentioned so far (Boolean algebras, BAO’s, distributive lattices, bounded

lattices) can all be seen as ‘poset expansions’ of a certain type. This leads one to conclude that

the order on an algebra is actually all that is required to define the canonical extension. Adding

‘privileged’ operations like ∧, ∨ and ¬ then slightly simplifies the appearance of the canonical

extension, however at the expense of partially blurring our view of what the canonical extension

actually is: a certain completion of a partially ordered set. This perspective has recently been

investigated in [23] and [18].

The two reasons mentioned so far were of a more theoretical and methodological nature, but

there is also an application-driven motivation behind the project of studying canonical extensions

and duality in non-classical logic: the project can provide powerful tools to obtain relational

semantics for non-classical logics, such as, among others, distributive modal logic, logics based on

semilattice expansions, and substructural logics. For instance, as mentioned above, Chapter 2 of

this thesis will be devoted to applying the canonical extension of distributive lattices to the study

of canonicity of formulas. Many more examples can be found in [14].
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4 Outline of the thesis

In Chapter 1, we study the construction of the canonical extension of a partially ordered set. In

particular, we will try to ‘complete the square diagram’, using a generalisation of the ultrafilter

construction for Boolean algebras, inspired by Urquhart’s maximal filter-ideal pairs construction

for bounded lattices. We will show that the canonical extension can be realized as the complex

algebra of a polarity that naturally arises from the maximal filter-ideal pairs. More specifically,

we will identify the ‘atoms and coatoms’ of the polarity associated with the canonical extension

as the optimal filters and ideals of the original poset, thus generalising the result that the atoms

of the canonical extension Aσ of a Boolean algebra A may be realized as the ultrafilters of the

original Boolean algebra.

After studying the object part for the discrete duality that we need in in this construction, we

will focus on the morphism part of the discrete duality in Section 4 of Chapter 1. Morphisms are

of particular importance from a logical perspective when we want to add operations to the logics

we study.

An example of such an added operation is the operation called n, which will play an important

role in Chapter 2, where we will extensively discuss the canonicity proof of the Sahlqvist fragment

for distributive modal logic by Gehrke, Nagahashi and Venema [22]. We will study and explain

in detail some of the mechanisms underlying that canonicity proof, which is special because it

is mainly algebraic in nature, and does not directly rely on a correspondence result. In the last

section of that chapter, we explain why the proof method does not directly transfer to other

syntactic fragments, such as the inductive fragment for distributive modal logic, introduced by

Conradie and Palmigiano [7]. This led us to consider the operation n in more detail, from which

some interesting similarities between n and the Ackermann Lemma emerged, on which we will

report at the end of Chapter 2.

In the Conclusion, we will reflect on the thesis, and collect the open problems and possible direc-

tions for further research that we encountered in it.
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Chapter 1

Canonical extensions of partially

ordered sets

Existence and uniqueness of the canonical extension of partially ordered sets were proved by alge-

braic methods in [9]. There, the algebras which are canonical extensions of partially ordered sets

were characterized as perfect lattices. Gehrke [16] developed a ‘discrete duality’ between perfect

lattices and two-sorted structures called RS polarities. However, an analogue of the topological

duality for Boolean algebras, or even of the ‘ultrafilter frame’ functor, is missing. Thus, the current

situation can be expressed by the following diagram.

PLat
(·)+ -

�
(·)+

RSPol

Poset

(·)σ

6

? -�
?

-

?

U ?

6

Figure 1.1: Partial duality square for posets

In this chapter, we start by reviewing the algebraic construction of the canonical extension (Sec-

tion 1) and the discrete duality (Section 2). After that, we move on to ‘expand’ this diagram in

the following two ways:

First, in Section 3, we will develop an analogue of the ultrafilter frame functor (the diagonal arrow

in the diagram), generalizing work done by Urquhart [43] and Hartonas and Dunn [26] for lattices,

also drawing inspiration from the MSc Logic thesis by Haim [25].

Secondly, in section 4, we will re-examine the categories and the duality in the upper half of the

diagram. In particular, we aim to answer the question: What should be the morphisms in the
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categories PLat and RSPol? In order to give a well-balanced answer to this question, we start

developing a correspondence theory for perfect lattices and RS polarities, which can be seen as a

relatively new attempt to uniformly generalize correspondence theory for modal logic to a much

wider setting.

1 Algebraic construction

In this section, we briefly review the algebraic construction of the canonical extension of a poset as

given in [9]. While doing so, we will also encounter the definition of the canonical extension, which

we parametrize by a choice of filters and ideals, since different definitions of ‘filter’ are possible in

a poset.

1.1 Filter definitions

Because there are many reasonable choices for the definition of ‘filter’ in a poset, each having

different advantages and disadvantages, we here list the properties such a definition must have in

order for us to be able to define a canonical extension, and show that two standard definitions of

‘filter’ in a poset satisfy these properties.

Definition 1.1.1. Given a poset P = (P,≤P), we say a collection F(P) ⊆ P(P ) is a filter system

in P if it has the following four properties:

(i) ∅ 6∈ F(P),

(ii) every F ∈ F(P) is upward closed,

(iii) for every p ∈ P , p↑ ∈ F(P),

(iv) F(P) is closed under unions of chains, i.e.

If {Fα}α∈A is a ⊆-chain of elements in F(P) then
⋃
α∈A

Fα ∈ F(P).

An assignment F which sends every poset P to a filter system F(P) is called a filter definition.

Given a filter definition F , we let the ideal definition I associated with F for every poset P
be I(P) := {F ∈ P(P ) : F ∈ F(P∂)}.
After fixing a filter definition F , elements of F(P) are called filters of P and elements of the

associated ideal definition I(P) are called ideals of P.

Let us look at two filter definitions in particular.

Examples 1.1.2. (i) For a poset P, let F(P) be the collection of non-empty down-directed

up-sets of P. We show that F is a filter definition, that is, every F(P) is a filter system.

Requirements (1) and (2) are met by definition of F(P).

Moreover, if p ∈ P , then p↑ is clearly an up-set, and it is down-directed, for if q1, q2 ∈ p↑,
then p ∈ p↑ and p ≤ q1 and p ≤ q2. So p↑ ∈ F(P), showing that requirement (3) holds.
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To see that F(P) is closed under unions of chains, suppose {Fα}α∈A is a ⊆-chain of down-

directed up-sets, and let F :=
⋃
α∈A Fα.

Suppose p ∈ F and p ≤ q, then p ∈ Fα for some α ∈ A, so q ∈ Fα ⊆ F . Hence, F is an

up-set.

If p1, p2 ∈ F , then, because the Fα form a chain, there is some α ∈ A such that pi ∈ Fα for

both i = 1, 2. Since Fα is down-directed, there is p ∈ Fα ⊆ F such that p ≤ p1 and p ≤ p2.

Hence, F is down-directed. We conclude that F ∈ F(P), as required.

(ii) For P a poset, let F(P) be the collection of non-empty up-sets F which are closed under

existing binary meets, i.e., if a, b ∈ F and {a, b} has a greatest lower bound c in P, then

c ∈ F . We show again that F is a filter definition.

Again, (1) and (2) are met by definition.

Let p ∈ P . Then p↑ is clearly a non-empty up-set. Suppose that q1, q2 ∈ p↑ and their meet

exists. Then q1 ∧ q2 ≥ p since both qi ≥ p, so q1 ∧ q2 ∈ p↑. Therefore, p↑ ∈ F(P), which is

requirement (3).

To see for requirement (4) that F(P) is closed under unions of chains, suppose {Fα}α∈A is

a ⊆-chain of down-directed up-sets, and let F :=
⋃
α∈A Fα.

By the same argument as in part (1), F is an up-set.

Let p1, p2 ∈ F such that their meet exists in P. Then, because the Fα form a chain, there

is some α ∈ A such that pi ∈ Fα for both i = 1, 2. Since Fα is closed under existing binary

meets, we have p1 ∧ p2 ∈ Fα ⊆ F . Hence, F is closed under existing meets, so we see that

F ∈ F(P), as required.

From now on, we will always use the letter F to refer to an arbitrary, fixed, filter definition and

the letter I to refer to its associated ideal definition.

1.2 Definition of the canonical extension

We will now follow the same route as in [34] and [13], and define the notion of an extension in

the poset setting, parametrized by a filter definition F . This generalizes the notion of canonical

extension of a poset from [9], where the particular filter definition from Example 1.1.2(i) is used.

Let P = (P,≤P) be a partially ordered set. Recall that a poset Q = (Q,≤Q) is called an extension

of P via η if there is an order embedding η : P→ Q. Furthermore, if Q is a complete lattice, then

an extension Q of P is also called a completion of P.

With the following definition, we put two (in general different) topologies on such an extension Q.

Definition 1.2.1. Let Q be an extension of a poset P via η.

An element k in the extension Q is F(P)-closed if there is a filter F ∈ F(P) such that k =
∧
η[F ].

The set of closed elements of Q is denoted by KF(P)(Q), or simply K(Q), or even K, when the

other parameters are clear from the context.

Dually, an element j in Q is called I(P)-open if there is an ideal I ∈ I(P) such that j =
∨
η[I],

and the set of open elements is denoted by OI(P)(Q), O(Q) or simply O.
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We are now ready to state the two properties which will distinguish the canonical extension among

other poset completions.

Definition 1.2.2. Let P be a poset and let Q be an extension of P via η.

(i) The extension Q of P is dense if, for every u ∈ Q:∨
{k ∈ K(Q) : k ≤ u} = u =

∧
{j ∈ O(Q) : j ≥ u}.

(ii) The extension Q of P is compact if, for any F ∈ F(P) and I ∈ I(P), if
∧
η[F ] ≤

∨
η[I],

then F ∩ I 6= ∅.

(iii) A canonical extension of P is a compact and dense completion of P.

Note that these definitions very much depend on the chosen filter definition F : different filter

definitions give rise to different canonical extensions. For sake of readability, we suppress explicit

reference to the filter definition, but we would like to note here that the concepts defined in

Definition 1.2.2 should be properly named ‘(F , I)-dense’, ‘(F , I)-compact’ and ‘(F , I)-canonical

extension’.

In the next subsection, we will review the algebraic proof that, for any filter definition F , the

canonical extension exists uniquely.

1.3 Existence and uniqueness

We will merely sketch the algebraic existence and uniqueness proofs from [9] and [34], because

one of the points of this chapter is that an alternative proof can be given by combining discrete

duality and the optimal filter-construction. We start by sketching the existence proof.

First note that, by clause (iii) of the definition of a filter system (Definition 1.1.1), the assignment

p 7→ p↑ defines an order embedding of P into the poset F(P) = (F(P),⊇). So F is an extension of

P. Dually, I(P) = (I(P),⊆) is an extension of P via the embedding p 7→ p↓.
The algebraic recipe for obtaining the canonical extension now runs as follows: first amalgamate

the posets F and I into a compact and dense extension of P, and then take the Dedekind-MacNeille

(DM) completion of this amalgamation in order to obtain a compact and dense completion. It

then remains to show that taking the DM-completion preserves the properties of compactness and

denseness, which the amalgamation held.

As we will show in Section 1.4, the amalgamation could be simply defined as a pushout in the

category Poset, of posets with monotone maps, and the DM completion as a left adjoint to a par-

ticular forgetful functor. Still, we think it is useful to outline the concrete, algebraic construction

here.

Let F(P) +I(P) be the disjoint union of the sets F(P) and I(P). We define a preliminary relation

R on F(P) + I(P) as the union

R := ≤F(P) ∪ ≤I(P) ∪ {(F, I) : F ∩ I 6= ∅} ∪ {(I, F ) : ∀p ∈ I, ∀p′ ∈ F : p ≤P p
′}.

Lemma 1.3.1. The relation R is a preorder on F(P) + I(P).
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Proof. R is clearly reflexive. The proof that R is transitive is elementary, and uses that every filter

is upward closed, and every ideal is downward closed, which holds by clause (ii) of Definition 1.1.1.

Let ∼ be the equivalence relation on F(P) + I(P) defined by x ∼ y iff xRy and yRx, and let

F(P)⊕I(P) := (F(P) +I(P))/ ∼ be the set of equivalence classes. We order this set by [x] ≤⊕ [y]

iff there are x′ ∈ [x] and y′ ∈ [y] such that x′Ry′. This is an instance of the general construction to

turn a preorder into a partial order. In the current case, we actually have a nice characterization

of this equivalence relation.

Lemma 1.3.2. x ∼ y if and only if x = y or {x, y} = {p↑, p↓} for some p ∈ P .

Define the projected embeddings jF : F(P) → F(P) ⊕ I(P) and jI : I(P) → F(P) ⊕ I(P) by

f 7→ [f ] and i 7→ [i]. The following lemma actually contains nothing more than the general fact

that this quotient of a preorder is a partial order.

Lemma 1.3.3. The relation ≤⊕ defines a partial order on F(P)⊕ I(P) such that jF and jI are

order preserving maps.

The amalgamated poset F(P)⊕I(P) := 〈F(P)⊕I(P),≤⊕〉 is close to being the canonical extension,

except that it fails to be complete in general.

Proposition 1.3.4. F(P)⊕ I(P) is a compact and dense extension of P.

Proof. The proof rests on the fact that the closed elements of the extension F(P)⊕ I(P) of P are

precisely the classes of the form [F ], for F ∈ F(P), and the open elements are precisely the classes

of the form [I], for I ∈ I(P).

For denseness, it is then a matter of calculation, using only that filters are upward closed and

that principal upsets are filters, to show that, any element of F(P)⊕ I(P) is the join of the closed

elements below it, and, dually, the meet of open elements above it. Compactness then follows

almost directly from the definition of the order ≤⊕.

A detailed proof is given in Theorem 2.22 of [34].

So, in order to obtain a canonical extension of P, we need to make F(P) ⊕ I(P) into a complete

lattice. The easiest (and most economic) way to do this is by taking the Dedekind-MacNeille

completion F(P)⊕ I(P) of F(P)⊕ I(P). We then make use of the following fact.

Lemma 1.3.5. If Q is a compact and dense extension of P, then so is Q.

The proof of this fact rests on the fact that the Dedekind-MacNeille completion preserves all joins

and meets which already exist in Q.

Finally, combining Proposition 1.3.4 and Lemma 1.3.5, we get to the end of our algebraic con-

struction.

Theorem 1.3.6. For any poset P, F(P)⊕ I(P) is a canonical extension of P.

After successfully performing the algebraic construction to prove existence, the uniqueness proof

consists of showing that any canonical extension of P will be isomorphic to the complete lattice

F(P)⊕ I(P) just constructed. We only state the Theorem for completeness’ sake, and refer the

reader to Theorem 2.5 of [9] for the algebraic proof.
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Theorem 1.3.7. The canonical extension of P is unique up to an isomorphism fixing P.

We now also define the extension of monotone maps between posets, which we will be relevant for

Chapter 2. This is precisely Definition 3.2 from [9].

Definition 1.3.8. Let P and Q be posets, and f : P→ Q any function. Define fσ and fπ : Pσ →
Qσ, called the sigma and pi extension of f , by

fσ(u) :=
∨
{
∧
{f(p) : x ≤ p, p ∈ P} : x ≤ u, x ∈ K(Pσ)},

fπ(u) :=
∧
{
∨
{f(p) : y ≥ p, p ∈ P} : y ≥ u, y ∈ O(Pσ)}.

1.4 A categorical perspective

1 As mentioned above, both steps in the construction of Section 1.3, i.e., the amalgamation and

the DM-completion, can be viewed from the perspective of category theory.

Regarding the amalgamation, although one might hope that it is a pushout in the category of

posets with monotone maps, the following example shows that this is not the case in general.

Example 1.4.1. Consider the poset P whose underlying set is N× {0, 1}, with the order defined

by (n, 0) ≤ (m, 0) iff n ≤ m, (n, 1) ≤ (m, 1) iff m ≤ n, and (n, 0) ≤ (m, 1) for all n,m. We think

of P as the partial order N with a mirrored copy above it.

Then the non-principal ideals of P are ∅ and {(n, 0) : n ∈ N}, which we denote by ∞, and the

non-principal filters of P are ∅ and {(n, 1) : n ∈ N}, which we denote by ∞∗.
One can calculate that the amalgamation F(P) ⊕ I(P) has as underlying set that of P, with

two additional points ∞ and ∞∗, and the order is that from P, with the additional relations

(n, 0) ≤ ∞ ≤ ∞∗ ≤ (n, 1) for all n.

However, we can consider the poset Q which has the same underlying set and order, except that

∞ and ∞∗ are not comparable in Q, the ‘legs’ F(P)→ Q and I(P)→ Q are the obvious inclusion

functions, which preserve the orders of F(P) and I(P).

Now there is clearly no order-preserving map from F(P)⊕ I(P)→ Q commuting with the legs of

Q, so F(P)⊕ I(Q) is not the pushout.

It is not hard to see that the poset Q we defined above is the pushout in Poset. This is an instance

of a general way to construct the pushout in Poset, that we do not discuss any further here.

However, the amalgamation does have another, rather delicate, universal property.

Proposition 1.4.2. Let P be a poset, F(P) = 〈F(P),⊇〉 and I(P) = 〈I(P),⊆〉 the filter and ideal

posets of P, and F(P)⊕ I(P) the amalgamated poset constructed in Section 1.3. Suppose we have

a diagram

P
ιF- F(P)

I(P)

ιI

? g - Q

f

?

1This section was heavily revised after the defense of this thesis, and benefited greatly from several discussions
with Mai Gehrke and Dion Coumans.
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where Q is a poset such that f preserves directed meets and g preserves directed joins (more

precisely, for a down-directed set D in F(P), the directed meet of f [D] exists and is equal to

f(
d
D), and similarly for g).

Then there exists a unique order-preserving function h : F(P) ⊕ I(P) → Q such that h ◦ jF = f

and h ◦ jI = g.

In the category Poset, the Dedekind-MacNeille completion of a poset P can be characterized

categorically as the injective hull of the object P (Cf. [2] and 9.17 of [1] for details). More related

to our work in Section 4 of this chapter, there is also a universal mapping characterization of the

DM completion, provided by Bishop [4], which we will briefly review here2.

Fix a poset P. For u ⊆ P , let uP and lP, defined by uP(u) := {p′ ∈ P : ∀p ∈ u (p ≤ p′)} and

lP(u) := {p ∈ P : ∀p′ ∈ u (p ≤ p′)}, be the upper and lower maps on P(P ). These maps form

a residuated pair, and their composition cP := lPuP is a closure operator on P. We can use this

closure operator to realize the DM completion of P.

Theorem 1.4.3. The complete lattice P, consisting of the subsets of P which are closed under

cP, is the Dedekind-MacNeille completion of P (up to an isomorphism fixing P) with the order

embedding ηP : P→ P which sends p to p↓. Moreover, ηP preserves any joins or meets which exist

in P.

One may expect at first sight that ηP is a universal arrow in the category Poset, but this is not

the case; we only have the following result.

Proposition 1.4.4. For any monotone map f : P → Q, where P is a poset and Q is a complete

lattice, there exists a monotone map f̄ : P→ Q such that f̄ ◦ ηP = f . In general, f̄ is not unique.

If we want to get an actual universal arrow, we need to consider a subcategory of Poset by

restricting the functions which we admit as morphisms in our category. The following definition

is the key point in Bishop [4].

Definition 1.4.5. We say a map f : P→ Q is closed if f−1 : P(Q)→ P(P ) sends cQ-closed sets

to cP-closed sets.

More explicitly, f is closed if, for every subset u ⊆ Q such that cQ(u) = u, we have that

cP(f−1(u)) = f−1(u).

It is not hard to see that residuated maps are closed, and that closed maps preserves arbitrary

joins which exist in the domain. Then, Bishop has the following result.

Theorem 1.4.6 (Theorem 3, [4]). For any closed map f : P → Q between posets, there exists a

unique closed map f̄ : P→ Q such that the diagram

P
f - Q

P

ηP

?
f̄ - Q

ηQ

?

2Although Bishop only considers completions of lattices, it is straightforward to see that the same results hold
for posets, too.
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commutes.

We observe the following immediate consequence of this theorem.

Corollary 1.4.7. Let PosetC be the category of posets with closed maps, and CLat∨ the category

of complete lattices with completely join-preserving functions. We have functors

L : PosetC → CLat∨ U : CLat∨ → PosetC

P 7→ P C 7→ C

(f : P→ Q) 7→ (f̄ : P→ Q) f 7→ f.

These functors L : PosetC � CLat∨ : U form a reflection, i.e., an adjunction whose counit is an

isomorphism.

Proof. The unit of the adjunction ηP is the embedding of P into P, which is a closed map. The

co-unit is the isomorphism between the complete lattices UC and C, which is given by sending a

cUC-closed set u to
∨

C u.

With this Corollary, we have represented the Dedekind-MacNeille completion categorically as the

reflector of the the subcategory CLat∨ of PosetC . Erné [11] later showed that the category CLat

of complete lattices with complete lattice homomorphisms is also reflective in a category whose

objects are pre-ordered sets, and whose morphisms are so-called cut-stable maps. It is clear that

the results from Gehrke [16] and our own results in Section 4 of this chapter are closely related

to Erné’s and Bishop’s work, and we think that making these connections explicit would make an

interesting and necessary further research project.

Furthermore, we would like to reconsider Proposition 1.4.2 in this context. It is not clear at this

point in what category F(P)⊕ I(P) could be a pushout, if in any category at all.

We conclude that, in order to simultaneously capture the two parts of the canonical extension

construction (amalgamation and completion) in a categorical framework, and hence give a co-

herent category-theoretic perspective on the canonical extension, we would need a subcategory

of Poset for which both the Dedekind-MacNeille completion is a reflector, and the diagram from

Proposition 1.4.2 is a pushout. As far as we know, such a subcategory is not presently known.

2 Discrete duality: Objects

Whereas the construction outlined in the previous section took place on the algebraic (left) side

of the square diagram 1.1, our first aim in this chapter is to ‘reconstruct’ the anti-clockwise route

through the diagram, which was how the canonical extension was first defined in the context of

Boolean algebras and BAO’s (cf. Introduction).

As mentioned at the beginning of this chapter, the discrete duality in the upper half of the diagram

was proposed in this context in [16], based on earlier work by Hartung [27] and Erné [11]. We

review the object part of this duality in this section, and then show how to obtain the canonical

extension via the discrete duality in section 3, deferring the discussion of morphisms to section 4.
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2.1 Perfect Lattices and Polarities

In order to reconstruct the dual object of the canonical extension Pσ of a poset P, it is a necessary

first step to investigate the algebraic properties of the complete lattice Pσ in some more detail.

Let us first try to motivate this investigation and the ensuing choice of a dual object for Pσ by

considering the more specialized cases where P is a Boolean algebra, and where P is a distributive

lattice.

Recall that the canonical extension Aσ of a Boolean algebra A is always complete and atomic. This

observation then leads one to take the atom set of Aσ as the dual object of the algebra, because

the entire structure of any complete and atomic Boolean algebra is already determined by its set

of atoms.

A similar process can be seen at work for the canonical extension Dσ of a distributive lattice

D: here, one first observes that Dσ is always complete, and also join-generated by its completely

join-prime elements and meet-generated by its completely meet-prime elements. Then the sets

of completely join-prime and completely meet-prime elements turn out to be isomorphic because

of the distributivity of D, and it suffices to take the poset3 of completely join-primes as the dual

object of Dσ. Note that, in Boolean algebras, the completely join-prime elements are precisely

the same as the atoms, and the order of the Boolean algebra restricted to the atoms is always

discrete. So, we can regard the canonical extension of a Boolean algebra as a special case of the

construction for distributive lattices.

Moving back to the general context of the canonical extension Pσ of a partially ordered set P, we

find that the symmetry between the sets of completely join- and meet-irreducibles that was present

in distributive lattices is lost, so that we will have to keep track of both sets on the dual side. The

dual object of Pσ will thus become a two-sorted object. To encode the order of Pσ on the dual

side, it suffices to remember only the order between the completely join- and meet-irreducibles,

from which the rest of the order in Pσ can be reconstructed. Now, a remark analogous to the one

at the end of the previous paragraph can be made: in a distributive lattice, the completely join-

/meet-irreducible elements are precisely the same as the completely join-/meet-prime elements,

so that the canonical extension of a distributive lattice can be regarded as a special case of the

canonical extension of a poset.

We now formalise the ideas sketched here, closely following [16].

Definition 2.1.1. An element x in a complete lattice L is called completely join-irreducible

if, for any A ⊆ L, x =
∨
A implies x ∈ A. The dual property is called completely meet-

irreducible. The sets of completely join- and meet-irreducible elements of L are denoted by

J∞(L) and M∞(L), respectively.

A complete lattice L is called perfect if it is join-generated by its completely join-irreducibles,

and meet-generated by its completely meet-irreducibles. That is, L is perfect if for any u ∈ L, we

have ∨
{x ∈ J∞(L) : x ≤ u} = u =

∧
{a ∈M∞(L) : a ≥ u}.

Lemma 2.1.2. If P is a poset, then Pσ is a perfect lattice.

3It is interesting and relevant to duality theory that we get an ordered set as the dual of a distributive lattice,
whereas the dual of a Boolean algebra is simply a set. However, we do not go into this any further here, because
it is not central to the thread of our story.
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Proof. By denseness of the closed elements in Pσ, it suffices to show that any closed element of

Pσ is equal to the join of the completely join-irreducible elements below it (and that the dual

statement holds for the open elements). The proof of this fact uses the denseness of the open

elements in Pσ and Zorn’s Lemma. See the proof of Theorem 2.8(3) in [9] for the details.

We are now ready to set up our objects on the dual side. By our reasoning above, these objects

should consist of two sets with a relation between them.

Definition 2.1.3. A polarity is a triple F = 〈X,A,R〉, where X and A are sets, and R ⊆ X ×A
is a relation from X to A.4

Remark 2.1.4. The polarity object has been studied in full generality from several different

perspectives, of which we want to mention a few here.

Firstly, polarities form the central object of study in Formal Concept Analysis, where a polarity

is called a ‘context’. The field of Formal Concept Analysis focuses on applications, of which there

are many, ranging from linguistics to economics [15].

A polarity can also be regarded as a special case of a Chu space [37]: in that field, a polarity is

called a {0, 1}-Chu space. We will refer to the latter observation when discussing morphisms in

Section 4 of this chapter.

Since the structure of a perfect lattice is determined by its completely join- and meet-irreducibles,

there is a natural way to encode a perfect lattice as a polarity:

Definition 2.1.5. Let L be a perfect lattice. The polarity associated with L, denoted L+, is

defined to be the triple 〈J∞(L),M∞(L),≤L ∩ J∞(L)×M∞(L)〉.

A natural question to ask, now that we have defined a ‘dual object’ for a perfect lattice, is the

following: how can we retrieve a perfect lattice L from its associated polarity L+? To answer this

question, we need to recall how a polarity gives rise to a closure operator in a natural way.

Definition 2.1.6. If F = 〈X,A,R〉 is a polarity, define functions uR (upper) and lR (lower)

between the posets 〈P(X),⊇〉 and 〈P(Y ),⊆〉, as follows:

for u ∈ P(X), let uR(u) := {a : ∀x ∈ u : xRa}

for v ∈ P(A), let lR(v) := {x : ∀a ∈ v : xRa}.5

Then (uR, lR) is a residuated pair, so cR := lRuR is a closure operator on the set X, and we call

a subset u ⊆ X cR-closed6 if cR(u) = u. We write F+ for the complete lattice of subsets of X

which are closed under the closure operator cR. Recall that the lattice operations on F+ are given

by
∧
U =

⋂
U and

∨
U = cR(

⋃
U), for any set U of cR-closed subsets.

4For notational convenience, especially in Section 4, we will denote variables which vary over the set X by x, x′,
and variables varying over the set A by a, a′, and then sometimes abbreviate expressions such as “∀x ∈ X ∃a ∈ A”
as simply “∀x∃a”.

5For sake of readability, if x ∈ X and a ∈ A, we will often write uR(x) instead of uR({x}) and lR(a) instead of
lR({a}).

6Note that, unfortunately, we need two completely different uses of the word ‘closed’: on the one hand ‘closed’
is the property of an element of the canonical extension that can be written as the meet of a filter, and on the other
hand it is the word for a subset that is invariant under the closure operator cR. To avoid confusion, we will always
use the term ‘cR-closed’ when we mean closed in the latter sense.
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Remark 2.1.7. Of course, the definitions of the upper and lower maps and the associated closure

operator cP that we considered in Section 1.4 are the particular case of this definition where

X = P = A and R =≤P.

Lemma 2.1.8. If L is a perfect lattice, then L ∼= (L+)+.

Proof. Since L is perfect, L is the DM completion of the poset J∞(L)∪M∞(L). It is not hard to

see that (L+)+ is also the DM completion of the poset J∞(L) ∪M∞(L). The result then follows

from the uniqueness part of Theorem 1.4.3 above. Cf. Proposition 4.7(1) in [9].

2.2 RS Polarities

Lemma 2.1.8 gives us half of the object correspondence between perfect lattices and polarities. We

are now left with the question: which polarities arise as the dual objects of perfect lattices? Such

polarities must have certain special properties, expressing the fact that (·)+ turns these polarities

into perfect lattices. In this subsection, we will express these properties without any reference to

the perfect lattices.

For any polarity F = 〈X,A,R〉, we let iX : X → F+ be the map x 7→ cR(x) and iA : A→ F+ the

map a 7→ lR(a). For F to be of the form L+ for some perfect lattice L, one first requirement is

that both maps iX and iA are injective, so that we can regard both X and A as subsets of F+.

Lemma 2.2.1. Let F = 〈X,A,R〉 be a polarity.

(i) The following are equivalent:

(a) iX is injective,

(b) ∀x1, x2 ∈ X (x1 6= x2 → uR(x1) 6= uR(x2)). (SX)

(ii) The following are equivalent:

(a) iA is injective,

(b) ∀a1, a2 ∈ A (a1 6= a2 → lR(a1) 6= lR(a2)). (SA)

Proof. (i) Suppose iX is injective. Let x1, x2 ∈ X, x1 6= x2. If we would have uR(x1) = uR(x2),

then clearly iX(x1) = cR(x1) = lRuR(x1) = lRuR(x2) = cR(x2) = iX(x2), contrary to the

assumption. So uR(x1) 6= uR(x2).

Conversely, suppose (SX) holds. Let x1, x2 ∈ X, x1 6= x2. By (SX) we get that uR(x1) 6=
uR(x2). Now cR(x1) = cR(x2) would imply uR(x1) = uRcR(x1) = uRcR(x2) = uR(x2),

which is a contradiction. So cR(x1) 6= cR(x2).

(ii) is the definition of injectivity.

Definition 2.2.2. We say a polarity is separating, or an S polarity, if it satisfies conditions

(SX) and (SA) of Lemma 2.2.1. In this case, we may thus regard X and A as subsets of F+, and

we then write ≤ for the partial order on the set X ∪A inherited from F+.

An important, well-known fact about polarities is that F+ is determined by the way in which X

and A sit inside F+.
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Proposition 2.2.3. Let F = 〈X,A,R〉 be an S polarity. Then X join-generates F+ and A meet-

generates F+.

Proof. In fact, for any subset u of X, we have the equality

cR(u) = cR
(⋃
{cR(x) : x ∈ u}

)
, (1.1)

which we will prove first.

Since u ⊆ {cR(x) : x ∈ u} and cR is monotone, the direction ⊆ is clear.

For the direction ⊇, it suffices to show uR(u) ⊆ uR(
⋃
{cR(x) : x ∈ u}), since lR is antitone.

Let a ∈ uR(u) be arbitrary. Take any x′ ∈
⋃
{cR(x) : x ∈ u}. Pick x ∈ u such that x′ ∈ cR(x).

Then xRa since a ∈ uR(u). In particular, we then have a ∈ uR(x), so x′Ra, since x′ ∈ cR(x).

Since x′ was arbitrary, this shows that a ∈ uR(
⋃
{cR(x) : x ∈ u}), as required.

Now, by definition of the operations in F+ and the embedding iX of X in F+, for any cR-closed

subset u of X, (1.1) specializes to u = cR(u) =
∨
{iX(x) : x ≤ u}. The proof that A meet-generates

F+ is similar.

We now formulate a second property of polarities, which isolates those polarities among the S

polarities in which X really fulfills the role of ‘set of completely join-irreducibles’, and A the role

of ‘set of completely meet-irreducibles’.

Lemma 2.2.4. Let F = 〈X,A,R〉 be an S polarity.

(i) The following are equivalent.

(a) The elements of X are completely join-irreducible in F+,

(b) ∀x ∈ X ∃a ∈ A(x � a ∧ ∀x′ ∈ X (x′ < x→ x′ ≤ a)). (RX)

(ii) The following are equivalent.

(a) The elements of A are completely meet-irreducible in F+,

(b) ∀a ∈ A∃x ∈ X(a � x ∧ ∀a′ ∈ A (a′ > a→ a′ ≥ x)). (RA)

Proof. We only prove the equivalence in (i), the proof of (ii) being analogous.

Suppose that the elements of X are completely join-irreducible in F+. Let x ∈ X be arbitrary.

Consider the element u :=
∨
{x′ : x′ < x} of F+, which is clearly less than or equal to x. If we had

that u = x, then the join-irreducibility of x would imply that x ∈ {x′ : x′ < x}, which is clearly

absurd. So we must have u < x. Since A meet-generates F+ (Proposition 2.2.3), pick an element

a ∈ A such that x 6≤ a and u ≤ a. If x′ < x, then x′ ≤ u ≤ a. So a is the element required to

exist by (RX).

Conversely, suppose that (RX) holds. Let x ∈ X be arbitrary. Suppose that x =
∨
U for some

collection U of elements of F+. Assume, to obtain a contradiction, that x 6∈ U , so that u < x for

all u ∈ U . By (RX), pick a ∈ A such that x � a and, for all x′ < x, x′ ≤ a.

Let u ∈ U be arbitrary. Then u =
∨
{x′ ∈ X : x′ ≤ u}, since X join-generates F+. Now, for any

x′ with x′ ≤ u, we have x′ < x, so x′ ≤ a by the choice of a. Since this holds for arbitrary x′, we

get u ≤ a. However, this holds for arbitrary u ∈ U , so we conclude x =
∨
U ≤ a, contrary to the

choice of a.
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Definition 2.2.5. An S polarity is called reduced, or an RS polarity, if it satisfies both

conditions (RX) and (RA) of the Lemma.

The work we have done in this section is meant to motivate the following result.

Fact 2.2.6. The assignments L 7→ L+ and F 7→ F+ define a bijective correspondence between

perfect lattices and RS polarities.

Strictly speaking, because we do not yet have a proper notion of ‘isomorphism’ between RS

polarities, we can not prove a statement of the form ‘If F is an RS polarity, then F ∼= (F+)+.’ We

do hope to have convinced the reader, however, that such a statement, when made precise, is now

within reach.

We have thus defined the objects of a category that will be dual to PLat and take up the place

in the upper right corner of Diagram 1.1. In the next section, we will show how the obtain the

canonical extension object via RS polarities. We will then return to the question of what are the

morphisms in the category RSPol in Section 4.

3 Canonical extension via discrete duality

As indicated in the Introduction, Stone [41], Priestley [38], Urquhart [43] and Hartung [27] are con-

cerned with developing topological dualities for increasingly general algebraic structures. Stone’s

duality establishes a correspondence between the categories of Boolean algebras and of Stone

spaces. Priestley duality extends the correspondence to the categories of distributive lattices and

of Priestley spaces, and Urquhart and Hartung again generalize this to the categories of bounded

lattices and of L-spaces (Urquhart), or topological contexts (Hartung). In the last step of gener-

alization, however, both Urquhart and Hartung needed to consider the subcategory of bounded

lattices with surjective homomorphisms. More recent attempts by Hartonas and Dunn [26] and

Jipsen and Moshier [28], [29] follow a different route to obtain a duality between bounded lattices

with all homomorphisms and an appropriate subcategory of the category of topological spaces.

However, this duality is not a generalisation of Stone duality. Our motivation here stems from

logic rather than algebra, so that we want to remain consistent with Stone duality.

The algebraic objects needed for the mentioned dualities are of increasing complexity: Stone

duality uses ultrafilters, Priestley duality needs prime filters, and Urquhart’s bounded lattice

duality rests on maximal filter-ideal pairs. A natural next step would be to extend this duality to

the category of partially ordered sets. In this section, as a first part of this larger project, we show

how to construct the functor (·)•, which will be a straightforward generalization of the optimal

filter-ideal functor for bounded lattices, in such a way that composing it with the discrete duality

functor (·)+ introduced in the previous section yields the canonical extension.

More concretely, we will show that Urquhart and Hartung’s optimal filter-ideal construction still

works for partially ordered sets, no matter what filter definition we choose, and that it yields the

canonical extension. We thus obtain a second construction of the canonical extension, uniformly

generalizing the canonical-extension-via-duality approach for lattices to the setting of posets.
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3.1 Definition and fundamental theorem of maximal pairs

Definition 3.1.1. Let F be a filter and I an ideal in a poset P. We say F is I-maximal if it is

a ⊆-maximal element of the set {F ′ ∈ F(P) : F ′ ∩ I = ∅}. Dually, we say I is F -maximal if it

is a ⊆-maximal element of the set {I ′ ∈ I(P) : F ∩ I ′ = ∅}. The pair 〈F, I〉 is called a maximal

pair if F is I-maximal and I is F -maximal.

An optimal filter7 is a filter F for which there exists an ideal I such that 〈F, I〉 is a maximal

pair. The set of optimal filters is denoted by F∗(P). Dually, we define an optimal ideal to be an

ideal I for which there exists a filter F such that 〈F, I〉 is a maximal pair, and denote the set of

optimal ideals by I∗(P).

We now generalize some of the theory from bounded lattices to the context of posets.

Theorem 3.1.2. For any filter F and ideal I in a poset P such that F ∩ I = ∅, there is a filter

F∗ ⊇ F such that F∗ is I-maximal, and, dually, there is an ideal I∗ ⊇ I such that I∗ is F -maximal.

Moreover, 〈F∗, I∗〉 is a maximal pair.

Proof. Let F be a filter and I an ideal such that F ∩ I = ∅. Consider the collection

X := {F ′ ∈ F(P ) : F ⊆ F ′ and F ′ ∩ I = ∅}.

Since the union of a chain of filters is still a filter, by property (iv) of filter systems, we have that

every chain of elements of X has an upper bound, namely, the union of the chain. Therefore, by

Zorn’s Lemma, there is a ⊆-maximal element F∗ in X .

Now, if we would have F∗ ( F ′ for some F ′ ∈ F(P) such that F ′ ∩ I = ∅, then also F ⊆ F∗ ⊆ F ′,
so F ′ ∈ X , contradicting that F∗ is ⊆-maximal in X . Hence, F∗ is I-maximal.

By a dual argument, we obtain an ideal I∗ ⊇ I which is F∗-maximal.

It remains to show that 〈F∗, I∗〉 is a maximal pair. We will only show that F∗ is I∗-maximal, the

other property being dual.

Suppose F∗ ( F ′ for some F ′ ∈ F(P) and F ′∩I∗ = ∅. Then we also have F ′∩I ⊆ F ′∩I∗ = ∅, and

F ⊆ F∗ ( F ′, so F ′ ∈ X , contradicting that F∗ is ⊆-maximal in X . Hence, F∗ is I∗-maximal.

In particular, this theorem shows that every disjoint filter-ideal pair can be extended to a maximal

pair, which can be viewed as a generalization of the well-known fact in Boolean algebras that every

filter can be extended to an ultrafilter.

An important corollary, that we use more often than the theorem itself, is the following:

Corollary 3.1.3. Let F be a filter and p 6∈ F . There is a maximal pair 〈F∗, I∗〉 such that F ⊆ F∗
and p ∈ I∗.
Dually, for an ideal I and q 6∈ I, there is a maximal pair 〈F∗, I∗〉 such that I ⊆ I∗ and q ∈ F∗.

Proof. Let F be a filter and p 6∈ F . Then p↓ is an ideal. Also, F ∩ p↓ = ∅: if there was p′ ∈ P
such that p′ ∈ F and p′ ≤ p, then we would have p ∈ F , because F is an up-set, contradicting the

assumption that p 6∈ F .

By the Theorem, there is a maximal pair 〈F∗, I∗〉 such that F ⊆ F∗ and p↓ ⊆ I∗. In particular,

p ∈ I∗.
The proof of the second part is dual.

7This terminology was introduced, in the context of lattices, in the MSc Logic thesis of Haim [25].
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3.2 The canonical extension via maximal pairs

There is an obvious way to put optimal filters and ideals together in a polarity.

Definition 3.2.1. Let P be a poset. Recall that F∗(P) and I∗(P) denote the sets of optimal filters

and ideals of P. We define the incidence relation ⊥ ⊆ F∗(P)× I∗(P) by

F ⊥ I ⇐⇒ F ∩ I 6= ∅,

and we call P• := 〈F∗(P), I∗(P),⊥〉 the optimal polarity of P.

We now aim to show that applying the discrete duality functor (·)+ to the optimal polarity of P
yields the canonical extension. In brief: we want to show that Pσ ∼= (P•)+.

We first show that (P•)+ is always a completion of P in a natural way. Recall that (P•)+, by

definition, consists of sets of optimal filters which are closed under the closure operator c⊥ (this

is Definition 2.1.6, applied to R := ⊥).

Proposition 3.2.2. The assignment p 7→ η(p) := {F ∈ F∗(P) : p ∈ F} defines an order embedding

η : P→ (P•)+.

Proof. To see that η is well-defined, we need to show that η(p) is a c⊥-closed set, i.e., that

η(p) = c⊥(η(p)).

First note that η(p) ⊆ c⊥(η(p)) always holds, since c⊥ is a closure operator.

For the other inclusion, suppose that F ∈ F∗(P) is such that F 6∈ η(p), i.e., p 6∈ F . By Corol-

lary 3.1.3, there is a maximal pair 〈F∗, I∗〉 such that F ⊆ F∗ and p ∈ I∗. Note that I∗ ∈ u⊥(η(p)):

for any F ′ ∈ η(p), we have p ∈ F ′, so, since p ∈ I∗, we get F ′ ⊥ I∗. However, F ∩ I∗ ⊆ F∗∩ I∗ = ∅,
so F 6⊥ I∗, so F 6∈ c⊥(η(p)).

So η is well-defined, and it remains to show that it is an order embedding. Clearly, if p1 ≤ p2, then

η(p1) ⊆ η(p2), because any filter containing p1 will then also contain p2, since filters are upward

closed.

For the other direction, suppose p1 6≤ p2. Then F := p1↑ is a filter and p2 6∈ F by assumption, so

by Corollary 3.1.3, there is a maximal pair 〈F∗, I∗〉 such that p1↑ ⊆ F∗ and p2 ∈ I∗. In particular,

p1 ∈ F∗ and p2 6∈ F∗, so that F∗ is in the set η(p1) but not in η(p2). Therefore, η(p1) 6⊆ η(p2),

which is what we wanted to show.

We are now ready to prove the main result of this section.

Theorem 3.2.3. The complete lattice (P•)+ is the canonical extension of P.

Proof. We need to show that η : P→ (P•)+ is a compact and dense extension.

• Compactness.

Let F ∈ F(P) and I ∈ I(P) and suppose that F ∩ I = ∅. We show that
∧
η[F ] 6≤

∨
η[I].

By Theorem 3.1.2, there is a maximal pair 〈F∗, I∗〉 such that F ⊆ F∗ and I ⊆ I∗. We will

show that F∗ ∈
∧
η[F ] and F∗ 6∈

∨
η[I]. This will conclude the proof of the compactness

property, since F∗ is then an element of F∗(P) witnessing that
∧
η[F ] 6≤

∨
η[I].

Since F ⊆ F∗, we have f ∈ F∗ for all f ∈ F , i.e., F∗ ∈ η(f) for all f ∈ F . Hence,

F∗ ∈
⋂
f∈F η(f) =

∧
η[F ].
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Note that I∗ is an element of the set u⊥ (
⋃
η[I]): for any F ′ ∈

⋃
η[I], there is i ∈ I such

that F ′ ∈ η(i), i.e., i ∈ F ′. But then we also have i ∈ I∗, since I ⊆ I∗, so F ′ ∩ I∗ 6= ∅, i.e,

F ′ ⊥ I, as claimed.

So, since F∗ ∩ I∗ = ∅, we conclude that F∗ 6∈ l⊥u⊥(
⋃
η[I]) =

∨
η[I].

• Denseness.

Let u ∈ (P•)+ be a c⊥-closed set of optimal filters.

– Let Ku := {k ∈ K((P•)+) : k ≤ u}. We want to show that u =
∨
Ku.

It is clear that u is an upper bound for Ku, so we need to show that it is a (the)

least upper bound. Suppose u′ is an upper bound in (P•)+ for Ku. It suffices to show

that u⊥(u′) ⊆ u⊥(u): from this it follows by the residuation property of (u⊥, l⊥) that

u ⊆ l⊥u⊥(u′) = u′, which is what we need to show.

Suppose I 6∈ u⊥(u). Pick F ∈ u such that F ∩ I = ∅. Since u is c⊥-closed, the set

k := {F ′ ∈ F∗(P) : F ⊆ F ′} must be a subset of u. Note also that k =
∧
η[F ], and F

is a filter in P, so k is a closed element in (P•)+ that is below u, i.e., k ∈ Ku. Since u′

is an upper bound for Ku, we have k ⊆ u′. In particular, F ∈ u′, so since F ∩ I = ∅,
we have I 6∈ u⊥(u′).

– Let Ou := {j ∈ O((P•)+) : u ≤ j}. We want to show that u =
∧
Ou =

⋂
Ou. It is clear

that u is contained in
⋂
Ou. For the converse inclusion, suppose that F 6∈ u for some

F ∈ F∗(P). We need to show that there is an open element above u such that F 6∈ u.

Since u is c⊥-closed, we also have F 6∈ l⊥u⊥(u). Pick I ∈ u⊥(u) such that F ∩ I = ∅.
Let j be the open element

∨
η[I]. The following calculation shows that j = l⊥({I}):

j = c⊥
(⋃

η[I]
)

= c⊥({F : ∃i ∈ I : F ∈ η(i)})

= c⊥({F : F ∩ I 6= ∅})

= c⊥l⊥({I}) = l⊥({I}).

Now, since {I} ⊆ u⊥(u) by assumption, we get u ⊆ l⊥({I}) = j by the residuation

property of (u⊥, l⊥). Furthermore, since F ∩ I = ∅, we have F 6∈ j, so we have found

an open element above u which does not contain F , as required.
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4 Discrete duality: Morphisms

In this section8, we show how the object correspondence between RS polarities and perfect lattices

from Section 2 can be extended to a duality. As indicated in the beginning of Section 3, finding

appropriate duals for morphisms was already a problem in the category of bounded lattices, as

can be seen in the development of duality by Urquhart [43] and Hartung [27]. There, it was only

possible to find functional duals when the category of bounded lattices was restricted to contain

only surjective morphisms.

In [9] and [16], the idea arose that allowing morphisms between polarities to be relations instead of

requiring them to be functions largely widens the scope of possibilities. We pursue this approach

and will consider categories, whose objects are RS polarities, in which the morphisms are relations,

and even pairs of relations, satisfying certain properties.

Our approach can be distinguished from previous work in a few ways. First of all, an aspect which

may be regarded as merely a cosmetic difference, but we believe is still worth mentioning, is that

in [9] and [16], a morphism between RS polarities 〈X,A,R〉 and 〈Y,B, S〉 was always ‘cross-wise’:

from X to B, and from Y to A. We have chosen to take our relations ‘horizontally’, i.e., from X

to Y and from B to A.

Furthermore, we will show that our definition of morphisms between RS polarities can be seen

to generalize the definition of Chu transform from the theory of Chu spaces, thus providing an

independent reason why our definitions may be considered natural.

Finally, we try to be as impartial as possible about the question which are the morphisms in the

category of perfect lattices, but rather treat several reasonable choices in a modular manner. We

thus get a picture of increasingly more restricting choices of morphisms between perfect lattices,

corresponding to increasingly more restricting conditions on the morphisms between RS polarities.

For the reader’s convenience, our results are informally summarized and indexed in the table below.

Perfect lattice RS polarity Section

Adjoint pair Stable adjoint relation pair 4.1

∨
/
∧

-hemimorphism 1 relation satisfying a 4.4
first-order condition (A)/(B)

Complete homomorphism Pair of relations satisfying 4.5
two first-order conditions:

3 ≤ 2 and 2 ≤ 3

Figure 1.2: Table of correspondence results

Furthermore, in Sections 4.2 and 4.3, we will define a composition on the morphisms between RS

polarities, and indicate how, with this composition, the functors (·)+ and (·)+ constitute a duality.

8I would like to acknowledge explicitly the impact on this section of several discussions with Mai Gehrke and
Adrian Pigors during TACL ‘09, and to mention the latter’s ongoing research project [36], which is closely related
to the matter treated in this section.
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4.1 Adjoint pairs

As a first step, we will develop a duality between the category PLatad of perfect lattices with

adjoint pairs between them and a category of RS polarities which we will denote by RSPolad.

We start by listing a number of possible notions of morphisms between perfect lattices.

Definition 4.1.1. Let h : L1 → L2 be a function between two perfect lattices. We say

• h is a complete join-hemimorphism if h preserves arbitrary joins,

• h is a complete meet-hemimorphism if h preserves arbitrary meets,

• h is a complete homomorphism if h preserves arbitrary joins and meets.

Definition 4.1.2. If f : L1 → L2 and g : L2 → L1 are functions between perfect lattices, then

(f, g) is an adjoint pair, written as f a g, if

∀u ∈ L1 ∀v ∈ L2(f(u) ≤ v ↔ u ≤ g(v)).

We adopt the convention that the left adjoint determines the direction of an adjunction, i.e., in

the above notation, (f, g) is an adjoint pair ‘from’ L1 ‘to’ L2. We thus get a category of complete

lattices with adjoint pairs between them.

Note that right adjoints are unique: if f a g and f a g′, then g = g′, and similarly for left adjoints.

The following piece of lattice theory provides a useful description of these morphisms, and actually

holds in general for complete lattices, but we will only be concerned with perfect lattices here.

Fact 4.1.3. Let h : L1 → L2 be a function between perfect lattices.

(i) h is a complete join-hemimorphism if and only if there exists a g such that h a g.

(ii) h is a complete meet-hemimorphism if and only if there exists a f such that f a h.

It follows that the category of perfect lattices with adjoint pairs between them is equivalent to

the category of perfect lattices with complete join-hemimorphisms, and dually equivalent to the

category of perfect lattices with complete meet-hemimorphisms.

The most natural morphisms between perfect lattices are complete homomorphisms. In the end,

we would like to find a duality between the category PLat of perfect lattices with complete homo-

morphisms between them and a category of RS polarities.

Let f : L1 � L2 : g be an adjoint pair from the perfect lattice L1 to the perfect lattice L2. Denote

the RS polarity (L1)+ by 〈X,A,R〉 and denote (L2)+ by 〈Y,B, S〉.
Observe that f is completely join preserving, so that it is completely determined by its action on

the completely join irreducibles X of L1: for any u ∈ L1, we have

f(u) = f
(∨
{x ∈ X : x ≤ u}

)
=
∨
{f(x) : x ≤ u}.

Also, since L2 is join-generated by Y , we have, for any x ∈ X, that

f(x) =
∨
{y ∈ Y : y ≤ f(x)}.
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These two basic arguments show that f is fully determined by a relation F ⊆ X × Y , defined by

xFy ⇐⇒ y ≤ f(x). (1.2)

We then get that

f(x) =
∨
F [x], (1.3)

f(u) =
∨
{f(x) : x ≤ u}. (1.4)

Note that equation (1.3) implies that the relation F has the following special property:

∀x∀y(y ≤
∨
F [x]→ xFy). (1.5)

We can describe the property y ≤
∨
F [x] without referring to the join in the perfect lattice by

saying that y is in the cS-closure of the set F [x], using the fact that L2 is meet-generated by the

set B:

y ≤
∨
F [x] ⇐⇒ ∀b(b ≥

∨
F [x]→ b ≥ y)

⇐⇒ ∀b(∀y′(xFy′ → y′Sb)→ ySb)

⇐⇒ y ∈ lSuS(F [x]).

So, we can concisely describe the property (1.5) as

∀x(cS(F [x]) ⊆ F [x]), (SF )

or, in words, for all x ∈ X, F [x] is stable under the Galois connection induced by S. We call a

relation F satisfying (SF ) stable.

Lemma 4.1.4. If F ⊆ X × Y is a stable relation, then y ≤
∨
F [x] implies y ∈ F [x].

By a completely analogous, dual, argument for the completely meet preserving function g, if we

define a relation G ⊆ B ×A by

bGa ⇐⇒ a ≥ g(b), (1.6)

then we get that

g(b) =
∧
G[b], (1.7)

g(v) =
∧
{g(b) : b ≥ v}, (1.8)

and that

∀b(cR(G[b]) ⊆ G[b]), (SG)

i.e., G is a stable relation.

Of course, since the functions f and g are ‘connected’ – they form an adjoint pair – we expect

that the relations F and G are connected as well. The following proposition makes the nature of

this connection precise.
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Proposition 4.1.5. If f a g and F and G are defined as in (1.2) and (1.6), then

∀x∀b(R[x] ⊇ G[b]↔ F [x] ⊆ S−1[b]). (ADJ)

Proof. Take any x ∈ X, b ∈ B. Using (1.3), (1.7) and the fact that (f, g) is an adjoint pair, we

have

F [x] ⊆ S−1[b] ⇐⇒
∨
F [x] ≤ b

⇐⇒ f(x) ≤ b

⇐⇒ x ≤ g(b)

⇐⇒ x ≤
∧
G[b]

⇐⇒ R[x] ⊇ G[b].

Definition 4.1.6. We call a pair (F,G) of relations stable if it satisfies (SF ) and (SG) and

adjoint if it satisfies (ADJ).

Let RSPolad be the category of RS polarities, in which the morphisms from an RS polarity 〈X,A,R〉
to an RS polarity 〈Y,B, S〉 are the stable adjoint pairs of relations (F,G), where F ⊆ X × Y
and G ⊆ B ×A.

Before defining the composition of two stable adjoint pairs of relations, we summarize the above

arguments as follows.

Proposition 4.1.7. If f a g is an adjoint pair from L1 to L2, then (f, g)+ := (F,G) is a stable

adjoint pair from (L1)+ to (L2)+.

Remark 4.1.8. The particular definitions of the relation pair (F,G), that we gave in this section,

were inspired by the theory of Chu spaces (see, for example, [37], [3]).

To go into some detail: a Chu space over a colour set C is defined to be a triple 〈X,A, t〉, where

t : X × A → C is a function. It is clear that a Chu space over {0, 1} is precisely what we

have called a polarity above. The general definition of a Chu morphism applied to the case of

{0, 1}-Chu spaces boils down to an ‘adjoint function pair’, i.e., a morphism from the {0, 1}-Chu

space 〈X,A,R〉 to the {0, 1}-Chu space 〈Y,B, S〉 is a pair of functions (k, l), where k : X → Y ,

l : B → A, such that k(x)Sb iff xRl(b), for all x ∈ X, b ∈ B. In this light, an ‘adjoint relation

pair’ as defined above may also be called a relational Chu space morphism.

4.2 Composition

A disadvantage of the relational morphisms considered in Gehrke [16] was that they did not

compose in an obvious way. As a first step towards a natural composition, we defined the relations

in a prima facie ‘composable’ manner, drawing inspiration from the definition of functions for Chu

spaces. However, if we try to compose two stable adjoint relation pairs using the usual relational

composition, we are not guaranteed to end up with a pair that is still stable.

There are now two possible ways to proceed: first of all, we know what the composition of stable

adjoint pairs should be, because we want the assignment (·)+ on morphisms to be a functor between

the categories PLatad and RSPolad. We will show the definition resulting from this constraint below.
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Secondly, it will turn out that a more illuminating way to view this composition is as the closure

of usual composition of relations. It then becomes much easier to show that this composition has

all of the desired properties. We will state the result below.

The constraint that (·)+ should be functorial dictates our definition of the composition ∗ of two

stable adjoint pairs (F1, G1) and (F2, G2), since we want that, if f1 a g1 and f2 a g2 are composable

adjoint pairs, then

(f2 ◦ f1, g1 ◦ g2)+ = (f1, g1)+ ∗ (f2, g2)+.

A calculation shows that this requirement leads to the following definition.

Definition 4.2.1. Let (F1, G1) : 〈X,A,R〉 → 〈Y,B, S〉 and (F2, G2) : 〈Y,B, S〉 → 〈Z,C, T 〉 be

two stable adjoint pairs of relations. Define their composition (F1, G1) ∗ (F2, G2) to be the pair

of relations (F1 ∗ F2, G2 ∗G1), where

(x, z) ∈ F1 ∗ F2 ⇐⇒ ∀c(∀y(xF1y → F2[y] ⊆ T−1[c])→ zTc),

(c, a) ∈ G2 ∗G1 ⇐⇒ ∀x(∀b(cG2b→ G1[b] ⊆ R[x])→ xRa).

Note9 that a more concise way to state these definitions is:

F1 ∗ F2[x] = cT (F1 ◦ F2[x]),

G2 ∗G1[c] = cR(G2 ◦G1[c]),

where ◦ is the usual relational composition.

Proposition 4.2.2. With the composition ∗, the collection of RS polarities with stable relation

pairs is a category, and the assignments (·)+ and (·)+ are functorial.

4.3 Equivalence of PLatad and RSPolad

We can also go back, from stable adjoint pairs of relations to adjoint pairs of perfect lattice

morphisms.

Let (F,G) : 〈X,A,R〉 → 〈Y,B, S〉 be an adjoint pair. Define f : 〈X,A,R〉+ � 〈Y,B, S〉+ : g by

f(x) :=
∨
F [x], g(b) :=

∧
G[b], (1.9)

f(u) :=
∨
{f(x) : x ≤ u}, g(v) :=

∧
{g(b) : b ≥ v}. (1.10)

Clearly, we need to show that f and g defined this way form an adjoint pair. We split this task

up into a few reasonably simple lemmas.

Lemma 4.3.1. If (F,G) is an adjoint pair, then f and g defined above satisfy

∀x∀b(f(x) ≤ b↔ x ≤ g(b)). (adj)

Proof. Similar to the proof of Proposition 4.1.5.

9Adrian Pigors (personal communication), 05-07-2009
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Lemma 4.3.2. If (F,G) is an adjoint pair, then f is a complete join-hemimorphism and g is a

complete meet-hemimorphism.

Proof. We only show that f is a complete join-hemimorphism, the proof that g is a complete

meet-hemimorphism is dual.

Take an arbitrary U ⊆ L1 and write u0 :=
∨
U . We need to show that f(u0) =

∨
f [U ].

If u ∈ U , then u ≤ u0, so f(u) ≤ f(u0) since f is order preserving. So we get that f(u0) ≥
∨
f [U ].

For the inequality f(u0) ≤
∨
f [U ], take an arbitrary b ∈ B such that b ≥

∨
f [U ]. It suffices to

show that b ≥ f(u0), since B meet-generates L2. Since b ≥
∨
f [U ], we have b ≥ f(u) for all u ∈ U .

By definition, f(u) =
∨
{f(x) : x ≤ u}, so we get that b ≥ f(x) for all x ≤ u, for all u ∈ U . By

(adj), we get g(b) ≥ x for all x ≤ u, for all u ∈ U . But u =
∨
{x : x ≤ u}, since X join-generates

L1, so we get that g(b) ≥ u, for all u ∈ U . In other words, g(b) is an upper bound for U , so

g(b) ≥ u0. Applying f to both sides, we get f(g(b)) ≥ f(u0). Furthermore, by (adj) applied to

x := g(b), we get that b ≥ f(g(b)). So we conclude that b ≥ f(u0), as required.

Lemma 4.3.3. If f : L1 � L2 : g are functions between perfect lattices such that (adj) holds, f

is a complete join-hemimorphism and g is a complete meet-hemimorphism, then f a g.

Proof. Take u ∈ L1 and v ∈ L2 arbitrary.

Suppose f(u) ≤ v. To show that u ≤ g(v), note that u =
∨
{x : x ≤ u} and g(v) = g(

∧
{b : b ≥

v}) =
∧
{g(b) : b ≥ v} (because g is a complete meet-hemimorphism).

Let x ∈ X and b ∈ B be arbitrary such that x ≤ u and v ≤ b. Since x ≤ u we have f(x) ≤ f(u),

so we get that f(x) ≤ f(u) ≤ v ≤ b. Now by (adj), we have x ≤ g(b), as required.

The proof of the other implication is dual.

We conclude:

Proposition 4.3.4. If (F,G) : 〈X,A,R〉 → 〈Y,B, S〉 is an adjoint pair, then (f, g) defined by

(1.9) and (1.10) is an adjoint pair 〈X,A,R〉+ → 〈Y,B, S〉+.

In particular, (·)+ maps adjoint pairs of relations which are stable to adjoint pairs of functions.

This stability requirement will guarantee that (·)+ defined in Proposition 4.1.7 is a left inverse to

(·)+:

Proposition 4.3.5. If (F,G) are stable relations then ((F,G)+)+ = (F,G).

Proof. Let f and g be the functions defined in (1.9) and (1.10).

Let F ′ be the relation defined by xF ′y iff y ≤ f(x). We show that F ′ = F .

Clearly, if xFy, then y ∈ F [x] so y ≤
∨
F [x] = f(x), so xF ′y.

Conversely, if y ≤ f(x) =
∨
F [x], then y ∈ F [x] by Lemma 4.1.4.

Similarly, the stability of G guarantees that the relation defined by g(b) ≤ a is equal to G.

The following result now follows by combining the above Lemmas and Propositions.

Theorem 4.3.6. (·)+ and (·)+ form an equivalence between the categories PLatad and RSPolad.
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4.4 Hemimorphisms

Although the route via adjoints described in the previous section works, it would be useful to have

necessary and sufficient conditions on just one relation F ⊆ X × Y to be the dual of a complete

join-hemimorphism, without reference to its adjoint relation. The aim of this section is to find

such first-order conditions on the relation F .

From lattice theory, we know that if a function f has a right adjoint, then its value at a point v is

the greatest element which f sends to a point below v. Since we are working with perfect lattices,

it suffices to look at the join- and meet-irreducibles.

Proposition 4.4.1. Let f : L1 � L2 : g be functions between two perfect lattices and 〈X,A,R〉
and 〈Y,B, S〉 their associated RS polarities, respectively.

The following are equivalent:

(i) f a g,

(ii) f is a complete join-hemimorphism, g is a complete meet-hemimorphism, and for all b ∈ B,

g(b) =
∨
{x ∈ X : f(x) ≤ b},

(iii) f is a complete join-hemimorphism, g is a complete meet-hemimorphism, and for all x ∈ X,

f(x) =
∧
{b ∈ B : x ≤ g(b)}.

From part (ii) of this proposition, we see that if f a g, then the relation G is determined by the

relation F :

bGa ⇐⇒ a ≥ g(b)

⇐⇒ a ≥
∨
{x ∈ X : f(x) ≤ b}

⇐⇒ ∀x(f(x) ≤ b→ x ≤ a)

⇐⇒ ∀x(F [x] ⊆ S−1[b]→ xRa).

Similarly, part (iii) of the proposition yields that F can be determined from the relation G:

xFy ⇐⇒ ∀b(G[b] ⊆ R[x]→ ySb).

Conversely, if a pair of relations (F,G) is ‘intertwined’ in this way, then their duals f and g are

adjoints.

Lemma 4.4.2. Let F ⊆ X × Y and G ⊆ B ×A be relations.

The following are equivalent:

(i) (F,G) is a stable adjoint pair.

(ii) F and G satisfy the conditions (F a G) and (G ` F ):

xFy ⇐⇒ ∀b(G[b] ⊆ R[x]→ ySb). (G ` F )
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bGa ⇐⇒ ∀x(F [x] ⊆ S−1[b]→ xRa). (F a G)

Substituting one of the two equivalences in the other, we get separate first-order conditions for

both F and G to be part of a stable adjoint pair:

Proposition 4.4.3.

(i) Let F ⊆ X × Y be a relation.

The following are equivalent:

(a) There exists G ⊆ B ×A such that (F,G) is a stable adjoint pair.

(b) F satisfies

∀x∀y
(
xFy ↔ ∀b(∀a(∀x′(F [x′] ⊆ S−1[b]→ x′Ra)→ xRa)→ ySb)

)
(
∨
F )

(ii) Let G ⊆ B ×A be a relation.

The following are equivalent:

(a) There exists F ⊆ X × Y such that (F,G) is a stable adjoint pair.

(b) G satisfies

∀b∀a (bGa↔ ∀x(∀y(∀b′(G[b′] ⊆ R[x]→ ySb′)→ ySb)→ xRa)) . (
∧
G)

Corollary 4.4.4. (i) There is a one-to-one correspondence between complete join-hemimorphisms

L1 → L2 and relations F ⊆ X × Y which satisfy
∨
F .

(ii) There is a one-to-one correspondence between complete meet-hemimorphisms L1 → L2 and

relations G ⊆ B ×A which satisfy
∧
G.

4.5 Complete homomorphisms

We now regard a complete homomorphism h : L2 → L1 as having two ‘faces’: its join-preserving

face yields a right adjoint g, whereas its meet-preserving face yields a left adjoint f . Since (f, h)

and (h, g) are adjoint pairs, they correspond to stable adjoint relation pairs (f, h)+ = (F,Hm) and

(h, g)+ = (Hj , G). The names Hm and Hj reflect the idea that Hm is the relation representing

the meet-preserving face of h and Hj is the relation representing the join-preserving face of h.

Our aim is now to describe conditions on the relations Hm and Hj which correspond to the fact

that Hm and Hj stem from the same homomorphism h. If we succeed in this, we can take the

relation pair (F,G) to be a full dual description of the complete homomorphism h.

Let hm : L2 → L1 and hj : L2 → L1 be the functions defined from Hm and Hj , respectively. So

hj(y) :=
∨
Hj [y], hm(b) :=

∧
Hm[b],

hj(v) :=
∨
{hj(y) : y ≤ v}, hm(v) :=

∧
{hm(b) : b ≥ v}.

We want to find conditions on Hm and Hj such that hm = hj . We regard this equality as two

inequalities:
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• ∀v(hj(v) ≤ hm(v)),

• ∀v(hm(v) ≤ hj(v)).

Our aim is now to find first-order conditions on Hm and Hj which guarantee the inequalities to

hold. As is already noted in [9] (above Proposition 4.21), these inequalities are reminiscent of

Sahlqvist correspondence theory: regarding hj as a 3 and hm as a 2, our aim is to find first-order

correspondents of the inequalities 3 ≤ 2 and 2 ≤ 3. In the terminology of [5] and [35], the first

of these inequalities is the analogue of a very simple Sahlqvist implication, and the second of a

simple Sahlqvist implication.

Proposition 4.5.1. The following are equivalent:

(i) ∀v(hj(v) ≤ hm(v)),

(ii) ∀v∀y∀b(y ≤ v ≤ b→ hj(y) ≤ hm(b)),

(iii) ∀y∀b(y ≤ b→ hj(y) ≤ hm(b)),

(iv) ∀y∀b(ySb→ ∀x∀a(yHjx ∧ bHma→ xRa)).

(v) H−1
j ◦ S ◦Hm ⊆ R.

Proof. (i) and (ii) are equivalent by the definitions of hj(v) and hm(v).

(ii) and (iii) are equivalent by transitivity of ≤.

(iii) and (iv) are equivalent because the inequality hj(y) ≤ hm(b) can be rewritten as

∀x∀a(yHjx ∧ bHma→ xRa),

using the definitions of hj(y) and hm(b), as we have already done a couple of times above.

(iv) and (v) are equivalent by shuffling quantifiers and the definition of relational composition.

For the other inequality, we will need the fact that Hm and Hj are part of adjoint pairs (F,Hm)

and (Hj , G), so that the properties (Hm ` F ) and (Hj a G) from Lemma 4.4.2 hold. That we

need to make use of the residuation properties at this point may not come as a surprise. Indeed,

as already noted above, the inequality hm ≤ hj can be seen as an example of (the poset version of)

a so-called simple Sahlqvist implication, and in classical modal logic, one exactly needs to use the

residuation properties for finding first-order correspondents of such simple Sahlqvist implications

([5], [35]).

Proposition 4.5.2. The following are equivalent:

(i) ∀v(hm(v) ≤ hj(v)),

(ii) ∀v∀x∀a(x ≤ hm(v) ∧ hj(v) ≤ a→ x ≤ a),

(iii) ∀v∀x∀a(f(x) ≤ v ≤ g(a)→ x ≤ a),

(iv) ∀x∀a(f(x) ≤ g(a)→ x ≤ a),

(v) ∀x∀a(∀y∀b(xFy ∧ aGb→ ySb)→ xRa),
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(vi) ∀x∀a
(
∀y∀b

(
∀b′(Hm[b′] ⊆ R[x]→ ySb′) ∧ ∀y′(Hj [y

′] ⊆ R−1[a]→ y′Sb)→ ySb
)
→ xRa

)
.

Proof. (i) and (ii) are equivalent because hm(v) =
∨
{x : x ≤ hm(v)} and hj(v) =

∧
{a : a ≥

hj(v)}.
(ii) and (iii) are equivalent because (f, hm) and (hj , g) are adjoint pairs.

(iii) and (iv) are equivalent by transitivity of ≤.

(iv) and (v) are equivalent by the facts that f(x) =
∨
F [x] and g(a) =

∧
G[a].

(v) and (vi) are equivalent because (F,Hm) and (Hj , G) are adjoint pairs of relations, so we may

write ∀b′(Hm[b′] ⊆ R[x]→ ySb′) instead of xFy by the property (Hm ` F ), and similarly we may

rewrite aGb using the property (G a Hj).

Proposition 4.5.3. Let Hj ⊆ Y ×X and Hm ⊆ B × A be relations, and hj and hm their dual

functions as defined above.

Then hj and hm are equal to the same complete homomorphism h if and only if the following four

conditions hold:

(i)
∨
Hj

(ii)
∧
Hm

(iii) H−1
j ◦ S ◦Hm ⊆ R.

(iv) ∀x∀a(∀y∀b((∀b′(Hm[b′] ⊆ R[x]→ ySb′) ∧ ∀y′(Hj [y
′] ⊆ R−1[a])→ y′Sb)→ ySb)→ xRa).

Proof. If (i)-(iv) hold, then by (i) and (ii) and Proposition 4.4.3, there are relations F ⊆ X × Y
and G ⊆ A × B such that (F,Hm) and (Hj , G) are stable adjoint pairs. Then hj is a complete

join-hemimorphism and hm is a complete meet-hemimorphism. By (iii) and Proposition 4.5.1,

hj ≤ hm. By (iv) and Proposition 4.5.2, hm ≤ hj . So hj = hm =: h is a complete homomorphism.

Similar reasoning applies for the other direction, since all propositions we referred to were equiv-

alences.

Corollary 4.5.4. There is a one-to-one correspondence between complete homomorphisms from

L1 to L2 and pairs of relations (Hj , Hm) satisfying the conditions (i)-(iv) from Proposition 4.5.3

above.

To briefly summarize this chapter: after reviewing the algebraic construction of the canonical

extension in Sections 1.1–1.3, we made some remarks about the categorical properties of the

canonical extension in Section 1.4. In Section 2, we reviewed the object part of the duality

between perfect lattices and two-sorted, frame-like structures called RS polarities. We then gave,

in Section 3, an alternative way to obtain the canonical extension via a generalisation of the

maximal filter-ideal pair construction from lattices to posets. Finally, in Section 4, we gave a

modular account of the several possibilities to define morphisms between RS polarities, and found

first-order correspondents for natural properties of maps between perfect lattices.

In the next chapter, we will discuss how the canonical extension can be applied to distributive

lattices, in order to show the canonicity of a Sahlqvist fragment for distributive modal logic by

algebraic methods.

36



Chapter 2

Canonicity of inequalities

In the Introduction, after the proof of Theorem 2.2, we remarked that canonicity of a formula,

or inequality, is very useful for, among other things, proving strong frame completeness of the

logic axiomatized by that formula or inequality. An entire research field, which can be broadly

described as ‘the algebraic study of canonicity’, originated from this. The question underlying this

research field can be stated algebraically as follows:

Main question. Under what conditions on terms α and β do we have, for any algebra A, that

. A |= α ≤ β =⇒ Aσ |= α ≤ β ?

Note that the question, formulated as such, is (deliberately) vague: we are unclear about the

formal language in which the terms α and β are formulated, what we mean by ‘conditions’ on α

and β, and about what are the algebras A interpreting the inequality α ≤ β. We will be more

precise about the specific question that we are interested in in this chapter below.

A second important thing to note is that we phrased the Main question only referring to algebras,

without mentioning their dual frames. Originally, however, canonicity was developed mainly

using correspondence ideas, similar to those outlined in the previous chapter of this thesis, with

the exception of [31], which in fact started algebraic canonical extension theory as early as 1951,

but remained relatively unnoticed for a long time. Only relatively recently, in Jónsson’s paper [30],

the first proof that the Sahlqvist fragment of Boolean modal logic is canonical was given that used

purely algebraic methods. The paper [30] instigated a revival of the algebraic study of canonicity,

taken up in many papers, of which we name a few here, by no means, however, pretending to give

an extensive list: [7], [9], [14], [20], [22], [42]. More detailed historical surveys of the research field

of canonicity can be found in the notes to Chapter 5 of [5] and in Section 7 of [44].

In this chapter, we focus on the algebraic canonicity proof for the ‘Sahlqvist’ fragment of distribu-

tive modal logic that was given in [22]. In particular, we revisit that proof, filling in some details,

and we pay a considerable amount of attention to the binary operation called “n” (for not less

than or equal), which was used in the canonicity proof of [22] in order to broaden the ‘Sahlqvist’

fragment considerably. We isolate this “n-trick”9, and indicate how we believe it may be related

to some more general phenomena, in particular Ackermann’s Lemma, which plays an important

9For the sake of brevity and in lack of a better name, we will refer to the syntactic step which uses the operation
n as “the n-trick”, because of its apparently magical and at the same time mysterious properties, which will be a
main topic of discussion in this chapter.
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role in the canonicity theory of the inductive fragments of Boolean and distributive modal logic,

surveyed and developed in [45], [46], and [7].

The organisation of this chapter is as follows. In Section 1, we review the definitions of bounded

lattice logic, generation trees, and the Sahlqvist fragment, and in the process we introduce some

useful, unifying notation. We then study one particular part of the canonicity proof of the Sahlqvist

fragment for distributive modal logic in considerable detail in Section 2, and we sketch how the

proof is completed in Sections 3 and 4. In Section 5, we will discuss the possibility of generalising

this proof to the inductive fragment.

1 Terms and trees

1.1 Terms

Although [22] talks only about distributive modal logic, part of the theory works for more general

logics whose algebraic semantics are given by bounded, but not necessarily distributive, lattices,

semilattices, or even posets. We define our language as follows.

Definition 1.1.1. An order type is a vector ε ∈ {1, ∂}n, for some n. We denote by #ε the

length of the vector ε and by ε∂ the dual order type of ε, which contains the precise opposite

signs from ε.

An order similarity type is a list τ = (ε(1), . . . , ε(k)) of order types.

Given an order similarity type τ , the language Lblmτ (for bounded lattice with monotone operations)

consists of the formulas (also called blmτ -terms) defined inductively by

φ ::= x | > | ⊥ | φ ∨ φ | φ ∧ φ | 3ε(φ1, . . . , φ#ε) (ε ∈ τ),

where x is a proposition letter from a fixed set X of propositional variables.

In what follows, we will also refer to “the order type of ∨” and “the order type of ∧”, both meaning

the order type (1, 1).

The algebraic semantics for Lblmτ are readily given by the following definition.

Definition 1.1.2. A bounded lattice with monotone operations, or blmτ , is a tuple A =

(L, fε)ε∈τ , where L is a bounded lattice and, for each ε ∈ τ , fε : Aε → A is a monotone function

(i.e., fε : L#ε → L is monotone in those coordinates in which the corresponding coordinate of ε is

1, and antitone in the coordinates where the corresponding coordinate of ε is ∂).

Let φ be an arbitrary formula of Lblmτ with variables x1, . . . , xn occurring in it. The term

function φA is defined inductively by interpreting the symbols >, ⊥, ∧ and ∨ as the operations

of the underlying lattice L of A, and each operation symbol 3ε as fε.

Given two blmτ -terms α, β, let x1, . . . , xn be all variables occurring in α and β. We say that the

inequality α ≤ β holds in A if the inequality αA ≤ βA holds pointwise for the term functions.

If this is the case, we write A |= α ≤ β. We say two inequalities are equivalent if they hold in

precisely the same algebras.

Clearly, the definitions in [22] are a special case of this definition. There, the distributive

similarity type τD = ((1), (1), (∂), (∂)) is used, the operation symbols are denoted by 3,2,�,�,
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respectively, and some more restrictions on the interpreting algebras are imposed: L must be a

distributive lattice, each fε preserves finite joins or meets, or turns finite meets into joins, or vice

versa. Such a structure is called a dma, for Distributive Modal Algebra. We refer the reader to

Definition 2.9 of [22] for details.

1.2 Trees

To define the conditions on the inequalities, we need the notion of a signed generation tree.

Because formally defining such trees seems inevitably cumbersome and not very enlightening, we

first give a hopefully clarifying example.

Example 1.2.1. In blmτD , let α be the formula �x∨2(x∧ y). Then the positive generation tree

for α looks as follows:

�x ∨2(x ∧ y)+

�x+ 2(x ∧ y) +

x ∧ y +x−

x+ y +

The adjective positive refers to the fact that in the construction of the tree, the top node (the root

of the tree) was labeled ‘+’. If we put a − at the top node, we get the negative version of the

tree. The rule for labelling subsequent nodes with signs is simple: in the coordinates where the

order type of the operation at hand is 1, we label the node with the same sign as the node directly

above it, and where the order type is ∂, we put the opposite sign.

One more example: take τ = ((∂, 1), (1, ∂)), and denote the operations by ◦ and •, respectively.

Then the negative generation tree of β = x ◦ (x • y) looks as follows:

x ◦ (x • y)−

x+ x • y −

x− y +

Now for the formal definition.

Definition 1.2.2. Let α be a blmτ -term. We inductively define the generation tree T (α) of

α, as follows:

• If α = x for some variable x, T (α) is the tree consisting of one node called ‘x’ and no edges.

• If α = ♥(α1, . . . , αn) for some n-ary operation symbol ♥ (which may also be one of the binary

operations ∨ and ∧, or the nullary operations ⊥ and >), then T (α) is the tree consisting of

a node called ‘α’ and n disjoint subtrees T (α1), . . . , T (αn), with edges from the node α to
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the root of each T (αi). By the operation at the node α in T (α) we mean ♥, and the

root of T (αi) is called the ith direct successor of the node α.

We now define the positive and negative generation tree, T+(α) and T−(α), respectively, as

follows. Let T+(α) be the tree T (α) with a label + added to the root, and T−(α) the tree with

a label − added to the root. Then, walking down all the paths in the tree from the root to the

leaves, label all nodes in T+(α) and T−(α) with either a + or a − according to the following rule:

To the ith direct successor of n, assign the same or opposite label as the node n, according to

whether the ith coordinate of the order type of the operation at the node n is 1 or ∂, respectively.

After this process, all nodes in the trees T+(α) and T−(α) will be labeled with a sign.

We now introduce some useful notation from [7].

A subterm s of a term α is the content of any node in the generation tree of α. By a subterm we

will always mean a specific occurrence of that subterm. (That is, in Example 1.2.1 above, there

are two different subterms of β which have ‘x’ as their content. It is useful to regard them as

different, because these two nodes get different signs in the signed generation tree.)

Note that a subterm s generates a subtree of α, namely the one which has s as its root. We will

identify subterms with their subtrees, and write s ≺ α for “s is a subterm of α”.

A useful expansion of this notation is to write, for example, “+s ≺ −α” if s has the sign + at its

root in the negative generation tree of α. We will also write “εis ≺ +α” to mean that s has the

sign that is dictated by εi in the positive tree of α.

Given an order type ε = (ε1, . . . , εn) for all of the variables x1, . . . , xn occurring (possibly more

than once) in α, we say that an occurrence xi ≺ α agrees with ε if εixi ≺ +α. We say that the

term α agrees with ε if every occurrence of a variable agrees with ε, and we abbreviate this as

‘ε(α)’. A term α is called uniform if there exists some ε such that ε(α).

If s ≺ α and φ is any blmτ -formula, we write α[φ/s] for the result of substituting the subterm

s by φ. (Note, again, that this substitution occurs only once, at the location of the particular

subterm s in the tree of α.)

Example 1.2.3 (Example 1.2.1, continued). In the example formula β = x ◦ (x • y) above, we

have +x ≺ −β, −x ≺ −β and +y ≺ −β, but not −y ≺ −β.

For an example of the substitution notation, we have β[z/(x•y)] = x◦z. We cannot unambiguously

write β[z/x], because substitution can happen only once, so we would need to specify explicitly

which occurence of x we want to replace with z.

Neither α nor β is uniform, but the formula α′ := α[z/�x] is uniform, because α′ agrees with the

order type ε = (1, 1, 1), that is, ε(α′) holds.

The following lemma is an obvious consequence of these definitions.

Lemma 1.2.4. If a term α agrees with an order type ε, then the term function αA : Aε → A is

monotone.

Proof. By induction on the complexity of α. The base step is the observation that all variables

have monotone term functions, and the inductive step holds because each operation symbol 3ε is
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interpreted as a monotone function fε : Aε → A, and monotonicity is a property that is preserved

by functional composition.

To finish this section, we give a small glossary which translates the the terminology of the paper

[22] to the terms we have defined above.

Term in [22] Corresponding term here

positive agrees with (1, . . . , 1)

negative agrees with (∂, . . . , ∂)

ε-positive agrees with ε

ε-negative agrees with ε∂

uniform agrees with some ε

It is apparent from this table that the “agreeing with”-relation unifies and simplifies some of the

‘old’ terminology.

1.3 The Sahlqvist fragment

In this section, we define a syntactic fragment of the language blmτD , in which all formulas will

turn out to be canonical: the Sahlqvist fragment [22]. The definitions in this section have been

generalised in two ways: firstly, the Sahlqvist fragment has been generalised to the context of

partially ordered sets by Suzuki [42], and secondly, in order to include more formulas, Conradie

and Palmigiano define a version of the inductive fragment for distributive modal logic [7]. We will

say more about the inductive fragment in Section 5.

We need the following preliminary definitions regarding the generation trees.

Definition 1.3.1. Given a term α(x1, . . . , xn) and an order type ε = (ε1, . . . , εn), an occurrence of

the variable xi in a signed tree T δ(α) (where δ ∈ {+,−}) is ε-critical if εixi ≺ δα. An ε-critical

path is a path10 in the tree T δ(α) from an ε-critical occurrence of a variable to the root of the

tree.

So, we now use the order type ε to pinpoint certain occurrences of variables in a term as ‘critical’.

The definition of our syntactic fragment is of the general form “no forbidden configurations in

critical paths”. To say what configurations are ‘forbidden’, we need to categorize occurrences of

connectives, in the following way.

Definition 1.3.2. Let α be a term and T δ(α) a signed tree of α (where δ ∈ {+,−}).

• A node with the sign + and the operation ∨, 3, or �, or with the sign − and the operation

∧, 2, or �, is called a choice node.

• A node with the sign + and the operation 2 or �, or with the sign − and the operation 3

or � is called a universal node.

We now have a concise way to phrase the definitions given in [22]:

10We only consider paths from a leaf (which will always be a signed variable) to the root. So, for us, a ‘path’ will
always be what is sometimes called a ‘maximal path’.
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Definition 1.3.3. A path in a generation tree is Sahlqvist-harmless if there is no universal

node above a choice node in the path. If a path is not Sahlqvist-harmless, we call it (of course)

Sahlqvist-harmful.

A term α is ε-left Sahlqvist if all ε-critical paths in T+(α) are Sahlqvist-harmless.

A term β is ε-right Sahlqvist if all ε-critical paths in T−(β) are Sahlqvist-harmless.

An inequality α ≤ β is a Sahlqvist inequality if there is some ε such that α is ε-left Sahlqvist

and β is ε-right Sahlqvist.

In this chapter, we discuss the proof from [22] that all Sahlqvist inequalities are canonical in the

distributive fragment.

We now also define the “proper Sahlqvist” fragment. It will turn out that we are able to “almost”

reduce general Sahlqvist inequalities as defined above to proper Sahlqvist inequalities by means

of the aforementioned trick with the operation n. This “almost” will be made precise in the

explanation of this trick, which will take up Section 2 of this chapter.

Definition 1.3.4. A term α is proper ε-left Sahlqvist if α is ε-left Sahlqvist and agrees with ε.

Similarly, a term β is proper ε-right Sahlqvist if β is ε-right Sahlqvist and agrees with ε∂ .

A proper Sahlqivst inequality is of the form α ≤ β, where α is proper ε-left Sahlqvist and β

is proper ε-right Sahlqvist, for some ε.

What we call proper left and right Sahlqvist here was simply called left and right Sahlqvist in

[22], but we chose to add the word “proper” to emphasize the special nature of such terms: it is

much harder for an inequality to be proper Sahlqvist than ‘just’ Sahlqvist. In particular, note the

following property, which follows almost directly from the definitions:

Lemma 1.3.5. Let α and β be blmτ -terms.

(i) α is proper left Sahlqivst if and only if it agrees with some ε and all paths in T+(α) are

Sahlqvist-harmless.

(ii) β is proper right Sahlqivst if and only if it agrees with some ε and all paths in T−(β) are

Sahlqvist-harmless.

Proof. The following chain of equivalences gives the proof of the first part.

α is proper left Sahlqvist ⇐⇒ there is ε s.t. [ε(α) and α is ε-left Sahlqvist]

⇐⇒ there is ε s.t. [ε(α) and every ε-critical path in T+(α) is harmless]

⇐⇒ [there is ε s.t. ε(α)] and every path in T+(α) is harmless.

Here, the last ⇐⇒ holds because if ε(α) holds, then in fact every path in T+(α) is ε-critical, by

definition.

The proof of the second part is dual.

Remark 1.3.6. In [42], the definitions of this section are generalised to a non-distributive envi-

ronment. There, canonicity is proved for a slightly larger fragment than the Sahlqvist fragment,

which does allow for a binary choice node in the scope of a universal node, as long as one of the
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branches emerging from the choice node contains no variables, but only constants. In Section 5,

we will encounter this fragment as the “proper inductive” fragment.

2 Collapsing terms

This section forms the heart of the chapter. We aim to expand on the proof of Lemma 5.14 in

[22], and to show how the proof of that Lemma can be seen as providing a general method for

rewriting inequalities.

In Subsection 2.1, we will describe “the n-trick”, thanks to which we are able to rewrite general

well-behaved inequalities into equivalent proper well-behaved inequalities. The difference between

general and proper inequalities is, as we saw in Lemma 1.3.5 of this chapter, that general inequal-

ities only need to be well-behaved in certain critical paths, whereas proper inequalities need to

be well-behaved everywhere. Then we show how to apply the n-trick to rewrite inequalities in a

shape that we dub the ‘minimal collapse’ (Section 2.2).

This is essentially how, in [22], the ‘proper’ Sahlqvist fragment was considerably enlarged, while

maintaining canonicity of the formulas in the fragment. Using the set-up given above, we try to

give a proof that is a bit more intuitive than (although essentially the same as) the proof of the

corresponding Lemma 5.14 in [22]. The main difference between our proof and the one given in [22]

is presentational: we separate the general syntactic step from the specific reduction given there

for Sahlqvist inequalities, which will hopefully stimulate attempts to apply this general method

to other syntactic fragments of interest as well.

2.1 The binary operation n

In this subsection, we isolate the main technical step, introduced in [22], which is used there for

the reduction of Sahlqvist inequalities to proper Sahlqvist inequalities. We believe that there is an

advantage in discussing this step and the ensuing algorithm ‘outside’ of the Sahlqvist setting: the

following discussion hopefully makes it apparent that it actually yields a very general reduction

method, which could be of use in other proofs ‘by reduction’.

The n-trick relies on the definition of a new binary operation, called n (for not less than or equal).

Definition 2.1.1. In any blmτ A, define the binary operation nA : A2 → A by

nA(a, b) :=

{
⊥ if a ≤ b
> if a � b.

Remark 2.1.2. If we regard the poset reduct PA := 〈A,≤〉 of the algebra A as a category, we

observe that the bifunctor Hom : (PA)op × PA → Set has the following value on objects:

HomPA(a, b) =

{
{∗} if a ≤ b
∅ if a � b.

Noting that {∗} and ⊥ are the initial objects of the categories Setop and PA, respectively, and

that ∅ and > are the terminal objects of these categories, the similarity with the definition of the
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operation n becomes striking. This suggests that the operation n as defined above is a “Hom-

functor in disguise”. We do not develop this idea any further at this point, but we think it is an

interesting observation which may be non-accidental and useful, especially with respect to future

extensions of the theory of canonical extenstions from posets to categories.

The following basic observation about n, which will be of importance later, is stated but not

proven in [22]. We give the proof here.

Lemma 2.1.3. Let A be any blmτ . Then n agrees with (1, ∂), i.e. nA : A(1,∂) → A is order-

preserving.

Proof. If a, a′, b ∈ A and a ≤ a′, then either n(a, b) = ⊥, in which case automatically n(a, b) ≤
n(a′, b), or n(a, b) = >, which means a � b. But then also a′ � b, since a ≤ a′ by assumption.

Hence, in this case we also have > = n(a, b) ≤ n(a′, b) = >.

If a, b, b′ ∈ A and b ≤ b′, then either n(a, b) = >, in which case automatically n(a, b) ≥ n(a, b′), or

n(a, b) = ⊥, which means a ≤ b. But then also a ≤ b′, since b ≤ b′ by assumption. Hence, in this

case we also have ⊥ = n(a, b) ≥ n(a, b′) = ⊥.

Another important property of the operation n is that, like all standard operations of the modal

similarity type, it is itself stable under taking canonical extensions.

Lemma 2.1.4. For any blmτ A, we have (nA)σ = nAσ .

Proof. See Lemma 5.15 of [22].

The use of the operation n can be explained intuitively by saying that n enables us to ‘extract

subterms’ which occur in a blmτ -inequality. The following lemma, which corresponds to Lemma

5.13(1) of [22], shows how such an ‘extraction’ works in detail.

Lemma 2.1.5 (“n-trick”). Let α and β be blmτ -terms. Let s be a subterm of α such that

+s ≺ +α. Then, for any blmτ A, we have

A |= α ≤ β ⇐⇒ A |= α[z/s] ≤ β ∨ n(z, s)

where z is a new variable which does not occur in α or β.

Proof. Suppose that x1, . . . , xn are the variables occurring in α and β.

For the ‘if’ direction, let ai ∈ A (1 ≤ i ≤ n) be arbitrary. Then

αA(a1, . . . , an) = (α[z/s])A(a1, . . . , an, s
A(a1, . . . , an)).

By assumption, A |= α[z/s] ≤ β ∨ n(z, s), so in particular

(α[z/s])A(a1, . . . , an, s
A(a1, . . . , an)) ≤ βA(a1, . . . , an) ∨ nA(sA(a1, . . . , an), sA(a1, . . . , an)).

Now, nA is defined to take the value ⊥ at the pair (sA(a1, . . . , an), sA(a1, . . . , an)), so we conclude

αA(a1, . . . , an) ≤ βA(a1, . . . , an).
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For the ‘only if’ direction, take arbitrary ai ∈ A (1 ≤ i ≤ n) and b ∈ A. We want to show that

(α[z/s])A(a1, . . . , an, b) ≤ βA(a1, . . . , an) ∨ nA(b, sA(a1, . . . , an, b)).

We distinguish two cases:

• b ≤ sA(a1, . . . , an). Then we have

(α[z/s])A(a1, . . . , an, b) ≤ (α[z/s])A(a1, . . . , an, s
A(a1, . . . , an))

= αA(a1, . . . , an)

≤ βA(a1, . . . , an)

= βA(a1, . . . , an) ∨ nA(b, sA(a1, . . . , an)).

Here, the first inequality holds because b ≤ sA(a1, . . . , an) and +s ≺ +α (so +z ≺ +α[z/s]),

the second equality holds by the inductive definition of term functions, the third inequality

holds by assumption, and the last equality holds since nA(b, sA(a1, . . . , an)) = ⊥ by definition

of n.

• b � sA(a1, . . . , an). Then nA(b, sA(a1, . . . , an)) = > by definition, so we immediately have

that

(α[z/s])A(a1, . . . , an, b) ≤ βA(a1, . . . , an) ∨ nA(b, sA(a1, . . . , an)) = >.

We observe next that the proof of the above lemma can be dualized to the cases −s ≺ +α,

+s ≺ −β and −s ≺ −β.

Corollary 2.1.6. Let α and β be blmτ -terms. Let s be a blmτ -term and z a new variable not

occuring in α or β.

(i) If +s ≺ +α, then α ≤ β ⇐⇒ α[z/s] ≤ β ∨ n(z, s).

(ii) If −s ≺ +α, then α ≤ β ⇐⇒ α[z/s] ≤ β ∨ n(s, z).

(iii) If +s ≺ −β, then α ≤ β ⇐⇒ α ≤ β[z/s] ∨ n(z, s).

(iv) If −s ≺ −β, then α ≤ β ⇐⇒ α ≤ β[z/s] ∨ n(s, z).

Remark 2.1.7. In Section 5.2 of this chapter, we will observe an interesting connection between

Lemma 2.1.5 and the Ackermann Lemma on substitution of terms.

2.2 The minimal collapses

In this subsection, we show how to use the result from the previous subsection to rewrite general

inequalities into equivalent proper inequalities.

Proposition 2.2.1. Let α and β be blmτ terms. For any order type ε, there exist an order type

ε̄ extending ε, and terms α′, β′ and γ such that:

(i) α ≤ β ⇐⇒ α′ ≤ β′ ∨ γ,

(ii) ε̄(α′), ε̄∂(β′) and ε̄(γ),
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(iii) α′ and β′ are obtained by substituting subterms of α and β, respectively, with new variables.

Proof. The idea of the proof is to substitute parts of the terms α and β which are badly behaved

(‘junk’) by fresh variables, moving all the ‘junk’ into a long, uniform disjunction γ of n’s on the

right side of the inequality. We will call α′ and β′ the ε-minimal collapses of α and β, respectively.

The proof will occupy the rest of this section, and naturally falls apart into three parts:

• The algorithm which defines the minimal collapses of α and β;

• A relevant concrete example of how the algorithm works;

• The formal proof that the algorithm always works.

The algorithm

Let x1, . . . , xn be the variables occurring in α and β. Let ε̄i := εi for 1 ≤ i ≤ n. We now explicitly

construct the rest of the order type ε̄ and the terms α′, β′ and γ, as follows.

In the tree T+(α), first colour all the nodes which are on at least one ε-critical path red, say, and

then colour all the remaining nodes green.

Let p1, . . . , pm be the paths in this tree which contain some green node. Now, for any 1 ≤ i ≤ m,

let si be the maximal green node on the path pi. Let ε̄n+i ∈ {1, ∂} be the sign of the node si

in the tree T+(α), and let z1, . . . , zm be m new variables, which are not among the variables xi.

Now put

α′(x1, . . . , xn, z1, . . . , zm) := α[z1/s1, . . . , zm/sm].

We do the exact analogous thing for the tree T−(β): after colouring the ε-critical paths red, we

have m′ paths q1, . . . , qm′ , each of which contains some green node, and their maximal nodes

t1, . . . , tm′ . We let ε̄n+m+i be the sign of the node ti in the tree T−(β), let w1, . . . , wm′ be m′ new

variables, and put

β′(x1, . . . , xn, w1, . . . , wm′) := β[w1/t1, . . . , wm′/tm′ ].

Now let

γ(x1, . . . , xn, z1, . . . , zm, w1, . . . , wm′) :=

m∨
i=1

n((zi, si)
ε̄n+i) ∨

m′∨
j=1

n((wj , tj)
ε̄n+m+j ),

where we use the notational convention that (a, b)1 := (a, b) and (a, b)∂ = (b, a).

Before completing the proof by showing that α′, β′ and γ thus constructed satisfy the required

properties, we think it is useful to give an example of how the described algorithm works.

An example

Example 2.2.2. Let α = �(x∧ y)∨ x and β = 3((x∧ y)∨�y), and let ε = (1, 1). The coloured

trees T+(α) and T−(β) are depicted below.

46



�(x ∧ y) ∨ x+

T+(α)

�(x ∧ y)+ x +

x ∧ y−

x− y −

3((x ∧ y) ∨�y)−
T−(β)

(x ∧ y) ∨�y−

�y −x ∧ y−

y +y−x−

In this case, both α and β have one maximal green node, so we put s := �(x ∧ y) and t := x ∧ y.

Then +s ≺ +α and −t ≺ −β. So, the algorithm tells us to introduce two new variables, z and

w, and to extend ε to ε̄ by putting ε̄z := 1 and ε̄w := ∂. Now α′ and β′ are defined as α[z/s] and

β[w/t], respectively. Their generation trees are depicted below.

z ∨ x+

T+(α′)

z+ x +

3(w ∨�y)−
T−(β′)

w ∨�y−

�y −

y +

w−

In these trees, we can see clearly that ε(α′) and ε∂(β′).

According to the algorithm, γ is defined as

γ := n(z,�(x ∧ y)) ∨ n(x ∧ y, w).

The tree T+(γ) looks as follows:

n(z,�(x ∧ y)) ∨ n(x ∧ y, w)+

n(z,�(x ∧ y))+

�(x ∧ y)−z+

x ∧ y+

x+ y +

n(x ∧ y, w) +

w−x ∧ y+

x + y +

Note that γ agrees with ε̄ = (1, 1, 1, ∂). This is not a coincidence, of course, but it is rather subtle

to see why precisely this is the case. The answer to this will be given in the proof below.
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Proof of correctness of the algorithm

We now show in detail that the algorithm indeed gives the α′, β′ and γ which satisfy the properties

(i)-(iii). The details are unfortunately rather involved, and we suggest the reader checks back to

see what the details amount to in the above example.

(i) The fact that α ≤ β is equivalent to α′ ≤ β′ ∨ γ is immediate by applying Corollary 2.1.6

m + m′ times: first, for the si, we are in case (i) or (ii), depending on the sign ε̄n+i, and

then, for the tj , we are in case (iii) or (iv), depending on the sign ε̄n+m+j .

(ii) We first show that ε̄(α′).

If some ‘old’ variable xi occurs in α′, then it must be coloured red in T+(α), because

otherwise it would be the leaf of a partially green path in T+(α), but all green paths are

replaced by a fresh variable. The fact that xi is coloured red means precisely that it is an

ε-critical occurrence, so it agrees with ε.

For a ‘new’ variable zi in α, the sign ε̄n+i was precisely chosen such that zi agrees with ε̄.

The proof that ε̄∂(β′) is dual, because we coloured the negative generation tree of β.

Finally, we show that ε̄(γ).

For an occurrence of an old variable xi in γ, it must be in one of the si or tj .

• If the occurrence of xi is in one of the si, there are two possibilities:

(a) +si ≺ +α, so ε̄n+i = 1 by definition. Since si was coloured green in T+(α), we

have in particular that the occurrence of xi was not critical. So the sign of this

occurrence of xi in T+(α) was opposite to the sign εi, that is, ε∂i xi ≺ +α. So

ε∂i xi ≺ +si, and since n agrees with (1, ∂) we get εixi ≺ n(zi, si).

(b) −si ≺ +α, so ε̄n+i = ∂ by definition. The reasoning is dual to that in the previous

item and leads to the conclusion that εixi ≺ n((zi, si)
∂).

• If the occurrence of xi is in one of the tj , there are two analogous possibilities, and we

can again conclude either εixi ≺ n(wi, ti) or εixi ≺ n((wi, ti)
∂), depending on the sign

of ε̄n+m+j .

For an occurrence of a new variable zi or wj in γ, it occurs as the first coordinate of n

precisely when the corresponding sign in ε̄ is 1, and it occurs as the second coordinate of n

when the corresponding sign in ε̄ is ∂, by the definition of γ. This means, again because n

agrees with (1, ∂), that ε̄n+izi ≺ +γ and ε̄n+m+jwj ≺ +γ, for all 1 ≤ i ≤ m and 1 ≤ j ≤ m′,
as required.

(iii) is immediate from the construction of α′ and β′.

Related to this point, we further note that the algorithm in fact gives us slightly more: the

tree T+(α′) is nothing more than a truncated version of the tree T+(α) in which only green

nodes are eliminated. The same assertion holds for T−(β′) and T−(β).
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3 After the collapse

The motivation for the minimal collapse algorithm, outlined in the previous section, was to rewrite

any general inequality as a proper inequality. One could argue that, until now, we only succeeded

in doing this partially. After rewriting an inequality α ≤ β as α′ ≤ β′ ∨ γ, where α′ and β′ are

the minimal collapses of α and β, there are now two main hurdles left:

• Are α′ and β′ really proper (Sahlqvist, inductive) terms?

• Although we wanted to rewrite α ≤ β as a proper inequality α′ ≤ β′, we ended up with

something slightly worse, namely an equivalent inequality of the form α′ ≤ β′ ∨ γ, where γ

is a formula which agrees with ε. Can we maintain canonicity of the inequality with such an

added term on the right?

The second of these questions is dealt with in detail in Lemma 5.11 of [22], which we will briefly

report in Section 3.2. Regarding the first question, however, it is only stated in the proof of Lemma

5.14 of that paper that the answer is affirmative, but a detailed proof is omitted. We will give a

detailed proof in this section.

Spelling out this proof is important, in our view, because the fact that the answer to the first

question is ‘yes’ is the crucial observation which makes the minimal collapse algorithm useful: it

is the only place in the proof where we need to use that the collapse we are taking is the minimal

one (i.e., we collapse at the maximal green nodes). Indeed, the crucial observation here is that

only the minimal collapses guarantee that when Sahlqvist inequalities are fed to this algorithm,

the outcome is still Sahlqvist (and proper, as it is meant to be by construction). As we will see

in detail in Section 5, this delicate step will fail for the inductive formulas, and this is the reason

why the automatic application of the ‘minimal collapse’ methodology fails when trying to prove

canonicity of the inductive fragment by algebraic means.

3.1 Minimal collapses are proper Sahlqvist

Lemma 3.1.1. If α ≤ β is a Sahlqvist inequality, and this is witnessed by an order type ε, then

the ε-minimal collapses α′ and β′ are proper left and right Sahlqvist, respectively.

Proof. We show that α′ is proper left Sahlqvist. By assumption, α is ε-left Sahlqvist.

By Lemma 1.3.5, it suffices to show that α′ is uniform and all paths in T+(α′) are Sahlqvist-

harmless. By Proposition 2.2.1(ii), we have ε̄(α′), so α′ is uniform, since it agrees with ε̄.

Let y be an occurrence of a variable in α′. There are two possibilities:

• y is an ‘old’ variable xi which already occurs in α.

Then εxi ≺ +α since we have that ε̄(α′), T+(α′) is a subtree of T+(α), and ε̄ extends ε.

So, the occurrence of xi is ε-critical in α. Therefore, its path to the root in T+(α) must

be Sahlqvist-harmless, because any ε-critical path in T+(α) is Sahlqvist-harmless. Also, the

path from xi to the root in T+(α) was coloured red entirely by the algorithm, so that it

remains intact in the truncated version T+(α′) of T+(α), proving that this path is Sahlqvist-

harmless in T+(α′) as well.
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• y is a ‘new’ variable zi which replaces a subterm si of α.

Suppose, to obtain a contradiction, that the path from zi to the root of T+(α′) is not

Sahlqvist-harmless, so there is a choice node n′c below a universal node n′u somewhere in the

path. Since T+(α′) is a truncated version of T+(α), there are a corresponding choice node

nc and a corresponding universal node nu in the tree T+(α). The node nc must have been

coloured red by the algorithm, because the node si was the maximal green node on the path.

The fact that nc was coloured red means that there is an ε-critical path going through nc in

T+(α), but this ε-critical path would then fail to be Sahlqvist-harmless, contradicting that

α is ε-left Sahlqvist.

The proof that β′ is proper right Sahlqvist is completely analogous.

3.2 Positive terms on the right

The second question posed in the introduction of this section was: what to do with the ε-agreeing

term γ that the minimal collapse algorithm adds to the right side of the inequality? It turns

out that we are able to make one useful interpolating step when taking the canonical extension

of a term of the form β ∨ γ, and then (see Lemma 4.1.2 below) we can use the fact that terms

which agree with ε are σ-contracting. The details are in the following lemma and corollary, a

restatement of Lemma 5.11 in [22]. Note that it is based on a general fact about monotone maps

between distributive lattices and their canonical extensions, and that it is not specific for Sahlqvist

inequalities at all.

Lemma 3.2.1. If f, g : A→ B are maps between distributive lattices such that f is antitone and

g is monotone, then (f ∨ g)σ ≤ fπ ∨ gσ.

Corollary 3.2.2. If β′ and γ are blmτ -terms, β′ agrees with ε∂ , and γ agrees with ε, then, for

any dma A, we have (β′A ∨ γA)σ ≤ (β′A)π ∨ (γA)σ.

4 Canonicity of the Sahlqvist fragment

We are now ready to prove the canonicity of the Sahlqvist fragment, combining the stability of

proper Sahlqvist inequalities (Theorem 4.1.1 below) from [22] and the minimal collapse algorithm

that we discussed in Section 2.

4.1 Stability and contraction of certain terms

The main result needed to prove the canonicity of the proper Sahlqvist fragment is

Theorem 4.1.1. Let α and β be dma-terms and A any dma.

(i) If α is proper left Sahlqvist, then αA is σ-stable.

(ii) If β is proper right Sahlqvist, then βA is π-stable.

Proof. This is Lemma 5.10 from [22].

Finally, a last lemma that we need, in order to deal with the extra term γ, is the following.
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Lemma 4.1.2. If a blmτ -term γ agrees with ε, then γ is σ-contracting, i.e. (γA)σ ≤ γAσ for any

A.

Proof. This is stated as Lemma 5.5 for distributive lattices in [22], but the proof never uses the

fact that A is a distributive lattice.

4.2 Canonicity of general Sahlqvist terms

Theorem 4.2.1. Every Sahlqvist inequality α ≤ β is canonical.

Proof. Let α ≤ β be a Sahlqivst inequality and let A be any dma such that A |= α ≤ β. Then

αA ≤ βA, and we need to show that αAσ ≤ βAσ .

Let α′ ≤ β′ ∨ γ be the inequality equivalent to α ≤ β, obtained by the minimal collapse algorithm

(Proposition 2.2.1). Then A |= α′ ≤ β′ ∨ γ.

By Theorem 4.1.1, (α′)A and (β′)A are σ- and π-stable, respectively. Also, γ is σ-contracting since

it agrees with ε (Lemma 4.1.2). Also, using Corollary 3.2.2, we have (β′A ∨ γA)σ ≤ (β′A)π ∨ (γA)σ.

Combining these facts gives us:

(α′)A
σ

= (α′A)σ ≤ (β′A ∨ γA)σ ≤ (β′A)π ∨ (γA)σ = β′A
σ

∨ (γA)σ ≤ β′A
σ

∨ γA
σ

,

that is, Aσ |= α′ ≤ β′ ∨ γ. Since α′ ≤ β′ ∨ γ is equivalent to α ≤ β, we conclude that Aσ |= α ≤ β,

as we needed to show.

This concludes our discussion of the algebraic canonicity of the Sahlqvist fragment. Before we

move on to discuss the inductive fragment in the next section, we now summarize the global form

of this proof. In the above discussion, we have identified the following crucial steps:

(i) Reduce any blmτ inequality (independently of its being Sahlqvist ot not) to one which agrees

with some ε, using the minimal collapse algorithm (Section 2.2);

(ii) Show that this reduction ‘preserves Sahlqvist’, i.e., that when the algorithm is applied to

Sahlqvist inequalities, the ‘minimal collapse’ algorithm guarantees that no Sahlqvist-harmful

paths are anywhere in the output inequality, even though there are potentially more critical

paths than in the original formula (Lemma 3.1.1);

(iii) For the resulting proper Sahlqvist inequality, we have a direct canonicity proof (Corol-

lary 3.2.2, Theorem 4.1.1, Lemma 4.1.2).

Our reason for summarizing the proof in this way, emphasizing the syntactic steps rather than

the actual canonicity proof, is that these are the steps which can not be automatically translated

when trying to prove canonicity of the inductive fragment algebraically. In the next section, we

will discuss the difficulties in trying to follow this proof method and we state a negative result.
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5 The inductive fragment

The analysis of the canonicity mechanism that we gave at the end of the previous section raises the

question whether the proof carries over to a canonicity proof of more general syntactic fragments of

distributive modal logic. Conradie and Palmigiano [7] prove canonicity of the inductive fragment of

distributive modal logic via correspondence. In this section, we discuss the possibility of obtaining

an algebraic proof of that result.

5.1 Definitions and comparison with Sahlqvist fragment

Let us first define the inductive fragment.

Definition 5.1.1. Let α be a dma-term. Let ε be an order type and Ω a strict partial order, i.e.,

an irreflexive and transitive relation, on the variables occurring in α.

We say that the pair (Ω, ε) solves a binary choice node c(s, t) for the variable pi in a certain

tree if the following conditions hold:

• s agrees with ε∂ ,

• εipi ≺ +t,

• for every variable pj occurring in s we have pj <Ω pi.

We say that a path is (Ω, ε)-harmless if (Ω, ε) solves every choice node below a universal node in

the path for the variable at the leaf.

A term α is (Ω, ε)-left inductive if all ε-critical paths in T+(α) are (Ω, ε)-harmless.

A term β is (Ω, ε)-right inductive if all ε-critical paths in T−(β) are (Ω, ε)-harmless.

An inductive inequality is of the form α ≤ β such that α is (Ω, ε)-left inductive and β is

(Ω, ε)-right inductive, for some Ω and ε.

Comparing this definition with Definition 1.3.3, of the Sahlqvist fragment for distributive modal

logic, it becomes apparent that it is of the same general form of “no forbidden configurations in

critical paths”, only the definition of ‘forbidden configurations’ is loosened considerably.

If we try to apply the algebraic canonicity proof for the Sahlqvist fragment to the inductive

fragment, we see immediately that step (i) of the outline at the end of Section 4 still works: in

fact, it does not use the fact that the inequality we are dealing with is Sahlqvist, at all.

Let us now first look at step (iii). To be able to say if this step carries over, we need to know what

‘proper inductive inequalities’ are. The following definition naturally generalises the definition for

the Sahlqvist fragment.

Definition 5.1.2. An inequality α ≤ β is proper inductive if it is inductive for some (Ω, ε), α

agrees with ε, and β agrees with ε∂ .

Incidentally, this definition coincides with Suzuki’s small enlargement of the Sahlqvist fragment

that we discussed in Remark 1.3.6. So, we indeed have a proof that ‘proper inductive’ formulas

are canonical in [42].

However, what about step (ii)? Does the minimal collapse algorithm preserve inductivity of

formulas? It turns out that the answer to this question is negative, and this is the hurdle in

52



directly applying the proof method from [22] to the inductive fragment. The following example

shows that the minimal collapse algorithm does not preserve inductivity of formulas.

Example 5.1.3. Let α be the formula 2(�x∨y). This formula is (Ω, ε)-left inductive for ε = (1, 1)

and x <Ω y. However, the result of applying the minimal collapse algorithm to α is α′ = 2(z∨ y),

and ε̄ = (1, 1, 1). Now, there is no Ω such that α′ is (Ω, ε̄)-left inductive: for this, we would need

a partial order Ω such that both z <Ω y (since the path from y is critical) and y <Ω z (since the

path from z is critical), which is clearly impossible.

We have thus proved

Proposition 5.1.4. There exists an inductive inequality α ≤ β such that the inequality α′ ≤ β′,

where α′ an β′ are obtained from applying the minimal collapse algorithm (Proposition 2.2.1) is

not inductive.

5.2 Connections with Ackermann’s Lemma

From Proposition 5.1.4, we conclude that, interestingly, to prove canonicity of the inductive frag-

ment by algebraic means, we will need a proof strategy that substantially improves on some aspects

of the algebraic canonicity proof of the Sahlqvist fragment. In particular, we expect that we need

an enhanced version of the canonical operation n, which would enable us to collapse more nodes,

while maintaining equivalence.

Although we were not able to find such an enhanced version of n yet, in the quest for it, we

discovered some interesting parallels of the original operation n with Ackermann’s Lemma, which

is used for the correspondence and canonicity proofs for the inductive fragment in [7].

We first state Ackermann’s Lemma, in a slightly different form from the way it is stated in [7]. We

do this mainly for presentational purposes, in order to make the connection with the key lemma

for the operation n (Lemma 2.1.5) explicit.

Lemma 5.2.1 (Ackermann’s Lemma). Let α and β be blmτ -terms. Let z be a variable, occurring

only in α, such that +z ≺ +α. Then, for any blmτ A and any valuation V of the variables

occurring in α and β, the following are equivalent:

(i) 〈A, V 〉 |= α ≤ β

(ii) There exists a blmτ -term γ, using only variables from α and β, such that 〈A, V 〉 |= z ≤ γ

and 〈A, V 〉 |= α[γ/z] ≤ β.

Proof. The direction (i) ⇒ (ii) holds trivially by putting γ := z.

For the direction (ii) ⇒ (i), suppose γ is a blmτ -term such that both 〈A, V 〉 |= α[γ/z] ≤ β and

〈A, V 〉 |= z ≤ γ.

Let x1, . . . , xn, z be the variables occurring in α and β. Then, since 〈A, V 〉 |= z ≤ γ, we have

V (z) ≤ γA(V (x1), . . . , V (xn), V (z)). By Lemma 1.2.4, αA is monotone in the last coordinate, and

by assumption, (α[γ/z])A ≤ βA, so

αA(V (x1), . . . , V (xn), V (z)) ≤ αA(V (x1), . . . , V (xn), γA(V (x1), . . . , V (xn), V (z)))

= (α[γ/z])A(V (x1), . . . , V (xn))

≤ βA(V (x1), . . . , V (xn)).
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Remark 5.2.2. We note the similarity of the proof of Lemma 5.2.1 with parts of the proof of

Lemma 2.1.5. In a sense, it seems that the n-trick is a way of encoding Ackermann’s Lemma

inside the logic, whereas Ackermann’s Lemma as it is stated here is rather a result about the logic,

containing, for example, existential quantification over the term γ. One could then summarize

this observation as: “n-trick = Ackermann + encoding”.

We think that making this similarity precise will throw more light on the reasons why the proof

method, that we have dubbed “the n-trick” in this chapter, works precisely for the canonicity

proof of the Sahlqvist fragment, but fails for the inductive fragment.

Moreover, the correspondence and canonicity proof for the inductive fragment that is given in [7]

via general frames heavily relies on Ackermann’s Lemma as one of its cornerstones. Therefore,

we expect that spelling out the details of these parallels will also provide the key to an algebraic

canonicity proof for the inductive fragment, in the spirit of the algebraic canonicity proof of the

Sahlqvist fragment which we examined in this chapter.
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Conclusion

The central theme and red thread of this thesis is the notion of canonical extensions. We now

collect the results and open questions emerging from our investigation of canonical extensions that

we reported on in this thesis.

1 Reconstructing the lost duality

In the first chapter, we ‘reconstructed’ part of the duality square for the canonical extension of

partially ordered sets, so that we now have the following diagram, which is a bit more complete

than Diagram 1.1 of Chapter 1.

PLat
(·)+ -�
(·)+

RSPol

Poset

(·)σ

6

? -�
?

(·) •

-

?

U ?

6

Figure 1: Partial duality square for posets, with (·)•

Furthermore, we gave dual first-order characterisations of adjoint pairs, hemimorphisms and ho-

momorphisms between perfect lattices, following an alternative route to [16].

From a methodological point of view, we studied duality from the perspective of a hierarchy of

increasingly general dualities. We regard this hierarchy as ‘telescopic’, in the sense that each

duality encompasses and generalises the previous one: Stone duality for Boolean algebras can

be viewed as a special case of Priestley duality for distributive lattices, part of which can be

viewed as a special case of Urquhart duality for bounded lattices. However, Urquhart duality has

a narrower scope, because it only provides a duality for the category of bounded lattices with

surjective morphisms.

An important feature of our methodology is that we embraced a modal logic perspective on these
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dualities, in the following three ways:

• Rather than lattice homomorphisms, we regarded join- and meet-hemimorphisms as the first-

class citizens in the category of perfect lattices. This idea agrees with the earlier work of

Jónsson and Tarski on canonical extensions [31], as applied to modal logic, where operators

and dual operators are the join- and meet-hemimorphisms.

• We derived our first-order dual characterisations using methods inspired by the correspon-

dence theory for modal logic. For instance, we regarded a homomorphism as a two-faced

object, whose two personalities are ‘3’ and ‘2’, satisfying the two Sahlqvist inequalities

3 ≤ 2 and 2 ≤ 3.

• Our generalised poset perspective dictated that the operations in any ordered algebras be

treated as part of the expansion of the primitive (empty) signature. We do not regard the

lattice operations (e.g., ∧, ∨, ¬) as privileged, but as if they were a kind of ‘modal operation’

(and, in fact, operators in case the lattice is distributive). This has the advantage of a neat

separation of roles between the consequence relation (encoded in the order) and the algebraic

behaviour of the logic (expressed by the operations).

An obvious question that remains open is how to complete the square diagram for posets: is there

a topological duality in the lower half of Diagram 1 which generalises the topological Stone and

Priestley dualities satisfying our ‘telescopic’ requirement?

As mentioned in the introduction to Section 3 of Chapter 1, there are many proposals for such

a duality in the case of lattices: Urquhart, Hartung and Haim ([43], [27], [25]), Hartonas and

Dunn ([26]), and Jipsen and Moshier ([28], [29]). All of these dualities cross the boundary from

distributive to non-distributive lattices, which turns out to be a significantly harder step than the

step from Boolean algebras to distributive lattices.

In particular, all of the dualities for general bounded lattices that we mentioned above are two-

sorted instead of one-sorted. Moreover, all of these dualities, that were designed for lattices, turn

out to have features that naturally apply to the category of posets, in a similar way as the Boolean

and distributive lattice settings are very much alike. Although limited, Urquhart/Hartung duali-

ties, contrary to the dualities of Hartonas and Dunn, and of Jipsen and Moshier, are structurally

compatible with Stone duality. We therefore try to broaden the scope of Urquhart/Hartung du-

alities to a duality which encompasses not only the surjective, but all morphisms.

In accordance with [16], we take duals of morphisms to be pairs of relations, rather than functions,

and we view homomorphisms as two-faced objects (as explained in the second item in the list

above). However, differently from [16], in order to satisfy the telescopic requirement, we want the

relations to go in the same direction, i.e. ‘horizontal’ rather than ‘cross-wise’, as the functions in

the dual categories of Stone and Priestley dualities.

Earlier on, we remarked that the similarity between lattices and posets is analogous to the similar-

ity between Boolean and distributive lattices. Having said that, there are differences when moving

from lattices to posets: these differences essentially don’t show up at the level of the discrete

duality (the upper half of Diagram 1), but do show up at the level of the topological duality (the

lower half of Diagram 1). In this respect, we sketch a crucial example, omitting the proofs.11

11We thank Mai Gehrke for drawing our attention to this example.
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Example 1. For any poset P, let F(P) = {p↑ : p ∈ P} and I(P) = {p↓ : p ∈ P} be the filter and

ideal systems consisting of just the principal up- and down-sets. Consider the ‘butterfly’ poset P
and its Dedekind-MacNeille completion Q:

P

a1 a2

b1 b2

Q

a1 a2

b1 b2

c

>

⊥

Then the topologies on the optimal filter sets F∗(P) and F∗(Q) which are generated by the subbases

{ηP(p) : p ∈ P} and {ηQ(q) : q ∈ Q} are isomorphic, although the subbases themselves are different.

The last observation in this example could be the key to the problem of finding a duality in the

lower half of Diagram 1, drawing once more from the modal logic methodology. Indeed, we expect

that the most fruitful direction to an answer would be to try to generalise the descriptive general

frames from classical modal logic. In that setting, the adjective general means that an ordinary

Kripke frame is expanded with a collection of ‘admissible’ subsets of the set of worlds. The frame

being descriptive means, in the classical case, that the collection of admissible subsets generates a

Stone topology as a base (Cf. the end of Section 1 of the Introduction, and [5] for details).

Analogously, we expect that, in the case of posets, the category in the lower right corner of

Diagram 1 would be the category of ‘descriptive general RS polarities’. A descriptive general RS

polarity would be defined as an RS polarity, expanded with two collections of admissible subsets

for the two sorts, satisfying certain additional properties which make it ‘descriptive’. However,

when defining the notion of ‘descriptive’ in this context, we need to take care. In particular,

because of Example 1, we can not have a definition which would yield an equivalence between the

category of descriptive general RS polarities and a category of topologized RS polarities. Note

that we still have such an equivalence in the lattice case.

Therefore, the following interesting conclusion can be drawn from these considerations. We saw in

Example 1 that a topological approach to a duality for posets does not work. Posets form the first

layer in the hierarchy where descriptive general frames are essential, showing that they are really

more than a mathematically unorthodox reformulation of the topological approach, for which they

are often criticized. Just as we ‘lose’ operations when moving from lattices to posets, we ‘lose’

the possibility of using topology when moving from RS polarities for lattices to RS polarities for

posets. Thus, the considerations in this section suggest in what directon to look for a duality in

the lower half of Diagram 1.
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2 Category-theoretic perspective on canonical extensions

Another question that arose in Chapter 1 was: can we give a categorical characterisation of

the canonical extension construction? In particular, by appropriately restricting the notion of

morphism between posets, is it possible to find a subcategory of Poset for which both the Dedekind-

MacNeille completion is a reflector, and the amalgamation is a pushout? Finding, and subsequently

studying the properties of this subcategory could pave the way to generalisations of the canonical

extension construction to other categories of possibly non-ordered structures, such as groups,

groupoids, topological spaces, and so forth.

A related, but different, point is that we can regard any partially ordered set itself as a category

in a straightforward way. This observation, as well as the fact that all of the additional operations

in lattices and Boolean algebras have natural categorical interpretations (e.g., meets and joins

are limits and colimits in category-theoretic terms, and top and bottom elements are initial and

terminal objects), leads one to suspect that there may be a construction of ‘the canonical extension

of a category’. We must admit that this idea should be motivated and clarified further, but here,

we just wanted to make note of this possibly interesting direction.

Moving on to another point, the discussion of morphisms in Section 4 of Chapter 1 would benefit

from a more structural study of the categorical properties of the category of (general) RS polarities.

Here, we are thinking of characterizing important constructions such as products, coproducts,

subobjects and limits and colimits in general. As for RS polarities, we can use the discrete duality

that we discussed in Chapter 1. Still, we would like to find independent characterizations of

these constructions in the category of RS polarities. For general RS polarities, a uniform way

to treat these questions is to study the adjoint behaviour of the forgetful functor from general

RS polarities to RS polarities. This would be a two-sorted version of the well-known category-

theoretic methodology, where limits and colimits in a more complicated category (e.g., Top) can

be uniformly lifted from a simpler, better-known category (e.g., Set) [1].

3 Canonicity and correspondence

In Chapter 2, we focused on one particular application of the canonical extension: we revisited the

algebraic canonicity proof of the Sahlqvist fragment for distributive modal logic [22], in the quest

of an analogous algebraic canonicity proof of the inductive fragment. We isolated three important

steps in the proof, and described which were essentially order-theoretic, and which pertained

particularly to Sahlqvist, paying attention to how these different steps interact. In particular, we

focused on the properties of the additional operation n, which played a crucial role in the first

part of the algebraic canonicity proof.

Building on this analysis, we proved that the Sahlqvist proof can not be straightforwardly trans-

lated to a proof for the inductive fragment. The first open problem is therefore to find an algebraic

proof of the canonicity of the inductive fragment. We believe that finding an enhanced version of

the operation n would be an important step towards such a result. There are some open questions

which are related to the operation n itself, so that we believe investigating the operation n in its

own right could be benificial to finding ‘the enhanced n’.

We have two perspectives on n that we would like to investigate further. Firstly, we observed that

58



the operation n has many similarities with the Hom functor from a lattice, regarded as a category,

to Set. Moreover, we discovered some interesting parallels between (what we called) the ‘n-trick’

and the Ackermann Lemma, which is central to the correspondence for the inductive fragment.

The second perspective raises another question, pertaining to the interaction between canonicity

and correspondence.

One of the widely recognized features of the algebraic canonicity approach is its providing proofs

of canonicity independent of correspondence. It was already observed by Fine [12] that in classical

modal logic, there are formulas which are canonical but do not have a first-order correspondent.

From this result, we know that having a first-order correspondent is a strictly stronger property

than canonicity. Jónsson ([30], section 6) proved the algebraic canonicity of certain isolated for-

mulas (such as Fine’s formula) which do not have any first-order frame correspondent, showing

that algebraic canonicity proofs really are more than an algebraic reformulation of the canonicity-

via-correspondence method.

On the other hand, the observed parallels between the Ackermann Lemma and the n-trick suggest

that the operation n may partly bring a ‘correspondence-type’ ingredient into the algebraic canon-

icity proof. Could the correspondence that is used for the proof of canonicity which is explicit in

proofs on the frame side, be actually present, but hidden, in algebraic canonicity proofs? In what

sense precisely does the operation n provide a substitute, or an enhancement, of correspondence

methods? We do not give precise formulations of, nor definite answers to, these questions, but

think they suggest another interesting direction for further investigations.
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[40] , Sur les opérations fonctionelles linéaires, Comptes rendus hebdomadaires des séances

de l’Académie des Sciences 149 (1909), 974–977.

[41] M. H. Stone, The Theory of Representation for Boolean Algebras, Transactions of the Amer-

ican Mathematical Society 74 (1936), no. 1, 37–111.

[42] Tomoyuki Suzuki, Canonicity Results of Substructural and Lattice-based Logics, The Review

of Symbolic Logic (2009), to appear.

[43] Alasdair Urquhart, A topological representation theory for lattices, Algebra Universalis 8

(1978), no. 1, 45–58.

[44] Yde Venema, Algebras and Coalgebras, Handbook of Modal Logic (Patrick Blackburn, Johan

van Benthem, and Frank Wolter, eds.), Elsevier, 2007, pp. 331–426.

[45] Willem Conradie and Valentin Goranko and Dimiter Vakarelov, Elementary canonical for-

mulae: a survey on syntactic, algorithmic, and model-theoretic aspects, Advances in Modal

Logic (R. Schmidt and I. Pratt-Hartmann and M. Reynolds and H. Wansing., ed.), vol. 5,

2005, pp. 17–51.

[46] , Algorithmic Correspondence and Completeness in Modal Logic: I. The Core Algo-

rithm SQEMA, Logical Methods in Computer Science 2 (2006), 1–26.

63


