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Chapter 1

Introduction

Language change is a complex process, involving many factors, such as acquisi-

tion, language contact and innovations made by language users. These factors

span the entire range of aspects of human language, from pragmatics to pho-

netics. Because of this complexity, historical linguistics is often practiced as an

informal science, relying on qualitative descriptions of processes and theories.

This thesis reports on the formulation of a general quantitative model for the

study of syntactic change. The overarching goal of this thesis is to contribute

to the development of formal models and computational tools for the study of

language change.

There are two main motivations for developing computational models of lan-

guage change. The first is that such models may inform our theories on language

change. Simulating change on a computer allows us to take a closer look at the

mechanisms at work in language change. The results may then be used to sup-

port and develop theories of diachronic linguistics. The second motivation is to

use these models to test the validity of formal models of language and language

acquisition. If a language formalism is to be regarded as an accurate model

of human language, we should be able to use it in models of language change.

Simulations can be used to study the behaviour of language formalisms under

the conditions of repeated learning and use in a language community. This be-

haviour may inform our evaluation of the validity of a language formalism as

a viable model of human language. In this thesis, we will mostly be concerned

with the first of the mentioned motivations for the computational study of lan-

guage change; to inform our understanding of linguistic theories of syntactic

change.
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8 CHAPTER 1. INTRODUCTION

There are relatively few computational studies of language. Notable studies

are the agent-based computational models of the evolution of language through

iterated learning [10, 33], of the social factors involved in change [43], and of the

formation of the relation between language learning and language contact [49].

None of these studies employ a fully specified language model together with

a linguistically motivated model of language transmission to study language

change.

This thesis presents a quantitative model of language change that integrates

a formal model of language, Data-Oriented Parsing, in an agent-based iterated

learning simulation. A central role in the model is reserved for language ac-

quisition, taken in the broadest sense. Both the transmission of language from

one generation to the next as well as between agents in a single generation are

accounted for. Analogy as a mechanism of syntactic change will be central to

the transmission.

Our research has two goals. First, to develop and implement a general

quantative model of syntactic change that can be applied to a wide variety of

phenomena. The model has to be specific enough so that we can study the

language output of each generation in detail. The second goal is to test the

assumptions of the model by examining case studies from historical linguistics.

We strive to build a model such that the case studies can yield linguistically

plausible results for language change. The simulations will allow us to examine

the mechanisms at work in the phenomena in these case studies in more de-

tail than an informal discussion may accomplish. This aspect is an important

motivation for the development and implementation of quantitative models for

language change.

The thesis is outlined as follows. Chapter 2 will discuss linguistic theories

of syntactic change. Insights from these theories will inform our model. The

chapter introduces the general model of language transmission that underlies

our research. From this model follow a number of demands that the language

model must meet. Chapter 3 discusses the details of the language model, Data-

Oriented Parsing. It also addresses technical details of the implementation.

Chapter 4 contains discussions on the simulations and their results. In it, a

full implementation of the model of transmission is gradually introduced. Case

studies of historical linguistic phenomena are discussed to clarify and examine

the model. Finally, in chapter 5, we discuss some general conclusions of the

results presented in chapter 4 and some considerations for further research.



Chapter 2

Models of language

transmission

This chapter discusses the linguistic background of the research in this thesis.

The study of diachronic syntax and syntactic change is an active area in lin-

guistics. Much like other areas in linguistics, there is no generally agreed on

treatment of it. Instead several approaches exist. The approaches differ essen-

tially in their treatment of language transmission. We first discuss two of the

major approaches to syntactic change and the mechanisms these approaches

identify as central to change. We focus our discussion on the different aspects

of language transmission that the approaches highlight. Then we introduce

the model of transmission used in this thesis, building on insights from both

traditions.

2.1 Models of language change

2.1.1 The generative approach

Since the emergence of Generative Grammar in the 1950s, the generative ap-

proach to historical syntax has been actively researched. A central tenet of Gen-

erative Grammar has been the study of language acquisition and its implications

for a wider theory of syntax. The research has focused on what Chomsky dubbed

‘logical problem of language acquisition’ [16]. Given that an adult speaker can

give grammaticality judgements on an unbounded number of sentences of her

9



10 CHAPTER 2. MODELS OF LANGUAGE TRANSMISSION

native language, the central problem is how language acquisition is possible in

principle, given the fact that the primary linguistic data offered to a language

learning child, crucially underdetermines its adult linguistic competence, being

the understanding and knowledge of the language. The generative traditition

assumes an innate, initial state of the language faculty, shared by the entire

human species. From this initial state, the Universal Grammar, every human

develops his or her native tongue.

This view on the cognitive abilities of humans has strongly influenced the

generative approach to language change. This approach associates syntactic

change with child language acquisition. It points to the discontinuity of gram-

mars between generations as essential for change to occur. Syntactic change is

an emergent feature, a result of what happens in the transmission of a gram-

mmar from one generation to the next. Put simply, the generative approach

states that if the grammar of a generation has its parameters set differently

from the previous generation, then a syntactic change has taken place. This

idea is exemplified in the diagram in figure 2.1.1, based on [1].

Grammar 1 Grammar 2

Output 1 Output 2

gen
era

tes

inp
ut

for

gen
era

tes

Figure 2.1: Diagram outlining the discontinuity of grammars in the basic model
of language transmission from [1].

The diagram, which is the basis of many works in the generative study

of syntactic change, amongst others the influential work of David Lightfoot,

embodies a number of essential features to this approach to language change

which we will discuss here in detail.

Firstly, the diagram points to the crucial interplay between child language

acquisition and linguistic output. The grammar which a child acquires is not

based directly on the grammar of its caretaker, but on the caretaker’s linguistic

output, acting as an intermediary.

In essence, there are two ways in which Grammar 2 may come to differ from

Grammar 1. First if Output 1 is not representative of Grammar 1 in such a way

that the learning child cannot reconstruct Grammar 1 from it. Second if, given
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that Output 1 is representative of Grammar 1, the child’s learning mechanism

interprets it the ‘wrong way’. Since the child bases its grammar solely on the

output, the parameters of the child’s Universal Grammar may be set differently

and so a language change will take place.

The second point of interest with this picture is that change is generally

seen as abrupt. This view of abruptness is especially present in the works of

David Lightfoot [39, 41]. The idea there is that over generations grammatical

complexity builds up gradually through minor, relatively unimportant changes

until a threshold is reached which triggers a major and far-reaching restructuring

of the grammar. This restructuring is supposed to eliminate the complexity that

made the language difficult for children to learn. Crucially, Lightfoot argued

that syntactic change is autonomous, just as syntax in general is ascribed a high

degree of autonomy in generative theory [39].

These views have received a fair amount of criticism (for an up to date

overview see [19]). The first point of criticism we discuss is that the abrupt

changes are actually quite rare and do not represent the majority of syntactic

changes. The emphasis on the ‘catastrophic’ changes in historical data may

even be said to mask a confusion about the locus of change and the origin of

the data. While the discontinuity of grammars means that a change is indeed

instantaneous from the perspective of an individual’s competence, the picture as

it stands fails to incorporate two important factors. First, the data in historical

linguistics do typically not originate from single individuals. Historical texts do

not, in general, allow us to closely inspect the development of single users of a

language. Second, the data are performance data, that may or may not accu-

rately reflect the individual competences of a group of language users. As such,

changes that may be instantaneous from the point of view of individual users,

may take hundreds of years from the point of view of a language community

and may seem very gradual indeed. A focus on individual competence to the

exclusion of communal performance, obscures this important fact in the study

of historical syntax.

To counter this concern we may adapt the diagram from figure 2.1.1 to reflect

the transmission of language in a community of speakers and learners, see figure

2.1.1. This diagram is not supposed to imply that children necessarily learn

language from everyone in their community. Some subsets of Collective output

1 may be vastly more important in the acquisition process than others.

One may object that the instantaneity of change is not necessarily inherent

to the model of transmission in picture 2.1.1. A model of language acquisition
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G1
1,G

1
2,. . .,G

1
n G2

1,G
2
2,. . .,G

2
n

Collective output 1 Collective output 2

gen
era

tes

inp
ut

for

gen
era

tes

Figure 2.2: Revised model of transmission, showing collective outputs and sets
of grammars.

which does not rely on parameter setting and is able to incorporate the frequen-

cies of form occurences may produce a much more gradual picture of language

change. This feature then crucially depends on the specific details of the learn-

ing algorithm. If one is willing to let go of the generative model of acquisition,

one may obtain a more fine-grained model. However, this does mean that the

generative definition of syntactic change, i.e. a difference in parameter settings

from one generation to the next, becomes void. A new definition of change is

then needed.

A second general shortcoming of the model so far is that it only explic-

itly incorporates internal factors in the change. Internal factors in language

change are defined as factors promoting change within the linguistic system of

a relatively homogeneous community, experiencing little outside influence. In

contrast, external factors involve language contact, active language policy etc.

External factors, especially language contact, are important in diachronic

syntax (as attested by the literature, see for example the collection in [24]), so

we wish to account for them. We can adapt the model so that external factors

(of any kind) can have influence on the linguistic output of the community, see

figure 2.1.1.

External influence on the performance level may result in the output not

being representative of the speakers’ grammars. For example, suppose that

Grammars 1 are fully case marked. This is the grammar the adults acquired as

child. Due to some influence external to the grammar, the case markings in the

output start to disappear. Note that in the generative view Grammars 1 are

still fully case marked on the competence level. It is only on the performance

level that the case markings have disappeared. A child presented with linguistic
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External factors G1
1,G

1
2,. . .,G

1
n G2

1,G
2
2,. . .,G

2
n

Collective output 1 Collective output 2

gen
era

tes

inp
ut

for

gen
era

tes

influences

Figure 2.3: Second revision to the model: external influence on the speakers’
output.

output from this speaker cannot but infer that the language it is learning does

not support case marking. It sets its parameters accordingly and thus Grammar

2 differs drastically from Grammar 1 and a change has taken place.

We will come back to bith this model and the internal/external distinction

later when we discuss other models of grammar.

Lastly, the model assumes, as does generative theory in general, a level of au-

tonomy of (morpho-)syntax that has been questioned by researchers from other

traditions (e.g. [25]). The mechanism of language acquisition is presumed to

revolve around syntax. Therefore, phonological, semantic and especially prag-

matic factors are difficult to incorporate into this model. The second important

approach to language change, grammaticalization, discussed below, in part at-

tempts to remedy this problem.

In summary, the generative approach to language change is based on the

generative approach to language acquisition. This approach entails a disconti-

nuity of grammars. A central role is ascribed to language learners within the

critical period of acquisition, as their unique learning method allows them to

set parameters and thus to change grammars, whereas adults, with their pa-

rameters set, learn new constructions by a completely different mechanism with

only superficial consequences. The model can be extended by incorporating the

communal nature of a child’s primary linguistic data and external influences on

these data.
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2.1.2 Grammaticalization

The second approach to language change that will be relevant to our model,

grammaticalization, is part of a long tradition, going back to the linguists of

the nineteenth century, such as Wilhelm von Humboldt [42]. A widely used

definition of grammaticalization comes from Jerzy Kuryłowicz:

Grammaticalization consists in the increase of the range of a mor-

pheme advancing from a lexical to a grammatical or from a less

grammatical to a more grammatical status. [44]

Grammaticalization studies typically involve themselves with two types of

phenomena. The first are the changes of lexical items to morphemes and the

second are the changes of discourse elements to morphosyntactical markers.

These changes involve two mechanisms that are extensively studied.

The first is semantic bleaching. This involves the loss of meaning of lexical

items. An example is the loss of meaning of the emphatic negation in Jespersen’

cycle [30]. Consider the development of negation in French, that can be sketched

as follows:1

1. Je ne sais (NEG + VERB)

2. Je ne sais (pas) (NEG + VERB (+ EMPHATIC NEG))

3. Je ne sais pas (NEG + VERB + OBLIGATORY NEG)

4. Je (ne) sais pas ((NEG) + VERB + NEG)

5. Je sais pas (VERB + NEG)

In the second stage, the item pas is optional, indicating emphatic negation

and still retaining some of its original meaning. In the third stage, this meaning

is lost and the item has become an obligatory part of the negation.

The second mechanism involved in grammaticalization is phonological reduc-

tion. In this thesis we are only interested in the form that is called syntagmatic

reduction: ‘forms become shorter as the phonemes that comprise them erode’

[28, p.154]. It entails the dropping of vowels and consonants, loss of stress and/or

assimilation of adjacent phonological segments. This process is important in the

development of clitics into affixes.

1Modified examples of stages from [28, p.65-66].
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When evaluating grammaticalization phenomena it is important to again

clearly distinguish the point of view of the language and the point of view of the

language user. The object of the study is the process of language as a dynamic

interchange of meaningful communication. Taken this way, grammaticalization

takes a functional approach to the study of language change, incorporating the

use of language between users into their model. Some grammaticalizationists are

inclined to ascribe to the phenomena they study an existence per se, and look at

grammaticalization as an agent of change (cf. the discussion in [19], pages 115–

124). We do not wish to go this far, but feel it is important to note this contrast

to the generative approach, which completely focuses on the individual speaker’s

competence, leaving out the role of language as a communication device used

by actual human beings.

Frequency

The focus on the performance level, where ‘the variation and fuzziness is to

be found which forms the beginning of change’ [19], brings another aspect of

language in sight of grammaticalization researchers: frequency. As Hopper and

Traugott put it: frequency has ‘assumed an important place in the empirical

study of how lexical forms move into grammatical roles’, i.e. in grammatical-

ization studies. [28].

Joan Bybee [11], working from a usage-based background, points out two

important effects of the frequency of constructions. Firstly, high frequency con-

structions are more likely to undergo grammaticalization processes and secondly,

high-frequency constructions retain their form longer under pressure from new

formations. These two effects are strongly related to what Bybee and Thompson

[12] term the Reduction Effect and the Conservation Effect.

The Reduction Effect states that high-frequency forms undergo erosion (both

semantic and phonological) at a faster rate than less-frequent forms. This effect

is attested by for example the phonetic shortening that English contractions

such as you’re, I’ll undergo. The Conservation Effect states that highly frequent

items are more likely to retain irregular forms and are less likely to be levelled

by the pressure of regular forms. For clear evidence of this effect, Lieberman

et al. studied the regularization of English verbs over the past 1200 years and

showed that the rate of regularization of a verb depends on the frequency of its

usage [38].

Basing themselves on these observations, Hopper and Traugott state that
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the increased frequency of a construction over time is ‘prima facie evidence’ of

grammaticalization [28, p.129]. This may not be a formally accurate definition,

after all the word ‘computer’ probably increased significantly if frequency of use

between, say, the 18th century and the present for reasons other than gram-

maticalization. Nonetheless, we take frequency to be an important factor in our

model of change and will partly base our definition of change on it (see chapter

4).

Analogy & reanalysis

Two mechanisms that are inextricably connected to grammaticalization are anal-

ogy and reanalysis. Reanalysis has been called ‘the most important mechanism

for grammaticalization [28, p. 39], and one of the three only mechanisms for

syntactic change [13, p. 283]. Analogy has been referred to as the mechanism

which actually implements a change and spreads it across a language.

Reanalysis is best defined by a well-known quote from Harris and Campbell.

Reanalysis . . . is a mechanism which changes the underlying struc-

ture of a syntactic pattern and which does not involve any immediate

or intrinsic modification of its surface manifestations. [27, p. 61]

A simple example of reanalysis is the modern use of the word Hamburger.

Originally, it was constructed as [Hamburg] + [er], meaning a foodstuff origi-

nating from Hamburg. Over time, the original meaning was lost and the word

was reanalysed as [Ham] + [burger]. In itself, this reanalysis does not change

the surface appearance of the word. But combined with analogy it opens up the

possibility for innovations, such as Cheeseburger. Without the initial reanalysis,

analogy would not be able to implement the innovation.

Analogy has been defined as the ‘inference that if two thing agree in certain

respects then they probably agree in others’ [22, p. 17]. Analogy has two

mechanisms to spread innovations, extension and levelling. Analogical levelling

refers to the process by which allomorphs align themselves with a single instance.

Often it refers to the pressure that highly frequent allomorphs exert on less

frequent ones. Campbell [13] defines levelling as the disappearance of certain

allomorphs in favour of others. As an example consider the the previously

mentioned regularization of infrequently occurring verbs. Analogical levelling

forces irregular verbs to conform to the regular paradigm, thereby eliminating

allomorphs. This definition takes an a posteriori look at levelling, as it is only
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able to identify a levelling having taken place if one or more allomorphs have

completely vanished. In chapter 4 we will give a new definition of levelling in a

probabilistic framework, that will alow us to look at levelling as a process.

Analogical extension refers to the application of rules to new forms, by anal-

ogy to existing forms. Examples are the regular declension implemented on new

verbal forms such as e-mail or twitter or the formation of the plural for new

nouns. This form of analogy is often considered relatively rare (cf. e.g. [13,

p.284], as it is restricted to new forms. In the next chapter, however, we discuss

a parsing model that works in part by the analogical extension of previously ex-

perienced syntactic structures to new sentences. If this model has psychological

relevance, then extension is in fact the predominant form of analogy.

Consequences for the transmission model

The mechanisms identified by grammaticalization research as described above,

have several consequences for our model of language transmission.

The first is the following. If we take analogy serious as a mechanism for

change then we have to rethink the role of adult language users in our model.

In the above discussion of the generative model we saw that there only the

acquisition of language by children plays an important role in language change.

However, language researchers, and sociolinguists in particular, are increasingly

pointing out studies that show that adults continue to develop their language.

This includes adapting their own language output to that of their community,

but also innovating new forms (cf. e.g. [28, 36, 37]). This has consequences for

the view that children are the most important ‘learners’ of a language.

While child language acquisition is undoubtedly special in that it differs

qualitatively from adult language acquisition, the insights from sociolinguistics

suggest it is wrong to dismiss the results on adult innovation and language

development in a model of language transmission. The fact that adults can

invent and spread forms through a language means that the basic model of

transmission needs to be revised again. See figure 2.4 for a revised diagram

of the model. This revision is represented by letting the linguistic output feed

back into the speakers’ model of their language, keeping in mind that we now

also need to rethink the way the language model works in order to account for

innovations on the part of adults. This means that there is yet another way

that the output may not be representative of the grammar.

Note that the external influence is missing in the diagram in figure 2.4.
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Figure 2.4: Third revision: adult speakers’ grammar is influenced by the output
of their community.

This is for the following reason. In our model we will only study one form of

external influence, namely language contact. We will model contact between

language users with different internal grammars by relaxing the condition that

the language community (G1, . . .Gn) be homogeneous. By identifying certain

grammars to be radically different from others, we can in effect model a situation

of contact between languages. From here on, consider (G1, . . . Gn) to represent

a potentially heterogeneous language community.

A second consequence for the model is more difficult to represent in the

picture of language transmission we have built so far. It concerns the question of

how learning takes place. This question relates to both child and adult language

learning and it revolves around the question of how to adequately account for

both frequency effects as well as analogy in syntax.

Analogy in syntax is often interpreted as consisting of the extension or level-

ling of syntactic rules across different domains, e.g. verbal or nominal paradigms.

Taking the aforementioned definition to heart, syntactic analogy can also be in-

terpreted more strictly in terms of similarity relations that exist between syntac-

tic structures. This view of analogy, of similarity relations between structures

(possibly in different domains), has been cited as having cognitive relevance

[14] and has produced interesting results in the domain of language [21]. A

rule-based grammar formalism is unable to adequately capture these relations

however.

The next chapter delves more deeply into the matter of an adequate repre-

sentation of individual speakers’ language models. It introduces data-oriented

parsing, a formalism originally used in natural language processing, and shows

how it meets our demands in accounting for frequency effects as well as pro-
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viding a framework in which we can deal with analogy, both in the sense of

extension and levelling of rules and in the sense of structural similarity.

2.2 The final model of language transmission

The model we use in the simulations we will discuss in chapter 4 is basically the

model of figure 2.4. Keeping in mind the caveats about the learning mechanisms

involved, we extend it to span over more than just two generations, see figure

2.5. The output of the second generation feeds back to form the input of a new

grammar. This iterative model forms the basis of our experiments.
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Figure 2.5: Final model of transmission

This diagram leaves open the question of the language model. For an effec-

tive implementation, we need a formally precise model of language. From the

considerations of the previous sections, we can state a number of desiderate for

such a model.

First, it has to be able to account for the frequency effect that were found

to be important in language change. Second, the language model has to be able

to incorporate the mechanisms of analogy and reanalysis, either as primitive

concepts or as emergent features of the model.

A standard generative grammar is unable to meet either of these demands

as it is crucially non-probabilistic and most generative theories outright reject

the relevance of analogy in linguistics (cf. the remarks by Chomsky [15, p.32].

A third desideratum is that the language model needs to allow a formal

mechanism for the acquisition of language, considering both child and adult

language learning.

Lastly, we need formal methods for both the generation and interpretation

of linguistic structures, if we are to model the generation of linguistic output

and the influence this output may have on a language community.
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The next chapter discusses a model of human language, Data-Oriented Pars-

ing, which, as we will show, can meet these demands.



Chapter 3

Technical aspects of the

language model

The previous chapter outlined a basic model of language transmission. It de-

scribed a list of desiderata for a language model. A language model that can be

used in our model has to incorporate frequency and has to be able to account

for analogical factors. Reanalysis especially was found to be important.

From a computational perspective, we can add three more desiderata. The

implementation of the language model has to be efficient (since we will use

it in an iterated simulation of transmission) and it has to be precise (since

imprecisions are likely to add up over repeated application). It also has to be

fully formalized.

This chapter first gives a description of data-oriented parsing, which will

be used as a language model. We will explain its basic properties and some

variants. We also explain why it meets the demands. After that we describe to

describe the parsing mechanism we use, which is efficient and precise. Lastly

we discuss the issue of syntactic and semantic representation and their relation

in the simulations.

21
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3.1 Data oriented parsing

3.1.1 Introduction

This section gives a short introduction to data-oriented parsing, the formal

model that underlies this thesis. Data-oriented parsing [46] is a particularly apt

framework for modelling analogy in natural language. It is based on exemplars

and attempts to capture the structural analogies between sentences and corpora.

Data-oriented parsing builds on the idea that there is a continuum between

grammatical rules on the one hand and grammatical structures or constructions,

represented as parse trees on the other. It considers neither to be primary but

attempts to build a framework which subsumes both notions. The primitive

units of the grammar are all possible subtrees, encompassing both grammatical

rules (represented simply as subtrees of depth 1) and wider reaching construc-

tions (represented as subtrees of greater depth). These units can be combined

to form full parse trees by a substitution operation.

This approach has found some remarkable success in the field of natural lan-

guage processing (for an overview, see [8]). It meets the demands for a language

model stated in the previous chapters on two grounds. Firstly, the most widely

used DOP models are probabilistic, thus incorporating frequency of occurence

of linguistic forms (see section 3.1.2). Secondly, data-oriented parsing has been

described as an attempt to construct the maximal ahalogy between an input sen-

tence and a collection of exemplar structures [46]. Taken together, this means

the language model is able to model analogy both in the extension/levelling

sense and in the structural similarity sense.

The next section introduces the formalities of the DOP model. After gaining

familiarity with its basic properties, we return to the question of how DOP can

meet the demands we listed for a viable language model.

3.1.2 The probability model

A DOP grammar is constructued by extracting all possible subtrees from a

training corpus of syntactically annotated sentences. As an example, we show

how to extract a DOP-model from the simple training corpus depicted in figure

3.1.2 consisting of a single sentence and its tree structure.

For every tree t in this corpus, we extract every subtree and assign a weight

to it [6].

The first DOP model [3], DOP1, defined the associated weights as follows.
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S

NP

John

VP

V

loves

NP

Mary

Figure 3.1: A simple example training corpus

Let X be a countable set of types, in this case tree fragments. Then a corpus

is a function f : X → N and for each x ∈ X , f(x) is a type frequency. The

type frequency indicates the number of times a particular subtree occurs in the

corpus. Let r(t) denote the root node of tree fragment t, then the probability

assigned to t is defined by equation 3.1.

p(t) =
f(t)

∑

t′:r(t′)=r(t) f(t′)
(3.1)

Figure 3.2 shows the set of extracted subtrees along with their probabilities.

This collection of subtrees along with their weights is used to form a Prob-

abilistic Tree Substitution Grammar (PTSG). To parse a sentence, the tree

fragments can be recombined by means of the labelled substitution operation,

denoted by ◦. As an example, figure 3.1.2 show how the tree fragments can be

combined to form a derivation for the sentence Mary loves John, which was not

in the training corpus.

S

NP VP

V

loves

NP

◦ NP

Mary

◦ NP

John

Figure 3.2: Example of labelled substitution; the derivation of the parse tree
for Mary loves John

The probability of a derivation consisting of tree fragments t1, . . . , tn is given

by equation 3.2.
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Figure 3.3: DOP1-grammar extracted from the corpus in figure 3.1.2, showing
all extracted subtrees and their associated weights.

p(t1 ◦ . . . ◦ tn) =

n
∏

i=1

p(ti) (3.2)

A parse tree can be formed by many derivations. The probability of a parse

tree T is given by the sum of the probabilities of the derivations D producing

that parse tree, equation 3.3.

p(T ) =
∑

D derives T

p(d) (3.3)
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3.1.3 DOP and analogy

The data-oriented parsing framework was chosen as the language model in

this thesis because of two reasons. Firstly, it incorporates the frequency of

occurence of structures, found to be important in the previous chapter. Us-

ing DOP, the speakers in our simulation will exhibit a preference to use parts

of highly-frequent structures above lesser-frequent ones. Over generations, the

probabilities attached to structures may change and new structures may be pre-

ferred. In a probabilistic setting, this is what constitutes language change. Note

that this is essentially different from the generative view on language change.

There, a difference in parameter settings means that new rules come into play.

Syntactic change is essentially rule change. In our model, new structures may

come into existence, but the essence of syntactic change is a change in the fre-

quency of structures in such a way that a different structure comes to be the

preferred one.

But there is another factor to the use of probabilistic models. Reanalysis cru-

cially relies on the possibility of more than one analysis of a given construction

being available (cf. [13, p.284]), that is, it relies on the ambiguity of analysis.

Most sentences in natural language are syntactically ambiguous. In general, the

longer the sentence, the more possible parses exist. Yet we usually perceive only

one of the parses as being relevant. This poses a problem for natural language

processing systems. Probabilistic grammars have sought to account for this

problem by attaching weights to parses and taking the highest-ranking parse to

be the ‘correct’ one. This relates directly to the issue of reanalysis.

When multiple analyses of a given form are available (and they often are),

the real question about reanalysis is why a certain analysis comes into favour

at the expense of another. For this we need the fine-grained system that a

probabilistic grammar can give us. Reanalysis is the essential mechanism of

change in the model we use in this thesis. As subtree probabilities change, the

preferred analysis may change. Analogy may then spread this analyis across

paradigms and so an overt change in form may take place.

While the use of probabilities is for our purposes an advance over non-

probabilistic grammar models, such as the standard generative grammar, it

is by no means unique to data-oriented parsing. The advantage that DOP has

over other probabilistic language models is its ability to take into account large

constructions. For our purposes, this means that analogies between structures

are naturally expressed within the system. For example, consider sentences that
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share the following subtree in their parse:

S

NP VP

V NP

These sentences have something important in common, that is not easily ex-

pressed in other systems. While this is a trivial example, it does show that

using DOP means that the speakers in our simulation will have access to a large

array of exemplars in the form of syntactic structures, with which they can form

analogies to extend to new sentences. In fact, parsing under this framework is

explicitly seen as maximizing the structural analogy between an input sentence

and a corpus of previously observed structures [46]. Combined with the proba-

bilistic nature and the importance of ambiguity this means that both analogical

levelling and extension can be modelled by using DOP in an iterated setting.

A note about language learning. Above we discussed how a DOP-grammar

can be extracted from a treebank. Naturally, this is not how children learn a

language, since the primary linguistic data does not in general provide evidence

of the syntactic analyses of its sentences. The best way to model language

acquisition in this model would be to have an unsupervised mechanism of learn-

ing tree-structures (such as proposed in [6, 7]). However, these systems are

prohibitively slow for our purposes. So we take a shortcut and assume that

child language acquisition does in fact proceed by extracting a grammar from

a syntactically annotated bank of sentences. It may be objected that this is

an unwarranted oversimplification. Experiments with unsupervised DOP show,

however, that good results on learning the correct bracketing can be achieved.

We presume therefore that taken together with a system of category induction

in principle methods can be designed that produce results that rival those of

supervised DOP. This assumption provides a significant gain in computational

speed.

3.1.4 Other estimators for data oriented parsing

The DOP1 estimation method was shown to be inconsistent and biased [31].

This means two things. (1) As the training corpus grows to infinity, the DOP1

estimator does not converge on the relative frequency estimate of the parse

trees in the treebank that is used to train it. This is called inconsistency. (2)
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The DOP1 estimator is able to assign non-zero probability to trees that do not

occur in the training corpus. As we saw above, new parse trees can be derived

by applying the substitution operation on subtrees that occur in the treebank.

This means that it is biased with respect to the relative frequency estimate.

This is not necessarily a bad thing. If an estimator is not biased, it can

only assign non-zero probability to trees that occur in its training corpus, thus

eliminating the use of it for parsing novel sentences. However, the DOP1 esti-

mator assigns unproportionally more probability mass to subtrees that are part

of large parse trees, since the number of subtrees grows exponentially with the

size of the parse tree.

Several efforts have been made to remedy these problems. This thesis inves-

tigates three other estimation methods by studying how they behave under the

iterated transmission model.

The first variant estimator was proposed by Bonnema and Scha [9] (hence-

forth: the Bonnema estimator). They propose equation 3.4 to estimate the

probability of a subtree, where N(t) is the number of non-root non-terminals in

t and F (t) represents the number of times the root of t occurs in the training

data. This estimator remedies the bias problem by

p(t) =
2−N(t)f(t)

F (t)
(3.4)

Another way to remedy the bias to deep trees comes from [26]. Assigning

equal weight to each node in the training data and equal weight to each subtree

produces equation 3.5, where F (t) is the number of times the root non-terminal

of t occurs in the training data and n(t) is the number of subtrees headed by

the root non-terminal of t.

p(t) =
f(t)

F (t)n(t)
(3.5)

The estimator by Bonnema and Scha and the Equal Weight estimator from

[26] share some desirable properties. Compared to the DOP1-estimator, less

probability mass is reserved for the larger trees in the training data. The result

is a more even distribution of mass amongst the subtree fragments.

The last DOP-model we consider here takes a different approach, being non-

probabilistic. Bod [5] proposes to compute the parse tree which can be generated

by the shortest derivation, i.e. the derivation which uses the least amount

of subtrees. This has the effect of using the largest possible subtrees, thus
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maximizing syntactic context. Since the shortest derivation is not necessarily

unique, Bod proposes to back-off to probabilistic DOP as a tie-breaker. For

the purposes of this thesis, tie-breakers will not be necessary, as we will never

only use the 1st best parse. We therefore consider only a ‘naive’ version of the

shortest derivation estimator, calculating only the smallest number of subtrees

used.

The non-probabilistic shortest derivation version of DOP can be cast into

the probabilistic framework by assigning the same probability to every subtree

such that p ∈ [0 . . . 1]. This has the effect of making the shortest derivation

the most probable one. A derivation using n subtrees will have probability pn.

The derivation using the smallest amount of subtrees will then have the largest

probability.1

Other DOP models than the ones described above exist (e.g. [57] which

has been proven to be consistent). The described DOP-models were chosen for

the following reasons. The DOP1 model is generally used as a reference point,

being the first and most straightforward probability model. The estimator by

Bonnema and Scha and the Equal Weights estimator were used as counterpoints

to the DOP1-model, in an attempt to relieve the bias problems the latter has. As

[7] points out, the shortest derivation model provides a natural way of modelling

the maximization of structural analogy. It gives a metric of the simplicity of

syntactic structure, ‘thereby maximizing the structural commonality between a

sentence and previous sentence-structures’ [7]. Since we are interested in exactly

the structural analogy between sentences and previously observed utterances,

this estimator is a natural choice.

3.1.5 PCFG reduction of DOP grammars

This section can be safely skipped by the reader that is mainly interested in the

linguistic aspects of this thesis. It concerns a technical aspect of the implemen-

tation that is irrelevant for our linguistic argument.

The number of subtrees that can be extracted from a training corpus grows

exponentially as the corpus grows [47]. To keep an implementation computa-

tionally tractable, two approaches can be taken.

1. Reduce the number of fragments, for example by only including subtrees

1Note that the use of the word ‘probability’ here is actually improper, since they do not
form a probability distribution. It would be more proper to refer to them as weights, but
keeping in line with common usage, we refraing from doing so.
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up to a certain depth.

2. Reduce the PTSG to a Probabilistic Context-Free Grammar (PCFG) [26]

This thesis takes the latter approach.

Goodman [26] defines a simple scheme for reducing DOP PTSG grammars

to an equivalent PCFG, that contains at most eight rewrite rules for each node

in the training data. This means that the PCFG is linear in size to the training

data, instead of exponential. This allows for much faster parsing using the full

DOP grammar.

The conversion relies on relabelling the non-terminal nodes in the training

corpus. Each node is assigned a unique address. For example, A@k denotes

the node at address k with non-terminal label A. For each non-terminal node

in the training data, a new non-terminal is created, in the example this node is

called Ak. Non-terminals of this form are called ‘interior’ non-terminals, while

the original non-terminals are called ‘exterior’. Figure 3.1.5 shows the relabelled

tree from figure 3.1.2

S@1

NP@2

John

VP@3

V@4

loves

NP@5

Mary

Figure 3.4: The relabelled tree from 3.1.2

Let aj represent the number of subtrees headed by node A@j. Let a represent

the number of subtrees headed by nodes with non-terminal A, i.e. a =
∑

j aj .

Goodman next shows how to construct a PCFG that generates for every

subtree in the training corpus headed by A a homomorphic subderivation with

probability 1/a. A PCFG subderivation is called homomorphic to an PTSG el-

ementary tree if the subderivation begins and ends with external non-terminals,

and uses internal non-terminals for intermediate steps. A PCFG derivation is

homomorphic to an PTSG derivation if for every contributing subtree in the

latter there is a corresponding subderivation in the PCFG. A PCFG tree is ho-

momorphic to an PTSG tree if they are identical modulo the address labels at

the nodes.

For a node like
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A@j

B@k C@l

eight PCFG rules will be generated as follows:

Aj → BC (1/aj) A → BC (1/a)

Aj → BkC (bk/aj) A → BkC (bk/a)

Aj → BCl (cl/aj) A → BCl (cl/a)

Aj → BkCl (bkcl/aj) A → BkCl (bkcl/aj)

(3.6)

Goodman goes on to show that subderivations headed by A with external

non-terminals at the roots and leaves and internal non-terminals elsewhere have

probability 1/a, while subderivations headed by Aj with external non-terminals

only at the leaves have probability 1/aj. Furthermore, the construction de-

scribed above produces PCFG trees homomorphic to the PTSG trees with equal

probability.

The PCFG described above corresponds to a DOP1 PTSG, but the other

estimators introduced in section 3.1.4 can be treated in the same way.

The probability model from Bonnema and Scha [9] described by equation

3.4 is equivalent to the PCFG schema in equation 3.7, where a is the number

of times non-terminals of type A occur in the training data.

Aj → BC (1/4) A → BC (1/4a)

Aj → BkC (1/4) A → BkC (1/4a)

Aj → BCl (1/4) A → BCl (1/4a)

Aj → BkCl (1/4) A → BkCl (1/4a)

(3.7)

The shortest derivation model from [5] corresponds to the equivalent PCFG

in equation 3.8.

Aj → BC (1) A → BC (1/2)

Aj → BkC (1) A → BkC (1/2)

Aj → BCl (1) A → BCl (1/2)

Aj → BkCl (1) A → BkCl (1/2)

(3.8)

Lastly, the equal weights estimator described in equation 3.5 reduces to the

PCFG in equation 3.9
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Aj → BC (1/aj) A → BC (1/aja)

Aj → BkC (bk/aj) A → BkC (bk/aja)

Aj → BCl (cl/aj) A → BCl (cl/aja)

Aj → BkCl (bkcl/aj) A → BkCl (bkcl/aja)

(3.9)

The last reduction from the equivalence in equation 3.5 is not proven explic-

itly in [26], so we take the opportunity here to show the reasoning behind the

soundness of the reductions.

Theorem 1 (Subderivation probability for Equal Weight DOP). Subderivations

under the PCFG of equation 3.9 headed by A with external non-terminals at the

roots and internal non-terminals elsewhere have probability 1/aja. Subderiva-

tions headed by Aj with external non-terminals only at the leaves and internal

non-terminals elsewhere have probability 1/aj

Proof. Proof by induction on the depth of the trees.

Base case: depth = 1. There are two cases:

A

B C

A@j

B C

For these cases the theorem holds trivially.

Inductive step: assume that the theorem holds for trees of depth 6 n. We

have to show that it holds for trees of depth n + 1. Naturally, there are eight

cases, one for each of the PCFG rules corresponding to the node. We show four

of them. The others follow by comparable reasoning.

1. Aj → BkCl (bkcl/aj)

Let

B@k

. . .

represent a tree of at most depth n with external non-terminals only at the

leaves, headed by B@k. Then for trees like
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A@j

B@k

. . .

C@l

. . .

the probability is 1
bk

1
cl

bkcl

aj
= 1

aj
.

2. A → BkCl (bkcl/aja)

For trees like

A

B@k

. . .

C@l

. . .

the probability is 1
bk

1
cl

bkcl

aja
= 1

aja
.

3. A → BC (1/aja)

For trees like

A

B C

the probability is 1
aja

.

4. A → BkC (bk/aja)

For trees like
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A
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D E

C

A

B@k

D E

C

Figure 3.5: A PTSG subderivation (left) and a homomorphic PCFG subderiva-
tion (right). The PCFG subderivation has probability bk

aja
1
bk

, while the PTSG

tree will have probability f(t)
F (t)n(t) .

A

B@k

. . .

C

the probability is 1
bk

bkcl

aja
= 1

aja
.

The other four cases follow trivially.

The proofs for the other estimators follow by similar reasoning, as outlined

in [26].

Theorem 2 (PCFG to PTSG equivalence). The construction produces PCFG

trees homomorphic to PTSG trees with equal probability.

Proof. Assume every subtree in the PTSG occurs only once in the training

data. The proof under this assumption is easy. Consider an arbitrary PTSG

subderivation and a homomorphic PCFG subderivation. For example the ones

shown in figure 3.5. The PTSG subderivation has a probability of f(t)
F (t)n(t) as

defined by equation 3.5. The homomorphic PCFG subderivation will have a

probability of 1
aja

as was proven above. If f(t) = 1, as we assumed, the two

subderivations will have equal probability.

Naturally, actual treebanks are likely to contain multiple occurrences of some

subtrees, so the assumption would seem to be unjustified. If the PTSG formal-

ism is changed slightly so that the the bag of subtrees is a multi-set, i.e. subtrees

can occur more than once and their counts are not merged, then the one-to-

one relationship holds. This holds since the probabilities of parse trees do not
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change since they are obtained by summing over all derivations, automatically

taking into account the multiple occurrences of subtrees and unmerged counts.

So, summing over all PTSG derivations yields the same probability as summing

over all homomorphic PCFG derivations.

3.2 k-best Parsing

Like the previous section, this section can be safely skipped by the reader who

is mainly interested in the linguistic argument of this thesis.

The simulations we will introduce in the next chapter rely heavily on k-best

Viterbi lists as output from the parser. As we explain there, we will use k-best

lists as approximations of the occurrence frequency of alternative analyses of

syntactic structures in the iterated model.

As in [5] we approximate the most probable parse by summing over k-best

lists. Finding the most probable parse for DOP is NP-hard [48], so an approx-

imation which allows us to efficiently parse sentences is very welcome indeed.

Other solutions exist, for example Monte Carlo sampling of the parse forest [4],

or aggressively pruning the search space. The former has the disadvantage that

progressively larger numbers of trees need to be sampled as the sentence length

grows, eventually becoming inhibitively large, while the latter method produces

relatively low quality k-best lists.

So, for our implementation of the model to be efficient enough to be fea-

sible, we need fast k-best parsing. In [29], Huang & Chiang elaborate on the

proposal of Klein & Manning [35] to use weighted directed hypergraphs in prob-

abilistic chart parsers. Huang & Chiang generalize this proposal to introduce

a framework which uses hypergraphs to represent the search space of weighted

deductive systems.

So for this thesis we used their hypergraph parser, implemented bottom-up

as a variant of the CKY-algorithm [32, 56], outputting k-best Viterbi lists.

3.2.1 Hypergraph parsing

The key idea behind Huang & Chiang’s hypergraph parser is to use hypergraphs

to construct the chart of a parser instead of normal graphs. Simply put, the

difference between standard directed graphs and hypergraphs is that while stan-

dard arcs connect a single tail node to a single head node, hyperarcs connect a
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set of tail nodes to a set of head nodes. The definition of a weighted hypergraph

is slightly to suit the purposes of a probabilistic parser.

Definition 1 (Weighted hypergraph). A hypergraph H is a tuple 〈V, E, t, R〉,

where V is a finite set of vertices, E is a finite set of hyperarcs and R is a

set of weights. Each hyperarc e ∈ E is a triple e = 〈T (e), h(e), f(e)〉, where

h(e) ∈ V is the head and T (e) ∈ V ∗ is a vector of tail nodes. f(e) is a weight

function, f(e) : R|T (e)| → R. t ∈ V is a distinguished vertex called the target

vertex. If |T (e)| = 0, then f(e) is a constant and h(e) is a source vertex.

The parser traverses the hypergraph in the order defined by the topological

ordering of the hypergraph’s graph projection, while updating the result of

the weight functions f along the hyperarcs. The update process is simply the

application of the normal Viterbi update, i.e. combining the results of subspans

with the probability of a grammar rule to find the result for the superspan.

If successful, i.e. the prespecified target vertex t is reachable from the source

vertices, this results in a packed forest represented by the hypergraph (see the

example in figure 3.6).

The goal is to find the k best derivations from the resulting packed parse

forest.

Definition 2 (Derivation). Let inc(v) be the set of incoming hyperarcs to a

vertex, i.e. inc(v) = {e ∈ E|h(e) = v}. A derivation D and its weight w(D) are

defined as:

• if e ∈ inc(v) with |T (e)| = 0, then D = 〈e, ǫ〉 is a derivation of v and its

weight w(D) = f(e)().

• if e ∈ inc(v) with |T (e)| > 0 and Di is a derivation of Ti(e) for 1 6 i 6

|T (e)|, then D =
〈

e, D1, . . . , D|T (e)|

〉

is a derivation of v, and its weight

w(D) = f(e)(w(D1), . . . , w(D|T (e)|))

Derivations are ordered by their weights, so we can define Di(v) to be the

ith best derivation of v. The goal of the parser can then be restated as: find

D1(t), . . . , Dk(t). The derivations can be extracted from the parse forest in a

way that is analogous to the use of backpointers in other parser implementations.

So far the concepts we described are just methods to describe the encoding of

an exponentially large search set in polynomial space. The ingenious innovation

in Huang & Chiang’s article lies in the application of dynamic programming

techniques to the final search for the ordered set of best derivations. Instead of
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Figure 3.6: Hypergraph representation of the packed parse forest for the sentence
He saw the girl with a telescope. Items in rounded boxes represent the vertices
of the hypergraph, joining arrows represent the hyperarcs.

finding the k-best derivations for each vertex, the computation is delayed until

the target vertex is reached. The algorithm then consists of two phases:

1. A forward phase, which produces the 1st best derivation, but also stores

all alternative derivations.

2. A backward phase, which recursively searches for the second best deriva-

tion, until k is reached.

The complete algorithm then has overall complexity of O(|E|+nk log k), where

n is the number of words in the input sentence (details and proof of complexity

in [29]). We made a small improvement on the space requirements, by using
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a k-bounded priority queue2 for storing the candidates for each vertex. The

overall space complexity becomes (|E| + kn)

In summary, the Huang & Chiang algorithm allows us to do precise k-best

parsing in a reasonable time.

3.2.2 Flip-reverse parsing

The models we introduce in the next chapter frequently require us to deal with

input that is unparsable due to word order differences. As an example, consider

the grammar in figure 3.2. Equipped with this grammar, the parser will not be

able to derive the target vertex "S" for the sentence John Mary loves, meaning

loves(John,Mary). However, for our purposes, we presume that speakers will

be able to make a guess about the meaning of the sentence and therefore will

need to be equipped with a parsing mechanism that will always output some

result in case parsing fails, however suboptimal that result may be from the

point of view of the grammar.

We propose the following, simple method for dealing with this kind of un-

parsable input. If, after the first pass through the chart of the projected hyper-

graph (as described in the previous section), the top cell does not contain the

TOP label of the grammar ("S" in this case), a second pass through the chart

is made. This pass, still in topological order, is allowed to modify the chart

in the following way. For any two nodes with non-overlapping spans it passes

over in the chart, the parser checks whether the grammar contains a rule that

contains the node labels in reverse order as the right hand side. If this is the

case, the parser adds a new hyperarc to the chart. This hyperarc has the rule’s

left hand side as head node in the usual way and the rule’s right hand side as

the tail vector, effectively ‘flipping’ the construction around. Figure 3.2.2 gives

a simplified example of a flip in the parsing of John Mary loves.

The transitional probability associated with the hyperarc is adjusted from

the rule’s probability by a factor a, to give preference to lesser numbers of flips

over greater. Once this second pass is completed, the parser checks whether the

target vertex has been reached. If it has the parser is done, if it hasn’t, the

process is repeated until either the target vertex has been reached or the last

pass did not add new hyperarcs to the chart. In the latter case, the sentence

is declared unparsable by the parser. This method provides a simple way to

construct trees for constructions that are not allowed by the grammar, while

2Backed by a min-max heap[2]
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Figure 3.7: Operation in second traversal of the hypergraph. The nodes NP
and V are being flipped to form a VP that was previously not derivable from
the grammar.

still giving preference to the ones that are.

Note that a similar way to do this, would be to enrich the grammar with

copies of all the rules with their right hand side flipped around. The advantage

to this approach would be that the probabilities of the rules with the same

left hand side form a proper probability distribution. This distribution is made

improper by the approach we take here. There are, however, two reasons for

not doing so. The first is that doing so will naturally double the size of the

grammar, which will in practice already be quite large. Our approach allows us

to generate the ‘flipped’ rules only when needed, thus retaining the original size

of the grammar. A second reason for not doing so requires us to look ahead to

the next chapter. There we will discuss that the grammar, aside from parsing,

will also be used to calculate the probability of existing parse trees in order

to rank them. For this application we do not want to include flipped rules in

our calculations. We would therefore need to store two separate grammars for

each of the agents in our simulation. This is unwanted as we wish to keep our

memory usage to a minimum.

3.3 Representations of syntactic and semantic struc-

tures

As outlined above, syntactic structure in our model is represented by phrase

structure trees. For the implementation we introduce in the next chapter we

also need a representation of semantic structure and algorithms for conversion
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between the two. We chose to use dependency trees to represent semantic

structures as this allows for simple and fast conversion to and from phrase

structures.

The semantic representations are used as a generative system for DOP, by

first generating all possible trees corresponding to a semantic structure and

then letting the grammar decide which tree structure is the most probable. In

practice we predefine the semantic structures for a given simulation, depending

on the type of phenomena we are interested in.

Dependency structures form a very limited means of semantic representa-

tion. For our purposes, however, we are only interested in representing simple

semantic structures, such as

loves(john, mary)

or slightly more complicated, a definite description à la Russell, with an embed-

ded predicate:

(thinks(ιx(man(x)),loves(john,mary)))

These two formulas are represented (roughly) as follows:

loves

john mary

thinks

man

the

that

loves

john mary

We define a symmetric equality relation on the nodes in these structures:

Definition 3 (Equality of nodes in a semantic structure). Two nodes, n1 and

n2, in a dependency tree are equal iff:

1. The label of n1 is the same as the label of n2

2. The semantic annotation of n1 is the same as the semantic annotation of

n2

3. For each node dependent on n1 there is a node dependent on n2 that is

equal to it and vice versa

From this definition, we define equality of entire structures:
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Definition 4 (Equality of semantic structures). Two dependency trees are equal

iff their top nodes are equal

For our syntactic representation the following conventions are used, which

bear some resemblance to the standard x-bar conventions

1. Categories always project maximally, e.g. N projects up to NP.

2. Arguments attach to an intermediate projection of the head.

3. Specifiers attach to the maximal projection of the head.

4. Categories only project if necessary (save for rule 1), so if a category has

no arguments, it has no intermediate projections.

5. The root node of a complete phrase structure tree is attached to a TOP -

node, for parser purposes.

As examples, the phrase structure tree corresponding to John loves Mary

looks like this:

TOP

VP

NP

N

John

V’

V

loves

NP

N

Mary

while the tree for The man thinks that John loves Mary looks like this:



3.3. REPRESENTATIONS OF SYNTACTIC AND SEMANTIC STRUCTURES41

TOP

VP

NP

DP

DET

the

N

man

V’

V

thinks

CP

C’

C

that

VP

NP

N

John

V’

V

loves

NP

N

Mary

The conversion from phrase structure tree to dependency tree (i.e. semantic

structure) is straightforward and follows the algorithm outlined in [55], with

the caveat that the phrase structure conventions used in that article are slightly

different from the ones used here. Let the lexical head of a projection node XP

be the daughter of the preterminal category node that produced the projection

and the head child be the daughter node of the XP node that is the ancestor of

the lexical head. The conversion algorithm then takes the following steps:

1. Mark the lexical head of each node in the phrase structure tree.

2. Construct the dependency structure by making each lexical head of each

non-head-child depend on the lexical head of the head-child.

The conversion from dependency trees to phrase structure trees is less straight

forward. The reason for this is that we want the conversion to be one-to-many.

In the next chapter, we will model word order variety. For that we will need each

semantic structure to correspond to a set of parse trees, reflecting all possible

word orders. We use the following method for obtaining the unrestricted set of

all phrase structure trees S from a dependency node V , that is to say, the set

that puts no constraints on the scrambling of arguments, modifiers or specifiers.
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The elements of this set may therefore violate rules 2 and 3 of the conventions

for phrase structure trees we outlined above. The set is defined recursively.

Definition 5 (Unrestricted set of phrase structure trees corresponding to de-

pendency node V ). Base case: V has no daughters. Then S is the singleton set

consisting of the maximal projection of the category of the node’s label.

Recursive case: V has daughters d1, . . . , dn. Let D1, . . . , Dn be the sets of

phrase structure trees corresponding to these daughters. For each permutation

of 〈D1, . . . , Dn〉 generate all combinations of elements of D1, . . . , Dn with V

by attaching elements from D1, . . . , Dn−1 to intermediate projections of V ’s la-

bel’s category and attaching elements of Dn to V ’s label’s category’s maximal

projection.

As an example, figure 3.8 shows the set of phrase structure trees corre-

sponding with loves(john, mary). Note that S quickly grows very large as

|S| = n! · |D1| · . . . · |Dn|.

This concludes the discussion of the language model. The next chapter

describes the implementation combining these ideas with the transmission model

as well as several experiments.
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Figure 3.8: Phrase structure trees generated from loves(john,mary)
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Chapter 4

Simulations and Results

The two previous chapters explored the features that an implementation of a

model of language change should have. We looked at models of language trans-

mission and discussed the properties of a suitable language model. This chapter

describes several experiments based on these models. The first section describes

a simulation that models reanalysis and analogical levelling. The next section

adds semantic and phonological features and simulates the relation between

word order freezing and loss of inflection. The final section models a situation

of language contact and adds a heterogeneous language community. This last

simulation closely adheres to the final model of transmission set out in chapter

2. All simulations are used to provide examples of how known phenomena in

historical linguistics can be studied using computational methods.

4.1 Reanalysis and analogical levelling

This section describes a simulation focusing on reanalysis and analogical lev-

elling. The model used is fairly simple, but we will show that even so, some

interesting results can be obtained. We will first describe the basic implemen-

tation. After that we will discuss two examples from historical linguistics that

will serve as the starting point for our simulation. Lastly, we will discuss the

results from these simulations.

45
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Seed treebank DOP Grammar

Sentence
Generator

Sentences:
s1, . . . , sn

Weighted Treebank:
〈

t11, w(t11)
〉

, . . . ,
〈

t1k, w(t1k)
〉

. . .
〈tn1 , w(tn1 )〉 , . . . , 〈tnm, w(tnm)〉

defines

informs parses

generates forms

defines (iteration step)

Figure 4.1: Diagram showing the basic model for the simulation of reanalysis
and analogical levelling.

4.1.1 The basic model

The diagram in figure 4.1 shows the basic model used in this simulation. The

idea is to model the repeated generation and parsing of sets of sentences. The

parses of one set of sentences is used to extract the grammar for the next iter-

ation. For this we need two components. (1) A grammar. (2) A module that

generates sentences for the grammar to parse.

The initial grammar is extracted from a pre-defined treebank. From this

treebank is also extracted a lexicon, consisting of words with associated part-of-

speech tags. These are stored in the Sentence Generator module together with

all the POS-tag sequences of the sentences in the seed treebank. The POS-tag

sequences are used to generate sets of sentences S =
{

s1, . . . , sn
}

, by replacing

each POS-tag in a sequence with a randomly chosen word of that category. This

procedure is used as a kind of faux semantic module, making sure that at every

iteration, the grammar has a new set of sentences to parse. Each sentence si ∈ S

is subsequently parsed using the extracted grammar, keeping the full range of

non-optimal parses output by the k-best parser. The resultant k-best list forms

the input for the extraction process of the grammar of the next iteration.

The k-best list contains all the analyses of a sentence that are licensed by the

DOP grammar. Since we are interested in modelling how ambiguous forms may

behave over repeated cycles of parsing and learning, we need a way to transmit
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all allomorphs to a next generation. We therefore interpret the probability of

an analysis as an indication of the relative frequency of its occurrence in the

grammar’s output. As an example, consider the form xx, that can be parsed in

two ways under a certain grammar, with the following probabilities.

S

A

x

B

x

0.6 S

C

x

D

x

0.3

In the simplest form, we then consider the left analysis to occur twice as often

as the right one, since its probability is twice as high. In this simulation, the

next generation will therefore be presented with a treebank in which the analyses

occur in a 2 : 1 ratio. We may, however, wish to allow for the parse with the

highest probability, the most salient analysis, to be significantly different from

the other parses. This can be implemented by optionally reserving an amount

of probability mass for the 1st-best parse. This mass will ‘boost’ its probability

and is therefore designated by b, for boost mass. The weighted treebank then

defines the grammar for the next generation. All subtree-frequencies are simply

scaled by their weight in the weighted treebank.

The formal definition of a weighted treebank is as follows. A Weighted

Treebank W holds a number of sequences, each corresponding to a k-best list

(each of which corresponds to a sentence s ∈ S). Each sequence in W consists

of a number of pairs, consisting of a parse tree t and an associated weight w(t).

The weights are calculated as follows.

Let K = 〈t1, . . . , tk〉 be the ordered sequence of parse trees output by the

parser for a particular sentence and for each ti, let p(ti) be its probability. Let

b be the amount of boost mass we wish to assign. Equation 4.1 shows how the

weight w(t) is calculated for each tree t on the k-list.

w(ti) =











p(ti)·(1−b)
P

k
j=1

p(tj)
+ b if i = 1

p(ti)·(1−b)
P

k
j=1

p(tj)
else

(4.1)

Note that if b ∈ [0, 1], then the set of weights of trees belonging to a single
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k-list actually form a proper probability distribution, since ∀i(w(ti) ∈ [0, 1]) and
∑k

i=1 w(ti) = 1.

As a sidenote, this is reminiscent of the works of Simon Kirby et al. [34] on

iterated Bayesian learning. Stated in the terms of that framework, the weighted

treebank forms a posterior distribution over parse trees conditioned on the set of

sentences. The next iteration’s grammar is learned from the entire distribution.

If this distribution is unboosted, i.e. b = 0.0, then the effect is the same as if the

grammar is obtained by sampling trees from an infinitely large treebank, with

the relative frequencies of the trees equal to their weights. Another possibility for

obtaining the input for the next iteration is by taking the maximum a posteriori

probability (MAP), instead of a sample. Increasing the boost mass has the effect

of moving from the sampling to the maximizing strategy.

4.1.2 Measuring reanalysis

Chapter 2 discusses a definition of reanalysis by Harris and Campbell that will

serve as the starting point for the measurements in our simulation.

Reanalysis . . . is a mechanism which changes the underlying struc-

ture of a syntactic pattern and which does not involve any immediate

or intrinsic modification of its surface manifestations. [27, p. 61]

Since the overt form of the syntactic pattern is not modified by reanalysis

until analogical levelling sets in, it is essentially unobservable in historical lan-

guage data. However, the simulation setup described above has the advantage

that for each generation we have access to both the surface manifestations of

patterns and their analyses.

This means we can study reanalysis as a process. In any linguistic frame-

work, alternative analyses of a form are commonly licensed by a grammar. In a

probabilistic framework, however, we can quantify their position relative to the

salient analysis. We first redefine reanalysis to fit our simulations.

Definition 6 (Reanalysis). A syntactic pattern is reanalyzed if the 1st-best

structural analysis of the pattern (i.e. its parse tree) differs from the 1st-best

analysis of the previous iteration in the simulation.

The fact that the simulation involves weighted treebanks as a means of

transmission means that we can track the process by which such a change takes

place. We will focus on two aspects. Firstly, we will look for situations where a
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new parse tree occupies the 1st position on the k-list and secondly, we will look

for situations where non-optimal analyses lose probability mass and disappear

as contenders. The first aspect signifies reanalysis, while the latter means that

non-optimal analyses are no longer available for analogical levelling.

There are two basic forms in which the reanalysis of a syntactic pattern may

appear. The first, rebracketing, will refer to a change in the unlabelled structure

of the 1st-best parse tree of a pattern. The second, relabelling, will refer to a

change in the labelling of nodes in the 1st-best parse tree. Actual reanalysis is

likely to involve combinations of the two. For the simulations in this section

however, we isolate these two methods and study them one by one.

4.1.3 Simulation 1: reanalysis as rebracketing

The first simulation in this section focusses on the rebracketing of a syntactic

structure under the pressure of similar structures in the grammar.

Linguistic motivation

The linguistic example we use comes originally from Jespersen. It concerns a

hypothetical example that is nevertheless used by David Lightfoot to illustrate

a part of his theory of syntactic change. It also fits our purposes in that it

illustrates how rebracketing of syntactic structures may take place in our model

of language transmission.

The English verb like, already existant in Old English, has changed its ar-

gument structure through the period of Middle English. The following four

instances illustrate the stages of the change1

1. þam cynge [DAT] licodon [PL] peran [NOM PL] (OE)

2. the king liceden [PL] peares (Early ME)

3. the king liked pears (Late ME)

4. he liked pears (Early ModE)

In the first stage, the number-agreement and case-marking unambiguously

identify peran as the subject. At this stage, the verb like has a similar argument

structure to French plaisir or Dutch bevallen. In the second stage, case marking

has disappeared and only number-agreement helps identify peares as the subject.

1Discussion adapted from [19]
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By the late Middle English period, the construction has become ambiguous and

both king and pears can be analyzed as the subject. In the fourth stage, what

was first a dative argument is always interpreted as subject and the sentence is

again unambiguous.

The etymology of like has been used by David Lightfoot [40] in his argument

for the role of the Trace Erasure Principle in his theory of syntactic change.

The Trace Erasure Principle (TEP), from an older version of generative theory

(cf. [45]), prohibits a moved constituent from filling a position which is already

occupied by a trace. According to Lightfoot, this principle triggers the reanalysis

pattern 3 in the late Middle English period. By this period, the basic word

order of English is SVO, so the indirect object the king and the subject pears

would have to switch positions around the verb from their base position. This

is impossible according to the TEP, since these positions are already filled by

the traces of the moved constituents. Therefore, the king is reanalysed as the

subject of the sentence.

This analysis of the syntactic change is not without its critics (e.g. see

[19, p.23-23] for a discussion). Below we will show that a simpler approach is

possible, where the reanalysis is carried out on the basis of analogical pressure

from other transitive verbal constructions and canonical sentence patterns.

The simulation

The simulation in this section models the transition from the third to the fourth

stage. The seed treebank contains 100 three-word transitive sentences, like king

likes pears, mary loves john or queen eats apples. All but the sentences with

like as the verb are given a tree structure corresponding to an SVO-analysis.

Sentences with like as the verb have an OVS-analysis. The treebank is au-

tomatically generated, with a set of 100 nouns distributed randomly over the

argument positions in the sentences. Figure 4.2 shows parse trees for the SVO

and OVS analyses.

The sentences with like make up 1/3 of the treebank. This distribution is

rather generous to the OVS-analysis, but it simplifies our exposition. If reanal-

ysis and levelling of like-sentences to SVO takes place under these conditions,

the model predicts they will also take place under circumstances where like-

sentences form a much smaller minority in the original treebank.

Note that the like-sentences are likely to be ambiguous from the very first

grammar extracted from the seed treebank. We can see that this is the case
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Figure 4.2: SVO and OVS parse trees

if we consider the nouns that occur in them. These are likely to also occur in

sentences with an SVO-analysis, therefore an SVO-analysis for like-sentences is

also likely to be licensed by the first extracted grammar.

The simulation tracks the relative mass of the OVS-analysis of the argument

structure of like. The starting point will lie around 1/3 plus any boost mass we

wish to assign. Under the DOP1 and Equal Weights estimators we expect to

see a rapid decline in this mass from its starting point. The case is different for

the Bonnema estimator and the shortest derivation estimator. Consider first

the shortest derivation estimator.

The shortest derivations for a sentence patterned as noun1 likes noun2 are

shown in figure 4.3. It shows that both the SVO and the OVS analysis will

require on average three subtrees if the nouns are distributed randomly. Recall

that we do not use a tie-breaker in case multiple winning derivations. This means

that we can expect the relative mass of the OVS analysis to settle around 0.5

under repeated application of the shortest derivation estimator.

S

NP VP

V

likes

NP

◦ NP

noun1

◦ NP

noun2

S

VP

NP V

NP

◦ NP

noun1

◦ NP

noun2

Figure 4.3: Shortest derivations of noun1 likes noun2

The results for the Bonnema estimator are expected to closely resemble

those of the shortest derivation estimator due to the artificial nature of our seed
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treebank. Recall that the probabilities of external rules in the PCFG-reduction

of the Bonnema estimator rely only on one parameter: the number of times the

root non-terminal occurs in the training data. Since the SVO and OVS parse

trees have the same non-terminal node labels and only differ in the structure of

the trees (see figure 4.2), the Bonnema estimator is expected to show the same

behaviour as the shortest derivation estimator.

Results

Figure 4.4 shows the basic results for the simulation. It shows the average results

of 100 simulation runs with b = 0.0. The relative mass of the OVS analysis under

the DOP1 and Equal Weights estimators reduces to 0 after about 40 iterations.

The relative mass under the shortest derivation and Bonnema estimators rapidly

settles to 0.5.
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Figure 4.4: Relative mass of the OVS analysis for b = 0.0, averaged over 100
simulation runs

What does this show linguistically? Under the DOP1 and Equal Weights

estimators, the reanalysis of sentences Noun1 likes noun2 as SVO, inherent to

the grammar, is completed fairly rapidly. That is, after about 40 iterations,

the only analysis is SVO and the verb like has been pulled level to the other

verbs in the original treebank. In other words, we have here an indication that

a simple model based on analogy can provide an alternative explanation for the
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change discussed by Lightfoot. The trigger for the reanalysis here is not an

abstract principle of the grammar, but the pressure from analogy with other

verbal constructions in the language. The verb like is levelled to the rest of the

language data in conforming to a simple SVO pattern.

However, not all single runs of the simulation conform to this outcome. Since

the treebank is relatively small and the set of sentences that is parsed at each

iteration is generated randomly under a set of lexical constraints, we can expect

there to be runs which show different results. If the amount of boost mass,

the extra probability mass reserved for the 1st-best parse tree, is increased, the

outcomes of the runs start to diverge from that shown in figure 4.4. This holds

only for the Equal Weights and DOP1 estimators. The higher the boost mass,

the more likely it is that like will hold on to its argument structure and retains

its deviant analysis in the grammar.
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Figure 4.5: A smoothed view of a deviant run for the Equal Weights estimator
for b = 0.1

Figure 4.5 provides a (smoothed) view of a part of a run in which the relative

mass of the OVS analysis under the Equal Weights estimator actually showed the

opposite tendency from that in figure 4.4, it approached 1. Note that in the same

run, the DOP1 estimator also showed deviant behaviour, initially following the

curve of the Equal Weights estimator, but eventually settling down to 0. These

runs are relatively rare for b < 0.25 but become more frequent for 0.25 < b < 0.4.
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If b is increased to even higher levels (b > 0.4), both the EW and the DOP1

estimators provided even more interesting behaviour. Figure 4.6 shows the

results of the DOP1 estimator for a run at b = 0.5. In this run, a multitude

of reanalyses occurred in sequence. Over several hundred iterations the run

exhibited distinctive oscillating behaviour. Semi-stable states where one analysis

was dominant were followed by rapid changes to the opposite situation.

These latter results point to the importance of the boost mass parameter.

Recall that it was introduced as a way to account for the linguistic and cognitive

importance of the first item on the k-list of the parser. Increasing the value of

b also corresponds to a move towards the maximizing strategy in the terms of

the Bayesian learning framework. As we have seen, the amount of boost mass

turns out to radically influence the results of the simulations, producing much

wider variance in the possible outcomes of the runs. This may have linguistic

implications, depending on how we interpret the model.

If we interpret the simulation to represent a single learner, then the effects

are an artifact of its discontinuous learning strategy. On the other hand, if

we interpret the grammar to represent a language community’s homogeneous
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linguistic system, then we may tentatively make some conclusions from the

effects.

Firstly, it may show that analogical levelling is not necessarily a deterministic

process. Minor fluctuations in the initial conditions and the circumstances of

transmission may produce hugely varying outcomes. While the isolated and

artificial nature of our simulations is to a large degree responsible for this state

of affairs, it does ties in nicely with an ongoing debate in the literature on

grammaticalization theory about the dependence of the manifestation of clines

on (from the viewpoint of some theorists) seemingly unpredictable events (cf.

the discussion in [19, p.115–124]).

Secondly, the run shown in figure 4.6 may have implications for the debate

on the unidirectionality of grammaticalization processes. According to some

researchers (exemplified by [28], but see pages 99–139 for a critical discussion),

grammaticalization is essentially a one-way process. While a form undergoing

grammaticalization may or may not reach the end state, these researchers see the

process as irreversible. Part of this irreversibility is the assumed impossibility

of returning to a previous analysis of a syntactic pattern once reanalysis and

levelling have taken place. Other literature provides counter-examples and call

this hypothesis into question on theoretical terms (cf. [18]). The existence of

runs figure 4.6 seems to provide support for the latter position.

4.1.4 Simulation 2: the spread of relabelling

In this simulation we isolate a type of reanalysis involving only the relabelling

of node labels in a phrase structure tree. The unlabelled tree is not changed

over the course of the iterations.

Linguistic motivation

Our linguistic cue for this simulation will be the change in the ‘be going to’

construction in English.2 Originally ‘going to’ had a purposive, directional

meaning, as in She is going to London to marry Bill. Following the futuritive

interpretation associated with this directional reading, a reanalysis occurred in

which ‘be going to’ as a whole came to be interpreted as an auxiliary. This

reanalysis opened up the way for phenomena typical for auxiliaries, such as a

phonological reduction into gonna, since the phrasal boundary between going

and to has disappeared.

2Although many discussions of this change exist, we follow the discussion in [28].
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In the last situation, a sentence like She is going to marry Bill is syntactically

ambiguous. Figure 4.7 shows two of the parse trees for this sentence. Note that

while these analyses have the same overt syntactic pattern, the difference in the

labels implies a difference in semantic interpretation and may denote a difference

in phonology, due to the aforementioned reduction.

S

NP

she

VP

V

is

VP

V

going

S

TO

to

VP

V

marry

NP

Bill

S

NP

she

VP

V

is

VP

V

going

VP

TO

to

VP

V

marry

NP

Bill

Figure 4.7: Two parse trees for She is going to marry Bill.

The reanalysis of be going to as an auxiliary is often attributed to the analogy

in meaning between the purposive aspect of the directional reading and the

intentional reading of modal auxiliaries [28]. We do not model this semantic

analogy in the simulation in this section. We will show, however, that once

the reanalysis has become viable for some verbs, structural analogical pressure

can help spread the innovation across all verbal domains, on purely syntactic

grounds.

The simulation

The simulation models the spread of the rightmost tree in figure 4.7 across verbal

domains. The simulation starts from a seed treebank containing 100 sentences

and their associated tree structures. Both trees labelled as the leftmost trees

in figure 4.7 and trees labelled like the right one are present, in proportion

expressed by parameter r, given by equation 4.2

r =
# trees with purposive reading

# trees with purposive reading + # trees with auxiliary reading
(4.2)
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The trees with the purposive, non-auxiliary reading of be going to are re-

stricted to a small, randomly generated set of content verbs (occupying the

position of marry in the example trees). The noun positions are also filled ran-

domly from a set of 100 nouns. At each iteration, the nouns and verbs are

redistributed over the patterns in accordance with the lexical constraints.

The simulation tracks the relative mass of the auxiliary reading under dif-

ferent ratios in the seed bank and amounts of boost mass b. We expect similar

behaviour of the estimators as in the previous simulation, depending on the ratio

of the starting seed bank. That is, we expect the relative mass of the auxiliary

analysis under the Equal Weights and DOP1 estimators to converge on 0 for

high values of r and on 1 for low values of r. And we expect the relative mass

under the shortest derivation and Bonnema estimators to settle on 0.5 modulo

the boost mass. The interesting questions are how the convergences turn out

for r = 0.5 and for higher values of b.

Results

Figures 4.10 and 4.11 show the averaged results of 10 simulation runs for b = 0.0

and for different settings of r. The figures show that the shortest derivation

and Bonnema estimators behave as predicted from the results of the previous

simulation.

The behaviour is different for r = 0.5. The shortest derivation and Bonnema

estimators still behave the same way, but the DOP1 and Equal Weights esti-

mators can now go either way. Convergence is slower, but both will eventually

settle on either 0 or 1. On average, over 100 runs, both end states turned out

to be equally likely for these estimators. Figures 4.8 and 4.9 show examples of

single runs for this setting. Note the difference in behaviour for the DOP1 and

Equal Weights estimators from that in figures 4.10 and 4.11.

Increasing the value of b has less effect than it had in the previous simulation.

The only noticeable difference between b > 0.0 and b = 0.0 turned out to be the

speed of convergence. Higher levels produced significantly faster convergence,

but no oscillations were observed over 100 runs for each setting.

What these simulations show is that the frequency of occurence is important

for the outcome of a reanalysis/levelling process. If the reanalysed, innovative

subsurface structure is not able to cross a certain threshold, analogical levelling

will pull the innovation into step with the rest of the language. Note that in

this simulation, we have excluded semantic and other factors which may have
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Figure 4.8: Average relative mass of single run, for b = 0.0, r = 0.5.
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Figure 4.10: Average relative mass of auxiliary analysis over 10 runs, for b = 0.0,
r = 2/3.

Figure 4.10 shows that the relative mass of the auxiliary analysis under the

DOP1 and Equal Weights estimators converge to 0 fairly rapidly, as predicted,

although the Equal Weights estimator takes slightly longer to get there, unlike

the last simulation. Figure 4.11 shows the expected opposite behaviour.

helped the innovation to cross the threshold. We do not consider this a model

of the development of the be going to construction per se, but as a simplified

example of how levelling can spread an innovation across domains.

We also saw how the estimators divided into two groups in terms of their

behaviour. The DOP1 and the Equal Weights estimators on the one hand and

the Bonnema and shortest derivation estimators on the other. The first group

exhibited the most interesting behaviour for our purposes. Since these two

estimators essentially behaved in the same way, all results from here on only

discuss the DOP1 estimator.

In our introduction we mentioned that eventually, quantitative models of

language change might be used to evaluate the validity of language formalisms.

While we do not discuss results for the shortest derivation and Bonnema esti-

mators from here on, we feel it is premature to reject their empirical validity

on the grounds of these results. The grammars we used in these simulations

are of a highly artificial nature, being restricted to small and uniform subsets of
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Figure 4.11: Average relative mass of auxiliary analysis over 10 runs, for b = 0.0,
r = 1/3.

natural language. An evaluation of the validity of these estimators is therefore

unwarranted at this stage.
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4.2 Adding functional pressure

This section adds functional pressure to the simulation. We use the simulation

to model the relationship between case marking and word order freeness.

4.2.1 Linguistic motivation

The historical example we study in detail in this section is the disappearance

of overt case markers on nominal constituents in Dutch and English. Both Old

English and Middle Dutch had a richer case system than their modern day

counterparts (cf. [50] for OE and [52] for MD). Both Old English and Middle

Dutch are commonly considered to be languages with an basic OV word order

(cf. [50] for OE again and [51] for MD). The following examples illustrate this:3

(4.3) gif
if

hie
they

him
him

þæs
the

rices
kingdom

uþon
granted

(4.4) dat
that

ic
I

dis
this

macht
power

hebbe
have

However, these languages also had a relatively free word order system, regu-

larly allowing extraposition of arguments of the following type (for the case for

the existence of these extraposition phenomena in Old English see [53], for the

case of Middle Dutch [23]).

(4.5) þæt
that

hit
it

sie
is

feaxede
long-haired

steorra
star

(4.6) dat
that

si
they

ontmoetten
met

ene
a

ioncfrouwe
lady

In Modern Dutch and Modern English from the Early Modern period on-

ward, the extraposed structures are no longer grammatically correct sentences.

While Modern Dutch settled on an OV word order, Modern English now is a

VO language.4 Both languages have also lost most of their overt case markers.

In the literature this relation is analysed and discussed in various ways. The

following is exemplary of the generative approach (based on [54]).

Nominal projections need to be assigned case and verbs govern in a single

direction, determined by the basic word order of the language, i.e. VO or OV. A

3These example sentences, as well as the others in this section are taken from [54]
4Section 4.3 below discusses the change of English from OV to VO in detail.
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morphological case system, featuring overt case marking on nominal projections,

allows complements of the verb to escape the direction in which the verb assigns

case. If the morphological case system disappears, NP’s no longer have a way to

escape structural case and thus the word order of a language is frozen. Therefore

regular extraposition constructions like in sentences (3) and (4) above are no

longer allowed by the grammar.

In this model we propose a related, but more functionally-oriented view of

the same phenomenon. The simulation introduced in the next section will show

that it can account for the type of changes that English and Dutch have un-

dergone. It elaborates on the simple model of the previous section by adding

representations of two aspects of language: phonology and semantics. As dis-

cussed in chapter 2, phonological erosion is an important subject in grammat-

icalization studies. It denotes the gradual weakening of stress on morphemes,

until they eventually disappear. In germanic languages the end of a word is the

place where morphosyntactic features such as case are marked. Erosion of the

word ending interferes with the case system.

The simulation in this section and that in the next also incorporate a seman-

tic component. In this section we use it to model a basic prerequisite of language

use: mutual understandability. Markers of syntactic case and by extension, se-

mantic role, help the interpretation of a sentence. If this system erodes, other

clues such as word order may step in to help semantic interpretation.

4.2.2 The simulation

The simulation consists in essence of a simple Generator/Interpreter module as

shown in figure 4.12. The module takes as its input a semantic structure. This

structure is processed by the Generator submodule, backed by a grammar. The

generator returns a sentence expressing its input. This sentence is subsequently

taken as input for the Interpreter submodule which outputs a reconstructed

semantic structure.

This Generator/Interpreter module is integrated in a larger supermodule,

shown in figure 4.13, which does two things. Firstly it generates the semantic

input for the Generator/Interpreter module and secondly it checks whether the

semantic output is reconstructed correctly, by testing for equality according

to definition 4. The outcome of this test influences the decision to adjust the

grammar.

So, put simply, we model an agent who randomly generates meanings, trans-
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Input:
semantic
structure

Grammar
Output:
semantic
structure

Generator Sentence Interpreter

ba
ck

s backs

Figure 4.12: Generator/Interpreter

forms those meanings into sentences and checks whether these sentences ade-

quately reflect the meaning, adjusting its internal grammar to optimize its lan-

guage output. Before we go into the details of the adjustment, we will first

discuss the Generator/Interpreter module in more depth.

Semantic
generator

m1, . . . mn
Generator/
Interpreter

m′
1, . . . m′

n

equal?

Figure 4.13: Simulation overview

The Generator/Interpreter module

The Generator submodule takes as its input a semantic structure. In chapter 3

we discussed the representation of these structures, namely dependency struc-

tures. We stressed that the conversion to syntactic structures was one-to-many.

For this simulation, each semantic structure generates not only the full set of
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syntactic structures as described there, but also a copy of each tree in that set,

with case markings on the nouns and annotations that reflect these marking on

the nominal projections.

The resultant set is ranked by probability by the grammar that backs the

module. Using these probabilities as weights by normalizing them by their

sum, a probability distribution is formed over the phrase structure trees that

correspond to the semantic structure. From this distribution a single tree is

sampled. Its yield is the output of the Generator.

The Interpreter submodule takes the opposite direction. The input sentence

is parsed by the hypergraph parser described in section 3.2. The best derivation

is then converted into a semantic structure according to the conversion algorithm

described in section 3.3. This semantic structure is the output of the Interpreter

module.

As an example of the functioning of the Generator/Interpreter module, con-

sider the following. We start with the semantic structure loves(john, mary).

From this semantic structure, the entire set of corresponding phrase structure

trees is generated, as shown in figure 3.8. The grammar ranks these trees by

their probability and a single tree is sampled. Its yield, say it is mary john loves,

then forms the input for the Interpreter. The Interpreter attempts to parse the

sentence, if need be by using the Flip-Reverse algorithm, and returns the best

derivation of the sentence. This derivation is then converted to a semantic

structure, let’s say that is loves(mary, john). This semantic structure is then

tested for equality with the original one. In this case the test fails. Depending

on the outcome of the test, the grammar is adjusted.

4.2.3 Obtaining and adjusting the grammar

The simulation starts from an artificially generated treebank consisting of sim-

ple three word sentences with transitive verbs. Nominal constituents are case-

marked. All possible word orders are represented in the treebank. We will study

two different initial settings for this simulation. One in which all word orders

appear an equal amount of times in the seed treebank and one in which there

is a bias in the distribution for the SOV word order.

From the initial treebank a DOP1-grammar is extracted, with the following

adjustment. For each preterminal rule with a noun as the terminal, two sets of

subtrees are used in the grammar, one with morphological case and one without.

The relative frequency of these sets to each other is parametrized by variable e,
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for erosion.

The probability for preterminal to terminal rules that ends up in the gram-

mar, p′(preterminal) is determined by the relative frequency, p(preterminal) and

e, as shown in equation 4.7.

p′(preterminal) =







p(preterminal) · e if case marked

p(preterminal) · (1 − e) else
(4.7)

This equation helps incorporate the phonological pressure in the simulation.

By rescaling the subtrees for nominal constituents, we build a bias into the

grammar so that non case marked yields will be preferred over case marked

yields in the ranking step of the Generator submodule.

As described above, the output of the Generator/Interpreter module is com-

pared to its input. Based on this comparison, the weights of the subtrees that

were used in the winning derivation of the parser are adjusted. The resultant

weight of a subtree t, w′(t) depends on the original weight w(t) and a scaling

factor a, as defined in equation 4.8.

w′(t) =







w(t) · (1 + a) if equal

w(t) · (1 − a) else
(4.8)

The probability mass of other subtrees headed by the same node as t is

then recalculated so that all the subtrees headed by that node again form a

probability distribution.

The result of this adjustment is that subtrees which were part of a pro-

cess in the Generator/Interpreter module that resulted in an adequate sentence

(i.e. one from which the original semantic structure could be reconstructed) are

scaled up, while others are scaled down. The grammar tries to optimize itself

for communicative purposes, while balancing this goal with economy of effort,

as expressed by the preference for non-case-marked nominal constituents. This

process is repeated until the equality test succeeds for 50 sentences in a row.

4.2.4 Results

When the simulation starts from a uniform distribution over the possible word

orders, four distinct stable states emerge, depending on the value of e. In

practice, the value of a only mattered for the speed of the simulation, not for

the eventual results. All simulations discussed below ran under a = 0.4.



66 CHAPTER 4. SIMULATIONS AND RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45  50
 0

 0.5

 1

 1.5

 2

R
el

at
iv

e 
m

as
s 

of
 w

or
d 

or
de

r

A
ve

ra
ge

 n
um

be
r 

of
 c

as
e 

m
ar

ke
rs

Iteration

Stable state 1: case markers and frozen word order

SVO
SOV
VSO
VOS
OVS
OSV

Markers

Figure 4.14: Stable state 1

Figure 4.14 shows the first stable state. Low values for e, around 0.5, mean

that the penalty for using case marked nouns is low or non-existent. Under

these conditions, the grammar quickly stabilizes to a state where all nouns are

case marked and the word order remains completely free. Figure 4.14 shows the

graph for this simulation.

For higher values of e, different end states are found. Figure 4.15 shows

the graph for e = 0.6. Under this condition, the penalty for using case marked

nouns is still light enough to allow for the eventual marking of all nouns, but

by the time this state is reached, the word order has also become frozen.

Figure 4.16 shows yet again a different final state. Half the nouns are case

marked and the word order is mostly frozen, with SVO being used predom-

inantly, but OSV also possible. The marking of only half the nouns in this

simulation is enough to unambiguously reconstruct the semantic structure from

the syntactic structure, since all sentences feature exactly two nouns and these

occur only in the agens and patiens roles.

Figure 4.17 finally shows the last stable state, for high values of e. Here

the penalty for using case markers has become too great to overcome. The end

state is reached very slowly in this run and contains predominantly VOS, but
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Figure 4.15: Stable state 2
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Figure 4.17: Stable state 4

also some OVS word order. Note that the specific word order reached is largely

dependent on chance, other runs under the same parameters reached different

end states, but showed the same pattern of slow convergence to a mostly frozen

word order.

If the simulation starts from a distribution over word orders that is biased

towards SOV, with a relative frequency of 0.4 appointed to this word order in the

seed treebank, only the stable states with a frozen word order were encountered

in the simulation runs. The convergence to SOV was also quicker than before.

Figure 4.18 shows an example run, with a stable state with a frozen word order

and an average of one case marker.

The results from this section show that the extension of the model with

semantics can produce linguistically plausible language states. The next section

adds a hetergeneous language community to the model and finally implements

the full model of language transmission outlined in chapter 1 in an attempt to

simulate word order changes under influence of language contact.
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Figure 4.18: Example stable state for biased initial treebank

4.3 Adding a heterogeneous language community

and communal feedback

The last simulation in this study implements the full model of language trans-

mission, shown again here as figure 4.19. This model incorporates all of the

elements that we used in the previous simulations and add some new features.
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Figure 4.19: The final model of transmission introduced in chapter 2

The model in this section adds a heterogeneous language community to the

simulation. In this community, agents communicate and attempt to adjust their
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language output to that of their peers. Different agents do this in different ways,

depending on their linguistic background and their stage in life.

4.3.1 Linguistic motivation

The historical example we take as a starting point for this section is the change

in basic word order that took place in Early Middle English. As mentioned

above, Old English is often analyzed as an OV language. However, in matrix

clauses, the verb often occupied the second constituent position in the sentence,

a phenomenon that can also be observed in modern Dutch and German, called

Verb Second (V2). Between 1150 and 1350 A.D. this central feature of the

English grammar changed and the basic word order became VO.

Historical linguists have pointed to the invasion of the Vikings as a cause

for this shift in word order (cf. [42, 50]). In this simulation, we base ourselves

on a hypothesis by Fred Weerman [54]. Weerman also identifies the invasion

of the Vikings as the main cause for the change. This mass invasion brought a

huge amount of second language learners to Northern England. According to

his hypothesis, the fact that they were second language learners acquiring an

OV-V2 language was crucial in the change.

Adult second language acquisition (L2-acquisition) differs from child first

language acquisition in some important ways. Second language learners exhibit

specific patterns in learning the word order of a new language. Clahsen and

Muysken [17] show that L2 learners acquiring an OV-V2 langage tend to over-

generalize the word order of the matrix clause to non-matrix clauses. Since the

canonical matrix clause in an OV-V2 language is SVO, these learners infer that

the language they are learning has a VO word order. Furthermore, this pattern

occurs irrespective of the native language of the L2 learner. To clarify, from the

observation that

(4.9) John loves Mary.

is a grammatical sentence. A second language learner could infer that

(4.10) Carl knows that John loves Mary.

is also grammatical. Even though the correct construction under an OV-V2

grammar would be:

(4.11) Carl knows that John Mary loves.
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As discussed in the previous section, the English language of the time when

the Vikings arrived had a relatively free word order. It allowed regular extrapo-

sitions of nominal constituents in both non-matrix and matrix clauses. These

extraposed constructions do not conform to the basic word order pattern.

This relative freeness meant that adult native speakers of English could parse

grammatically incorrect sentences like (9) with relative ease. Weerman goes one

step further and posits that the frequency with which these extraposed construc-

tions occured in the native English speakers’ output could increase under the

influence of the presence of second language learners.

Weerman analyses this frequency increase in the following way. Since (under

the generativist assumption) the adult native speakers’ language parameters

have been fully set once the critical period of language acquisition is over, the

extraposed constructions are added to the grammar as ‘peripheral rules’. While

they may not be part of the ‘core’ grammar, the peripheral constructions may

still appear in the native speakers’ language output.

From the viewpoint of child L1 learners growing up in this linguistically

diffused environment, the positive evidence in the primary linguistic data for the

OV-V2 word order is partly destroyed. In generative words, once the number

of extraposed constructions reaches a certain critical frequency, the child may

well analyze the PLD as exhibiting an SVO word order and set its parameters

accordingly. When this happens, a syntactic change has taken place.

For the simulation in this section we adopt the basic idea underlying the

described mechanism of the word order change, namely the interplay between L1

and L2 acquisition. We do not adopt the generativist language model, however,

but make an attempt to fit the different mechanisms underlying L1 and L2

acquisition in our probabilistic data-oriented language model.

4.3.2 The simulation

When attempting to make a formal model of a language community that ex-

isted almost 1000 years ago, we come across some problems caused by a lack

of evidence. How many Vikings invaded exactly? How was their linguistic in-

teraction with the native British structured? Were the communities isolated or

did they blend in well with each other? If so, to what degree? What percentage

of constructions in English exhibited these extraposed nominals? How was the

language of the Vikings structured?

For all these question, no exact answers are known. What we will do in
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this section is propose a way to model the situation as a whole and make broad

guesses toward the actual values of the parameters involved. These guesses may

very well be wrong. This is not particularly important. We show that under

our assumptions, plausible outcomes of the simulation may be obtained. If new

data becomes available, the model may be adjusted and studied anew. What

we attempt to do is show how the situation may be modelled in principle.

We model the linguistic community as a set of 25 agents interacting with

each other. The agents are placed on a toroidal grid and each possesses a

Generator and an Interpreter, as described in the previous section, backed by

an internal grammar. The simulation basically consists of the same process that

was used in the previous one, with a few minor changes. At initialization, each

agent extracts a grammar from a previously defined treebank, containing 100

sentences along with their parse tree.

At each step of the simulation, each agent is assigned a set of 20 randomly

generated semantic structures. Each agent generates 20 sentences from these

structures, according to the process discussed in the previous section. All se-

mantic structures follow the same pattern, consisting of a main predicate and an

embedded predicate, e.g. thinks(carl, loves(john, mary)). The syntactic

structures corresponding to these semantic structures therefore always contain

a matrix clause and a subordinated non-matrix clause. This ensures that for

OV-V2 grammars, both main word order patterns are represented and evidence

for the OV nature of the language is present.

Each agent then receives the sentences from each of its neighbours on the

grid (8 in total) and uses its Interpreter to attempt to reconstruct the semantic

structure. If this succeeds (i.e. the reconstructed semantic structure equals the

original), the agent’s grammar is adjusted. Instead of the update mechanism

from the previous simulation that used the best derivation, here updates proceed

by adding the best parse from the Interpreter module to the grammar. Finally,

the agent constructs a weighted treebank from a set of 100 randomly generated

semantic structures. These treebanks are then used to seed a new generation of

agents that inhibit the grid at the next iteration.

The description so far is merely a multi-agent extension of the previous sim-

ulation. The present simulation fully implements the model of language trans-

mission of chapter 2, shown in figure 4.19. The heterogeneity of the community

and the differences between L1 and L2 acquisition are modelled as follows.

At initialization, 1/5 of the population, connected on the grid, is assigned

Viking status. This entails two things. (1) The treebank they extract their
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grammar from contains only sentences with SVO word order. This is not meant

to reflect their native language, but the knowledge they have of English. (2)

in updating their grammar, Vikings extract the matrix clause from the best

parse tree from their Interpreter and add that to their grammar, reflecting the

observations from Clahsen and Muyskens about the nature of L2 acquisition.

The other 4/5 of the population are Brits. Their assigned treebank at initial-

ization contains both OV-V2 sentences and sentences with extraposition con-

structions. The ratio between these two is governed by the leakage parameter L.

Sentences with the OV-V2 pattern have relative frequency of (1−L). Sentences

with the VO pattern have relative frequency of L in the treebank.

When updating their grammar, agents with Brit status add the entire tree

from the Interpreter module, reflecting their ability to add ‘peripheral rules’

[54].

Child language acquisition proceeds in the way described in chapter 3, by

extracting a DOP1 grammar from the ancestor’s weighted treebank.

Throughout the simulations, the relative frequency of OV and VO sentenes

in the entire population’s linguistic output is tracked.

4.3.3 Results

The value for L, denoting the ratio of leakages, to canonically constructed sen-

tences, turned out to be crucial for the results of the simulation. Figure 4.20

shows the average over 10 runs of the simulation for L = 0. As can be seen, the

population fairly rapidly settles on a 50/50 state, with both word order types

equally likely to occur. Single runs for L = 0 followed the same pattern.

More interesting are the results for higher values of L. Figures 4.21, 4.22,

4.23 show the average results for these settings. They show that higher values

for L produce situations where the VO word order dominates the OV word

order. The higher the level for L, the greater the relative frequency of VO.

Two things are of note here. (1) Setting L to 0.5 may be considered implau-

sible at best. If the frequency of leaked constructions was so high in English, it

might have changed word order without external pressure at all. We consider

L = 0.1 and L = 0.25 the only plausible settings that we discuss here. (2) In

none of the runs we performed the OV word pattern completely vanished. Even

the L = 0.5 runs did not produce this outcome. The best we could produce

were convergence levels around 0.8.

Evidently, this does not concur with the actual historical development. Dur-
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Figure 4.20: Relative frequency of word order for L = 0

ing the 200 years of word order change, the extrapositions also disappeared and

word order was frozen to VO. In generative, non-probabilistic theories of the

word order change, this fact does not pose much of a problem (cf. [54, 50]). It

seems, however, that it does pose a problem for a probabilistic model.

But this does not necessarily mean that the simulation has failed. Concur-

rent with the word order change, another major change to the English mor-

phosyntactic system took place: the loss of case markers [50]. As we showed in

the previous section, our model can in principle account for word order freezing

together with loss of case, if the pressure of phonological erosion is high enough.

A combination of these two results may lead to the following conjecture.

The correct and full acquisition of case inflection is notoriously difficult for

adult L2 learners (cf. [20]). The presence of a large portion of the population

that does not produce case inflection consistently may have put more pressure on

the phonological erosion. As we saw in the results from the previous simulation,

high rates of erosion could lead to a completely frozen word order, even in a

probabilistic model. In situations where all word orders are equally likely, this

leads to different end states. In situations where one word order is already more

likely to be observed than others, the effect was invariably an end state with a
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Figure 4.21: Relative frequency of word order for L = .1

completely frozen word order.

The solution to explaining the word order change in English, while basing

oneself on a probabilistic language model, may therefore lie in a combination of

these approaches. The simulation in this section showed that our model could

explain a relative dominance of the SVO word order in the linguistic output of

the community. The combination with increased phonological erosion may have

been enough to completely freeze the English word order to SVO.
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Figure 4.22: Relative frequency of word order for L = .25
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Figure 4.23: Relative frequency of word order for L = .5



Chapter 5

Conclusion

In chapter 1 we stated two goals for this thesis. (1) Develop and implement an

iterated learning model of syntactic change that can be applied to a wide variety

of historical phenomena. (2) Apply the model to case studies from historical

linguistics and report on the results.

From a survey of the literature discussed in chapter 2, we concluded that our

model should include the following factors, that were found to be important to

syntactic change. Central to the model is the iterated application of language

learning mechanisms.

Insights gained from a survey of grammaticalization theory pointed to the

importance of frequency effects and analogy/reanalysis in syntactic change.

These ideas led us to adopt Data-Oriented Parsing as our language model, be-

cause its probabilistic, all-subtrees approach enabled us to account for both these

factors. Through DOP we were able to account for both instances of language

learning. Child language acquisition is modelled as the extraction of a grammar

from a treebank. Adult modification is modelled in several different ways, each

pertaining to a modification of the subtree probabilities in the DOP-grammar.

In chapter 4 we developed the simulations that we used to study several

linguistic phenomena. First we showed that a simple version of our model was

able to adequately simulate reanalysis and analogical levelling. These results

are important for the following reason. As we discussed in chapter 2, the gram-

maticalization approach regards reanalysis and analogy as singularly important

mechanisms of language change. We only showed results for two simple linguis-

tic examples, but the fact that we were able to obtain linguistically plausible

results from these simulations means that we were successful in developing a

77
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model that can simulate these mechanisms. Because of their centrality to gram-

maticalization theory, this indicates that extensions to our most basic model

can be used to simulate a wide variety of phenomena in historical linguistics.

The last two simulations we discussed in chapter 4 showed examples of this.

We modelled two complex phenomena using extended versions of our model,

(1) the relation between word order freeness and case marking and (2) a major

syntactic change in the English language. The results from these simulations

showed two things. First, they showed that our model can produce realistic

outcomes for the simulations. In the case of the word order freezing model the

resultant stable states reflected naturally occurring language systems. Second,

the results from the simulations can be used to evaluate existing theories in his-

torical linguistics. In the simulation of word order change, our results indicated

that the effects of language contact in isolation may not be enough to account

for the full shift in English from a free OV-V2 language to a fixed order VO

language.

Results like these should be strong motivations for linguists to develop quan-

titative models of language and language change. Implementing a language

model forces formal exactness and devising and studying simulations may pro-

vide valuable insights that can otherwise be hard to come by. One of the goals

of this thesis was to provide a contribution to the development of such formal

models of syntactic change. This thesis has contributed to the integration into

a single model of language transmission of a number of the factors at play in

language change, namely acquisition, community dynamics, language contact

and the interplay between different modalities of language, specifically syntax,

semantics and phonology. We hope to have shown that it is possible to develop a

relatively simple model of language change that can produce interesting results.

Further research based on this model can take a number of directions. Obvi-

ous improvements can be made to the language acquisition mechanism to make it

more realistic, for example by employing Bod’s [7] Unsupervised Data-Oriented

Parsing model. In order to model full grammaticalization clines, more elabo-

rate representations of semantics, morphology and phonology could be added.

It would be interesting to see what results a combination of these two extensions

would yield. Further research can be done by performing case studies other than

the ones performed here.
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