
Shortest Path Games:
Computational Complexity of Solution Concepts

MSc Thesis (Afstudeerscriptie)

written by

Frank Nebel
(born December 22nd, 1982 in Aschaffenburg, Germany)

under the supervision of Dr Ulle Endriss, and submitted to the Board of Examiners in partial
fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
February 5th, 2010 Dr Stéphane Airiau

Prof Dr Krzysztof R. Apt
Prof Dr Peter van Emde Boas
Dr Ulle Endriss



Contents

1 Introduction 4

1.1 Area of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9

2.1 Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Basic Definitions, Properties and Theorems . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Solution Concepts for Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Power Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Stability Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Representation of Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Shortest Path Games and Related Games 25

3.1 Market Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Linear Production Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Flow Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Network Flow Games (NFG) . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Specific Flow Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Generalizations of Flow Games . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Some Graph-based Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Minimum Cost Spanning Tree Game (MCSTG) . . . . . . . . . . . . . . . . 29

3.4.2 Vertex Connectivity Games (VCG) . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Spanning Connectivity Game (SCG) . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Shortest Path Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Basic Concepts of Shortest Path Games . . . . . . . . . . . . . . . . . . . . 30

1



CONTENTS 2

3.5.2 Notions and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Characteristics for Graph-based and Shortest Path Games . . . . . . . . . . . . . . . 32

3.6.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.2 Specific Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Variants of Shortest Path Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Properties and Relations 38

4.1 Market Games and Linear Production Games . . . . . . . . . . . . . . . . . . . . . 38

4.2 Flow Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Pseudo Flow Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Flow Games with Committee Control . . . . . . . . . . . . . . . . . . . . . 39

4.3 Properties of Shortest Path Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Relations between the Different Classes of Coalitional Games . . . . . . . . . . . . 45

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Complexity Results for Graph-based Games 48

5.1 Complexity Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Complexity Results for (Monotonic) Simple Games . . . . . . . . . . . . . . . . . 50

5.3 Complexity Results for Shortest Path Games . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Complexity Results for Related Games . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Interpretation and Discussion of Results 63

6.1 Results for Shortest Path Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Case Study of Graph-based Coalitional Games . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion 71

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Abstract

Over the last few years a series of papers has been published that analyse the computational complex-
ity of solution concepts applied to different types of coalitional games, which are expressed by more
or less concise representation languages. However, the coalitional games that have been analysed in a
computational context typically have fixed and restricted characteristics and were studied in isolation
from each other. For instance, results for related classes of games, like graph-based games, have not
been systematically compared with respect to computational complexity or expressive power.

If we are exclusively interested in a specific type of game, this is certainly adequate, whereas a one by
one analysis of complexity theoretic problems is impractical when we want to analyse a wide range
of more or less distantly related coalitional games. To tackle this issue, we want to motivate in this
thesis a more abstract approach, which is based on the characteristics of related types of coalitional
games. For this reason, we have chosen an interesting graph-based coalitional game, namely shortest
path game, to demonstrate the proposed approach on a sample game.

In particular, we study the computational complexity of solution concepts applied to different variants
of shortest path games, as well as the expressive power of those variants. Based on these results, we
then analyse the influence of different characteristics of shortest path games with respect to both
aspects. Furthermore, we conduct a case study, where we relate our results on shortest path games to
known results on different types of graph-based coalitional games.

But apart from having an interesting sample game, we want to stress that shortest path games are
worthwhile to consider for their own sake as well.

3



Chapter 1

Introduction

In this thesis we study computational issues of graph-based coalitional games: On the one hand
we analyse the influence of different characteristics on complexity-theoretic problems and on the
other hand we consider complexity-theoretic problems over different types of graph-based coalitional
games. At first, we want to give an overview of the research area our thesis is part of, and then we
motivate our work conducted in this area.

1.1 Area of Research

The research area is an interdisciplinary area that offers new insights in problems arising in eco-
nomics, social science, etc., by transferring these problems into coalitional games and by analysing
these games in a game-theoretic environment. A survey of various coalitional games, which corre-
spond to interesting problems in operations research, is given in Borm, Hamers and Hendrickx [13].

Having transferred a problem into a coalitional game, a manifold of results and methods of cooper-
ative game theory can be used to solve the problem. The basic idea is that by applying well-known
solution concepts to coalitional games, new or more efficient means to solve the original problem can
be found. Here, we are especially interested in problems regarding the distribution of costs or gains.
An important question that arises in this context and that attracted quite some attention in the last 15
years is the following: Is it feasible to apply this problem solving strategy (procedure) to analyse a
particular problem in a game-theoretic context? To answer this question appropriately, it is necessary
to analyse the computational complexity of solution concepts with respect to the particular coalitional
game that corresponds to the given problem. Thus, we are interested if the application of solution
concepts is efficient for a particular type of game.

We would like to mention some publications in this area [49, 24, 43, 44, 31, 18, 40, 10, 27, 1, 4, 7,
2, 6, 28] (ordered chronologically) that analyse the computational complexity of solution concepts
applied to different types of coalitional games, which are expressed by different representation lan-
guages. The nature of our work shows similarities in results and organization to the work of Bachrach
and Rosenschein [6, 7], Aziz [1] and Aziz, Lachish, Paterson and Savani [3]. In Figure 1.1, we
sketched the different fields of research that are involved, like economics, social choice, etc., and
their interrelations to give an overview of the area.

On the right-hand side of this figure, we can see different kinds of coalitional games, which originate
from problems in economics and social choice. Looking at the bottom we have the machinery of

4



CHAPTER 1. INTRODUCTION 5

Figure 1.1: Overview of Research Area

cooperative game theory, namely solution concepts and properties that are used to analyse given
coalitional games. Another important part involved in this area of research are the representation
languages, which are used to represent coalitional games (left-hand side).

The central elements, represented by points in the stylized cloud, are the complexity results, which
depend basically on three aspects, namely which class of coalitional games is involved, which kind
of representation language is chosen and which solution concept is applied. Given their nature, they
might be referred to as “triplets” (G, S, R), where G is a particular class of coalitional games, S
is a solution concept and R is the representation language used. Note that we do not actually work
with fully-expressive representation languages, but with particular game representations of coalitional
games of a specific type. Nevertheless, it can be interesting in some situation to consider different
types of game representations for particular classes of games, especially when these game represen-
tations express precisely the same class of coalitional games.

For our work, we will rely on different types of coalitional games, which have already been introduced
in the literature to solve particular types of problems in operations research. We analyse these games
with respect to expressive power and computational complexity of solution concepts, and interpret
the results.



CHAPTER 1. INTRODUCTION 6

1.2 Motivation and Goals

Translating economical problems into coalitional games and analysing them with the machinery of
cooperative game theory is a promising problem solving strategy, but we have to consider, as men-
tioned above, issues of complexity to actually decide if it is feasible. For many problems, like flow
problems or weighted voting systems the corresponding coalitional games are such that important so-
lution concepts are often intractable (see for example [6, 1]). This suggests the following questions:

• Is it the case that most solution concepts for coalitional games are actually intractable?

• What influence do characteristics of coalitional games have on the expressive power of games
and on the complexity-theoretic results of solution concepts?

• Are there any heuristics or indicators how characteristics influence the computational complex-
ity?

• Is there a tendency towards tractable or intractable results for interesting sub-classes of games,
like graph-based or voting-based coalitional games?

These questions are quite general and much more research has to be done before these questions can
be answered in a satisfactory way. So, as a first step, we decided to concentrate our research on
well-defined and restricted types of coalitional games to show that these questions are interesting and
worthwhile to consider, at least for restricted types of coalitional games. Here, in this thesis we are
for example interested in what influence different characteristics of coalitional games might have on
the expressive power of games and computational complexity of solution concepts applied to these
games. Due to the fact that different coalitional games have often quite different representations and
therefore different characteristics, we focused our research on a specific type of coalitional games,
namely graph-based games. The reasons why we selected this type of coalitional games are the
following:

• Graph-based games are particularly interesting to solve network-based problems of all sorts,
which often occur in operations research.

• They offer a manifold of characteristics that can be analysed.

• Several graph-based games have already been treated in the literature over the last two years
[24, 3, 6, 7]. This allows us to compare complexity-theoretic results over different graph-based
games.

In our studies we observed that most graph-based representations of coalitional games, which can
be found in the literature, are quite restricted games. So, we were curious to analyse which effect
the consideration of different characteristics of graph-based games would have. Given that there are
a lot of characteristics for graph-based games in general, we had to focus on a particular type of
graph-based game, which has to be analysed exhaustively by considering all variations of interesting
characteristics for this type of game. At this point, it is therefore necessary to be systematic, because
only by an extensive analysis of all involved factors of interest, we are able to give a meaningful
interpretation of the final results. For this reason we looked for a promising type of graph-based game
to show how different characteristics influence the computational complexity of solution concepts.

Our final choice were shortest path games. We had several reasons to select this particular type of
coalitional game:



CHAPTER 1. INTRODUCTION 7

• In the literature [33, 58], there are two different definitions of shortest path games, which have
quite different properties (e.g. expressive power). We think that this is a good indication that
shortest path games are a promising candidate to analyse the effect of different characteristics
of graph-based games on complexity-theoretic results. Based on this analysis, we hope to find
some hints about the influence of characteristics on graph-based games in general.

• The second reason why we have chosen shortest path games is that they are similar to various
graph-based games that have already been treated in the literature [6, 3, 45, 36, 11, 29]. Hence,
our intention was to extend the corpus of complexity-theoretic results for graph-based games,
which allows us to discuss if there is a difference between graph-based games or if they are
similar when it comes to the complexity of solution concepts.

Having selected shortest path games to be analysed, our agenda and motivation in this thesis is
twofold:

• We want to determine the computational complexity of various solution concepts with respect
to different variants of shortest path games. Based on these results, we want to analyse how
different characteristics of shortest path games influence the computational complexity of solu-
tion concepts. For this reason, we fix a particular solution concept and vary over systematically
defined variants of shortest path games, which have different configurations of characteristics.
We are especially interested in characteristics of shortest path games, which reduce intractable
problems to tractable ones. Furthermore, we want to determine the expressive power of various
variants of shortest path games and compare them with other coalitional games.

• Given the results for shortest path games and results from the literature, we want to see how flow
games, shortest path games, minimum cost spanning tree games, etc., graph-based games that
share basic characteristics, are related to each other with respect to the computational complex-
ity of the corresponding triplets. We hope that this might give us some insight about complexity
problems for graph-based coalitional games in general, and maybe even heuristics to estimate
the computational complexity of solutions concepts applied to graph-based coalitional games.

1.3 Thesis Overview

Due to the interdisciplinary character of our work, we intended this thesis to be self-contained to keep
it accessible for researchers from different areas, who are interested in our work. The rest of this
thesis is organized as follows:

In Chapter 2 we introduce the concept of a coalitional game, as well as basic definitions, properties
and theorems in cooperative game theory that will be used in later chapters. Then we give an overview
of solution concepts for coalitional games, which are divide in two groups: the power indices and the
stability concepts. Due to the central role of computational complexity in our work, we give a short
account of computational complexity in general and more specifically with respect to coalitional
games. The last issue of this chapter is the representation of coalitional games and the importance of
game representations for complexity-theoretic considerations.

In the next chapter we present several coalitional games, namely shortest path games, flow games,
minimum cost spanning tree games, vertex connectivity games, spanning connectivity games, linear



CHAPTER 1. INTRODUCTION 8

production games and market games. In later chapters, when we prove properties and complexity
results for different coalitional games, we will often refer to models defined in this chapter. Having
introduced the models, we determine characteristics common to various types of graph-based coali-
tional games, but especially shortest path games and discuss their influence with respect to expressive
power and computational complexity. We preselect a set of characteristics, which we would like to
consider for shortest path games and introduce systematically several variants of shortest path games,
which are based on the set of preselected characteristics.

In the following chapter we determine some basic properties of coalitional games, which we defined
in Chapter 3. Then we analyse how expressive the different types of coalitional games are and how
they relate to each other with respect to expressive power.

In Chapter 5 we analyse the computational complexity of solution concepts applied to different vari-
ants of shortest path games, as well as the computational complexity to determine player-based prop-
erties for these games. Our focus is on power indices, but we also consider an important stability
concept in our analysis. Then we present some complexity results for various graph-based coalitional
games from the literature.

In the next chapter we discuss the results of the previous chapter: We summarize and interpret on
one hand the results for the different variants of shortest path games and discuss the complexity-
theoretic influence of different characteristics, and on the other hand, we conduct a case study of
various graph-based coalitional games, which all share basic characteristics. In this case study we
compare the various results and discuss possible complexity-theoretic implications for graph-based
coalitional games in general.

The last chapter concludes by summarising our main results and discussing possible directions for
future work.



Chapter 2

Preliminaries

In this chapter we give an overview of various concepts and notions of different areas of mathematics,
computer science and social choice. We start by introducing the predominant notion in this thesis,
namely the notion of a coalitional games and we furthermore present some basic notions of coop-
erative game theory. Then we introduce some definitions, properties and theorems in cooperative
game theory that will be important for our line of work. This is followed by a detailed account of
an essential part of cooperative game theory, namely the study of solution concepts. Here, we will
distinguish between two types of solution concepts: power indices and stability concepts. Due to the
fact that a main part of our work is about the computational complexity of solution concepts applied
to coalitional games, we give a condensed introduction of the area of computational complexity. Fi-
nally, we conclude this chapter by giving a short account of different representations for games and
the connection between game representations and computational complexity.

2.1 Coalitional Games

We now introduce basic notions of cooperative game theory (also sometimes referred to as coalitional
game theory). As the term “coalitional” already indicates, the main modeling unit of a coalitional
game is the group of players involved. So, given a set of players N , a coalitional game defines,
expressed informally, how well each coalition S ⊆ N (or group) of players can do for itself. Contrary
to traditional game theory, it is not of concern how players make individual choices within a coalition,
how they coordinate, and what are their individual outcomes.

Stated quite general, cooperative game theory is used basically to answer two questions, namely
which coalitions will form and how should such a coalition divide its payoff among its players. The
answer to the first question is often “the grand coalition” (including all players of a game), whereas
this also depends on the right choice for the second question.

We have two main classes of coalition games, with and without transferable utility. Our focus will
be on coalitional games with transferable utility, where the payoffs to a coalition may be freely re-
distributed among its members. This is, of course, only possible if there is a universal currency that
is used for exchange in the system. So, as a result of this setting each coalition can be assigned a
single value as its payoff. Another important notion, apart from transferable utility, is the notion of
side payments. In this thesis we concentrate on games with side payments (SP). We will give a short
introduction how both concepts are related and what role do they play. To see the effect of the “side

9



CHAPTER 2. PRELIMINARIES 10

payment” property we give a short overview of the distinct behaviours. In the case of a coalitional
game with side payments we can express a possible outcome of a coalition by one real number, the
total payoff achievable by the coalition. So, utilities of players in the outcome of a game can be sum-
marized. In contrast, a game without side payments states the payoff to each player in the coalition
separately in the outcome, without summarizing it. Games with side payments require special consid-
eration of the underlying utility theory, namely the assumption of “transferable utility”. Having both,
SP and TU, this implies that utility appears to be transferred at a one to one rate between players.
More information about utility theories in coalitional games can be found in [9, 42].

When we speak of coalitional games in this thesis we always implicitly assume that they have both
properties: transferable utility and side payments. A coalitional game is given by specifying a value
for every coalition, or more formally:

Definition 2.1.1. A coalitional game with transferable utility (TU-game) is a pair 〈N, v〉, where

• N is the set of players; and

• v : 2N → R+
0 is a function (characteristic function) that maps each group of players S ⊆ N to

a positive real-valued payoff.

Due to the shape of function v, coalitional games, which are represented in this way are in character-
istic function form and are often called characteristic function games. We often use the simple term
“game” or “coalitional game”, when we want to refer to coalitional game with transferable utility as
defined above. For the sake of brevity, we will abuse the notation to sometimes refer to game 〈N, v〉
as v. An outcome in a coalitional game specifies the payoffs (utilities) the players receive and a so-
lution concept assigns to each coalitional game a set of “reasonable” outcomes. We will give a more
detailed account of solution concepts later in this section. A thorough and complete introduction to
cooperative game theory can be found in [20, 26, 48].

2.2 Basic Definitions, Properties and Theorems

We start to introduce some properties of coalitional games.

Definition 2.2.1. A game v is monotonic if for all S, T ⊆ N , S ⊆ T implies v(S) ≤ v(T ).

A fundamental type of a coalitional game, considered in cooperative game theory, is a simple game.

Definition 2.2.2. A coalitional game 〈N, v〉 is called a simple game1 if v(S) ∈ {0, 1} for all S ⊆ N
and v(∅) = 0, v(N) = 1.

Simple games are well suited to model situations of voting and committee control. Especially mono-
tonic simple games, often called (simple) voting games are interesting in this context, because the
definition already captures the basic building blocks for most voting systems.

Definition 2.2.3. A coalition S ⊆ N in a simple game is called winning if v(S) = 1, and losing if
v(S) = 0.

1In the literature simple games are sometimes defined as being monotonic as well.



CHAPTER 2. PRELIMINARIES 11

Now we want to introduce some player-based properties of coalitional games.

A player in a coalitional game is called a null player2, if he or she contributes nothing to any coalition.

Definition 2.2.4. A null player is a player i ∈ N such that for all coalitions S ⊆ N \ {i} we have
v(S ∪ {i}) = v(S).

A dummy player is defined as follows:

Definition 2.2.5. A dummy player is a player i ∈ N such that for all coalitions S ⊆ N \ {i} we have
v(S ∪ {i}) = v(S) + v({i}).

A player is a veto player in a simple coalitional game if no coalition can win without the involvement
of this player.

Definition 2.2.6. A veto player in a simple game is a player i ∈ N such that for all coalitions
S ⊆ N \ {i} we have v(S) = 0.

A similar, but more general definition of a veto player can also be given for non-simple coalitional
games. In a non-simple game, a player i ∈ N is a veto player if no coalition can achieve any gains
without the involvement of player i.

Definition 2.2.7. A player i ∈ N in a simple game 〈N, v〉 is critical in a winning coalition i ∈ S ⊆ N
if the player’s removal from that coalition would make the coalition lose: v(S) = 1 but v(S\{i}) = 0.
A pair of coalitions (S∪{i}, S) is called a swing for player i ∈ N in a simple game 〈N, v〉, if S∪{i}
is winning and S ⊆ N \ {i} is losing

Definition 2.2.8. A coalition S in a simple game is called a minimal winning coalition if v(S) = 1
and for every T ⊂ S, v(T ) = 0.

The concept of a minimal winning coalition is interesting, because it represents a very important kind
of coalition, a coalition with maximal power, but minimal effort. Hence, a limit in some sense.

We can generalize this concept to minimal profitable coalitions:

Definition 2.2.9. A coalition S in a coalitional game is called a minimal profitable coalition if v(S) >
0 and for every T ⊂ S v(T ) = 0.

Balancedness and Totally-Balancedness

We now introduce the concept of balancedness, a basic and significant concept in the theory of coali-
tional games and directly connected to an important solution concept, namely the core.

Given a coalition S, we define the vector 1S ∈ R|N | by

(1S)i =

{
1 if i ∈ S
0 otherwise

Definition 2.2.10. A collection of numbers between zero and one (weights for each coalition), (λS)S∈2N

is a balanced collection of weights if we have
∑

S∈2N λS ∗ 1S = 1N

A TU-game 〈N, v〉 is balanced if for each balanced collection of weights, we have
∑

S∈2N λS ∗v(S) ≤
v(N).

2In some publication a null player is referred to as a dummy player.



CHAPTER 2. PRELIMINARIES 12

The intuition behind balancedness is the following: Players can distribute one unit of working time to
any coalition. But by doing this, they cannot generate more value than the grand coalition (see [19]).

Another, but more indirect insight can be gained by considering the core of a coalitional game, which
is strongly related to the balancedness property. The core of a game is a significant solution concept
in cooperative game theory and will be presented later in this thesis (see Section 2.3.2). Now to the
connection of both concepts: Bondareva [12] and Shapley [52] proved independently the following
result, which is now called the Bondareva-Shapley theorem.

Theorem 2.2.11. A game has a non-empty core iff it is balanced .

For any S ⊆ N let v|S denote the induced subgame v restricted to S. Based on this notion of a
subgame, we can define the property of totally balancedness:

Definition 2.2.12. A coalitional game is totally balanced if for all S ⊆ N v|S is balanced, i.e. all its
subgames have non-empty cores.

Proposition 2.2.13. There are monotonic games that are not balanced.

An example is given in the proof of Proposition 4.2.2, where we show that a particular monotonic
game is not balanced.

Then we have the following well known result, which relates the emptiness of the core with the
concept of a veto player for simple games.

Theorem 2.2.14. A simple game v is balanced (has a non-empty core) iff v has veto players. ([20],
Theorem 1.10.6)

2.3 Solution Concepts for Coalitional Games

In this section we introduce notions and concepts to talk about “reasonable” outcomes in coalitional
games. In general, each solution concept defines for each coalitional game 〈N, v〉 a set F of alloca-
tions. Expressed more formally, we have the following definition for solution concepts:

Definition 2.3.1. A function Ψ : 2N×R2|N| → P(R|N |) which assigns to every |N |-person coalitional
game 〈N, v〉 a possibly empty subset Ψ(N, v) of R|N | is called a solution concept.

Each element of the set Ψ(N, v) is a vector of payoffs, which are assigned to each player. So, each
vector of Ψ(N, v) specifies a different way how to divide the payoff (of the grand coalition) between
the players. We call a function x from N to R (written as x ∈ R|N |) an allocation and denote its i-th
component by x(i) or xi. Given a coalition S, we abbreviate

∑
i∈S x(i) by x(S). A solution concept

Ψ is called a one-point solution concept3 if |Ψ(N, v)| = 1 for every game 〈N, v〉. We introduce the
following notion for a one-point solution concept: For i ∈ N , Ψi(N, v) is i’s payoff.

In cooperative game theory there are different solution concepts, which capture outcomes that are in
a way stable or fair. A more complete account of solution concepts in coalitional games can be found
in [48].

Before we start to introduce examples of popular solution concepts we would like to give an overview
of properties, which are applicable to solution concepts and present different types of payoff alloca-
tions. Some common properties are:

3A one-point solution concept is often referred to as a solution function (or value function).



CHAPTER 2. PRELIMINARIES 13

• Feasibility: x(N) ≤ v(N),

• Efficiency: x(N) = v(N),

• Individual rationality: for all i ∈ N xi ≥ v(i),

• Group rationality: for all S ⊆ N x(S) ≥ v(S),

• Existence: for any game, the solution concept exists.

• Uniqueness: When we define a solution concept on a set of games, we might want to know if
this solution is unique under special conditions. The Shapley-Shubik index is an example for a
unique solution concept.

• Computational ease: The solution concept can be calculated efficiently.

We continue by presenting important types of payoff allocations:

We know that an allocation assigns to each player some payoff. In what follows next, we discuss the
meaningful types of allocations in the context of coalitional games 〈N, v〉. To do this on an objective
ground, we focus on several properties of an allocation x, which have been mentioned above, and
which link the allocations with the characteristic function v.

We call an allocation a pre-imputation if it is efficient (thus feasible as well). A pre-imputation is an
imputation if it also satisfies the individual rationality property. So, an imputation is a distribution
of the payoff which the grand coalition can achieve (efficiently) such that no player has an individ-
ual interest in rejecting it (individual rationality). Imputations play an important role, because most
solution concepts are actually imputations or at least pre-imputations.

If we consider how to distribute the payoff of the grand coalition, it is clearly the case that only
imputations should be considered as meaningful. As the reader may have noticed, we focus heavily
on the notion of a grand coalition for our definitions. This is the reason, because many coalitional
games are superadditive, additive or monotonic and therefore the grand coalition achieves the highest
payoff for these games. In this thesis for example, we will focus exclusively on monotonic games.

Given a coalitional game, the goal is typically to find a “fair” imputation, i.e., the share each player
receives is proportional to his or her contribution, or “stable”, in the sense that it provides as little or
no incentive for a group of players to abandon the grand coalition and form a coalition of their own.
There is a manifold of different solution concepts, which formalize notions of fairness and stability.
Now we present several of these solution concepts.

Solution concepts are divided in two main classes, namely the power indices and the stability con-
cepts. We will start with power indices, which play a major role in this thesis.

2.3.1 Power Indices

Power indices originally arose in the context of voting and as the name already indicates, they were
used to determine the power of a party in a parliament given the distribution of votes over the parlia-
ment. In general, each player in a voting game will have a certain number of votes. So, approaching
this problem naively, the power of players might seem predetermined from the start. But this is not
necessarily true, why different power indices has been introduced.



CHAPTER 2. PRELIMINARIES 14

In principal, a power index allows a more detailed view on power distributions in voting situations
and give insights that are not obvious on the surface. Despite their origin, power indices are not
restricted to voting games, but can also be used to determine the power of players for many other
types of monotonic coalitional games.

We introduce the following power indices: Shapley-Shubik index, Banzhaf index, Deegan and Packel
index and the Public Good index. Note that the Shapley-Shubik and Banzhaf power indices are
defined on monotonic games, whereas the Deegan-Packel index and the Public Good index are defined
for monotonic simple games only.

Shapley-Shubik Power Index
Lloyd Shapley and Martin Shubik introduced the Shapley-Shubik index [53] in 1954 to measure the
powers of players (parties) in a voting game (voting system). The original Shapley-Shubik index has
been defined for monotonic simple games (voting games), but can also be generalized for monotonic
coalitional games 〈N, v〉.
Definition 2.3.2. Given a monotonic coalitional game 〈N, v〉, the Shapley-Shubik-Index of player i
is given by ϕi(N, v) = κi

|N |! , where the Shapley-Shubik value κi is equal to
∑

S⊆N\{i} |S|!(|N |− |S|−
1)![v(S ∪ {i})− v(S)].

We now give an interpretation of this formula: A coalition is assembled by starting with an empty
coalition and adding one player at a time. The players to add are chosen uniformly at random.

For any such sequence of inclusions of players, we consider player i’s marginal contribution at the
time the player is added to the coalition. If the player i ∈ N is added to the coalition S, his or her
contribution is v(S ∪ {i}) − v(S). Now we have to multiply this quantity by the |S|! different ways
the set S could have been formed prior to player i’s addition and by the (|N | − |S| − 1)! different
ways the remaining players could be chosen and added afterwards. Then we finally sum over all
possible coalitions S, thus the corresponding marginal contributions, and divide it by |N |!. Note that
by dividing by |N |! we basically average over all the sequences by which the grand coalition can be
build up from the empty coalition. This process basically captures the average marginal contribution
of player i.

The Shapley-Shubik index is strongly based on marginal contributions of coalitions, a notion that is
applicable and meaningful for any kind of monotonic coalitional games and therefore the generaliza-
tion of the Shapley-Shubik index introduced above is indeed reasonable.

Banzhaf Power Index
The Banzhaf power index was originally defined by John Banzhaf [8] in the context of weighted
voting games. The intention was to measure the political power of each member of a voting system.
The Banzhaf index can be defined, similarly to the Shapley-Shubik index, for monotonic coalitional
games. Expressed informally, the index is easily derived by counting for each player the number
of winning coalitions it participates in, but which are not winning if the player is not participating
anymore.

Definition 2.3.3. Given a monotonic coalitional game 〈N, v〉, the Raw-Banzhaf-Index (also called
Banzhaf value) ηi(v) of player i is the number of swings of player i (ηi(v) = #{S ⊆ N \ {i} |
v(S ∪ {i})− v(S) = 1} = 1

2n−1

∑
S⊆N\{i}[v(S ∪ {i})− v(S)]). If we assign probability 1

2n−1 to each
coalition S ⊆ N \ {i}, the swing probability

βi(N, v) = ηi(v)
2n−1

is called the Banzhaf index of player i and denoted by βi.



CHAPTER 2. PRELIMINARIES 15

Comparing both indices, Shapley-Shubik and Banzhaf, we can immediately see that both indices
reflect the player‘s expected marginal contribution to the value of a coalition. However, the underlying
probabilistic model of coalition formations is different. Instead of assuming that players join the
coalition at random order and thus all permutations of the agents are equally likely, the Banzhaf index
assigns equal probability to all 2n possible coalitions.

Note that the Shapley-Shubik index and the Banzhaf index are normalized versions of the Shapley-
Shubik value and Banzhaf value respectively.

Deegan-Packel Power Index

A refinement of the Banzhaf index was introduced by Deegan and Packel [22]. The reason for this
refinement is the following: The authors claimed that only minimal winning coalitions should be
considered to establish the power of a voter, and they based this claim on the assumption that rational
players want to maximize power and therefore only minimal winning coalitions are reasonable. To
incorporate these ideas into the power index, they assumed that all minimal winning coalitions are
equiprobable and all the voters belonging to the same minimal winning coalition should basically
obtain the same power. Hence, the Deegan-Packel power index gives a measure of power that satisfies
certain conditions:

• Minimality: Only minimal winning coalitions will be victorious,

• Equiprobability: Each minimal winning coalition has an equal probability of forming, and

• Solidarity: Players in a minimal winning coalition divide the power equally

In many cases these conditions are reasonable. Expressed formally, the index is defined as follows:

Definition 2.3.4. The Deegan-Packel power index of a player i in the simple game 〈N, v〉 is give by:

pi(N, v) = 1
|M(v)|

∑
S∈Mi(v)

1
|S|

where we denote by M(v) the set of minimal winning coalitions of v and by Mi(v) the subset of M(v)
formed by coalitions S ⊆ N such that i ∈ S.

Note that contrary to the Shapley-Shubik and Banzhaf index, the Deegan-Packel index cannot be
extended to arbitrary coalitional games (see [38]).

With the Deegan-Packel index, players should look for minimal winning coalitions that are minimal
in the cardinality of the coalition. A different index based on minimal winning coalitions is the Pub-
lic Good index. For this power index, the size of the minimal winning coalition does not matter to
measure power.

Public Good Power Index (PGI)

Manfred Holler [37] proposed the Public Good Power index (PGI). The PGI for player i ∈ N is ba-
sically determined by the number of minimal winning coalitions (MWC) containing player i divided
by the sum of such numbers across all the players. It is assumed that coalitions that do not have
the minimal winning property do not matter and thus should not be taken into consideration when it
comes to measuring power.



CHAPTER 2. PRELIMINARIES 16

Definition 2.3.5. Given a simple game 〈N, v〉, the PGI assigns to each player i ∈ N the real number:

δi(N, v) = |Mi(v)|P
j∈N |Mj(v)| , where we denote by Mi(v) the set of minimal winning coalitions that include

player i ∈ N of game 〈N, v〉.

As stated by Holler in [39], the PGI index is only defined for monotonic simple games. Note that
although only MWC are taken into account for calculating the PGI, it is not claimed that no other
coalitions will be formed.

General Properties of Power Indices

We prove now a direct correspondence between the null-player property of coalitional games and the
different power indices. For the Shapley-Shubik and Banzhaf index this result follows immediately,
but we would like to check, if it holds for the other two indices as well. So, for completeness we will
give a proof for all four indices.

Proposition 2.3.6. For the Shapley-Shubik-index, the Banzhaf index, the Deegan-Packel index and
the Public Good Index: For all monotonic coalitional games 〈N, v〉 (simple monotonic games in the
case of the Deegan-Packel and Public Good Index) player i is a null-player in v iff the corresponding
index of player i for game v is equal to 0.

Proof. We prove both directions separately:

⇒: Let i be a null-player in game v , i.e. v(S ∪ {i}) = v(S) Shapley-Shubik and Banzhaf index, it
follows immediately that ϕi(v) = βi(v) = 0. This is, because there are no marginal contributions for
player i. We can also verify immediately that Mi(v) = ∅ and therefore pi(v) = 0 and δi(v) = 0.

⇐: Let the index for game v and player i be 0. We assume for the sake of a contradiction that player
i ∈ N is not a null-player. Then, there is a coalition S ⊆ N such that v(S ∪ {i}) 6= v(S). Given that
v is a monotonic game, we have that v(S ∪ {i}) > 0 and v(S) = 0. Hence, v(S ∪ {i}) − v(S) ≥ 1
and therefore ϕi(v) 6= 0 and βi(v) 6= 0. This means we reached a contradiction for the case of the
Shapley-Shubik and Banzhaf index.

For the other two indices, we know that T = S∪{i} is a winning coalition and S is a losing coalition,
but we do not know if it is a minimal winning coalition. But it can easily be shown that there is a
minimal winning coalition T ′ ⊆ T such that i ∈ T ′:

We just iterate through all players j in S and check if v(T ) = 1 and v(T \{j}) = 0. If this is the case,
we continue with the next player in the iteration. Otherwise, If this is not the case, then v(T ) = 1 still
holds, but v(T \ {j}) is equal to 1 instead of 0. So, we remove j from T and continue with the next
player in the iteration.

After this process is terminated, we have a new coalition T ′ ⊆ T such that for all players a ∈ T ′,
v(T ′) = 1 and v(T ′\{a}) = 0. So, given that v is monotonic, it is clearly the case that T ′ is a minimal
winning coalition. So, due to the fact that i ∈ T ′ we know that both M(v) and Mi(v) are non-empty.
Thus, pi(v) 6= 0 and δi(v) 6= 0 and we reached a contradiction for the Deegan-Packel and PGI index
as well.

2.3.2 Stability Solution Concepts

The different power indices that we introduced above, define a “fair” way of how to divide the grand
coalition’s payoff among the players. However, the power indices often ignore questions of stability,



CHAPTER 2. PRELIMINARIES 17

and therefore “oversee” the possibility that sometimes smaller coalitions can be more attractive for
subsets of players, even if they lead to a lower overall value.

In the context of stability, we want to know if the players would be willing to form the grand coalition
given the way the payments are divided, or would some players prefer smaller coalitions instead. An
example of a situation where smaller coalitions can be more attractive for subsets of players is the
following: Let us consider a voting game where an amount of money should be divided between four
parties A, B, C and D. To implement a distribution 51% of the votes are necessary. So, if A and C
have 40 and 20, then they could split the amount of money 66, 7− 33, 3. This is clearly better than a
grand coalition where B and D would also receive their parts.

The concept of a stable set of a game (also know as the von Neumann-Morgenstern solution) was the
first stability concept proposed for games with more than 2 players (see [57]). To give the reader a
flavour of what stability concepts are, we present some more details. Before we continue, we first
want to introduce the notion of domination between two imputations of a game. We say that an
imputation x is dominated by an imputation y, written y � x, if for some coalition S.

• v(S) ≥ y(S),

• y(i) > x(i) for all i ∈ S

Intuitively, the first condition states that the imputation y offers to the coalition S a payoff that can
actually be achieved, while the second one states that y offers to each member of S strictly more than
the imputation x. So, for coalition S the imputation y is then more attractive than the imputation x.

Definition 2.3.7. A subset Y of the set X of imputations of a coalitional game with transferable payoff
〈N, v〉 is a stable set if it satisfies the following two conditions:

• Internal stability: No payoff vector in Y is dominated by another vector in Y .

• External stability: All payoff vectors outside of Y are dominated by at least one vector in the
set.

The advantage of this general concept is that it can be used in a wide variety of coalitional games.
An important property of stable sets is: A stable set may not exists, and if it exists it is typically not
unique.

The problem of stable sets is that they are difficult to find. This and other difficulties have led to the
development of many new solution concepts:

• The core

• The least-core

• The strong epsilon-core

• The kernel

• The nucleolus



CHAPTER 2. PRELIMINARIES 18

In this thesis, we concentrate on one of the most important stability concept, namely the core. The
others concept are important stability concepts as well, but will not be used in what follows.

We introduced above the notion of an imputation, an efficient and individual rational allocation. How-
ever, an imputation does not need to be a “stable” allocation. This means that there might be some
coalition of players, which would reject it if they could achieve a larger combined payoff by cooper-
ating. This lack of stability immediately imposes a third property of an allocation x that strengthens
the property of individual rationality:

• group rationality: x(S) ≥ v(S) for all coalitions S of N .

We can now define the fundamental concept of a core for a coalitional game:

Definition 2.3.8. Let 〈N, v〉 be a cooperative game. Then the core of v is defined as: Core(v) :=
{x ∈ Rn | x is an imputation that satisfies group rationality}

Intuitively, an imputation lies in the core if it is a distribution of the payoff of the grand coalition such
that no group of players is interested in rejecting it. Some properties of the core are:

• The core of a game may be empty.

• If the core is non-empty, it does not necessarily contain a unique vector.

• The core is contained in any stable set and if the the core is stable it is the unique stable set (see
[26])

2.4 Computational Complexity

In Chapter 5 we are going to analyse the computational complexity to apply solution concepts on
different types of coalitional games. Remember, a solution concept defines for each coalition game
〈N, v〉 a class F of imputations. When we now analyze solution concepts for particular coalitional
games from a computational perspective, there are at least three natural computational problems that
can be taken into account.

1. Decide whether a proposed allocation is “fair” according to F : “Given an imputation x, does it
belong to F?”

2. Given the present coalition situation, are there any fair allocations at all? “Is F nonempty?”.

3. Is it possible to find an element of the solution concept in polynomial time.

The consideration of computational complexity in the context of coalitional games is especially in-
teresting, because the definition of a coalitional game involves an exponential number (with respect
to the number of players of a game) of values, namely one for each coalition S ⊆ N . Furthermore,
most of the solution concepts have a definition, which involves an exponential number of constraints
or steps to compute them in a direct manner. This is the point, where the representation of coalitional
games comes into play. We give a more detailed account of this topic in the next section, where



CHAPTER 2. PRELIMINARIES 19

we also answer the question why it makes sense to analyse the computational complexity for coali-
tional games nevertheless. Because of the importance of computational issues for solution concepts,
Deng and Papadimitriou [24] suggested that computational complexity should be taken into account
as another measure to compare different solution concepts.

An important aspect to consider is that coalitional games with transferable utility, as defined above,
are characteristic functions v with codomain R+

0 . So, when we analyse complexity-theoretic problems
involving coalitional games, we assume for technical reasons that the codomain is Q+

0 instead.

We now present different types of problem statements, which we are going to encounter later in this
work, namely decision, function and counting problems.

CORE-MEMBERSHIP (DECISION)

Instance: A game v and an imputation x

Question: Is x ∈ Core(v)?

SHAPLEY-SHUBIK INDEX (FUNCTION)

Instance: A game v, player i ∈ N

Solution: The Shapley-Shubik index for player i (ϕi(v))

#BANZHAF VALUE (COUNTING)

Instance: A game v, player i ∈ N

Solution: Number of coalitions in the set {S ⊆ N \ {i} | v(S ∪ {i})− v(S) = 1}.

After presenting the different types of problem statements, we are going to introduce the basic con-
cepts and notions of computational complexity. We concentrate on three classes of computational
complexity, namely P , NP and #P .

The two most fundamental complexity classes are:

• P =
⋃

k>1 TIME(nk) : P is the class of problems that can be solved in polynomial time by a
deterministic algorithm; and

• NP =
⋃

k>1 NTIME(nk): NP is the class of problems for which a proposed solution can be
verified in polynomial time.

Apart from these two classes there is another powerful class of functions, #P (pronounced “number
P” or “sharp P”), which was introduced by Valiant [56]. This complexity class is defined in the
following way:

Definition 2.4.1. Let Q be a polynomially balanced, polynomial-time decidable binary relation. The
counting problem associated with Q is the following: Given x, how many y are there such that
(x, y) ∈ Q? The required output is an integer. #P is the class of all counting problems associated
with polynomial balanced polynomial decidable relations.



CHAPTER 2. PRELIMINARIES 20

Phrased slightly differently, the class can be defined as follows: #P is the complexity class consisting
of all the functions f : Σ∗ → N such that there exists a non-deterministic polynomial time Turing
machine M and for all inputs x ∈ Σ∗, f(x) is the number of accepting paths of M .

The main reason why we are not only interested in NP , but also #P is the following: To deter-
mine the number of solutions of a problem is at least as hard as determining if there is at least one
solution. So, #P-complete problems are at least as hard (but possibly harder) than NP-complete
problems. This gives us a more fine grained distinction of the computational complexity of different
solution concepts and therefore motivates the application of this rather unknown complexity class.
Furthermore, it is quite common in this research area to use the complexity class #P .

Finally, we would like to remind the reader of notions like hardness and completeness. We start by
refreshing the reduction concept:

The notion of polynomial time reduction is defined in the following way: A problem P reduces to
a problem P ′ if we can translate any instance of P into an instance of P ′. This allows us to apply
the problem solver for P ′ to obtain an answer to the original problem (question) of type P . If the
translation process is polynomial, then we can state that problem P ′ is at least as hard as problem P .
This is the case because a P ’-solver can solve any instance of P , and possibly a lot more.

To formally prove that a problem P ′ is at least as hard as a problem P we have to execute two tasks:

1. We have to show how to translate any P -instance into a P ′-instance in polynomial time, and
then

2. Show that the answer to the P -instance should be YES iff a P ′-solver answers with YES to the
translated problem.

Based on these concepts, the notion of hardness and completeness can be formally introduced. Let C
be a complexity class:

• A problem P is C-hard iff any P ′ ∈ C is polynomial-time reducible to P . That means that
C-hard problems include the hardest problems inside the class C and even harder ones.

• A problem P is C-complete iff P is C-hard and P ∈ C. That means that they are the hardest
problems in C, and exclusively those problems.

To sum it up, a standard way to prove that P is C-hard proceeds as follows: We have to find a
C-complete problem P ′ that is reducible to P , i.e. any instance of P ′ can be transformed to P in
polynomial time and the answers to both problems are corresponding. If this is the case, we can
immediately deduce from the fact that P ′ is C-complete and by transitivity of the reduction relation
that any P ′′ ∈ C is polynomial time reducible to P . Thus P is C-hard by definition.

An extensive list of NP-complete problems can be found in Garey and Johnson [34]. A detailed and
up to date account of computational complexity can be found in the standard textbook for complexity
theory, which is written by Papadimitriou [47]. Finally, for an overview of complexity-theoretic issues
in cooperative game theory, we would like to refer the reader to Bilbao, Fernandez and Lopez [10].



CHAPTER 2. PRELIMINARIES 21

2.5 Representation of Games

In this section we give an overview of the application and significance of representations of coalitional
games. We furthermore distinguish between the notion of a coalitional game and the representation
of a coalitional game and introduce some useful notations.

We introduced N -player coalitional games with transferable utility (in Definition 2.1.1) as character-
istic function games 〈N, v〉, where v : 2N → R+

0 assigns to each coalition a non-negative real value.
By using this formal definition of a coalitional game, we neglected so far the fact that coalitional
games, corresponding to real world examples, may have different representations. But this is a very
important aspect when we are interested in the computational complexity of a problem, because an
explicit representation is based on a table of 2N rows, thus a structure of exponential size with respect
to the number of players. Hence, the representation of a coalitional game plays an important role,
not only with respect to the equivalence of coalitional games, but also in the context of computational
complexity.

Consequently, it is imperative to have an appropriate representation for TU-games when the computa-
tional complexity of a problem should be analysed. Of course, it is not possible to have an appropriate
game representation for all existing coalitional games, but for many interesting real-world problems,
this is fortunately not a problem as stated by Megiddo [45]. He observed that for many coalitional
games the game value can actually be calculated through a succinctly defined structure (game repre-
sentation), and for these games he suggested that solutions could be found in polynomial time. As
will be clear later, most of the games we introduce for our work are actually representable by graphs,
thus we work with polynomial structures.

Apart from complexity-theoretic considerations, we are also interested in the expressive power and
succinctness of representations of games. In Section 3, for example, we are going present and in-
troduce various classes of game representations that represent the same class of coalitional games,
namely all totally balanced games. Having several ways to describe a coalitional game, it is interest-
ing to analyse the differences and similarities between different types of game representations.

The following four criteria, which are also applicable to game represenations, are standard properties
to analyse different representation languages (see for example [14, 55]):

• Expressivity: The range of coalitional games covered by a particular game representation. Or,
what classes of coalitional games are covered by this particular type of game representation?

• Succinctness: Is the representation succinct? Is one game representation more succinct than
the other?

• Efficiency/Complexity: What is the computational complexity of related decision problems?

• Simplicity: Is the representation language easy to use to describe problems we would like to
express?

Our focus in this thesis will be on efficiency and expressivity. To given an overview over games and
game representations and how they are related to each other, we refer to Figure 2.1. Here we can
distinguish two different layers:



CHAPTER 2. PRELIMINARIES 22

Figure 2.1: Representation of Coalitional Games

• Upper Layer: In this layer, a coalitional game is given in its original representation, thus in its
actual problem domain. So, we can talk about concepts like shortest paths, maximal flow, etc.
of a game.

• Lower Layer: In this layer, coalitional games are represented in characteristic function form
〈N, v〉. This is an elegant way to work with coalitional games, stripped from representation
details, as a formal concept in cooperative game theory. The definitions and propositions, like
for example balancedness, monotonic, null-player, etc., are all based on this basic representation
of coalitional games.

Having talked about representations of coalitional games, we now introduce an appropriate notation
to distinguish games from game representations:

We write GN , GN
1 , GN

2 , etc. to denote particular game representations for coalitional games, which
are defined for the set of individuals N in a particular representation language (or game definition).
We then refer to the characteristic function of the coalitional game represented by GN as vGN . For
convenience, we introduce the following notion: we say that a game v is a Z game (e.g. v is a flow
game), if v := vGN , where GN ∈ Z (GN is a flow game representation). Thus, the actual type of
the game represenation used to generate the game is known, but the explicit game representation is
concealed. This is common in the literature, where the notions of game and game representation are
not separated in a formal way. Note that in situations where the distinction between games and game
representations is essential, we will exercise the appropriate care, otherwise the intended meaning can
easily be deduced from the context.

We now introduce important notions involving games and game representations:

Given a game representation GN , we can not only generate the characteristic function form 〈N, vGN 〉
for this game, but also distinguish if it is a market game, shortest path game, etc.. This allows us
to directly compare coalitional games with the same or similar game representation. Thus, it allows
a more fine-grained analysis of coalitional games sharing special properties, like being based on
graphs or voting systems. Based on this notation, we can also define classes of coalitional games by
specifying which characteristics they should share. These classes can then be analysed separately.



CHAPTER 2. PRELIMINARIES 23

For example, in Chapter 3 we will introduce several classes of shortest path games and compare them
with respect to different aspects in later chapters.

Apart from this more fine-grained comparison of games, we also want to be able to compare coali-
tional games independent of their actual game representation or determine general properties of
games. This is easily done by mapping a given game representation GN to the corresponding char-
acteristic function form 〈N, vGN 〉, i.e. generating vGN from GN and comparing it (in the lower layer)
with coalitional games generated from other game representations or by determining if the game
has particular properties. Note that if a game representation GN is of characteristic function form
(GN = 〈N, v〉), then we can just write v instead of vGN .

We now define equivalence over game representations:

Definition 2.5.1. We shall say that two N -player game representations GN
1 and GN

2 with transferable
utility are equivalent (GN

1 ∼ GN
2 ) if the characteristic functions vGN

1
and vGN

2
, which are generated

by GN
1 and GN

2 respectively are equal (vGN
1

= vGN
2
), i.e. for all S ⊆ N , vGN

1
(S) = vGN

2
(S).

We continue by introducing the notion of a “class” of game representations. A class can be defined in
two ways:

1. We can define a class “extensionally” as a class of particular game representations (this also
includes the characteristic function form 〈N, v〉).

2. We can define a class “intentionally” via a property, e.g., the class A of representations in
characteristic function form 〈N, v〉 such that v is monotonic. Put otherwise, it is the class A of
games 〈N, v〉 such that v is monotonic.

Due to the fact that we can easily generate the class of games from a given class of game repre-
sentation, we often abuse notation when we say that A is the class of flow games or shortest path
games.

We call two classes of game representations A and B equivalent if for all GN
1 ∈ A, there exists a

game representation GN
2 ∈ B such that GN

1 ∼ GN
2 and vice versa. A class B of game representations

captures another class A of game representations if for any GN
1 ∈ A, there exists a game GN

2 ∈ B
such that GN

1 ∼ GN
2 .

We want to express the following relation between two classes of game representations A and B
(A v B):

• If B is an extensionally defined class of game representations, then we apply the capture relation
defined above.

• If B is an intentionally defined class of game: This means that for every game GN ∈ A , the
characteristic function vGN generated from GN has property B.

The notation for “@” and “=” is defined accordingly. We concentrate in this thesis on the following
intentionally defined classes of games: monotonic games (MO), balanced games (BG) and totally
balanced games (TBG).

In the context of representations of coalitional games, Aziz et al. [3] introduced the property of a
“reasonable representations” to prove a complexity-theoretic relation between the Shapley-Shubik
and Banzhaf index (see Proposition 5.2.3).



CHAPTER 2. PRELIMINARIES 24

Definition 2.5.2. A representation of a simple game is considered reasonable if, for a simple game
〈N, v〉 the new game 〈N ∪{i}, v′〉( i is an arbitrary new player), where v(S) = 1 iff v′(S ∪{i}) = 1,
can also be represented.



Chapter 3

Shortest Path Games and Related Games

In this chapter we given an overview of different variants of shortest path games, and we furthermore
present various graph-based games, like flow games, minimum cost spanning tree games, etc., as
well as other interesting coalitional games, like market and linear production games. For each type
of game representation, which we consider in our work, we also introduce a formal model. This is
essential in the following chapters, when we prove properties and complexity results and determine
how the various classes relate to each other.

Market games and linear production games are not directly involved in the research we conduct, but
they are nevertheless interesting in a more indirect way. Both types of game representations, with their
corresponding games, characterize an important class of coalitional games, namely the class of totally
balanced games. This is also the case for flow games. As will be seen later, various variants of shortest
path games are actually totally balanced as well. So, they can be related to the other coalitional games
via the class of totally balanced games. We furthermore present a direct correspondence, which can
be used to transform games, given as a flow, market or linear production games into one of the other
two game representations. The correspondence between these classes of coalitional games may offer
useful indications regarding properties and results for totally balanced games.

We start with a general introduction to market games, linear production games and flow games, where
flow games receive some extra attention. Then we present some additional graph-based coalitional
games, which have been analysed in the literature with respect to computational complexity of solu-
tion concepts. We continue by determining characteristics for shortest path games and other graph-
based coalitional games. Afterwards we introduce different variants of shortest path games, which are
based on several preselected characteristics. More details to market games, linear production games
and flow games can be found in [20, 54].

For the first reading, we would advise the reader to study Section 3.5, as well as the consequent
sections in detail and only skim through the previous sections to get a flavour of the different models.
For the rest of this thesis, we will often refer to the different models of coalitional games introduced
in this chapter, which can then be studied in detail, if the reader is interested.

3.1 Market Games

Shapley and Shubik [54] introduced a class of coalitional games, the so called market games (MG).
Before we present this type of monotonic coalitional game, we have to introduce the concept of a

25



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 26

market. The model is defined as follows:

A market is a mathematical model denoted by the tuple 〈T, G, A, U〉:

• T is a finite set, the set of traders.

• G is the non-negative orthant of a finite-dimensional vector space, often called the commodity
space.

• A = {ai : i ∈ T} is an indexed collection of points in G, which are the initial endowments and

• U = {ui : i ∈ T} is an indexed collection of continuous, concave utility functions from G to
the real numbers.

If we want to indicate that all players have equal tastes, i.e. for all i ∈ T , ui ≡ u, we can denote
the market by the more specific tuple 〈T, G, A, {u}〉. If S is any subset of T (S ⊆ T ), an indexed
collection XS = {xi : i ∈ S} ⊂ G such that

∑
S xi =

∑
S ai will be called a feasible S-allocation of

the market 〈T, G, A, U〉.
A market 〈T, G, A, U〉 can be used to “generate” a game 〈N, v〉 in a natural way. We set N = T , and
define v by

v(S) = maxXS

∑
i∈S ui(xi), all S ⊆ N ,

where the maximum runs over all feasible S − allocations. Any game that can be generated in this
way, based on some market, is called a market game. The motivation to introduce this class of games
is due to the fact that they characterize totally balanced game, a class of games that is quite interesting
for our work. The same holds for linear production games, which will be presented next.

3.2 Linear Production Games

Linear production games (LPG) were introduced by Owen [46] and are widely used in the context
of resource allocation and payoff distribution. They are |N |-person games in which the value of a
coalition can be obtained by solving linear programming problems. We now introduce their formal
model:

There are m kinds of resources and n kinds of products, which can be produced out of the given
resources. The amount of resources of the k-th kind needed to produce a unit of product j is denoted
by aj

k.

The actual resources are not valued, i.e., there is no primary demand for them and therefore they
cannot be sold on the market. However, there is a secondary demand for these resources. They can
be used to produce goods which can be sold at a given market price. The market prices are contained
in vector ~c. Furthermore each player is initially given a vector ~bi = (bi

1, ..., b
i
m) of resources.

The value of a coalition S ⊆ N is the maximum value (profit) the coalition can achieve having all the
resources possessed by the members of the coalition. The maximum value can be obtained by solving
the following linear programming problem for coalition S:

• v(S) = maxx≥0(c1x1 + ... + cnxn) such that

• a1
jx1 + a2

jx2 + ... + an
j xn ≤

∑
i∈S bi

j ∀j = 1, 2, ...,m



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 27

3.3 Flow Games

We first introduce the standard model for flow games and then introduce more general, as well as
more specific types of flow games.

3.3.1 Network Flow Games (NFG)

The class of network flow games (NFG) (often called flow games) was first introduced by Kalai and
Zemel [41]. It is defined as follows:

The game consists of a directed network flow graph G = 〈V, A〉, with capacities on the arcs c : A →
R+

0 and two special vertices, namely the source s and the sink t. Every arc e ∈ A has a certain
capacity c(e) ≥ 0 and belongs to exactly one player i ∈ N . In most definitions of flow games it is
allowed that a player i ∈ N owns several arcs. For every vertex x ∈ V let B(x) denote the set of
edges which start in x and End(x) the set of arcs which end in x. For each S ∈ 2N let GS be the
network obtained from G by keeping all the vertices but removing all arcs which are not owned by a
member of S. The new set of arcs is denoted by AS . Trivially GN = G and AN = A.

A flow from source to sink in such a network is a function f from ASto R+
0 such that the following

conditions are fulfilled:

• 0 ≤ f(e) ≤ c(e) for each e ∈ AS and

• ∀x ∈ V \ {s, t} :
∑

e∈B(x) f(e) =
∑

e∈End(x) f(e)

This means that the value of a flow is the net amount flowing out of the source and into the sink. This
is expressed as follows:

Definition 3.3.1. The value of a flow in a flow network 〈V, A, c, s, t〉 is formally defined as∑
e∈B(s) f(e)−

∑
e∈End(s) f(e) =

∑
e∈End(t) f(e)−

∑
e∈B(t) f(e).

Based on these notions we can formally define a flow game as follows:

Definition 3.3.2. Given a network 〈V, A, c, s, t〉, a flow game v(S) based on this network is defined
by the value of the maximum flow from source s to sink t in GS .

Note that we call a game v a flow game if there exists a network G such that v(S) = FG(S) for every
coalition S.

3.3.2 Specific Flow Games

Cardinal Network Flow Games (CNFG)

Using the same environment as given above, but restricting the game such that every player owns
exactly one arc, we can define a restricted class of flow game, called cardinal network flow game
(CNFG). This type of flow game was introduced by Bachrach and Rosenschein [6].



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 28

Threshold Network Flow Games (TNFG)

Apart from the standard (value-based) definition of flow games, Bachrach and Rosenschein [6] intro-
duced the variant of a simple coalitional game of network flow, which has a threshold k. Based on
this threshold, given a coalition S, which controls the arcs AS (in this case a player owns exactly one
arc), it can be easily checked whether the coalition allows a flow of k from So to Si. The coalition
wins if it allows such a flow, and loses otherwise:

v(S) =

{
1 if ASallows a flow of k from So to Si;
0 otherwise;

We use the shortcut TNFG when referring to this game.

Connectivity Games (CG)

A simplified version of the threshold network flow game is the connectivity game (CG), a game
where a coalition tries to establish a path from source to target. More precisely, a connectivity game
is a threshold network flow game where each of the arcs has identical capacity, c(e) = 1, and the
target flow value is k = 1. In such a scenario, the goal of a coalition is to have at least one path from
So to Si:

v(S) =

{
1 if AS contains a path from So to Si;
0 otherwise;

3.3.3 Generalizations of Flow Games

Pseudo Flow Games (PFG)

Kalai and Zemel [41] defined a pseudo-flow game (PFG), which is a flow game where some arcs are
public. This means that these arcs are owned by all the players in the game.

Flow Games with Committee Control (FGCC)

Curiel, Derks and Tijs [21] introduced flow games with committee control (FGCC), which are defined
as follows: In flow games with committee control the arcs are not owned by players as it is the case
of standard flow game, but are controlled by committees consisting of subsets of players. Committee
control can be effectively modeled with the aid of simple games. So, to every arc e ∈ A a simple
game we is assigned and a coalition S is said to control edge e iff we(S) = 1. If all the simple games
we have veto-players, we call the resulting game a veto rich flow game.

Analogue to the flow games above, the network GS is obtained from G by keeping all the vertices
and removing all arcs, which are not controlled by S. Again, AS denotes the resulting set of arcs and
GN = G, EN = E. The actual game v(S) is defined to be the value of a maximum flow in GS .

This class of games is clearly a generalization of flow games, because flow games with ownership
(network flow games) can be seen as flow games with committee control as well. In particular, the
simple game which describes the control of an arc is then defined to be the game with the owner as
dictator.



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 29

3.4 Some Graph-based Games

In this section we present some graph-based games from the literature.

3.4.1 Minimum Cost Spanning Tree Game (MCSTG)

The following problem, called a minimum cost spanning problem was introduced by Claus and Kleit-
man [17]: A network G := 〈V, A〉 is given whose set of nodes is N ∪ {0}. The set N = {1, ..., n}
corresponds to the set of consumers and 0 to the central supplier. The weight w(i, j) = w(j, i) of an
arc (i, j) ∈ A denotes the cost of connecting i to j. The minimum cost required to connect all the
consumers to the central supplier (using arcs of the network) is the weight of the shortest spanning
tree of G. Based on this environment, they proposed the following question: How should the total
cost of a shortest spanning tree T be allocate to the consumers? The structure of the problem is ideal
for a game-theoretic analysis, and there are actually several definitions of coalitional games to solve
this problem. The definition, which can be seen as the standard definition, is the one proposed by
Bird [11] and Claus and Granot [16]. It is defined as follows:

Based on the environment above, the minimum cost spanning tree game, MCSTG game for short, is a
game on the set N = {1, ..., n} of players, the grand coalition, that is to be connected to the supply
node 0. The cost c(S) of a coalition S ⊂ N is by definition the weight of a minimum spanning tree
in the subgraph induced by S ∪ {0}. So, for every S ⊂ N , let v(S) = c(S).

3.4.2 Vertex Connectivity Games (VCG)

A vertex connectivity domain consists of a graph G = 〈V, E〉, where the vertices are partitioned into
primary vertices Vp ⊆ V , backbone vertices Vb ⊆ V , and standard vertices Vs ⊆ V . We require that
Vp ∩ Vb = ∅, Vb ∩ Vs = ∅, Vp ∩ Vs = ∅, and that V = Vp ∪ Vb ∪ Vs, so this is indeed a partition.

Given a vertex connectivity domain, Bachrach, Rosenschein and Porat [7] defined a vertex connectiv-
ity game (VCG). In this game, each player controls one of the standard servers. A coalition wins if
it connects all pairs of primary vertices (so that it is able to send information between any two such
primary servers). Let |Vs| = n, and consider a set of n players N = (a1, ..., an), so that agent ai

controls vertex vi ∈ Vs. Given a coalition S ⊆ N the set of vertices that S controls is denoted as
V (S) = {vi ∈ Vs | ai ∈ S}. Coalition S can use either the vertices in V (S) or the always available
backbone vertices Vb. In this model, it is assumed that the coalition can also use any of the primary
vertices Vp as well. A set of vertices V ′ ⊆ V fully connects Vp if for any two vertices u, v ∈ Vp

there is a path (u, p1, p2, ..., pk, v) from u to v going only through vertices in V ′, for for all i we have
pi ∈ V ′.

More formally: A vertex Connectivity Game is a simple coalitional game, where the value of a
coalition S ⊆ N is defined as follows:

v(S) =

{
1 if V (S) ∪ Vb ∪ Vp fully connects Vp

0 otherwise

3.4.3 Spanning Connectivity Game (SCG)

Aziz, Lachish, Paterson and Savani [2] defined a coalitional game, called spanning connectivity game
(SCG), which is based on an undirected weighted multigraph, where edges are players. So, before we



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 30

can introduce what a spanning connectivity game is, we introduce what a multigraph is:

A multigraph is a graph, which is permitted to have multiple edges, that is, edges that have the
same start and end nodes. Hence, two vertices may be connected by more than one edge. Formally
a multigraph G := 〈V, E, s〉 consists of an underlying graph 〈V, E〉 with a multiplicity function
s : E → N. So, for every edge i ∈ E, we have si edges in the multigraph.

For each connected multigraph 〈V, E, s〉, a spanning connectivity game 〈E, v〉 with players E and
characteristic function v can be defined : For all S ⊆ E:

v(S) =

{
1 if there exists a spanning tree T = (V, E ′) such that E ′ ⊆ S
0 otherwise

In this definition players are assigned to exactly one edge and each edge belongs to one player. Fur-
thermore, it can easily be verified that spanning connectivity games are simple and monotone.

3.5 Shortest Path Games

To give a demonstration of the influence of characteristics of graph-based games, we had to select a
promising sample type of a coalitional game, which offers various different characteristics that can be
analysed in a complexity-theoretic context. For a start, shortest path games are a promising candidate,
because there are two different types of shortest path games in the literature, which have quite different
properties (e.g. expressive power). As indicated in the introduction, we introduce shortest path games
also for another reason: They are similar to other graph-based games in the literature, which have
been analysed from a computational perspective.

Shortest path games are a class of coalitional games that has not been considered, to our knowledge,
in the context of computational complexity yet. There are two different game-theoretic approaches to
the problem of shortest path problems, which have been introduced by Fragnelli, Garcı́a-Jurado, and
Méndez-Naya [33] and Voorneveld and Grahn [58].

We first introduce a strongly restricted variant of a shortest path game to give a flavour of the type of
game representation that we are going to consider. Based on this basic pattern of how shortest path
games are modeled, we present both variants from the literature and furthermore introduce a wider
range of different variants including threshold versions of shortest path games. So, we introduce a
framework of shortest path games, where each game possesses specific characteristics, which we are
going to present and analyse in this section.

3.5.1 Basic Concepts of Shortest Path Games

Before we introduce the different variants of shortest path games, we want to give a detailed account
of the basic construction ideas of this type of coalitional game. We start by giving an overview of a
shortest path problem and the corresponding coalitional game.

The shortest path problems considered here are limited to a finite set of players, where each player
owns arcs or vertices in a finite network. There are costs associated to the use of each arc or vertex and
there are rewards involved with the transport of an item from the source to the sink of the network.
The variant of a shortest path game that we are going to introduce now, borrows its basic outline
from the original definition of shortest path games by Fragnelli et al. [33] and Voorneveld et al. [58],
whereas we decided to restrict the model considerably.



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 31

Definition 3.5.1. A shortest path pre-problem Σ is a tuple 〈V, A, So, Si〉, where

• (V, A) is a directed graph with two special elements, namely the source (So) and the sink (Si)

• We have a set A ⊆ V × V of directed arcs in the network.

Definition 3.5.2. A path P (So → Si) in a directed graph is a sequence of vertices such that from
each of its vertices there is an arc to the next vertex in the sequence. A path may be infinite, but a
finite path always has a first vertex So, called its source, and a last vertex Si, called its sink.

Now we present a minimal class of shortest path games, called VSPG (standing for value shortest path
game). Let Σ be a shortest path pre-problem, where the arcs of the graph 〈V, A〉 are owned by a finite
set of players N according to a total bijective map o : A → N , such that o(a) = i means that player i
is the owner of edge a. Hence, every arc is assigned to exactly one player. We have a cost map c that
assigns to every arc a ∈ A a non-negative real number c(a) (c : A → R+

0 ).

Given the simple structure of VSPG, a path owned by players of coalition S is simply a sequence of
vertices (v1, v2, ..., vm) such that v1 = So, vm = Si and for each k ∈ {1, ...,m− 1} the arc (vk, vk+1)
is owned by player ik ∈ S. Let P (S) denote the collection of all paths owned by coalition S. For any
path P we denote by o(P ) the set of owners of the arcs in P .

Suppose that the transportation of a certain good from the source to the sink of Σ produces an income r
and a cost given by the length of the path that was used. In particular, the costs associated to a path p =
(v1, v2, ..., vm) ∈ P (S) are defined as the sum of the costs of its arcs: cost(p) =

∑m−1
k=1 c(vk, vk+1).

Note that a coalition S ⊆ N can transport the good only through paths owned by it and a path P is
basically owned by a coalition S if o(P ) ⊆ S.

Obviously, if a coalition S has to find a path from source to sink, it will choose among its alternatives
in P (S) the path with minimal costs. Define for each S ∈ 2N \ {∅}:

c(S) =

{
minp∈P (S)cost(p) if P (S) 6= ∅

∞ otherwise
We overloaded c at this point, but it will be obvious from the context which function is meant. Note
that the shortest path can be computed in polynomial time using for instance the well-known algorithm
of Dijkstra [25].

We now put all the information necessary to describe a shortest path game together, and introduce the
notion of a shortest path game environment σ, which is any such tuple 〈N, Σ, o, c, r〉.
Remember that a coalitional game with transferable utility can be represented as a pair (N, v), where
N is a finite set of players and v : 2N \ {∅} → R is a function that assigns to each coalition S ∈
2N \ {∅} its value v(S) ∈ R. We can associate with σ the TU -game 〈N, vσ〉 whose characteristic
function vσis given by:

vσ(S) = max{r − c(S), 0} =

{
r − c(S) if S owns a path in Σ and c(S) < r

0 otherwise for every S ⊂ N .

Hence, the environment σ and the definition of vσ is our game representation GN . The coalitional
game associated with GN has the following underlying intuition: if a coalition S ∈ 2N \{∅} transports
its goods from source to sink, it will receive a total reward r and incur costs c(S), the costs of the
shortest path owned by S. If r − c(S) > 0, coalition S makes a profit. If r − c(S) ≤ 0, coalition S
can generate profit zero by simply doing nothing. Therefore, coalition S’s profit is max{r− c(S), 0}.

Let’s sum it up: A shortest path game of type VSPG is any such game 〈N, v〉 generated by a game
representation GN as defined above.



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 32

3.5.2 Notions and Properties

In this subsection we give some basic notions and definitions, necessary to reason about properties of
shortest path games.

Definition 3.5.3. Given a source So and a sink Si, a path P (So → Si) is a shortest path if there is
no other path P ′ such that c(P ′) < c(P ), where c is the cost function.

Definition 3.5.4. A path P in Σ is said to be a profitable path in σ if r > cost(P ), where r is the
reward.

Definition 3.5.5. A shortest-veto (briefly s-veto) player of a shortest path game (N, v) is a player in
N who owns at least one edge (vertex) of every shortest path (in Σ).

To avoid trivial case, it is often assumed that 0 ≤ c(N) < r(N), where r(N) is the maximal reward
with respect to N . This assumption implies that

• we have a strictly positive reward;

• the value v(N) of the grand coalition is positive;

This assumption also avoids the zero game. In some papers it is even assume that 0 < c(N) < r(N)
to makes sure that there are indeed costs to divide over the players. We do not apply this assumption,
because c(N) = 0 offers a lot of interesting scenarios for shortest path games, as will be shown later.

3.6 Characteristics for Graph-based and Shortest Path Games

In what follows, we present general characteristics for graph-based games, as well as more specific
characteristic for shortest path games. For each characteristic we have two options, which might
influence the expressive power and succinctness of a graph-based game and also may have an effect
on the computational complexity of solutions concepts.

To the structure of this section, we present for each characteristic the corresponding options and justify
our decisions why it is meaningful or not to take both options of a characteristic into account. We also
introduce a naming scheme for the options of characteristics, so that we can assign the corresponding
options to each variant of a shortest path game. This allows us to distinguish variants of shortest path
games properly.

3.6.1 General Characteristics

We start with characteristics of graph-based games in general.

Graphs: Directed vs Acyclic Directed

The options are: The underlying graph of a graph-based game is directed or acyclic directed

For some games, like shortest path games, there does not seem to be a strong motivation at first
to distinguish both options. This is the case, because Dijkstra’s shortest path algorithm [25] can



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 33

be applied for both kinds of graphs to determine the shortest path. But, as will be shown later,
there are indeed shortest path and other graph-based games where the computational complexity for
some problems is actually different. So, it can be quite interesting in some situations to consider the
reduction to acyclic directed graphs.

We use the label “DAG” when we want to restrict a game to acyclic directed graphs. We furthermore
use the notation M(DAG) to indicate that a class of shortest path game, let’s say M , is considered for
inputs restricted to acyclic directed graphs.

Graphs: Graph vs Tree

The options are: A graph-based game is based on a standard graph or tree

The reduction of the underlying graph of a graph-based game to a tree is a severe simplification of
the game and there are different graph-based games, as will be shown later, where the computational
complexity for some problems changes indeed from intractable to tractable. So, it can be interesting
in some situations to consider the reduction to trees.

We use the label “TREE” when we want to restrict a game such that the underlying graph is a tree.
We use the following notation to indicate that a class of shortest path game, let’s say M , is considered
for input restricted to trees: M(TREE)

Players are attached to: Arcs vs Vertices

The options are: Players of graph-based games are attached to the graph’s arcs or vertices.

Depending on the definition of graph-based games, there does not always seem to be a direct corre-
spondence between variants of graph-based games, which only differ in this particular characteristic.
But apart from marginal differences in expressive power for strongly restricted variants of games, we
assume that there is no difference regarding computational complexity of solutions concepts applied
to different variants of shortest path games. Hence, we decided not to take this characteristic into
account.

We use the labels “OWNARC” and “OWNVERTEX” to distinguish both options.

Arc/Vertex can be owned by: One vs Many Players

The options are: An arc or vertex in a graph-based game can be owned by one player, or it can be
owned by at least one player.

Similar to the case of flow games and generalizations of flow games, it appears promising to deter-
mine the influence of both options, especially with respect to expressive power. Due to the possible
differences in expressive power, we think that it might also be interesting in the context of computa-
tional complexity. Note, this property only makes sense in combination with the characteristic that
we introduce next.

We use the labels: “OWNED*” and “OWNED1”

A player owns arcs: One vs Many Arcs

The options are: A player in a graph-based game can own one arc, or at least one arc.

Similar to the characteristic above, it appears promising to determine the influence of both options of
this characteristic.

We use the labels: “OWN*” and “OWN1”



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 34

3.6.2 Specific Characteristics

We now introduce some more specific characteristics for shortest path and flow games.

Source/Sink: Vertex vs Set

The options are: The source and sink of a shortest path or flow game are simple vertices or sets of
vertices.

The question, if it is meaningful to distinguish these cases is easy to answer. For example, if players
can own several arcs and arcs can be owned by several players in shortest path games, then it does not
make sense to distinguish these cases. We can easily see that there is an equivalent game, based on
a slightly altered game representation GN

2 . Let’s take an arbitrary shortest path game representation
GN

1 with a corresponding pre-problem Σ = 〈V, A, s, t〉 (G = 〈V, A〉), where the source s is a set of
vertices. We can simply introduce a new vertex So to the graph, connect So to all vertices t ∈ s
(from So to t), assign costs 0 to all these arcs, declare So the new source and assign every player as
the owner of the newly added arcs. Hence, the newly added arcs are public. For the target vertex we
follow the same procedure, whereas the directionality of the arcs is reversed. The rest of the diagram
stays unchanged. Let’s call the altered game representation GN

2 . Then vGN
1
(S) = vGN

2
(S) for all

S ⊆ N . A similar reasoning holds for flow games.

Of course, this “trick” does not work anymore if players can own only one arc and every arc is only
owned by exactly one player. In this case we might not be able to represent the game. Hence, there
could be a difference in expressive power. But despite this aspect, we could still simulate the function
by computing all combinations of source/sink pairs So × Si (m ∗ n if m = |So| and n = |Si|) and
choose the best outcome. Hence, the simulation is “polynomial” and therefore there is no difference
in computational complexity.

Due to the fact that the impact of this characteristic is rather insignificant for most games, we mostly
concentrate on shortest path and flow games where both, the source and sink, are a vertex. The only
exception of a shortest path game with sets of vertices is the game introduced by Fragnelli et al. [33].

We use the labels “SOSI-SET” and “SOSI-VERTEX” to distinguish both options of the characteristic.

Reward Scheme: Global vs Individual

The options are: A shortest path game can have a global reward scheme or an individual reward
scheme.

Shortest path games of type VSPG, which we defined above, have a global reward scheme. But
another possibility to reward coalitions of players for transporting goods, is to assign an individual
reward to each player. By definition, the reward of a coalition in games with an individual reward
scheme is the sum of the individual rewards of the coalition’s players. Of Course, this reward is only
granted in the case that the coalition transports the good successfully from the source to the sink.

As we will see later, this characteristic heavily influences the expressive power of shortest path games.
So, there might be some effect with respect to the computational complexity of solution concepts as
well.

We use the labels: “IREWARD” and “GREWARD”

Value vs Threshold

The options are: A shortest path game can return its normal value or be converted into a simple game
by introducing a threshold.



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 35

It does not make sense to compare both options with respect to expressive power and computational
complexity, because simple games are a very special type of coalitional game. But for some shortest
path problems it is interesting to consider threshold versions to represent specific problems. We can
also relate threshold variants of shortest path games to other simple graph-based games with respect
to expressive power and the computational complexity of solution concepts.

We use the following label: “VALUE” and “THRESHOLD”

3.7 Variants of Shortest Path Games

In what follows, we sketch the models for various interesting variants of shortest path games. In
cases where we deviate from the basic shortest path game (VSPG), which we defined above, we give
additional details for the corresponding model. We have the following standard building scheme for
the game representation:

1. pre-problem Σ

2. shortest path cooperative situation σ

3. define shortest path game on σ

Some of the variants of shortest path games introduced below might appear overly simplified for
practical use, but they can nevertheless be helpful for several reasons:

• To demonstrate the effects of characteristics on basic variants of shortest path games. When
these results are intractable, we can immediately deduce that the more general games are in-
tractable as well.

• Many complexity results for graph-based games have been determined for games with very
basic characteristics. So, to be able to compare the results of shortest path games with other
graph-based games in a reasonable way, we have to consider games with basic characteristics
as well.

Note that both of the originally defined shortest path games are based on acyclic directed graphs,
whereas we are interested in directed graphs. Thus, we decided to concentrate on directed graph in
general, and treat acyclic directed graphs as special cases.

Value Shortest Path Game* (VSPG*)

We denote by VSPG* the class of shortest path games having the following characteristics: [SOSI-
VERTEX, OWNARC, OWNED1, OWN*, GREWARD, VALUE]

The model is similar to VSPG, except the fact that players can own several arcs. Regarding the basic
characteristics, it is similar to the definition of network flow games.



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 36

Value Shortest Path Game*+ (VSPG*+)

We denote by VSPG*+ the class of shortest path games having the following characteristics: [SOSI-
VERTEX, OWNARC, OWNED*, OWN*, GREWARD, VALUE]

The model is similar to VSPG, except the fact that an arc can be owned by several players and that
players can own several arcs. From an abstract viewpoint, this variant of shortest path game has
similar characteristics compared to the generalized variants of flow games.

Threshold Variant of VSPG (TSPG)

We denote by TSPG the class of threshold shortest path games having the following characteristics:
[SOSI-VERTEX, OWNARC, OWNED1, OWN1, GREWARD, THRESHOLD]

The model is similar to VSPG, except that it is a threshold game. We formalize the details that differ
from VSPG as follows:

We have to introduce a threshold T and slightly change the definition of vσ in VSPG. A threshold
shortest path cooperative environment σ is a tuple 〈Σ, N, o, c, r, T 〉. We can associate with σ the
TU -game 〈N, vσ〉 whose characteristic function vσis given by:

vσ(S) =

{
1 if S owns a path in Σ and r − c(S) ≥ T
0 otherwise for every S ⊂ N .

A threshold shortest path game is any game 〈N, vGN 〉 that is generated by a threshold shortest path
game representation GN , which is based on the shortest path cooperative environment σ and the
corresponding building construction for the characteristic function vGN .

Shortest Path Game - Fragnelli (SPG-F)

We denote by SPG-F the class of shortest path games having the following properties: [DAG, SOSI-
SET, OWNVERTEX, OWNED1, OWN*, GREWARD, VALUE]

This class of shortest path games was introduced by Fragnelli et al. [33]. Note that we have only minor
changes compared to VSPG, namely that the shortest path pre-problem Σ has to be modified: We have
directed acyclic graphs, the source and sink are sets of vertices and we have to take into consideration
that this time the vertices are owned by a set of players N according to a map o : V → N .

The rest of the model follows as in the case of VSPG.

Shortest Path Game - Voorneveld and Grahn (SPG-VG)

We denote by SPG-VG (Shortest Path Game - Voorneveld and Grahn) a class of shortest path games
having the following properties: [DAG, SOSI-VERTEX, OWNARC, OWNED*, OWN*, IREWARD,
VALUE]

This game was introduced by Voorneveld and Grahn [58]. Opposed to the models of VSPG*, VSPG*+
and SPG-F, the authors introduced a class of shortest path games with the main difference that we
have individual rewards assigned to every player instead of one global reward for the game.



CHAPTER 3. SHORTEST PATH GAMES AND RELATED GAMES 37

Now we give an overview of the changes compared to VSPG: The shortest path pre-problem Σ as
defined above stays the same, except for the restriction that we consider directed acyclic graphs.

We have to consider that more than one player can own an arc between two vertices, and that the costs
of an arc depends on its owner cost allocation. Hence, we have to define the cost (weight) function
slightly different as c : ∪i∈N{i}×o−1(i) → R+

0 , i.e. the cost assignment to arc (a, b) owned by player
i ∈ N is c(i, (a, b)) ∈ R+.

The transportation of a certain good from a source to a sink of Σ produces an income of ri ∈ R+

for each player i ∈ N in the coalition and a cost given by the length of the path that was used. In
particular the costs associated to a path p = (v1, i1, v2, i2, ..., im−1, vm) ∈ P (S) are defined as the sum
of the costs of its arcs: cost(p) =

∑m−1
k=1 c(ik, (vk, vk+1)).

The shortest path cooperative situation σ is defined slightly different as the tuple 〈Σ, N, o, c, (ri)i∈N〉
and we can associate with σ the TU -game 〈N, vσ〉 whose characteristic function vσis given by:

vσ(S) = max{r(S)− c(S), 0} =

{
r(S)− c(S) if S owns a path in Σ and c(S) < r(S)

0 otherwise

XSPG

We denote by XSPG the class of shortest path games having the following characteristics: [SOSI-
VERTEX, OWNARC, OWNED1, OWN1, IREWARD, VALUE]

The model is similar to VSPG, except the fact that we have individual rewards for every player instead
of a global reward.

Threshold variant of XSPG (TXSPG)

We denote by TXSPG the class of shortest path games having the following characteristics: [SOSI-
VERTEX, OWNARC, OWNED1, OWN1, IREWARD, THRESHOLD]

The model is similar to TSPG, except the fact that we have individual rewards for every player instead
of a global reward.

XSPG*

We denote by XSPG* the class of shortest path games having the following characteristics: [SOSI-
VERTEX, OWNARC, OWNED1, OWN*, IREWARD, VALUE]

The model is similar to XSPG, except the fact that a player can own several arcs.

XSPG*+

We denote by XSPG*+ the class of shortest path games having the following characteristics: [SOSI-
VERTEX, OWNARC, OWNED*, OWN*, IREWARD,VALUE]

The model is similar to XSPG, except the fact that a player can own several arcs and an arc can be
owned by several players. Note that XSPG*+ restricted to DAG graphs is SPG-VG.



Chapter 4

Properties and Relations

In this chapter we prove or present several properties for different classes of coalitional games, which
were introduced in the previous chapter and relate them to each other with respect to their expressive
power. This allows us to work out similarities between the different classes of coalitional games.
Note that all these classes of games are non-negative and monotonic by definition.

4.1 Market Games and Linear Production Games

We now present two equivalence results, namely for market games and linear production games.

Theorem 4.1.1. A game is a market game iff it is non-negative totally balanced. ([54], Theorem 5)

The authors pointed out that when market games are extended in a way that diseconomies exist, then
this extended market games become non totally balanced or non balanced. Diseconomies can for
example arise when an arc can be owned by more than one player. This is interesting, because flow
games, as we will see later, show a similar behaviour when more than one player can own an arc.

Shapley and Shubik [54] proved that every totally balanced game is a market game in two steps: They
generate a special market from an arbitrary totally balanced game, called a direct market and then
obtain a market game that is based on this directed game.

Note that the first step, the generation of the direct market, in particular the creation of the utility
function is exponential. Hence, the reduction in this constructive equivalence proof takes exponential
time. We have a similar result for linear production games.

Theorem 4.1.2. A game is a linear production game iff it is non-negative totally balanced [20, 51].

Similar to the above equivalence result, the generation of a linear production game equivalent to a
given totally balanced game requires exponential time with respect to the number of players (see
[15]).

We primarily presented these equivalences to show that these games characterize totally balanced
games. So, the equivalences give us a more concrete idea about possible representations of totally
balanced games. Furthermore, it is interesting to see that market games, linear productions games, and
flow games, quite different types of games, can be directly translated from one game representation
into another.

38



CHAPTER 4. PROPERTIES AND RELATIONS 39

4.2 Flow Games

Kalai and Zemel [41] proved that flow games are totally balanced (non-negative), and conversely that
every non-negative totally balanced game can be derived from a flow situation.

Theorem 4.2.1. A game is a flow game iff it is non-negative totally balanced. ([41], Theorem 2)

The corresponding proof is constructive, but similarly to the equivalence results above, the generation
of a flow game from a totally balanced game requires exponential time with respect to the number of
players.

Now, we give some obvious results: Network flow games are clearly monotonic. Given that NFG =
TBG, we can deduce from Proposition 2.2.13 that NFG @ MO.

A result that will be useful later, is the following:

Proposition 4.2.2. The class of connectivity games (CG) is not balanced.

Proof. An example of a non-balanced connectivity game is the following: Let GN be a connectivity
game representation with just two disjoint paths (except source and sink) S1 and S2, where S1, S2 ⊆
N , S1 ∩ S2 = ∅, S1 ∪ S2 = N . Furthermore, let vGN be the game generated from GN , where
vGN (S1) = 1 and vGN (S2) = 1. So, for all S ⊇ S1 or S ⊇ S2, vGN (S) = 1 and for all the other
coalitions T ⊆ N , vGN (T ) = 0. Now, let’s assume for the sake of a contradiction that Core(vGN ) 6=
∅. Let x be any allocation such that x ∈ Core(vGN ) (there is at least one). By group rationality we
have that x(S1) ≥ vGN (S1) = 1 and x(S2) ≥ vGN (S2) = 1. But from this we can immediately
deduce that 2 ≤ x(S1) + x(S2) = x(N) 6= vGN (N) = 1. Hence, the efficiency conditions does not
hold for allocation x, and therefore x /∈ Core(vGN ) (Contradiction). Applying Theorem 2.2.11 we
get that vGN is not balanced and therefore the class of connectivity games is not balanced.

4.2.1 Pseudo Flow Games

Kalai and Zemel [41] showed that for every monotonic game there exists an equivalent pseudo-flow
game. The converse follows immediately, because by adding players to a coalition the flow will at
least stay the same. Hence, there is an equivalence between monotonic games and pseudo-flow games.

Theorem 4.2.3. v is a pseudo-flow game iff v is monotonic ([41], Theorem 3)

4.2.2 Flow Games with Committee Control

The following proposition is an immediate corollary of Theorem 4.2.3 and Corollary 4.4.2 (iii).

Corollary 4.2.4. v is a flow game with committee control iff v is monotonic

Based on the equivalence result above and Proposition 2.2.13, the class of flow games with committee
control does not directly correspond to the class of balanced games.

By restricting the class to flow games with veto control, Curiel et al. [21] showed that the class of
non-negative balanced games can be obtained by exactly the class of flow games with veto control.
So, the family of non-negative balanced games coincides precisely with the family of veto rich flow
games.

Theorem 4.2.5. v is a veto rich flow game iff v is a non-negative balanced game. ([21], Theorem 1
and Theorem 5)



CHAPTER 4. PROPERTIES AND RELATIONS 40

4.3 Properties of Shortest Path Games

In this section we determine properties of various variants of shortest path games. We concentrate on
their expressive power, as well as the relationship between different games with respect to expressive
power.

VSPG

Some coalitional games of type VSPG are balanced (totally balanced), but not all of them. We demon-
strate this with the following two examples:

Example 1

Let N = {1, 2, 3},V = {So, Si, v}, A = {a, b, c} (a = (So, Si), b = (So, v), c = (v, Si)), o(a) = 1
, o(b) = 2, o(c) = 3, c(b) = c(c) = 1 and c(a) = 2 and g = 7. So, given game representation GN

of type VSPG, with σ = 〈Σ, c, o, g〉 we have 〈N, vGN 〉 with vGN (∅) = 0, vGN ({1}) = 5, vGN ({2}) =
vGN ({3}) = 0, vGN ({2, 3}) = 5, vGN ({1, 2}) = vGN ({1, 3}) = 5 and vGN ({1, 2, 3}) = 5.

Let’s assume for the sake of a contradiction that Core(vGN ) 6= ∅. Now, let x be any allocation such
that x ∈ Core(vGN ) (there is at least one). By individual rationality we have x1 ≥ vGN ({1}) = 5 and
by group rationality we get x2 + x3 ≥ vGN ({2, 3}) = 5. But this violates the efficiency condition,
because x(N) > vGN (N) = 5. Hence, x /∈ Core(vGN ) (Contradiction).

So, we have a game of type VSPG that has an empty core. Hence, by Theorem 2.2.11 this game is not
balanced, and therefore not totally balanced as well.

Example 2

Let N = {1, 2, 3},V = {So, v, v′, Si}, E = {a, b, c} (a = (So, v), b = (v, v′), c = (v′, Si)), o(a) = 1
, o(b) = 2, o(c) = 3 c(a) = c(b) = c(c) = 1 and g = 4. So, given game representation GN of type
VSPG, with σ = 〈Σ, c, o, g〉we have 〈N, vGN 〉 with vGN (N) = 1 and for all X ⊂ N , vGN (X) = 0.
This game can easily be expressed as a network flow game and is therefore by Theorem 4.2.1 totally
balanced.

Based on these examples we can deduce that VSPG is not captured by the class of balanced or totally
balanced games (VSPG 6v TBG; VSPG 6v BG ). Clearly, this holds for more general classes, like
VSPG* and VSPG*+ as well. By applying minor changes to the examples, this also holds for TSPG.
So, what about the other way around? Are totally balanced games captured by VSPG? This can be
negated by the following result.

Proposition 4.3.1. The class of totally balanced games is not captured by VSPG (TBG 6v VSPG).

Proof. Let G := 〈V, A〉 be a directed graph with V = {So, v1, v2, Si} and A = {a, b, c, d}, where
a = (So, v1), b = (So, v2),c = (v1, Si) and d = (v2, Si). Now, let N = {1, 2, 3} be the set of
players. We define the ownership relation o := {(a, 2), (b, 3), (c, 1), (d, 1)} and the capacity function
c := {(a, 2), (b, 3), (c, 1), (d, 1)}. Based on this definition we can define a flow game v: v({1}) =
v({2}) = v({3}) = v({2, 3}) = 0, v({1, 2}) = v({1, 3}) = 1 and v({1, 2, 3}) = 2. Given that v is a
flow game, we can immediately deduce by Theorem 4.2.1 that v is totally balanced.

We can now show that v cannot be represented as a shortest path game of type VSPG. Given that in
games of type VSPG each player is assigned to exactly one arc, we are restricted to graphs with 3



CHAPTER 4. PROPERTIES AND RELATIONS 41

arcs. Let’s call them a, b and c. Note that it does not make sense to consider graphs with less than 3
arcs, because under these circumstances we are not able to generate all of the three different values of
v.

We have three different configurations of graphs that are allowed:

1. All three arcs are in a sequence from So to Si: Under this configuration we would not be able
to generate the value for coalition {1, 2}: v({1, 2}) = 1

2. Arc a and b build a path from So and Si, and c connects So and Si immediately: This is also
not possible, because apart from the grand coalition there would be another coalition that has
the highest value 2.

3. Arc a and b build a path from So and Si, and c leads to an arbitrary vertex that is not the sink:
This is not possible, because in this case we can only generate two different values.

Hence, given that no graph configuration would work, there is no shortest path game of type VSPG
that represents flow game v.

We now continue with another interesting property, namely monotonicity.

Proposition 4.3.2. VSPG @ MO

Proof. It is clearly the case (by definition) that VSPG is monotonic (VSPG v MO), but MO v VSPG
does not hold. We present a counterexample: Let N = {1, 2} and v(∅) = 0, v(1) = 1, v(2) = 2 and
v(N) = v(12) = 3. Clearly v ∈ MO. Due to the strict limitation that every player has exactly one arc
and every arc belongs to only one player we have only two possible directed graphs, namely a chain
of two arcs from So to Si or a single arc from So to Si and the other arc to an arbitrary vertex.

Case 1: If we have a chain, we can immediately deduce that vGN (1) = 0, vGN (2) = 0 and vGN (∅) = 0
for any game representation GN . So, it is impossible to find a game representation GN of type VSPG
such that vGN = v using a chain.

Case 2: If we have a single arc, we have the same problem, because we cannot find a game represen-
tation GN of type VSPG such that all different values of v can be expressed.

Hence, there exist no game representation GN of type VSPG such that vGN (S) = v(S) for all S ⊆
N .

This result is obvious and there are many more counter-examples, but as we will learn later, it is
the case that VSPG* = MO. So, taking both results into account, we see that by changing one
characteristic we have a class of shortest path games that generates precisely all monotonic coalitional
games.

Another interesting result it that VSPG captures the class of connectivity games, a result that will be
useful in the next chapter.

Proposition 4.3.3. The class of connectivity games is captured by VSPG (CG v VSPG).



CHAPTER 4. PROPERTIES AND RELATIONS 42

Proof. Connectivity games, as introduced in subsection 3.3.2, can be easily modeled in VSPG. Given
a game representation GN

1 of type CG, which consists of a network flow graph G = 〈V, A〉 (directed
graph) with capacities on the edges c : A → R+

0 , a source vertex So, a target vertex Si, and a set of
players N , where each player i ∈ N controls exactly one arc, let’s call it ai. Furthermore, all arcs
a ∈ A have an identical capacity, c(a) = 1, and the target flow value is k = 1.

We can now easily define a game representation GN
2 of type VSPG by using the settings of the CG

game representation. Now we just have to define a reward r := 1 and assign 0 as the cost value to
every arc.

Let S ⊆ N be any coalition. Now, if vGN
2
(S) = 1, then there is a connecting path for coalition S from

So to Si with cost 0. So, there is a connection and vGN
1
(S) = 1. Otherwise, if vGN

2
(S) = 0, then there

is no path, and therefore there is no connection. Hence vGN
1
(S) = 0.

Given that the class VSPG* and VSPG*+ are more general than VSPG, they also capture connectivity
games. Hence, VSPG, VSPG* and VSPG*+ are not totally balanced by Proposition 4.2.2.

VSPG*

As mentioned above, the class VSPG* precisely correlates with the class of monotonic games. To
prove this result we had to adapt the proof of Fragnelli et al. [33] to work without multiple vertices in
So and Si and a slightly altered game representation.

Proposition 4.3.4. VSPG* = MO

Proof. We can see immediately that every game generated by a game representation of type VSPG*
is monotonic (VSPG* v MO). For the other direction, let’s assume that v ∈ MO. We now construct
a game representation GN of type VSPG* that has as many disjoint paths (except vertices So and Si)
as there are coalitions with positive value (v(S) > 0 for S ⊆ N ). We take g ≥ v(N) and define
Σ,c and o such that for every S ⊆ N with v(S) > 0 there is a unique path PS with o(PS) = S and
c(PS) = g−v(S) (we attach the cost for the whole path to the last arc of the path and all the other arcs
of the path are assigned the value 0 as weight). Given that 〈N, v〉 is monotonic, we can immediately
see by construction that v = vGN . This is because given a coalition S ⊆ N the shortest path is always
the one corresponding to path PS and not any of the paths PT for T ⊂ S (at best PT might have equal
cost).

Example: Let 〈N, v〉 be a monotonic game with N = {1, 2, 3} and v(∅) = 0, v(1) = 0, v(2) = 1,
v(3) = v(1, 3) = v(2, 3) = 2, v(1, 2) = 3 and v(N) = 5. Now we consider environment σ =
〈N, Σ, o, c, g〉 with g = 5, where the environment is defined as follows (see Figure 4.1)

The same also holds for another variant of VSPG*, namely in the case where several players might
share an arc (VSPG*+). This, of course, follows immediately because it is a more general game.

Threshold Shortest Path Game (TSPG)

Proposition 4.3.5. The class of connectivity games is captured by TSPG (CG v TSPG).

Proof. This proof is very similar to the proof of Proposition 4.3.3, why we only mention the differ-
ences in the model: We want to show that connectivity games can be modeled in TSPG. Differently
to the proof of VSPG we define a global reward as r := |A|+1 and set the threshold to be T = 1.



CHAPTER 4. PROPERTIES AND RELATIONS 43

Figure 4.1: Expressing a monotonic game as a shortest path game of type VSPG*

Shortest Path Game (Fragnelli; SPG-F)

The SPG-F class of shortest path games is shown to coincide with the class of monotonic games.

Proposition 4.3.6. SPG-F = MO ([33], Proposition 1)

Based on the proposition above and Proposition 2.2.13 we can directly deduce that not all shortest
path games of type SPG-F are balanced (have a non empty core) or totally balanced.

Fragnelli et al. [33] showed that for a shortest path game of type SPG-F to be balanced, two rather
strong restrictions have to be fulfilled: a certain reduced game needs to be balanced, and certain veto
players have to take important positions in the game.

Definition 4.3.7. With every non-trivial shortest path game 〈N, v〉 with a non-empty set of s-veto
players V , we associate a TU-game 〈V, v〉 such that v(∅) = 0 and v(T ) = v(T ∪ (N \ V )) for every
non-empty T ⊂ V .

Theorem 4.3.8. Let 〈N, v〉 be a non-trivial shortest path game with a set of s-veto players V . Then,
〈N, v〉 is balanced iff the two following conditions hold: ([33], Theorem 2)

1. V is non-empty and 〈V, v〉 is balanced.

2. Every profitable path in v contains a node owned by a s-veto player.

Shortest Path Game (Voorneveld and Grahn; SPG-VG)

Voorneveld and Grahn [58] showed that every shortest path game of type SPG-VG is totally balanced.
This is based on the following result: every efficient allocation in which each of the players contributes
a non-negative amount, not exceeding his reward, to the cost of the shortest path, yields a core element
([58], Proposition 3.1).

Proposition 4.3.9. Let GN be a game representation of type SPG-VG with shortest path cooperative
situation σ := 〈V, (Ai)i∈N , c, (ri)i∈N〉, where vGN is the associated game. Take B = {x ∈ RN |
x(N) = vGN (N) and xi ∈ [0, ri] for each i ∈ N}. Then B ⊆ Core(vGN ).



CHAPTER 4. PROPERTIES AND RELATIONS 44

Given that the proof of this result does not depend on the ownership function o and the condition that
the graph is acyclic, the same result holds for XSPG, XSPG* and XSPG*+.

Note that the proof is based on the assumption that 0 < c(N) < r(N), whereas we have a weakened
assumption (0 ≤ c(N) < r(n)) as mentioned in Chapter 3. So, we have to prove for condition
c(N) = 0 and c(N) < r(N), whether all games v of type SPG-VG (XSPG, XSPG* and XSPG*+) are
totally balanced.

It can easily be verified that allocation x, an allocation where each player receives his or her individual
reward (∀i ∈ N , xi = ri) is efficient and fulfills the group rationality property. Hence, x is an element
of the core of v. The same holds for all subgames of v, and therefore v is totally balanced.

Given that any game of type SPG-VG it totally balanced, we can immediately deduce that SPG-VG @
MO and SPG-VG v NFG. The same holds for XSPG, XSPG* and XSPG*+. The question, if the
class of shortest path games SPG-VG captures the class of flow games (hence SPG-VG = NFG) is
still an open problem.

XSPG

By definition of XSPG, we have that XSPG(DAG) v SPG-VG. So, we have XSPG(DAG) v
SPG-VG @ MO and therefore XSPG(DAG) @ MO. We prove now that XSPG(DAG) does not
capture the class of connectivity games:

Proposition 4.3.10. The class of connectivity games is not captured by XSPG(DAG)

(CG 6v XSPG(DAG)).

Proof. Let’s assume for the sake of a contradiction that CG v XSPG(DAG). We know that all
games of the class SPG-VG are totally balanced and XSPG(DAG) is a subclass of SPG-VG. Hence,
XSPG(DAG) is totally balanced, and by assumption CG is totally balanced as well. But this cannot
be the case, because CG is not balanced by Proposition 4.2.2, and therefore not totally balanced.

The same holds for XSPG*(DAG) and XSPG*+(DAG).

TXSPG

Proposition 4.3.11. The class of connectivity games is captured by TXSPG (CG v TXSPG).

Proof. This proof is very similar to the proof of Proposition 4.3.3, why we only mention the differ-
ences of the model: We want to show that for all GN

1 ∈ CG , there exists a GN
2 ∈ TXSPG such that

GN
1 ∼ GN

2 .

Differently to the proof of VSPG, we assign to every player i ∈ N an individual reward ri = 1 and
set the threshold to T = 1. Now, If vGN

2
(S) = 1, then there is a connecting path for coalition S from

So to Si. Otherwise, if vGN
2
(S) = 0, we can easily deduce that there is not path: Let’s assume for the

sake of a contradiction that there is a path. So, due to the fact that all arcs have a cost of 0 attached to
them and all individual rewards are 1 we have c(S) = 0 and r(S) > 0, what leads immediately to a
contradiction, because 0 < r(S)−c(S) = vGN

2
(S). Hence, a connectivity game can also be expressed

as a shortest path game of type TXSPG.



CHAPTER 4. PROPERTIES AND RELATIONS 45

Given that TXSPG captures all connectivity games, and there are connectivity games that are not
balanced (see Proposition 4.2.2), there are TXSPG games that are not balanced. Hence, the class
TXSPG is not balanced or totally balanced.

4.4 Relations between the Different Classes of Coalitional Games

In this section we give an overview of the relations between different classes of coalitional games,
which we introduced in the previous chapter.

We start with the equivalence results, which nicely relate different classes of coalitional games with
respect to their expressiveness: Given a TU -game 〈N, v〉,

v is a market game iff v is a linear production game iff v is a flow game

This allows us to see totally balanced games from a different viewpoints. We furthermore know that
SPG-VG v NFG, and therefore we can express every shortest path game of type SPG-VG as a market,
linear production and flow game. The same holds for XSPG, XSPG* and XSPG*+.

We now relate the variants of shortest path games given by Fragnelli et al. [33] and Voorneveld et al.
[58] with respect to their expressive power:

Proposition 4.4.1. The following inclusions hold:

• SPG-VG @ SPG-F

• SPG-VG @ VSPG*

Proof. Let GN
1 be a game representation of type SPG-VG. So, vGN

1
is monotonic and by Proposition

4.3.6 we can immediately deduce that there is a game representation GN
2 of type SPG-F such that

vGN
1
(S) = vGN

2
(S) for all S ⊆ N . Hence SPG-VG v SPG-F. But, it cannot be the case that

SPG-VG = SPG-F, because SPG-VG is totally balanced, whereas SPG-F is not. Thus, SPG-VG @
SPG-F. The same follows for VSPG*, where we use Proposition 4.3.4.

This result does not only show that the class SPG-F generates more games than SPG-VG, but it also
indicates that the global reward scheme has more influence on the expressive power of a shortest path
games than the individual reward scheme.

We can verify this as follows: Given that VSPG* = MO and VSPG*+ is monotonic, we have that
VSPG* = VSPG*+, and therefore SPG-VG ⊂ VSPG*+. Given that Proposition 4.3.4 does not rely
on the distinction between directed graphs and directed acyclic graphs, we have that SPG-VG ⊂
VSPG*+(DAG). If we now compare the characteristics for SPG-VG ( [DAG, SOSI-VERTEX, OW-
NARC, OWNED*, OWN*, IREWARD, VALUE]) and VSPG*+(DAG) ( [DAG, SOSI-VERTEX, OW-
NARC, OWNED*, OWN*, GREWARD, VALUE]), we see that both classes of games only differ in one
characteristic, namely the rewarding scheme. The result above is even stronger, because it states that
even by weakening VSPG*+(DAG) (downgrading OWNED* to OWNED1) SPG-VG is still a proper
subclass.

We have several more results, which follow immediately from propositions proved above:



CHAPTER 4. PROPERTIES AND RELATIONS 46

Figure 4.2: Relationship between games

Corollary 4.4.2. The following holds:

1. SPG-F = VSPG* = VSPG*+

2. NFG @ SPG-F.

3. PFG = FGCC

4. All balanced (totally balanced) games are monotonic (BG @ MO and TBG @ MO)

4.5 Summary

In Figure 4.2 we summarize the existing relations between the different classes of coalitional games
that we obtained so far. Note that our games are all non-negative, and therefore we only consider all
classes of properties, e.g. monotonic games, balanced games and totally balanced games with respect
to this condition.

We use Grey-shades and hatching to indicate what properties (balanced, totally balanced, monotonic)
the different classes of coalitional games have. For example, a class of coalitional games that has the
same colour as the class of monotonic games, precisely captures this class. If we also added an arrow,
we mean that this class only captures a part of the intentionally defined class. For classes were no
accurate claim can be made, we sketch what kind of games it does capture or does not capture.

Given that flow games and shortest path games are both based on graphs and therefore share several
characteristics, we presented them in a hierarchy, which is based on the ownership relation. In level



CHAPTER 4. PROPERTIES AND RELATIONS 47

two (L2) we have games where a player can own several arcs (vertices), but an arc (vertex) is only
owned by one player. In level one (L1) we have generalizations, where more than one player can
own an arc (vertex) and finally in level 3 (L3) we have games that have a total bijective ownership
function.

Having this hierarchy, we see immediately that both characteristics are quite influential in the case
of flow games and shortest path games with a global reward scheme. The expressivity of games
increases from (L3) to (L1). But on the other side, for shorest path games with an individual reward
scheme, we do not have any notable effect. This indicates that in the context of shortest path games
the reward scheme is an influential characteristic with respect to expressive power. In particular, we
can see that despite the fact that SPG-VG (L1) has more general characteristics than VSPG* (L2),
SPG-VG is less expressive. Hence, the global reward scheme allows us to generate a larger class of
coalitional games. This is quite surprising at first, because the individual reward schemes seems to
allow much more freedom to generate games.

What is interesting as well, is the fact that shortest path games with a global reward scheme are
not only more expressive than shortest path games with an individual reward scheme, but also more
expressive compared to standard flow games (see layer L2).

Outside this hierarchy we indicated that market games, linear production games and flow games are
equivalent. That means every game can be converted into the other representation types. The same
is the case for pseudo-flow games, committee-flow games, VSPG*, VSPG*+ and SPG-F, which are
indirectly connected to each other. This is the case, because they all capture precisely the class of
monotonic game, and therefore can be transformed theoretically from one representation into another.



Chapter 5

Complexity Results for Graph-based Games

In the previous chapter we indicated that shortest path, flow, market and linear production games are
similar types of coalitional games with respect to their expressive power. The equivalence proofs
are constructive and could actually be used to transfer games from one game representation into
another, but we have to be careful at this point to omit misinterpretations. This is the case, because
the corresponding reductions of the equivalence proofs require exponential time. Hence, it does not
make sense to use those particular equivalences to “transfer” complexity results between those classes.
Nevertheless, this must not necessarily be a dead end. We think that it might be reasonable to look
for polynomial time reductions between graph-based games, or maybe sub-classes of totally balanced
games in the future. This might also give us some hints, how those games are related in a more
technical sense. For now, we will concentrate on proving results for each class of coalitional game
independently.

The results of the previous chapter did not contribute to solve complexity results for shortest path
games to the degree, we originally hoped. But there are some minor, more indirect, gains with respect
to complexity problems. Given that all flow games and shortest path games of type SPG-VG, XSPG,
XSPG*, etc. are totally balanced, it does not make sense to analyse the computational complexity
to determine if the core of such a game is empty, whereas this question is reasonable to ask in the
case of shortest path games having a global reward scheme, like SPG-F. Furthermore, we used some
well-known results and properties from cooperative game theory to determine the computational com-
plexity to compute an element of the core, the actual core and to determine if the core is empty for
simple monotonic games.

Before we start to present complexity results for shortest path games in the next section, we want to
demonstrate that the application of the characteristic function v of a shortest path games 〈N, v〉 for
an arbitrary coalition S is polynomial: Let GN be a shortest path game representation and S ⊆ N an
arbitrary coalition. We start by removing all arcs that are not owned by players in coalition S from
the graph. Then we apply a polynomial time algorithm to compute the shortest path from So to Si
in the reduced graph. If there is no path we immediately get vGN (S) = 0, otherwise we can easily
compute the cost of the shortest path and subtract it from the reward. Hence, we have a polynomial
time algorithm to compute vGN (S) for each coalition S ⊆ N .

48



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 49

5.1 Complexity Problems

We now present all the different complexity problems that we are going to analyse in this chapter. We
present them in a parametrized form to be able to use them for different game representations. For
example, we introduce the X-NULL-PLAYER decision problem as the general null player problems,
where X is an arbitrary game representation. So, if we want to consider this problem with respect to
shortest path games of type VSPG, we refer to this particular problem as VSPG-NULL-PLAYER. On
the other side, if we want to refer to the problem without a specific representation or over a range of
representations we just use NULL-PLAYER.

We start with complexity results regarding properties of players in coalitional games:

Definition 5.1.1. X-NULL-PLAYER: Given a game representation GN of type X and a player ai ∈ N ,
test whether ai is a null-player in game vGN .

Definition 5.1.2. X-VETO-PLAYER: Given a game representation GN of type X and a player ai ∈ N ,
test whether ai is a veto player in game vGN .

Definition 5.1.3. X-DICTATOR: Given a game representation GN of type X and a player ai ∈ N ,
test whether ai is a dictator player in game vGN .

We have the following decision, function and counting problems with respect to power indices:

Definition 5.1.4. X-SHAPLEY-SHUBIK-INDEX: Given a game representation GN of type X and a
player i ∈ N , compute the Shapley-Shubik power index of player i in game vGN , ϕi(vGN ).

Definition 5.1.5. X-SHAPLEY-SHUBIK-VALUE: Given a game representation GN of type X and a
player i ∈ N , compute the Shapley-Shubik value of player i in game vGN , κi(vGN ).

Definition 5.1.6. X-BANZHAF-INDEX: Given a game representation GN of type X and a player
i ∈ N , compute the Banzhaf power index of player i in game vGN , βi(vGN ).

Definition 5.1.7. X-BANZHAF-VALUE: Given a game representation GN of type X and a player
i ∈ N , compute the Banzhaf value of player i in game vGN , ηi(vGN ).

Due to the fact that the denominator of the Shapley-Shubik index is fixed, the Shapley-Shubik index
and the Shapley-Shubik value have the same computational complexity. The same holds for the
Banzhaf index.

Definition 5.1.8. X-DEEGAN-PACKEL-INDEX: Given a game representation GN of type X and a
player i ∈ N , compute the Deegan-Packel power index of player i in game vGN , pi(vGN ).

Definition 5.1.9. X-PUBLIC-GOOD-INDEX: Given a game representation GN of type X and a player
i ∈ N , compute the Public Good power index of player i in game vGN , δi(vGN ).

We continue with the complexity problems of the core:

Definition 5.1.10. X-COREMEMBERSHIP: Given a game representation GN of type X and an allo-
cation x, check whether x ∈ Core(vGN ).

Definition 5.1.11. X-ELEMENTSCORE: Given a game representation GN of type X, return a set X
such that X ⊆ Core(vGN ).



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 50

Definition 5.1.12. X-EMPTYCORE: Given a game representation GN of type X, test whether

Core(vGN ) = ∅.

We now introduce a decision problem about a special type of coalitions:

Definition 5.1.13. X-#MWC: Given a game representation GN of type X, return the number of
minimal winning coalitions of game vGN .

5.2 Complexity Results for (Monotonic) Simple Games

We first introduce a general result for monotonic simple games. We give a proof for this rather obvious
result, because we think that it is quite instructive.

Proposition 5.2.1. If 〈N, v〉 is a monotonic simple game such that for all coalitions S ⊆ N , v(S)
can be computed in polynomial time, then we can determine for any player ai ∈ N in polynomial
time whether ai is a veto-player in v.

Proof. We have to show that there exists no coalition S ⊆ N such that v(S) = 1 and ai /∈ S.
Therefore it is enough to determine the value of v(N \ {ai}):

• if v(N \ {ai}) = 0, we can deduce from the fact that v is monotonic that for all S ⊂ N \ {ai},
v(S) = 0. Slightly rephrased we have: for all S ⊆ N , ai /∈ S ⇒ v(S) = 0, and therefore ai is
a veto-player.

• Otherwise, if v(N \ {ai}) = 1, then there is a profitable coalition not including ai, thus ai is
not a veto-player.

Due to the fact that we can compute v(N \ {ai}) in polynomial time, we can therefore also determine
if ai is a veto-player in polynomial time.

Using the generalized definition of a veto-player for coalitional games, which we gave in Chapter 2,
we can generalize the result above to hold for monotonic coalitional games as well.

We now analyse the computational complexity to determine if a player is a dictator in a monotonic
simple game.

Corollary 5.2.2. Let 〈N, v〉 be a monotonic simple game such that for all coalitions S ⊆ N , v(S)
can be computed in polynomial time and ai ∈ N . We can determine in polynomial time if ai is a
dictator in v.

Proof. We have to check two conditions, namely if

(i) v({ai}) = 1. Given that the game is monotonic, every coalition S such that ai ∈ S is a winning
coalition (v(S) = 1). Hence, every coalition containing player ai is a winning coalition.

(ii) ai is a veto-player.

It is clearly the case that both conditions can be checked in polynomial time.



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 51

An interesting result for power indices in specific simple games is the following:

Proposition 5.2.3. For any reasonable representation of a simple game, a polynomial time algorithm
to compute the Shapley-Shubik index implies a polynomial time algorithm to compute the Banzhaf
index. ([3], Proposition 4.3 and 4.4)

Now we analyse some complexity problems with respect to the core of simple monotonic games.

Proposition 5.2.4. For monotonic simple games the decision problem EMPTY-CORE is in P .

Proof. We know by Theorem 2.2.14 that in a simple game the core is empty iff there is no veto-player.
Now, given that we can check for every monotonic simple game in polynomial time if a player is a
veto-player, we can also determine in polynomial time if there is at least one veto-player in N by
testing all players.

We can even do more, namely compute the elements of the core in polynomial time.

We have the following folk theorem: If there are no veto players in a simple game G, then the core
is empty. Otherwise, let av1 , ..., avm be the veto players in G. Then the core is the set of imputations
that distribute all the gains only to veto players: Core(v) = {〈p1, ..., pn〉 |

∑m
i=1 pi = 1}. Details and

a proof for this theorem can be found in a paper by Bachrach, Meir, Zuckerman and Rosenschein [5].

Hence, to compute the core we just have to compute all veto players, what can be easily done, because
to check for a veto player is in P . If there is no veto-player we have already shown that the core is
empty, and otherwise the core contains every imputation such that the total value is 1 (v(N) = 1) and
this value is distributed over all veto players, and only the veto players.

Proposition 5.2.5. For any monotonic simple game v and imputation x we can check in polynomial
time whether x ∈ Core(v).

We just have to compute all veto-players and then check if the imputation x fits into the pattern
described by the folks theorem above.

Now, given that TSPG, TXSPG, TNFG and SCG are monotonic simple games, we just have to check
that for an arbitrary coalition S ⊆ N the value of the game can be computed in polynomial time. For
shortest path games, we have Dijkstra’s algorithm (see [25]), for flow games Ford and Fulkerson’s
algorithm (see [32]) and for spanning connectivity games Prim-Jarnı́k algorithm (see [50]). Given
that all these algorithm are polynomial, we can immediately apply all the results from above to these
types of coalitional games.



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 52

5.3 Complexity Results for Shortest Path Games

In this section we analyse the different variants of shortest path games.

Shortest Path Game - Voorneveld Grahn (SPG-VG)

By Proposition 4.3.9, which also holds for XSPG, XSPG* and XSPG*+, every shortest path game of
type SPG-VG, XSPG, XSPG* and XSPG*+ has a non-empty core, and therefore it does not make
sense to analyse the EMPTY-CORE decision problem. Nevertheless it might be interesting to analyse
other decision problems related to the core, e.g. CORE-MEMBERSHIP or ELEMENTSCORE.

The following result is an immediate corollary of Proposition 4.3.9 and the corresponding extension
we gave for condition: c(N) = 0 and c(N) < r(N).

Corollary 5.3.1. An element of the core of a shortest path game of type SPG-VG can be computed in
polynomial time.

Proof. The proof of Proposition 4.3.9 is based on the assumption that 0 < c(N) < r(N), but as we
stated above, we assume that 0 ≤ c(N) < r(N). So, we have to treat two different case:

Case 1: (c(N) = 0) By assigning to each player his or her individual reward (∀i ∈ N , xi = ri) we
can easily generate an element of the core.

Case 2: (c(N) > 0) In this case we can easily determine a core element in polynomial time using
the result from above. We start with x1 = r1, x2 = r2,...,xi = ri etc. until we assigned all utilities
(v(N)). Then we just assign xj = 0 for all j where i < j ≤ |N |.

Hence, there is a polynomial algorithm to compute an element of the core.

Given that the proof of the proposition above does not depend on the ownership function o or the
condition that we have an acyclic graph, the result holds for XSPG and XSPG* as well.

Value Shortest Path Games (VSPG, VSPG*, VSPG*+)

We start by analysing the computational complexity of properties like null-player and veto-player and
then prove some results for different power indices.

Null-Player and Veto-Player

The corollary, which we are going to present next, depends on the following complexity result from
Bachrach and Rosenschein [6], which is about null-players1 in directed connectivity games.

Theorem 5.3.2. Testing for null-players in directed connectivity games is coNP-complete

Corollary 5.3.3. VSPG-NULL-PLAYER is coNP-complete

1Bachrach and Rosenschein refer to them as dummy-players in [6].



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 53

Figure 5.1: Counterexample: P1 and P2 intersect (DAG)

Proof. We can easily show that VSPG-NULL-PLAYER is in coNP: Given a shortest path game v
of type VSPG and a coalition S ⊆ N such that ai /∈ S we can test in polynomial time whether
v(S ∪ {ai})− v(S) 6= 0.

Given that we can model all directed connectivity games as shortest path games of type VSPGs (poly-
nomial transformation) (see Proposition 4.3.3), we can immediately deduce from Theorem 5.3.2 that
testing for null-players in VSPGs must be coNP-hard.

Hence, VSPG-NULL-PLAYER is coNP-complete.

The same result follows immediately for VSPG*, VSPG*+, TSPG and TXSPG.

Lemma 5.3.4. To check if a player is a null-player in a shortest path game of type VSPG(DAG) is
in P .

Proof. Let GN be a shortest path game representation with a shortest path cooperative situation σ
and the corresponding game vGN . Furthermore, let ai be a player and e = (u, v) an arc such that
o(e) = ai. We assume that u 6= So and v 6= Si. Note that those special cases follow easily. We
determine the shortest path from So to u and the shortest path from v to Si. Let’s call the paths P1

and P2. This can be easily done using one of the available polynomial time algorithms to compute a
shortest path in directed graphs. We have two main cases to consider:

Case 1: If both path exist, we define coalition C := o(P1) ∪ o(P2) ∪ o({(u, v)} with R : So → Si as
the shortest path through e as R := P1 ◦ e ◦ P2 (where ◦ is the obvious path concatenation operator).

Claim 1: P1 and P2 are vertex-disjoint, i.e. they do not share vertices except So and Si.

Proof (Claim 1): Let’s assume for the sake of a contradiction that this is not the case. So, there is a
vertex w that is contained in both paths. Given that w is a vertex in P1 and P2, there must be a path
from w to u and v to w respectively. Hence, there is a cycle u � v � w � u and therefore the
assumption that the graph is an acyclic directed graph (DAG) is violated (see Figure 5.1).

Claim 2: There is no path T ∈ P (C) such that cost(T ) < cost(R). Furthermore it is the case that
c(C \ {ai}) = ∞.

Proof (Claim 2): By definition of path R, it is clearly the case that there is no path T ∈ P (C)
such that e ∈ T and cost(T ) < cost(R). Hence, if there should be some T ∈ P (C) such that
cost(T ) < cost(R), then it must be the case that e /∈ T . So, let’s assume that e /∈ T . We now have to
check if there is another path from So to Si in C. But given that P1 and P2 are vertex-disjoint (Claim
1), there does not even exist a path T ∈ P (C \ {ai}) from So to Si. Hence, ∞ = cost(T ) > cost(R)
and c(C \ {ai}) = ∞.

Now we have two sub-cases to consider:



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 54

Case 1.1: (c(C) ≥ r). In this case all possible paths P through arc e automatically have the property
c(P ) ≥ r . Hence, for all these paths P with the corresponding coalition D = o(P ) ⊆ N we have
vGN (D) = 0 and after removing are e, there is no path anymore and therefore vGN (D \ {ai}) = 0
as well. But these paths are the only possibility for player ai to influence the value of the game. So,
without participation in a profitable path, ai must be a null player.

Case 1.2: (c(C) < r). So, vGN (C) = r − c(C) > 0 and by claim 2 we get vGN (C \ {ai}) =
r − c(C \ {ai}) = 0. Hence, ai is not a null player.

Case 2: If P1 or P2 does not exist, there is no path from So to Si that includes arc e. Hence, by
including ai to a coalition the value of vGN will not change. The same holds, when we remove it.
Hence, ai is a null player.

To sum it up: The shortest paths P1and P2 can be computed in polynomial time. Then it has to be
check if both paths exist (Condition 1) and if this is the case yet another condition has to be check,
namely if c(C) ≥ r (Condition 2). By Claim 2 we even know that c(C) = cost(R) and therefore it is
enough to check if cost(R) = cost(P1)+ cost(e)+ cost(P2) ≥ r. All this can be done in polynomial
time.

Hence, it can be tested in polynomial time if ai is a null-player in vGN .

We can easily adapt this proof for TSPG(DAG) by adding a third condition, namely a condition that
tests if the threshold T has been reached. The same result, slightly more involved, but pursuing the
same proof strategy follows for VSPG*(DAG).

Lemma 5.3.5. To check if a player is a null-player in a shortest path game of type VSPG*(DAG) is
in P .

Proof. The proof is similar to the proof for VSPG(DAG), why we only sketch it: Let GN be a
shortest path game representation with a shortest path cooperative situation σ and the corresponding
game vGN . Let’s assume without loss of generality that we have a player ai that owns two arcs, namely
e1 = (u1, v1) and e2(u2, v2).

We determine the shortest path from So to u1 and the shortest path from v1 to Si, and the same for
u2 and v2. Let’s call the paths P1 and P2, resp. P ′

1 and P ′
2. This can be easily done using one of

the available polynomial time algorithms to compute a shortest path in directed graphs. If one of the
paths does not exist, we can continue as for VSPG, because the corresponding arc (e1 or e2) cannot
be used to contribute to a shortest path. So, from this point on, we assume that all paths P1, P2, P

′
1, P

′
2

exist.

We have three scenarios to consider:

1. e1and e2 are in a sequence: P2 contains e2 or P ′
2 contains e1

2. e1 and e2 are parallel: e1 is not part of P ′
1 ◦ e2 ◦ P ′

2 and e2 is not part of P1 ◦ e1 ◦ P2

3. e1 and e2 are such that u1 = u2 and v1 6= v2.

The first scenario is proved similar to VSPG. For the second and third scenario we use the same proof
strategy as for VSPG. We only sketch the proof for the second scenario.



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 55

Now, we define coalitions C1 and C2 as defined in the proof for VSPG. Let R1 : So → Si be the
shortest path through e1 defined as R1 := P1 ◦ e1 ◦P2 and (where ◦ is the obvious path concatenation
operator), R2 defined respectively.

We have four cases to consider:

Case 1: (c(C1) ≥ r and c(C2) ≥ r). In this case all possible paths P through arc e1 or e2 automatically
have the property c(P ) ≥ r . Hence, for all these paths P with the corresponding coalition D =
o(P ) ⊆ N we have vGN (D) = 0 and after removing arc e1 and e2, there is no path anymore and
therefore vGN (D\{ai}) = 0 as well. But these paths are the only possibility for player ai to influence
the value of the game. So, without participation in a profitable path, ai must be a null player.

Case 2: (c(C1) < r and c(C2) ≥ r). Hence, vGN (C1) = r − c(C1) > 0 and by Claim 2 of V SPG we
get vGN (C1 \ {ai}) = r − c(C1 \ {ai}) = 0. So, we found a witness that ai is not a null-player

Case 3: (c(C1) ≥ r and c(C2) < r) Same as case 2.

Case 4: (c(C1) < r and c(C2) < r) Same as case 2.

So we can determine if ai is a null player for the second scenario. The rest of the proof follows
similar to V SPG. Now, taking all scenarios into account, we have shown that it can be determined
in polynomial time if ai is a null-player in a game vGN of type V SPG∗.

By adding an additional conditions to the proof for VSPG*(DAG) above, it can be proved immedi-
ately that for games of type VSPG*+(DAG) the following holds.

Corollary 5.3.6. To check if a player is a null-player in a shortest path game of type VSPG*+(DAG)
is in P .

Now we turn to another complexity problem, namely the VSPG-VETO-PLAYER decision problem.
This proof is similar to the proof of Proposition 5.2.1.

Proposition 5.3.7. VSPG-VETO-PLAYER is in P .

Proof. Let ai be a player, GN a game representation of type VSPG, where e is the arc player ai owns
(o(e) = ai). For player ai to be a veto-player (extended interpretation), arc e must be part of every
profitable path. So, we have to show that there exists no coalition S ⊆ N with a profitable path such
that ai /∈ S. Therefore it is enough to determine the value of vGN (N \ {ai}).

• if vGN (N \ {ai}) = 0, we can deduce from the fact that vGN is monotonic that for all S ⊂
N \ {ai}, vGN (S) = 0. Slightly rephrased we have: for all S ⊆ N , ai /∈ S ⇒ vGN (S) = 0, and
therefore ai is a veto-player.

• Otherwise, if vGN (N \ {ai}) > 0, then there is a profitable coalition not including ai, thus ai is
not a veto-player.

Given that vGN (N \{ai}) can be determined in polynomial time, we have that VSPG-VETO-PLAYER

is in P .

The same follows for VSPG*, VSPG*+ and also for XSPG, XSPG*, XSPG*+ and SPG-VG.

Due to the fact that VSPG*(DAG) and SPG-F are similar (only differ in two tags, namely SOSI-
SET/SOSI-VERTEX and OWNVERTEX/OWNARC) and by taking into account that these characteris-
tics do not influence the computational complexity (see Section 3.6), the following result holds.



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 56

Proposition 5.3.8. To check if a player is a null-player or a veto-player in a shortest path game of
type SPG-F is in P .

Power Indices

After determining the computational complexity of the null-player problem, we can directly use
Proposition 5.3.3 to determine the computational complexity of the Shapley-Shubik, Banzhaf, Deegan-
Packel and Public good power index.

Lemma 5.3.9. To compute VSPG-SHAPLEY-SHUBIK-INDEX, VSPG-BANZHAF-INDEX,
VSPG-DEEGAN-PACKEL-INDEX and VSPG-PUBLIC-GOOD-INDEX is intractable.

Proof. To compute the power index for a player is at least as difficult as testing for a null-player.
This is the case because the Banzhaf, Shapley-Shubik, Deegan-Packel and Public Good power index
of a player are zero iff a player is a null-player (see Proposition 2.3.6). So, if we would be able to
compute any of the indices in polynomial time, we could answer the VSPG-NULL-PLAYER decision
problem in polynomial time. But this leads to a contradiction, because VSPG-NULL-PLAYER is
coNP-complete by Proposition 5.3.3.

The same result follows for VSPG*, VSPG*+ and TSPG.

Now we want to prove an even stronger result for VSPG-BANZHAF-INDEX: It is #P-complete to
determine the Banzhaf index for VSPG.

Remember that the Banzhaf index is defined as βi(N, v) = 1
2n−1

∑
S⊆N\{i}[v(S ∪ {i}) − v(S)] =

1
2n−1 #{S ⊆ N \{i} | v(S ∪{i})− v(S) = 1}. For convenience we introduce the following notation:
βi = {S ⊆ N \ {i} | v(S ∪ {i})− v(S) = 1}.

Theorem 5.3.10. VSPG-BANZHAF-INDEX is #P-complete.

Proof. We reduce the S-T-CONNECTEDNESS problem [56], one of the standard and first problems
known to be #P-complete, to our problem:

S-T-Connectedness
Instance: G = 〈V, A〉; s, t ∈ V
Question: Number of subgraphs of G in which there is a (directed) path from s to t

We first prove #P-hardness:

We have an instance of S-T-CONNECTEDNESS, hence a graph G = 〈V, A〉 and two distinct vertices
s, t ∈ V . We first add another vertex Si to the graph and another arc a′ = (t, Si). So, we have
G′ = 〈V ′, A′〉, where V ′ = V ∪ {Si} and A′ = A ∪ {a′}. Let So = s. Then we define the set of
players N = {1, 2, ...}, where |N | = |A′| and we assign to every player exactly one arc. We refer
to the player owning arc a′ as i′. So, let π : N \ {i′} → A be an arbitrary bijective mapping and

define the ownership mapping o as follows: o(a) =

{
i′ if a = a′

π(a) otherwise for any e ∈ A′. We define a

cost function that assigns cost 0 to every arc of G′ and set r := 1. Let’s call the corresponding VSPG
game v. Note that this transformation takes only polynomial time. We show now that there is a direct
correspondence of the following form:



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 57

Claim: X ∈ βi′(N, v) iff subgraph H of G induced by o−1(X)2 is such that there exists a path P in
H .

(⇒): Let X ∈ βi′(N, v). By definition we have X ⊆ N \ {i′}, v(X ∪ {i′}) = 1 and v(X) = 0.
Hence, we can deduce from v(X ∪ {i′}) = 1 and the definition of the shortest path game (VSPG) v
that there is a path from s = So to Si, and therefore also a path from s to t in the subgraph induced
by o−1(X).

(⇐): We assume that H is a subgraph of G, where S ⊆ A is the set of arcs of H , such that there
exists a path in H . Given that i′ is a veto-player of v and i′ /∈ o−1(S) we have v(S) = 0. Given that
there is a path in S (from s = So to t), we get a path So to Si by adding a′ to the coalition S. Thus
v(S ∪ {i′}) = 1, and therefore S ∈ βi′(N, v).

So, we have a bijection between the two sets, and therefore the cardinality of both sets is equal.
Hence, if we were able to compute the Banzhaf index βi′(N, v) for player i′ ∈ N in polynomial time,
we can multiply it with 2N−1 to get #βi′(N, v). This would give us the number of solutions for the
S-T-CONNECTEDNESS instance.

Now we prove #P-membership:

The Banzhaf index of player i ∈ N of a shortest path game (N, v) of type VSPG is βi(N, v). It is
the proportion of all winning coalitions where i is critical, out of all winning coalitions that contain
i. Let S ⊆ N be any coalition, it can be checked in polynomial time whether i ∈ S, v(S) = 1 and
v(S \{i}) = 0. The last two conditions are polynomial by definition of shortest path games (based on
Dijkstra’s algorithm). Hence, it can be easily checked if i ∈ S and if player i is critical for a coalition
S and therefore v(S)− v(S \ {i}) = 1.

Due to the fact that we can construct a deterministic polynomial Turing machine M that tests if a
player is critical in a coalition, as shown above, we can now construct a non-deterministic Turing
machine M ′ that first non-deterministically chooses a coalition, under the conditions that i is in the
coalition, and then tests if i is critical for that coalition. The number of accepting paths of M ′ is the
number of coalitions that contain i where i is critical. Let |N | = n. As introduced above we denote
the number of such accepting paths of M ′ as #βi(N, v). Then the Banzhaf power index of agent i is
βi(N, v) = #βi(N,v)

2n−1 .

Calculating the numerator #βi(N, v) is according to Definition 2.4.1, a #P problem. Since the
denominator is constant (given a domain with n players), VSPG-BANZHAF-Index is in #P .

So, we have shown that VSPG-BANZHAF-INDEX is #P-complete.

For VSPG*, VSPG*+ and SPG-F we immediately have that the Banzhaf value counting problems are
#P-complete as well. This also holds for TSPG when we set the threshold to 1 (T := 1).

Shortest Path Game - Fragnelli (SPG-F)

Contrary to SPG-VG, the class of SPG-F contains games that are non balanced (have an empty core).
Hence, it makes sense to determine the computational complexity of EMPTYCORE.

Our first attempt to determine the complexity of EMPTYCORE was based on Theorem 4.3.8, but we
were not successful so far.

2Normally we speak of a graph being induced by a set of vertices, but we can also use arcs instead.



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 58

Threshold Variant of VSPG (TSPG)

Based on the result for TSPG-BANZHAF-INDEX and Proposition 5.2.3 we get the following result:

Corollary 5.3.11. TSPG-SHAPLEY-SHUBIK-INDEX is #P-complete.

Proof. Given that TSPG-BANZHAF-INDEX is #P-complete we just have to check that TSPG is a
simple game with a reasonable representation. But this can be easily verified. So, by Proposition
5.2.3 we can immediately deduce that TSPG-SHAPLEY-SHUBIK-INDEX is #P-complete.

The same holds for TXSPG.

Minimal Winning Coalitions

As stated in Chapter 2, minimal winning coalitions are an important kind of coalition. Expressed
informally, they can be seen as limit cases that have maximal power, but minimal effort. Due to
its significance, we want to determine the computational complexity to count the number of minimal
winning coalitions in a shortest path game of type TSPG. This problem is also interesting with respect
to several solution concepts, e.g the Deegan-Packel index and the Public good index, which are based
on the number of minimal winning coalitions in a game.

We already introduced a formal notion of a minimal winning coalition (see Definition 2.2.9). Now
we want to show how minimal winning coalitions look like in the context of TSPG? This is easy to
see, because minimal winning coalitions are exactly all the (simple) paths P (having non repeating
vertices) from So to Si such that r − cost(P ) ≥ T , thus all the profitable paths.

Theorem 5.3.12. The counting problem TSPG-#MWC is #P-complete.

Proof. We reduce the S-T-PATHS3 problem [56], one of the standard problems known to be #P-
complete to our decision problem.

S-T-Paths
Instance: G = 〈V, A〉; s, t ∈ V
Question: Number of paths from s to t that visit every vertex at most once.

We first prove #P-hardness:

We have an instance of S-T-PATHS, hence a graph G = 〈V, A〉 and two distinct vertices s, t ∈ V .
We now define the set of players N = {1, 2, ...}, where |N | = |A| and we assign to every player
exactly one arc. We also define a cost function that assigns cost 0 to every arc of G and set r := 1
and T := 1. So, we have a game representation GN of type TSPG. Note that this transformation
takes only polynomial time. Now we have to show that there is a direct correspondence between the
concept of a minimal winning coalition (MWC) and an s-t-path.

Claim: X is a MWC iff X is a s-t-path

(⇒): Let X be a MWC. Then, as stated previously, X must be a profitable (simple) path from s to t.
Hence, X is an s-t-path.

3The decision problem heavily relies on the notion of a simple path (also referred to as self-avoiding walks). For many
similar decision problems, leaving this property out, polynomial time algorithms have been found. The decision problem
applies to both, directed and undirected graphs.



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 59

(⇐): Let P be an s-t-path. So, we have a (simple) path from s to t. Given that we assigned a cost of
0 to all arcs, cost(P ) = 0 and therefore r − c(P ) = 1− 0 = 1 ≥ T = 1. Hence, vGN (P ) = 1. Given
that P is a path, we have vGN (P ′) = 0 for every P ′ ⊂ P , because r − c(P ′) = 0 < T = 1. Thus, by
definition P is a minimal winning coalition.

Now we prove #P-membership:

Let S ⊆ N be any coalition, it can be checked in polynomial time if S is a MWC as follows:

Step 1: We first have to check if there is a shortest path P from So to Si involving all players in S.
This can be done by applying Dijkstra’s algorithm to determine the shortest path P in S. Then we
have to check if o(P ) = S. Note that both steps can be done in polynomial time.

Step 2: If this is not the case, S cannot be a MWC. Otherwise we check if the corresponding path P
is profitable, what can be done in polynomial time as well.

Step 3: If path P is not profitable, then S cannot be a MWC. Otherwise it must be a MWC, because
vGN (S) = 1 and given that it is a path, the reduction of the coalition by any player T ⊂ S will lead to
an interrupted path, and therefore infinite costs. Hence, vGN (T ) = 0.

Due to the fact that we can construct a deterministic polynomial Turing machine M that tests if a
coalition S ⊆ N is a MWC, as shown above, we can now construct a non-deterministic Turing
machine M ′ that first non-deterministically chooses a coalition S and then tests if S is a MWC. The
number of accepting paths of M ′ is then the number of MWC. Let’s denote it by k. Now, according
to the Definition 2.4.1,TSP-#MWC is in #P .

So, finally we have that TSPG-#MWC is #P-complete.

It can be easily deduced that not only M(v), but also Mi(v) is #P-complete.

Theorem 5.3.13. The counting problem TXSPG-#MWC is #P-complete.

Proof. The proof is similar to the one for TSPG. We have to introduce a new sink s with an arc from
Si to s and a corresponding player i∗. Note that the addition of an extra arc will not influence the
amount of minimal winning coalitions. Finally, let ri∗ = 1 and ri = 0 for all i ∈ N \ {i∗}.

XSPG

Null-Player and Veto-Player

Given that XSPG does not directly model the class of connectivity games, we cannot use the same
proof strategy as for VSPG.

Lemma 5.3.14. XSPG-NULL-PLAYER is coNP-complete.

Proof. coNP-membership:

We can easily show that XSPG-NULL-PLAYER is in coNP: Given a shortest path game v of type
XSPG and a coalition S ⊆ N such that ai /∈ S, we can test in polynomial time whether v(S ∪{ai})−
v(S) 6= 0.

coNP-hardness:



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 60

We now reduce an instance of a directed connectivity game to a shortest path game of type XSPG. We
know by Theorem 5.3.2 that it is coNP-complete to determine if a player is a null player in a directed
connectivity game.

Let 〈N, v〉 be a directed connectivity game with a directed graph G = 〈V, A〉 and two distinct vertices
s, t ∈ V . Furthermore, let a be an arbitrary player from N . We introduce a new vertex t′, which is
the new sink, and a new arc e′ = (t, t′). So G′ = 〈V ′, A′〉, where V ′ = V ∪ {t′} and A′ = A ∪ {e′}
and s, t′ ∈ V ′ are source and sink. Then we introduce a new player i′, and a new set of players
N ′ = N ∪ {i′} (|N ′| = |A′|). We keep the assignment of arcs of the directed connectivity game,
assign the new arc e′ to the new player i′ and assign cost 0 to all arcs. Finally we define ri′ := 1 and
∀i ∈ N \{i′} ri := 0. Based on the shortest path game representation GN , where σ := 〈Σ, N ′, o, c, r〉
is a shortest path cooperative situation and Σ = 〈V ′, A′, s, t′〉 we can define a shortest path game
〈N ′, vGN′ 〉. Note that this transformation can be done in polynomial time.

Claim: a is not a null-player in vGN′ iff a is not a null-player in v

(⇒): If a is not a null-player in vGN′ , then there exists a coalition S ⊆ N ′ \ {a} such that vGN′ (S ∪
{a}) = 1 and vGN′ (S) = 0. So, there is a path from s to t′ and i′ ∈ S. Hence, there is a path from s to
t in G and therefore v(S \ {i′}) = 1. Furthermore, we can deduce from vGN′ (S) = r(S)− c(S) = 0
and the fact that i′ ∈ S that c(S) > 0 and that is only possible if there is no path. So, there is not path
from s to t in graph G and therefore v(S \ {i′}) = 0. Thus, v is not a null-player.

(⇐): If a is a null player in vGN′ , then ∀S ⊆ N ′ \{a} vGN′ (S∪{a}) = vGN′ (S). Let’s assume for the
sake of a contradiction that there is a coalition T ⊆ N \ {a} such that v(T ∪ {a}) 6= v(T ). Du to the
fact that v is monotonic it follows immediately that v(T ∪ {a}) = 1 and v(T ) = 0. Now by adding i′

to T we immediately get vGN′ (T ∪ {a} ∪ {i′}) = 1 and vGN′ (T ∪ {i′}) = 0. So, T ′ = T ∪ {i′} leads
to a contradiction.

Hence, XSPG-NULL-PLAYER is in coNP-complete.

The same clearly holds for XSPG* and XSPG*+. If we now restrict the input to DAG, we can prove
that XSPG-NULL-PLAYER can be solved in polynomial time.

Proposition 5.3.15. To check if a player is a null-player in XSPG, restricting the input to cases where
the graph is a directed acyclic graph (DAG), is in P .

Proof. Let ai be an arbitrary player. We have two cases:

Case 1: (ri = 0)

Under this assumption player ai can only increase the value of a coalition he joins by offering cost
improvements with respect to path routing, thus offering a shorter path. The proof is similar to the
proof of VSPG: We first generate coalition C and given that ri = 0, we have r(C) = r(C \ {ai}).
Hence, we have a fixed reward with respect to the coalitions we are interested in and can therefore
continue as in the proof of VSPG.

Case 2: (ri > 0)

We first check if there is a coalition S ⊆ N such that v(S) > 0. This can be easily done by determin-
ing the shortest path for the grand coalition N , calculating the cost of the shortest path and subtracting
it from r(N). If v(N) = 0, then we can deduce from the fact that v is monotonic that v(S) = 0 for all
S ⊆ N , and therefore ai is clearly a null-player. If this is not the case, then we can reason as follows:
For any coalition S ⊆ N (v(S) > 0) containing ai, if we remove ai from the coalition, the coalition’s



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 61

value decreases due to the fact that ri is subtracted and furthermore given that the routing can clearly
not improve with one arc removed, we have v(S \ {ai}) < v(S). Now, if we assume that there is at
least one effective path, we know that v(N) > 0 must hold for the grand coalition N and therefore by
the deduction step above, ai is not a null-player.

We can easily adapt this proof for TXSPG(DAG) by adding a third condition, namely a condition that
tests if the threshold T has been reached. This condition can clearly be checked in polynomial time.
The same result, slightly more involved, but pursuing the same proof strategy follows for XSPG*,
XSPG*+ and SPG-VG, where the input is reduced to DAG.

Banzhaf and Shapley-Shubik Index

After determining the computational complexity of the null-player problem for shortest path games
of type XSPG, we can directly use Proposition 5.3.3 to determine the computational complexity of
the power indices: Shapley-Shubik, Banzhaf, Deegan-Packel and Public Good.

Lemma 5.3.16. To compute XSPG-SHAPLEY-SHUBIK-INDEX, XSPG-BANZHAF-INDEX, XSPG-
DEEGAN-PACKEL-INDEX and XSPG-PUBLIC-GOOD-INDEX is intractable.

The proof is exactly the same as we used for Lemma 5.3.9 . Note that the same result follows for
XSPG*, XSPG*+ and TXSPG.

In the case of the Banzhaf index we can even prove more.

Theorem 5.3.17. XSPG-BANZHAF-INDEX is #P-complete.

Proof. The proof is similar to the proof of VSPG. The only difference is the translation of the S-T-
CONNECTEDNESS instance to a XSPG game:

We have an instance of S-T-CONNECTEDNESS, hence a graph G = 〈V, A〉 and two distinct vertices
s, t ∈ V . We first add another vertex Si to the graph and another arc a′ = (t, Si). So, we have
G′ = 〈V ′, A′〉, where V ′ = V ∪ {Si} and A′ = A ∪ {a′}. Then we define the set of players
N = {1, 2, ...}, where |N | = |A′| and we assign to every player exactly one arc. We refer to the
player owning a′ as i′. We also define a cost function that assigns cost 0 to every arc of G′ and set
the individual rewards, namely ri′ := 1 and re := 0 for all e ∈ N \ {i′}. Let’s call the corresponding
XSPG game v. This transformation takes only polynomial time.

For the rest of the proof we can mimic the proof for VSPG.

So, for all other, more general coalitional games, XSPG*, XSPG*+ and SPG-VG we have that the
Banzhaf-value is #P-complete. It also holds for TXSPG (T := 1)



CHAPTER 5. COMPLEXITY RESULTS FOR GRAPH-BASED GAMES 62

5.4 Complexity Results for Related Games

Here we given an overview of results for graph-based games that we encountered in the literature.

Network flow game

Bachrach and Rosenschein [6] proved the following: TNFG-NULL-PLAYER is coNP-complete. It
stays coNP-complete when the input is restricted to acyclic directed graphs
(TNFG-NULL-PLAYER(DAG)). For CNFG-NULL-PLAYER it is coNP-complete as well, whereas
CNFG-NULL-PLAYER(DAG) is in P . Furthermore TNFG-BANZHAF-INDEX is #P-complete and
TNFG-VETO-PLAYER is in P and therefore all problems regarding the core as well.

Based on these results, Aziz, Lachish, Paterson and Savani [2] showed that TSPG-SHAPLEY-SHUBIK-
INDEX is #P-complete.

Vertex Connectivity Game

Bachrach and Rosenschein [7] proved the following: VCG-VETO-PLAYER is inP , VCG-BANZHAF-
INDEX is #P-complete and VCG-BANZHAF-INDEX(TREE) is in P .

Based on these results, Aziz et al. [2] showed that VCG-SHAPLEY-SHUBIK-INDEX is #P-complete.

Minimum Cost Spanning Tree games

Megiddo proved in [45] that MCSTG-SHAPLEY-SHUBIK-INDEX is in P . Bird [11] and Granot
and Huberman [36] showed that minimum cost spanning tree games are balanced (have a non-empty
core). Faigle, Fekete, Hochstätter and Kern [29] proved that MCSTG-COREMEMBERSHIP is coNP-
complete .

Spanning Connectivity Games:

Aziz et al. [2] proved the following results:

Complexity Problems Input Complexity
SCG-SHAPLEY-SHUBIK-INDEX Multigraph, simple graphs #P-complete

SCG-BANZHAF-INDEX Multigraph, simple graphs #P-complete
SCG-BANZHAF-INDEX Multigraph with bounded treewidth P

SCG-PUBLIC-GOOD-INDEX Multigraph P
SCG-DEEGAN-PACKEL-INDEX Multigraph P



Chapter 6

Interpretation and Discussion of Results

As mentioned in the introduction, our goal in this thesis is to analyse the influence of different char-
acteristics on the computational complexity of solution concepts applied to shortest path games, as
well as on the expressive power of games. Furthermore, we want to compare different types of graph-
based coalitional games with respect to the computational complexity of solution concepts. For this
purpose we have chosen the class of shortest path games, which is a rather interesting class on its own
and furthermore similar to existing graph-based coalitional games, like network flow games, vertex
connectivity games, etc., which have already been analysed with respect to computational complexity
of solution concepts.

In the previous chapter we proved results for different variants of shortest path games and presented
results for various graph-based games found in the literature. Based on these results, we can now
start to look-out for patterns regarding the computational complexity of solution concepts applied to
graph-based games. But we have to be careful to avoid misinterpretations or overly general claims
regarding potential patterns. For example, a tempting but unreasonable endeavour in this research
area would be to classify solution concepts by their complexity as mentioned by Deng and Fang [23].
The reason for this is that very often solution concepts may display different orders in the complexity
hierarchy from game representation to game representation. Some concepts may, very well, be easier
to compute in one coalitional game but more difficult in another coalitional game.

Taking this into account and by exercising the necessary care when interpreting the results, we nev-
ertheless think that especially for restricted classes of coalitional games, like graph-based games,
interesting patterns and indicators for similar complexity-theoretic results might emerge.

In this chapter we proceed as follows:

1. We present our main results, namely properties and complexity results for shortest path games,
point out interesting observations and suggest interpretations for these observations.

2. We summarize and compare results of various graph-based games. We look for indicators with
respect to open problems and present and comment on some of our observations.

63



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 64

6.1 Results for Shortest Path Games

We were successful in proving the computational complexity of several player-based properties, as
well as power indices applied to different variants of shortest path games. But we failed in determining
the complexity of the core for most cases. Now, we summarize all the complexity results that we
gained in Chapter 5 (see Table 6.1). The notions and symbols that we used in the table have the
following interpretation:

• Complexity classes in bold print are results, which have been proved in the previous chapter.
If there are two results separated by “|”, we want to indicate that we have results for different
kinds of complexity problems (e.g. decision, function or counting) or a result for a restricted
class of problems (e.g. DAG or Tree).

• If a field in the table contains “-”, then the property or result either cannot be applied for this
game or it does not make sense to apply it.

• We refer to an open problem by “?”. If we have a complexity class (not bold) with a “?” attached
to it, then we conjecture that this problem is an element of this particular complexity class.

We now give an interpretation of the results presented in Table 6.1. As can be seen immediately,
there is no difference in the computational complexity of power indices between those variants of
shortest path games, where the global reward scheme has been used (top table). The same is the case
for shortest path games having an individual reward scheme (bottom table). Furthermore, contrary to
our expectations, the reward scheme has no effect on the computational complexity of power indices.
This can be deduced by comparing the columns of the first and second table one by one.

We can generally say that for all the different variants of shortest path games, which we considered,
we have quite robust complexity results for power indices. The reason for this is that power indices
applied to very basic variants of shortest path games, as well as the determination of player-based
properties for these games is already intractable. Hence, the characteristics that we have considered
so far cannot have any real influence on the computational complexity of power indices for shortest
path games. But despite the results for power indices and various player-based properties, there might
still be some effects in the case of stability concepts, which we have not considered yet.

An interesting fact is that restricting shortest path games to directed acyclic graphs (DAG), a re-
striction that we have not considered in a systematic way, had some influence on the computational
complexity of the NULL-PLAYER problem. This suggests that it is necessary to look for character-
istics and options of characteristics that have much more influence on shortest path games. We will
comment on some promising characteristics and options, which considerably simplify graph-based
games with respect to computational issues of solution concepts in the following section.



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 65

Ta
bl

e
6.

1:
C

om
pl

ex
ity

Ta
bl

e
-V

ar
ia

nt
s

of
Sh

or
te

st
Pa

th
G

am
es



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 66

Contrary to our success to prove results for power indices and player-based properties, we had only
limited success in determining the computational complexity of problems related to the core. So, an
interesting consideration at this point would be the following: Is there a complexity-theoretic relation-
ship between different complexity problems regarding the core? A positive answer to this question
would allow us to easily extend our results for the core in some cases. But this is unfortunately not
the case. At a first glance, testing non-emptiness of the core, checking membership of the core and
finding a member of the core seems closely related, but we have to be careful with conclusions, be-
cause they may in general possess different complexities (see [23]). We have four examples, namely
two “positive” and two “negative” ones:

• Deng and Papadimitriou [24] showed that for the class of weighted graph games the decision
problem CORE-MEMBERSHIP is coNP-complete and EMPTY-CORE is NP-complete.

• They also showed that for weighed voting games CORE-MEMBERSHIP and EMPTY-CORE are
polynomial.

• Fang et al. [30] showed that for flow games ELEMENTCORE is polynomial, but COREMEM-
BERSHIP is coNP-complete.

• For linear production games ELEMENTCORE is polynomial and COREMEMBERSHIP is coNP-
complete [30].

Hence, we cannot rely blindly on similarities between complexity problems when results for the core
have to be determined. But we might want to take it as a sort of hint to have a starting point for what
we might want to prove. For example, both decision problems, CORE-MEMBERSHIP and EMPTY-
CORE, seem to be related in a stronger sense for many graph-based games, which is interesting when
the result for one problem has already been determined, but not for the other.

Another strategy would be to study results for related games, e.g. graph-based games. We now give
an overview of results for flow games and minimum cost spanning tree games. Both graph-based
games are similar to shortest path games and therefore interesting to consider.

• As stated above, for flow games (type CNFG) ELEMENTCORE is polynomial and COREMEM-
BERSHIP is coNP-complete [30].

• For minimum cost spanning tree games (MCSTG), that can also be expressed as a generalized
linear production game [35], ELEMENTCORE is polynomial [36] and COREMEMBERSHIP is
coNP-complete [29].

Again, we cannot blindly rely on results of related games when analysing the computational com-
plexity of a problem, because minor differences in the definition of a game can sometimes strongly
influence the result for particular solution concepts. Nevertheless, there seems to be a strong similarity
between graph-based games and the complexity of solution concepts in general, as we will indicate in
the next section. So, we should not dismiss these similarities entirely, because they can give us a first
indication what the result might be. So, we think that it would be reasonable to check if COREMEM-
BERSHIP is coNP-complete for shortest path games. Furthermore, we pursue the goal to prove that
EMPTYCORE is computationally intractable for shortest path games having a global reward scheme.



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 67

The complexity-theoretic results for power indices that we gained so far might also suggest that the
basic outline of a game, here graph-based games, has a huge impact on the computational complexity
of solution concepts and properties in general. We think that it would be interesting to compare differ-
ent graph-based games to investigate this further. This might allow us to see if these results are similar
for many graph-based games or if shortest path games are an exception and most characteristics that
we considered for shortest path games might, very well, have an effect on other graph-based games.

6.2 Case Study of Graph-based Coalitional Games

As indicated before, we have chosen shortest path games also for the reason to extend the sam-
ple space of complexity-theoretic results for graph-based coalitional games. Based on this extended
corpus of graph-based games, we can now look for differences in the computational complexity of
solution concepts over different graph-based games. We observed in the previous section that for
shortest path games the complexity results of power indices are mostly intractable and invariant with
respect to changes of characteristics. So, it might be interesting to check, if the intractability of power
indices also extends over graph-based games, which share similar characteristics. This might give us
some indications about complexity results of graph-based games in general.

This time we are not particularly interested in results for different characteristics, but more in the
computational complexity of solution concepts over different graph-based games, which share basic
properties. Having an overview of results for several graph-based games, we also hope to obtain some
indications, which kind of results we might expect for open complexity problems of graph-based
games. Due to the fact that we cannot predict how much influence the characteristics of graph-based
games really have for different graph-based coalitional games, we decided to minimize the influence
of those characteristics by comparing games, which share basic properties. Note that we distinguish
between non-simple and simple graph-based coalitional games.

In Table 6.2 we list complexity results for all those graph-based coalitional games, which were in-
troduced in Chapter 5. The results for VSPG, XSPG, TSPG and TXSPG were proved in this thesis,
whereas the rest of the results were taken from the literature (see Section 5.4) or they are immediate
corrolaries of results that we proved in Section 5.2. The notions and symbols that we used in the table
have the following interpretation:

• Complexity classes in bold print are results, which have been proved in this thesis or the lit-
erature. If there are two results separated by “|”, we want to indicate that we have results for
different kinds of complexity problems (e.g. decision, function or counting) or a result for a
restricted problem (e.g. DAG or Tree).

• If a field in the table contains “-”, then the property or result either cannot be applied for this
game or it does not make sense to apply it.

• We refer to an open problem by “?”. If we have a complexity class (not bold) with a “?” attached
to it, then we conjecture that this problem is an element of this particular complexity class.



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 68

Ta
bl

e
6.

2:
C

om
pl

ex
ity

Ta
bl

e
-G

ra
ph

-b
as

ed
C

oa
lit

io
na

lG
am

es



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 69

A first observation (see Table 6.2) is that the computational complexity of power indices applied to
those graph-based coalitional games, which we considered in the previous chapter, is pretty robust.

We will now analyse this in more detail: We start by comparing the following monotonic simple
games: TSPG, TXSPG, TNFG, VCG and SCG. The reader should be aware that the results for mono-
tonic simple games, like the complexity to determine a veto-player, dictator and the results regarding
the core all follow immediately from the property that these coalitional games v are simple and mono-
tonic and v(S) can be computed in polynomial time for any coalition S ⊆ N . So, we ignore these
results in our interpretation. On the other side, the results for power indices are quite interesting.

For all graph-based games that we considered in this thesis, it is #P-complete to determine the
Shapley-Shubik and Banzhaf power index. We can also observe that flow games of type TNFG and
threshold versions of shortest path games TSPG and TXSPG are very similar in all the results that
we determined so far. What is quite interesting is the fact that they differ only in one aspect namely
to determine the null-player for acyclic directed graphs (coNP-complete vs P), whereas there is
no difference between non-simple games of similar construction VSPG, XSPG and CNFG. What is
surprising as well is the fact that contrary to the other games, the Deegan-Packel and Public Good
power index are computable in polynomial time for SCG.

Of course, when we talk about exceptions in this context, we have to keep in mind that for a given
game representation, some solution concept might be easy to compute because the representation is
ideal for the computation of this particular solution concept. So, it is not too unlikely to find aber-
rant results over similar games and therefore we should not misjudge the occurrence of exceptions.
Nevertheless, we think that it is worthwhile to point out these exceptions.

Given that many of the non-simple games: VSPG, XSPG, CNFG and MCSTG have similar results as
well, we think that it is indeed interesting to continue our work to show that graph-based games have
rather similar complexity results with respect to power indices. Due to the similarities of graph-based
games and already existing results, we conjecture that the following holds:

• For MCSTG it is intractable to determine the Shapley-Shubik and Banzhaf index.

• For VSPG and XSPG COREMEMBERSHIP is computationally intractable

Up to this point, we solely made observations and some assumptions regarding the similarity of
graph-based games. To put our assumptions on a more sound base, it would be necessary to analyse
more graph-based games and complete the complexity results for the games we considered already,
especially with respect to stability concepts.

Apart from comparing results over graph-based games, we also want to mention the following ob-
servation. We have noticed that “minor” changes in characteristics do not seem to have much effect
on the computational complexity of power indices applied to graph-based coalitional games. But
more “severe” modifications on the other side, like restricting the graphs to directed acyclic graphs,
trees, etc., influence notably the computational complexity of various solution concepts. We have the
following examples:

• The Shapley-Shubik power index can be computed in polynomial time for MCSTG with graphs
reduced to trees.

• The Banzhaf power index can be computed in polynomial time for VCG with graphs reduced
to trees.



CHAPTER 6. INTERPRETATION AND DISCUSSION OF RESULTS 70

• The Banzhaf power index can be computed in polynomial time for SCG using the notion of
bounded treewidth.

Hence, it could be rewarding to analyse these stronger characteristics to find variants of graph-based
coalitional games, where solution concepts are tractable, rather than intractable.



Chapter 7

Conclusion

In this thesis we concentrated on two things: We analysed the influence of different characteristics on
the computational complexity of solution concepts, as well as the expressive power of graph-based
games. Having proved various complexity-theoretic results for shortest path games, we extended the
corpus of graph-based games, which have been analysed with respect to computational complexity
of solution concepts. So, this allowed us to relate complexity-theoretic results for various graph-
based coalitional games and look for potential complexity-theoretic patterns or indications for open
problems in the context of graph-based games.

We now give a detailed account of our results, point out some of our main contributions and finally
propose possible directions for future work.

7.1 Summary

At first we discussed which characteristics are interesting in the context of graph-based coalitional
games, and especially for shortest path games, with respect to computational issues and expressivity
of games. Then we introduced several variants of shortest path games, which vary over those char-
acteristics and are based on the original models for shortest path games introduced by Voorneveld
and Grahn [58] and Fragnelli et. al. [33]. We analysed the expressive power of the different vari-
ants of shortest path games, compared them and related them to other types of coalitional games. It
was interesting to see what effect some of the characteristics, e.g. the reward scheme and the own-
ership relation had on the expressive power of some of the games. We concluded that some of the
characteristics are quite useful to influence the expressive power of coalitional games.

We also mentioned in Chapter 4 that there is a direct relation between flow games, linear production
games and market games. This is a quite interesting, because games can be directly translated from
one game representation into another, but the results cannot be used to analyse the computational
complexity of shortest path games, flow games and related coalitional games, as one might have
hoped. Nevertheless, many of the properties we proved in Chapter 4 were useful to prove complexity-
theoretic results for shortest path games or dismiss complexity problems if not applicable.

We continued by proving several complexity results in the context of shortest path games. Particular
interesting are the following results:

71



CHAPTER 7. CONCLUSION 72

• We proved that it is coNP-complete to determine if a player is a null player for shortest path
games of type VSPG. This result is then used to show that all power indices that we considered
are intractable.

• We showed that it is #P-complete to determine the Banzhaf index for shortest path games of
type VSPG.

• We demonstrated that the null player problem for shortest path games of type VSPG, where the
input is restricted to directed acyclic graphs, is computable in polynomial time.

• We proved that it is #P-complete to determine all minimal winning coalitions of a shortest path
game of type TSPG.

Apart from our technical results, we made some interesting observations, namely that most of the
analysed complexity problems are computationally hard to solve and therefore most characteristics
that we considered for shortest path games have no notable influence on the computational complexity
of power indices. A reason for this is that basic shortest path games, with minimal properties, already
lead to situations where solution concepts are hard to compute. So, it is impossible that the considered
characteristics, which basically add more general properties to shortest path games, can influence the
complexity-theoretic results.

This suggests that it would be reasonable to look for characteristics and options of characteristics that
simplify those basic variants of shortest path games even further. A candidate for such a simplification
seems to be the reduction of directed graphs to directed acyclic graphs. So, it could be interesting to
analyse effects of DAG on more complexity-theoretic problems of shortest path games, and graph-
based games in general. When we reviewed results for different graph-based games in the literature,
we also encountered another promising characteristic: By restricting the underlying graphs of games
to a tree, many intractable problems, become actually tractable.

Remember, shortest path games were originally meant as a positive example to show that it is worth-
while to consider different characteristics of games when the computational complexity of solution
concepts for a coalitional game should be determined. So far, we were not successful, but it should be
taken into account that we have not checked for most stability concepts yet. Hence, a general judge-
ment about the influence of characteristics of graph-based games, including all solution concepts, is
not possible at this point, because the results for power indices and stability concepts can be rather
different. An example for two coalitional games where the results for stability concepts and power
indices are quite different, are weighted graph games (see [24] for results) or weighted voting games
(see [24, 49, 43, 44] for results).

Encouraged by the observation that complexity results for power indices are quite robust over many
characteristics for shortest path games, we compared the complexity results for various graph-based
games in a case study to see if they are similar. We were interested to investigate, if there is a
tendency for graph-based games to be computationally hard for power indices. Comparing the results,
we noticed indeed that graph-based coalitional games seem to share a lot of complexity problems,
especially with respect to power indices and player-based properties. As mentioned in the previous
chapter, we have to be cautious when interpreting results over different game representations, because
they might vary from game to game and there might be exceptions. Nevertheless, we think that there
is a tendency that these kinds of problems are very hard for standard graph-based games. Based on
this assumption of similarity between graph-based games we also suggested outcomes for several
open problems.



CHAPTER 7. CONCLUSION 73

7.2 Future Work

At this point, we would like to give an overview of possible future directions of research and ideas
that could be pursued to expand the work of this thesis.

To obtain a more precise idea of the influence of characteristics on the computational complexity of
solution concepts applied to shortest path games, we think that it would be particularly interesting to
analyse various stability concepts for different non-simple variants of shortest path games. Especially,
the core, least-core and nucleolus would be important stability concepts to analyse in this context.

We also think that it would be interesting to prove several open problems for those graph-based
games, which we presented in this thesis, and to look for further graph-based coalitional games to
extend the sample space of graph-based games. So, having a more complete set of results we might
be able to isolate influential properties and characteristics of graph-based games. This may even allow
researchers, interested in transferring problems to graph-based coalitional games, to use it as heuristic
to specify coalitional games in such a way that the application of interesting solution concepts is
computationally tractable.

We observed during our studies that for many real-world motivated graph-based games, which have
been analysed in the literature, the determination of power indices is intractable. For practical appli-
cations, where the existence of an efficient algorithm is imperative, this situation is of course unsat-
isfactory. But we have also noticed during our research that particular simplifications of graph-based
games, most notably simplifications of the underlying graph, can lead to computationally favourable
results. For example, the reduction of graphs to trees seemed to be a promising reduction. This is
also interesting in a more practical context, because there are many real-world problems with tree-
structures in computer science (Internet and networking), which could be analysed from a game-
theoretic perspective. Hence, the reduction to trees and also acyclic directed graphs for graph-based
games is not only a theoretical consideration to obtain polynomial complexity results, but also a
promising way to determine classes of coalitional games, where interesting solution concepts applied
to games, which are motivated from real-word problems, are tractable.



Bibliography

[1] Haris Aziz. Complexity of comparison of influence of players in simple games. CoRR,
abs/0809.0519, 2008.

[2] Haris Aziz, Oded Lachish, Mike Paterson, and Rahul Savani. Power indices in spanning con-
nectivity games. In AAIM, pages 55–67, 2009.

[3] Haris Aziz, Oded Lachish, Mike Paterson, and Rahul Savani. Spanning connectivity games.
CoRR, abs/0906.3643, 2009.

[4] Haris Aziz and Mike Paterson. Computing voting power in easy weighted voting games. CoRR,
abs/0811.2497, 2008.

[5] Yoram Bachrach, Reshef Meir, Michael Zuckerman, Jörg Rothe, and Jeffrey S. Rosenschein.
The cost of stability in weighted voting games. In AAMAS ’09: Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 1289–1290. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2009.

[6] Yoram Bachrach and Jeffrey S. Rosenschein. Power in threshold network flow games. Au-
tonomous Agents and Multi-Agent Systems, 18(1):106–132, 2009.

[7] Yoram Bachrach, Jeffrey S. Rosenschein, and Ely Porat. Power and stability in connectivity
games. In AAMAS ’08: Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems, pages 999–1006, Richland, SC, 2008. International Foundation
for Autonomous Agents and Multiagent Systems.

[8] John F. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review,
19(2):317–343, 1965.

[9] S. Barberá, W. Bossert, and P. K. Pattanaik. Handbook of utility theory. volume ii: Extensions.
chapter Utility Theory in Cooperative Games, pages 1065–1098. Kluwer Academic Publishers,
October 2004.

[10] J. M. Bilbao, J. R. Fernández, and J. J. López. Complexity in cooperative game theory.

[11] C. J. Bird. On cost allocation for a spanning tree: A game theoretic approach. Networks, 3:335–
350, 1976.

[12] Olga N. Bondareva. Some applications of linear programming methods to the theory of cooper-
ative games (in russian). Problemy Kybernetiki, 10:119–139, 1963.

74



BIBLIOGRAPHY 75

[13] P. Borm, H. Hamers, and R. Hendrickx. Operations research games : a survey. Discussion
Paper 45, Tilburg University, Center for Economic Research, 2001.

[14] Yann Chevaleyre, Ulle Endriss, and Jérôme Lang. Expressive power of weighted propositional
formulas for cardinal preference modelling. In P. Doherty, J. Mylopoulos, and C. Welty, editors,
Proceedings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR-2006), pages 145–152. AAAI Press, June 2006.

[15] Pardalos P.M. Migdalas A. Pitsoulis L. Chinchuluun, A. Pareto Optimality, Game Theory and
Equilibria. Springer, 2008.

[16] A. Claus and D. Granot. Game theory application to cost allocation for a spanning tree. Work-
ing paper no. 402, Faculty of Commerce and Business Administration, University of British
Columbia, June 1976.

[17] A. Claus and D. J. Kleitman. Cost allocation for a spanning tree. Network, 6:335–350, 1973.

[18] Vincent Conitzer and Tuomas Sandholm. Complexity of determining nonemptiness of the core.
In In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI, pages 613–618, 2002.

[19] Péter Csóka, P. Jean-Jacques Herings, and László Á. Kóczy. Balancedness conditions for exact
games. Working paper series, Budapest Tech, Keleti Faculty of Economics, September 2007.

[20] I. Curiel. Cooperative Game Theory and Applications. Kluwer Academic, Boston, 1997.

[21] I. Curiel, J. Derks, and S. Tijs. On balanced games and games with committee control. OR
Spectrum, 11(2):83–88, 1989.

[22] J. Deegan and Packel E.W. A new index of power for simple n-person games. International
Journal of Game Theory, 7:113–123, 1978.

[23] X. Deng and Q. Fang. Algorithmic cooperative game theory. In Pareto Optimality, Game Theory
And Equilibria, volume 17, pages 159–185. Springer, 2008.

[24] Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative solution con-
cepts. Math. Oper. Res., 19(2):257–266, 1994.

[25] Edsger Wybe Dijkstra. A note on two problems in connection with graphs. Numerische Mathe-
matik, 1:269–271, 1959.

[26] Theo Driessen. Cooperative Games, Solutions and Applications. Kluwer Academic Publishers,
1988.

[27] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. Computational complexity of
weighted threshold games. In Twenty-Second Conference on Artificial Intelligence (AAAI-07),
2007.

[28] Edith Elkind, Leslie Ann Goldberg, Paul W. Goldberg, and Michael Wooldridge. A tractable
and expressive class of marginal contribution nets and its applications. Mathematical Logic
Quarterly, 2009. to appear.



BIBLIOGRAPHY 76

[29] U. Faigle, S. Fekete, W. Hochstätter, and W. Kern. On the complexity of testing membership in
the core of min-cost spanning tree games. International Journal of Game Theory, 26:361–366,
1997.

[30] Q. Fang, S. Zhu, M. Cai, and X. Deng. On computational complexity of membership test in flow
games and linear production games. International Journal of Game Theory, 31:39–45, 2002.

[31] Qizhi Fang, Shanfeng Zhu, Mao-cheng Cai, and Xiaotie Deng. Membership for core of lp games
and other games. In COCOON ’01: Proceedings of the 7th Annual International Conference on
Computing and Combinatorics, pages 247–256, London, UK, 2001. Springer-Verlag.

[32] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathe-
matics, 8:399–404, 1956.

[33] Vito Fragnelli, Ignacio Garcia-Jurado, and Luciano Mendez-Naya. On shortest path games.
Mathematical Methods of Operations Research, 52:251–264, 2000.

[34] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[35] D. Granot. A generalized linear production model: A unified model. Mathematical Program-
ming, 34:212–222, 1986.

[36] D. Granot and G. Huberman. Minimum cost spanning tree games. Mathematical Programming,
21:1–18, 1981.

[37] Manfred Holler. Forming coalitions and measuring voting power. Political Studies, 30(2):262–
271, 1982.

[38] Manfred J. Holler, Jose M. Alonso-Meijide, Balbina Casas-Mendez, and G. Fiestras-Janeiro.
The deegan-packel index for simple games with a priori unions. University of Hamburg Working
Paper No. 156.

[39] Manfred J. Holler, Jose M. Alonso-Meijide, Balbina Casas-Mendez, and G. Fiestras-Janeiro.
Two variations of the public good index for games with a priori unions. Working paper 15.
Public Choice Research Center University of Turku, Finland.

[40] Samuel Ieong and Yoav Shoham. Marginal contribution nets: a compact representation scheme
for coalitional games. In EC ’05: Proceedings of the 6th ACM conference on Electronic com-
merce, pages 193–202, New York, NY, USA, 2005. ACM.

[41] E. Kalai and E. Zemel. Totally balanced games and games of flow. Math. Oper. Res., 7:476–478,
1982.

[42] Mamoru Kaneko and Myrna H. Wooders. Utility theories in cooperative games, 1996.

[43] Tomomi Matsui and Yasuko Matsui. A survey of algorithms for calculating power indices of
weighted majority games. J. Oper. Res. Soc. Japan, 43:71–86, 2000.

[44] Yasuko Matsui and Tomomi Matsui. Np-completeness for calculating power indices of weighted
majority games. Theor. Comput. Sci., 263(1-2):306–310, 2001.



BIBLIOGRAPHY 77

[45] Nimrod Megiddo. Computational complexity of the game theory approach to cost allocation for
a tree. Mathematics of Operation Research, 3(3):189–196.

[46] Guillermo Owen. On the core of linear production games. Mathematial Programming, 9:358–
370, 1975.

[47] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[48] Bezalel Peleg and Peter Sudhölter. Introduction to the Theory of Cooperative Games (Theory
and Decision Library C). Springer, 2nd ed. edition, October 2007.

[49] K. Prasad and J. S. Kelly. Np-completeness of some problems concerning voting games. Int. J.
Game Theory, 19(1):1–9, 1990.

[50] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957.

[51] Lloyd S. Shapley and Pradeep Dubey. Totally balanced games arising from controlled program-
ming problems. Mathematical Programming, 29(3):245–267, 1984.

[52] L.S. Shapley. On balanced sets and cores. Naval Research Logistics Quarterly, 14:453–460,
1967.

[53] L.S. Shapley and M. Shubik. A method for evaluating the distribution of power in a committee
system. American Political Science Review, 48:787–792, 1954.

[54] L.S. Shapley and M. Shubik. On market games. Journal of Economic Theory, 1:9–25, 1969.

[55] Joel Uckelman, Yann Chevaleyre, Ulle Endriss, and Jérôme Lang. Representing utility functions
via weighted goals. Mathematical Logic Quarterly, 2009.

[56] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

[57] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior (Com-
memorative Edition) (Princeton Classic Editions). Princeton University Press, 1944.

[58] Mark Voorneveld and Sofia Grahn. Cost allocation in shortest path games. Mathematical meth-
ods of operations research, 56(2):323–340, 2002.


