
Automated Search for Impossibility Theorems

in Choice Theory: Ranking Sets of Objects

MSc Thesis (Afstudeerscriptie)

written by

Christian Geist
(born 24 September 1983 in Dieburg, Germany)

under the supervision of Ulle Endriss, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
2 July 2010 Frank Veltman (chair)

Krzysztof Apt
Ulle Endriss
Umberto Grandi
Robert van Rooij

Acknowledgements

I would like to express my sincere gratuity to all the individuals and institu-
tions without whom this thesis project would not have been possible.

In particular, I would like to thank my supervisor, Ulle Endriss, for his
support and guidance during all phases of this thesis project. It is also him
who was responsible for directing my interest to the matter of computational
social choice by teaching an extraordinary course on this subject in 2009, and
who shaped the initial direction of my project. Ulle has been approachable at
any time and always offered clear and more than helpful advice, from which
I benefitted significantly.

I am also indebted to my thesis committee, consisting of Krzysztof Apt,
Ulle Endriss, Umberto Grandi, Robert van Rooij, and Frank Veltman, for
their valuable questions and comments during my thesis defense.

I would further like to express my gratitude and appreciation to my friends
and colleagues, in particular Melanie Görner, Umberto Grandi, and Charlotte
Vlek, not only for the many helpful discussions that substantially contributed
to this thesis, but also for their moral support.

Nuffic, Siemens Management Consulting, the German National Academic
Foundation, and the ILLC have generously provided financial assistance for
my project and studies, which I gratefully acknowledge.

Amsterdam, July 2010 Christian Geist

Abstract

In the subarea of (social) choice theory commonly referred to as ranking sets of
objects the question arises whether, given preferences over some domain, there
is a preference relation on the power set of this domain that is compatible with
certain axioms. The Kannai-Peleg Theorem (Journal of Economic Theory,
1984) gives a negative answer to this question for the case of six or more
elements in the domain in combination with the two (very intuitive) axioms
called dominance and independence. It is the main (and earliest) impossibility
theorem in this particular area.

Our initial goal was to find a suitable formulation of the Kannai-Peleg
Theorem in logic that would facilitate an automatic verification of the re-
sult. It turned out, however, that developing a first-order formulation of this
problem and feeding it to a first-order theorem prover was not very effective.
Therefore, we successfully tried an inductive proof consisting of a manual in-
ductive step together with a formalization of the base case in propositional
logic (in order to use a SAT solver). This particular way of using automated
theorem proving in social choice theory is due to Tang and Lin (Artificial
Intelligence Journal, 2009), who have in this way proved major impossibility
results, like Arrow’s Theorem, the Muller-Satterthwaite Theorem, and Sen’s
Theorem. We extended their technique to be able to treat the Kannai-Peleg
Theorem and were able to verify it with a verification time of less than ten
seconds.

With our initial objective met, we then developed a further extension of
the method in order to discover new impossibility results. Using tools from
model theory, a universal form of the previous inductive step (now applicable
to a large class of axioms) allows for a fully automated theorem search, which
has produced 84 impossibility theorems on a space of 20 axioms from the liter-
ature. Many of these results are variations of known impossibilities, but also a
few new results were obtained. Interestingly, one of the impossibility theorems
found by our program had even wrongly been published as a possibility result
earlier (Economic Theory, 2000, 2003). Finally, we give some manual proofs
of the new results to underline the fruitfulness of this computer-aided method
of searching for impossibility results in the field of ranking sets of objects.

Contents

Introduction . 1
Motivation and Area of Research. 1
Related Work . 4
Contribution . 6
Overview of the Thesis . 7

1 Ranking Sets of Objects . 9
1.1 Introduction . 9
1.2 Motivating Examples and Basic Concepts 10
1.3 Notation and Mathematical Setting . 12
1.4 The Kannai-Peleg Theorem . 14
1.5 Summary . 18

2 First-Order Automated Theorem Proving 19
2.1 Introduction . 19
2.2 Axioms . 20
2.3 Experimental (Practical) Results . 23
2.4 Summary . 26

3 Theorem Proving Using a SAT Solver . 29
3.1 Introduction . 29
3.2 Tang and Lin’s Proof Technique . 30
3.3 Extended Approach for the Kannai-Peleg Theorem 35
3.4 Additional Features of our Implementation 46
3.5 Summary . 49

4 Reduction of Impossibilities to Small Instances 51
4.1 Introduction . 51
4.2 The Language MSLSP for Preferences over Sets 52
4.3 Weak Universal Step by Standard Model Theory 54
4.4 Universal Step Based on the Domain Structure 58

X Contents

4.5 Summary . 65

5 Automated and Exhaustive Theorem Search 67
5.1 Introduction . 67
5.2 Technique and Implementation . 68
5.3 Implemented Axioms . 70
5.4 Impossibility Theorems Found . 74
5.5 Potential Possibilities Found . 80
5.6 Some Manual Proofs of Impossibilities . 81
5.7 Summary . 89

Conclusion and Future Work . 91
Summary and Conclusion . 91
Future Work . 92

A First-Order Logic . 95
A.1 “Trivial” First-Order Proof . 95

B Propositional Logic . 101
B.1 Source Code Example for Coding Axioms. 101
B.2 Output on a Satisfiable Instance . 105
B.3 Output on an Unsatisfiable Instance . 108
B.4 List of Axioms Used in the Theorem Search. 110

References . 117

Index . 123

Introduction

“Our long term goal is to automate the discovery of the-
orems in social choice theory, game theory, and others.”

Tang and Lin, 2009 [73]

Intrigued by Tang and Lin’s vision and their novel approach to proving im-
possibility theorems in voting theory by employing computer-aided induction,
we extended this technique to the area of ranking sets of objects. Based on
this extension, we developed an automated and exhaustive theorem search
relying on a model-theoretic result reducing impossibility theorems to small
instances. Whereas Tang and Lin have used separate reduction theorems
for each impossibility, our result is universally applicable to a whole class of
axioms.

This thesis combines a report on the design of the search method and the
utilized techniques with an overview of its initial results, comprising a set of
84 automatically discovered or verified impossibility theorems.

In order to shed some more light on the above concepts and ideas it is
beneficial to put them in a broader context, which we are going to do in the
next section.

Motivation and Area of Research

Our work addresses two general questions of wide interest, each of which
corresponds to a whole stream of ideas and disciplines:

• How can we use computers to automatize theorem proving and theorem
discovery?

• What are the principles governing a “rational” decision?

The first question concerns the methods applied in this thesis, the second
stands for the actual subject matter we treated with those methods.

Let us concentrate on the subject matter first. The extensive field of eco-
nomic theory is concerned with “rational decisions” in a variety of different
ways. In the area of decision theory [53] mostly normative theories of ra-
tionality are developed, whereas (rational) choice theory [2] tries to model

2 Introduction

social and economic behaviour. Its subfield social choice theory [7, 27] is con-
cerned with collective decision making, covering ideas like voting, preference
and judgement aggregation, resource allocation, and others. In all these ar-
eas of mathematical economics it can be necessary to have a model for how
preferences over single objects are related to preferences over sets of these
objects when assuming certain principles of rationality. This is exactly what
the discipline of ranking sets of objects (which can be considered a subfield of
choice theory) is interested in, and even though its framework and the ques-
tions to be asked are quite simple, its results are powerful and non-trivial. For
an extensive overview of the field and its results, see the survey by Barberà,
Bossert and Pattanaik [11].

But what is the nature of the results we can expect from the above areas of
economic theory? The two most common categories of results are impossibility
theorems and characterization results . The latter say that certain principles
fully specify a particular method, feature, or class of these. The former, on
the other hand, express that certain (natural) principles are incompatible and
can therefore not be used in combination. The most prominent representative
of this class of results is Arrow’s Impossibility Theorem [5], a theorem due
to Kenneth Arrow, Nobel Prize laureate in economics.1 Intuitively, it states
that three desirable principles for preference aggregation cannot be satisfied
by any aggregation rule.

Also in the field of ranking sets of objects such impossibility theorems
exist. But before we can comprehend them, we have to understand the main
concern of this discipline: given some preferences of an agent over individual
objects, what can “rationally” be inferred about her preferences over sets of
these objects? Put in a very small example, what does the preference of x over
y tell us for the ranking of the respective sets {x}, {x, y}, and {y}? Aiming at
answering these questions, the literature has brought forward many different
principles of how to extend preferences from elements to sets. An example
is the idea of dominance: adding a preferred alternative to a set makes the
set better, and, similarly, adding a disliked alternative makes it worse. In the
small setting above, this means that {x} has to be preferred to {x, y}, which
in turn is considered better than {y}.

Sometimes, however, even very natural combinations of such principles
turn out to be incompatible (in the sense that no ranking of sets satisfies
them). Most prominent among the few known impossibilities in this field is
the Kannai-Peleg Theorem [37], which was proved in 1984 and flags the highly
intuitive combination of dominance and an independence principle as incon-
sistent. The classical method employed for deriving such impossibilities in
(social) choice theory is the so-called axiomatic method , which describes the
use of formal axioms in order to precisely capture intuitive ideas and then to
explore their logical consequences. Even though the axioms are usually not

1 Further examples are Sen’s Theorem [64] and the Gibbard-Satterthwaite The-
orem [31,62], both regarding the theory of voting.

Motivation and Area of Research 3

specified in a particular logic, but rather in a semi-formal language, the gap
towards a completely formal description within a certain logic is rather small.

This brings us directly to the second general question stated above. Since
axiomatic descriptions can quickly be transferred into a completely formal and
computer-readable format, it makes particular sense to apply methods from
automated reasoning in order to verify and discover such theorems. It should
also be noted that the proofs of impossibilities are often quite technical and
little insightful, such that a computer-aided approach is even more motivated.

Automated reasoning [55] is the subfield of artificial intelligence [57] that
is concerned with such theorem verifications and automated as well as inter-
active proving. At least since the automated discovery of a proof for the Four
Colour Theorem by Appel and Haken [3] in the 1970s, automated theorem
proving has demonstrated to be strong enough for attacking open problems
in mathematics and related fields.

The popularity of applying automated reasoning for the verification and
discovery of results can be explained by different factors. We have already
mentioned domain-specific factors, like the axiomatic method and the preva-
lence of technicalities in proofs, for the case of (social) choice theory. On
a more general level, reliability, speed and clarity are the main reasons for
choosing a computer-aided approach.

When successfully applied as a verification tool, automated reasoning can
improve the reliability of results. Even though peer-reviewing does help to
keep the publication of wrong results to a minimum, time and again we can
find examples of published work that later on turns out to have been flawed. A
prominent example in the area of social choice theory is Arrow’s Theorem [5],
the first proof of which was flawed (as noted by Blau [14]) and corrected later
by Arrow himself [6]. Also in the context of ranking sets of objects a result
by Bossert, Pattanaik and Xu [16] needed a correction by Arlegi [4],
which was confirmed in our theorem search.

The advantage in the speed of theorem discovery derives from at least two
features of machines: on the one hand, computers are very good at handling
technicalities that otherwise take very long to be handled manually. As an
example consider computer algebra systems that can calculate even complex
derivatives or solve (systems of) equations within seconds. On the other hand,
even large sets of variants of a given task can efficiently be carried out on
a computer. That we were able to check more than eight million problem
instances as part of this thesis clearly supports this claim.

That clarity and gaining additional insights could be factors supporting
automated reasoning might at first appear a bit surprising. Creating a for-
malization of a given setting, however, promotes a deeper understanding since
even minor details have to be made explicit. Furthermore, being able to use
automated methods for quickly checking slight modifications of a result on a
computer helps researchers to better comprehend the exact nature of assump-
tions and theorems, and computer-aided proving additionally focusses their

4 Introduction

attention to results instead of technicalities in the proofs.

In general, many different approaches to applying automated reasoning
are possible – from employing different logics for the formalization, to the
question whether proof verification or theorem discovery is the ultimate goal.
In this thesis, we first observe that a first-order formalization of the framework
of ranking sets of objects is not well-suited for automated theorem proving.
Then we describe our automated theorem search method, which relies on a
universal step, manually-proven with tools from model theory2 and reducing
theorems to small instances for a large class of axioms. The small instances
(base cases) are then checked using a SAT solver3 on a computer-generated
formalization in propositional logic.

Our results show that this new technique can reliably guide or even au-
tonomously perform the discovery of unknown impossibility theorems. In this
way, it is possible to comfortably explore the borderline between the possible
and the impossible.

We thus see our work at the interface of automated reasoning and choice
theory. It could therefore also be considered part of the relatively young area
of computational social choice [19], which comprises the application of ideas
from computer science to social choice theory on the one hand, and importing
concepts from social choice theory into computing and artificial intelligence
on the other hand.

In the following section of this introduction we give a literature review for
ranking sets of objects and the application of automated reasoning to (social)
choice theory and game theory. Afterwards we concentrate on our own con-
tribution to the field and finally complete the introduction with an overview
of the thesis.

Related Work

Ranking Sets of Objects

A vast body of literature has developed in the field of ranking sets of objects .
Contributions are concerned with the framework itself, reasonable principles
for different interpretations of sets, and its various applications in voting,
matching and others. Since a complete overview of these lines of work would
exceed the scope of this introduction, the reader is referred to the previously
mentioned extensive survey by Barberà, Bossert and Pattanaik [11]. The

2 The discipline of Model theory (situated within the field of mathematical logic)
formally analyzes and classifies mathematical structures in order to understand
which formulas are true in these.

3 A SAT (∼= Boolean satisfiability problem) solver is a program that can check
whether a formula in propositional logic has a satisfying assignment.

Related Work 5

different interpretations of sets as uncertain outcomes, opportunities, or col-
lective outcomes will be discussed in Section 1.2. Here, we are going to focus
on a review of the work that has lead to impossibility results in the field.

We have already touched upon the Kannai-Peleg Theorem, the most rec-
ognized impossibility in ranking sets of objects. The corresponding seminal
paper by Kannai and Peleg is usually said to have started the whole field
by first treating the problem of extending an order to sets of objects in its
own right. Also note that it immediately triggered an array of responses and
further contributions in the same year it was published [10, 12, 26, 35, 49, 51].

One of these responses by Barberà and Pattanaik [12] contains a sec-
ond impossibility related to the original theorem. In this result the principle
of independence was strengthened to a strict form, whereas dominance was
weakened to apply to small sets only.

But also more recently, further impossibility results have been added.
Puppe demonstrated in 1995 that the principle of preference for freedom
is incompatible with the assumption of continuous preferences (which mostly
plays a role for infinite sets of alternatives). Another impossibility, lowering
the minimal number of elements in the Kannai-Peleg Theorem by adding the
axiom of neutrality [49, 51], was proven in the aforementioned survey from
2004 [11].

In a slightly modified framework, in which pairs of sets and objects are
ranked, Gravel [33] observes that (a strong form of) freedom of choice con-
tradicts principles deriving from indirect utilities, i.e., the idea that a set is
preferred if it offers a better alternative than all alternatives the other set
contains.

Apart from these examples, we are not aware of other impossibility theo-
rems in the literature on ranking sets of objects.

Applications of Automated Reasoning

Classically, successful applications of were mostly to be found in pure math-
ematics (theorem proving), circuit design (program verification) and medical
diagnosis (expert systems) [80]. The more recent contributions in the area of
applying automated reasoning and logic to (social) choice theory are, how-
ever, not less successful and span a variety of different approaches. Multiple
criteria can be used for the classification of these approaches: the logic cho-
sen for formalization, the utilized methods and software, and whether they
generate proofs or just verify them. In the following we present an overview
of the recent work in this field and describe the employed approaches with
respect to the above dimensions. Left out of more detailed considerations are
pure formalizations without the application of any automated method, like
the works by Rubinstein [56] and Ågotnes et al. [1] (the former employing
first-order, the latter modal logic).

Let us start by reviewing approaches in higher-order logic (HOL), which
is the most expressive and thus human-readable formal framework we en-

6 Introduction

countered. Three authors independently formalized impossibility theorems
and their proofs in this framework, but to a different extent and on differ-
ent systems. Nipkow [47] and Gammie [28] used the Isabelle [48] system,
a highly automatized proof checker , whereas Wiedijk [78] utilized the auto-
mated proof checker Mizar [75]. They all presented a formalization of Arrow’s
Theorem; Gammie additionally verified the related results of Sen’s [64] and
May’s Theorem [42].

Instead of verifying given proofs, Grandi and Endriss [32] attempted
to use automated theorem provers for the discovery of these. Still offering
a human-readable formalization, but yet with powerful automated provers
available, their choice of language fell on first-order logic (FOL). Even though
Grandi and Endriss were able to automatically generate a proof in their
formalization of a subproblem of Arrow’s Theorem, the employed automated
provers did not succeed to prove the full result in an initial experiment.

The approach that is least human-readable, but also most successful and
most related to our work has been pursued by Tang and Lin, who formalized
settings of theorems in social choice and game theory. They always employed
proofs by induction, of which the inductive step was established manually
and the base cases checked on a computer. In social choice theory they mostly
used (computer-instantiated) formalizations in propositional logic together
with SAT solvers for the automated verification. Like this, Tang and Lin

automatically re-proved Arrow’s, Sen’s, and the Muller-Satterthwaite The-
orem [73], as well as the Gibbard-Satterthwaite Theorem and Maskin’s The-
orem [41, 72]. Additionally, Lin and Tang [39] were able to relax each of
the assumptions of unanimity and independence of irrelevant alternatives in
Arrow’s Theorem yielding a strengthening of the result. A summary of the
complete work (including the results in game theory) can also be found in
Tang’s PhD thesis [71].

Contribution

The main contribution of our work is two-fold: for one, we developed an au-
tomated search method for impossibility theorems, and for another, we used
this method for the discovery of concrete impossibility results in the realm of
choice under complete uncertainty.

The former is based upon two components: a universal step (Corol-
lary 4.16), which reduces impossibilities to small instances, and a computer-
aided formulation of those small instances in propositional logic to be check-
able by a SAT solver. The universal step is directly implied by our Preser-
vation Theorem 4.13, which the whole of Chapter 4 is devoted to and which
was proved manually with tools from model theory. The formalization and
automated instantiation of small instances is explained exemplarily for the
Kannai-Peleg Theorem in Chapter 3.

Overview of the Thesis 7

The latter part of our overall results, consisting of 84 concrete impossibili-
ties and a few conjectures about general possibilities, is described in Chapter 5.
The highlights of new discoveries are a highly non-intuitive impossibility (even
once published as a possibility) in Theorem 5.1 and two impossibilities with-
out any form of dominance (Theorems 5.6 and 5.7).

Overview of the Thesis

This thesis tries to be as self-contained as possible. In the few places where
the consultation of external literature might be helpful nonetheless, explicit
references are given.

The remainder of this thesis is organized as follows:
Chapter 1 provides an introduction to the field of ranking sets of objects as

well as its applications. After describing some of the usual interpretations at-
tached to this area and giving some examples of basic concepts, we define the
formal mathematical framework as well as our notation. With the mathemat-
ical setting defined, the axioms of the Kannai-Peleg Theorem are discussed
and the theorem itself is formally stated and proven.

In Chapter 2 we exhibit an initial attempt to automatically verify the
Kannai-Peleg Theorem by means of a first-order theorem prover. We first
present our first-order formalization of the framework and the axioms of the
theorem, which unfortunately did not lead to an automatic proof within a
running time limit of five days. Therefore, also a few subproblems and easier
problem variants have been formalized and are also presented in this chapter.
For a few of these, automatic proofs could be obtained and so we conclude by
giving an overview of the results and discussing these. Since the insights from
this chapter are not required for an understanding of later chapters, it can be
skipped at the reader’s discretion.

The approach by Tang and Lin to use computer-aided induction (on a for-
malization in propositional logic) for proving impossibility theorems is taken
up in Chapter 3, where we start with reviewing their technique and ideas at
the example of Arrow’s famous impossibility theorem about preference ag-
gregation. We proceed by extending their method to also fit the setting of the
Kannai-Peleg theorem and successfully verify it automatically with the help
of a SAT solver. This process comprises an inductive step and manual proof
thereof, as well as the conversion of the theorem’s axioms to propositional
logic. The chapter concludes by laying out a few additional features of our
implementation, like the ability to produce models for possible instances and
the automatic verification of a detected unsatisfiability.

In Chapter 4 we generalize the method of the preceding chapter, by reduc-
ing a whole class of impossibility theorems to small instances. This allows us
to prove full impossibilities by just checking their respective base cases on a

8 Introduction

computer like shown before. The reduction result and its proof require a few
tools from (many-sorted) model theory and so we first introduce these tools
and describe the specific language we use. We then proceed by providing two
versions of the reduction theorem, both of which imply a universal step (going
from base cases to full results) to be used for proving impossibility theorems
automatically in the succeeding chapter.

Our automated and exhaustive theorem search is finally introduced and
demonstrated in Chapter 5. We first describe how our universal step allows for
an efficient search algorithm and explain its implementation. Then an actual
run of the program (with a maximal domain size of eight elements and on
a space of 20 axioms) is performed and its results of 84 impossibilities are
analyzed. The fruitfulness of the approach is underlined by manual proofs of
the most interesting results, which also extends our analysis of these.

Thereafter, we conclude this thesis by summing up, putting our two-fold
results (consisting of the impossibility theorems and the search method itself)
into a broader context, and by providing a selection of ideas for future work.

1

Ranking Sets of Objects

1.1 Introduction

This chapter introduces the reader to the field of ranking sets of objects and
in particular to its most famous impossibility result: the Kannai-Peleg The-
orem [37], which was discovered in 1984.

Ranking sets of objects deals with questions related to how an agent should
rank sets of objects, given her preferences over individual objects. As we will
see, answers to this question highly depend on the concrete interpretation as-
signed to sets. The three most common interpretations and how they shape
the extension of preferences over elements to preferences over sets will be ex-
plained in the next section. Later we focus on the idea of complete uncertainty
only, where sets are interpreted as containing mutually exclusive alternatives
from which a random device (that the agent has no control over) picks a fi-
nal outcome. We chose this particular interpretation for two different reasons:
for one, since this interpretation is the natural interpretation for analyzing
strategy-proofness4 of voting correspondences, and for another, since this area
features the most famous and surprising impossibility results known to date.

We also present the notation and mathematical framework usually em-
ployed to treat the problems in ranking sets of objects. This will then also
enable us to formally state and prove the Kannai-Peleg Theorem, which says
that, in general, no weak order can be found that satisfies the seemingly
innocuous combination of the Gärdenfors principle and the principle of inde-
pendence.

4 The concept of strategy-proofness (or non-manipulability) describes voting proce-
dures or correspondences that make agents vote sincerely, i.e., do not give agents
an incentive to misrepresent their preferences.

10 1 Ranking Sets of Objects

1.2 Motivating Examples and Basic Concepts

Being mostly based on a survey by Barberà, Bossert and Pattanaik [11],
this section offers an overview on the different ways, in which one can look at
the problem of extending preferences from elements to sets.

Although the interpretation of sets plays a large role for how to approach
the problem, the questions and the basic framework remains the same for
all (common) interpretations. All interpretations assume that an agent has
some kind of preference over individual objects and then analyze properties
a “compatible” ranking of sets of objects should fulfill. These properties, or
principles, vary a lot between different interpretations of sets.

Consider the simple setting of only two objects x and y, of which an agent
prefers the former to the latter. What does this imply for the relative rankings
of {x}, {y}, and {x, y}?

Barberà et al. [11] intuitively justify each of the possible rankings by
giving examples of settings, in which the respective rankings appear as the
natural choice. Here we just describe a few different situations corresponding
to the three most common interpretations of sets:

Complete uncertainty. In this setting sets are considered as containing mu-
tually exclusive alternatives from which the final outcome is chosen at a
later stage. The agent, however, does not have any influence on the selec-
tion procedure. One usually assumes that some random device, of which
the agent has no information, will make the choice. Applications of this
interpretation are, for instance, voting with unspecified tie-breaking rules,
or approval voting, where agents submit a set of candidates (they approve
of).
In the two-element case, the scenario of ranking {x} above {x, y}, and
{x, y} above {y} can intuitively be supported, since the singletons just
represent the actual outcomes, and for {x, y} there is a chance that either
of them is selected, raising its value above {y}, but not as high as {x}.
But also the extremely pessimistic view of being indifferent with respect
to {x, y} and {y} might have its justification, since both sets have the
same worst-case outcome.

Opportunity sets. Here again sets contain mutually exclusive alternatives, but
this time the agent can himself choose a final outcome from the set. Sets
are therefore considered as collections of opportunities for the agent. This
approach is particularly helpful when modeling choice situations in which
other criteria than choosing the best available option are desired. Flexi-
bility and a preference for freedom of choice are two such principles that
can easily be implemented in this setting.
A decision maker could, thus, not only care about the outcome but also
(or even more) about the opportunities offered. Ranking {x, y} above {x},
and {x} above {y} reflects such behaviour, in that it shows a preference

1.2 Motivating Examples and Basic Concepts 11

for more freedom and flexibility.

Sets as final outcomes. In this interpretation sets contain compatible objects,
which are hence not mutually exclusive. All objects contained in the same
set are hence assumed to materialize simultaneously. Examples are, for
instance, the constitution of a committee, an assignment of tasks among
agents, or a company hiring a set of new employees based on the ranking
of the individual applicants.
For desirable items, the above example for opportunity sets could also be
considered sensible here as getting both items is clearly better than just
getting one. If, on the other hand, items come with obligations or are
undesirable in general, then {x} above {y}, and {y} above {x, y} makes
even more sense.

Thus, we can see that, depending on the interpretation, different principles
of extending an order on elements to an order on sets have to be considered
natural. Impossibilities, i.e., incompatible principles, can occur in any inter-
pretation, however. We will now, as mentioned above already, focus on only
one of the interpretations: complete uncertainty.

In the framework of complete uncertainty a very natural and basic concept
is the principle of extension. It says that the relative ranking of singleton
outcome sets has to agree with the relative rankings of the corresponding
outcomes themselves, i.e., if an agent prefers alternative x over alternative
y, then she should also prefer the singleton set {x} to the singleton set {y}.
Intuitively, this has a lot of support because sets are interpreted as collection
of outcomes from which a random device will choose, and therefore singleton
sets do not leave any choice and the contained alternative will immediately
be selected as the final outcome.

The extension rule can therefore be considered a very natural axiom for
any set extension of preferences.5 Taking this idea further one could also ask
the ranking of sets to be such that a set is considered (strictly) better than
another one if the agent (strictly) prefers all of its elements to all elements of
the second set. Can et al. [17] call this idea the Kelly principle and show that
it is satisfied for any utility-maximizing agent regardless of its utility function
and the assumed (non-degenerate) probability distribution over elements. In
other words, the Kelly principle can be considered rational in the setting of
choice under complete uncertainty even without any assumptions about the
random device making the “final” decision.

5 It should be noted, however, that this intuitiveness of the axioms relies on our
interpretation of sets as uncertain outcomes. If one, for instance, models a setting
in which the agent can freely choose a final outcome from the sets, an axiom
saying that the agent is indifferent between no-choice situations, i.e., singleton
sets, can make sense, too. In fact, such an axiom was introduced by Jones and
Sugden [36] and later (independently) by Pattanaik and Xu [52].

12 1 Ranking Sets of Objects

Endriss [23] notes that the Kelly principle can be characterized by the
extension rule together with two axioms saying that the singleton containing
just the maximal (minimal) element of a set has to be considered at least as
good (bad) as the set itself. The formal axiom statements are given in the
next Section 1.3, before their connection to another important axiom called
the Gärdenfors principle is explored in Section 1.4.1.

1.3 Notation and Mathematical Setting

The mathematical framework for the questions as formulated in the previous
Section 1.2 is relatively easy to define and to understand. All we need is a
finite set X of alternatives , on which a (preference) order ≥̇ is defined. The
order ≥̇ is assumed to be linear ,6 i.e., it is a binary relation fulfilling the
axioms

(LIN) x ≥̇ x for all x ∈ X (reflexivity),

x ≥̇ y ∨ x ≤̇ y for all x 6= y ∈ X (completeness),

x ≥̇ y ∧ y ≥̇ z ⇒ x ≥̇ z for all x, y, z ∈ X (transitivity),

x ≥̇ y ∧ y ≥̇ x⇒ x = y for all x, y ∈ X (antisymmetry).

The symbol >̇ will denote the strict component of ≥̇, i.e.,

x >̇ y abbreviates x ≥̇ y ∧ y �̇ x.

The interpretation of ≥̇ is such that x ≥̇ y if and only if x is considered at
least as good as y by the decision maker.

Similarly, we have an order � on the set of non-empty subsets of X (de-
noted by X := 2X \{∅}). This relation, however, is only required to be a weak
order ,7 i.e., a binary relation fulfilling only the smaller axiom set

(WEAK) A � A for all A ∈ X (reflexivity),

A � B ∨ A � B for all A 6= B ∈ X (completeness),

A � B ∧B � C ⇒ A � C for all A,B,C ∈ X (transitivity).

Like above, we use ≻ for the strict component of �, i.e.,

A ≻ B abbreviates A � B ∧B � A.

Additionally, we also define indifference ∼ by setting

A ∼ B if and only if A � B ∧B � A.

6 Other names for the same concept include total order and simple order.
7 Again there exist other names for the same concept, like total preorder or just
ordering.

1.3 Notation and Mathematical Setting 13

Remark 1.1. Note that — since we are going to use this fact later on — tran-
sitivity of the non-strict relations ≥̇ and � carries over to their strict compo-
nents >̇ and ≻, respectively. Actually, even if just one comparison is strict,
transitivity yields a strict inequality, which we are going to prove for the case
of a general transitive binary relation ≥.

Proof. Let ≥ be a binary, transitive relation on a set D and define > as its
strict component, i.e.,

x > y ⇐⇒ x ≥ y ∧ y � x for all x, y ∈ D.

Let furthermore a, b, c be three elements of D such that a > b and b ≥ c. Then,
since x > y implies x ≥ y for all x, y ∈ D, we have a ≥ c by transitivity of ≥.
Thus, it only remains to show that a � c. By way of contradiction, suppose
a ≤ c. But then, since by assumption c ≤ b, also a ≤ b and therefore a ≯ b
holds and we have our desired contradiction with a > b.

For the case of a ≥ b and b > c the proof is completely analogous. Purely
strict transitivity (i.e., a > b > c ⇒ a > c) follows from either of the two
cases. ⊓⊔

Having set up the mathematical basics, we can easily formalize the first
concepts, properties, or requirements (from here on called axioms), which we
stated in the previous section.

The Kelly principle, for example, can be described by the following ax-
ioms, where max(A) and min(A) denote the (unique) best and worst element
according to ≥̇, respectively:8

(EXT) x ≥̇ y ⇐⇒ {x} � {y} for all x, y ∈ X ,

(MAX) {max(A)} � A for all A ∈ X ,

(MIN) A � {min(A)} for all A ∈ X .

Despite the simplicity of the mathematical model, consequences of axioms
formulated in this framework are far from being obvious. The fact that some-
times very intuitive and straightforward axioms can turn out to be inconsis-
tent, in the sense that no compatible weak order � on the set X of non-empty
subsets can be found, strongly supports this claim. We are going to exemplify
such an inconsistency in the following section by looking at the example of
the Kannai-Peleg Theorem, which was proved only 26 years ago [37]. It shows
that already three simple and intuitive axioms suffice to create this kind of
impossibility.

8 In formal terms,

max(A) = x ⇐⇒ x ∈ A and x ≥̇ a for all a ∈ A, and analogously

min(A) = x ⇐⇒ x ∈ A and x ≤̇ a for all a ∈ A.

That this is well-defined follows from the fact that the maximum and the mini-
mum element are unique in a linear order.

14 1 Ranking Sets of Objects

1.4 The Kannai-Peleg Theorem

In order to state and prove the Kannai-Peleg Theorem, we first have to turn
towards the axioms involved.

1.4.1 Axioms

The Kannai-Peleg Theorem makes use of two axioms (or principles), which
both have very plausible intuitive interpretations. On the one hand there is
the Gärdenfors principle,9 also called dominance. It consists of two parts and
requires that

1. adding an element, that is strictly better (>̇) than all the elements in a
given set, to that given set produces a strictly better set with respect to
the order �,

2. adding an element, that is strictly worse (<̇) than all the elements in a
given set, to that given set produces a strictly worse set with respect to
the order �.

Formally, the Gärdenfors principle (GF) can be written as the following two
axioms:

(GF1) ((∀a ∈ A)x >̇ a)⇒ A ∪ {x} ≻ A for all x ∈ X and A ∈ X ,

(GF2) ((∀a ∈ A)x <̇ a)⇒ A ∪ {x} ≺ A for all x ∈ X and A ∈ X .

On the other hand, we have a monotonicity principle called independence,
which states that, if a set is strictly better than another one, then adding the
same alternative (which was not contained in either of the sets before) to both
sets simultaneously does not reverse this strict order. An equivalent way of
stating this (in light of completeness of the order) is to require that at least
a non-strict preference remains of the original strict preference (such that ≻
becomes �). The formal statement reads as follows:

(IND) A ≻ B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B).

That this indeed defines a monotonicity condition can best be seen when
considering the function ϕx : {A ∈ X | x /∈ A} → X , ϕx(A) := A ∪ {x}
for a fixed x ∈ X . Axiom (IND) exactly guarantees that ϕx is (non-strictly)
monotone with respect to � for any x ∈ X , i.e., for all sets A,B ∈ dom(ϕx)
such that A ≺ B we have that ϕx(A) � ϕx(B).

One might wonder what the relation is between these axioms and the Kelly
principle ((EXT), (MIN), (MAX)), which was introduced in Section 1.3. A partial
answer can be given by the following well-known proposition that identifies
the Kelly principle as a consequence of the Gärdenfors principle.

9 According to Barberà et al. [11] the name was coined by Kannai and Peleg [37]
“in recognition of the use of this axiom in Gärdenfors [29]”.

1.4 The Kannai-Peleg Theorem 15

Proposition 1.2. The Gärdenfors principle entails the Kelly principle, i.e., if
the weak order � satisfies (GF1) and (GF2) then it also satisfies (EXT), (MIN)
and (MAX).

Proof. We prove the axioms of the Kelly principle one by one:
(EXT): Let x, y be elements of X and suppose that x ≥̇ y. Since ≥̇ is a linear
order, this is equivalent to x >̇ y by antisymmetry. Then it follows from
(GF1) that {x, y} = {y} ∪ {x} ≻ {y}, and similarly from (GF2) that {x} ≻
{x} ∪ {y} = {x, y}. Together, this directly gives {x} ≻ {x, y} ≻ {y}, and one
application of transitivity finishes one direction of the proof. Let now x, y be

elements of X such that {x} � {y}. Aiming at a contradiction, suppose x �̇ y.
Completeness implies that y >̇ x and so we can, in the same way like before,
derive {y} ≻ {x} via (GF1) and (GF2). This, however, implies that {x} � {y}.
Contradiction!
(MIN): Let A ∈ X be a subset of X with cardinality |A| = n ∈ N and denote its
elements by ai, i ∈ {1, 2, . . . , n} such that these are ordered descendingly by
>̇ with respect to their index, i.e., max(A) = a1 >̇ a2 >̇ . . . >̇ an = min(A).
Note first that for the case of n = 1 the claim is trivially true by (and actually
equivalent to) reflexivity of �. For n ≥ 2, we get a chain of inequalities by
(GF1):

{a1} ≻ {a1} ∪ {a2} = {a1, a2} ≻ {a1, a2} ∪ {a3} = {a1, a2, a3} ≻ . . .

≻ {a1, a2, . . . , an−1} ∪ {an} = {a1, a2, . . . , an}.

The claim then follows by transitivity of ≻.
(MAX): The case of (MAX) is completely analogous to the one of (MIN), just
using (GF2) instead of (GF1). ⊓⊔

Remark 1.3. In the preceding Proposition 1.2, we actually proved strict (and
hence stronger) versions of (MIN) and (MAX), which we will denote by (SMIN)
and (SMAX), respectively:

(SMAX) {max(A)} ≻ A for all A ∈ X with |A| > 1,

(SMIN) A ≻ {min(A)} for all A ∈ X with |A| > 1.

A simple example with three elements x >̇ y >̇ z can be used to show
that the other direction of Proposition 1.2 does not hold. The set {x, y} must
be strictly preferred to the full set X = {x, y, z} by (GF2), whereas according
to the Kelly principle nothing is required of the relative ranking of the two,
and therefore they could be ordered exactly oppositely ({x, y} ≺ X). Thus,
one can easily construct an example of a model that complies with the Kelly
principle but fails with respect to the Gärdenfors principle. The latter is hence
a strictly stronger set of axioms than the former.

Since the principle of independence does (as a monotonicity requirement)
not say anything about the order of singleton sets, it can easily be seen to be
logically independent from any of the axioms of the Kelly principle.10

10 In the sense that none of the axioms is implied by nor implies any of the others.

16 1 Ranking Sets of Objects

1.4.2 The Theorem

With the axioms formally defined we can now state and prove the Kannai-
Peleg Theorem, a result due to Kannai and Peleg [37]. They were probably
the first to treat the specific problem of extending preferences from elements
to subsets as a problem in its own right in an axiomatic fashion. In previ-
ous work, other authors had regarded this problem as more of a side issue
of another problem (see, e.g., Fishburn [25] and Gärdenfors [30]) or had
merely axiomatized specific methods of extension without considering the gen-
eral problem (see, e.g., Packard [50]).

Regarding its nature, the Kannai-Peleg Theorem is an impossibility result
because it states that certain axioms, viz. (GF) and (IND), are incompatible
from a certain domain size upwards. Other famous impossibility theorems
in social choice theory include Arrow’s Theorem, the Gibbard-Satterthwaite
Theorem, and Sen’s Impossibility of a Paretian Liberal. For a good overview
on the area in general, and the aforementioned theorems in particular, see
Gaertner [27].

But before we get to the main theorem, we give a lemma saying that only
very specific rankings can satisfy the conditions (SMIN), (SMAX) and (IND). The
proof idea has been taken from Kannai and Peleg [37], who used a similar
lemma (which we will state as Corollary 1.5).

Lemma 1.4. If � satisfies the axioms (SMIN), (SMAX) and (IND), then A ∼
{max(A),min(A)} for all A ∈ X .

Proof. Let A be a non-empty subset of X . If |A| ≤ 2 then the lemma holds
trivially by reflexivity of � since then A = {max(A),min(A)}. So suppose
|A| ≥ 3 and define A− := A \max(A). Note that, because |A| ≥ 3, the set A−

is non-empty and thus it is easy to see that {min(A)} = {min(A−)}. Axiom
(SMIN) applied to A− then yields

{min(A)} = {min(A−)} ≺ A−. (1.1)

We can then add max(A) to both sides, showing that {min(A),max(A)} �
A− ∪ {max(A)} = A by (IND). In a completely analogous way we get
{min(A),max(A)} � A+ ∪ {min(A)} = A from (SMAX), where A+ :=
A \min(A). ⊓⊔

Corollary 1.5 (Kannai and Peleg, 1984). If � satisfies the Gärdenfors
principle (GF) and independence (IND), then A ∼ {max(A),min(A)} for all
A ∈ X .

Proof. By Proposition 1.2 and Remark 1.3, the Gärdenfors principle (GF)
entails (SMIN) and (SMAX). The statement of the corollary hence follows from
Lemma 1.4 immediately. ⊓⊔

1.4 The Kannai-Peleg Theorem 17

The importance of Lemma 1.4, and in particular of the condition

A ∼ {max(A),min(A)} for all A ∈ X ,

should be stressed. The fact that every set is ranked exactly like the set
containing just its best and worst element means that the ranking of subsets is
completely determined by their worst and best elements. The relative ranking
of any two sets A and B can therefore be determined by looking at the order of
the (maximally two-element) sets {max(A),min(A)} and {max(B),min(B)}
only.

We are now finally in the position to state and prove the main theorem.

Theorem 1.6 (Kannai and Peleg, 1984). Let X be a linearly ordered
set with |X | ≥ 6. Then there exists no weak order � on X satisfying the
Gärdenfors principle (GF) and independence (IND).

Proof. Let xi, i ∈ {1, 2, . . . , 6} denote six distinct elements ofX such that they
are ordered descendingly by >̇ with respect to their index, i.e., x1 >̇ x2 >̇ x3 >̇
x4 >̇ x5 >̇ x6. By way of contradiction, suppose there exists a weak order �
on X satisfying the Gärdenfors principle (GF) and independence (IND). We
first claim that then

{x2, x5} � {x3}. (1.2)

In order to prove this claim suppose that the contrary is the case, which by
completeness of � is {x3} ≻ {x2, x5}. We can then, by (IND), include x6,
which yields

{x3, x6} � {x2, x5, x6}. (1.3)

Note now that by Lemma 1.4,

{x3, x4, x5, x6} ∼ {x3, x6} and{x2, x5, x6} ∼ {x2, x6} ∼ {x2, x3, x4, x5, x6},

which, together with (1.3) gives

{x3, x4, x5, x6} ∼ {x3, x6} � {x2, x5, x6} ∼ {x2, x3, x4, x5, x6}

by transitivity. But this contradicts (GF1), which states that {x3, x4, x5, x6} ≺
{x2, x3, x4, x5, x6}, since x2 >̇ xj for j ∈ {3, 4, 5, 6}.

Therefore, claim (1.2) must be true and it follows from {x3} ≻ {x4} (which
is a consequence of the extension axiom, see Proposition 1.2) together with
transitivity that {x2, x5} ≻ {x4}. Using (IND) again, we can add (the so far
unused) x1 and get {x1, x2, x5} � {x1, x4} at the price of strictness of the
inequality.

Like before, we again fill in the intermediate elements to both sets and ob-
tain, by Lemma 1.4 and transitivity, that {x1, x2, x3, x4, x5} � {x1, x2, x3, x4},
which this time contradicts the second axiom (GF2) of the Gärdenfors princi-
ple.

Thus, there cannot be any weak order � on X satisfying the Gärdenfors
principle (GF) and independence (IND). ⊓⊔

18 1 Ranking Sets of Objects

Remark 1.7. Even though Lemma 1.4 and Corollary 1.5 only hold for finite
sets A ∈ X , the proof of the Kannai-Peleg Theorem works even for the case
of an infinite domain. This is noteworthy since, for instance, Arrow’s The-
orem [5], does not have this feature.11

Put in different words, the Kannai-Peleg Theorem says that the Gärdenfors
principle (GF) and independence (IND) are inconsistent for a domain of six
or more elements. Thus, there is no way of extending a linear order on a set
of at least six elements to a weak order on the collection of all non-empty
sets of these elements. Note that whereas a strengthening of the theorem to
weak orders on X is possible as long as there are at least six >̇-distinguishable
elements, a weakening of the order on X to a preorder (dropping completeness)
breaks the theorem as already Kannai and Peleg [37] observe.12

1.5 Summary

This chapter has offered an overview on the framework of ranking sets of
objects, in which the Kannai-Peleg Theorem is placed.

We first laid out the general ideas behind ranking sets of objects and
gave basic examples motivating the approach, followed by the definition of
a mathematical framework to capture these ideas and first formalizations of
simple concepts like the Kelly principle.

Finally, the axioms of the Kannai-Peleg Theorem were introduced and
explained in order to formally state and prove it (Theorem 1.6). The theorem is
an impossibility result saying that a certain combination of natural principles
(axioms) is incompatible, in the sense that no weak order can be constructed
satisfying these principles.

The next chapter will exhibit a first (unfortunately unsuccessful) approach
to automatically verifying the theorem.

11
Fishburn [24] was the first to point out that Arrow’s Theorem fails for the case
of an infinite number of voters.

12 One possible such preorder is given by

A � B ⇐⇒ min(A) ≥̇ min(B) ∧ max(A) ≥̇ max(B)

for all A,B ∈ X .

2

First-Order Automated Theorem Proving

2.1 Introduction

Our first attempt to automatically verify the Kannai-Peleg Theorem is di-
cussed in this chapter. We used different first-order theorem provers on a
first-order formalization of the theorem. Unfortunately, none of the automated
theorem provers was able to deliver a proof in the given time limit of 120 hours
(5 days). Nevertheless, we would like to present our formalization since it is
non-trivial, and itself or a modification could potentially still lead to an auto-
mated proof on a different system or with more powerful computers (or even
computing clusters).13

Intuitively, the most suitable logic to express the setting of the Kannai-
Peleg is theorem is second-order logic (since in most of the axioms quan-
tifications over subsets occur). Non-monadic14 second-order theorem provers,
however, are not quite as developed as their first-order counterparts and so
they are no option for us. On the other hand, formalizing the problem in a
less expressive logic than first-order logic will drastically reduce readability,
which is why a first-order formalization appears to be the natural choice for
verifying the Kannai-Peleg theorem.

A similar approach has also been taken by Grandi and Endriss [32],
who have formalized Arrow’s Theorem [5] in first-order logic and have ex-
perimented with automated theorem provers to obtain a proof thereof. Even
though in practice the theorem provers have so far not been successful in pro-
viding a proof of the full result either, Grandi and Endriss were able to
automatically produce a proof of a lemma saying that certain axioms imply
others.

13 We are, however, not very optimistic about this, unless a formalization leading
to a more succinct representation can be found. See also Section 2.3.

14 Monadic second-order logic is not sufficient since it only allows monadic, i.e., one-
place, second-order predicates, while the order � on X is a two-place relation.

20 2 First-Order Automated Theorem Proving

We are going to first present and discuss our first-order axiomatization,
before we give the results of running automated theorem provers on a few
problems based on this axiomatization.

2.2 Axioms

The main problem one encounters when trying to craft a first-order axioma-
tization of the Kannai-Peleg Theorem is how to treat subsets in a way that
they can be quantified over. The idea we used is similar to the one employed
by Grandi and Endriss [32] in order to model preference profiles (i.e., tu-
ples of linear orders). They defined a partition on the domain, splitting it into
the three sorts15 alternatives, individuals, and situations and then have an
axiom (PERM) that makes sure all preference profiles (now called situations)
are considered in any model of the axioms.

Our partitioning of the domain will distinguish elements and sets, i.e., we
just treat sets as atomic elements of the domain. In order for this to work
(and then also be able to perform operations like union, singleton, etc.) we
need further axioms that define the relation between elements and sets and
that ensure that all non-empty subsets are present in any structure modeling
the axioms.

Formally, we define structures consisting of

• constants a1 to a6 and 0 (ensuring the minimal size of X , and serving as
a special object, respectively),

• one-place relations S and E (marking sets and elements, respectively),
• two-place relations l, w, el (the orders on X and X , and an element-of

relation, respectively),
• a one-place function singleton (transforming elements into singleton

sets), and
• a two-place function union (the usual set union).

In the following, we are going to describe and explain our axiomatization
– first of the framework, then of the particular axioms for the Kannai-Peleg
Theorem – step by step to make clear how it exactly works. All axioms will be
stated in the LADR-syntax used by Prover9 [44] since it is quite natural and
should be readable without further explanation.16 Furthermore, the axioms
can this way serve as direct input for the prover.17 We start with the axioms
for the partitioning of the domain:

15 The idea of using sorts will be applied again in Chapter 4 where we lay the
foundation for our automated theorem search by generalizing a result concerning
ranking sets of objects using tools from (many-sorted) model theory.

16 Only note that unbound variables are automatically quantified over universally.
17 For Prover E and iProver the (less-intuitive) TPTP-format [70] is necessary,

which can be obtained automatically [68] from the LADR-syntax.

2.2 Axioms 21

%PART

E(x) -> -S(x) & x!=0.

S(u) -> -E(u) & u!=0.

x=0 -> -S(x) & -E(x).

E(x) | S(x) | x=0.

We can see that we actually have three sorts, into which the whole domain
is partitioned: the two aforementioned elements and sets, as well as a special
object 0, which we need since first-order functions will have to be defined
on the whole domain and need to mark “illegal” applications. What exactly
“legal” applications of functions and relations are, is treated in the next axiom,
called SORT:

%SORT

w(u,v) -> S(u) & S(v).

l(x,y) -> E(x) & E(y).

el(x,u) -> E(x) & S(u).

S(u) & S(v) & union(u,v)=w -> S(w).

(-S(u) | -S(v)) -> union(u,v)=0.

E(x) & singleton(x)=u -> S(u).

-E(x) -> singleton(x)=0.

It makes sure that relations are only true of the right sorts and that functions
yield the right types (including that applications to unqualified sorts yield the
special object 0).

Next we need to establish that we actually have all (finite) non-empty
subsets in our set -domain and that their relations and operations are defined
in the right way. This is taken care of by the following axioms:

%ALL NON-EMPTY SETS

E(x) -> (exists u (S(u) & u=singleton(x) & all v (S(v) & v!=u ->

v!=singleton(x)))).

S(u) & S(v) -> (exists w (S(w) & w=union(u,v) & all w1 (S(w1) & w1!=w

-> w1!=union(u,v)))).

S(u) -> (exists x (E(x) & el(x,u)))

%UNIQUENESS OF SETS

S(u) & S(v) -> ((all x (E(x) -> (el(x,u) <-> el(x,v)))) -> u=v).

The first part ALL NON-EMPTY SETS says that for all elements there is exactly
one singleton set containing it, similarly that for any pair of sets there is
exactly one set that is the union of the two, and finally that there is no empty
set. The second part UNIQUENESS OF SETS declares that sets with the same
elements are equal. This prevents the existence of “copies” of sets, which would
certainly be problematic.

The two self-explanatory axioms defining the functions singleton and union
finish our modeling of the element-set relations and functions. The miss-

22 2 First-Order Automated Theorem Proving

ing relation el can remain implicitly defined through the above axioms ALL

NON-EMPTY SETS and UNIQUENESS OF SETS in connection with the following
two definitions of the functions singleton and union.

%singleton

E(x) & S(u) -> (singleton(x)=u <-> el(x,u) & (all y ((y!=x) ->

-el(y,u)))).

%union

S(u) & S(v) & S(w) -> (union(u,v)=w <-> all x (E(x) -> (el(x,w) <->

(el(x,u) | el(x,v))))).

S(u) & S(v) -> (union(u,v)=union(v,u)).

We complete the axiomatization of the general framework of ranking sets of
objects by making the relations ≥̇ and � linear and weak orders, respectively.

%LINl

E(x) -> l(x,x). %Reflexivity

E(x) & E(y) & (x!=y) -> l(x,y) | l(y,x). %Completeness

E(x) & E(y) & E(z) & l(x,y) & l(y,z) -> l(x,z). %Transitivity

E(x) & E(y) & l(x,y) & l(y,x) -> (x=y). %Antisymmetry

%WEAKw

S(u) -> w(u,u). %Reflexivity

S(u) & S(v) & (u!=v) -> w(u,v) | w(v,u). %Completeness

S(u) & S(v) & S(w) & w(u,v) & w(v,w) -> w(u,w). %Transitivity

Any finite model of the above axioms, which we denote by Γframe, will
now correspond to a linearly-ordered set X with a weak order on the space
of all (finite) non-empty subsets X . In order to formalize the Kannai-Peleg
Theorem we still need to include its particular axioms and postulate a domain
size of at least six elements. We start with the latter since it can be obtained
quickly using constant symbols:

%MIN SIZE

E(a1) & E(a2) & E(a3) & E(a4) & E(a5) & E(a6).

a1!=a2 & a1!=a3 & a1!=a4 & a1!=a5 & a1!=a6.

a2!=a3 & a2!=a4 & a2!=a5 & a2!=a6.

a3!=a4 & a3!=a5 & a3!=a6.

a4!=a5 & a4!=a6.

a5!=a6.

Although straightforward, requiring all constants to be interpreted distinctly
is somewhat tedious compared to other axioms since all pairwise comparisons
have to be written out explicitly.

2.3 Experimental (Practical) Results 23

Given our formalization, it is an easy task to formalize the Gärdenfors
principle and independence starting from their representation that was intro-
duced in Section 1.4:

%GF

S(u) & E(y) -> ((all x (E(x) & el(x,u) -> l(y,x) & -l(x,y))) ->

w(union(u,singleton(y)),u) & -w(u,union(u,singleton(y)))).

S(u) & E(y) -> ((all x (E(x) & el(x,u) -> l(x,y) & -l(y,x))) ->

w(u,union(u,singleton(y))) & -w(union(u,singleton(y)),u)).

Note that we use l(x,y) & -l(y,x) and w(u,v) & -w(v,u) to refer to
the strict versions of the orders l and w, respectively.

%IND

S(u) & S(v) & E(z) -> ((w(u,v) & -w(v,u) & -el(z,union(u,v))) ->

w(union(u,singleton(z)),union(v,singleton(z)))).

With these additional axioms any model satisfying all of the above axioms
will contain a (finite) counterexample to the Kannai-Peleg Theorem, and any
counterexample, viz. a weak order on X fulfilling the Gärdenfors principle and
independence, will result in such a model. Consequently, we can — denoting
the Kannai-Peleg axioms by ΓKP — reformulate the Kannai-Peleg Theorem
as:

Theorem 2.1 (formerly Theorem 1.6). The theory Γframe∪ΓKP is incon-
sistent, i.e., it does not have any models.

This should now theoretically be checkable by a first-order theorem prover
and we are going to report our — unfortunately negative — results in the
next section.

2.3 Experimental (Practical) Results

All our experiments were carried out on 2.26 GHz Intel Xeon machines with
24GB of main memory.18 We ran our formalization of the Kannai-Peleg The-
orem on the three different first-order theorem provers Prover9 [44] (successor
of Otter [43]), Prover E [63], and iProver [38],19 but neither of them was able
to produce a proof within the given time limit of five days running time.20

18 The machines are part of the Dutch national compute cluster Lisa [58].
19 Prover E and iProver won the second and fifth price, respectively, in the first-

order formula category of the CADE ATP System Competition 2009 [69]. The
first and third price provers are versions of the Vampire prover [76], which is not
publicly available.

20 We used the provers in fully automatic mode and the maximally allowed
memory limits. Only in the case of Prover E this required special com-
mand line options, which are -tAuto -xAuto --tstp-in --resources-info

--memory-limit=2048.

24 2 First-Order Automated Theorem Proving

Therefore, we decided to also create a few (easier) problem variants and
subproblems to achieve a partial success at least. As an additional problem
we chose for (the quite straightforward) Proposition 1.2, which says that the
Kelly principle is a consequence of the Gärdenfors principle, and exemplarily
formalized the two subcases (GF)⇒ (EXT) and (GF)⇒ (MAX) (see Section 1.3
for the exact statements). Their formalization, which we are going to display
and explain next, requires a slightly extended framework, because the Kelly
principle contains statements about maximal and minimal elements of a set.

We can define the functions max and min in a straightforward fashion, but
have to also set the corresponding sorts for the functions, i.e., that only applied
to sets they yield an element and in all other cases just the special object 0. The
actual definitions then just say that an element is the maximum/minimum of
a set if and only if it belongs to the set and all other elements in the set are
ranked strictly lower/higher by ≥̇.

%SORT2

S(u) & min(u)=x -> E(x).

-S(u) -> min(u)=0.

S(u) & max(u)=x -> E(x).

-S(u) -> max(u)=0.

%min

S(u) & E(x) -> (min(u)=x <-> el(x,u) & (all y ((el(y,u) & y!=x) ->

l(y,x) & -l(x,y)))).

%max

S(u) & E(x) -> (max(u)=x <-> el(x,u) & (all y ((el(y,u) & y!=x) ->

l(x,y) & -l(y,x)))).

With these additional framework axioms, we can now create different mod-
ifications of the problem. One possibility is to drop independence and add a
goal formula for the axiom (MAX) or (EXT), respectively, in order to prove that
these follow from (GF).21

%GOAL: MAX

S(u) -> w(singleton(max(u)),u).

%GOAL: EXT

E(x) & E(y) -> ((l(x,y) & -l(y,x)) -> (w(singleton(x),singleton(y)) &

-w(singleton(y),singleton(x)))).

Another option to create simpler problems is to split the Kannai-Peleg
Theorem in two steps: first derive Lemma 1.4 (saying that sets are consid-
ered equally good as the set containing just their minimum and maximum),

21 Adding a formula as a goal technically means to add its negation to the assump-
tions and then create a proof by contradiction.

2.3 Experimental (Practical) Results 25

and then prove the inconsistency with this lemma as an assumption. Techni-
cally, this means to add the lemma as a goal formula in the first, and as an
assumption in the second case.

%LEMMA

S(u) -> w(u,union(singleton(min(u)),singleton(max(u)))) &

w(union(singleton(min(u)),singleton(max(u))),u).

Additionally varying the minimal and maximal domain sizes of X , which
can be achieved by an axiom like MAX SIZE (as shown below) and by modi-
fying the above axiom MIN SIZE, respectively, we have created a selection of
problem variants and subproblems.

%MAX SIZE

E(x) -> x=a6 | x=a5 | x=a4 | x=a3 | x=a2 | x=a1.

The problems we finally experimented with are given in Table 2.1 together
with the performance of Prover E , which provided the best results among the
three provers tested.

Theorem
Options

TTP
min el max el Lemma 1.4

(GF) ⇒ (EXT)
40:08:46

2 2 109:38:39

(GF) ⇒ (MAX) n/a

Lemma 1.4
n/a

2 2 00:00:35
3 3 n/a

Kannai-Peleg

(6) n/a
(6) 6 given n/a
(6) 6 n/a
(6) given n/a

Table 2.1. Time until a proof was found (time to proof, TTP) with Prover E (at
a maximum running time of 120 hours wall clock).

We can see here that apart from very elementary results – like the implica-
tion (GF)⇒ (EXT) or special cases for two elements only – the automated the-
orem provers were not able to produce proofs for the given problems. At first
sight this might appear to be somewhat surprising considering the simplicity
of some of the results. On the other hand, a comparison of the constructed
proof of Lemma 1.4 for two elements (see Appendix A.1), which consists of 710
lines, to the one-line proof we have given in Section 1.4.2 provides a possible
explanation. It seems to be the case that the explicit implementation of “set
theory” creates such a large overhead that even the simplest proofs become
very complicated. Already the construction of small sets (as they appear a lot

26 2 First-Order Automated Theorem Proving

in the proof of the Kannai-Peleg Theorem) is quite complex as the following
example shows. Consider the simple statement

{x2, x5, x6} ∼ {x2, x3, x4, x5, x6},

which is taken from the proof of the Kannai-Peleg Theorem (see Theorem 1.6).
In the framework as presented above, this line has to be expressed in a much
more complicated way by repeated function application to create the sets:

w(union(union(singleton(a2),singleton(a5)),singleton(a6)),

union(union(union(union(singleton(a2),singleton(a3)),singleton(a4)),

singleton(a5)),singleton(a6)))

&

w(union(union(union(union(singleton(a2),singleton(a3)),singleton(a4)),

singleton(a5)),singleton(a6)),

union(union(singleton(a2),singleton(a5)),singleton(a6)))

That the prover needed longer to build a proof for the special case of two
elements in (GF) ⇒ (EXT) than for the general results shows how additional
axioms can make the search for a proof more difficult, even though they are
supposed to make the task easier.

With these observations in mind, it is not so surprising anymore that au-
tomated provers struggle to create proofs in this particular framework. Thus,
we are also not very optimistic that faster or different systems can lead to
automatically created first-order proofs easily, unless one either finds a prover
that deals particularly well with this structure, or one develops a modification
of the framework that does not create so much overhead.

2.4 Summary

We have seen in this chapter that a first-order formalization of the Kannai-
Peleg Theorem is possible, but does unfortunately not lead to the desired
automated verification when given to first-order theorem provers.

The chapter provided an explanation of the formalization of the framework
of ranking sets of objects and of all axioms involved in the Kannai-Peleg
Theorem. We additionally crafted some further (simpler) problems in order
to explore the capabilities of the theorem provers with respect to ranking sets
of objects. Also their axioms were presented.

Table 2.1 exhibits the mostly negative results of our experiments with
Prover E . Other provers performed even worse on our formalization.

We have conjectured that the problems with automatically finding a proof
are mostly due to the large overhead created in the formalization by artificially
creating the set-element structure, in which sets are considered as elements
of the domain and therefore the size of the universe increases exponentially.
Thus, even if faster or better systems are eventually able to derive proofs

2.4 Summary 27

automatically in this framework, these objects will be highly unreadable as
the proof given in Appendix A.1 of an easy statement showed.

In the next chapter we are going to show, however, that a different ap-
proach employing propositional logic (instead of first-order logic) can over-
come some of the practical difficulties and will succeed in providing an auto-
mated verification of the Kannai-Peleg Theorem.

3

Theorem Proving Using a SAT Solver

3.1 Introduction

The approach to automated theorem proving in the field of social choice the-
ory presented in this chapter is due to Tang and Lin, who have proved some
major impossibility results (Arrow, Muller-Satterthwaite, Sen): using manual
inductive lemmas to reduce the theorems to small instances, they finally use
a satisfiability checker (or: SAT solver) to verify these base cases. Whereas in
their proceedings- [39] and their full paper on this approach [73] they concen-
trate on the inductive steps and proofs thereof, we present this novel proof
technique in this chapter by reporting their results for Arrow’s Theorem and
then extending and translating it to the setting of the Kannai-Peleg Theorem
with a strong focus on the computer-aided part, which was only introduced
on a rather conceptual level by Tang and Lin. We present the full axiom-
atization and describe the necessary steps to obtain a representation that is
accepted as the input to a SAT solver, which then does the actual verification.

What makes the new approach most valuable is the fact that base case
verification appears to be very efficient and flexible in the sense that it is very
easy to modify the axioms used in the theorems in order to look for stronger
or completely new results. This can be done, not only because the result for
the base case is potentially a good indication on whether to hope for the full
result, but also since in the cases where the inductive argument carries over it
will even yield the full result. Tang and Lin have already started working in
this direction and were able to weaken Arrow’s conditions, i.e., strengthen the
impossibility theorem. Also we have engaged in this kind of research and will
report our findings about a universal step and an automated and exhaustive
proof search in Chapters 4 and 5.

It is remarkable that Tang and Lin have been able to formulate the whole
base case of Arrow’s Theorem in propositional logic only; even though some
of the axioms intuitively are second-order statements. The trick they used was
to introduce “situations” as names for preference profiles, which transforms
the second-order axioms into first-order statements, which can then (because

30 3 Theorem Proving Using a SAT Solver

of the finiteness of the base case) be translated into propositional logic. We
are going to use a very similar approach as the axioms of the Kannai-Peleg
Theorem are stated in somewhat enriched22 second-order, too. The setting of
the Kannai-Peleg Theorem will, however, require a somewhat different treat-
ment since we also have to apply functions like union (∪) and singleton set
({·}) to sets and elements, respectively, whereas no functions needed to be
applied to Tang and Lin’s situations.

This chapter is structured into four sections. After this introduction we
are first reviewing Tang and Lin’s new proof of Arrow’s Theorem, before
we, in Section 3.3, turn to how their approach can be extended in order to
be applicable to the framework of ranking sets of objects in general, and the
Kannai-Peleg Theorem in particular. We are further going to lay out the full
formalization of this theorem and give details regarding our program and some
of its implementation-specific features. The last section of this chapter will be
devoted to additional insights and features, which our program and method
can offer.

3.2 Tang and Lin’s Proof Technique

As indicated, we are first going to recapitulate and briefly demonstrate Tang

and Lin’s initial result of re-proving Arrow’s Theorem [5].23 Before we can
show how they applied the new proof method to this particular theorem,
however, we have to briefly introduce some notation and concepts regarding its
substance: preference aggregation. After this, we will state Arrow’s Theorem,
give the inductive steps due to Tang and Lin, and, finally, exemplify the base
case formalization for the axiom of non-dictatorship.

3.2.1 Social Welfare Functions

Social welfare functions are the core concept of Arrow’s Theorem and, roughly
speaking, describe how n individuals can aggregate their individual prefer-
ences (assumed to be strict linear orders) to obtain a single common prefer-
ence, the social preference.

We use the following notation/definitions: A finite set of alternatives will
be denoted by A; and I = {1, . . . , n} shall be a finite set of individuals. As
stated above we will only consider preferences in the form of strict linear
orders (preference orderings) over all alternatives, and we write P for the set
of all these. Every voter has an individual preference ordering Pi ∈ P and so
the full picture will be an n-tuple 〈P1, P2, . . . , Pn〉 ∈ Pn, a preference profile.
The unique alternative that is ranked highest in a preference ordering P will
be called top(P).

22 There is also an order (i.e., a relation) on sets.
23 They also successfully used their technique to automatically verify the Muller-

Satterthwaite Theorem [46] as well as Sen’s Theorem [64].

3.2 Tang and Lin’s Proof Technique 31

With these prerequisites in place, we are able to make the concept of a
social welfare function precise as well as some properties that social welfare
functions can have and which we need to state Arrow’s Theorem.

Definition 3.1. A social welfare function is a function f : Pn → P , which as-
signs to any preference profile s = 〈P1, P2, . . . , Pn〉 a unique (social) preference
ordering f(s) ∈ P .

Definition 3.2. A social welfare function f : Pn → P is

1. unanimous (or Pareto efficient), if, whenever in a preference profile s =
〈P1, P2, . . . , Pn〉 all individuals agree on the ordering of two alternatives
a, b ∈ A, i.e., whenever a >Pi b for all i ∈ I, then the social welfare
function copies this ranking, i.e., a >f(s) b.

2. independent of irrelevant alternatives (IIA), if, whenever two preference
profiles s = 〈P1, P2, . . . , Pn〉, t = 〈P ′

1, P
′
2, . . . , P

′
n〉 agree on the ordering of

two alternatives a, b ∈ A per individual, i.e., if a >Pi b ⇐⇒ a >P ′
i
b for

all i ∈ I, then the social ordering of a and b agrees for both preference
profiles, i.e., a >f(s) b ⇐⇒ a >f(t) b.

3. non-dictatorial, if there is no individual i ∈ I such that for any preference
profile s = 〈P1, P2, . . . , Pn〉 the social welfare function just picks individual
i’s preference ordering, i.e., f(s) = Pi.

A social welfare function f : Pn → P that has all of the three above properties
will be said to satisfy Arrow’s conditions.

3.2.2 Arrow’s Theorem and the Reduction to its Base Case

Having set the stage, we are now in the position to state Arrow’s Theorem
and to report the inductive results due to Tang and Lin, which have made
the new computer-aided approach possible at all.

Theorem 3.3 (Arrow, 1950). There is no social welfare function for three
or more alternatives that is unanimous, IIA and non-dictatorial.

Tang and Lin have proved the following two lemmas, which together form
the inductive step in their proof of Arrow’s Theorem:24

Lemma 3.4 (Tang and Lin, 2008). For n ≤ 2,m ≤ 3, if there is a social
welfare function for n individuals and m + 1 alternatives satisfying Arrow’s
conditions, then there is one for n individuals and just m alternatives that
also satisfies all of Arrow’s conditions.

24 It is an interesting fact that already in his original paper [5] from 1950 Arrow

proved his theorem for the base case only and correctly mentions that this is
sufficient as it carries over to larger instances. But since his paper is very brief
about this detail, we do not know whether he was aware of the possibility of
inductive lemmas or was just thinking of his direct general proof, which was
published later [6].

He certainly did not provide any inductive step there.

32 3 Theorem Proving Using a SAT Solver

Lemma 3.5 (Tang and Lin, 2008). For n ≤ 2,m ≤ 3, if there is a social
welfare function for n + 1 individuals and m alternatives satisfying Arrow’s
conditions, then there is one for just n individuals and m alternatives that
also satisfies all of Arrow’s conditions.

Reading these two lemmas together and contrapositively, we get that if there is
no social welfare function satisfying Arrow’s conditions for two individuals and
three alternatives, then there is no such function for any number of individuals
and alternatives (|A| ≥ 3, |I| ≥ 2). But note that, strictly speaking, we would
have to consider the case of exactly one individual as well. It is, however, very
clear that in this case any unanimous social welfare function is automatically
dictatorial.

Hence, only a small base case remains to be checked:

Lemma 3.6 (base case of Arrow’s Theorem). For exactly three alter-
natives and two individuals there is no social welfare function that is unan-
imous, IIA and non-dictatorial.

As mentioned before, Tang and Lin used a computer to verify this base

case. They observed that a direct check of all |P|(|P|2) = 3!(3!
2) = 636 ≈ 1028

possible social welfare functions is, of course, not tractable. Hence they treated
this problem in two distinct and clever ways: First, they explicitly generated
all social welfare functions that are unanimous and IIA, and then checked for
non-dictatorship, all implemented as a constraint satisfaction problem with a
backtracking depth-first search (see Tang and Lin [39, 73] for details).

This approach, however, is not nearly as universal as their second tech-
nique, which we are going to concentrate on: a formalization of all axioms
and additional conditions in propositional logic and then using a SAT solver
to verify the result of the formalization. Following their brief description, we
were able to reproduce their results for the base case of Arrow’s Theorem.
We will briefly demonstrate the mechanics of this technique here; but then,
rather quickly, move forward and extend it in such a way that it applies to
the Kannai-Peleg Theorem.

3.2.3 Formalization of the Base Case of Arrow’s Theorem

The trick, in order to convert what are intuitively second-order axioms into
propositional logic, is moving to a kind of situation calculus, where prefer-
ence profiles are treated as primitives. Tang and Lin did this by introduc-
ing a “name” sP ∈ S for each preference profile P ∈ Pn, and then calling
these names “situations”. This enabled them to use predicates p(x, a, b, s) and
w(a, s), which intuitively stand for individual x ranking alternative a higher
than alternative b in situation s, and alternative a being ranked above alter-
native b in situation s according to the social welfare function, respectively. A
complete list of the axioms involved can be found in Tang and Lin [73] and
we are only demonstrating the conversion for the axiom of non-dictatorship

3.2 Tang and Lin’s Proof Technique 33

here (where a, b stand for alternatives in A; i for individuals in I; and s for
situations in S):

(ND) ¬∃i∀s (f(s) = Pi)

≡ ¬∃i∀s, a, b (p(i, a, b, s)↔ w(a, b, s)) .

For the additional requirement of an unrestricted domain, i.e., that every
preference profile is indeed represented by a situation, Tang and Lin remark
that this is coded easiest by representing the 3!2 = 36 situations (a situation
here represents a pair of strict linear orders, i.e., a pair of permutations, of
the three alternatives) explicitly:25

For all pairs of permutations 〈π, ρ〉 of the alternatives a, b, c ∈ A (these
are in a direct one-to-one correspondence with the strict linear orders on A)
we can define a corresponding situation sπ,ρ by

(SIT) p(1, π1, π2, sπ,ρ) ∧ p(1, π2, π3, sπ,ρ) ∧

p(2, ρ1, ρ2, sπ,ρ) ∧ p(2, ρ2, ρ3, sπ,ρ).

Observe that this is completely sufficient, since with the axioms defin-
ing p as a strict linear order, the other formulas like p(1, π1, π3, sπ,ρ) and
¬p(1, π2, π1, sπ,ρ) follow by transitivity and antisymmetry. Alternatively, one
could also have used the full description (of 36 · 2 · 32 = 648 literals) instead
of the axioms defining the strict linear order.26

The subsequent conversion to propositional logic is relatively straightfor-
ward when interpreting the predicates p(i, a, b, s) and w(a, b, s) as proposi-
tional variables (pi,a,b,s and wa,b,s) indexed by their arguments. As the do-
mains of the quantifiers are finite, these can then be translated to finite con-
junctions or disjunctions respectively. Hence, this whole procedure yields finite
formulas only with at most 972 different propositional variables (since there
are exactly 2 · 3 · 3 · 36 + 3 · 3 · 36 = 972 combinations of indices).

As an example, consider the formula for non-dictatorship again, which will
then have the form:

25 They also describe a way of formalizing the unrestricted domain by means of an
action swap(x, a, b), which interchanges the positions of a and b in the preference
ordering of individual x and thus yields any possible preference ordering from an
initial one S0 by a sequence of swapping operations. But even though this idea
is useful for first-order formulations (see for instance [32]), it is unclear how to
convert it to propositional logic, and, therefore, the direct coding of situations is
much easier here.

26
Tang and Lin chose an intermediate formalization and also explicitly gave the two
propositions p(1, π1, π3, sπ,ρ) and p(2, ρ1, ρ3, sπ,ρ), which would also have followed
by transitivity.

34 3 Theorem Proving Using a SAT Solver

¬∃i∀s, a, b (p(i, a, b, s)↔ w(a, b, s))

≡ ¬∃i∀s, a, b (pi,a,b,s ↔ wa,b,s)

∼= ¬
∨

i

∧

s,a,b

(pi,a,b,s ↔ wa,b,s)

≡
∧

i

∨

s,a,b

¬ (pi,a,b,s ↔ wa,b,s) .

There is one final step in the translation process which leads to prob-
lems as the formula for non-dictatorship exhibits: the standard conversion to
conjunctive normal form27 (applying De Morgan’s Law to move negations in-
wards and then using the distributive law) might only lead to an equivalent
formula that is exponentially larger than the original formula.28 Hence we use
the well known result that there is an equisatisfiable29 formula that is only
linearly larger. The technique to obtain such a formula is to introduce new
(auxiliary) variable symbols representing whole parts of the formula to con-
vert. In the example of the formula for non-dictatorship this means that we
replace ¬ (pi,a,b,s ↔ wa,b,s) by a single variable hi,a,b,s and add the additional
defining formulas for all i, a, b, s:

hi,a,b,s ↔ ¬ (pi,a,b,s ↔ wa,b,s)

≡ (hi,a,b,s ∨ ¬wa,b,s ∨ pi,a,b,s) ∧ (hi,a,b,s ∨ wa,b,s ∨ ¬pi,a,b,s) ∧

(¬hi,a,b,s ∨ wa,b,s ∨ pi,a,b,s) ∧ (¬hi,a,b,s ∨ ¬wa,b,s ∨ ¬pi,a,b,s).

We then, like Tang and Lin, instantiate the whole set of propositional
formulas using a computer, which yields a single formula in conjunctive normal
form with, in our case, a total of 36,612 different variables and 158,582 clauses.
If we denote this formula by ϕArrow the base case of Arrow’s Theorem can be
restated as the following simple lemma:

Lemma 3.7 (base case restated). The formula ϕArrow is unsatisfiable.

In order to verify this lemma we — again like Tang and Lin — fed ϕ
to the SAT solver zChaff [61] (an implementation of the Chaff algorithm by
Moskewicz et al. [45]), which returned surprisingly quickly (in less than one
second on a MacBook with 2.2GHz and 2GB RAM) that ϕ is not satisfiable.
This is precisely the desired result that Tang and Lin had obtained before.

27 A propositional formula is in conjunctive normal form if it is a conjunction of
disjunctions of literals, where literals are variable symbols or negations thereof.
Disjunctions of literals are also called clauses.

28 Consider the example ψ = (X1 ∧ Y1)∨ (X2 ∧ Y2)∨ · · · ∨ (Xn ∧ Yn), whose normal
form obtained by using the standard rules for conversion is ψ′ = (X1 ∨ · · · ∨
Xn−1 ∨Xn) ∧ (X1 ∨ · · · ∨Xn−1 ∨ Yn) ∧ · · · ∧ (Y1 ∨ · · · ∨ Yn−1 ∨ Yn).

29 Two formulas ϕ,ψ are equisatisfiable if and only if both formulae are satisfiable
or both are not. In other words, one formula has to be satisfiable if and only if
the other one is satisfiable.

3.3 Extended Approach for the Kannai-Peleg Theorem 35

3.3 Extended Approach for the Kannai-Peleg Theorem

First, recall the notation used in Chapter 1 and the Kannai-Peleg Theorem
as stated there in Section 1.4.2:

Theorem 3.8 (formerly Theorem 1.6). Let X be a linearly ordered set
with |X | ≥ 6. Then there exists no weak order � on X satisfying the
Gärdenfors principle (GF) and independence (IND).

Even though the setting of the Kannai-Peleg Theorem appears to be very
similar to the one of Arrow’s Theorem — in that it is also an impossibility
theorem about finite but arbitrarily large domains that uses second-order
quantification in its axioms — we could not find a way to directly apply Tang

and Lin’s method as it is. This is due to the requirement of having functions
and operators on X (such as singleton set) and on the space of subsets X
(such as union and complement), respectively, which we could not directly
encode in the language proposed by Tang and Lin. There is, however, a way
to avoid these issues: instead of coding sets within the language, we let the
program that generates the final formula handle them.

But before we get to those issues involved in the formalization of the base
case, we should first reduce the problem to its base case by stating and proving
the inductive step, which we are going to do in the following subsection.

3.3.1 Inductive Step

Somewhat different from Arrow’s Theorem, the inductive proof of the Kannai-
Peleg Theorem only requires one inductive step since the outmost universal
quantification only ranges over one natural number (the cardinality of X)
instead of two (the number of individuals and the number of alternatives).
Recall that for the case of Arrow’s Theorem the idea was to construct a social
welfare function for a smaller domain from a larger one by somehow restricting
it. The very same idea is used here, where we use the usual restriction of a
relation to a subset of its domain and show that it still fulfills the necessary
axioms.

Lemma 3.9. If X is a linearly ordered set with n + 1 elements (n ∈ N) and
there is a corresponding weak order � on X that satisfies the Gärdenfors
principle (GF) and independence (IND), then we can find another linearly or-
dered set Y with n elements only, as well as a corresponding weak order on
Y := 2Y \ {∅} satisfying the same axioms (GF) and (IND).

Proof. Let n be a natural number and X be a set with n+1 elements. Without
loss of generality, we may write X = Xn ·∪ {xn+1} as the disjoint union
of an n-element set Xn = {x1, x2, . . . , xn} and the singleton {xn+1}. Let
furthermore � be a weak order on X that satisfies the Gärdenfors principle
(GF) and independence (IND). It is clear that Y := Xn is a linearly ordered set

36 3 Theorem Proving Using a SAT Solver

containing n elements and thus we are going to show that the restriction �n

of � to Y = 2Y \ {∅} ⊆ X is a weak order again and also fulfills the axioms
(GF) and (IND).

Formally, we define the restriction �n of � to Y by setting

A �n B ⇐⇒ A � B (3.1)

for all A,B ∈ Y.
Showing that all three axioms for �n being a weak order are true is

straightforward.30 Therefore, we only give the proof for transitivity as an
exemplification: let A,B,C be sets in Y such that A �n B and B �n C.
Reading (3.1) from left to right, we see that also A � B and B � C hold, and
since A,B,C are subsets of Y ⊆ X , they are also in X . Hence, we can use
transitivity of � and obtain A � C, which finally — reading (3.1) from right
to left — gives A �n C.

Now, let us turn to the Gärdenfors principle (GF) and independence (IND):

• (GF): We show the claim for (GF1); the proof for (GF2) works analogously.
Let A ∈ Y and x ∈ Y be a non-empty subset and an element of Y ,
respectively, such that x >̇ a for all a ∈ A. Since A is also a member of X
and so is x of X , we can use (GF1) for �, which yields

A ∪ {x} ≻ A.

From this it directly follows by the definition of �n — as given in (3.1) —
that A ∪ {x} ≻n A since both A ⊆ Y and A ∪ {x} ⊆ Y are in Y.

• (IND): Let A,B ∈ Y be non-empty subsets of Y such that A ≻n B. Let
furthermore x ∈ Y \ A ∪ B be an element of Y that is neither already
contained in A nor in B. Since A and B are clearly also members of X ,
and similarly is x of X \A ∪B, we can use (IND) for � to obtain

A ∪ {x} � B ∪ {x}.

Again, the very definition of �n — as given in (3.1) — implies that also
A ∪ {x} �n B ∪ {x}; and so we are done. ⊓⊔

The similarities between the parts of the proof for different axioms already
suggest the existence of a more general inductive step, which is applicable to
a whole class of axioms; and indeed, in Chapter 4, we are going to prove such
a theorem and explore its consequences, which finally enable an automated
theorem search as described in Chapter 5. But for now, Lemma 3.9 suffices
and reading it contrapositively yields the following corollary, which is the final
form of the inductive step for the Kannai-Peleg Theorem.

30 Actually, these and also the axioms (GF) and (IND) are automatically true by their
mere logical form together with the fact that Y ⊆ X and Y = 2Y \ {∅}. This idea
will be explored further and proved in Chapter 4.

3.3 Extended Approach for the Kannai-Peleg Theorem 37

Corollary 3.10. If, for any linearly ordered set Y with n elements, there
exists no weak order on Y = 2Y \ {∅} satisfying the Gärdenfors principle
(GF) and independence (IND), then also for any linearly ordered set X with
|X | = n+1 there is no weak order on X = 2X \{∅} that satisfies these axioms.

Proof. This corollary is nothing but the contraposition of Lemma 3.9. ⊓⊔

The remaining base case, which will be stated in the next section below,
now has to be converted to propositional logic such that it can be fed to a
SAT solver. In the next subsection we will therefore describe all the necessary
steps to transform the axioms into a propositional language as it is accepted
by a SAT solver.

3.3.2 Base Case Formulation in Propositional Logic

By the inductive step as exhibited and proved in Lemma 3.9 we are only left
with a rather small base case of six elements:

Lemma 3.11 (Base case of the Kannai-Peleg Theorem). Let X be a
linearly ordered set with exactly 6 elements. Then there exists no weak order
� on X satisfying the Gärdenfors principle (GF) and independence (IND).

It might seem tempting to perform a direct check of the involved axioms
on all weak orders over the non-empty subsets of a six-element space. This,
however, can be seen to be practically impossible as there are p(2|X| − 1) =
p(26 − 1) = p(63) ≈ 1.5254 · 1097 such orderings.31

Therefore, we should stick to the idea of transforming the axioms of the
Kannai-Peleg Theorem such that they can be checked by a SAT solver which
operates on propositional formulas in conjunctive normal form only. We will
describe in the following how instances of the axioms as stated in Sections 1.3
and 1.4 can be converted to that language.

The main challenge in the conversion of the axioms, again, is the second-
order quantification (this time paired with functions and relations like union
and element of) as it appears, for instance, in the Gärdenfors principle (GF)
and independence (IND). In contrast, first-order quantifications are not prob-
lematic because of the finite instances we are dealing with: we can simply
replace universal and existential quantifiers by conjunctions and disjunctions,
respectively.

It will be sufficient for our formalization to have two kinds of propositions
only: w(A,B) and l(x, y) (corresponding to propositional variables wA,B and

31 The notation p(n) is used for the number of weak orders on a finite set with n
elements. This number can be computed following Bailey [8], or via the corre-
sponding sequence A000670 in the on-line encyclopedia of integer sequences [66].
The exact number (calculated with Mathematica [79]) of weak orderings is 1525
3777976254320482680028798302887920587781886722393040786663126590823609
598384497028003529713213.

38 3 Theorem Proving Using a SAT Solver

lx,y) with intended meanings A is ranked at least as high as B by the weak
order � (or short: A � B), and x is ranked at least as high as y by the linear
order ≥̇ (or short: x ≥̇ y), respectively. This then leads to a maximum of
|X |2 + |X |2 = (26 − 1)2 + 62 = 4005 different propositional variables for the
base case of the Kannai-Peleg Theorem.

As indicated already, the axioms for a linear order on X are entirely
unproblematic as they only contain first-order quantifications and, thus, they
can be transformed as follows:

(LIN) (∀x ∈ X) x ≥̇ x (reflexivity)

∼=
∧

x∈X

lx,x,

(∀x ∈ X)(∀y ∈ X)
[

x 6= y → x ≥̇ y ∨ x ≤̇ y
]

(completeness)

∼=
∧

x∈X

∧

y∈X

[x 6= y → lx,y ∨ ly,x]

≡
∧

x∈X

∧

y∈X
y 6=x

[lx,y ∨ ly,x] ,

(∀x ∈ X)(∀y ∈ X)(∀z ∈ X)
[

x ≥̇ y ∧ y ≥̇ z → x ≥̇ z
]

(transitivity)

∼=
∧

x∈X

∧

y∈X

∧

z∈X

[(lx,y ∧ ly,z)→ lx,z]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[¬ (lx,y ∧ ly,z) ∨ lx,z]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[¬lx,y ∨ ¬ly,z ∨ lx,z] ,

(∀x ∈ X)(∀y ∈ X)
[(

x ≥̇ y ∧ y ≥̇ x
)

→ x = y
]

(antisymmetry)

∼=
∧

x∈X

∧

y∈X

[(lx,y ∧ ly,x)→ x = y]

≡
∧

x∈X

∧

y∈X

[x 6= y → ¬ (lx,y ∧ ly,x)]

≡
∧

x∈X

∧

y∈X
y 6=x

[¬lx,y ∨ ¬ly,x] .

We should remark here that, by the above conversion, we even got rid of the
equalities and inequalities by treating them within the quantification domains.

3.3 Extended Approach for the Kannai-Peleg Theorem 39

The axioms for a weak order on X , which only contain simple second-order
quantifications,32

(WEAK) (∀A ∈ X) A � A,

(∀A ∈ X)(∀B ∈ X) [A 6= B → A � B ∨ A � B] ,

(∀A ∈ X)(∀B ∈ X)(∀C ∈ X) [A � B ∧B � C → A � C]

can similarly be rewritten as

(WEAK)
∧

A∈X

wA,A,

∧

A∈X

∧

B∈X
B 6=A

[wA,B ∨ wB,A] ,

∧

A∈X

∧

B∈X

∧

C∈X

[¬wA,B ∨ ¬wB,C ∨ wA,C] .

Note, that, due to the finiteness of X (and thus also X), the derived
formulas above are actually finite objects and can therefore be instantiated by
hand (which would require a lot of effort) or using a computer. Furthermore,
only very little or no work was needed to convert them to conjunctive normal
form, as we can see from the conversions above.

The main axioms (GF) and (IND) appear to be more difficult to transform
completely because of functions like singleton set {·} : X → X and set union
∪ : X ×X → X , which occur within these axioms. In fact, however, the same
simple conversion technique as above can be applied since we are going to take
care of those (and similar) functions automatically in our computer program
for the instantiation of the axioms. The exact way of how we do this will
be described in the following Section 3.3.3 and for now we treat terms like
A∪B as if they were just the corresponding objects from the functions range,
i.e., images under the respective functions.

This leads to the following conversion of (GF1):

32 Simple, in the sense that the variables bound by them only occur in order relations
and (in-)equalities, but not in functions (as we will see is the case for (GF) and
(IND)).

40 3 Theorem Proving Using a SAT Solver

(GF1) (∀A ∈ X)(∀x ∈ X)[((∀a ∈ A)x >̇ a)→ A ∪ {x} ≻ A]

≡ (∀A ∈ X)(∀x ∈ X)[((∀a ∈ A)x ≥̇ a ∧ a �̇ x)→

(A ∪ {x} � A ∧ A � A ∪ {x})]

∼=
∧

A∈X

∧

x∈X

[(

∧

a∈A

lx,a ∧ ¬la,x

)

→
(

wA∪{x},A ∧ ¬wA,A∪{x}

)

]

≡
∧

A∈X

∧

x∈X

[

¬

(

∧

a∈A

lx,a ∧ ¬la,x

)

∨
(

wA∪{x},A ∧ ¬wA,A∪{x}

)

]

≡
∧

A∈X

∧

x∈X

[(

∨

a∈A

¬lx,a ∨ la,x

)

∨
(

wA∪{x},A ∧ ¬wA,A∪{x}

)

]

≡
∧

A∈X

∧

x∈X

[((

∨

a∈A

¬lx,a ∨ la,x

)

∨ wA∪{x},A

)

∧

((

∨

a∈A

¬lx,a ∨ la,x

)

∨ ¬wA,A∪{x}

)]

,

where the last three steps only serve the purpose of converting the formula to
conjunctive normal form.

The remaining problematic parts of the formula are the propositional vari-
able index A ∪ {x}, and the disjunction domain criterion a ∈ A. In order to
write out the formula explicitly (which we need to do to be able to feed it
to a SAT solver) we have to determine which set is represented by A ∪ {x}
and also decide whether a ∈ A for any a ∈ X . In different words, what we
need is explicit access to the elements of a set and also we have to be able to
manipulate them. This would theoretically be possible by hand; practically,
however, the instantiation of the formula is way too large to be written out
manually.33 Therefore, we need a computer program for the final conversion
step, which we are going to describe in the following section.

The conversion of (GF2) works analogously and yields:

33 Just for (GF1), this procedure yields a propositional formula with a total number
of

n
∑

k=1

[(

n

k

)

· n · (2 · (2k + 1))

]

= 2n ·
n
∑

k=1

[

2k

(

n

k

)

+

(

n

k

)]

literals. This corresponds to 5364 literals for the base case of the Kannai-Peleg
Theorem (n = 6).

3.3 Extended Approach for the Kannai-Peleg Theorem 41

(GF2) (∀A ∈ X)(∀x ∈ X) [((∀a ∈ A)x <̇ a)→ A ∪ {x} ≺ A]

∼=
∧

A∈X

∧

x∈X

[((

∨

a∈A

¬la,x ∨ lx,a

)

∨ wA,A∪{x}

)

∧

((

∨

a∈A

¬la,x ∨ lx,a

)

∨ ¬wA∪{x},A

)]

,

again leaving us with the two critical terms A ∪ {x} and a ∈ A.
The axiom of independence (IND) can also be transformed in the above

fashion by first using finiteness to replace the quantifiers and the orders, and
then normalizing the formula to conjunctive normal form:

(IND) (∀A,B ∈ X)(∀x ∈ X \ (A ∪B)) [A ≻ B → A ∪ {x} � B ∪ {x}]

≡ (∀A,B ∈ X)(∀x ∈ X \ (A ∪B))[(A � B ∧B � A)→

A ∪ {x} � B ∪ {x}]

∼=
∧

A,B∈X

∧

x∈X
x/∈(A∪B)

[

(wA,B ∧ ¬wB,A)→ wA∪{x},B∪{x}

]

≡
∧

A,B∈X

∧

x∈X
x/∈(A∪B)

[

¬(wA,B ∧ ¬wB,A) ∨ wA∪{x},B∪{x}

]

≡
∧

A,B∈X

∧

x∈X
x/∈(A∪B)

[

(¬wA,B ∨ wB,A) ∨wA∪{x},B∪{x}

]

≡
∧

A,B∈X

∧

x∈X
x/∈(A∪B)

[

¬wA,B ∨wB,A ∨ wA∪{x},B∪{x}

]

.

The problematic terms here are x /∈ (A ∪ B), A ∪ {x} and B ∪ {x}. But,
as we will see, they can — just like the critical terms mentioned before —
be handled by our implementation of a program that writes out the axioms
explicitly.

3.3.3 Instantiation of the Axioms on a Computer

In order to write out the formulas of the previous section explicitly, we make
use of a computer program, which we implemented in the programming lan-
guage Java [67]. This section discusses the implementation and, in particular,
presents the methods employed to cater for previously problematic expres-
sions, like A ∪ {x} and a ∈ A.

First note what the prescribed format for the output of our generating
program has to be. Like other SAT solvers, zChaff [61] works on input files
written according to the DIMACS CNF format [18]. In a few words, this for-
mat requires the propositional variables to be represented by natural numbers
(starting from 1, since 0 is used as a separator) with a minus (-) in front for

42 3 Theorem Proving Using a SAT Solver

negated literals. Furthermore, the whole file needs to be in conjunctive normal
form: it has to contain exactly one clause per line.

In the following, we will describe how we achieved a formulation of the
axioms in this target format. The main idea is to fix an enumeration of all
propositional variables (of type lx,y and wA,B with x, y ∈ X and A,B ∈
X) by first enumerating sets and elements and then combining numbers of
pairs of these. The numberings will be designed in such a way that functions
and relations like union and element of can be applied to numbers directly,
yielding numbers of the corresponding images or a truth value, respectively.
Quantifiers will then correspond to iterations over their respective domains
and easily readable source code will be capable of instantiating the axioms.
An instructive example of source code can be found in Appendix B.1, but
will be referred to later again, when more has been said about the particular
enumerations we used.

Since the numberings of the items under consideration (here: elements,
sets and later propositional variables) form the core of our implementation,
we start the translation process by first fixing an (arbitrary) numbering of the
n elements x ∈ X , i.e., a bijective function cn : X → {0, 1, . . . , n − 1}.34 For
the Kannai-Peleg Theorem with its six elements the codes will hence range
from 0 to 5.

We can then specify the corresponding numbering of sets in X . This re-
quires special attention because we want to define it in such a way that treat-
ing the problematic terms (as mentioned above) is as easy as possible. An
apparent way to do this is by looking at a set as its characteristic function
and converting the corresponding finite string of zeros and ones to a natural
number.

Definition 3.12. Let X contain n elements, n ∈ N.

• Then the size-n characteristic string of a set A ∈ X is the vector χn(A) :=
(χA(0), χA(1), . . . , χA(n− 1)), where

χA(i) =

{

1, if c−1
n (i) ∈ A,

0, otherwise,

for any i ≤ n− 1.
• The size-n code of A is the natural number c′n(A) represented by the size-

n characteristic string of A decremented by one,35 i.e., it is given by the
bijective function c′n : X → {0, 1, . . . , 2n − 2},

c′n(A) := int(χn(A)) − 1,

34 In contrast to the propositional variables, there are no numbering constraints for
the elements and so their numbers are allowed to start from 0.

35 Since X does not contain the empty set, which would have 0 as its code, all the
codes are shifted downwards by 1.

3.3 Extended Approach for the Kannai-Peleg Theorem 43

with int(χn(A)) being the integer value of χn(A), i.e.,

int(χn(A)) =

n−1
∑

i=0

χA(i) · 2i.

If the size of X as well as the type of argument (element or set) is clear from
the context, we will, for any x ∈ X and A ∈ X , refer to the size-n codes cn(x)
and c′n(A) simply by #(x) and #(A), respectively.

But let us quickly look at an example to make things clearer:

Example 3.13. For the case of the Kannai-Peleg Theorem, we have 6 elements
in X , say X = {a, b, c, d, e, f}. As described, we number them from 0 to
n− 1 = 5, say

[

a b c d e f

0 1 2 3 4 5

]

.

The size-6 characteristic string of, for example, the set A := {a, c, f} ∈ X
then is the vector χ6(A) = (χA(0), χA(1), . . . , χA(5)) = (1, 0, 1, 0, 0, 1) and,
thus, the size-6 code of A is given by

c′6(A) := int(χ6(A)) − 1

=

n−1
∑

i=0

χA(i) · 2i − 1

= 1 · 20 + 0 · 21 + 1 · 22 + 0 · 23 + 0 · 24 + 1 · 25 − 1

= 1 + 4 + 32− 1 = 36.

In total, this procedure gives us a numbering from 0 to 62 of the 26 − 1 = 63
non-empty sets in X .

The benefit of our particular numbering is that our program can conve-
niently perform operations (e.g., union and complement) on the size-n codes
directly. Internally on a digital computer, the codes have to be stored in binary
anyway and we can take advantage of this fact and manipulate these codes.
Obtaining an explicit representation of an expression like A ∪ {x} is possible
by just creating the code for {x} from the one for x, and then constructing
the union together with the code for A. In the following, we give some al-
gorithmic descriptions of functions, like the aforementioned union function,
that we used in our implementation.

Definition 3.14. Let X contain n elements, n ∈ N.

• The size-n union of two size-n codes j = #(A) and k = #(B) of the sets
A,B ∈ X is given by

∪(j, k) = int
(

max
(

int−1(j + 1), int−1(k + 1)
))

− 1,

where max is the usual bitwise maximum.

44 3 Theorem Proving Using a SAT Solver

• The size-n complement of a size-n code j = #(A) of a set A ∈ X is given
by

inv(j) = int
(1− int−1(j + 1)

)

− 1,

where 1 = (1, 1, . . . , 1) ∈ Nn.
• The size-n singleton set of a size-n code j = #(x) of an element x ∈ X is

given by
single(j) = int (ej)− 1,

where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn is the j-th standard base vector of
Nn.

• The size-n truth value of whether a set A ∈ X contains an element x ∈ X
is given by

∈ (j, k) = (int−1(j + 1))k

for their respective size-n codes j = #(A) and k = #(x).

It should be clear that these functions indeed serve their intuitive purpose,
i.e., that for example ∪(#(A),#(B)) indeed gives the code of the usual set
union A ∪ B. We do therefore not provide all proofs here, but just support
this intuition with an example:

Example 3.15. Consider again a set X = {a, b, c, d, e, f} with the numbering

[

a b c d e f

0 1 2 3 4 5

]

as well as the subset A := {a, c, f} ∈ X with size-6 characteristic string
χ6(A) = (1, 0, 1, 0, 0, 1) and, thus, the size-6 code #(A) = c′6(A) = 36.
Now take also into account a second subset B := {c, e} ∈ X with size-
6 characteristic string χ6(B) = (0, 0, 1, 0, 1, 0) and, thus, the size-6 code
#(B) = c′6(B) = 19. We can then compute

∪(36, 19) = int
(

max
(

int−1(36 + 1), int−1(19 + 1)
))

− 1

= int (max ((1, 0, 1, 0, 0, 1), (0, 0, 1, 0, 1, 0)))− 1

= int ((1, 0, 1, 0, 1, 1))− 1

= 53− 1 = 52,

which represents the set {a, c, e, f} = A ∪B.

Similar functions and operations can be constructed analogously or by
combining already defined ones.36

36 For instance, size-n intersection can be defined in terms of size-n union and size-n
complement by De Morgan’s law, i.e.,

∩(j, k) = inv (∪ (inv(j), inv(k)))

for any pair (j, k) of size-n codes of sets in X .

3.3 Extended Approach for the Kannai-Peleg Theorem 45

With the codes of subsets and elements as well as some operations on these
codes defined, we can turn to the encoding of propositional variables. Let us
denote the set of all propositional variables for a given size n of X by Vn (recall
that we have the types lx,y and wA,B with x, y ∈ X and A,B ∈ X). As every
such propositional variable is indexed by either two elements from X or two
sets from X , we can use the following bijective function to encode all possible
propositional variables as natural numbers in the range {1, 2, . . . , n2 +m2}.

Definition 3.16. Let X contain n elements, n ∈ N, and denote the car-
dinality of X = 2X \ {∅} by m(= 2n − 1). Then the size-n encoding
encn(p) of a propositional variable p ∈ Vn is given by the bijective function
encn : Vn → {1, 2, . . . , n2 +m2},

encn(p) :=

{

#(x) · n+ #(y) + 1, if p is of type lx,y with x, y ∈ X,

#(A) ·m+ #(B) + n2 + 1, if p is of type wA,B with A,B ∈ X .

By this definition, the function encn just enumerates all pairs of elements first
and then all pairs of sets second, each set in a lexicographic fashion. But any
other bijective37 function (as long as it is computable with reasonable effort)
would have sufficed, too.

To support this explanation of the encoding function encn we give another
example:

Example 3.17. Like in the previous example 3.15 consider the set X =
{a, b, c, d, e, f} with the numbering

[

a b c d e f

0 1 2 3 4 5

]

as well as the subsets A := {a, c, f} with #(A) = 36 and B := {c, e} with
#(B) = 19. If we want to encode the propositional variable wA,B (meaning
that A is at least as good as B), then we calculate

enc6(wA,B) = #(A) ·m+ #(B) + n2 + 1 = 36 · (26 − 1) + 19 + 62 + 1 = 2324.

For propositional symbols of type lx,y we, for instance, have

enc6(lf,f) = #(f) · n+ #(f) + 1 = 5 · 6 + 5 + 1 = 36, and

enc6(la,b) = #(a) · n+ #(b) + 1 = 0 · 6 + 1 + 1 = 2.

With all these tools it is now entirely unproblematic to instantiate the
formulas from Section 3.3.2 automatically. All that needs to be done is trans-
lating them to our specific source code style. Quantifiers then correspond to
for loops over all elements or sets, respectively, and restrictions of the quan-
tification domain as well as operations on elements and sets can be taken care
of by functions like to the ones described in Definition 3.14. For an illustrating
example of source code the reader is referred to Appendix B.1.

37 Surjectivity is not even strictly needed, but makes the whole representation more
compact and avoids loading extra work on the SAT solver later, which would
assign arbitrary values to the left out variables.

46 3 Theorem Proving Using a SAT Solver

3.3.4 Verification of Instances using a SAT Solver

In the previous subsections 3.3.2 and 3.3.3 we described how to generate a
(long) formula in propositional logic representing the base case of the Kannai-
Peleg Theorem (see Lemma 3.11). Let us denote this formula by ϕKP, with
the index KP standing for ‘Kannai-Peleg’. The formula ϕKP describes a model
with a linear order on its universe of six elements and a weak order satisfying
the axioms (GF) and (IND) on the set of the non-empty subsets of its universe.38

If such a model exists, ϕKP has a satisfying assignment39 (the explicit descrip-
tion of both orders) and, thus, a SAT solver will discover this (assuming that
there are no time and memory bounds).40 If, conversely, such a model does
not exist — which is exactly the statement of the Kannai-Peleg Theorem —
then ϕKP is unsatisfiable and, again, a SAT solver will theoretically be able
to detect this.

The base case of the Kannai-Peleg Theorem is therefore equivalent to the
following lemma:

Lemma 3.18 (base case restated). The formula ϕKP is unsatisfiable.

Indeed, feeding ϕKP (as generated by our program) to the SAT solver
zChaff returns the correct result (‘UNSAT’) in about 5 seconds (see Ap-
pendix B.3) and, hence, the automatic verification of this theorem is complete.

3.4 Additional Features of our Implementation

The output of a SAT solver like zChaff usually contains more information than
just the mere satisfiability status of a formula. In particular, any satisfiable
instance will lead to the production of a satisfying assignment, which can be
used to gain a better understanding of the problem encoded in the formula.
But also for unsatisfiable instances additional output is produced. We will
see that this output can be considered a proof object allowing for automatic
verification of the unsatisfiability.

In the next two subsections we briefly explain how these two kinds of
additional output can be analyzed to provide helpful insights concerning the
Kannai-Peleg Theorem in particular and also arbitrary encoded problems of
this sort in general.

38 Strictly speaking, of course, the model can be much larger, but it has to contain
the model we described as a substructure.

39 A satisfying assignment is a mapping v : Vn → {0, 1} such that the truth value
of the whole formula is 1.

40 Some SAT solvers even return a satisfying assignment that can then be “decoded”
into a human-readable description of the model. How exactly this can be done
will be laid out in Section 3.4.1.

3.4 Additional Features of our Implementation 47

3.4.1 Models for Possibilities

As indicated already, when the SAT solver zChaff judges a formula to be
satisfiable it automatically outputs the satisfying assignment it found. Since
in our setting the individual propositional variables stand for propositions
of the type A � B with A,B ∈ X and x ≥̇ y with x, y ∈ X , respectively,
we can convert this satisfying assignment, which is nothing but an involved
representation of the linear order ≥̇ and the corresponding weak order �, to
a form that is more common in mathematics and human-readable.

Since we are exclusively dealing with linear and weak orders, a natural
description of the orders can be written down in a linear fashion in the style
x1�x2�x3� . . .�xn. Here, each occurrence of the symbol � stands for a rela-
tion symbol; for the linear order this is only the strict relation >̇, whereas for
the weak order both the strict relation ≻ as well as the indifference relation ∼
are possible.

We implemented a procedure to automatically convert a given satisfying
assignment (in the form as printed by the SAT solver zChaff)41 to this much
more intuitive notation. Thereby, we added an important feature to our pro-
gram: examples of orders satisfying a certain set of axioms can now easily be
generated in an intuitive format. The actual conversion procedure works by
first sorting the elements and sets according to their order using a standard
sorting method42 that only requires pairwise comparisons, and then listing
them in this new order (again using pairwise comparisons to find out whether
neighboring items are strictly ordered or considered equal). The pairwise com-
parisons can be carried out by inspecting the truth values of the corresponding
two propositions in the satisfying assignment. So, for instance, to find out how
xi and xj are ranked we have to look at the truth values of lxi,xj and lxj ,xi

(telling us whether xi >̇ xj or xj >̇ xi).
43 Finding the corresponding number

of the propositional symbols can be taken care of by the same methods used
for encoding the input formula (see Section 3.3.3).

In order to achieve an even better readability of the model, we also added
a procedure generating a second representation, with the elements renamed
according to their position in the order ≥̇.

For the specific case of the Kannai-Peleg Theorem, the above method can
be used to automatically generate a “counterexample” to the Kannai-Peleg
Theorem for 5 elements, i.e., a weak order satisfying the axioms (GF) and

41 Alternatively, also the SAT solver PrecoSAT [13] can be used.
42 We used the Java implementation of the standard sorting method mergesort.
43 As we know that ≥̇ is a linear order, a single check of just one truth value would

suffice. Since, for a weak order, however, this is no longer the case and also to
avoid bugs in our implementation, we chose this slightly more costly, but general
option.

48 3 Theorem Proving Using a SAT Solver

(IND), thereby showing that 6 is indeed the smallest size of X leading to the
impossibility.44 The model returned by the SAT solver is the following:45

• Elements:
x1 >̇ x2 >̇ x3 >̇ x4 >̇ x5,

• Sets:
{x1} ≻ {x1, x2} ≻ {x1, x3} ∼ {x1, x2, x3} ≻ {x1, x4} ∼ {x1, x2, x4} ∼
{x1, x3, x4} ∼ {x1, x2, x3, x4} ≻ {x2} ≻ {x2, x3} ≻ {x2, x4} ∼ {x3} ∼
{x2, x3, x4} ≻ {x3, x4} ≻ {x4} ≻ {x1, x5} ∼ {x1, x2, x5} ∼ {x1, x4, x5} ∼
{x1, x2, x4, x5} ∼ {x1, x3, x5} ∼ {x1, x2, x3, x5} ∼ {x1, x3, x4, x5} ∼
{x1, x2, x3, x4, x5} ≻ {x2, x5} ∼ {x2, x4, x5} ∼ {x2, x3, x5} ∼
{x2, x3, x4, x5} ≻ {x3, x5} ∼ {x3, x4, x5} ≻ {x4, x5} ≻ {x5}.

In this representation it can be checked quickly that indeed all the sets are
ordered only accordingly to their maximal and minimal elements as it was
predicted by Lemma 1.4.

We will make further use of this convenient procedure in Section 5.6 (where
we analyze the impossibility theorems found by our theorem search) for the
construction of models that can show certain axioms to be compatible and also
logically independent, i.e., that none of the axioms follows from the others.

3.4.2 Verification of the Unsatisfiability of Formulas

The SAT solver zChaff is able to generate a resolution-style proof object called
proof trace.46 This proof trace can then be checked by a third-party verification
system. It is evident that this is a very helpful feature in order to detect
potential bugs in the SAT solver and to increase the degree of confidence in the
unsatisfiability.47 In our implementation, we integrated the verification system
zverify df as included in the zChaff distribution and successfully verified all
unsatisfiable instances found.48

Our program generating the formula to be checked by the SAT solver
could, of course, contain errors, too. But even though it would possibly also

44 Recall the inductive step, Lemma 3.9, which — given that for 5 elements we can
find a model — entails the existence of models for all sizes smaller than 5.

45 The original and complete output of our program can be found in Appendix B.2.
46 A good documentation and examples of this format are presented in Section 2.2f

of a paper by Weber and Amjad about how to integrate a SAT solver with
higher-order logic (HOL) theorem provers [77].

47 For any satisfiable instance, zChaff runs a verification procedure automatically
since this can be done in linear time (verify for every clause whether at least one
of its literals is set to true) and the corresponding source code is short and easy
to check manually.

48 For technical reasons, all clauses containing both polarities of a literal (i.e., p and
¬p) have to be removed prior to verification. Note that these clauses do not affect
the satisfiability of a formula as they are automatically true for any assignment.

3.5 Summary 49

be interesting to look into ways of formally verifying our source code, this
does not seem to give any major new insights: the code (see Appendix B.1
for excerpts), which is easily seen to be very close to the formula schemes as
derived in Subsection 3.3.2, can without any difficulties be compared to these
by hand.

3.5 Summary

In this chapter we have seen how a SAT solver can be used to automatically
verify small instances of a problem, which lead to a proof of the full result
together with a suitable lemma.

We have recapitulated how Tang and Lin applied this method, which
they had developed, to Arrow’s Theorem by first providing an inductive step
and then formalizing the corresponding base case in propositional logic. Sub-
sequently, we extended the method to be able to treat problems in the frame-
work of ranking sets of objects and, in particular, to automatically verify the
Kannai-Peleg Theorem. For this we — just like Tang and Lin — proved an
inductive step and verified the base case on a computer using a SAT solver
on an automatically created propositional instance. For the formalization in
propositional logic, the main challenge laid in handling second order quan-
tification over sets in such a way that functions like union and relations like
element of could be applied to the sets. Our solution to this problem, the
implementation of the program capable of automatic instantiation of axioms
in the field of ranking sets of objects, was described in detail.

We closed with explanations and observations of additional features of our
software, viz. the automated construction of orders satisfying a set of axioms,
and the automated verification of unsatisfiabilities as found by the SAT solver.

In the following two chapters we will show how to generalize the method-
ology introduced in this chapter to a wide range of axioms and therefore
impossibility theorems.

4

Reduction of Impossibilities to Small Instances

4.1 Introduction

The technique presented in the previous chapter is so appealing as it can very
quickly be transferred to similar impossibility theorems. More importantly,
already Lin and Tang [39] remarked that reversing the order of their inductive
proofs, i.e., by looking at the base case first (without having an inductive
step ready), can help guide the search for new results. We will take this idea
one step further and provide a universal step that can directly serve as the
inductive step for a large class of axioms. This way, it will be sufficient to
only check base cases in order to find new impossibility theorems and this
can be done very efficiently on a computer, as we have experienced for the
Kannai-Peleg Theorem.49 We will prove a Preservation Theorem, which says
that certain axioms are preserved in specific substructures. This is exactly
what we need since we want axioms to be preserved when moving from a
larger linearly ordered set to a smaller one (cf. Lemma 3.9). Reading this result
contrapositively, does then give our universal step, which reduces impossibility
theorems to small instances.

For the proof of the universal lemma we have to proceed in the framework
of model theory in order to have access to the syntactic as well as semantic
features of axioms. We will therefore in Section 4.2 first describe a many-
sorted language for our specific problem of ranking sets of objects, before
we give a weak version of the universal lemma in Section 4.3, which is a
consequence of the well-known Loś-Tarski Theorem for first-order logic and
thus does not require any problem-specific insights. In Section 4.4 we make use
of our particular problem structure and prove our main result Theorem 4.13
directly, which has the stronger form of our universal step as a corollary. This
(strong) universal step is then powerful enough to cater for all the axioms
from the literature that we were able to formalize in our language and will

49 Further evidence will be given in Chapter 5.

52 4 Reduction of Impossibilities to Small Instances

then finally enable us to carry out a fully automated theorem search, which
we are going to describe in the following Chapter 5.

4.2 The Language MSLSP for Preferences over Sets

A natural and well-understood language for our problem domain is many-
sorted (first-order) logic, which has, compared to first-order logic, more and
different quantifiers (allowing for quantification over different domains con-
taining the elements of a respective sort), but is still reducible to first-order
logic. Apart from the quantifiers, many-sorted logic is practically equivalent
to first-order logic50 and thus many results (e.g., soundness, completeness,
compactness, Löwenheim-Skolem properties, etc.) can be transferred from
first-order logic or can be directly proven. Later on, we will also transfer one
direction of a result (the Loś-Tarski Theorem) from standard (i.e., first-order)
model theory to many-sorted logic in order to apply it to our problem setting.

As indicated, many-sorted logic is characterized by the use of a set S of
different sorts s ∈ S. These sorts are also quite often used implicitly in the
mathematical practice: examples are points, lines, squares, etc. in geometry,
vectors and scalars in vector spaces, or natural and real numbers in real anal-
ysis, to list just a few.

A structure51 A for many-sorted logic is thus just like one for first-order
logic, but with separate domains doms(A) for each sort s ∈ S instead of one
single domain. We then have corresponding quantifiers ∀s and ∃s for each sort
s, equipped with the intuitive semantics:

• A |= ∀sxϕ(x) if and only if A |= ϕ(a) for all a ∈ doms(A),
• A |= ∃sxϕ(x) if and only if A |= ϕ(a) for some a ∈ doms(A).

Other than that, many-sorted logic is analogous to first-order logic with the
slight difference of having separate variable, function, and relation symbols
for the different sorts or combinations of sorts.

For a completely formal definition of many-sorted logic see Chapter VI of
Manzano [40] and §4.3 of Enderton [22].

In our case, we will have two sorts (S = {ε, σ}): elements (ε) and sets (σ).
We further demand that there is a relation ∈ of type 〈ε, σ〉 as well as two
relations ≥̇ and � of type 〈ε, ε〉 and 〈σ, σ〉, respectively. These will then later
be interpreted as the usual membership relation and our linear and weak
orders, respectively. But, of course, one can have many more relations and
functions in the signature, and we will use the following time and again (even
though at this stage they are just symbols, we also indicate their natural
interpretations in parentheses already):

50 In strict terminology, many-sorted logic is not an extension to first-order logic.
See Manzano [40] for an in-depth discussion of the relation between first-order
and many-sorted logic.

51 The names ‘structure’ and ‘model’ are typically used synonymously.

4.2 The Language MSLSP for Preferences over Sets 53

• Relations:
– ⊆, type 〈σ, σ〉 (intuitively: set inclusion)
– disjoint, type 〈σ, σ〉 (intuitively: true iff sets are disjoint)
– evencard, type 〈σ〉 (intuitively: true iff the cardinality of a set is even)
– equalcard, type 〈σ, σ〉 (intuitively: true if sets have the same cardinal-

ity)
• Functions:

– ∪, type 〈σ, σ, σ〉 (intuitively: set union)
– {·}, type 〈ε, σ〉 (intuitively: transforms an element into the singleton

set containing it)
– replaceInBy, type 〈ε, σ, ε〉 (intuitively: replace an element in a set by

another element; e.g., (A \ {a}) ∪ {b})

We denote this language of many-sorted logic (with the two sorts ε and σ
and the signature containing exactly the above relations and functions) by
MSLSP (Many-Sorted Logic for Set Preferences).52

There are more possible (and common) set-functions like the following,
which could be included, but have to be handled with care:

• Functions:
– ∩, type 〈σ, σ, σ〉 (intuitively: set intersection)
– \, type 〈σ, σ〉 (intuitively: set difference)
– ·c, type 〈σ, σ〉 (intuitively: set complement)
– ∅, type 〈σ〉 (intuitively: empty set)

These will — in their standard interpretations — not be functions on the
space X = 2X \ {∅} as they can produce the empty set ∅ and must therefore
only be allowed when considering the empty set, too (see also Remark 4.8).

Notation-wise we will sometimes use (the more common) infix notation
for certain relations and functions. We will for instance write A ∪ B, a ∈ A,
A ⊆ B and {x} instead of ∪(A,B), ∈ (a,A), ⊆ (A,B) and {·}(x), respectively.
Furthermore, we will sometimes use negated symbols like x /∈ A for ¬(x ∈ A)
as well as the strict relation symbols A ≻ B and x >̇ y when we mean
A � B ∧¬(B � A) and x ≥̇ y ∧ ¬(y ≥̇ x), respectively. Generally, we will use
the (standard model-theoretic) notation of Hodges [34].

Many axioms in the literature can be directly stated in MSLSP and as an
example we give the representations of the principle of independence and the
Gärdenfors principle (see Section 1.4.1):

Example 4.1. (IND) can be formulated in MSLSP:

∀σA∀σB∀εx [(x /∈ (A ∪B) ∧ A ≻ B)→ A ∪ {x} � B ∪ {x}] ,

where, strictly speaking, x /∈ (A ∪B) stands for ¬[x ∈ (A ∪B)] and similarly
A ≻ B stands for A � B ∧ ¬(B � A).

52 In the spirit of Hodges [34] we assume to have equality = as a logical symbol
and not as a relation in the signature. This means that it will not have to be
interpreted by the structure as a relation, but stands for actual equality.

54 4 Reduction of Impossibilities to Small Instances

Example 4.2. (GF) can be formulated in MSLSP:

∀σA∀εx [(∀εa(a ∈ A→ x >̇ a))→ A ∪ {x} ≻ A]

∀σA∀εx [(∀εa(a ∈ A→ a >̇ x))→ A ≻ A ∪ {x}]

Unfortunately, for some axioms there is no easy representation in MSLSP.
The concept of neutrality, which says that the labeling of alternatives is irrel-
evant for the ranking �, is an example of such an axiom:

(NEU)
[[(

x ≥̇ y ⇐⇒ ϕ(x) ≥̇ ϕ(y) and y ≥̇ x ⇐⇒ ϕ(y) ≥̇ ϕ(x)
)

for all x ∈ A, y ∈ B]⇒

[A � B ⇐⇒ ϕ(A) � ϕ(B) and B � A ⇐⇒ ϕ(B) � ϕ(A)]

for any two sets A,B ∈ X and any injective mapping ϕ : A ∪B → X .

But there are also axioms of such form (involving a quantification over
certain functions) that are expressible in MSLSP. Consider, for instance, the
axiom of weak preference dominance (see Puppe [54]), which Sen [65] origi-
nally proposed in 1991 (in a slightly stronger form):

(WPD) [(|A| = |B| and there exists a bijective function ϕ : A→ B such that

a ≥̇ ϕ(a) for all a ∈ A
)

⇒ A � B
]

for any two sets A,B ∈ X .

Like for (NEU) there is again no obvious way to express this axiom in MSLSP.
Puppe [54], however, proved in 1995 that (WPD) is actually equivalent to an
axiom much closer to our formalism, called preference-basedness :53

(PB)
[

b ≥̇ a⇒ (A \ {a}) ∪ {b} � A
]

for all A ∈ X , a ∈ A, b /∈ A.

(PB) is easily seen to be expressible in MSLSP54 and will even have the required
format for our universal step, which we are going to introduce in the next
section.

4.3 Weak Universal Step by Standard Model Theory

As a first step towards our universal lemma, we can extend a basic result
about ∀1-formulas55 from classical (first-order) model theory to many-sorted
logic. It is actually one direction of the Loś-Tarski Theorem and says that:

Lemma 4.3. ∀1-formulas (and logically equivalent formulas) are preserved in
(first-order) substructures.

53
Endriss [23] refers to this axiom as the single-flip axiom.

54 ∀σA∀εa∀εb
[(

a ∈ A ∧ b /∈ A ∧ b ≥̇ a
)

→ replaceInBy(a,A, b) � A
]

55 A formula is a ∀1-formula if it is in the smallest class of formulas that contains the
quantifier-free formulas and is closed under

∧

,
∨

and adding universal quantifiers
in the front.

4.3 Weak Universal Step by Standard Model Theory 55

In detail, Lemma 4.3 expresses that for all ∀1-formulas ϕ(x̄), whenever A

is a substructure of B and ā is a tuple of elements from A such that B |= ϕ[ā],
then A |= ϕ[ā], too. In particular, this applies to ∀1-sentences56 and therefore
to all axioms of this form. Lemma 4.3 therefore is a first-order version of where
we want to get: a result that guarantees axioms to be preserved in smaller
structures (cf. Lemma 3.9). Note, that even though it seems to be a strong
restriction that only ∀1-sentences are preserved, this is already sufficient for
all axioms of linear and weak orders as well as, for instance, the principle of
independence.

The exact statement of Lemma 4.3 can, for example, be found in
Hodges [34] as Corollary 2.4.2. and the proof idea is relatively simple: by
contradiction it suffices to show that ∃1-formulas are preserved by embeddings
(Theorem 2.4.1. in Hodges [34]). The proof thereof proceeds by induction on
the complexity of the formula and the critical case of the existential quantifier
does not cause any trouble as witnesses are not “lost” when moving to a larger
structure.

We are now going to extend this result to many-sorted logic to be able to
apply it in our setting. What we need is a conversion from many-sorted logic to
one-sorted logic and a correspondence theorem. Both can, for instance, be ob-
tained from Enderton [22] or, in a more detailed form, from Manzano [40].
We quickly recapitulate the main ideas:

In order to move from many-sorted logic to the one-sorted case, both for-
mulas as well as structures need to be converted. The aim is to unify the
domain and relativize the quantifiers. Therefore, the syntactic alterations of
the formulas consist of replacing all sorted universal quantifiers ∀sxϕ(x) by
a relativized general quantifier ∀x(Ps(x) → ϕ(x)), where Ps is a fresh pred-
icate symbol. Similarly, we replace sorted existential quantifiers ∃sxϕ(x) by
∃x(Ps(x) ∧ ϕ(x)). We denote this translation of a formula ϕ in many-sorted
logic by ϕ∗.57

On the semantic side we can convert a many-sorted structure A into a
one-sorted structure A∗. We do this by taking as the new domain the union
of the sorted domains

dom(A∗) :=
⋃

s∈S

doms(A)

and by assigning the sorted domains doms(A) as the interpretations of the
new predicate symbols Ps, i.e.,

PA
∗

s := doms(A).

56 Sentences are formulas without free variables.
57 Note that this translation yields the formulas as in the first-order formalization

of Chapter 2.

56 4 Reduction of Impossibilities to Small Instances

Furthermore, we have to arbitrarily extend the functions fA to the new do-
main,58 but we can keep all predicates and constants fixed.

This procedure yields a translation of our many-sorted setting into first-
order logic, where predicates Ps indicate the membership in different sorts.
But what makes this useful at all is the following well-known lemma:59

Lemma 4.4 (Translation Lemma). A many-sorted sentence ϕ is true in a
structure A if and only if its translation ϕ∗ is true in the translated structure
A∗, i.e.,

A |= ϕ ⇐⇒ A
∗ |= ϕ∗.

Lemma 4.4 enables us to transfer certain results from first-order model
theory to our many-sorted setting, so, for instance, the preservation result
mentioned in the beginning of this subsection (Lemma 4.3). The translated
result then is:60

Theorem 4.5 (Weak Preservation Theorem). Many-sorted ∀1-sentences
are preserved in (many-sorted) substructures, i.e., if A is a (many-sorted)
substructure of B then

B |= ϕ =⇒ A |= ϕ

for any many-sorted ∀1-sentence ϕ.

Proof. Let A be a (many-sorted) substructure of B and ϕ a many-sorted ∀1-
sentence. By the Translation Lemma 4.4 we directly get that the translated
formula ϕ∗ is true in the translated structure B∗. Now it is necessary to
see that the translated structure A∗ is a substructure of B∗ and that the
translated formula ϕ∗ is still (at least logically equivalent to) a ∀1-sentence.
The proof of the former is entirely straightforward and only uses the fact
that A is a substructure of B.61 The latter can also be seen immediately
when recalling how the syntactic translation worked: the only change was a
replacement of all sorted universal quantifiers ∀sxϕ(x) by

∀x(Ps(x)→ ϕ(x)) ≡ ∀x(¬Ps(x) ∨ ϕ(x))

and so — since ¬Ps(x) as well as ϕ(x) are ∀1-formulas — the whole formula
is logically equivalent to a formula in ∀1-form.62

58 Even though this extension is not unique, we will speak of the translation of a
many-sorted structure as any extension will work and will have the same proper-
ties.

59 Lemma 43A in Enderton [22]; Theorem 8.2.2. in Manzano [40].
60 In some places the proof will remain slightly informal, but we will later give a

direct proof as part of the proof of Theorem 4.13.
61 One has to make sure though that the functions are extended to the full domain

in the same way for A
∗ and B

∗, which is easily possible (see also Footnote 58).
62 A more rigorous proof would proceed via induction on the complexity of the

formula and involve a stronger statement about formulas instead of sentences.

4.3 Weak Universal Step by Standard Model Theory 57

Therefore, we can apply Lemma 4.3 to the first-order structure A∗ ⊆ B∗

and get that ϕ∗ is also true in the substructure A∗. Now it is just one back-
ward application of the Translation Lemma 4.4 to get to A |= ϕ and we are
done.

B |= ϕ
Lemma 4.4
−−−−−−−→ B∗ |= ϕ∗





y

A ⊆ B





y

Lemma 4.3 (A∗ ⊆ B
∗)

A |= ϕ
Lemma 4.4
←−−−−−−− A∗ |= ϕ∗

⊓⊔

Theorem 4.5 can indeed be interpreted as a general version of an inductive
step like the one (Lemma 3.9) presented in Section 3.3: it implies that when
we have a finite set X with a relation ≥̇ and the set of all non-empty subsets
X with another relation �, then all ∀1-axioms are preserved in substructures.
That is, if ≥̇ and � fulfill certain ∀1-axioms, then so do the restrictions to
subsets of X and X , respectively.

Cast into the familiar shape of Lemma 3.9, we can formulate the following
corollary:

Corollary 4.6. If X is a linearly ordered set and there is a binary relation
on X = 2X \ {∅} that satisfies a given set of ∀1-axioms, then we can, for any
n < |X |, n ∈ N, find another linearly ordered set Y with n elements only, as
well as a corresponding binary relation on Y := 2Y \ {∅} satisfying the same
set of axioms.

Proof. We can view X ∪X as an MSLSP-structure63 and by Theorem 4.5 all
∀1-axioms are preserved in its substructures, which any Y ∪Y with Y ⊂ X is
one of.64 Since the axioms of a linear order are ∀1-axioms, too, it follows that
the restriction of ≥̇ to Y is also a linear order. ⊓⊔

The case of a weak order on X is now just a special case of this result since
weak orders are defined by ∀1-axioms.

Reading the previous corollary contrapositively, we obtain an even clearer
form of our (still weak) universal step:

Corollary 4.7 (Weak Universal Step). If, for any linearly ordered set Y
with n elements, there exists no binary relation on Y = 2Y \ {∅} satisfying a
given set of ∀1-axioms, then for any linearly ordered set X with |X | ≥ n there
is also no binary relation on X = 2X \ {∅} that satisfies this set of axioms.

63 With all function and relation symbols interpreted in the usual/natural way.
64 The language MSLSP (with its natural interpretation) was chosen to guarantee

this property that, for all subsets Y ⊆ X, the structure Y ∪ Y is a substructure
of X ∪ X . See also Remark 4.8.

58 4 Reduction of Impossibilities to Small Instances

Remark 4.8. When we say “a given set of ∀1-axioms”, then this deserves some
further explanation. Of course, we mean axioms that are ∀1 in MSLSP. But the
reader will remember that we allowed additional relations and functions to be
added, which were not specified in the signature above. This holds some hidden
challenges. For instance, it is not possible to include a predicate isWholeSet,
which is true of the whole domain only, a function (·)c for the complement, or
even just the constant symbol Ẋ referring to the whole domain, since all three
would (in their natural interpretation) prevent Y ∪ Y to be a substructure:
for example, for any Y ⊂ X , while isWholeSet(Y) (or equivalently, Y = Ẋ)
is false in X ∪ X , it is true in Y ∪ Y. Similarly and as mentioned before in
Section 4.2, we run into problems when including functions like ∩, \ or (·)c,
which are (in their natural interpretation) not functions in the strict sense
in a structure like X ∪ X as they can produce the empty set, which is not
in X . Therefore, some attention has to be paid when adding new relation or
function symbols to the language in order to capture more axioms.

Summing up, we have shown a universal step (and thus a general inductive
step) for the class of ∀1-axioms using the tools of classical model theory. We
will see in the next section, however, that the result is not yet strong enough to
capture all axioms needed for the Kannai-Peleg Theorem. Thus, we are going
to prove a further generalization to an even larger class of axioms, which will
then also include all axioms of the Kannai-Peleg as well as of other possibility
and impossibility theorems.

Note that we have not made use of any domain-specific features so far.
The (so far unmentioned) other direction of the Loś-Tarski Theorem, stating
that if a sentence is preserved in substructures then it must be a ∀1-sentence,
tells us that we can indeed not hope for more than the class of ∀1-axioms on
this general level, but have to make use of properties of our particular domain
now.

4.4 Universal Step Based on the Domain Structure

Let us recall the representation of the Gärdenfors principle (GF) in MSLSP
(as given in Example 4.2):

∀σA∀εx [(∀εa(a ∈ A→ x >̇ a))→ A ∪ {x} ≻ A]

∀σA∀εx [(∀εa(a ∈ A→ a >̇ x))→ A ≻ A ∪ {x}]

It is tempting to think that (GF) is covered by Corollary 4.7, which was appli-
cable to ∀1-axioms. Unfortunately, however, at closer inspection one notices
that (GF) actually is not of this form. Converting the axiom (we do this exem-
plarily for (GF1)) to prenex normal form reveals that the innermost quantifier
is actually an existential quantifier:

4.4 Universal Step Based on the Domain Structure 59

∀σA∀εx [(∀εa(a ∈ A→ x >̇ a))→ A ∪ {x} ≻ A]

≡ ∀σA∀εx [¬ (∀εa(a /∈ A ∨ x >̇ a)) ∨ A ∪ {x} ≻ A]

≡ ∀σA∀εx
[

∃εa(a ∈ A ∧ x ≯̇ a) ∨ A ∪ {x} ≻ A
]

≡ ∀σA∀εx∃εa
[

(a ∈ A ∧ x ≯̇ a) ∨ A ∪ {x} ≻ A
]

.

Therefore, we have to find a stronger result than what classical model
theory can offer us. The idea is to be able to preserve a larger class of axioms
by making use of our problem-specific features: like, for instance, the element-
set framework. Thus, we define the concepts of a structure for set preferences
as well as subset-consistent substructures:

Definition 4.9. An MSLSP-structure B is a structure for set preferences if
it fulfills the following criteria:

1. domσ(B) ⊆ 2domε(B), i.e., the domain of sort σ contains only sets of
elements from domε(B).

2. The relation symbol ∈ of type 〈ε, σ〉 is interpreted in its natural way.

If a substructure A of a structure for set preferences B is a structure for set
preferences, too, then it is called a subset-consistent substructure.

Note that in a substructure A of a structure for set preferences B we have

∈A=∈B |dom(A),

i.e., the symbol ∈ must be interpreted as the restriction of its interpretation
in B. Hence, it is sufficient to fulfill the first condition for being a subset-
consistent substructure of B.

These two semantic conditions are all we need in order to generalize our
previous result to a larger class of axioms. But what are the axioms that we
can now treat? Let us look at the (purely syntactic) definition first and then
explain the reasons for choosing this particular class.

Definition 4.10. The class of existentially set-guarded (ESG) formulas is
the smallest class of MSLSP-formulas recursively defined as follows:

• all quantifier-free formulas are ESG,
• if ψ(x̄) and ψ′(x̄) are ESG, then ϕ(x̄) := (ψ ∧ ψ′)(x̄) as well as

ϕ′(x̄) := (ψ ∨ ψ′)(x̄) are ESG,
• if ψ(y, x̄) is ESG, then ϕ(x̄) := ∀syψ(y, x̄) is ESG for any sort s ∈ {ε, σ},
• if ψ(y, x̄) is ESG, then ϕ(x̄) := ∃εy(y ∈ t(x̄) ∧ ψ(y, x̄)), where t is a term

of sort σ, is ESG.

The atomic formulas y ∈ t(x̄) of the last condition are called the set-guards
of the respective quantifiers.

60 4 Reduction of Impossibilities to Small Instances

If we leave out the last condition this gives us exactly the ∀1-formulas in
MSLSP. Thus, the ESG formulas are a strictly (and much) larger class. It
consists of all MSLSP-formulas that only contain set-guarded existential quan-
tifiers ∃ε of sort ε, and no existential quantifiers ∃σ of sort σ at all.

Note that when we write ϕ(x̄), we do not necessarily mean that ϕ contains
all the variables in the sequence x̄ = (x0, x1, x2, . . .), but just that all (free)
variables of ϕ are among the ones in x̄.65 Soon we will also use the notation
ϕ[ā] with ā being a sequence of elements, which will mean that the elements
a0, a1, a2, . . . are assigned to the variables x0, x1, x2,

Intuitively, we do the following: in our axioms we now also allow existential
quantifiers (but only for elements, i.e., of sort ε) as long as they are “guarded”
by subformulas saying that the respective witness belongs to some set. The
sets can also be unions of sets or formed in a different way by the term t. The
important part is that when moving from a structure to a substructure this
set-guard now guarantees that the witness of the existential quantifier is not
lost. This is because the witness has to be within a set (as required by the
set-guard) that will be situated in the substructure.66

Before we get to the formal proof of this claim, let us look at some examples
of sentences. We first check that we have now indeed covered at least all axioms
of the Kannai-Peleg Theorem. Recall that all order axioms as well as the axiom
of independence were already in the ∀1-class and are hence also ESG. We were
only missing the Gärdenfors principle (GF):

Example 4.11. The axiom (GF1) (and similarly (GF2)) is an ESG sentence:

x ≯̇ a (quantifier-free)

∃εa(a ∈ A ∧ x ≯̇ a) (adding ∃ε)

∃εa(a ∈ A ∧ x ≯̇ a) ∨ A ∪ {x} ≻ A (∨ with quantifier-free)

∀σA∀εx[∃εa(a ∈ A ∧ x ≯̇ a) ∨ A ∪ {x} ≻ A] (adding ∀s).

Remembering the proof of Lemma 3.9, where we showed that (GF) still holds
after removing an element from X , and considering the last line of the above
example, one can understand why removing elements from X does not af-
fect this axiom. For universal quantifiers a restriction of the domain was no
problem anyway as we have seen in the previous Section 4.3. But also the
existential witness is not lost: if we suppose it had been removed for some set
A, then so would have been the set A itself, as the σ-domain can only contain
sets of elements from the ǫ-domain by Definition 4.9. Contradiction!

That we cannot just allow arbitrary existential quantifiers without set-
guards can be seen when considering the following example, which shows a
very easy sentence with unguarded existential quantifiers that is not preserved
in substructures.
65 See Section 1.3 of Hodges [34] for a completely formal description.
66 That the set is still interpreted like in the superstructure is guaranteed by the

properties of a substructure.

4.4 Universal Step Based on the Domain Structure 61

Example 4.12. The MSLSP-sentence (axiom)

∃εx∃εy∃εz [x 6= y ∧ x 6= z ∧ y 6= z] ,

which says that there are at least three distinct elements in the ε-domain of
a structure for set preferences, is clearly not preserved in substructures: it
holds in all structures for set preferences B with at least three elements in
domε(B), but fails to hold in any of its substructures A with less than three
elements in domε(A).

After these examples the reader should have developed some understand-
ing of why ESG sentences are preserved in substructures and why we cannot
allow much more. The formal proof of our Preservation Theorem will explain
the first part further.

Note that, apart from the case of the existential quantifier, the proof is
practically the direct proof of Theorem 4.5, which can be carried out on model-
theoretic grounds only. It is just the last part of this proof (the induction
step for the existential quantifier) that requires the syntactic and semantic
restriction, which we can allow because of our particular problem domain.

Theorem 4.13 (Preservation Theorem). ESG sentences are preserved in
subset-consistent substructures, i.e., if A is a subset-consistent substructure of
a structure for set preferences B then

B |= ϕ =⇒ A |= ϕ

for any ESG sentence ϕ.

Proof. We prove a stronger statement for ESG formulas (instead of sentences)
by induction on the complexity of the formula:

If A is a subset-consistent substructure of a structure for set prefer-
ences B then

B |= ϕ[ā] =⇒ A |= ϕ[ā]

for any ESG formula ϕ(x̄) and any tuple ā of elements from dom(A)
(matching the types of x̄).

So let B be a structure for set preferences with a subset-consistent substruc-
ture A, let ϕ(x̄) be an ESG formula and, furthermore, let ā be a tuple of
elements from dom(A) (matching the types of x̄).

Quantifier-free Formulas: If ϕ(x̄) is quantifier-free, a routine but tedious proof
leads to the desired results. One has to carry out a few nested inductions
on the complexity of terms and formulas, and examples of such proofs
can be found in any textbook of Model Theory (see, e.g., Theorem 1.3.1.
in Hodges [34]). First, one shows by one induction that terms are inter-
preted in the substructure A as they are interpreted in its superstructure
B, i.e.,

62 4 Reduction of Impossibilities to Small Instances

tA[ā] = tB[ā] (4.1)

for all terms t(x̄). This practically immediately follows from the definition
of a substructure.
Then one proceeds by another induction proving that atomic formulas
hold in A if and only if they hold in B, i.e.,

A |= ψ[ā] ⇐⇒ B |= ψ[ā] (4.2)

for all atomic formulas ψ(x̄). As a typical example, suppose that ϕ(x̄) is
of the form R(s(x̄), t(x̄)), where R is a relation symbol and s(x̄) as well as
t(x̄) are terms (matching the type of R). Assume A |= R(s[ā], t[ā]), i.e., it
holds that RA(sA[ā], tA[ā]). By (4.1) this is equivalent to RA(sB[ā], tB[ā]).
Since furthermore RA = RB|dom(A), we even have an equivalence with

RB(sB[ā], tB[ā]), which is just another way of saying B |= R(s[ā], t[ā]).
Finally, one proves the claim for any quantifier-free formula by carrying
out induction steps for conjunction ∧, disjunction ∨ and negation ¬. Note
that the step for ¬ is why we required both directions in (4.2).

Conjunction and Disjunction: We only show the part for conjunction here;
the one for disjunction is completely analogous. If ϕ(x̄) is of the form
ψ(x̄) ∧ ψ′(x̄) and furthermore B |= ϕ[ā], then both ψ[ā] and ψ′[ā] must
be true in B. By the induction hypothesis, this carries over to A and we
get A |= ψ[ā] ∧ ψ′[ā].

Universal Quantification: If ϕ(x̄) is of the form ∀syψ(y, x̄) with sort s ∈ {σ, ε}
and furthermore B |= ϕ[ā], then for all b of sort s in doms(B) we have
that B |= ψ(b, ā). Since doms(A) ⊆ doms(B) we can use the induction
hypothesis and obtain A |= ψ(b, ā) for any b ∈ doms(A). This is the same
as saying A |= ∀syψ(y, ā), i.e., A |= ϕ[ā].

Existential Quantification: If ϕ(x̄) is of the form ∃εy[y ∈ t(x̄)∧ψ(y, x̄)], where
t(x̄) is a term of sort σ, and furthermore B |= ϕ[ā], then there must exist
an element b in domε(B) such that

B |= (y ∈ t(x̄) ∧ ψ(y, x̄)) [b, ā], i.e.,B |= y ∈ t(x̄)[b, ā] and B |= ψ[b, ā].

Hence, if we can show that b is in the ε-domain of A and not just of B,
then it follows by the induction hypothesis that also

A |= ψ[b, ā],

since then (b, ā) is a tuple of elements of A.
Since ∈ is interpreted naturally in the structure for set preferences B and,
additionally, tA[ā] = tB[ā] by (4.1), the statement B |= y ∈ t(x̄)[b, ā] boils
down to

b ∈ tB[ā] = tA[ā]. (4.3)

4.4 Universal Step Based on the Domain Structure 63

The fact that b it is an element of domε(A) (and not just of domε(B)) is
now implied by tA[ā] being in domσ(A), together with A being a subset-
consistent substructure:

b ∈ tA[ā] ∈ domσ(A)
(∗)

⊆ 2domε(A)

=⇒ b ∈ tA[ā] ∈ 2domε(A)

=⇒ b ∈ tA[ā] ⊆ domε(A),

where (∗) marks the spot where the subset-consistency of A is used.
Hence, we can, as indicated before, apply the induction hypothesis to
B |= ψ[b, ā] and obtain A |= ψ[b, ā]. Together with b ∈ tA[ā] it follows
that

A |= ∃εy(y ∈ t(x̄) ∧ ψ(y, x̄))[ā].

This way we are done with the proof of the stronger claim (about formulas),
which implies the claim of the theorem (about sentences). ⊓⊔

We are now almost ready to apply this theorem to our setting. But we
want to make one further strengthening first. The following lemma will enable
us to also use axioms that are not ESG themselves, but just equivalent in all
structures for set preferences to an ESG sentence. Such axioms will be referred
to as ESG-equivalent sentences. In order to maintain a slightly higher level
of generality we prove the lemma for arbitrary classes Γ and not just for the
class of all ESG sentences.

Lemma 4.14. If Γ is a class of sentences that are preserved in subset-
consistent substructures, then also all sentences that are equivalent in struc-
tures for set preferences to a sentence in Γ are preserved in subset-consistent
substructures.

Proof. Let Γ be a class of sentences that are preserved in subset-consistent
substructures. Furthermore, let ψ be a sentence that is equivalent in structures
for set preferences to a sentence ϕ ∈ Γ , i.e., such that, for all structures for
set preferences M,

M |= ψ ⇐⇒ M |= ϕ. (4.4)

Let now A be a subset-consistent substructure of a structure for set prefer-
ences B, and suppose B |= ψ. This then immediately implies B |= ϕ by (4.4)
since B is a structure for set preferences. Hence, we can now use the assump-
tion that sentences from Γ are preserved in subset-consistent substructures,
and obtain A |= ϕ. This, in turn, has A |= ψ as a consequence (by (4.4) again
and since subset-consistent substructures are structures for set preferences
themselves), which completes the proof of this lemma. ⊓⊔

In particular, of course, Lemma 4.14 applies to sentences that are logically
equivalent to a sentence in Γ . This is the case as logically equivalent sentences

64 4 Reduction of Impossibilities to Small Instances

are equivalent in all structures by definition, and hence in particular in all
structures for set preferences.

Now, we finally state and prove the corollary applying our most general
result to the particular problem domain of ranking sets of objects.

Corollary 4.15. If X is a linearly ordered set and there is a binary relation
on X = 2X \{∅} that satisfies a given set of ESG (or ESG-equivalent) axioms,
then we can, for any n < |X |, n ∈ N, find another linearly ordered set Y with
n elements only, as well as a corresponding binary relation on Y := 2Y \ {∅}
satisfying the same set of axioms.

Proof. We can view X ∪ X as a structure for set preferences67 and by The-
orem 4.13 together with Lemma 4.14 all ESG(-equivalent) axioms are pre-
served in its subset-consistent substructures, which any Y ∪ Y with Y ⊂ X
is one of (with respect to the signature of MSLSP).68 Since the axioms of a
linear order are ∀1-axioms and therefore ESG, too, it follows that the restric-
tion of ≥̇ to Y is also a linear order. ⊓⊔

Reading the previous corollary contrapositively, we obtain an even clearer
form of our universal step:

Corollary 4.16 (Universal Step). If, for any linearly ordered set Y with n
elements, there exists no binary relation on Y = 2Y \ {∅} satisfying a given
set of ESG (or ESG-equivalent) axioms, then for any linearly ordered set X
with |X | ≥ n there is also no binary relation on X = 2X \ {∅} that satisfies
this set of axioms.

On the basis of Corollary 4.16 we can finally do what we had been hoping
for: in order to prove new impossibility theorems and check existing ones,
we only have to look at their base cases (as long as all axioms involved are
expressible in MSLSP and ESG-equivalent).69 These small instances can be
efficiently checked on a computer (as we have done it for the case of the
Kannai-Peleg Theorem in Sections 3.3.2 and 3.3.3) and so especially from
a practical perspective this can lead to an enormous boost in the speed of
theorem discovery. We will pursue this idea further in the next chapter, where
we present an automated and exhaustive theorem search as well as its results
including quite a few new impossibility theorems.

67 With all function and relation symbols interpreted in the usual/natural way.
68 As described in Remark 4.8, one has to be careful when adding additional func-

tions and relations as they might prevent Y ∪ Y from being a substructure.
69 Even though not needed for our purposes, the universal step even applies to

infinite domains X. It therefore also reduces the infinite versions of impossibility
theorems (cf. Remark 1.7) to small instances. Also note that a single application
of the step is sufficient and induction is not needed anymore.

4.5 Summary 65

4.5 Summary

In this chapter we have seen how tools from model theory can be used to obtain
a universal step, which reduces general impossibilities to small instances. After
defining the natural (many-sorted first-order) language MSLSP for expressing
axioms formally, we were able to prove a weak version of the universal step only
using results from model theory without any application of problem-specific
features. This weak version, however, does only cover ∀1-axioms, which does
not suffice to treat the Kannai-Peleg Theorem.

Therefore, a stronger version of the universal step was required and could
be found using domain features that are specific to ranking sets of objects.
Now even existential quantifiers can be allowed, as long as they are “guarded”
by a term of a particular logical form. The class of formulas covered under
the universal step was introduced as the class of existentially set-guarded (or
short: ESG) formulas. This class is large enough to subsume all axioms from
the literature that we were able to formalize in the language MSLSP.

5

Automated and Exhaustive Theorem Search

5.1 Introduction

The main result of the previous chapter, the Preservation Theorem 4.13, al-
lowed us to derive a universal step (Corollary 4.16), which we can now use to
prove impossibilities just by checking their base cases. Since this verification
of small instances can be done very efficiently on a computer (as we have seen
in Section 3.3), we naturally get a range of applications in the area of ranking
sets of objects.

Not only can we verify known impossibilities by formalizing their axioms
and then feeding base case instances to a SAT solver, but we can also weaken
or alter axioms slightly in order to find stronger or similar results. It can
sometimes even be possible to show certain implications instead of impossi-
bilities.70

Using these techniques for single theorems is likely to produce good results
and might be a helpful tool from a practical perspective, but we can do even
more: we are now going to present a fully automated and exhaustive theorem
search for impossibility theorems. Our theorem search will, for a given set of
axioms, systematically check which of its subsets are inconsistent and from
which smallest domain size these impossibilities occur, thereby completely
automatically identifying all impossibility theorems that the given axioms

70 If we want to show that A → B, then we can do this with a proof by contradiction,
i.e., by showing that A∧¬B is “impossible”. A requirement for this to work with
our method, however, is that ¬B can be written as an existentially set-guarded
(ESG) formula71, which fails for most axioms. For instance, all axioms with an
unguarded universal quantifier of type σ will produce an unguarded existential
quantifier of type σ in their negation, which ESG formulas are not allowed to
have.

68 5 Automated and Exhaustive Theorem Search

can produce.72 In this sense, the search method is exhaustive on the space of
given axioms.

For testing the fruitfulness of this approach we ran the search on a set of
20 axioms from the literature on choice under complete uncertainty, i.e., the
interpretation of our setting in which the decision maker will finally only
receive one of the alternatives in the sets and does not know which it will be.73

Of course, the very same search method can also be run with arbitrary other
ESG axioms in the field of ranking sets of objects, including, for instance, the
ones of the interpretation of sets as opportunity sets from which the decision
maker can himself select his favorite outcome, or, similarly, with axioms for
the case of assuming that the agent receives the whole set of alternatives.

Our search algorithm returned a total of 84 impossibilities, of which a few
were known already (and are hence now automatically verified), some are just
direct consequences of others, but also some are surprising and new. Especially
finding an impossibility that had wrongly been published as a possibility ear-
lier underlines the usefulness of this approach as well as the complexity of the
obtained results.

We proceed by first describing our implementation of the theorem search
and how it exactly progresses. We then first show and briefly introduce the
20 axioms we used in our final theorem search, before we list all minimal
impossibilities as well as potential possibilities that were found, and make
some general observations. Finally, we are going to give manual proofs of
selected results in order to demonstrate the practical utility of the search
method and also to shed some more light on the impossibilities themselves.

5.2 Technique and Implementation

As indicated in the introduction, our search method systematically decides
whether subsets of a given axioms set are compatible or incompatible. We
will therefore in the following refer to axiom subsets as problems, and for a
particular domain size we will speak of a problem instance.

We designed a computer program (again in Java [67]) that can selectively
instantiate axioms from a given set and for a given domain size, by just ex-
tending our program from Section 3.3.3. After this generation of a problem
instance it can then immediately be passed to a SAT solver, which returns
whether it is a “possible” instance,74 or an “impossible” one. We implemented
interfaces for the commonly used solvers PrecoSAT [13] and zChaff [61] – the
latter enabling us to automatically verify unsatisfiabilities on the basis of a

72 Since for practical reasons we can only check base cases up to a certain domain
size |X| = n, there could theoretically be more impossibilities hidden that only
occur from larger domain sizes on.

73 See also Section 1.2 for an introduction to this idea.
74 Using the module from Section 3.4.1 we can then also print a satisfying weak

order.

5.2 Technique and Implementation 69

generated proof trace, whereas the former is usually faster in practice, but
does not have this feature.75

We could now just run this program on all possible problem instances
individually and collect the results. Note, however, that on a space of 20
axioms with a maximal domain size of eight elements, we already have to deal
with a total of (220−1) ·8 ≈ 8.400.000 problem instances. If each of them just
requires a running time of one second,76 the whole job would take roughly
100 days.

Therefore, we then designed a scheduler that makes sure all axiom subsets
are treated for all domain sizes in a sensible order. The order in which we check
the problem instances has a big effect on the overall running time because one
can make use of a combination of four different effects:

(1) if a set of axioms is inconsistent at domain size |X | = n, then it will also
be inconsistent for all larger domain sizes |X | > n (Corollary 4.16),

(2) if a set of axioms is inconsistent at domain size |X | = n, then also all its
(axiom) supersets are inconsistent at this domain size |X | = n,

(3) if a set of axioms is consistent at domain size |X | = n, then it will also
be consistent for all smaller domain sizes |X | < n. (Corollary 4.15), and

(4) if a set of axioms is consistent at domain size |X | = n, then also all its
(axiom) subsets are consistent at this domain size |X | = n.

Since larger instances require exponentially more time (there are exponen-
tially more variables in the satisfiability problem due to exponentially more
subsets in X), we start our search at the smallest domain size and then after
completely solving this “level” move on to the next domain size.77

On each level, as soon as we find an impossibility, we can, by condition (2),
mark all axiom supersets as impossible at the current domain size (if they had
not been found to be impossible at a smaller domain size already). In order
to use this mechanism as efficiently as possible, we must check small axiom
sets first.

But also the dual approach of starting from large axiom sets and marking
all axiom subsets as “compatible” as soon as we find a possibility (condi-
tion (4)), is an option. In experiments, we found that the best performance
can be achieved when combining these two approaches and so we decided to
run the search in alternating directions (changing every 15 minutes): from
large axiom sets to small ones and the other way around.

On a new level, only problems have to be considered that still have the
status “possible” because of condition (1) in the enumeration above. This
further increases the speed of our search method.

75 PrecoSAT won the gold medal in the applications track of the SAT 2009 compe-
tition [60], while the SAT solver zChaff could only claim the gold medal in the
special certified UNSAT track of the SAT 2005 competition [59].

76 In our tests, especially larger instances required much more time to be solved on
average.

77 It is for this reason that condition (3) is not very helpful in practice.

70 5 Automated and Exhaustive Theorem Search

From a practical side, the theorem search comes with the limitations of
only being able to treat at most 21 axioms at the same time78 and at most
a domain size of eight elements.79 But with better memory management and
improved versions of the SAT solvers, these (practical) boundaries should be
extendable.

5.3 Implemented Axioms

We ran our theorem search on a space of 20 axioms from the literature con-
cerning choice under complete uncertainty. These axioms (or versions of them)
can actually all be obtained from the corresponding section of a survey by
Barberà, Bossert and Pattanaik [11]. We will proceed by discussing the
axioms and presenting them in their usual form as well as in MSLSP (to verify
that we can apply our universal step (Corollary 4.16).80 The axioms’ propo-
sitional forms, which were needed for the base case verification, are included
in Appendix B.4.

The first axioms we want to look at are the order axioms. For one, there
are the axioms describing the linear order ≥̇ on X , for another, the ones
describing a weak order � on X = 2X \{∅}. The former will just be denoted by
(LINε), whereas the latter are split up into their three components reflexivity
(REFLσ), completeness (COMPLσ) and transitivity (TRANSσ), which are then
treated as separate axioms in order to investigate which parts are actually
necessary for impossibilities. The axioms in their intuitive form and their
formal representations in MSLSP are:

(LINε) x ≥̇ x for all x ∈ X (reflexivity)

∼= ∀εx
[

x ≥̇ x
]

x ≥̇ y ∨ x ≤̇ y for all x 6= y ∈ X (completeness)

∼= ∀εx∀εy
[

x 6= y → (x ≥̇ y ∨ x ≤̇ y)
]

x ≥̇ y ∧ y ≥̇ z ⇒ x ≥̇ z for all x, y, z ∈ X (transitivity)

∼= ∀εx∀εy∀εz
[

(x ≥̇ y ∧ y ≥̇ z)→ x ≥̇ z
]

x ≥̇ y ∧ y ≥̇ x⇒ x = y for all x, y ∈ X (antisymmetry)

∼= ∀εx∀εy
[

x ≥̇ y ∧ y ≥̇ x→ x = y
]

78 Stack overflows can occur for larger axiom sets.
79 This is due to memory limits in the SAT solvers.
80 Again, we are using shorthand notation like x 6= y for ¬(x = y); see also Sec-

tion 4.2.

5.3 Implemented Axioms 71

(REFLσ) A � A for all A ∈ X
∼=∀σA [A � A]

(COMPLσ) A � B ∨ A � B for all A 6= B ∈ X
∼=∀σA∀σB [A 6= B → (A � B ∨ A � B)]

(TRANSσ) A � B ∧B � C ⇒ A � C for all A,B,C ∈ X
∼= ∀σA∀σB∀σC [(A � B ∧B � C)→ A � C]

Next we have the (very natural) axiom of extension, which was introduced
and extensively discussed in Section 1.3 already:

(EXT) x ≥̇ y ⇐⇒ {x} � {y} for all x, y ∈ X

∼=∀εx∀εy
[

x ≥̇ y ↔ {x} � {y}
]

A further set of axioms we included in our search is the one dealing with the
concept of dominance, i.e., the idea that adding an object to a set of prospects
that are all dominated by (or dominating) the object produces a better (or
worse) set, respectively. We chose for the well-known Gärdenfors principle
(GF) as well as a weaker version by Barberà [9] called simple dominance
(SDom), which restricts (GF) to small sets:

(GF1) ((∀a ∈ A)x >̇ a)⇒ A ∪ {x} ≻ A for all x ∈ X and A ∈ X

∼= ∀σA∀εx
[

∃εa(a ∈ A ∧ x ≯̇ a) ∨ A ∪ {x} ≻ A
]

(GF2) ((∀a ∈ A)x <̇ a)⇒ A ∪ {x} ≺ A for all x ∈ X and A ∈ X

∼= ∀σA∀εx
[

∃εa(a ∈ A ∧ x ≮̇ a) ∨ A ∪ {x} ≺ A
]

(SDom) x >̇ y ⇒ ({x} ≻ {x, y} ∧ {x, y} ≻ {y}) for all x, y ∈ X
∼=∀εx∀εy[x >̇ y → ({x} ≻ {x} ∪ {y} ∧ {x} ∪ {y} ≻ {y})]

Independence axioms are also commonly postulated and especially their
weaker variants or versions thereof, like bottom, top, disjoint and interme-
diate independence, frequently play a role in characterization results (see,
e.g., Pattanaik and Peleg [51], and Nitzan and Pattanaik [49]). We de-
cided to include standard independence (as already introduced in Section 1.3),
a stronger version (strictIND), which implies strict preferences, and a few

72 5 Automated and Exhaustive Theorem Search

weaker versions, viz. bottom (botIND), top (topIND), disjoint (disIND) and
intermediate independence (intIND), which only apply to certain combina-
tions of sets and elements. Attention, however, needs to be paid with respect
to axiom names here. Sometimes the names “bottom independence” etc. are
used for versions of strict independence or extended independence81 instead
of standard independence. We use the standard (weaker) versions unless in-
dicated to the contrary.

(IND) A ≻ B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B)
∼=∀σA∀σB∀εx [(x /∈ (A ∪B) ∧ A ≻ B)→ A ∪ {x} � B ∪ {x}]

(strictIND) A ≻ B ⇒ A ∪ {x} ≻ B ∪ {x}

for all A,B ∈ X and x ∈ X \ (A ∪B)
∼=∀σA∀σB∀εx [(x /∈ (A ∪B) ∧ A ≻ B)→ A ∪ {x} ≻ B ∪ {x}]

(botIND) A ≻ B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X

and x ∈ X \ (A ∪B) such that y >̇ x for all y ∈ A ∪B

∼= ∀σA∀σB∀εx [x ∈ A ∪B ∨ ∃εy(y ∈ A ∪B ∧ y ≯̇ x)∨

A ⊁ B ∨A ∪ {x} � B ∪ {x}]

(topIND) A ≻ B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X

and x ∈ X \ (A ∪B) such that x >̇ y for all y ∈ A ∪B

∼= ∀σA∀σB∀εx [x ∈ A ∪B ∨ ∃εy(y ∈ A ∪B ∧ x ≯̇ y)∨

A ⊁ B ∨A ∪ {x} � B ∪ {x}]

(disIND) A ≻ B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X ,

such that A ∩B = ∅, and for all x ∈ X \ (A ∪B)
∼=∀σA∀σB∀εx [(x /∈ (A ∪B) ∧ disjoint(A,B) ∧ A ≻ B)→

A ∪ {x} � B ∪ {x}]

81 Extended independence does only require a weak preference in the antecedent:

A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪ B).

5.3 Implemented Axioms 73

(intIND) A ≻ B ⇒ A ∪ {x, y} � B ∪ {x, y}

for all A,B ∈ X and x, y ∈ X \ (A ∪B)

such that x >̇ z and z >̇ y for all z ∈ A ∪B

∼= ∀σA∀σB∀εx∀εy [∃εz(z ∈ A ∪B ∧ (x ≯̇ z ∨ z ≯̇ y))∨

x ∈ A ∪B ∨ y ∈ A ∪B ∨ A ⊁ B ∨

A ∪ {x} ∪ {y} � B ∪ {x} ∪ {y}]

Bossert [15] introduced axioms describing the attitude of the decision
maker towards uncertainty. We formalize weakenings of these axioms that
apply to small sets only, since these turned out to suffice for characterization
results like the ones by Arlegi [4].

The axiom of simple uncertainty aversion postulates that the decision
maker will, for any alternative x, (strictly) prefer this alternative to a set
containing both a better and a worse alternative. Uncertainty appeal, on the
other hand, says that the ranking has to be just the other way around: the set
with a better and a worse element is (strictly) preferred to the single element
x.

These axioms play a crucial role in the characterization of the min-max
ordering, which we will say more about in the beginning of Section 5.6.

(SUAv) (x >̇ y ∧ y >̇ z)⇒ {y} ≻ {x, z} for all x, y, z ∈ X
∼=∀εx∀εy∀εz[(x >̇ y ∧ y >̇ z)→ {y} ≻ {x} ∪ {z}]

(SUAp) (x >̇ y ∧ y >̇ z)⇒ {x, z} ≻ {y} for all x, y, z ∈ X
∼=∀εx∀εy∀εz[(x >̇ y ∧ y >̇ z)→ {x} ∪ {z} ≻ {y}]

In the very same characterization [4] that also employs Bossert’s un-
certainty principles, also monotonicity axioms called simple top and bottom
monotonicity, respectively, are used.

The underlying idea of these axioms is simple: given two alternatives, it
is better to get the better one of the two together with some third element
(instead of the worse one with the same third element). The two respective
versions of the axiom then only apply to alternatives that are ranked higher
(top) than the third alternative, or ranked lower (bottom), respectively.

(STopMon) x >̇ y ⇒ {x, z} ≻ {y, z}

for all x, y, z ∈ X such that x >̇ z and y >̇ z
∼= ∀εx∀εy∀εz[(x >̇ z ∧ y >̇ z ∧ x >̇ y)→ {x} ∪ {z} ≻ {y} ∪ {z}]

74 5 Automated and Exhaustive Theorem Search

(SBotMon) y >̇ z ⇒ {x, y} ≻ {x, z}

for all x, y, z ∈ X such that x >̇ y and x >̇ z
∼=∀εx∀εy∀εz[(x >̇ y ∧ x >̇ z ∧ y >̇ z)→ {x} ∪ {y} ≻ {x} ∪ {z}]

An intuitively rather odd axiom is the principle of even-numbered extension
of equivalence. It says that, for all sets with an even number of elements, if
the decision maker is indifferent about whether this set is added to each of
two distinct singleton sets, then she should also be indifferent about whether
it is added to the union of the two singleton sets.

Even though it substantially lacks intuitive support, this axiom is useful
because (together with a few other principles) it characterizes a median-based
ordering proposed by Nitzan and Pattanaik [49].

(evenExt) (A ∪ {x} ∼ {x} ∧ A ∪ {y} ∼ {y})⇒ A ∪ {x, y} ∼ {x, y}

for all A ∈ X , such that |A| is even, and for all x, y ∈ X \A
∼=∀σA∀εx∀εy[(evencard(A) ∧ x /∈ A ∧ y /∈ A)→

((A ∪ {x} ∼ {x} ∧ A ∪ {y} ∼ {y})→

A ∪ {x} ∪ {y} ∼ {x} ∪ {y})]

The final axiom in our list is monotone consistency (MC), which was de-
signed by Arlegi [4] to characterize (in connection with other axioms) the
min-max ordering (see also Section 5.6).

(MC) expresses that if a set of objects A is at least as good as another set
B, then the union of the two is at least as good as the latter. This implies –
and for complete binary relations is equivalent to – the potentially worse set
B not being strictly better than the union of the two. Intuitively, it means
that after adding the alternatives of the (weakly preferred) set A to the set
B, the decision maker maintains the alternatives she had in B plus the ones
that were contained in A, which was weakly preferred to B. Thus, this process
should not produce a set that is strictly worse than B.

Although (MC) appears to be similar to the first axiom of the Gärdenfors
principle, it is quite different in fact since it does not dictate the existence of
any strict preferences.

(MC) A � B ⇒ A ∪B � B for all A,B ∈ X
∼=∀σA∀σB [A � B → A ∪B � B]

5.4 Impossibility Theorems Found

Our theorem search (checking problem instances up to a domain size of eight)
yields a total of 84 minimal impossibility theorems on the space of the 20
above axioms. The results are minimal in two senses:

5.4 Impossibility Theorems Found 75

• the corresponding axiom set is minimal with respect to set inclusion,
i.e., all proper subsets are compatible at the given domain size,

• the domain size is minimal, i.e., for all smaller domain sizes the given
axiom set is still compatible.

Counting the total number of incompatible axiom sets (i.e., including all su-
persets), we find 312.432 inconsistent axiom sets out of about one million
possible combinations.

The whole experiment required a running time of roughly one day82 for
handling all of the nearly 8,5 million instances. In order to externally verify
as many impossibilities as possible, we used the solver zChaff [61] for all
instances up to domain size 7, and switched to the faster solver PrecoSAT for
instances with (exponentially larger) domain size 8. The five impossibilities
occurring only on domain size 8 have therefore not been verified externally.83

In the following Table 5.1 we list all minimal impossibilities that our search
method was able to find (and hence, assuming correctness of our method, all
that there are) for domain sizes up to 8. Recall again that, by Corollary 4.16,
these all directly correspond to full impossibility results (from the given do-
main size upwards).

The results are ordered ascendingly by minimal domain size, and descend-
ingly by the number of axioms involved as a second criterion. The idea was to
have stronger and easier to grasp impossibilities higher up in table, whereas
more complicated results will come later. The numbers are simply an enumer-
ation of the results and come with no further meaning.

N
o
.

S
iz

e

L
IN

ε

R
E

F
L
σ

C
O

M
P

L
σ

T
R

A
N

S
σ

E
X

T

S
D

o
m

G
F

1

G
F

2

IN
D

st
ri

ct
IN

D

S
U

A
v

S
U

A
p

S
T

o
p

M
o
n

S
B

o
tM

o
n

to
p

IN
D

b
o
tI

N
D

d
is

IN
D

in
tI

N
D

ev
en

E
x
t

M
C

1 3 X · · · · X · · · X · · · · · · · · · ·
2 3 X · · · · · · · · · X X · · · · · · · ·
3 3 X · · · · · X X · X · · · · · · · · · ·
4 3 X · X · · · · X · X · · · · · · · · · X

5 3 X · · · X · · X · X · · · · · · · · · X

6 3 X · · · · · · X · X X · · · · · · · · X

Continued. . .

Table 5.1: Results of our automated and exhaustive theorem search
on a space of 20 axioms (including orders).

82 The experiment was performed on an Intel Xeon 2,26 GHz octo-core machine
using only one core and 5GB of the available 24GB memory. The machine is part
of the Dutch national compute cluster Lisa [58].

83 Using only zChaff would have also been possible, but slower by a factor of
about 10.

76 5 Automated and Exhaustive Theorem Search

N
o
.

S
iz

e

L
IN

ε

R
E

F
L
σ

C
O

M
P

L
σ

T
R

A
N

S
σ

E
X

T

S
D

o
m

G
F

1

G
F

2

IN
D

st
ri

ct
IN

D

S
U

A
v

S
U

A
p

S
T

o
p

M
o
n

S
B

o
tM

o
n

to
p

IN
D

b
o
tI

N
D

d
is

IN
D

in
tI

N
D

ev
en

E
x
t

M
C

7 3 X · · · · · · X · X · · · X · · · · · X

8 4 X · · · · · · X · X · · X · · · · · · X

9 4 X · · X · · X X X · X · · · · · · · · ·
10 4 X · · X · X X · X · X · · · · · · · · ·
11 4 X · · X X · X · · X X · · · · · · · · ·
12 4 X · · X · · X X X · · X · · · · · · · ·
13 4 X · · X · X · X X · · X · · · · · · · ·
14 4 X · · X X · · X · X · X · · · · · · · ·
15 4 X · · X · · X · X · X · X · · · · · · ·
16 4 X · · X · X · · X · X · X · · · · · · ·
17 4 X · · X · · X · · X X · X · · · · · · ·
18 4 X · · X · · · X X · · X · X · · · · · ·
19 4 X · · X · X · · X · · X · X · · · · · ·
20 4 X · · X · · · X · X · X · X · · · · · ·
21 4 X · · X X · · · · X X · · · · · · · · X

22 4 X · · X · · · X X · · X · · · · · · · X

23 4 X · · X · · · X · X · X · · · · · · · X

24 4 X · · X · · · · X · X · X · · · · · · X

25 4 X · · X · · · · · X X · X · · · · · · X

26 4 X · · X · · · · · · X · X · · X · · · X

27 4 X · · X · · · · · · X · X · · · X · · X

28 4 X · · X · · X X · · X · · · X X · · · ·
29 4 X · · X · X X · · · X · · · X X · · · ·
30 4 X · · X · · X X · · · X · · X X · · · ·
31 4 X · · X · X · X · · · X · · X X · · · ·
32 4 X · · X · · X · · · X · X · X X · · · ·
33 4 X · · X · X · · · · X · X · X X · · · ·
34 4 X · · X · · · X · · · X · X X X · · · ·
35 4 X · · X · X · · · · · X · X X X · · · ·
36 4 X · · X · · · X · · · X · X · X X · · ·
37 4 X · · X · X · · · · · X · X · X X · · ·
38 4 X · · X · · X · · · X · X · X · X · · ·
39 4 X · · X · X · · · · X · X · X · X · · ·
40 4 X · · X · · X X · · X · · · · X · · · X

41 4 X · · X · X X · · · X · · · · X · · · X

42 4 X · · X · · · X · · · X · · X X · · · X

43 4 X · · X · · · X · · · X · · · X X · · X

44 5 X · · X · · X · X · X · · · · · · · · ·
Continued. . .

Table 5.1: Results of our automated and exhaustive theorem search
on a space of 20 axioms (including orders).

5.4 Impossibility Theorems Found 77

N
o
.

S
iz

e

L
IN

ε

R
E

F
L
σ

C
O

M
P

L
σ

T
R

A
N

S
σ

E
X

T

S
D

o
m

G
F

1

G
F

2

IN
D

st
ri

ct
IN

D

S
U

A
v

S
U

A
p

S
T

o
p

M
o
n

S
B

o
tM

o
n

to
p

IN
D

b
o
tI

N
D

d
is

IN
D

in
tI

N
D

ev
en

E
x
t

M
C

45 5 X · · X · · X · · X X · · · · · · · · ·
46 5 X · · X · · · X X · · X · · · · · · · ·
47 5 X · · X · · · X · X · X · · · · · · · ·
48 5 X · · X · · X · · · X · · · X X · · · ·
49 5 X · · X · · · X · · · X · · X X · · · ·
50 5 X · · X · · · X · · · X · · · X X · · ·
51 5 X · · X · · X · · · X · · · X · X · · ·
52 5 X · X X · · · · · X X · · · · · · · · X

53 5 X · · X · · · · · X X · · X · · · · · X

54 5 X · · X · · X · · · X · · · · X · · · X

55 5 X · · X · · X · · · X · · · · · X · · X

56 6 X · · X · · · · · X X · · · · · · · · X

57 6 X · X X · · X X X · · · · · · · · · · ·
58 6 X · X X · X · X X · · · X · · · · · · ·
59 6 X · X X · X X · X · · · · X · · · · · ·
60 6 X · X X · X · · X · · · X X · · · · · ·
61 6 X · X X · · X X · · · · · · X X · · · ·
62 6 X · · X · · X X · · X · · · · X · X · ·
63 6 X · · X · X X · · · X · · · · X · X · ·
64 6 X · · X · · X · · · X · X · · X · X · ·
65 6 X · · X · · X X · · · X · · X · · X · ·
66 6 X · · X · X · X · · · X · · X · · X · ·
67 6 X · · X · · · X · · · X · X X · · X · ·
68 6 X · X X · · · X X · · · X · · · · · · X

69 6 X · · X · · · X · · · X · · X · · X · X

70 6 X · X X · X · X · · · · X · X X · · · ·
71 6 X · X X · X X · · · · · · X X X · · · ·
72 6 X · X X · X · · · · · · X X X X · · · ·
73 6 X · X X · · · X · · · · X · X X · · · X

74 6 X · X X · · X X · · · · · · · X X · · X

75 6 X · X X · · · X · · · · X · · X X · · X

76 6 X · X X · X X · · · · · · X · X X · · X

77 6 X · X X · X · · · · · · X X · X X · · X

78 7 X · · X · · X · · · X · · · · X · X · ·
79 7 X · · X · · · X · · · X · · X · · X · ·

Continued. . .

Table 5.1: Results of our automated and exhaustive theorem search
on a space of 20 axioms (including orders).

78 5 Automated and Exhaustive Theorem Search

N
o
.

S
iz

e

L
IN

ε

R
E

F
L
σ

C
O

M
P

L
σ

T
R

A
N

S
σ

E
X

T

S
D

o
m

G
F

1

G
F

2

IN
D

st
ri

ct
IN

D

S
U

A
v

S
U

A
p

S
T

o
p

M
o
n

S
B

o
tM

o
n

to
p

IN
D

b
o
tI

N
D

d
is

IN
D

in
tI

N
D

ev
en

E
x
t

M
C

80 8 X · X X · · X X · · · · · · · X X X · ·
81 8 X · X X · · X X · · · · · · X · X X · ·
82 8 X · X X · X X · · · · · · X · X X X · ·
83 8 X · X X · X · X · · · · X · X · X X · ·
84 8 X · X X · · · X · · · · X · X · X X · X

Table 5.1: Results of our automated and exhaustive theorem search
on a space of 20 axioms (including orders).

It would now, of course, be helpful to find some structure in this large
table that makes it easier to explore the results.84 Unfortunately, this is rather
difficult and the best we can do is give some general remarks and observations
that will help the reader process the results.

We first note that impossibilities can occur from all of the tested domain
sizes larger than 2 onwards. This already is something new since so far only
impossibilities with |X | ≥ k, k ∈ {3, 4, 6} were known.

The results themselves differ much in their level of appeal and interesting-
ness. We can find impossibilities of at least the five (potentially overlapping)
categories

(a) known results,
(b) variations of known results,
(c) direct consequences of other results,
(d) straightforward results, and most importantly
(e) new results, so far unknown.

Some previously known results we can easily recognize among the ones in
our list: the Kannai-Peleg Theorem corresponds to our Impossibility No. 57,
an impossibility theorem by Barberà and Pattanaik [12] can be found as
Impossibility No. 1. Other than that we are only aware of one more known
impossibility under the interpretation of complete uncertainty, which we could
unfortunately not encode in our framework since it uses the axiom of neutrality
(see Section 4.2). It is a variant of the Kannai-Peleg Theorem presented by
Barberà, Bossert and Pattanaik [11], in which the number of elements
has been lowered to four by adding the aforementioned axiom.

Variations of known results are also easy to spot by just keeping some
axioms fixed and browsing for results involving these. Impossibilities No. 80
and No. 10, for instance, are variations of the Kannai-Peleg Theorem, where
in the former a weakening of the axioms makes the impossibility occur only

84 On a computer, however, an exploration is quite easy using for instance the filter-
ing tool within a spreadsheet program like Microsoft Excel. One can then switch
axioms on and off and inspect the corresponding impossibilities.

5.4 Impossibility Theorems Found 79

at a larger domain size. The latter is a variation in the other direction: the
additional axiom (SUAv) causes an impossibility at a domain size of 4 elements
already. And many more such variations of known theorems can be found.85

As we used a set of axioms in which certain axioms imply others, we had
to expect results that are just direct consequences of others. In particular,
every result involving some (weak) form of independence will also occur with
the standard or strict independence only, and similarly for simple dominance,
which is a weaker form of the Gärdenfors principle. Examples of such results
are the Impossibilities No. 3 (implied by No. 1) and Impossibility No. 9 (im-
plied by No. 28).

Straightforward results we could only find one: Impossibility No. 2 says
that a binary relation cannot fulfill both (SUAv) and (SUAp), i.e., reflect the
contradictory principles of uncertainty aversion and uncertainty appeal. This
is (especially when examining the exact statement of the axioms) immediate.

What we are left with are the new, previously unknown results. There are
quite a few of them, but they differ in how interesting they are. For instance,
it is not very reasonable to only postulate (GF1) but not (GF2), which makes
the new Impossibility No. 11 not so fascinating after all. But we can also find
results like Impossibility No. 52 or No. 56, where the combination of axioms
appears to be reasonable and yet leads to an impossibility.

We will return to some of these results in Section 5.6, where we prove
a few of them by hand. But let us now for a moment shift our perspective
from problems, i.e., combinations of axioms, to the special role of individual
axioms with respect to all results. On the one hand, the axiom (LINε) of a
linear order ≥̇ on X occurs in all impossibilities. This means that there is no
impossibility without this axiom (on the given axiom space and up to domain
size 8). This could have been anticipated: if we use the empty relation on X
for ≥̇, then most axioms do not say anything about � anymore and can hence
not be incompatible.

Also note that the only impossibility without any form of independence is
the (straightforward) Impossibility No. 2.

On the other hand, the axioms (evenExt) and (REFLσ) do not occur in
any impossibility. Therefore, we can conclude that these must be particularly
well-compatible with the other axioms. Or put differently, that adding them
to a given set of axioms does not cause an impossibility.86

The axiom (intIND) of intermediate independence is contained in all dis-
covered impossibilities at domain sizes 7 and 8 (and does not cause any impos-
sibilities at sizes 5 and below). That this axiom is involved in somewhat larger
instances makes a great deal of sense intuitively: for each application of the
axiom we have to add two elements (one above, one below the set we apply

85 See, e.g., Impossibilities No. 33, 37, 40, etc.
86 Even though reflexivity (REFLσ) will not be needed for any impossibility, we will

usually speak of a weak order as soon as completeness (COMPLσ) and transitivity
(TRANSσ) are required.

80 5 Automated and Exhaustive Theorem Search

it to), and so it was to be expected that larger domain sizes are necessary for
a contradiction.

5.5 Potential Possibilities Found

Yet another application of our theorem search, which was originally designed
to find impossibilities, could be the discovery of possibility or characterization
results. For such theorems, however, we cannot expect the search to return
the full result as we lack an (inductive) step going upwards for possibilities.87

But still we can consider the results of our theorem search a heuristic for
possibilities, too: if an axiom set is compatible for large problem domains,
then this might be a good indicator for a general possibility.88

We have listed a few such potential possibilities in Table 5.2. All of these
are maximal with respect to set inclusion, i.e., there are no proper axiom
supersets of the respective axiom sets that are still consistent at the given
domain size.

N
o
.

S
iz

e

L
IN

ε

R
E

F
L
σ

C
O

M
P

L
σ

T
R

A
N

S
σ

E
X

T

S
D

o
m

G
F

1

G
F

2

IN
D

st
ri

ct
IN

D

S
U

A
v

S
U

A
p

S
T

o
p

M
o
n

S
B

o
tM

o
n

to
p

IN
D

b
o
tI

N
D

d
is

IN
D

in
tI

N
D

ev
en

E
x
t

M
C

P1 8 X X X · X X X X X · X · X X X X X X X X

P2 8 X X X X X · X · X X · X X X X X X X X X

P3 8 X X X X X · · X X X X · X X X X X X X ·
P4 8 X X · X X X X X X · · · X X X X X X X X

P5 8 X X X X X X X X · · · X X X · X · X X X

P6 8 X X X X X X X X · · X · X X X · · X X X

Table 5.2: A small selection of potential possibilities returned by
our automated and exhaustive theorem search on a space of 20
axioms (including orders).

87 At a general level, such a step even cannot exist because contrapositively it would
cause impossibilities to propagate downwards, i.e., from larger to smaller domain
sizes. We know that this is not the case since we can, for instance, construct weak
orders on small domains (|X| ≤ 5) satisfying the axioms of the Kannai-Peleg
Theorem (see Appendix B.2).

88 Especially leaving out the axiom of intermediate independence (intIND) can sup-
port this claim: without (intIND) the largest domain size necessary for any of the
above impossibilities is |X| = 6 and no further impossibilities occur with 7 or 8
elements, respectively.

5.6 Some Manual Proofs of Impossibilities 81

Potential Possibility P2, for instance, shows that the dominance axioms
are indeed somewhat problematic: if we drop them,89 then (apart from the
clear incompatibility of (SUAv) and (SUAp)) all other axioms are consistent up
to a domain size of eight elements. The somewhat dual result P3 surprisingly
forces (STopMon) out, which shows that the axioms might be less symmetric
than intuitively expected.

As an alternative to discarding all dominance principles for producing po-
tential possibilities, it also suffices to just give up simple uncertainty aversion
(SUAv) and top (topIND) as well as disjoint independence (disIND) (and there-
fore also the stronger (IND) and (strictIND)) to obtain a potential possibility
(P5). Potential possibility P6, on the other hand, is the dual result for (SUAp)
and (botIND) instead of (SUAv) and (topIND), respectively.

But also loosening the restrictions of the order � can be a potential way
out of the impossibilities. Giving up transitivity, for instance, enables us to
keep all dominance principles and standard independence, if we only drop
strict independence (strictIND) and simple uncertainty appeal (SUAp) (see
Potential Possibility P1). Alternatively, we can choose to not postulate com-
pleteness (COMPLσ) and obtain a similar, but slightly weaker combination of
axioms (P4).

For finding the full possibility and characterization results, remember also
that (in addition to the pure fact that these axiom sets are still consistent
at the given domain size) our program can output examples of weak orders
satisfying a given set of axioms. One can then look at these orders manually
and try to find common characteristics that might help in finding out which
(class of) orders, if any, satisfy the axioms or are even characterized by them.
But since, in order to establish a full possibility, one then still has to show
that each of the axioms is satisfied by the predicted order for arbitrary domain
sizes, this remains a laborious task.

5.6 Some Manual Proofs of Impossibilities

In the following we want to discuss some of the obtained impossibilities and
also provide manual proofs for the theorems. The latter should underpin the
usefulness of our theorem search as a heuristic, even in case one does not
consider the output of such a program a rigorous proof. The knowledge about
which axioms to use and what the critical domain size is, can guide the con-
struction of manual proofs significantly. Additionally, one can run the program
again with slightly modified axioms, not only to get an even better understand-
ing about where the borderline is between the possible and the impossible,
but also to have some assistance in choosing the right steps when proving the
results by hand. And there is even one more application of the program during
the search for a manual proof: one can run the program with single axioms

89 We can even keep (GF1).

82 5 Automated and Exhaustive Theorem Search

left out and look at the created examples of orders satisfying the remaining
axioms in order to understand which structural properties these imply that
are then incompatible with the left-out axiom.

5.6.1 Non-intuitive Impossibility

Let us start with the concrete example of our most striking result. In the
year 2000 Bossert, Pattanaik and Xu [16] published a result stating that
the axioms (SDom), (IND), (SUAv) and (STopMon) characterize the so-called
min-max ordering, which is defined by

A �mnx B ⇐⇒ [min(A) >̇ min(B)∨

(min(A) = min(B) ∧max(A) ≥̇ max(B))].

Their paper also contained a dual result for the max-min ordering (charac-
terized by the axioms (SDom), (IND), (SUAp), (SBotMon)).

The reader can now check that this contradicts the results of our theorem
search since both of these axiom sets are among the impossibility theorems in
Table 5.1 (Impossibilities No. 16 and 19). Indeed, it turns out that the proofs
of Bossert, Pattanaik and Xu were flawed as Arlegi [4] pointed out three
years later.90 Arlegi, however, only notes that the min-max and max-min
orderings do not satisfy the axiom of independence (IND), i.e., that these or-
ders cannot be characterized by the axioms (SDom), (IND), (SUAv), (STopMon),
and (SDom), (IND), (SUAp), (SBotMon), respectively. Thus, this does not only
show the non-intuitiveness of our findings (as the contrary was believed for
some time), but it also yields more than just a counterexample to the origi-
nal publication: we additionally get that the four axioms under consideration
are even inconsistent (in the presence of transitivity) and hence no transitive
binary relation whatsoever can satisfy them. We give a manual proof for this
result.

Theorem 5.1 (Impossibility No. 16). Let X be a linearly ordered set with
|X | ≥ 4. Then there exists no transitive binary relation � on X satisfying
simple dominance (SDom), independence (IND), simple uncertainty aversion
(SUAv), and simple top monotonicity (STopMon).

Proof. Let xi, i ∈ {1, 2, 3, 4} denote four distinct elements of X such that they
are ordered descendingly by >̇ with respect to their index, i.e., x1 >̇ x2 >̇
x3 >̇ x4. By way of contradiction, suppose there exists a transitive binary
relation � on X satisfying simple dominance (SDom), independence (IND),
simple uncertainty aversion (SUAv), and simple top monotonicity (STopMon).

On the one hand, it follows from simple uncertainty aversion applied to
x1 >̇ x2 >̇ x3 that {x2} ≻ {x1, x3}, and adding x4 to both sets yields (by
independence):

90 He also presents two new axiom sets to characterize the two orders and proves
the characterizations.

5.6 Some Manual Proofs of Impossibilities 83

{x2, x4} � {x1, x3, x4}. (5.1)

On the other hand, we can use simple dominance (applied to x3 >̇ x4) to
show {x3, x4} ≻ {x4}, from which

{x1, x3, x4} � {x1, x4} (5.2)

follows by independence. Furthermore, simple top monotonicity applied to
x1 >̇ x2 >̇ x4 directly gives

{x1, x4} ≻ {x2, x4}, (5.3)

which we are able to combine with (5.2) by transitivity.91 We thus obtain

{x1, x3, x4} ≻ {x2, x4},

which directly contradicts (5.1).
Thus, there cannot be any transitive binary relation � on X satisfying

the principles of simple dominance (SDom), independence (IND), simple uncer-
tainty aversion (SUAv), and simple top monotonicity (STopMon). ⊓⊔

Note, that all four axioms are not only actually used in the proof above,
but they are necessary for the result and also logically independent from each
other as the following examples of weak orders show:92

Let X = {x1, x2, x3, x4} and x1 >̇ x2 >̇ x3 >̇ x4.

(a) The weak order � given by
{x1} ≻ {x2} ≻ {x3} ≻ {x4} ≻ {x1, x2} ≻ {x1, x3} ≻ {x2, x3} ≻
{x1, x4} ≻ {x2, x4} ≻ {x3, x4} ≻ {x1, x2, x3} ≻ {x1, x2, x4} ≻
{x1, x3, x4} ≻ {x2, x3, x4} ≻ {x1, x2, x3, x4}
satisfies (IND), (SUAv), (STopMon), but not (SDom).

(b) The weak order � given by
{x1} ≻ {x1, x2} ≻ {x2} ≻ {x1, x3} ≻ {x2, x3} ≻ {x3} ≻ {x1, x2, x3} ≻
{x1, x4} ≻ {x2, x4} ≻ {x1, x2, x4} ≻ {x3, x4} ≻ {x4} ≻ {x1, x3, x4} ≻
{x2, x3, x4} ≻ {x1, x2, x3, x4}
satisfies (SDom), (SUAv), (STopMon), but not (IND).

(c) The weak order � given by
{x1} ≻ {x1, x2} ≻ {x1, x3} ∼ {x1, x2, x3} ≻ {x2} ≻ {x2, x3} ≻ {x3} ≻
{x1, x4} ∼ {x1, x2, x4} ∼ {x1, x3, x4} ∼ {x1, x2, x3, x4} ≻ {x2, x4} ∼
{x2, x3, x4} ≻ {x3, x4} ≻ {x4}
satisfies (SDom), (IND), (STopMon), but not (SUAv).

(d) The weak order � given by
{x1} ≻ {x1, x2} ≻ {x2} ≻ {x1, x3} ∼ {x1, x2, x3} ≻ {x2, x3} ≻ {x3} ≻
{x1, x4} ∼ {x1, x3, x4} ∼ {x2, x4} ∼ {x1, x2, x4} ∼ {x2, x3, x4} ∼
{x1, x2, x3, x4} ≻ {x3, x4} ≻ {x4}
satisfies (SDom), (IND), (SUAv), but not (STopMon).

91 See Remark 1.1 for (a proof of) this kind of transitivity.
92 All of these examples were constructed fully automatically using our program as

described in Section 3.4.1.

84 5 Automated and Exhaustive Theorem Search

It can now also be seen that no subset of these four axioms suffices to
characterize the min-max ordering. Any subset containing (IND) can be re-
jected immediately since (IND) is violated by the min-max ordering (as we
have noted earlier), and any subset not containing it cannot suffice for a char-
acterization either, since example (b) differs from the min-max ordering �mnx

(in which {x2, x3, x4} ≺mnx {x1, x2, x3, x4}).

5.6.2 Variations of the Kannai-Peleg Theorem

A different theorem we would like to prove manually is Impossibility No. 9,
a variation of the Kannai-Peleg Theorem that trades an additional axioms
(simple uncertainty aversion) for the impossibility occurring at a domain size
of 4 rather than 6 elements.

The theorems we are presenting in the following are very instructive ex-
amples since they do not only shed some more light on different variations of
the Kannai-Peleg Theorem, but will also show us how versions of a result can
help us strengthen its proof.

Theorem 5.2 (Impossibility No. 9). Let X be a linearly ordered set with
|X | ≥ 4. Then there exists no transitive binary relation � on X satisfying the
Gärdenfors principle (GF), independence (IND) and simple uncertainty aver-
sion (SUAv).

Proof. Let xi, i ∈ {1, 2, . . . , 4} denote four distinct elements of X such that
they are ordered descendingly by >̇ with respect to their index, i.e., x1 >̇ x2 >̇
x3 >̇ x4. By way of contradiction, suppose there exists a transitive binary
relation � on X satisfying the Gärdenfors principle (GF), independence (IND)
and simple uncertainty aversion (SUAv). Simple uncertainty aversion (SUAv)
dictates that {x2} ≻ {x1, x3}, from which we can infer

{x2, x4} � {x1, x3, x4} (5.4)

by independence (IND). Now it is just a matter of using Lemma 1.4 for both
sets in order to obtain the following chain:

{x2, x3, x4} ∼ {x2, x4} � {x1, x3, x4} ∼ {x1, x2, x3, x4}.

This, then, stands in direct contradiction to the Gärdenfors principle (GF),
which demands that {x2, x3, x4} ≺ {x1, x2, x3, x4}. ⊓⊔

Remark 5.3. Instead of using Lemma 1.4, we can also directly apply the given
axioms.

On the one hand, {x1} ≻ {x1, x2} holds by (GF2), and (IND) yields
{x1, x3} � {x1, x2, x3}, from which we can obtain {x1} ≻ {x1, x2, x3} by
{x1} ≻ {x1, x3} ((GF1)) and transitivity. Then again applying (IND) gives
{x1, x4} � {x1, x2, x3, x4}. The missing link (in order to get {x1, x3, x4} �

5.6 Some Manual Proofs of Impossibilities 85

{x1, x2, x3, x4} by transitivity) {x1, x3, x4} � {x1, x4} can be obtained from
{x3, x4} ≻ {x4} ((GF1)) by (IND).

On the other hand, {x3, x4} ≻ {x4} holds by (GF1) as observed before and,
thus, (IND) gives {x2, x3, x4} � {x2, x4}.

Together with (5.4) we can piece things together by transitivity and obtain

{x2, x3, x4} � {x2, x4}
(5.4)

� {x1, x3, x4} � {x1, x2, x3, x4},

which gives the desired contradiction with (GF1).

Note that the same impossibility result also holds with simple uncertainty
appeal (SUAp) (Impossibility No. 12) in place of simple uncertainty aversion
(SUAv) and the proof works analogously (starting from {x3} ≺ {x2, x4} and
then adding x1 by independence). Also one should remark here that neither
reflexivity nor completeness of � are used in the proof above (as already
indicated by our results, see Table 5.1). Thus, the impossibility holds for
arbitrary transitive binary relations instead of just weak orders.

When we have an even closer look at Table 5.1, which was obtained using
our program, then we can see that there is an even stronger form of The-
orem 5.2: Impossibility No. 28 corresponds to the the axioms (GF), (SUAv),
(botIND), (topIND) and is impossible from domain size 4 on. In contrast to
(IND), the axioms (botIND) and (topIND) allow the principle of independence
in certain situations only: the element to be added has to be ranked below
or above all the elements in both sets, respectively. Actually, one can see at
closer inspection of the proof given above for Theorem 5.2 (and Remark 5.3
in particular) that only these weaker forms of (IND) are used.93 Therefore, we
have already proved the following stronger version of Theorem 5.2.

Theorem 5.4 (Impossibility No. 28). Let X be a linearly ordered set with
|X | ≥ 4. Then there exists no transitive binary relation � on X satisfying
the Gärdenfors principle (GF), bottom (botIND) as well as top independence
(topIND), and simple uncertainty aversion (SUAv).

An interesting insight can be obtained from comparing Impossibility No. 48
to the previous result. It shows us that we can drop the second Gärdenfors
axiom if we add just one element to the domain, i.e., we have |X | ≥ 5. The
exact result as well as a manual proof is shown in the following.

Theorem 5.5 (Impossibility No. 48). Let X be a linearly ordered set with
|X | ≥ 5. Then there exists no transitive binary relation � on X satisfying the
first axiom of the Gärdenfors principle (GF1), bottom (botIND) as well as top
independence (topIND), and simple uncertainty aversion (SUAv).

93 The same is true for the Kannai-Peleg Theorem and its original proof [37]. Confer
also Impossibility No. 61.

86 5 Automated and Exhaustive Theorem Search

Proof. Let xi, i ∈ {1, 2, . . . , 5} denote five distinct elements of X such that
they are ordered descendingly by >̇ with respect to their index, i.e., x1 >̇
x2 >̇ x3 >̇ x4 >̇ x5. By way of contradiction, suppose there exists a transitive
binary relation � on X satisfying the first axiom of the Gärdenfors principle
(GF1), bottom (botIND) as well as top independence (topIND), and simple
uncertainty aversion (SUAv).

Simple uncertainty aversion tells us that {x2} ≻ {x1, x3} and so

{x2, x5} � {x1, x3, x5} (5.5)

follows by bottom independence (botIND). In the exact same way, we can
obtain

{x3, x5} � {x2, x4, x5} (5.6)

by (botIND) from {x3} ≻ {x2, x4} ((SUAv)), and analogously we get

{x2, x4, x5} � {x2, x5} (5.7)

by top independence (topIND) from {x4, x5} � {x5}, which is the case by
(GF1). We can now put these three statements together:

{x3, x5}
(5.6)

� {x2, x4, x5}
(5.7)

� {x2, x5}
(5.5)

� {x1, x3, x5}, (5.8)

which implies {x3, x5} � {x1, x3, x5} by transitivity and hence contradicts
the axiom (GF1). ⊓⊔

Alternatively, we could have replaced (botIND) by (disIND) (No. 51), or
(topIND) by (intIND), then, however, requiring at least seven elements in
the domain (No. 78).

Knowing which axioms exactly cause the impossibility turned out to be
extremely helpful in the process of constructing and improving the proof of
Theorem 5.5. Not only did we know what forms of independence we had to
use, but also did an early version of the proof still contain applications of
(disIND), (botIND) and (topIND), which showed us that a better proof must
still be possible.

Two further variants of the Kannai-Peleg Theorem can be found in Impos-
sibilities No. 80 and 81, which can be considered strengthenings of the original
Kannai-Peleg Theorem as they contain weaker versions of independence only.
The strengthening, however, comes at the cost of the impossibility starting
from a domain size of eight elements instead of six. The form of indepen-
dence that remains is a combination of intermediate, disjoint, and bottom or
top independence, respectively, which are (even together) strictly weaker than
standard independence.

5.6.3 Impossibilities without Dominance

All existing impossibilities in the literature we are aware of involve the
Gärdenfors principle or at least simple dominance. So let us now consider
what kinds of results we can obtain without any dominance principle.

5.6 Some Manual Proofs of Impossibilities 87

A striking impossibility without any principle of dominance – i.e., with-
out (GF) or (SDom) – is Impossibility No. 52: the axioms strict independence
(strictIND), simple uncertainty aversion (SUAv) and monotone consistency
(MC) are incompatible in presence of completeness and transitivity from do-
main size 5 on.94 One might be tempted to think that this impossibility is
mostly due to problems between (SUAv) and (MC) since they seem to express
contrary ideas: whereas (SUAv) favours small sets over large ones, (MC) tells
us that unions of two sets should be preferred to at least one of the sets. But
actually there is even a characterization result of the min-max ordering by
Arlegi [4] involving both axioms (SUAv) and (MC), and thus showing us that
this sensible and intuitive ordering fulfills these two axioms. Therefore, we can
see that it should not at all be considered unreasonable to have both axioms
act together.

The proof of Impossibility No. 52 needs to make use of completeness (and
transitivity) of �, which also makes it different from the previous proofs in
this chapter.

Theorem 5.6 (Impossibility No. 52). Let X be a linearly ordered set with
|X | ≥ 5. Then there exists no weak order � on X satisfying strict indepen-
dence (strictIND), simple uncertainty aversion (SUAv) and monotone con-
sistency (MC).

Proof. Let xi, i ∈ {1, 2, . . . , 5} denote five distinct elements of X such that
they are ordered descendingly by >̇ with respect to their index, i.e., x1 >̇ x2 >̇
x3 >̇ x4 >̇ x5. By way of contradiction, suppose there exists a weak order �
on X satisfying (strictIND), (SUAv) and (MC). We will proceed by assuming
a weak preference between the sets {x1, x4} and {x2, x5} and show that either
way this leads to a contradiction, hence violating the completeness of �.
Case 1: Suppose {x2, x5} � {x1, x4}. Then (MC) yields

{x1, x2, x4, x5} = {x2, x5} ∪ {x1, x4} � {x1, x4}, (5.9)

which we want to contradict. This can be done starting from

{x4} ≻ {x3, x5} and {x3} ≻ {x2, x4},

which are both direct applications of (SUAv). The latter can be extended to
match the righthand side of the former by adding x5 using (strictIND), which
then produces {x3, x5} ≻ {x2, x4, x5}. Hence, transitivity95 yields

{x4} ≻ {x2, x4, x5},

to which we can add the further element x1 by strict independence. This leaves
us with the desired {x1, x4} ≻ {x1, x2, x4, x5} contradicting (5.9).
Case 2: The case of assuming {x1, x4} � {x2, x5} is analogous. We obtain

94 If we want to drop completeness of the relation �, the impossibility only occurs
for domains with at least 6 elements (see Impossibility No. 56).

95 Like before, cf. Remark 1.1 for (a proof of) transitivity of the strict relation.

88 5 Automated and Exhaustive Theorem Search

{x1, x2, x4, x5} = {x1, x4} ∪ {x2, x5} � {x2, x5} (5.10)

by (MC), and can again start from (SUAv), but with (partially) different ele-
ments this time:

{x2} ≻ {x1, x3} and {x3} ≻ {x2, x4}.

We add x1 to the latter by (strictIND) in order to apply transitivity:

{x2} ≻ {x1, x3} ≻ {x1, x2, x4}.

To this we then just add x5 and get the desired contradiction of {x2, x5} ≻
{x1, x2, x4, x5} and (5.10). ⊓⊔

Note that we have found quite a few variants of this impossibility. Accord-
ing to our results, completeness could be replaced by simple bottom mono-
tonicity (Impossibility No. 53) or even be dropped at the price of having one
more element in the domain (Impossibility No. 56). Alternatively, one can
weaken strict independence to either bottom or disjoint independence at the
price of adding the axiom of simple top monotonicity (Impossibilities No. 26
and 27, respectively).96 A seemingly further variant can be obtained from
trading the axiom of extension (EXT) for a smaller domain. It is, however, a
direct consequence of Impossibilities No. 26 and 27, respectively, since (EXT)
and (strictIND) together imply (STopMon).

Since strict independence can be considered a relatively strong axiom and
is therefore criticizable as a natural axiom, especially the variants in No. 26
and 27 are worth considering again, as they do only postulate a very weak
form of independence. We have the following formal statement and its proof:

Theorem 5.7 (Impossibility No. 26). Let X be a linearly ordered set with
|X | ≥ 4. Then there exists no transitive binary relation � on X satisfying
bottom independence (botIND), simple uncertainty aversion (SUAv), simple
top monotonicity (STopMon) and monotone consistency (MC).

Proof. Let xi, i ∈ {1, 2, . . . , 4} denote four distinct elements of X such that
they are ordered descendingly by >̇ with respect to their index, i.e., x1 >̇
x2 >̇ x3 >̇ x4. By way of contradiction, suppose there exists a transitive
binary relation � on X satisfying the axioms (botIND), (SUAv), (STopMon),
and (MC).

Simple uncertainty aversion tells us that {x2} ≻ {x1, x3} and so

{x2, x4} � {x1, x3, x4} (5.11)

follows by bottom independence (botIND).97. Similarly, we have {x3} ≻
{x1, x4} by (SUAv), and can use this to obtain

96 These impossibilities even need one element less in the domain X.
97 The same statement follows from (disIND), which could hence have been used

instead (making this a proof for Impossibility No. 27).

5.7 Summary 89

{x1, x3, x4} � {x1, x4} (5.12)

by (MC). We can now put the two statements (5.11) and (5.12) together and
transitivity yields

{x2, x4} � {x1, x4},

which directly contradicts (STopMon). ⊓⊔

This result comes as quite a surprise since Arlegi [4] characterizes the
min-max ordering by an axiom set including (SUAv), (STopMon), and (MC) (as
well as two further axioms). It follows that adding just a tiny bit of indepen-
dence to these three axioms turns their possibility into a general impossibility.

5.7 Summary

In this chapter we presented our automated, exhaustive theorem search and
its results on a space of 20 axioms from the literature.

The search method and its implementation were described and all involved
axioms explained. In Table 5.1 we presented an overview of all 84 minimal
impossibility results that had been found by our algorithm. We indicated how
these can be classified from “known” and “variations of known” theorems to
completely “new, so far unknown” results. Additionally, we exhibited a few
satisfiable instances since these can potentially cater as heuristics for general
possibilities or characterizations, i.e., compatible combinations of axioms.

Impossibility theorems of very different importance were discovered and
some instructive examples were selected for manual proofs, which we showed
and described in Section 5.6. The highlight was a highly unintuitive impos-
sibility manifested in a peer-reviewed publication of a false possibility result
involving exactly the axioms that were now found to be generally incompati-
ble. But also many variations and partial strengthenings of the Kannai-Peleg
Theorem were obtained as well as two new impossibilities not containing any
form of dominance.

Conclusion and Future Work

Summary and Conclusion

This thesis has been concerned with the development of an automated search
for impossibility theorems in the field of ranking sets of objects.

The initial attempt to realize theorem verification in first-order logic, which
we favored due to its supposedly high readability compared to less expressive
logics, had to be discarded because of very weak performance of automated
provers. We conjectured that this is caused by the large overhead created
when implementing sets as additional objects in the universe in order to be
able to quantify over them.

Therefore, the next natural choice fell onto propositional logic, which
Tang and Lin had already used successfully to automatically prove major
impossibility theorems in social choice theory. We were able to extend their
method to ranking sets of objects and successfully verified its main impossi-
bility, the Kannai-Peleg Theorem, using a combination of a manual inductive
step and an automated verification of the corresponding base case using a
SAT solver.

A generalized version of this inductive step for a large class of axioms
(not only, but also covering the Kannai-Peleg Theorem) was subsequently
established with the help of tools from model theory. This result thus reduces
impossibility theorems to small instances and therefore allows establishing
full impossibility results by just proving that axioms are inconsistent for small
instances of the problem. The checking of these base cases can be very difficult
and tedious by hand, but can, as seen for the Kannai-Peleg Theorem, be
processed on a computer within seconds.

This insight motivated us to implement an automated and exhaustive the-
orem search that, given a set of axioms, can check all its subsets for incon-
sistent combinations at different domain sizes. A few experiments with this
method proved its fruitfulness and we reported a total of 84 impossibility re-
sults (with minimal domain sizes of eight or less elements) on a space of 20

92 Conclusion and Future Work

axioms, which corresponds to about one million axiom combinations. We clas-
sified these theorems and discussed a selection in detail, also giving manual
proofs, which were relatively easy to construct knowing exactly which axioms
and domain size to use. Among the results we found quite a few variations of
the Kannai-Peleg Theorem, but also surprising results, like an impossibility
previously believed to be a possibility as well as an impossibility without any
form of dominance principle.

We have thus created a method that can not only be used for formalizing
and automatically verifying known impossibility theorems, but also for the
discovery of completely new or modified impossibilities and also as a guiding
tool for finding general possibilities.

Synoptically, we see our main contribution in two different fields. On the
one hand, quite clearly, the discovered impossibility theorems are valuable
additions to the field of ranking sets of objects. On the other hand, and even
more importantly, the method of our theorem search does contribute both
to ranking sets of objects but also to automated reasoning, where it stands
for an extension of the technique developed by Tang and Lin, offering a
tool that could well be applied to other axioms, areas and disciplines, too.
It also underlines once more that satisfiability checking is a task with many
application, even with more sophisticated mechanisms like first- and higher-
order provers available.

Considering the particular impossibilities found by our program, the ques-
tion remains whether the Kannai-Peleg Theorem is now just one of many
results, or whether it still stands out in some way. The answer to this ques-
tion is involved, but we think that the Kannai-Peleg Theorem still holds a
special position among all impossibility results in the field of ranking sets of
objects due to the naturalness of its axioms. Even though also some of our
impossibility results comprise natural and intuitive combinations of axioms,
they do not quite reach the level of the Kannai-Peleg Theorem. It is largely
open, however, whether there are striking results in other parts of ranking
sets of objects that are still unknown, but could easily be discovered using
our theorem search. We see a lot of potential in the application of our search,
which, amongst other future perspectives, we are going to discuss in the next
section.

Future Work

On a general level and motivated by our own results as well as the increasing
capabilities of automated provers, we expect more contributions regarding the
application of automated reasoning to (social) choice theory, game theory, and
related disciplines in the future. These could differ in the logic used for the
formalization, but at least for fully automated approaches we see a particular
potential in logics with little expressivity but fast algorithms. The universality
of higher-order logic comes at the cost of not being efficiently checkable on a

Future Work 93

computer, and so this part will probably have to be reserved for interactive
proof assistants until more powerful systems are available.

More specifically, we see at least three different ways of extending our work
that we believe are of interest:

• by simply applying our method to other axiom sets (potentially in other
areas),

• by refining our implementation of the theorem search, and
• by modifying this presented technique to be applicable to other settings

or further disciplines within or outside of (social) choice theory.

The first idea most likely offers good chances for immediate results. Imple-
menting further axioms can be done quickly, and as long as they are covered
by our universal step, results can be read off after a short computation time.
Especially in the realm of opportunity sets,98 where to our knowledge no im-
possibility results are known to date, the potential for success is very high.
But also other models of ranking sets of objects, like the interpretation of sets
as final outcomes,99 offer a variety of axioms to be found in the literature, the
compatibility of which can now be explored easily.

Possibility results can similarly be searched for, but will mostly require a
manual proof as described in Section 5.5. In our opinion, the key to applying
the method successfully lies in combining the feature of certain SAT solvers
to generate multiple satisfying models with a manual search for similarities
among these.

Both of the above naturally lead us to the second idea of extending our
work further: refining the implementation. For additional axioms it would
make sense to integrate a parser or a similar input module that can read our
language MSLSP and therefore axioms do no longer have to be transformed
and coded by hand.100 Possibility searches, on the other hand, would benefit
from a module reading different satisfying assignments from the solver and
automatically generating a “minimal” model consisting of the overlap of all
assignments. This would then present researchers with a description of what
the entered axioms imply with respect to the ranking of sets.

Two further (and minor) ideas are to parallelize the computation part
(for instance using a clever scheduler that hands problems to an array of SAT
solvers), or to implement dependencies between the entered axioms. The latter
would make sure that only absolutely minimal results are returned, whereas
now the reader will remember that some of our results are trivial consequences
of others (since some of our axioms implied others).

The third idea of extending our work by adjusting the technique to other
disciplines is probably the hardest task. A starting point could be our Preser-
vation Theorem, which can potentially still be strengthened to a larger class

98 See Section 1.2 for a brief introduction and references.
99 See again Section 1.2.

100
Tchaltsev’s TPTP parser in Java [74] could be a good basis for such a module.

94 Conclusion and Future Work

of axioms. One could try to find out where the exact borderline lies between
formulas that are preserved in certain substructures and those that are not.
For arbitrary first-order models this has been done in the famous Loś-Tarski
Theorem, but for our class of structures for set preferences it is still an open
question.

In theory, the presented method appears to be applicable to a variety of
settings and disciplines. Ranking sets of objects is a first successful example
of such a setting, but we are curious which others will follow.

A

First-Order Logic

In this appendix we include materials related to the approach pursued in
Chapter 2 of using a theorem prover on a first-order formalization of the
problem under consideration. In particular, we present excerpts of an auto-
matically constructed first-order proof, which unfortunately turned out be be
much more complex than we had expected.

A.1 “Trivial” First-Order Proof

The following proof in the PCL2 (Proof Communication Language 2) format1

was created by Prover E. It is the proof of the (very simple) problem lemma2
(Lemma 1.4 for the case of two elements only) as described in Section 2.3.

Despite the extremely simple nature of the problem, we could not even
include the whole proof as produced by Prover E here (as it is about 40 pages
long), but had to skip 600 (!) lines to reduce its presentation to six pages in-
stead. The proof’s length and its complex and difficult to read structure show
how far automated theorem provers are from producing human readable proof
objects in our specific formalization.

Preprocessing time : 0.012 s

Problem is unsatisfiable (or provable), constructing proof object

SZS status Theorem

SZS output start CNFRefutation.

1 : : ![X1]:![X2]:(w(X1,X2)=>(S(X1)&S(X2))) :

initial("lemma_2.tptp", sos)

2 : : ![X3]:![X4]:(l(X3,X4)=>(E(X3)&E(X4))) :

initial("lemma_2.tptp", sos)

1 PCL2 is a proof output protocol language under development by Schulz [63] as
a successor to PCL [20,21].

96 A First-Order Logic

3 : : ![X5]:![X6]:(el(X5,X6)=>(E(X5)&S(X6))) :

initial("lemma_2.tptp", sos)

4 : : ![X7]:![X8]:![X9]:(((S(X7)&S(X8))&equal(union(X7,X8),

X9))=>S(X9)) : initial("lemma_2.tptp", sos)

6 : : ![X12]:![X13]:((E(X12)&equal(singleton(X12), X13))=>S(X13))

: initial("lemma_2.tptp", sos)

7 : : ![X14]:(~(E(X14))=>equal(singleton(X14), tptp2)) :

initial("lemma_2.tptp", sos)

8 : : ![X15]:![X16]:((S(X15)&equal(min(X15), X16))=>E(X16)) :

initial("lemma_2.tptp", sos)

9 : : ![X17]:(~(S(X17))=>equal(min(X17), tptp2)) :

initial("lemma_2.tptp", sos)

10 : : ![X18]:![X19]:((S(X18)&equal(max(X18), X19))=>E(X19)) :

initial("lemma_2.tptp", sos)

11 : : ![X20]:(~(S(X20))=>equal(max(X20), tptp2)) :

initial("lemma_2.tptp", sos)

15 : : ![X30]:(S(X30)=>w(X30,X30)) : initial("lemma_2.tptp", sos)

16 : : ![X31]:![X32]:(((S(X31)&S(X32))&~(equal(X31,

X32)))=>(w(X31,X32)|w(X32,X31))) : initial("lemma_2.tptp", sos)

19 : : ![X37]:![X38]:(((E(X37)&E(X38))&~(equal(X37,

X38)))=>(l(X37,X38)|l(X38,X37))) : initial("lemma_2.tptp", sos)

21 : :

![X42]:![X43]:((((E(X42)&E(X43))&l(X42,X43))&l(X43,X42))=>equal(X42,

X43)) : initial("lemma_2.tptp", sos)

22 : : ![X44]:![X45]:((E(X44)&S(X45))=>(equal(singleton(X44),

X45)<=>(el(X44,X45)&![X46]:(~(equal(X46, X44))=>~(el(X46,X45)))))) :

initial("lemma_2.tptp", sos)

23 : :

![X47]:![X48]:![X49]:(((S(X48)&S(X49))&S(X47))=>(equal(union(X48,X49),

X47)<=>![X50]:(E(X50)=>(el(X50,X47)<=>(el(X50,X48)|el(X50,X49)))))) :

initial("lemma_2.tptp", sos)

24 : : ![X51]:![X52]:((S(X51)&S(X52))=>equal(union(X51,X52),

union(X52,X51))) : initial("lemma_2.tptp", sos)

25 : : ![X53]:(E(X53)=>?[X54]:((S(X54)&equal(X54,

singleton(X53)))&![X55]:((S(X55)&~(equal(X55, X54)))=>~(equal(X55,

singleton(X53)))))) : initial("lemma_2.tptp", sos)

27 : : ![X60]:![X61]:((S(X60)&S(X61))=>

(![X62]:(E(X62)=>(el(X62,X60)<=>el(X62,X61)))=>equal(X60, X61))) :

initial("lemma_2.tptp", sos)

28 : : (E(a5)&E(a6)) : initial("lemma_2.tptp", sos)

29 : : ~(equal(a5, a6)) : initial("lemma_2.tptp", sos)

30 : : ![X63]:(E(X63)=>(equal(X63, a6)|equal(X63, a5))) :

initial("lemma_2.tptp", sos)

31 : : ![X64]:(E(X64)=>(~(S(X64))&~(equal(X64, tptp2)))) :

initial("lemma_2.tptp", sos)

32 : : ![X65]:(S(X65)=>(~(E(X65))&~(equal(X65, tptp2)))) :

initial("lemma_2.tptp", sos)

34 : : ![X67]:((E(X67)|S(X67))|equal(X67, tptp2)) :

initial("lemma_2.tptp", sos)

A.1 “Trivial” First-Order Proof 97

35 : : ![X68]:![X69]:((S(X68)&E(X69))=>(equal(min(X68),

X69)<=>(el(X69,X68)&![X70]:((el(X70,X68)&~(equal(X70,

X69)))=>(l(X70,X69)&~(l(X69,X70))))))) : initial("lemma_2.tptp", sos)

36 : : ![X71]:![X72]:((S(X71)&E(X72))=>(equal(max(X71),

X72)<=>(el(X72,X71)&![X73]:((el(X73,X71)&~(equal(X73,

X72)))=>(l(X72,X73)&~(l(X73,X72))))))) : initial("lemma_2.tptp", sos)

37 : conj :

![X74]:(S(X74)=>(w(X74,union(singleton(min(X74)),singleton(max(X74))))

&w(union(singleton(min(X74)),singleton(max(X74))),X74))) :

initial("lemma_2.tptp", goals)

38 : neg :

~(![X74]:(S(X74)=>(w(X74,union(singleton(min(X74)),singleton(max(X74))))

&w(union(singleton(min(X74)),singleton(max(X74))),X74)))) :

assume_negation(37)

40 : : ![X14]:(~(E(X14))=>equal(singleton(X14), tptp2)) :

fof_simplification(7)

41 : : ![X17]:(~(S(X17))=>equal(min(X17), tptp2)) :

fof_simplification(9)

42 : : ![X20]:(~(S(X20))=>equal(max(X20), tptp2)) :

fof_simplification(11)

46 : : ![X44]:![X45]:((E(X44)&S(X45))=>(equal(singleton(X44),

X45)<=>(el(X44,X45)&![X46]:(~(equal(X46, X44))=>~(el(X46,X45)))))) :

fof_simplification(22)

47 : : ![X64]:(E(X64)=>(~(S(X64))&~(equal(X64, tptp2)))) :

fof_simplification(31)

48 : : ![X65]:(S(X65)=>(~(E(X65))&~(equal(X65, tptp2)))) :

fof_simplification(32)

50 : : ![X68]:![X69]:((S(X68)&E(X69))=>(equal(min(X68),

X69)<=>(el(X69,X68)&![X70]:((el(X70,X68)&~(equal(X70,

X69)))=>(l(X70,X69)&~(l(X69,X70))))))) : fof_simplification(35)

51 : : ![X71]:![X72]:((S(X71)&E(X72))=>(equal(max(X71),

X72)<=>(el(X72,X71)&![X73]:((el(X73,X71)&~(equal(X73,

X72)))=>(l(X72,X73)&~(l(X73,X72))))))) : fof_simplification(36)

52 : : ![X1]:![X2]:(~(w(X1,X2))|(S(X1)&S(X2))) : fof_nnf(1)

53 : : ![X3]:![X4]:(~(w(X3,X4))|(S(X3)&S(X4))) :

variable_rename(52)

54 : : ![X3]:![X4]:((S(X3)|~(w(X3,X4)))&(S(X4)|~(w(X3,X4)))) :

distribute(53)

55 : : /* 0; 0; 7(0)=1(0)*/[++S(X2),--w(X1,X2)] :

split_conjunct(54)

56 : : /* 0; 0; 5(0)=1(0)*/[++S(X1),--w(X1,X2)] :

split_conjunct(54)

57 : : ![X3]:![X4]:(~(l(X3,X4))|(E(X3)&E(X4))) : fof_nnf(2)

58 : : ![X5]:![X6]:(~(l(X5,X6))|(E(X5)&E(X6))) :

variable_rename(57)

59 : : ![X5]:![X6]:((E(X5)|~(l(X5,X6)))&(E(X6)|~(l(X5,X6)))) :

distribute(58)

60 : : /* 0; 0; 582(0)=1(0)*/[++E(X2),--l(X1,X2)] :

split_conjunct(59)

98 A First-Order Logic

61 : : /* 0; 0; 584(0)=1(0)*/[++E(X1),--l(X1,X2)] :

split_conjunct(59)

62 : : ![X5]:![X6]:(~(el(X5,X6))|(E(X5)&S(X6))) : fof_nnf(3)

63 : : ![X7]:![X8]:(~(el(X7,X8))|(E(X7)&S(X8))) :

variable_rename(62)

64 : : ![X7]:![X8]:((E(X7)|~(el(X7,X8)))&(S(X8)|~(el(X7,X8)))) :

distribute(63)

65 : : /* 0; 0; 7(0)=1(0)*/[++S(X2),--el(X1,X2)] :

split_conjunct(64)

66 : : /* 0; 0; 584(0)=1(0)*/[++E(X1),--el(X1,X2)] :

split_conjunct(64)

67 : :

![X7]:![X8]:![X9]:(((~(S(X7))|~(S(X8)))|~(equal(union(X7,X8),

X9)))|S(X9)) : fof_nnf(4)

68 : :

![X10]:![X11]:![X12]:(((~(S(X10))|~(S(X11)))|~(equal(union(X10,X11),

X12)))|S(X12)) : variable_rename(67)

69 : : /* 0; 0; 5(0)=1(0)*/[++S(X1),--equal(union(X2,X3),

X1),--S(X3),--S(X2)] : split_conjunct(68)

75 : : ![X12]:![X13]:((~(E(X12))|~(equal(singleton(X12),

X13)))|S(X13)) : fof_nnf(6)

76 : : ![X14]:![X15]:((~(E(X14))|~(equal(singleton(X14),

X15)))|S(X15)) : variable_rename(75)

77 : : /* 0; 0; 5(0)=1(0)*/[++S(X1),--equal(singleton(X2),

X1),--E(X2)] : split_conjunct(76)

78 : : ![X14]:(E(X14)|equal(singleton(X14), tptp2)) : fof_nnf(40)

79 : : ![X15]:(E(X15)|equal(singleton(X15), tptp2)) :

variable_rename(78)

80 : : /* 0; 0; 660(0)=55(0)*/[++equal(singleton(X1),

tptp2),++E(X1)] : split_conjunct(79)

81 : : ![X15]:![X16]:((~(S(X15))|~(equal(min(X15), X16)))|E(X16))

: fof_nnf(8)

82 : : ![X17]:![X18]:((~(S(X17))|~(equal(min(X17), X18)))|E(X18))

: variable_rename(81)

83 : : /* 0; 0; 584(0)=1(0)*/[++E(X1),--equal(min(X2),

X1),--S(X2)] : split_conjunct(82)

84 : : ![X17]:(S(X17)|equal(min(X17), tptp2)) : fof_nnf(41)

85 : : ![X18]:(S(X18)|equal(min(X18), tptp2)) :

variable_rename(84)

86 : : /* 0; 0; 682(0)=55(0)*/[++equal(min(X1), tptp2),++S(X1)] :

split_conjunct(85)

87 : : ![X18]:![X19]:((~(S(X18))|~(equal(max(X18), X19)))|E(X19))

: fof_nnf(10)

88 : : ![X20]:![X21]:((~(S(X20))|~(equal(max(X20), X21)))|E(X21))

: variable_rename(87)

89 : : /* 0; 0; 584(0)=1(0)*/[++E(X1),--equal(max(X2),

X1),--S(X2)] : split_conjunct(88)

90 : : ![X20]:(S(X20)|equal(max(X20), tptp2)) : fof_nnf(42)

A.1 “Trivial” First-Order Proof 99

91 : : ![X21]:(S(X21)|equal(max(X21), tptp2)) :

variable_rename(90)

92 : : /* 0; 0; 704(0)=55(0)*/[++equal(max(X1), tptp2),++S(X1)] :

split_conjunct(91)

--- SKIPPED 600 LINES ---

672056 : neg : /* 0; 0; 18446744073709551615(0)=1753(0)*/[++equal(X1,

max(esk10_0)),--l(X1,max(esk10_0))] : csr(671729,61)

672092 : neg : /* 0; 0; 18446744073709551615(0)=424(0)*/[++equal(X1,

a6),--l(X1,a6),--equal(min(esk10_0), a5)] : spm(672056,501616)

705516 : neg : /* 0; 0; 18446744073709551615(0)=424(0)*/[++equal(X1,

a6),++l(a5,a6),--l(X1,a6)] : spm(672092,531918)

705782 : neg : /* 0; 0; 1753(0)=424(0)*/[++equal(max(esk10_0),

a6),++l(a5,a6)] : spm(705516,477145)

961862 : : /* 0; 0;

638(0)=18446744073709551613(0)*/[++equal(union(X1,X2),

X3),--el(a5,X2),--el(a5,X3),--el(a6,X1),--el(a6,X3),--S(X1)] :

csr(18597,65)

961863 : : /* 0; 0;

638(0)=18446744073709551613(0)*/[++equal(union(X1,X2),

X3),--el(a6,X1),--el(a6,X3),--el(a5,X2),--el(a5,X3)] : csr(961862,65)

961865 : neg : /* 0; 0; 638(0)=1748(0)*/[++equal(union(X1,X2),

esk10_0),--el(a5,X2),--el(a5,esk10_0),--el(a6,X1)] : spm(961863,473746)

961968 : neg : /* 0; 0; 638(0)=1748(0)*/[++equal(union(X1,X2),

esk10_0),--el(a5,X2),--$true,--el(a6,X1)] : rw(961865,525390)

961969 : neg : /* 0; 0; 638(0)=1748(0)*/[++equal(union(X1,X2),

esk10_0),--el(a5,X2),--el(a6,X1)] : cn(961968)

1210109 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),--w(esk10_0,esk10_0),--el(a5,singleton(max(esk10_0))),

--el(a6,singleton(a6))] : spm(570,961969)

1212175 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),--w(esk10_0,esk10_0),--el(a5,singleton(max(esk10_0))),--$true] :

rw(1210109,26722)

1212176 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),--w(esk10_0,esk10_0),--el(a5,singleton(max(esk10_0)))] :

cn(1212175)

1212955 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),--el(a5,singleton(a5)),--w(esk10_0,esk10_0)] : spm(1212176,606413)

1213065 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),--$true,--w(esk10_0,esk10_0)] : rw(1212955,22281)

1213066 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),--w(esk10_0,esk10_0)] : cn(1213065)

1213432 : neg : /* 0; 0; 421(0)=424(0)*/[++equal(a5,

a6),++l(a6,a5),--w(esk10_0,esk10_0)] : spm(476251,1213066)

1214084 : neg : /* 0; 0;

2236(0)=1(0)*/[++l(a6,a5),--w(esk10_0,esk10_0)] : sr(1213432,186)

100 A First-Order Logic

1215510 : neg : /* 0; 0; 2236(0)=1(0)*/[++l(a6,a5),--S(esk10_0)] :

spm(1214084,118)

1215513 : neg : /* 0; 0; 2236(0)=1(0)*/[++l(a6,a5),--$true] :

rw(1215510,233)

1215514 : neg : /* 0; 0; 2236(0)=1(0)*/[++l(a6,a5)] : cn(1215513)

1215548 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0),

a5),++equal(a6, a5)] : spm(667082,1215514)

1215587 : neg : /* 0; 0; 2237(0)=1(0)*/[--l(a5,a6),--$true] :

rw(533663,1215514)

1215588 : neg : /* 0; 0; 2237(0)=1(0)*/[--l(a5,a6)] : cn(1215587)

1215635 : neg : /* 0; 0; 1751(0)=421(0)*/[++equal(min(esk10_0), a5)] :

sr(1215548,186)

1215645 : neg : /* 0; 0; 1753(0)=424(0)*/[++equal(max(esk10_0), a6)] :

sr(705782,1215588)

1217059 : neg : /* 0; 0; 1753(0)=421(0)*/[++equal(max(esk10_0),

a5),--w(esk10_0,union(singleton(a6),singleton(a5))),

--w(union(singleton(a6),singleton(min(esk10_0))),esk10_0)] :

rw(134497,1215635)

1217060 : neg : /* 0; 0; 1753(0)=421(0)*/[++equal(max(esk10_0),

a5),--w(esk10_0,union(singleton(a6),singleton(a5))),

--w(union(singleton(a6),singleton(a5)),esk10_0)] : rw(1217059,1215635)

1267074 : neg : /* 0; 0; 424(0)=421(0)*/[++equal(a6,

a5),--w(esk10_0,union(singleton(a6),singleton(a5))),

--w(union(singleton(a6),singleton(a5)),esk10_0)] : rw(1217060,1215645)

1267075 : neg : /* 0; 0;

2370(0)=1(0)*/[--w(esk10_0,union(singleton(a6),singleton(a5))),

--w(union(singleton(a6),singleton(a5)),esk10_0)] : sr(1267074,186)

1267117 : neg : /* 0; 0;

2250(0)=1(0)*/[--w(esk10_0,esk10_0),--el(a5,singleton(a5)),

--el(a6,singleton(a6))] : spm(1267075,961969)

1267193 : neg : /* 0; 0;

2250(0)=1(0)*/[--w(esk10_0,esk10_0),--$true,--el(a6,singleton(a6))] :

rw(1267117,22281)

1267194 : neg : /* 0; 0;

2250(0)=1(0)*/[--w(esk10_0,esk10_0),--$true,--$true] :

rw(1267193,26722)

1267195 : neg : /* 0; 0; 2250(0)=1(0)*/[--w(esk10_0,esk10_0)] :

cn(1267194)

1267202 : neg : /* 0; 0; 1749(0)=1(0)*/[--S(esk10_0)] :

spm(1267195,118)

1267205 : neg : /* 0; 0; 1(0)=1(0)*/[--$true] : rw(1267202,233)

1267206 : neg : [] : cn(1267205)

1267207 : neg : [] : 1267206 : ’proof’

SZS output end CNFRefutation

B

Propositional Logic

In this appendix we include materials related to the approach pursued in
Chapters 3 and 5 of applying a SAT solver to a formalization in propositional
logic. In particular, we give a source code example from our program for
the instantiation of axioms, show output of satisfiable as well as unsatisfiable
instances, and present a complete list of the axioms we experimented with
together with their formalizations in the language MSLSP (see Section 4.2)
and propositional logic.

B.1 Source Code Example for Coding Axioms

We present examples of source code as it was used to generate the computer-
readable form of axioms in the framework of ranking sets of objects. In partic-
ular, we want to underline how close (and hence easily checkable) our source
code is to the propositional form of the axioms. The examples we picked are
(GF1) and (LIN) since they offer a good overview of the different constructions
used. For each of the two axioms, we first show them in their original and
also their propositional form again and then present the corresponding source
code.

102 B Propositional Logic

(LIN) (∀x ∈ X) x ≥̇ x

≡
∧

x∈X

lx,x,

(∀x ∈ X)(∀y ∈ X)
[

x 6= y → x ≥̇ y ∨ x ≤̇ y
]

≡
∧

x∈X

∧

y∈X
y 6=x

[lx,y ∨ ly,x] ,

(∀x ∈ X)(∀y ∈ X)(∀z ∈ X)
[

x ≥̇ y ∧ y ≥̇ z → x ≥̇ z
]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[¬lx,y ∨ ¬ly,z ∨ lx,z] ,

(∀x ∈ X)(∀y ∈ X)
[(

x ≥̇ y ∧ y ≥̇ x
)

→ x = y
]

≡
∧

x∈X

∧

y∈X
y 6=x

[¬lx,y ∨ ¬ly,x] .

private void linL(NewWriter writer) throws IOException

{

writer.comment("Linear order of elements");

for (int x=0;x<E;x++) //reflexivity

{

writer.var(l(x,x));

writer.newClause();

}

for (int x=0;x<E;x++) //completeness

{

for (int y=0;y<E;y++)

{

if (x!=y)

{

writer.var(l(x,y));

writer.var(l(y,x));

writer.newClause();

}

}

}

for (int x=0;x<E;x++) //transitivity

{

for (int y=0;y<E;y++)

{

for (int z=0;z<E;z++)

{

B.1 Source Code Example for Coding Axioms 103

{

writer.not(l(x,y));

writer.not(l(y,z));

writer.var(l(x,z));

writer.newClause();

}

}

}

}

for (int x=0;x<E;x++) //antisymmetry

{

for (int y=0;y<E;y++)

{

if (x!=y)

{

writer.not(l(x,y));

writer.not(l(y,x));

writer.newClause();

}

}

}

}

(GF1) (∀A ∈ X)(∀x ∈ X)[((∀a ∈ A)x >̇ a)→ A ∪ {x} ≻ A]

≡
∧

A∈X

∧

x∈X

[((

∨

a∈A

¬lx,a ∨ la,x

)

∨ wA∪{x},A

)

∧

((

∨

a∈A

¬lx,a ∨ la,x

)

∨ ¬wA,A∪{x}

)]

,

private void gf1(NewWriter writer) throws IOException

{

writer.comment("Gardenfors 1");

for (int s=0;s<S;s++)

{

for (int x=0;x<E;x++)

{

for (int a=0;a<E;a++)

{

if (isElement(a,s))

{

writer.not(l(x,a));

writer.var(l(a,x));

}

}

writer.var(w(union(s,singleton(x)),s));

104 B Propositional Logic

writer.newClause();

for (int a=0;a<E;a++)

{

if (isElement(a,s))

{

writer.not(l(x,a));

writer.var(l(a,x));

}

}

writer.not(w(s,union(s,singleton(x))));

writer.newClause();

}

}

}

B.2 Output on a Satisfiable Instance 105

B.2 Output on a Satisfiable Instance

Here the reader can find the output as given by our program (wrapping the
SAT solver zChaff)2 for a possible problem instance. We used the axioms of
the Kannai-Peleg Theorem with a domain size of five elements. The output
shows that this is indeed a possible problem instance, in the sense that there
exists a weak order on the space X of non-empty subsets satisfying the given
axioms.

The list of numbers represents an assignment for the 986 propositional
variables involved (where a “-” indicates that a variable is set to false) that
satisfies the input formula (problem description). Below the output of the SAT
solver our program gives a more human-readable description of the model
represented by the assignment: first in its original form, then with renamed
elements in favour of a more intuitive description.

Problem 8478 (7 axioms): (|X|=5)

Counting clauses...

Creating file...

Coding axioms...

Saving file...

Done.

Cleaning up (removing clauses containing both polarities of a

literal)...

Collected statistics with error code 0.

Z-Chaff Version: zChaff 2007.3.12

Solving kannai_size5_cleaned.cnf

c 30356 Clauses are true, Verify Solution successful.

Instance Satisfiable

1 2 3 4 5 -6 7 8 9 10 -11 -12 13 -14 -15 -16 -17 18 19 -20 -21 -22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 -57 58 -59 60 61 62 63 64 -65 66 -67 68 69

70 71 72 -73 74 -75 76 77 78 79 80 -81 82 -83 84 85 86 87 -88 89 90 91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 -119 -120 -121 122 -123 -124 -125 -126 -127

-128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141

-142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 153 154 155 156

-157 -158 -159 -160 161 162 163 164 -165 -166 -167 -168 169 170 171 172

-173 -174 -175 -176 177 178 179 180 -181 -182 -183 184 -185 186 -187

-188 -189 -190 -191 192 -193 194 -195 -196 -197 -198 -199 200 -201 202

-203 -204 -205 -206 -207 208 -209 210 -211 -212 -213 -214 215 216 217

218 -219 -220 -221 -222 223 224 225 226 -227 -228 -229 -230 231 232 233

234 -235 -236 -237 -238 239 240 241 242 -243 -244 -245 246 247 248 249

2 See Section 3.4.1 for details.

106 B Propositional Logic

250 -251 -252 -253 254 255 256 257 -258 -259 -260 -261 262 263 264 265

-266 -267 -268 -269 270 271 272 273 -274 275 -276 277 278 279 280 281

282 283 284 285 286 287 288 289 -290 291 -292 293 294 295 296 297 298

299 300 301 302 303 304 -305 -306 -307 308 309 310 311 312 -313 314

-315 316 317 318 319 320 -321 -322 -323 324 325 326 327 328 -329 330

-331 332 333 334 335 -336 337 -338 339 340 341 342 343 344 345 346 347

348 349 350 351 -352 353 -354 355 356 357 358 359 360 361 362 363 364

365 366 -367 -368 -369 370 -371 -372 -373 -374 -375 -376 -377 378 -379

-380 -381 -382 -383 -384 -385 -386 -387 -388 -389 -390 -391 -392 -393

-394 -395 -396 -397 -398 -399 -400 401 402 403 404 -405 -406 -407 -408

409 410 411 412 -413 -414 -415 -416 417 418 419 420 -421 -422 -423 -424

425 426 427 428 -429 -430 -431 432 -433 434 -435 -436 -437 -438 -439

440 -441 442 -443 -444 -445 -446 -447 448 -449 450 -451 -452 -453 -454

-455 456 -457 458 -459 -460 -461 -462 463 464 465 466 -467 -468 -469

-470 471 472 473 474 -475 -476 -477 -478 479 480 481 482 -483 -484 -485

-486 487 488 489 490 -491 -492 -493 494 495 496 497 498 -499 500 -501

502 503 504 505 506 -507 -508 -509 510 511 512 513 514 -515 516 -517

518 519 520 521 -522 523 -524 525 526 527 528 529 530 531 532 533 534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

-553 -554 -555 556 557 558 559 560 -561 562 -563 564 565 566 567 568

-569 570 -571 572 573 574 575 576 -577 578 -579 580 581 582 583 -584

585 -586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

602 603 604 605 606 607 608 609 610 611 612 613 614 -615 -616 -617 618

-619 -620 -621 -622 -623 -624 -625 626 -627 -628 -629 -630 -631 -632

-633 634 -635 -636 -637 -638 -639 -640 -641 642 -643 -644 -645 -646

-647 -648 649 650 651 652 -653 -654 -655 -656 657 658 659 660 -661 -662

-663 -664 665 666 667 668 -669 -670 -671 -672 673 674 675 676 -677 -678

-679 680 -681 682 -683 -684 -685 -686 -687 688 -689 690 -691 -692 -693

-694 -695 696 -697 698 -699 -700 -701 -702 -703 704 -705 706 -707 -708

-709 -710 711 712 713 714 -715 -716 -717 -718 719 720 721 722 -723 -724

-725 -726 727 728 729 730 -731 -732 -733 -734 735 736 737 738 -739 -740

-741 742 743 744 745 746 -747 -748 -749 750 751 752 753 -754 -755 -756

-757 758 759 760 761 762 -763 -764 -765 766 767 768 769 -770 771 -772

773 774 775 776 777 778 779 780 781 782 783 784 785 -786 787 -788 789

790 791 792 793 794 795 796 797 798 799 800 -801 -802 -803 804 805 806

807 808 -809 810 -811 812 813 814 815 816 -817 -818 -819 820 821 822

823 824 -825 826 -827 828 829 830 831 -832 833 -834 835 836 837 838 839

840 841 842 843 844 845 846 847 -848 849 -850 851 852 853 854 855 856

857 858 859 860 861 862 -863 -864 -865 866 -867 -868 -869 -870 -871

-872 -873 874 -875 -876 -877 -878 -879 -880 -881 882 -883 -884 -885

-886 -887 -888 -889 890 -891 -892 -893 -894 -895 -896 897 898 899 900

-901 -902 -903 -904 905 906 907 908 -909 -910 -911 -912 913 914 915 916

-917 -918 -919 -920 921 922 923 924 -925 -926 -927 928 -929 930 -931

-932 -933 -934 -935 936 -937 938 -939 -940 -941 -942 -943 944 -945 946

-947 -948 -949 -950 -951 952 -953 954 -955 -956 -957 -958 959 960 961

962 -963 -964 -965 -966 967 968 969 970 -971 -972 -973 -974 975 976 977

978 -979 -980 -981 -982 983 984 985 986

Random Seed Used 0

Max Decision Level 115

B.2 Output on a Satisfiable Instance 107

Num. of Decisions 505

(Stack + Vsids + Shrinking Decisions) 9 + 495 + 0

Original Num Variables 986

Original Num Clauses 30336

Original Num Literals 90646

Added Conflict Clauses 20

Num of Shrinkings 0

Deleted Conflict Clauses 0

Deleted Clauses 0

Added Conflict Literals 42

Deleted (Total) Literals 0

Number of Implication 6785

Total Run Time 0.014338

RESULT: SAT

Exited with error code 0

Elements: 1 > 2 > 5 > 4 > 3

Sets: {1} > {1,2} > {1,5}~{1,2,5} > {1,4}~{1,2,4}~{1,4,5}~{1,2,4,5} >

{2} > {2,5} > {2,4}~{5}~{2,4,5} > {4,5} > {4} >

{1,3}~{1,2,3}~{1,3,4}~{1,2,3,4}~{1,3,5}~{1,2,3,5}~{1,3,4,5}~{1,2,3,4,5}

> {2,3}~{2,3,4}~{2,3,5}~{2,3,4,5} > {3,5}~{3,4,5} > {3,4} > {3}

After renaming of elements according to their position:

Elements: 1 > 2 > 3 > 4 > 5

Sets: {1} > {1,2} > {1,3}~{1,2,3} > {1,4}~{1,2,4}~{1,3,4}~{1,2,3,4} >

{2} > {2,3} > {2,4}~{3}~{2,3,4} > {3,4} > {4} >

{1,5}~{1,2,5}~{1,4,5}~{1,2,4,5}~{1,3,5}~{1,2,3,5}~{1,3,4,5}~{1,2,3,4,5}

> {2,5}~{2,4,5}~{2,3,5}~{2,3,4,5} > {3,5}~{3,4,5} > {4,5} > {5}

108 B Propositional Logic

B.3 Output on an Unsatisfiable Instance

Below the reader can find the output of our program (wrapping the SAT
solver zChaff)3 for an impossible problem instance. It includes a verification
of the unsatisfiability as described in Section 3.4.2. We used the axioms of the
Kannai-Peleg Theorem with a domain size of six elements. The output shows
that this is indeed an impossible problem instance, in the sense that there ex-
ists no weak order on the space X of non-empty subsets satisfying the axioms.

Problem 8478 (7 axioms): (|X|=6)

Counting clauses...

Creating file...

Coding axioms...

Saving file...

Done.

Cleaning up (removing clauses containing both polarities of a

literal)...

Collected statistics with error code 0.

Z-Chaff Version: zChaff 2007.3.12

Solving kannai_size6_cleaned.cnf

Instance Unsatisfiable

Random Seed Used 0

Max Decision Level 252

Num. of Decisions 3666

(Stack + Vsids + Shrinking Decisions) 1854 + 1812 + 0

Original Num Variables 4005

Original Num Clauses 252681

Original Num Literals 756291

Added Conflict Clauses 1252

Num of Shrinkings 0

Deleted Conflict Clauses 0

Deleted Clauses 0

Added Conflict Literals 15910

Deleted (Total) Literals 0

Number of Implication 1214745

Total Run Time 4.7403

RESULT: UNSAT

Exited with error code 0

Verifiying unsatisfiability from trace...

ZVerify SAT Solver Verifier

Copyright Princeton University, 2003-2004. All Right Reseverd.

3 See Section 3.3.3 for details.

B.3 Output on an Unsatisfiable Instance 109

COMMAND LINE: SATSolver/zverify_df kannai_size6_cleaned.cnf

resolve_trace

Read in original clauses ... 252681 Clauses

Mem Usage After Readin file: 14248

Begin constructing all involved clauses

Num. Learned Clause: 1252

Num. Clause Built: 1160

Constructed all involved clauses

Conflict clause verification finished.

Levelize variables...finished

Begin Resolution... Empty clause generated.

Mem Usage : 14248

Original Num. Clauses: 252681

Needed Clauses to Construct Empty: 7893

Total Variable count: 4005

Variables involved in Empty: 2350

CPU Time: 1.02806

Peak Mem Usage: 14248

Verification Successful

Exited with error code 0

Unsatisfiability verified successfully!

Axioms are inconsistent for size |X|=6.

110 B Propositional Logic

B.4 List of Axioms Used in the Theorem Search

This is a complete list of the axioms used in the theorem search of Chapter 5.
All axioms are given in their natural formulation, their representation in the
language MSLSP (to guarantee that the universal step Corollary 4.16 applies)
and their formalization in propositional logic4 in a succinct as well as conjunc-
tive normal form (for the automatic verification described in Sections 3.3).

(LINε)

x ≥̇ x for all x ∈ X (reflexivity)

∼= ∀εx
[

x ≥̇ x
]

∼=
∧

x∈X

lx,x

≡
∧

x∈X

lx,x

x ≥̇ y ∨ x ≤̇ y for all x 6= y ∈ X (completeness)

∼= ∀εx∀εy
[

x 6= y → (x ≥̇ y ∨ x ≤̇ y)
]

∼=
∧

x∈X

∧

y∈X

[x 6= y → (lx,y ∨ ly,x)]

≡
∧

x∈X

∧

y∈X
y 6=x

[lx,y ∨ ly,x]

x ≥̇ y ∧ y ≥̇ z ⇒ x ≥̇ z for all x, y, z ∈ X (transitivity)

∼= ∀εx∀εy∀εz
[

(x ≥̇ y ∧ y ≥̇ z) → x ≥̇ z
]

∼=
∧

x∈X

∧

y∈X

∧

z∈X

[(lx,y ∧ ly,z) → lx,z]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[¬lx,y ∨ ¬ly,z ∨ lx,z]

x ≥̇ y ∧ y ≥̇ x⇒ x = y for all x, y ∈ X (antisymmetry)

∼= ∀εx∀εy
[

(x ≥̇ y ∧ y ≥̇ x) → x = y
]

∼=
∧

x∈X

∧

y∈X

[(lx,y ∧ ly,x) → x = y]

≡
∧

x∈X

∧

y∈X
y 6=x

[¬lx,y ∨ ¬ly,x]

4 As always, we assume that all domains are finite for this to be possible.

B.4 List of Axioms Used in the Theorem Search 111

(REFLσ)

A � A for all A ∈ X

∼= ∀σA [A � A]

∼=
∧

A∈X

wA,A

≡
∧

A∈X

wA,A

(COMPLσ)

A � B ∨ A � B for all A 6= B ∈ X

∼=∀σA∀σB [A 6= B → (A � B ∨A � B)]

∼=
∧

A∈X

∧

B∈X

[B 6= A→ (wA,B ∨ wB,A)]

≡
∧

A∈X

∧

B∈X
B 6=A

[wA,B ∨ wB,A]

(TRANSσ)

A � B ∧ B � C ⇒ A � C for all A,B,C ∈ X

∼= ∀σA∀σB∀σC [(A � B ∧B � C) → A � C]

∼=
∧

A∈X

∧

B∈X

∧

C∈X

[(wA,B ∧ wB,C) → wA,C]

≡
∧

A∈X

∧

B∈X

∧

C∈X

[¬wA,B ∨ ¬wB,C ∨ wA,C]

(EXT)

x ≥̇ y ⇐⇒ {x} � {y} for all x, y ∈ X

∼=∀εx∀εy
[

x ≥̇ y ↔ {x} � {y}
]

∼=
∧

x∈X

∧

y∈X

[

lx,y ↔ w{x},{y}

]

≡
∧

x∈X

∧

y∈X

[

(¬lx,y ∨ w{x},{y}) ∧ (¬w{x},{y} ∨ lx,y)
]

112 B Propositional Logic

(GF1)

((∀a ∈ A)x >̇ a) ⇒ A ∪ {x} ≻ A for all x ∈ X and A ∈ X

∼= ∀σA∀εx
[

∃εa(a ∈ A ∧ x ≯̇ a) ∨ A ∪ {x} ≻ A
]

∼=
∧

A∈X

∧

x∈X

[(

∧

a∈A

lx,a ∧ ¬la,x

)

→
(

wA∪{x},A ∧ ¬wA,A∪{x}

)

]

≡
∧

A∈X

∧

x∈X

[((

∨

a∈A

¬lx,a ∨ la,x

)

∨ wA∪{x},A

)

∧

((

∨

a∈A

¬lx,a ∨ la,x

)

∨ ¬wA,A∪{x}

)]

(GF2)

((∀a ∈ A)x <̇ a) ⇒ A ∪ {x} ≺ A for all x ∈ X and A ∈ X

∼= ∀σA∀εx
[

∃εa(a ∈ A ∧ x ≮̇ a) ∨ A ∪ {x} ≺ A
]

∼=
∧

A∈X

∧

x∈X

[(

∧

a∈A

la,x ∧ ¬lx,a

)

→
(

wA,A∪{x} ∧ ¬wA∪{x},A

)

]

≡
∧

A∈X

∧

x∈X

[((

∨

a∈A

¬la,x ∨ lx,a

)

∨ wA,A∪{x}

)

∧

((

∨

a∈A

¬la,x ∨ lx,a

)

∨ ¬wA∪{x},A

)]

(SDom)

x >̇ y ⇒ ({x} ≻ {x, y} ∧ {x, y} ≻ {y}) for all x, y ∈ X

∼= ∀εx∀εy [x >̇ y → ({x} ≻ {x} ∪ {y} ∧ {x} ∪ {y} ≻ {y})]

∼=
∧

x∈X

∧

y∈X

[lx,y ∧ ¬ly,x →

(w{x},{x,y} ∧ ¬w{x,y},{x} ∧ w{x,y},{y} ∧ ¬w{y},{x,y})
]

≡
∧

x∈X

∧

y∈X

[

(¬lx,y ∨ ly,x ∨ w{x},{x,y}) ∧ (¬lx,y ∨ ly,x ∨ ¬w{x,y},{x})∧

(¬lx,y ∨ ly,x ∨ w{x,y},{y}) ∧ (¬lx,y ∨ ly,x ∨ ¬w{y},{x,y})
]

(IND)

A ≻ B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪ B)

∼= ∀σA∀σB∀εx [(x /∈ (A ∪ B) ∧ A ≻ B) → A ∪ {x} � B ∪ {x}]

∼=
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)

[

(wA,B ∧ ¬wB,A) → wA∪{x},B∪{x}

]

≡
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)

[

¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x}

]

B.4 List of Axioms Used in the Theorem Search 113

(strictIND)

A ≻ B ⇒ A ∪ {x} ≻ B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B)

∼=∀σA∀σB∀εx [(x /∈ (A ∪B) ∧A ≻ B) → A ∪ {x} ≻ B ∪ {x}]

∼=
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)

[

(wA,B ∧ ¬wB,A) → (wA∪{x},B∪{x} ∧ ¬wB∪{x},A∪{x})
]

≡
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)

[(¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x})∧

(¬wA,B ∨ wB,A ∨ ¬wB∪{x},A∪{x})]

(botIND)

A ≻ B ⇒ A ∪ {x} � B ∪ {x}

for all A,B ∈ X and x ∈ X \ (A ∪B) such that y >̇ x for all y ∈ A ∪ B

∼= ∀σA∀σB∀εx
[

x ∈ A ∪ B ∨ ∃εy(y ∈ A ∪B ∧ y ≯̇ x) ∨ A ⊁ B ∨A ∪ {x} � B ∪ {x}
]

∼=
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)









∧

y∈(A∪B)

ly,x ∧ ¬lx,y ∧ wA,B ∧ ¬wB,A



→ wA∪{x},B∪{x}





≡
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)









∨

y∈(A∪B)

¬ly,x ∨ lx,y



 ∨ ¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x}





(topIND)

A ≻ B ⇒ A ∪ {x} � B ∪ {x}

for all A,B ∈ X and x ∈ X \ (A ∪B) such that x >̇ y for all y ∈ A ∪ B

∼= ∀σA∀σB∀εx
[

x ∈ A ∪ B ∨ ∃εy(y ∈ A ∪B ∧ x ≯̇ y) ∨ A ⊁ B ∨A ∪ {x} � B ∪ {x}
]

∼=
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)









∧

y∈(A∪B)

lx,y ∧ ¬ly,x ∧ wA,B ∧ ¬wB,A



→ wA∪{x},B∪{x}





≡
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)









∨

y∈(A∪B)

¬lx,y ∨ ly,x



 ∨ ¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x}





114 B Propositional Logic

(disIND)

A ≻ B ⇒ A ∪ {x} � B ∪ {x}

for all A,B ∈ X , such that A ∩B = ∅, and for all x ∈ X \ (A ∪B)

∼= ∀σA∀σB∀εx [(x /∈ (A ∪B) ∧ disjoint(A,B) ∧A ≻ B) → A ∪ {x} � B ∪ {x}]

∼=
∧

A∈X

∧

B∈X
A∩B=∅

∧

x∈X
x/∈(A∪B)

[

(wA,B ∧ ¬wB,A) → wA∪{x},B∪{x}

]

≡
∧

A∈X

∧

B∈X
A∩B=∅

∧

x∈X
x/∈(A∪B)

[

¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x}

]

(intIND)

A ≻ B ⇒ A ∪ {x, y} � B ∪ {x, y} for all A,B ∈ X and x, y ∈ X \ (A ∪B)

such that x >̇ z and z >̇ y for all z ∈ A ∪B

∼= ∀σA∀σB∀εx∀εy[x ∈ A ∪ B ∨ y ∈ A ∪B ∨ ∃εz(z ∈ A ∪B ∧ (x ≯̇ z ∨ z ≯̇ y))∨

A ⊁ B ∨A ∪ {x} ∪ {y} � B ∪ {x} ∪ {y}]

∼=
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)

∧

y∈X
y/∈(A∪B)









∧

z∈(A∪B)

lx,z ∧ ¬lz,x ∧ lz,y ∧ ¬ly,z ∧ wA,B ∧ ¬wB,A



→ wA∪{x,y},B∪{x,y}





≡
∧

A∈X

∧

B∈X

∧

x∈X
x/∈(A∪B)

∧

y∈X
y/∈(A∪B)









∨

z∈(A∪B)

¬lx,z ∨ lz,x ∨ ¬lz,y ∨ ly,z



 ∨ ¬wA,B ∨ wB,A ∨ wA∪{x,y},B∪{x,y}





(SUAv)

(x >̇ y ∧ y >̇ z) ⇒ {y} ≻ {x, z} for all x, y, z ∈ X

∼= ∀εx∀εy∀εz [(x >̇ y ∧ y >̇ z) → {y} ≻ {x} ∪ {z}]

∼=
∧

x∈X

∧

y∈X

∧

z∈X

[

(lx,y ∧ ¬ly,x ∧ ly,z ∧ ¬lz,y) → (w{y},{x,z} ∧ ¬w{x,z},{y})
]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[(¬lx,y ∨ ly,x ∨ ¬ly,z ∨ lz,y ∨ w{y},{x,z})∧

(¬lx,y ∨ ly,x ∨ ¬ly,z ∨ lz,y ∨ ¬w{x,z},{y})]

B.4 List of Axioms Used in the Theorem Search 115

(SUAp)

(x >̇ y ∧ y >̇ z) ⇒ {x, z} ≻ {y} for all x, y, z ∈ X

∼= ∀εx∀εy∀εz [(x >̇ y ∧ y >̇ z) → {x} ∪ {z} ≻ {y}]

∼=
∧

x∈X

∧

y∈X

∧

z∈X

[

(lx,y ∧ ¬ly,x ∧ ly,z ∧ ¬lz,y) → (w{x,z},{y} ∧ ¬w{y},{x,z})
]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[(¬lx,y ∨ ly,x ∨ ¬ly,z ∨ lz,y ∨ w{x,z},{y})∧

(¬lx,y ∨ ly,x ∨ ¬ly,z ∨ lz,y ∨ ¬w{y},{x,z})]

(STopMon)

x >̇ y ⇒ {x, z} ≻ {y, z} for all x, y, z ∈ X such that x >̇ z and y >̇ z

∼=∀εx∀εy∀εz [(x >̇ z ∧ y >̇ z ∧ x >̇ y) → {x} ∪ {z} ≻ {y} ∪ {z}]

∼=
∧

x∈X

∧

y∈X

∧

z∈X

[(lx,z ∧ ¬lz,x ∧ ly,z ∧ ¬lz,y ∧ lx,y ∧ ¬ly,x) →

(w{x,z},{y,z} ∧ ¬w{y,z},{x,z})
]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[

(¬lx,z ∨ lz,x ∨ ¬ly,z ∨ lz,y ∨ ¬lx,y ∨ ly,x ∨ w{x,z},{y,z})∧

(¬lx,y ∨ ly,x ∨ ¬lx,z ∨ lz,x ∨ ¬ly,z ∨ lz,y ∨ ¬w{y,z},{x,z})
]

(SBotMon)

y >̇ z ⇒ {x, y} ≻ {x, z} for all x, y, z ∈ X such that x >̇ y and x >̇ z

∼= ∀εx∀εy∀εz [(x >̇ y ∧ x >̇ z ∧ y >̇ z) → {x} ∪ {y} ≻ {x} ∪ {z}]

∼=
∧

x∈X

∧

y∈X

∧

z∈X

[(lx,y ∧ ¬ly,x ∧ lx,z ∧ ¬lz,x ∧ ly,z ∧ ¬lz,y) →

(w{x,y},{x,z} ∧ ¬w{x,z},{x,y})
]

≡
∧

x∈X

∧

y∈X

∧

z∈X

[

(¬lx,y ∨ ly,x ∨ ¬lx,z ∨ lz,x ∨ ¬ly,z ∨ lz,y ∨ w{x,y},{x,z})∧

(¬lx,y ∨ ly,x ∨ ¬lx,z ∨ lz,x ∨ ¬ly,z ∨ lz,y ∨ ¬w{x,z},{x,y})
]

116 B Propositional Logic

(evenExt)

(A ∪ {x} ∼ {x} ∧A ∪ {y} ∼ {y}) ⇒ A ∪ {x, y} ∼ {x, y}

for all A ∈ X , such that |A| is even, and for all x, y ∈ X \ A

∼= ∀σA∀εx∀εy[(evencard(A) ∧ x /∈ A ∧ y /∈ A) →

((A ∪ {x} ∼ {x} ∧A ∪ {y} ∼ {y}) → A ∪ {x} ∪ {y} ∼ {x} ∪ {y})]

∼=
∧

A∈X
|A| even

∧

x∈X
x/∈A

∧

y∈X
y/∈A

[

(wA∪{x},{x} ∧ w{x},A∪{x} ∧ wA∪{y},{y} ∧ w{y},A∪{y}) →

(wA∪{x,y},{x,y} ∧ w{x,y},A∪{x,y})
]

≡
∧

A∈X
|A| even

∧

x∈X
x/∈A

∧

y∈X
y/∈A

[

(¬wA∪{x},{x} ∨ ¬w{x},A∪{x} ∨ ¬wA∪{y},{y} ∨ ¬w{y},A∪{y} ∨ wA∪{x,y},{x,y})∧

(¬wA∪{x},{x} ∨ ¬w{x},A∪{x} ∨ ¬wA∪{y},{y} ∨ ¬w{y},A∪{y} ∨ w{x,y},A∪{x,y})
]

(MC)

A � B ⇒ A ∪B � B for all A,B ∈ X

∼=∀σA∀σB [A � B → A ∪B � B]

∼=
∧

A∈X

∧

B∈X

[wA,B → wA∪B,B]

≡
∧

A∈X

∧

B∈X

[¬wA,B ∨ wA∪B,B]

References

1. T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning about judgment
and preference aggregation. In Proceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS 07), pages
566–573. ACM, 2007.

2. M. Allingham. Choice theory: A very short introduction. Oxford University
Press, 2002.

3. K. Appel and W. Haken. Every planar map is four colorable. American Math-
ematical Society, 82(5):711–712, 1976.

4. R. Arlegi. A note on Bossert, Pattanaik and Xu’s “Choice under complete un-
certainty: axiomatic characterization of some decision rules”. Economic Theory,
22(1):219–225, 2003.

5. K. J. Arrow. A difficulty in the concept of social welfare. The Journal of Political
Economy, 58(4):328–346, 1950.

6. K. J. Arrow. Social Choice and Individual Values. Yale University Press, New
Haven, 1963.

7. K. J. Arrow, A. K. Sen, and K. Suzumura. Handbook of social choice and welfare.
North-Holland, 2002.

8. R. W. Bailey. The number of weak orderings of a finite set. Social Choice and
Welfare, 15(4):559–562, 1998.

9. S. Barberà. The manipulation of social choice mechanisms that do not leave
“too much” to chance. Econometrica, 45(7):1573–1588, 1977.

10. S. Barberà, C. R. Barrett, and P. K. Pattanaik. On some axioms for ranking
sets of alternatives. Journal of Economic Theory, 33(2):301–308, 1984.

11. S. Barberà, W. Bossert, and P. K. Pattanaik. Ranking sets of objects. In
S. Barberà, P. J. Hammond, and C. Seidl, editors, Handbook of Utility Theory,
volume II: Extensions, pages 893–977. Kluwer Academic Publishers, Dordrecht,
2004.

12. S. Barberà and P. K. Pattanaik. Extending an order on a set to the power set:
Some remarks on Kannai and Peleg’s approach. Journal of Economic Theory,
32(1):185–191, 1984.

13. A. Biere. PrecoSAT. Available from http://fmv.jku.at/precosat/, May 2010.
14. J. H. Blau. The existence of social welfare functions. Econometrica, 25(2):302–

313, 1957.

http://fmv.jku.at/precosat/

118 References

15. W. Bossert. Uncertainty aversion in nonprobabilistic decision models. Math-
ematical Social Sciences, 34(3):191–203, 1997.

16. W. Bossert, P. K. Pattanaik, and Y. Xu. Choice under complete uncertainty: Ax-
iomatic characterizations of some decision rules. Economic Theory, 16(2):295–
312, 2000.

17. B. Can, B. Erdamar, and M. R. Sanver. Expected utility consistent extensions
of preferences. Theory and Decision, 67(2):123–144, 2009.

18. Center for Discrete Mathematics & Theoretical Computer Science. DIMACS
satisfiability suggested format. Available from ftp://dimacs.rutgers.edu/

pub/challenge/satisfiability/doc/satformat.dvi, May 1993.
19. Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to

computational social choice. In Proceedings of the 33rd Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM-2007), volume
4362 of LNCS, pages 51–69. Springer-Verlag, 2007.

20. J. Denzinger and S. Schulz. Analysis and representation of equational proofs
generated by a distributed completion based proof system. SEKI-Report SR-
94-05, University of Kaiserslautern, 1994.

21. J. Denzinger and S. Schulz. Recording and analysing knowledge-based dis-
tributed deduction processes. Journal of Symbolic Computation, 21(4-6):523–
541, 1996.

22. H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
23. U. Endriss. Sincerity and manipulation under approval voting. Working paper,

available from http://staff.science.uva.nl/~ulle/pubs/working-papers/

sincere-approval.pdf, October 2009.
24. P. C. Fishburn. Arrow’s impossibility theorem: Concise proof and infinite voters.

Journal of Economic Theory, 2(1):103–106, 1970.
25. P. C. Fishburn. Even-chance lotteries in social choice theory. Theory and Deci-

sion, 3(1):18–40, 1972.
26. P. C. Fishburn. Comment on the Kannai-Peleg impossibility theorem for ex-

tending orders. Journal of Economic Theory, 32(1):176–179, 1984.
27. W. Gaertner. A Primer in Social Choice Theory: Revised Edition. Oxford

University Press, USA, 2009.
28. P. Gammie. Some classical results in social choice theory. In G. Klein, T. Nip-

kow, and L. Paulson, editors, The Archive of Formal Proofs. http://afp.sf.
net/entries/SenSocialChoice.shtml, November 2008.

29. P. Gärdenfors. Manipulation of social choice functions. Journal of Economic
Theory, 13(2):217–228, 1976.

30. P. Gärdenfors. On definitions of manipulation of social choice functions. In
J. J. Laffont, editor, Aggregation and Revelation of Preferences, pages 29–36.
North-Holland, 1979.

31. A. Gibbard. Manipulation of voting schemes: A general result. Econometrica,
41(4):587–601, 1973.

32. U. Grandi and U. Endriss. First-order logic formalisation of Arrow’s Theorem.
In Proceedings of the 2nd International Workshop on Logic, Rationality and In-
teraction (LORI-2009), volume 5834 of LNAI, pages 133–146. Springer-Verlag,
2009.

33. N. Gravel. Ranking opportunity sets on the basis of their freedom of choice
and their ability to satisfy preferences: A difficulty. Social Choice and Welfare,
15(3):371–382, 1998.

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
http://staff.science.uva.nl/~ulle/pubs/working-papers/sincere-approval.pdf
http://staff.science.uva.nl/~ulle/pubs/working-papers/sincere-approval.pdf
http://afp.sf.net/entries/SenSocialChoice.shtml
http://afp.sf.net/entries/SenSocialChoice.shtml

References 119

34. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
35. R. Holzman. A note on the redundancy of an axiom in the Pattanaik-Peleg

characterization of the lexicographic maximin extension. Social Choice and
Welfare, 1(2):123–125, 1984.

36. P. Jones and R. Sugden. Evaluating choice. International Review of Law and
Economics, 2(1):47–65, 1982.

37. Y. Kannai and B. Peleg. A note on the extension of an order on a set to the
power set. Journal of Economic Theory, 32(1):172–175, 1984.

38. K. Korovin. iProver v0.7. http://www.cs.man.ac.uk/~korovink/iprover/,
December 2009.

39. F. Lin and P. Tang. Computer-aided proofs of Arrow’s and other impossibility
theorems. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence,
pages 114–119. AAAI Press, 2008.

40. M. Manzano. Extensions of first-order logic. Cambridge University Press, 1996.
41. E. Maskin. Nash equilibrium and welfare optimality. Review of Economic Stud-

ies, 66(1):23–38, 1999.
42. K. O. May. A set of independent necessary and sufficient conditions for simple

majority decision. Econometrica, 20(4):680–684, 1952.
43. W. McCune. Otter 3.3 reference manual. Technical Memorandum No. 263,

Argonne National Laboratory, 2003.
44. W. McCune. Prover9 v2009-11A. http://www.cs.unm.edu/~mccune/prover9/,

November 2009.
45. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proceedings of the 38th conference on
Design automation, pages 530–535. ACM New York, NY, USA, 2001.

46. E. Muller and M. A. Satterthwaite. The equivalence of strong positive asso-
ciation and strategy-proofness. Journal of Economic Theory, 14(2):412–418,
1977.

47. T. Nipkow. Social choice theory in HOL. Journal of Automated Reasoning,
43(3):289–304, 2009.

48. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic. Springer Verlag, 2002.

49. S. I. Nitzan and P. K. Pattanaik. Median-based extensions of an ordering over
a set to the power set: An axiomatic characterization. Journal of Economic
Theory, 34(2):252–261, 1984.

50. D. J. Packard. Preference relations. Journal of Mathematical Psychology,
19(3):295–306, 1979.

51. P. K. Pattanaik and B. Peleg. An axiomatic characterization of the lexicographic
maximin extension of an ordering over a set to the power set. Social Choice and
Welfare, 1(2):113–122, 1984.

52. P. K. Pattanaik and Y. Xu. On ranking opportunity sets in terms of freedom
of choice. Recherches économiques de Louvain, 56(3-4):383–390, 1990.

53. M. Peterson. An Introduction to Decision Theory. Cambridge University Press,
2009.

54. C. Puppe. Freedom of choice and rational decisions. Social Choice and Welfare,
12(2):137–153, 1995.

55. J. A. Robinson and A. Voronkov. Handbook of automated reasoning. North-
Holland, 2001.

56. A. Rubinstein. The single profile analogues to multi profile theorems: Mathemat-
ical logic’s approach. International Economic Review, 25(3):719–730, 1984.

http://www.cs.man.ac.uk/~korovink/iprover/
http://www.cs.unm.edu/~mccune/prover9/

120 References

57. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 3rd edition, 2010.

58. SARA Reken- en Netwerkdiensten. Lisa national compute cluster. https://

subtrac.sara.nl/userdoc/wiki/lisa64/description/.
59. SAT 2005 Competition. http://www.satcompetition.org, July 2005.
60. SAT 2009 Competition. http://www.satcompetition.org, July 2009.
61. SAT Research Group, Princeton University. zChaff. Available from http://

www.princeton.edu/~chaff/zchaff.html, March 2007.
62. M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and

correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10(2):187–217, 1975.

63. S. Schulz. E 1.1x user manual. Available from http://www4.informatik.

tu-muenchen.de/~schulz/WORK/eprover.ps, September 2009.
64. A. Sen. The impossibility of a Paretian liberal. The Journal of Political Econ-

omy, 78(1):152–157, 1970.
65. A. Sen. Welfare, preference and freedom. Journal of Econometrics, 50(1-2):15–

29, 1991.
66. N. J. A. Sloane, editor. The on-line encyclopedia of integer sequences (OEIS).

Published electronically at http://www.research.att.com/~njas/sequences/,
June 2010.

67. Sun Microsystems, Inc. Java 2 platform standard edition development kit
5.0. Available from http://java.sun.com/javase/downloads/index_jdk5.

jsp, November 2009.
68. G. Sutcliffe. System before TPTP. http://www.cs.miami.edu/~tptp/cgi-bin/

SystemB4TPTP/.
69. G. Sutcliffe. The CADE ATP system competition. In The 22nd International

Conference on Automated Deduction, 2009.
70. G. Sutcliffe. The TPTP problem library and associated infrastructure: The FOF

and CNF parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.
71. P. Tang. Computer-Aided Theorem Discovery — A New Adventure and its

Application to Economic Theory. PhD thesis, Hong Kong University of Science
and Technology, 2010.

72. P. Tang and F. Lin. Computer-aided proofs of theorems in implementation
theory. Manuscript.

73. P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041–1053, 2009.

74. A. Tchaltsev. TPTP parser in Java. http://www.freewebs.com/andrei_ch/,
January 2007.

75. A. Trybulec and H. Blair. Computer assisted reasoning with Mizar. In Proceed-
ings of the 9th International Joint Conference on Artificial Intelligence, pages
26–28, 1985.

76. A. Voronkov. The anatomy of Vampire. Journal of Automated Reasoning,
15(2):237–265, 1995.

77. T. Weber and H. Amjad. Efficiently checking propositional refutations in HOL
theorem provers. Journal of Applied Logic, 7(1):26–40, 2009.

78. F. Wiedijk. Arrow’s Impossibility Theorem. Formalized Mathematics,
15(4):171–174, 2007.

79. Wolfram Research, Inc. Mathematica. Version 5.1, Wolfram Research, Inc.,
Champaign, Illinois, 2004.

https://subtrac.sara.nl/userdoc/wiki/lisa64/description/
https://subtrac.sara.nl/userdoc/wiki/lisa64/description/
http://www.satcompetition.org
http://www.satcompetition.org
http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html
http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.ps
http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.ps
http://www.research.att.com/~njas/sequences/
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://www.cs.miami.edu/~tptp/cgi-bin/SystemB4TPTP/
http://www.cs.miami.edu/~tptp/cgi-bin/SystemB4TPTP/
http://www.freewebs.com/andrei_ch/

References 121

80. L. Wos, F. Pereira, R. Hong, R. S. Boyer, J. S. Moore, W. W. Bledsoe, L. J.
Henschen, B. G. Buchanan, G. Wrightson, and C. Green. An overview of auto-
mated reasoning and related fields. Journal of Automated Reasoning, 1(1):5–48,
1985.

Index

 Loś-Tarski Theorem, 54
Ågotnes, 5

alternatives, 12
Amjad, 48
Appel, 3
Arlegi, 3, 73, 74, 82, 87, 89
Arrow, 2, 3, 7, 31
Arrow’s Theorem, 31
artificial intelligence, 3
automated reasoning, 3, 5
automated theorem proving, 6, 19
axiomatic method, 2

Bailey, 37
Barberà, 2, 4, 5, 10, 14, 70, 71, 78
Blau, 3
Bossert, 2–4, 10, 70, 73, 78, 82

Can, 11
characterization results, 2
choice theory, 1
clauses, 34
complete uncertainty, 10
computational social choice, 4
conjunctive normal form, 34

De Morgan, 44
decision theory, 1
dominance, 14, 71

economic theory, 1
Enderton, 52, 55, 56
Endriss, 6, 12, 19, 20, 54

equisatisfiability, 34
ESG-equivalent, 63
even-numbered extension of equivalence,

74
existentially set-guarded formula, 59
extension, 11, 71

first-order logic, 19
Fishburn, 16, 18
freedom of choice, 5

Gärdenfors, 14, 16
Gärdenfors principle, 14, 23, 24, 39, 53,

71
Gaertner, 16
game theory, 4
Gammie, 6
Grandi, 6, 19, 20
Gravel, 5

Haken, 3
higher-order logic, 5
Hodges, 53, 55, 60, 61

impossibility theorems, 2, 5, 75
independence, 5, 14, 23, 41, 53, 71
independence of irrelevant alternatives,

31
iProver, 20, 23

Java, 68
Jones, 11

Kannai, 5, 14, 16–18

124 Index

Kannai-Peleg Theorem, 9, 17, 23, 35, 84
Kelly principle, 11, 13, 14, 24

Lin, 1, 6, 7, 29–35, 49, 51, 91, 92
linear order, 12, 38, 70

many-sorted logic, 52
Manzano, 52, 55, 56
mathematical economics, 2
mathematical logic, 4
max-min ordering, 82
min-max ordering, 82
model theory, 4
monotone consistency, 74
Moskewicz, 34
MSLSP, 53

neutrality, 5, 54, 78
Nipkow, 6
Nitzan, 71, 74
non-dictatorship, 31
non-manipulability, 9

opportunity sets, 10
Otter, 23

Packard, 16
Pattanaik, 2–5, 10, 11, 70, 71, 74, 78, 82
Peleg, 5, 14, 16–18, 71
possibilities, 47
potential possibilities, 80
PrecoSAT, 47, 68
preference aggregation, 30
preference for freedom, 5
preference-basedness, 54
Preservation Theorem, 61
problem instance, 68
proof checker, 6
proof trace, 48
propositional logic, 32
Prover9, 20
Prover E, 25
Puppe, 5, 54

ranking sets of objects, 2, 4, 9
rational choice theory, 1
Rubinstein, 5

SAT solver, 29, 101
satisfiability checker, 29
satisfying assignment, 47
Schulz, 95
Sen, 54
sets as final outcomes, 11
simple bottom monotonicity, 73
simple dominance, 71
simple top monotonicity, 73
single-flip axiom, 54
social choice theory, 2
social welfare function, 31
sort, 21, 52
source code, 101
strategy-proofness, 9
structure for set preferences, 59
subset-consistent substructure, 59
Sugden, 11

Tang, 1, 6, 7, 29–35, 49, 51, 91, 92
Tchaltsev, 93
Translation Lemma, 56

unanimity, 31
uncertainty appeal, 73
uncertainty aversion, 73

Vampire, 23
verification, 48

weak order, 12, 39, 70
weak preference dominance, 54
Weak Preservation Theorem, 56
Weak Universal Step, 57, 64
Weber, 48
Wiedijk, 6

Xu, 3, 11, 82

zChaff, 46, 68

	Introduction
	Motivation and Area of Research
	Related Work
	Contribution
	Overview of the Thesis

	Ranking Sets of Objects
	Introduction
	Motivating Examples and Basic Concepts
	Notation and Mathematical Setting
	The Kannai-Peleg Theorem
	Summary

	First-Order Automated Theorem Proving
	Introduction
	Axioms
	Experimental (Practical) Results
	Summary

	Theorem Proving Using a SAT Solver
	Introduction
	Tang and Lin's Proof Technique
	Extended Approach for the Kannai-Peleg Theorem
	Additional Features of our Implementation
	Summary

	Reduction of Impossibilities to Small Instances
	Introduction
	The Language MSLSP for Preferences over Sets
	Weak Universal Step by Standard Model Theory
	Universal Step Based on the Domain Structure
	Summary

	Automated and Exhaustive Theorem Search
	Introduction
	Technique and Implementation
	Implemented Axioms
	Impossibility Theorems Found
	Potential Possibilities Found
	Some Manual Proofs of Impossibilities
	Summary

	Conclusion and Future Work
	Summary and Conclusion
	Future Work

	First-Order Logic
	``Trivial'' First-Order Proof

	Propositional Logic
	Source Code Example for Coding Axioms
	Output on a Satisfiable Instance
	Output on an Unsatisfiable Instance
	List of Axioms Used in the Theorem Search

	References
	Index

