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Abstract

A set or sequence is random when the prefix-free Kolmogorov complexity of
its initial segments is relatively high: equal to the length of the segment (up
to a constant). Using Kolmogorov complexity of initial segments, we can not
only define when a set is random, but we can also compare which of two sets
is more random. We say that a set A is K-below (or K-reduces to) a set B
if K(A �n) ≤+ K(B �n) for all n. This reducibility gives the structure of the
K-degrees. The sets in the lowest degree are called K-trivial sets.

This thesis studies arithmetical definability in the K-degrees. The main
result we present, is the construction of a non-K-trivial ∆0

2 set that does not
bound any non-K-trivial set in a given ∆0

2 family of sets. This implies that
there is a non-K-trivial ∆0

2 set that does not bound any non-K-trivial c.e. set.
Furthermore, this result shows a structural difference between the K-degrees
and the LK-degrees.

Similar to the above result, we also show that for all n > 1 there is a non-
K-trivial Σ0

n set that does not bound any non-K-trivial ∆0
n set. We present

the construction for the particular case of n = 2, and we show that this specific
Σ0

2 set forms a minimal pair in the K-degrees with any non-K-trivial c.e. set.
This improves on the lowest complexity known so far for minimal pairs in the
K-degrees.

Finally, we investigate the possibility of constructing a minimal pair in
the K-degrees via gap functions for K-triviality. We show that no unbounded
non-decreasing ∆0

2 gap function can exist, thus showing that this method is
not suitable for constructing a ∆0

2 minimal pair in the K-degrees.
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Introduction

A monkey that randomly writes on a typewriter for an infinite amount of time
will eventually type the entire text of Shakespeare’s Hamlet. This is called the
Infinite Monkey Theorem, and it is a well known illustration of the concept of
infinity. The odds that a monkey writes Hamlet in a finite time are of course
extremely small, but in infinite time it will at some point surely happen.

The Infinite Monkey Theorem is not only a good example of infinity, it also
illustrates randomness. If the monkey were to type the same letter over and
over, or follow some other type of pattern (that does not contain Shakespeare’s
Hamlet itself), it would definitely not type up Hamlet since it keeps repeating
the same thing. In other words: the monkey in the Infinite Monkey Theorem
really needs to type random letters for the example to work.

We can think of randomness of infinite sequences in precisely this way.
An infinite sequence is random if it does not follow any type of pattern.
Then random sequences coincide with those that could contain the entire text
of Hamlet, and Euclid’s Elements, and Tolstoi’s Anna Karenina. Random
sequences are those that code a lot of information in them.

The field of Algorithmic Randomness studies infinite sequences. One can
use that to study sets over natural numbers using the infinite sequences of
zeros and ones representing them. An important distinction is that we do not
study the randomness of events like coin tosses or rolling dice, but we are
rather interested in the randomness of an infinite sequence that is given to us.

One way to define a random sequence is the one described above: a
sequence is random if it does not follow any patterns. This is called 1-
randomness, and is based on the concept of Kolmogorov complexity. Both
will be defined in Chapter 1. In that chapter we also define a way to talk
about how random different sets or sequences are compared to each other.
This divides up the class of all sets into different degrees of randomness.

In this thesis we are interested in these degrees of randomness, and in
particular how hard it is to compute certain sets in these degrees. This is
what the title of this thesis refers to: we study arithmetical definability in the
degrees of randomness.
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Context and related work

As mentioned above the focus of this thesis lies in the area where Algorithmic
Randomness and Computability Theory meet. For background on both fields
we refer to either [DH10] or [Nie08]. More on Kolmogorov complexity can be
found in those, as well as in [LV93].

We already briefly mentioned the fact that we can say that one set is
less random than another. In that case we say that the less random set K-
reduces to the other set (see Chapter 1). Therefore the question of arithmetical
definability in the randomness degrees is a specific case of definability related
to reducibilities.

When it comes to definability related to Turing reducibility, quite a number
of results are known. For example, when a set Turing reduces to a ∆0

2 set, it
must be ∆0

2 itself. The question whether such results hold in the case of other
reducibilities is an interesting subject. The hope is that possibly some results
about Turing reducibility can be transferred to other reducibilities quite easily.

However, in contrast to Turing reducibility, K-reducibility is a so-called
weak reducibility. The term weak refers to the fact that there is no underlying
map that shows how one set is related to the other. Another weak reducibility
is for example LK-reducibility1. For this reducibility it was proved in [BLS08]
that a set reducing to a ∆0

2 set is not necessarily ∆0
2, unlike in the Turing

degrees. This is because certain sets can have uncountable lower cones, and in
particular ∆0

2 sets have uncountably many sets LK-reducing to them (unless
the ∆0

2 set LK-reduces to ∅).
The concept of K-reducibility has only been introduced quite recently,

in the 2004 paper by Downey, Hirschfeldt and LaForte [DHL04]. In their
paper they treat several different kinds of reducibilities, and in particular
weak reducibilities. Since then, the K-degrees have been a subject of interest,
but not much is known about them so far. Miller and Yu studied the K-degrees
of random sets in [MY08] and [MY10].

In investigating arithmetical definability in the K-degrees, this thesis
was first motivated by the following open question asked by Downey and
Hirschfeldt [DH10, 554]:

Question: Is there a pair of ∆0
2 sets that forms a minimal pair in the

K-degrees?

This asks for two sets that are themselves not in the lowest degree (the very
non-random sets, called K-trivial sets), but everything that K-reduces to
both is in the lowest degree (the sets form a minimal pair). Closely related
to this question is the paper by Barmpalias that proves the impossibility of a
∆0

2 minimal pair in the LK-degrees [Bar10].
In the K-degrees it is already known that a minimal pair exists, due to

a construction from Csima and Montalbán [CM06]. They did not care much

1 A ≤LK B iff KB(σ) ≤+ KA(σ) for all strings σ.
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about the arithmetical complexity of the minimal pair, but it turned out to
be ∆0

4. Merkle and Stephan improved this by constructing a minimal pair of
two Σ0

2 sets [MS07], which is the lowest complexity known for such a pair. In
this thesis we improve this result by constructing a minimal pair of a Σ0

2 set
with any Σ0

1 set of non-zero K-degree.

Results in this thesis

The main result in this thesis is the existence of a non-K-trivial ∆0
2 set that

does not bound any non-K-trivial set in a given ∆0
2 family of sets. Since the

computably enumerable (c.e.) sets form a ∆0
2 family of sets, it follows that

there is a non-K-trivial ∆0
2 set that does not bound any non-K-trivial c.e. set.

This is surprising since c.e. sets have quite low initial segment complexity, even
when they are non-K-trivial.

Furthermore, the existence of such a ∆0
2 set shows a structural difference

between the LK-degrees and the K-degrees, since in [Bar10] the opposite was
shown for the LK-degrees: every nontrivial ∆0

2 set bounds a nontrivial c.e.
set. Extending that result led to the insight that every pair of nontrivial ∆0

2

sets bounds one nontrivial c.e. set, showing that no ∆0
2 minimal pair can exist

in the LK-degrees. With the aforementioned result in this thesis we see that
this argument does not carry over to the K-degrees.

Similar to the previously mentioned result, we also show that for any n,
there is a non-K-trivial Σ0

n set that does not bound any non-K-trivial ∆0
n set.

In particular, we do the construction for n = 2, which relativizes to higher
complexity classes. We also show that the constructed Σ0

2 set forms a minimal
pair in the K-degrees with any non-K-trivial c.e. set, improving the result by
Merkle and Stephan, as mentioned above.

Finally we also prove a result concerning gap functions for K-triviality:
we prove that there cannot be an unbounded non-decreasing ∆0

2 gap function.
This is interesting because the first construction of a minimal pair in the K-
degrees was done using a gap function [CM06]. An unbounded non-decreasing
gap function always induces a minimal pair. By showing that no unbounded
non-decreasing ∆0

2 gap function can exist, we show that this method of con-
structing minimal pairs cannot be used to construct a ∆0

2 minimal pair in the
K-degrees.

Outline of the thesis

The remainder of this thesis is organized in the following way: we start with
a chapter on some basic notions and results about randomness, (prefix-free)
Kolmogorov complexity and randomness degrees. This chapter is meant for
the reader to gain some familiarity with the subject: we define the basics and
discuss some elementary results.
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The second chapter introduces a new definition: that of infinitely often
K-trivial sets. These sets are essential in some of the proofs in the following
chapters, for example in constructing the minimal pair consisting of a Σ0

2

set with any non-K-trivial c.e. set. In Chapter 2 we investigate the infinitely
often K-trivial sets, showing some results on how they behave and where they
occur.

The third chapter is about definability in the K-degrees and presents two
main results, mentioned above: the construction of a non-K-trivial Σ0

2 set
that does not bound any non-K-trivial ∆0

2 set, and a non-K-trivial ∆0
2 set

that does not bound any non-K-trivial set in a given ∆0
2 family of sets.

The final chapter is about gap functions. It investigates how they can be
constructed, how they induce a minimal pair, and what they could look like
under different restrictions. The main result there is the impossibility of an
unbounded non-decreasing ∆0

2 gap function, showing that this method cannot
be used for constructing a ∆0

2 minimal pair.
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Randomness and degrees of randomness

The main goal of this chapter is to briefly discuss some intuitions on random-
ness, Kolmogorov complexity and randomness degrees. We refer to [Nie08],
[DH10] or [LV93] for more on this. Here we present the most important defi-
nitions that we need throughout the thesis, as well as some basic results that
will come back in the following chapters.

As mentioned in the introduction we are interested in studying randomness
of sets over natural numbers (A ⊆ N), viewing them as infinite sequences1.
One way to capture randomness is the one explained in the introduction, where
a sequence is random when it follows no patterns. This is called 1-randomness,
and we define it formally in the next section.

1-randomness deals with randomness from a perspective of computability
theory. There are two other main approaches to randomness: it can also be
seen from the perspective of unpredictability, where an infinite sequence is
random if it is not possible to predict the next digit of the sequence, even
when all previous digits are known. Or we can view randomness in a measure
theoretic perspective, where a random infinite sequence should not satisfy
any effectively rare properties. This is captured in Martin-Löf randomness
(see [DH10, 233] for more on this).

It was shown that all three approaches (computability, unpredictability
and measure theory) can be used to define the same notion of randomness.
In other words, sets or sequences that are random in one sense, will also be
random in the other. In particular, there is a theorem by Schnorr that shows
that Martin-Löf randomness and 1-randomness are equivalent (see [DH10,
234]).

The advantage of using descriptive complexity (and 1-randomness), is that
it gives us the opportunity to compare the degree of randomness of sets. We
can compare the complexity of initial segments of the same length, and thus
1 Each set A has a characteristic function χA : N → N where χA(n) is 1 if n ∈ A

and 0 otherwise. We study the infinite sequence fA(0)fA(1)fA(2)..., so a 1 at
place n represents that n ∈ A.
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get an idea of which set is more random than the other. We will study this in
Section 1.3.

1.1 Descriptive complexity and 1-randomness

In this section we formalize the idea that an infinite sequence is random when
its initial segments have no short descriptions. We begin by defining what
constitutes a description of a finite string. A description τ of a string σ should
be such that we can computably find the string σ when we are given τ . Also,
a description should only describe one string, but it can be that one string has
multiple descriptions. So we define a string τ to be a description of a string
σ when there is a machine (which is essentially just a (partial) computable
function) that produces σ from input τ .

One can think of each machine as representing a certain pattern that a
string might follow [vL87, 124]. For example, we could have a machine that
represents the pattern “zeros and ones interchanging starting with 1”. It will
take a natural number as input (let us say 5 or, in binary, 101), and output a
string of length that number with zeros and ones interchanging starting with
1 (10101). In the end we would like to take into account all possible machines
(or all patterns that a string might follow), and find the shortest description
in any of them.

Formally a machine is defined as a partial computable function M : 2<ω →
2<ω. Essentially such a machine is just a partial computable function on N,
since we can identify each string with a natural number [Nie08, 75]. For a
machine M we say that τ is an M -description of σ if M(τ) = σ. We define
the plain Kolmogorov complexity of a string σ with respect to a machine M
as the length of the shortest M -description of σ [Nie08, 76]:

CM (σ) = min{|τ | : M(τ) = σ}.

As mentioned before we are not only interested in finding the descriptive
complexity of a string in one machine, but we would like to take into account
all machines. We can do this using a universal machine: this is a machine N
such that for each machine M , every M -desciption of a string x is reflected
in N with only an added coding constant cM :

∀σ, x [M(σ) = x→ ∃τ(N(τ) = x & |τ | ≤ |σ|+ cM )].

The canonical universal plain machine lists all machines Me. Note that such
an effective list exists because the machines correspond to partial computable
functions on N. Then it codes which machine to simulate by adding e−1 zeros
and a 1 in front of each description. The coding constant of any machine is
therefore just its index. For any input τ the canonical universal machine reads
how many zeros precede the first 1, say d− 1. Then if the remaining string is
τ it outputs Md(τ) [Nie08, 76].
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Now we can define the plain Kolmogorov complexity C(σ), which will take
into account all possible descriptions in all machines, see the definition below
as can be found in [Nie08]. Note that using a universal machine for this adds a
constant to the descriptions in a certain machine, but for defining randomness
this constant is not of any influence. Also the choice of universal machine may
result in different coding constants, but since each universal machine also
simulates the others, this is once again up to a constant that has no influence.
In general we assume that we are dealing with the canonical universal machine
as described above.

Definition 1.1 (Plain Kolmogorov complexity). The plain complexity
C(σ) of a string σ is

C(σ) = min{|τ | : N(τ) = σ}

where N is a universal machine.

But this definition of descriptive complexity is not optimal, although it is still
of interest to us. The machines describing the strings can ‘cheat’ by reading
off information from the length of the describing string. An example of an
explicit use of this length is the proof of Theorem 2.1.4 in [DH10, 114]. This
is a problem, because in the Turing machines on which the definition of plain
complexity is based (via partial computable functions), there is no way to
mark the end of a description; the tape that goes in has no symbol for marking
the end. Using the length for reducing the complexity should therefore not be
possible.

Another problem with plain complexity is the following: suppose we have
two strings x and y with shortest descriptions σx in Mx (so Mx(σx) = x)
and σy in My (so My(σy) = y). Now we take the string that is given by
concatenating x and y to x ∗ y. By the way that C is defined, there is nothing
we can say about the description of this new string. We would like to have a
machine Mx∗y that simulates Mx and My in such a way that Mx∗y(σx ∗σy) =
Mx(σx) ∗My(σy). This would give C the property C(x ∗ y) ≤+ C(x) +C(y),
called subadditivity. However, we cannot just concatenate descriptions like
this, because there is no way to tell where the first ends and the second
starts.

To solve these matters, we define prefix-free complexity K. Instead of look-
ing at all possible descriptions, it only considers machines that have a prefix-
free domain, which mean that when a string is in the domain, no proper
extension of it is in the domain (σ ≺ τ , then σ = τ). This way the machine
only halts when it has reached the end of a string in the domain, solving
both problems mentioned above. We define prefix-free complexity in the same
way as we defined the plain complexity C, except we only take machines into
account that have a prefix-free domain. A universal prefix-free machine U
exists [Nie08, 84], and we define



8 1 Randomness and degrees of randomness

Definition 1.2 (Prefix-free Kolmogorov complexity). The prefix-free
complexity K(x) of a string x is

K(x) = min{|σ| : U(σ) = x}

where U is a universal prefix-free machine.

Now that we formalized the idea of describing a string, we can say what it
means for a string not to have a short description. Intuitively, we would say
that a string is hard to describe if the only description is the string itself.
Formally, we say that it incompressible if there is no prefix-free description
shorter than the string itself [DH10, 133]:

K(σ) ≥ |σ|.

We say that an infinite sequence is random if all its initial segments are hard
to compress. However, if we require all initial segments to be incompressible,
no sequence will be random. So instead, we base our definition of randomness
on d-incompressibility [DH10, 133]:

Definition 1.3 (d-incompressibility). A string σ is d-incompressible if

K(x) > |x| − d.

We can fix some d and call every d-incompressible string weakly K-random.
Given an infinite sequence, if all its initial segments are d-incompressible with
the same constant d, we say that it is 1-random [DH10, 133].

Definition 1.4 (1-randomness). An infinite sequence X is 1-random if
there is a constant d such that every initial segment X �n is d-incompressible:

∀n K(X �n) > n− d.

1.2 Behaviour of K

To study randomness and degrees of randomness we study prefix-free Kol-
mogorov complexity K and its properties. In this section we briefly discuss
the behaviour of K as a function: upper bounds for K and computability of
K. But first we note that there are incompressible strings of every length.
This is because there are less descriptions than strings of a certain length,
and each description only describes one string. We say that K satisfies the
counting condition [Nie08, 78].

Claim (K satisfies the counting condition). For each k, strictly less than 2k

strings have a description strictly shorter than k.
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Proof. A prefix-free set of strings that all have length strictly less than k, can
have at most 2k−1 elements. So at most 2k−1 strings could get a description
strictly shorter than k. ut

Since not all 2k strings of length k can get a shorter description, some of them
must be incompressible.

Next we look at the behaviour of K as a function on natural numbers.
This is very relevant for this thesis, since we often need to know the prefix-
free complexity of the length (a natural number) of a string. Plotting K on
natural numbers results in a graph as in Figure 1.1. It is unbounded, and also
the lower bound m(x) := {K(y) : y ≥ x} goes to infinity.

This graph shows that K(n) sometimes drops radically. This is because in
general we can describe a number with its binary expansion. But sometimes
we can describe it even shorter, for example because it is the product of two
other numbers. Think for example of n = 100. This can be described in a
very short way via a machine that takes powers of 10, and it only needs the
description of 2 to output 102 = 100.

Fig. 1.1: Behaviour of K on natural numbers, adapted from [LV93, 217]

We can find an upper bound for K(σ), depending on σ. If we build a
machine M that describes each σ in a smart way, we know that all of these
descriptions will be reflected in the universal machine. So the prefix-free com-
plexity of a string must be less than the prefix-free complexity in M plus a
coding constant.

Before building the required machine we first build one for the plain com-
plexity C, to get an upper bound there. This machine can just be the identity:
let M(σ) := σ for all σ. Then we get that C(σ) ≤+ |σ|. In fact the identity
machine will have coding constant 1 in the canonical machine [Nie08, 77], so
we get for all σ
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C(σ) ≤ |σ|+ 1.

However, the identity machine is not prefix-free. For obtaining an upper bound
for K, we can make the following machine: M(0|σ| ∗ 1 ∗ σ) = σ for all σ. This
machine is prefix-free since 0|σ| ∗ 1 ∗ σ � 0|τ | ∗ 1 ∗ τ first implies that |σ| = |τ |
and then σ = τ [Nie08, 85]. This machine is reflected in the universal machine
via some coding constant, so we get

K(σ) ≤+ 2|σ|.

In fact we could make this bound a bit tighter by not coding the length of σ
with 0|σ|, but using the shortest description of |σ|. With the same argument
like before [Nie08, 85] this gives a prefix-free machine and we get

K(σ) ≤+ K(|σ|) + |σ| ≤+ 2 log(|σ|) + |σ|.

Observe that in this argument we have built our own machines to push down
the prefix-free complexity K. Since K(σ) is the minimum of all descriptions
in the universal machine, any description that we force via some machine will
be reflected in K via a coding constant. All we need to do is make sure that
we build a prefix-free machine. The following theorem from [DH10, 126] is
very useful to do this, and we use it a lot throughout this thesis:

Theorem 1.5 (Kraft-Chaitin theorem, Levin [Lev71], Schnorr [Sch73],
Chaitin [Cha76]). Let (di, τi)i∈ω be a computable sequence of pairs with
di ∈ N and ti ∈ 2<ω such that

∑
i 2−di ≤ 1. Then there is a prefix-free

machine M and strings σi of length di such that for all i

M(σi) = τi

and dom(M) = {σi : i ∈ ω}. An index for M can be obtained effectively from
an index for the computable sequence.

We call this computable sequence (di, τi)i∈ω with property
∑
i 2−di ≤ 1 a

bounded request set. The proof of this theorem can be found in [DH10, 126].
Whenever we want to build some machine that gives short descriptions to
certain strings, we make a computable sequence like in the theorem, where
the first part of the pair is the length we want our machine to use to describe
the second part of the pair: the string that needs a description. When this is
in fact a bounded request set, we can be sure that there is a machine that
gives the required descriptions.

We conclude this section with a note on the computability of K. Finding
the value K(σ) for a string σ is not computable, since we never know whether a
shorter string might also describe σ. But there is a computable approximation
K[s] to K, making K a ∆0

2 function. The approximation is defined as follows
(see [DH10, 125]) for all σ:

K(σ)[s] = min{|τ | : U(τ)[s] ↓= σ}.
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In the limit this will be equal to K(σ) since we then just take the minimum
over all descriptions in U again. Furthermore by definition this approximates
K from above. We use the approximation in various occasions in this thesis.

1.3 Degrees of randomness and K-triviality

After defining and investigating the prefix-free complexity K, we now turn to
one of its most interesting features. As mentioned before, defining randomness
via the descriptive complexity of strings gives us the opportunity to compare
the degrees of randomness of different sets. We do this by comparing the
complexity of their initial segments, and we say that a set A is K-below B
(or K-reducible to B) if each initial segment of A has lower complexity than
the initial segment of B of the same length, up to a constant. This concept of
K-reducibility was only introduced quite recently by Downey, Hirschfeldt and
LaForte in their 2004 paper [DHL04]. Formally, the definition is the following:

Definition 1.6 (K-reducibility). A is K-below B (A ≤K B) iff for all n,

K(A �n) ≤+ K(B �n).

This gives us a structure of different levels of randomness, the K-degrees.
Sets in the lowest degrees are the K-trivial sets. We define them to be the
sets of which all initial segments are as easy to describe as their length, up to
a constant:

Definition 1.7 (K-trivial set). A is K-trivial if for all n,

K(A �n) ≤+ K(n).

Saying that a segment is as easy to describe as its length is the same as saying
that it is as easy to describe as a string of zeros of that length. Therefore a
set being K-trivial coincides with a set being K-below ∅:

Note 1.8. A is K-trivial iff A ≤K ∅.

The above definition of K-triviality requires all initial segments to have a
short description. The theorem below, taken from [DH10, 503], shows that it is
sufficient if for all n in some infinite computable set S, K(A �n) ≤+ K(n). Also
then A is K-trivial. Moreover we can show something stronger: S merely needs
to be computably enumerable (c.e.). The latter is not mentioned anywhere in
the literature, to our knowledge. We show it as a corollary to the following
theorem that can be found in [DH10].

Theorem 1.9 (Downey, Hirschfeldt [DH10]). If K(A �n) ≤+ K(n) holds
for all n ∈ S for some infinite computable set S, then A is K-trivial.
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Proof. Since S is computable, there is a total computable function h(n) with
range S that lists all elements in their natural order. Let M be the machine
that on input σ applies the universal machine U and then the function h. This
way, a description σ of n in U (so U(σ) = n) is a description of h(n) in M
(since M(σ) = h(U(σ)) = h(n)). So K(h(n)) ≤+ K(n).

Observe that given h(n) we can retrieve n (look at how many numbers
precede h(n) in the set S). If we have the initial segment A �h(n), we can
then find n from its length, and since n ≤ h(n) always holds, we can find the
shorter segment A �n. So for all n,

K(A �n) ≤+ K(A �h(n)).

Since h(n) ∈ S for all n we have by assumption that K(A �h(n)) ≤+ K(h(n))
for all n, so with K(h(n)) ≤+ K(n) and the previous it follows that for all n

K(A �n) ≤+ K(n).

ut

To get the result for c.e. sets, we refer to Lemma 1.7.4 from [LV93, 33]. This
says that every infinite c.e. set has an infinite computable subset.

Corollary 1.10. If K(A �n) ≤+ K(n) holds for all n ∈ S for some infinite
c.e. set S, then A is K-trivial.

Proof. Take some infinite c.e. set S. By Lemma 1.7.4 from [LV93, 33] there is
an infinite computable subset S′ ⊆ S. For this infinite computable set we also
have for all n ∈ S′ that K(A �n) ≤+ K(n). By Theorem 1.9 it follows that A
is K-trivial. This concludes the proof. ut

Intuitively the results in this section can be explained by realizing that the
initial segment of length n can be found from the initial segment of length
n+1. Therefore, once we know just where the set has low complexity (because
the set of n for which this holds is computable or even c.e.), we can use this
to our advantage to get short descriptions of the preceding initial segments.

1.3.1 Computability of K-trivial sets

One may wonder how complex a K-trivial set can be. Each computable set
is K-trivial, since we can just use the program that computes it to describe
the initial segments. K-triviality does not imply computability: below we will
construct a K-trivial set that is not computable. However, K-trivial sets must
always be ∆0

2, as we will also show below.
But first we briefly look at a similar notion for C. Chaitin proved that sets

A such that C(A �n) ≤+ C(n) for all n are computable. This is a theorem
Chaitin first published in his 1976 article [Cha76], it can be found in [DH10,
120] in the following form:
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Theorem 1.11 (Chaitin [Cha76]). A set A is computable if and only if
C(A �n) ≤+ C(n). Furthermore, for each k there is are only O(2d) many A
such that C(A �n) ≤ C(n) + d.

We will omit the proof here, it can be found in [DH10]. As mentioned above
such a theorem does not hold for K, showing a difference between definability
in the C- and K-degrees. In the proof of the following theorem we construct
a K-trivial set that is not computable. This proof is originally due to Solovay
in some unpublished notes on Chaitin’s work. Zambella [Zam90] adapted it
into the proof as presented below.

Theorem 1.12 (Zambella [Zam90], after Solovay (unpubl. notes)).
There is a noncomputable K-trivial c.e. set.

Proof. To make the set noncomputable, we make sure it is a simple set. Recall
by definition a simple set is c.e., and its complement is infinite and contains
no infinite c.e. set. Therefore, if we make an infinite simple set we can be sure
that it is noncomputable.

Furthermore we will make sure we get a K-trivial set A by simultaneously
building a request set L for describing initial segments of A. We base these
descriptions on those of n in the universal machine, making sure that we only
put numbers into A that will not add too much weight to the request set.

To make a simple set we satisfy the following requirements for all e, where
(We)e∈ω is an effective list of all c.e. sets:

Re : We is infinite⇒ ∃x(x > 2e ∧ x ∈We ∩A).

This makes sure that each infinite c.e. set cannot be in the complement of e
entirely.

We build A as follows: at stage s we search for the least e such that We,s∩A
is empty (we say the requirement Re requires attention), we search for a
number n > 2e such that it is in the e-th c.e. set at this stage (n ∈We,s) and it
does not add more than 2−(e+2) weight to describe initial segments of A again
with the descriptions available at this stage (

∑
n≤l≤s 2−K(l)[s] < 2−(e+2)). We

put this number into A.
Note that if We is indeed infinite, we will eventually be able to find such a

number and put it into A, since the sum
∑
n≤l≤s 2−K(l)[s] will become small

enough after some n. This way whenever We is infinite, we can be sure that
∃x(x > 2e ∧ x ∈ We ∩ A), hence the requirements will be satisfied. Also we
know that A will be infinite, since we keep putting more numbers into it. To
summarize, A will be the following set:

A := {n : ∃e∃s(We,s∩A[s] = ∅∧n > 2e∧n ∈We,s∧
∑
n≤l≤s

2−K(l)[s] < 2−(e+2))}.

We let the request set L be as follows: whenever at some stage there is some
shorter description σ for a number n (so U(σ) = n), shorter than any we
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have previously seen, we enumerate 〈|σ|+ 1, A[s] �n〉 into L. Also when A �n
has changed since the last stage (by putting some number in), we add the
same request to L. By describing the segments with length |σ| + 1, we keep
the weight of describing them once below half the weight of the universal
machine. Some more weight is added because some new descriptions might be
required whenever A changes again. But because of the restraint we put on
the numbers we enumerate into A (namely

∑
n≤l≤s 2−K(l)[s] < 2−(e+2)), we

know that this is bounded by
∑
e 2−(e+2). This is because once a number is

put into We, it stays in there. When we then make sure that the intersection
with A is nonempty, it will never be empty after that stage. So we only need
to put at most one number into A for each e. Therefore the weight of L is
bounded by ∑

dom(U)

2|σ|+1 +
∑
e

2−(e+2) ≤ 1
2

+
1
2

= 1.

We apply the Kraft-Chaitin theorem to get a machine M that describes A �n
with a string of length K(n) + 1. So we certainly have for all n

K(A �n) ≤+ K(n)

and A is K-trivial. Note that A is c.e. by construction and noncomputable
because it is an infinite simple set. ut

The above theorem implies that a K-trivial set is not necessarily computable.
However, we do have a bound on the arithmetical complexity: every K-trivial
set is ∆0

2, as follows from the theorem below. This theorem uses the Coding
Theorem, as can be found in [Nie08, 91]. For this we define the probability
that a prefix-free machine M outputs a string x:

PM (x) =
∑

M(σ)=x

2−|σ|.

The Coding Theorem says the following:

Theorem 1.13 (Coding Theorem, Solomonoff [Sol64a] [Sol64b], Levin
[Lev71] [Lev73], Chaitin [Cha75]). From a prefix-free machine M , we may
effectively obtain a constant c such that for all x, 2c2−K(x) > PM (x).

We omit the proof here (it can be found in [Nie08]) and we go straight to the
theorem proving that each K-trivial set is ∆0

2. In this proof, for each e we
look at the set of sets that are K-trivial via this constant:

KT(e) := {X : ∀n K(X �n) ≤ K(n) + e}.

For each e this set is finite. This is the first item in the theorem below, and
was originally presented as a theorem in Chaitins 1976 paper [Cha76]. Using
this, for each e we can list all sets in KT(e) in a ∅′-computable tree. That tree
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then only has finitely many infinite paths (part 1 of the theorem), which shows
that all of them will be ∅′-computable (part 2 of the theorem). This argument
is made more formal in the proof below, as can be found in [Nie08, 178].

Theorem 1.14 (Chaitin [Cha76]).

(1) There is a constant c ∈ N such that for each b, at most 2c+b sets are
K-trivial with constant b.

(2) Each K-trivial set is ∆0
2.

Proof. For item (1), let c be a constant such that

∀d ∈ N ∀n #{x : |x| = n & K(x) ≤ n+K(n)− d} < 2c2n−d.

This exists because of the coding theorem: let M be the prefix-free machine
that for input σ outputs the length of what σ describes in the universal ma-
chine (M(σ) = |U(σ)|). By the coding theorem there is a constant c such that
for all n,

2c2−K(n) > PM (n).

For arbitrary d and n, take any x such that |x| = n and K(x) ≤ n+K(n)−d.
The shortest description of x in the universal machine will be a description of
n in M , so it adds at least 2−n−K(n)+d to PM (n). Suppose 2c2n−d would not
bound the number of such x, then there would be at least 2n+c−d and each
of them can add some to PM (n). So

PM (n) ≥ 2n+c−d2−n−K(n)+d = 2c2−K(n).

But by construction, PM (n) < 2c2−K(n), so this is a contradiction. Therefore
this c is the required constant.

Now observe that if we let d = n− b for some arbitrary b, we get that for
this constant c,

∀b ∈ N ∀n #{x : |x| = n & K(x) ≤ K(n) + b} < 2c2b.

This implies that there can be at most 2c+b K-trivial sets via constant b.
For item (2), take some arbitrary b. Define the tree consisting of strings of

complexity less than their length plus this constant b:

Tb = {s : ∀n ≤ |s|[K(s �n) ≤ K(n) + b]}.

The infinite paths of this tree will be precisely the sets that are K-trivial
via constant b. By item (1) at each level of the tree there are at most 2c+b

nodes, so there are finitely many infinite paths. Furthermore the tree is ∅′-
computable, since finding K is. Each infinite path is therefore ∅′-computable
(see Appendix A). So each K-trivial set is ∆0

2, which concludes the proof. ut



16 1 Randomness and degrees of randomness

We have seen that K-trivial sets are not necessarily computable, but they are
always ∆0

2. Some more properties of K-trivial sets are known. For example,
a set is K-trivial if and only if in is low for K (or equivalently low for ML-
randomness [Nie08, 170]). And K-trivial sets are superlow, weak truth-table
incomplete and Turing incomplete [Nie08, 177]. These results all build on a
method called the decanter method, which gives a way to construct non-K-
trivial sets. We treat this method in detail in Appendix C, and we use it in
Section 4.4.

To summarize, this chapter has given us the foundations for the rest of
this thesis by defining (prefix-free) Kolmogorov complexity, 1-randomness and
K-reducibility. We have discussed some of the properties of K and K-trivial
sets, and some theorems that we need in the following chapters.



2

Infinitely often K-trivial sets

In the previous chapter we have taken some time to study K-trivial sets and
their behaviour. In this chapter we introduce a new concept: that of infinitely
often K-trivial sets. As the name shows they are similar to K-trivial sets,
but we only require infinitely many initial segments to be of low complexity,
instead of all.

The notion of infinitely often K-trivial sets turns out to be very useful for
studying arithmetical definability in the K-degrees. It will come back more
than once in the proofs in the next chapter. Using infinitely often K-trivial
sets, we have been able to construct a minimal pair of lower complexity than
what was known so far (see the next chapter for this).

In the current chapter we formally define these infinitely often K-trivial
sets. We study their behaviour, showing that each c.e. set is infinitely often K-
trivial, which is a crucial feature for constructing the minimal pair in the next
chapter. Furthermore we will see that infinitely often K-trivial sets behave
nicely in the sense that their lower cones are countable, and every set in the
lower cone is computable from it and the halting problem.

We also show that there are uncountably many infinitely often K-trivial
sets, and we construct a Π0

1 class of infinitely often K-trivial sets that are
non-K-trivial, which allows us to apply basis theorems. Finally we show that
infinitely often K-trivial sets can be found in various places: there is one in
each truth-table degree (this was implicit in [MS07], but is now proved using
different methods) and every 1-generic set is infinitely often K-trivial. All
definitions and proofs in this chapter can be found in our paper [BV10] as
well.

2.1 Infinitely often K-trivial sets

Based on the definition of K-trivial sets, we introduce the notion of infinitely
often K-trivial sets. The idea to define a more general notion this way is
inspired on Millers work, who introduced weakly low for K-sets based on low
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for K sets [Mil09]. This turned out to be very useful for proving some new
results.

A set is low for K if having it as an oracle does not help in compressing
strings: ∀σ KA(σ) =+ K(σ). Nies proved this to be equivalent to K-triviality
[Nie05]. Miller defined a set to be weakly low for K if the compression is no
better for infinitely many strings: ∃∞σ KA(σ) =+ K(σ). This concept can for
example be used to characterize lowness for Ω.

In a similar fashion we introduce infinitely often K-trivial sets. We require
infinitely many initial segments σ to have low complexity K(σ) ≤+ K(|σ|) as
oppose to all initial segments.

Definition 2.1 (Infinitely often K-trivial set). A set A is K-trivial on a
set M ⊆ N with constant c if for all n ∈ M , K(A �n) ≤ K(n) + c. If M is
infinite, we say that A is infinitely often K-trivial.

With Theorem 1.10 it follows that when a set is K-trivial on an infinite c.e.
set M , it is K-trivial. Another fundamental result is that every c.e. set is
infinitely often K-trivial. This is because when enumerating the elements of
a c.e. set, there will be infinitely many stages in which some number n is
enumerated and after that stage the initial segment up to n will not change.
We call these the true stages, and we prove this claim in the following lemma.

Lemma 2.2. Given an infinite c.e. set X and an approximation X[s], there
are infinitely many stages s such that a number n is enumerated into X at
this stage, and X[s] �n= X �n.

Proof. Without loss of generality, assume that at each stage precisely one
number is enumerated into X. Intuitively, the claim holds because when at
stage s1 a number n is enumerated into X, the only way to change this initial
segment is to enumerate a number < n into X. That can happen only finitely
often. We prove that infinitely often we enumerate a number n into X, and
the initial segment up to n− 1 was already finished.

Suppose at most finitely often an n was enumerated and the initial segment
up to n is finished. Then after some stage the initial segments are never done:
there is some stage s0 such that for all n that are enumerated into X at
stages s > s0, there is a stage s′ > s such that X[s′] �n 6= X[s] �n. Take a
stage s1 > s0, where n1 is enumerated into X. As said, the only way to make
sure that X[s1] �n1 6= X �n1 , is to enumerate a number n2 < n1 into X at
stage s2 > s1. But by assumption, also this initial segment X[s2] �n2 will
change again at a later stage. So there is an n3 < n2 enumerated into X at
stage s3 such that X[s3] �n2 6= X[s2] �n2 . We can continue this argument to
get an infinite descending chain n1 > n2 > n3..., which is a contradiction.
This proves the lemma. ut

We use this lemma to prove that every c.e. set is infinitely often K-trivial.
We do this by giving initial segments up to n short descriptions at the very
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stage that n is enumerated into the set. Infinitely often it will be the case that
that initial segment is final, so infinitely often have we been able to give short
descriptions for the final set X. This idea was used to prove a similar claim
for the plain Kolmogorov complexity in [HKM09]. It seems that a number
of researchers are aware of the result in the theorem below, but we have not
found any explicit reference in the literature.

Theorem 2.3. Every c.e. set is infinitely often K-trivial.

Proof. Take an arbitrary c.e. set X. If the set is finite it is computable so it is
infinitely often K-trivial. Let X be infinite. Without loss of generality, assume
that at each stage precisely one new number n is enumerated into X. We build
a machine M as follows: at stage s, when n is enumerated into X at this stage,
M describes X[s] �n with all descriptions of n in the universal machine. This
machine exists since we encounter each n only once and the weight of all
descriptions of natural numbers in the universal machine is bounded.

By Lemma 2.2, there are infinitely many stages s such that a number
n is enumerated into X and X[s] �n= X �n. At each such stage we have
enumerated a short description of the initial segment X[s] �n= X �n into M ,
so we get KM (X �n) ≤ K(n) for infinitely many n and

K(X �n) ≤+ K(n)

for infinitely many n. This proves the theorem. ut

Theorem 2.3 and the next proposition will be crucial in the construction of a
minimal pair of a Σ0

2 set with any non-K-trivial c.e. set in the next chapter. In
the proposition below we show that when a set Y is infinitely often K-trivial,
every set in the lower cone is computable in Y plus the halting problem.

Proposition 2.4. Suppose Y is infinitely often K-trivial. Then every set X
in {X : X ≤K Y } is computable in Y ⊕ ∅′.

Proof. Let Y be K-trivial on the infinite set M , via constant c0. Let X be a
set such that X ≤K Y via constant c1. Let c = c0 + c1. Observe that the set
M on which Y is K-trivial is computable from Y and the halting problem,
since K is computable from the halting problem. That means from Y ⊕∅′ we
can compute a set of strings σ that are of length some n in M and for each
σ, K(σ) ≤ K(|σ|) + c.

First we define Fc(n) := {σ : |σ| = n ∧ K(σ) ≤ K(|σ|) + c}. With the
Coding Theorem (see Chapter 1) we get that there is a constant b such that

|Fc(n)| ≤ 2b+c

for all n. If we take the downward closure of the union of these sets for all
n, we get a tree where the width is bounded by this 2b+c so all infinite paths
are isolated. In particular we can define Lc to be the downward closure of
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n∈M Fc(n) (now we only take the union over n ∈M). This tree is computable

from M , hence from Y ⊕∅′. Once again it is of bounded width, so all paths are
isolated. That means that they are all computable from Y ⊕∅′ as well. Finally,
note that X is an infinite path through this tree Lc. So X is computable from
Y ⊕ ∅′. ut

Note that the proof of the above proposition could have been mended into a
proof that showed the following:

Remark 2.5. Suppose Y is K-trivial on an infinite set M . Then any set X in
{X : X ≤K Y } is computable in M ⊕ ∅′.

Furthermore Proposition 2.4 allows us to derive a nice result for the specific
case of c.e. sets. Since they are always infinitely often K-trivial, any set X that
is K-below a c.e. set Y is computable in Y ⊕∅′. Therefore any set below a c.e.
set must be ∆0

2. This is an important observation that will come back in the
next chapter. But first we take some time to study infinitely often K-trivial
sets.

2.2 Uncountably many infinitely often K-trivial sets

Infinitely often K-trivial sets are rather common. There are uncountably
many, and there are uncountably many that are non-K-trivial. In this sec-
tion we construct the perfect trees that prove this. The next section will treat
the question of where all these infinitely often K-trivial sets occur.

To construct uncountably many infinitely often K-trivial sets, we build a
perfect tree such that all infinite paths are infinitely often K-trivial. A perfect
tree is a tree T such that for every σ ∈ T , there are at least two proper
extensions τ1, τ2 ∈ T that are incomparable (see Appendix A). Since a perfect
tree has uncountably many infinite paths, a perfect tree with infinitely often
K-trivial sets as infinite paths will prove that there are uncountably many
infinitely often K-trivial sets.

To construct the required tree it is convenient to use the following lemma:

Lemma 2.6. If V is an infinite c.e. set of strings such that for all n ∈ N
there is at most one string of length n in V , then for all σ ∈ V we have
K(σ) ≤+ K(|σ|).

Proof. Take some set V with properties as in the lemma. Since V is c.e. we can
go through all its elements. We build a machine M that for each σ ∈ V takes
all descriptions of |σ| in the universal machine as descriptions of σ. Since we
have only one string of each length n ∈ N, we can be sure that the weight of
all descriptions is bounded by the weight of this universal machine. Therefore,
this machine M exists, and we get KM (σ) ≤ K(|σ|), and K(σ) ≤+ K(|σ|).

ut
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Using this lemma we construct a perfect tree with infinitely often K-trivial
sets as infinite paths. The following theorem states that we can find such a
tree to be computable. The same proof can be found much shorter in our
paper [BV10].

Theorem 2.7. There is a computable perfect tree such that the infinite paths
through this tree are infinitely often K-trivial sets.

Proof. Intuitively, the idea is the following: we build a perfect tree T that
consists of strings that all have low complexity (≤+ K(n) for a string of
length n). An infinite path in this tree will go through infinitely many nodes,
so it will be infinitely often K-trivial by construction. In order to make all
nodes have low complexity, we make sure that we put at most one string of
length n into T for each n ∈ N. That way we get a c.e. set of strings as in
Lemma 2.6, which gives us the required low complexity.

To construct the required tree, we view it as a partial function from strings
to strings T : 2<ω → 2<ω (see Appendix A) such that

σ ≺ τ ⇒ T (σ) ≺ T (τ)
σ|τ ⇒ T (σ)|T (τ).

We build the tree T as follows: pick the root of T to be the empty string
(T (λ) = λ). Then inductively define T (τ ∗ 0) and T (τ ∗ 1) assuming that T (τ)
was already defined:

• let T (τ ∗ 0) = σ where σ is the first string (in the length-lexicographical
ordering) such that it extends T (τ) and it has a length longer than any
string in the tree so far.

• let T (τ ∗ 1) = σ where σ is the first string such that it extends T (τ) and
is incomparable to T (τ ∗ 0). Also make sure |T (τ ∗ 1)| > |T (τ ∗ 0)|.
Note that this algorithm will give us the following first few nodes in T :

λ

0

000

0000000 00000010

0010

. . .

10

10000

. . .

100010

. . .

Since we can always find strings σ to map T (b) to, this tree is perfect. Since
the range of T is a c.e. set with at most one string of each length, for each b,
K(T (b)) ≤+ K(|T (b)|) by Lemma 2.6.
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Take some infinite path P in the tree. For infinitely many n, P �n= T (b)
for some b. By construction K(T (b)) ≤+ K(|T (b)|). So it follows that for all
these infinitely many n, K(P �n) ≤+ K(n). So each infinite path in this tree
is infinitely often K-trivial. Also T was made using a computable algorithm,
so T is computable. ut

From this theorem we immediately get the following result:

Corollary 2.8. There are uncountably many infinitely often K-trivial sets.

Note that since we have constructed the tree to be computable, we can use it
to show some more properties of infinitely often K-trivial sets. For example,
every set A is computable from some infinitely often K-trivial B, so A ≤T B.
In fact, they will be Turing-equivalent, and even truth-table equivalent. We
will get back to this in Section 2.3.

First we adapt the construction the the proof above into a construction of
a tree that does not have any K-trivial sets as infinite paths. We do this by
adding strings of high complexity on even levels. However, in the construction
we will need to take strings out in a later stage when they turn out to be of
low complexity after all. This makes the tree only Π0

1 instead of computable.
From this we can get a computable tree with the same infinite paths by Lemma
A.6 in Appendix A, and thus get a Π0

1 class of infinitely often K-trivial but
non-K-trivial sets. Then we can apply basis theorems to get results such as
there being an infinitely often K-trivial but non-K-trivial set that is low.
The following theorem and its proof can be found in a shorter version in our
paper [BV10].

Theorem 2.9. There is a computable perfect tree whose infinite paths are
infinitely often K-trivial but non-K-trivial sets.

Proof. We construct a Π0
1 perfect tree T such that strings σ at level e satisfy

the following requirement:

Re :
{
K(σ) ≤+ K(|σ|) if e is odd
K(σ) > K(|σ|) + e if e is even.

Again we view T as a partial function mapping strings to strings. We make
the tree Π0

1 and then apply Lemma A.6, to obtain the required computable
perfect tree.

Similar to the previous construction we will make sure on odd levels to
only put one string for each length n into the tree, so that by Lemma 2.6
they are all of low complexity. On the even stages we then need to make sure
to find strings that are of high complexity (> K(n) + e). We can do this
by searching for a length l such that we are guaranteed that the number of
strings extending the given node with length l is higher than the number of
short descriptions. We can do this computably (see lemma below). Then we
put all extensions of this length l into the tree, and at the next level for each
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one of them we define two extensions that are of low complexity. When at a
later stage some string at an even level turns out to have a short description
(which we find through the computable approximation of K), we take it, and
all its successors, out of the tree. This is why we need a Π0

1 construction, as
oppose to a computable construction.

Lemma 2.10. There is a computable function f(k, e) : N× N→ N such that
given a string σ of length k, for an arbitrary e there is at least one string τ
such that σ ≺ τ , |τ | = k + f(k, e) and K(τ) > 2 log(|τ |) + c + e where c is a
constant1 such that for all n, K(n) ≤ 2 log(n) + c.

Proof (of lemma). First observe that there exists a computable function2 g(e)
such that for all e, g(e) > 2 log(g(e)) + c+ e. We adapt this function to some
f(k, e) such that f(k, e) > 2 log(k + f(k, e)) + c+ e.

Given a computable function with this property, some σ and an arbitrary
e. Take all τ such that σ ≺ τ , |τ | = |σ|+ f(|σ|, e) and suppose for all of these
τ , K(τ) ≤ 2 log(|τ |) + c + e. Observe that if we extend σ with f(|σ|, e) bits,
there are 2f(|σ|,e) ways to do so, so this is the number of different τ ’s. We
assumed them all to have a short description: K(τ) ≤ 2 log(|τ |) + c+ e. Each
adds a weight of at least 2−2 log(|τ |)−c−e to the machine, which gives a total
weight of

2f(|σ|,e) · 2−2 log(|τ |)−c−e = 2f(|σ|,e)−2 log(|σ|+f(|σ|,e))−c−e

which is by definition of f larger than 1, giving a contradiction. So there is at
least some τ of the required complexity. ut

Now we know enough to describe an algorithm to make the required tree T .
We start with the empty string as the root node (T (λ) = λ), and set n = 0.
Then define T (τ ∗0) and T (τ ∗1) assuming that T (τ) was defined. At each step
we increase n with 1 to keep track of which requirement we want to satisfy:

• if n is even, define it like before: let T (τ ∗ 0) = σ where σ is the first string
(in the length-lexicographical ordering) such that it extends T (τ) and it
has a length longer than any string in the tree so far. Let T (τ ∗ 1) = σ
where σ is the first string such that it extends T (τ) and is incomparable
to T (τ ∗ 0). Also make sure |T (τ ∗ 1)| > |T (τ ∗ 0)|. Put n = n+ 1.

• if n is odd, let l = f(|τ |, n+1) and for all υ ∈ 2≤l define T (τ ∗υ) = T (τ)∗υ.
Put n = n + 1, and define a set Hn = {T (τ) ∗ υ|υ ∈ 2l} (later on we will
need this to check whether strings have complexity high enough).

1 Note that this exists because 2 log(n) is an upper bound for K(n) (we can make
a machine that gives each n a description of length 2 log(n), because the weight
of this machine will be bounded). We define log(n) as the largest number k such
that 2k ≤ n.

2 For example, g(e) = 2e will after some large enough e satisfy the equation. For
the finitely many e that do not satisfy it, we can have the value of g be some
large enough constant.



24 2 Infinitely often K-trivial sets

• for all odd k ≤ n, check for all strings ζ ∈ Hk whether K(ζ)[s] ≤
2 log(|ζ|) + c + k + 1. If this is the case, remove this string and all its
extensions from the tree and from Hk.

Note that by Lemma 2.10 above, we can be sure that not all strings will
be removed. Therefore this will be a perfect tree (since for even n it always
splits). Furthermore by construction it is a Π0

1 tree, and all infinite paths
are infinitely often K-trivial sets, that are non-K-trivial. By applying Lemma
A.6, we get a perfect computable tree with the same infinite paths. ut

From the theorem above we get that there is a Π0
1 class of infinitely often

K-trivial sets such that they are all non-K-trivial. Using basis theorems we
get a number of results from this. For example, there is an infinitely often K-
trivial but non-K-trivial set that is low (with Theorem 1.19.8 in [DH10, 77]),
and one that is superlow (Corollary 1.19.9 in [DH10, 78]).

Furthermore, there are non-K-trivial (so noncomputable) infinitely of-
ten K-trivial sets that are computably dominated (with Theorem 1.8.42
from [Nie08, 59]). This is interesting considering that when a computably
dominated set is K-trivial (and hence ∆0

2), it is also computable [Nie08, 163].

2.3 Occurrence of infinitely often K-trivial sets

In the previous section we saw how common infinitely often K-trivial sets
really are: there are uncountably many. One might wonder where these can be
encountered, which is the subject of this section. We note that each truth-table
degree contains an infinitely often K-trivial set. This is implicitly in [MS07],
but our proof is obtained using different methods. We also find that each
weakly 1-generic set is infinitely often K-trivial. We start with a result that
follows from the proof of Theorem 2.7 above: every set is computable from an
infinitely often K-trivial set.

Proposition 2.11. Every set A is computable from some infinitely often K-
trivial set B.

Proof. Take an arbitrary set A. The way we code A into something that is
infinitely often K-trivial is the following: take the tree as constructed in the
proof of Theorem 2.7. Start at the rootnode. Whenever a digit of A is 0, take
the leftmost immediate successor, when it is 1 take the rightmost. Let B be
the resulting path through the tree. We can retrieve A from this as follows:
to find A(n+ 1) given A(n), we find the path in the tree that corresponds to
the first n digits like described above. Then we find out whether B extends
the leftmost successor of this, in which case A(n+ 1) is 0, or the rightmost in
which case A(n+ 1) is 1. Since T is total, precisely one of these two cases will
hold.

Observe that B is infinitely often K-trivial since it is a path in the tree.
And A is computable from B:
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A ≤T B.

This concludes the proof. ut

If we look closely at the proof of the above proposition, we can see that the
reduction is not just a Turing-reduction, but a truth-table reduction. Further-
more it is an equivalence, so we get the following theorem (as mentioned above
this result is also in [MS07] and in our paper [BV10]):

Theorem 2.12. Every set A is truth-table equivalent to an infinitely often
K-trivial set B.

Proof. Take an arbitrary set A. We define B as in the proof of the proposition
above, which means that B is computed by the following Turing functional
with oracle A:

ΦAe (n) = T (A �n).

Since this Turing functional is in fact total with any oracle, this is a truth-
table reduction (by [Nie08, 14]). Also, we can define another Turing functional
to retrieve A from B. To find the n+ 1st digit of A we check if T (A �n 0) ≺ B
or T (A �n 1) ≺ B. Formally, we define (starting with ΨB(0) = λ the empty
string):

ΨB(n+ 1) '

{
0 if ∃k ≤

∑n+1
i≥1 2i[ΦA(ΨB(n) ∗ 0) = B �k]

1 if ∃k ≤
∑n+1
i≥1 2i[ΦA(ΨB(n) ∗ 1) = B �k].

Note that the way we constructed T bounds our search in the initial segment
of B. This Turing functional is once again total for any B. So again, this is a
truth-table reduction: A ≤tt B. So we get

A ≡tt B.

ut

This theorem shows that any truth-table degree contains an infinitely often
K-trivial set. Furthermore, truth-table reduction implies weak truth-table and
Turing reduction, so we have similar results there. In particular, every Turing
degree contains an infinitely often K-trivial set.

Another result concerning the occurence of infinitely often K-trivial sets
is that all weakly 1-generic sets are infinitely often K-trivial. The definition
of a weakly 1-generic set relies on that of a dense set of strings. Both can be
found in [DH10, 105].

Definition 2.13 (Dense set of strings). A set S ⊆ 2<ω is dense if every
string in S has a proper extension in the set: for every σ ∈ S there is some
τ ∈ S such that σ ≺ τ .



26 2 Infinitely often K-trivial sets

Definition 2.14 (Weakly n-generic set). A set X is weakly n-generic if
for every dense Σ0

n set S there is some initial segment of X that is in S
(X �n∈ S for some n).

We can prove that every weakly 1-generic is infinitely often K-trivial using a
dense Σ0

1 set such that all strings in it are of low complexity (≤+ K(n) for
a string of length n). Infinitely many initial segments of a weakly 1-generic
set X will intersect it, since a cofinite subset of a dense set is still dense3. It
follows immediately that X is infinitely often K-trivial. This theorem is also
in our paper [BV10].

Theorem 2.15. Every weakly 1-generic set is infinitely often K-trivial.

Proof. We construct a dense Σ0
1 set S. Using Lemma 2.6 again, we make sure

that for each n, we put only one string of length n into S, thus making sure
that they are all of low complexity.

We construct the sets inductively as follows:

• Base case: put a string of length 1 into S
• Step i+1: put a string of length i+1 into S such that it extends all strings

currently in S.

By construction we go through each length m only once, so S is as in Lemma
2.6. Therefore for each σ ∈ S, K(σ) ≤+ K(|σ|). S is also dense by construc-
tion, and since the above construction is a computable enumeration the set is
Σ0

1 .
Now take some weakly 1-generic set X. It follows that there are infinitely

many n such that X �n∈ S. For each of these, we have K(X �n) ≤+ K(n). In
other words, X is infinitely often K-trivial. ut

Another result (that is also in our paper [BV10]) is that whenever a set does
not compute any diagonally noncomputable function (DNC), then it must
be infinitely often K-trivial. The definition of a diagonally noncomputable
function is the following:

Definition 2.16 (DNC function). A function f is diagonally noncom-
putable (DNC) if f(e) 6= φe(e) for all e such that φe(e) ↓.

Theorem 2.17. If a set A does not compute a DNC function then it is in-
finitely often K-trivial.

Proof. Take some A that does not compute a DNC function. Let f be the
function that does the following4:
3 Suppose X is 1-generic. Take some dense Σ0

1 set S. Then there is an n such
that X �n∈ S. But S\{X �n} is still a dense Σ0

1 set, so there must be another
intersection. Continuing this argument we get that there must be infinitely many
intersections.

4 〈σ〉 is some coding of strings into numbers
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f : n 7→ 〈A �n〉.

This function f is computable from A, so it cannot be a DNC function. That
means that there are infinitely many5 e such that φe(e) ↓ and φe(e) = f(e) =
〈A �e〉. We now build an infinite c.e. set V as follows: for all e, wait for φe(e)
to converge. If the output codes a string of length e, enumerate it into V .

Since f is not DNC, we will have infinitely many e such that φe(e) codes a
string of length e, so V is infinite. By construction there is at most one string
of each length in V , so with Lemma 2.6 each of them have a complexity less
then K(n) if n is their length. Infinitely many of them are equal to an initial
segment of A, so A is infinitely often K-trivial. ut

From this theorem we get the following corollary, that is again in our paper
[BV10]:

Corollary 2.18. Each set that is computed by a 1-generic set is infinitely
often K-trivial.

Proof. This follows from a result by Demuth and Kuc̆era, namely that when a
set is 1-generic, it cannot compute any DNC function [DK87]. With Theorem
2.17 it then follows that it is infinitely often K-trivial. ut

This corollary implies that there are sets that have a lower cone (for Turing
reducibility) that consists of only infinitely often K-trivial sets. In general,
infinitely often K-triviality is not downward closed under Turing reducibility.
Think for example of the halting problem ∅′, that even has random sets in its
lower cone, while it is infinitely often K-trivial itself (since it is c.e.).

To summarize, we have seen a number of results concerning infinitely often
K-trivial sets. There are uncountably many of them, and even uncountably
many are non-K-trivial. Infinitely often K-trivial sets can be found in each
truth-table degree, each weakly 1-generic set is infinitely often K-trivial and
a set computed by a 1-generic is infinitely often K-trivial.

However, the most interesting result is yet to come: we can construct a
minimal pair in the K-degrees consisting of a Σ0

2 set with any non-K-trivial
c.e. set. There the fact that every c.e. set is infinitely often K-trivial is crucial.
The construction of this minimal pair will be presented in the next chapter.

5 If there were only finitely many, we could make a new function that takes a
different value on these finitely many points. This will still be computable from
A, so it still needs to be DNC and we can find another e such that φe(e) ↓ and
φe(e) = f(e).
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Arithmetical definability in the K-degrees

Returning to our main topic, in this chapter and the next we study arith-
metical definability in the K-degrees. This chapter is mainly dedicated to the
construction of non-K-trivial sets that do not bound any non-K-trivial sets
in a given arithmetical class of sets. Our main result is that given a ∆0

2 family
of sets, there is a non-K-trivial ∆0

2 set that does not bound any non-K-trivial
set in this family. This result implies that there is a non-K-trivial ∆0

2 set that
does not bound any non-K-trivial c.e. set, which is surprising since the initial
segment complexity of c.e. sets is quite low.

We also show that for all n > 1 there is a non-K-trivial Σ0
n set that does

not bound any non-K-trivial ∆0
n set. For the particular case of n = 2 the

constructed Σ0
2 set forms a minimal pair in the K-degrees with any non-

K-trivial c.e. set. This improves on the lowest complexity of minimal pairs
in the K-degrees known before (Merkle and Stephan constructed two Σ0

2

sets [MS07]). All theorems in this chapter are new results, and they can also
be found in our paper [BV10].

3.1 Sets that do not bound any non-K-trivial sets in a
given class

As said, this chapter is about the construction of non-K-trivial sets that
exclude all non-K-trivial sets in a given arithmetical class. We construct two
instances of such results: a Σ0

2 set that does not bound any non-K-trivial
∆0

2 set (which relativizes to higher complexity classes), and a ∆0
2 set that

does not bound any non-K-trivial set in a given ∆0
2 family of sets. The two

constructions can be found in Section 3.2 and 3.3, respectively. They have
some basic ideas in common, which we discuss in this first section.

In both cases we are dealing with an effective list of the sets involved. The
first construction is about all ∆0

2 sets, which are the total functionals in the
list of all Φ∅

′

e . The second is about a ∆0
2 family of sets, which means that they
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are listed as Φ∅
′

f(e) for some computable function f(e) (the formal definition
of a ∆0

2 family of sets is discussed in the beginning of Section 3.3. We assume
that for each e, Φ∅

′

f(e) is total). To construct a set A that does not bound any
non-K-trivial set in the list, we can go through all sets and test whether they
are K-trivial. When a set X in the list is non-K-trivial, we make sure that for
infinitely large e, there is an initial segment of A that has lower descriptive
complexity than the corresponding segment of X plus the constant e. That
way, X 6≤K A. This is expressed in the following requirement for the first case
(of ∆0

2 sets):

Ne : [Φ∅
′

e is total and Φ∅
′

e >K ∅]⇒ ∃n [K(Φ∅
′

e �n) > K(A �n) + e].

The requirement for the second case (the ∆0
2 family of sets) is as follows:

Re : [Φ∅
′

f(e) >K ∅]⇒ ∃n[K(Φ∅
′

f(e) �n) > K(A �n) + e)].

Note that without loss of generality, we can in both cases assume that each
set has infinitely many indices in the list. Therefore if we have some X that
satisfies the antecedent of some requirement, we will have infinitely many e
such that Φ∅

′

e = X (or Φ∅
′

f(e) = X in the second case). If all Ne (resp. Re) are
satisfied, that means that there are infinitely large e for which there is an n
such that K(X �n) > K(A �n) + e, making sure that X is not K-below A.

To get an initial segment A �n of low descriptive complexity, we can add
in all numbers up to n such that A �n consists of only ones, making it easy to
describe. However, we also need A to be non-K-trivial. This corresponds to
the following requirement:

Qe : ∃n [K(A �n) > K(n) + e].

In case we only wanted to satisfy one specific Ne (or Re), we can do the
following: after fixing the required initial segment of A with low complexity
(to have Φ∅

′

e 6≤K A or Φ∅
′

f(e) 6≤K A), we extend A with some Martin-Löf
random sequence Y . This way, A will be of the form A = σ ∗Y for some finite
string σ, and we are guaranteed that A is non-K-trivial.

For satisfying all Ne (or Re), we might need to make infinitely many seg-
ments of A have quite low complexity. Extending it with some infinite random
sequence will therefore not work. Instead, we make sure that after each initial
segment of low complexity, we add a complicated part to raise the complexity.
In the two following sections, we explain for each case how we can implement
these ideas.

3.2 A non-K-trivial Σ0
2 set that does not bound any

non-K-trivial ∆0
2 set

In this section we construct a non-K-trivial Σ0
2 set that does not bound any

non-K-trivial ∆0
2 set, proving Theorem 3.1. This theorem has an analog in the
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Turing degrees, and can also be found in our paper [BV10]. Below we show
that the construction will relativize to higher complexity classes as well.

Theorem 3.1. There is a Σ0
2 set A >K ∅ such that for all ∆0

2 sets X >K ∅,
X 6≤K A.

Proof. We will enumerate the required A in a ∅′-computable construction. As
explained in the previous section, we need to satisfy the following requirements
to make A non-K-trivial (Qe) and not bound any non-K-trivial ∆0

2 (Ne),
assuming that we have an effective list of all Φ∅

′

e .

Qe :∃n [K(A �n) > K(n) + e]

Ne :[Φ∅
′

e is total and Φ∅
′

e >K ∅]⇒

∃n [K(Φ∅
′

e �n) > K(A �n) + e].

Satisfying only one Ne and all Qe

For now we assume we only have to satisfy one Ne. As explained in the
previous section, we pick some Martin-Löf random set Y , which we will use to
give A the required complexity for satisfying Qe. Then we search for some n
such that Φ∅

′

e �n gets complex, and we make sure that it is not below A with
constant e by adding all numbers up to n into A, making A �n of sufficiently
low complexity because it will consist of only ones in a row. Then we continue
with the digits of Y .

In particular, observe that there is a machine that describes any string
consisting of only ones using only the length of this string. Let c be the coding
constant of this machine: K(1n) ≤ K(n)+c for all n. As soon as we find some
n such that K(Φ∅

′

e �n) > K(n) + c + e, we enumerated all numbers up to n
into A. This makes A �n= 1n, thus making sure that K(A �n) ≤ K(n) + c.
Therefore

K(A �n) + e ≤ K(n) + c+ e < K(Φ∅
′

e �n).

Construction of A. At stage s we define A �s [s] = Y �s, unless we
find an n such that K(Φ∅

′

e �n) > K(n) + c + e, in which case we enumerate
all numbers up to n into A. Then we stop searching and continue to define
A[t] = 1n ∗ Y [t] where ∗ denotes concatenation.

Verification Observe that when we never find an n as described above,
Φ∅
′

e is K-trivial (via constant c+ e) and Ne is trivially satisfied. Then A = Y
and all Qe are satisfied as well. If we do find such an n, as shown above we
can be sure that K(Φ∅

′

e �n) > K(A �n) + e, thus meeting Ne. Since A will
consist of some finite number of ones and continue with the digits of Y it is
still random, so we meet all Qe as well.
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Satisfying all Ne and all Qe

The above strategy cannot be applied to all Ne right away, because we used
the fact that only some finite initial segment of A will be different from Y to
get A non-K-trivial. However, if we want to satisfy all Ne this might cause a
problem, since we have to put ones into A more than just once.

So we mend our strategy to get the following: when we encounter a com-
plex initial segment of Φ∅

′

e (we will be more specific later) we put numbers
into A. After that we extend A with a segment of Y as long as necessary
to make A complex again: we need K(A �n) > K(n) + e. Then in the next
step, we will have to work with the initial segment of A as defined so far. The
constant c as we had it before will therefore no longer work. However, we can
have different constants like this depending on the given initial segment. We
define the following parameters for this construction:

• re[s] The length of the restraint that is put on A by an attempt to satisfy
Ne and Qe. We define re[0] = 0 for all e and r−1[s] = 0 for all s. If re[s+1]
is not explicitly defined, we let it be equal to re[s].

• ce[s] The constant that A can stay below given its current initial segment.
ce[s] is such that

K((A �re−1)[s] ∗ 1ω �n) ≤ K(n) + ce[s].

• ms The length of what is currently defined. ms = max{s,maxA[s]}.

We say that Ne requires attention at stage s + 1 if there exists n ≤ s such
that

Φ∅
′

e �n↓ and K(Φ∅
′

e �n) > K(n) + ce[s] + e.

Construction of A. At stage s + 1 find the least e ≤ s such that Ne re-
quires attention and is not declared satisfied. Enumerate all numbers n with
re−1[s] < n ≤ ms. Then add a segment of Y as long as needed to make A
complex. We define:

A[s+ 1] = (A �re−1)[s] ∗ 1ms−re−1[s] ∗ Y �k

with k the least number such that K(A[s + 1] �ms+k) > K(ms + k) + e. Set
re[s+ 1] = ms + k and declare Ne satisfied and all Ni with i > e not satisfied.
In case no Ne with e < s requires attention, let A[s + 1] = A[s] ∗ Y (s + 1)
(Y (s+ 1) is the s+ 1st digit of Y ).

Verification. We show by induction that each Ne is satisfied, and re and
ce reach a limit for all e. Assume this holds for all k < e for some e. Let s0
be the stage after which for all k < e, all Nk are satisfied and rk and ck have
reached a limit. Either Φ∅

′

e is K-trivial, and Ne is met. It will never require
attention and re and ce will remain constant after stage s0.

Or Φ∅
′

e is not K-trivial. Since all Nk with k < e are satisfied by the
induction hypothesis, re will stay on the same value, and so will ce. From
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some stage t on we will have K(Φ∅
′

e �n) > K(n) + ce[t] + e, and Ne requires
attention. Since by the induction hypothesis all Nk with k < e are satisfied, at
a certain stage s+ 1 in the construction we will get to Ne since it is the least
unsatisfied requirement that requires attention. Note that n ≤ s ≤ ms so by
construction and the choice of ce[s] we get K(A[s+ 1] �n) ≤ K(n) + ce[s]. It
follows that

K(A[s+ 1] �n) + e < K(Φ∅
′

e �n)

and indeed Ne is satisfied. Since A �re will never change after this stage by
setting re[s + 1] = ms + k, the above equation will hold at any stage after
s + 1. Furthermore, since all Nk with k < e are satisfied by the induction
hypothesis, Ne will remain satisfied, and re and ce will remain constant.

Finally each Qe is satisfied because of the following argument: either there
are finitely many Ne that require attention, in which case A will be of the
shape A = σ ∗Y for some finite string σ. So we can be sure that A satisfies all
Qe. Or there are infinitely many Ne that require attention, and by the above
argument all of them will at some stage receive attention and remain satisfied
from then on. When that happens, we also add digits of Y to make sure that
K(A[s + 1] �ms+k) > K(ms + k) + e. Since we do this for infinitely many e,
Qe is satisfied for infinitely large e. Therefore all Qe are satisfied. ut

As promised this theorem implies a minimal pair consisting of a Σ0
2 set with

any c.e. set of non-zero K-degree, improving the result from Merkle and
Stephan [MS07].

Corollary 3.2. There is a Σ0
2 set that forms a minimal pair in the K-degrees

with any non-K-trivial c.e. set.

Proof. Let A be the Σ0
2 set as in Theorem 3.1, and let B be any non-K-trivial

c.e. set. By Theorem 2.3, B is infinitely often K-trivial. Take an arbitrary set
X such that X ≤K A and X ≤K B. From the latter it follows with proposition
2.4 that X is computable from B⊕∅′. So X is ∆0

2. But by Theorem 3.1 we get
that X must be K-trivial. Hence Σ0

2 forms a minimal pair with the arbitrarily
chosen c.e. set. ut

Furthermore the proof of Theorem 3.1 used a ∅′-computable enumeration,
making the resulting set Σ0

1(∅′) and hence Σ0
2 . This construction relativizes

to a construction of a Σ0
n set that does not bound any non-K-trivial ∆0

n set
for any n > 1. Therefore we have the following theorem, with a relativized
corollary:

Theorem 3.3. Let n > 1. There is a Σ0
n set A >K ∅ such that for all ∆0

n

sets X >K ∅, X 6≤K A.

Corollary 3.4. Let n > 1. There is a Σ0
n set that forms a minimal pair with

any infinitely often K-trivial but non-K-trivial ∆0
n set.
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The results in this section show that for any n > 1, we can have one Σ0
n set

that separates the ∆0
n class into K-trivial and non-K-trivial sets. A natural

question is whether we can do something similar for ∆0
n classes and Σ0

n−1

classes. In the next section we show that indeed we can construct a non-K-
trivial ∆0

2 set that does not bound any non-K-trivial Σ0
1 set, but this time

the result will not relativize.

3.3 A non-K-trivial ∆0
2 set that does not bound any

non-K-trivial set in a ∆0
2 family

In this section we study a similar problem to that in the previous section.
Once again we construct a set that does not bound any non-K-trivial set in a
given class. We prove a theorem similar to Theorem 3.1: given a ∆0

2 family of
sets there is a non-K-trivial ∆0

2 that does not bound any non-K-trivial set in
this family. This theorem and its proof can also be found in our paper [BV10].
The definition of a ∆0

2 family is the following:

Definition 3.5 (∆0
2 family). A class C of subsets of N is a ∆0

2 family of sets
(or uniformly ∅′-computable) if it can be written in the form {Ce : e ∈ N}
where Ce = {n : ψ(e, n)} and ψ is a ∆0

2 property (expressible in both Σ0
2 and

Π0
2 formulas).

Note that for any Ce in a ∆0
2 family C, finding whether n ∈ Ce is uniformly ∅′-

computable from n and e. Therefore, with the s-m-n-theorem, a computable
function f exists such that

C = {Φ∅
′

f(e) : e ∈ N}

where Φ∅
′

f(e) is total for each e. We will use this in the proof below.
The class of all c.e. sets is a ∆0

2 family of sets. Therefore Theorem 3.6
below has as a corollary that there is a ∆0

2 set that does not bound any
non-K-trivial c.e. set. This is surprising since c.e. sets have quite low initial
segment complexity. For the plain complexity C this is quite easy to see: we
can describe any initial segment of a c.e. set with the number of ones and the
length of the segment1, resulting in C(B �n) ≤+ 2 log(n).

The following theorem is the main result in this chapter:
1 For a c.e. set B we have a computable approximation B[s] to this set. Given the

length of the segment n and the number of ones k occurring in it, we can find
B �n by going through the stages of the approximation. As soon as we find B[s] �n

with k ones, this must be the final segment. So all we need to describe B �n is a
description of n and k. Since k ≤ n, this means that for the plain complexity, we
can describe both numbers with at most log(n) bits (namely with their binary
representation).
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Theorem 3.6. Given any ∆0
2 family of sets there exists a ∆0

2 set A >K ∅
such that for any X >K ∅ in the family, X 6≤K A.

This proof builds on the ideas we discussed in Section 3.1. However, we need
a slightly stronger method than in the previous section: the infinite injury
method. This method is explained and illustrated with an example in Ap-
pendix B. A short formal version of the proof of Theorem 3.6 is presented
below. A reader familiar with the infinite injury method can skip ahead to
that self-contained proof, but to understand it well we will discuss the intu-
itions and the atomic case first.

A ∆0
2 family D = {Φ∅

′

f(e) : e ∈ N} is given, so we can effectively go through

all the sets in this family to assure that A is such that for each e, if Φ∅
′

f(e) >K ∅
then Φ∅

′

f(e) 6≤K A. For simplicity we write Xe = Φ∅
′

f(e), and we have approxi-
mations

Xe[s] approximates Xe = Φ∅
′

f(e)

K(Xe �n)[s] approximates K(Xe �n).

As explained in Section 3.1, we have the following requirements to make sure
that A is non-K-trivial (Qe) and that A does not bound any non-K-trivial
set in the family (Re):

Qe :∃n[K(A �n) > K(n) + e]
Re :[Xe >K ∅]⇒ ∃n[K(Xe �n) > K(A �n) + e)].

For the sake of the argument below we will take on a different requirement
to satisfy instead of Re. From this new requirement, Re will follow. We will
build an infinite c.e. set V of strings such that for every n, there is at most one
string of length n in V . By Lemma 2.6 it follows that for each string σ ∈ V ,
K(σ) ≤+ K(|σ|). Then we will meet the following requirement for each e:

Ne : [∀n(K(Xe �n) ≤ K(A �n) + e)]⇒ ∀σ ∈ V [K(Xe �|σ|) ≤+ K(σ)].

This says that when a set is below A via constant e, for all σ ∈ V the initial
segment Xe �|σ| must have complexity less than K(σ) up to a constant. By
the properties of V it follows that Xe is K-trivial. Therefore this requirement
implies that each set below A must be K-trivial, which is the contrapositive
of Re.

The strategy for one Ne

First we discuss how we can satisfy just one specific Ne and all Qe. Given a
specific set Xe in the family, its complexity either needs to stay below that
of all strings in V for some infinite V as in Lemma 2.6 (Xe is K-trivial),
or we need to make A such that Xe cannot stay below it with constant e.
Simultaneously we want to keep A non-K-trivial.
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To have A of high complexity, we start from a Martin-Löf random ∆0
2 set

Y . We will make sure that A is either equal to this Y , or it has some finite
initial segment, and then continues with the digits of Y . Either way this will
guarantee the satisfaction of all Qe. Unfortunately this strategy can only be
used for satisfying one Ne. As soon as we need to combine strategies, we will
have to do something different to satisfy Qe. However, it is still instructive to
study this atomic strategy for understanding the strategy for all Ne combined.

When we are given Xe, we first need to find out whether it is K-trivial.
This is not computable, but at each stage we have a guess based on the current
situation, and we act accordingly. There can be two different outcomes (below
we will explain what information we base our guess on):

0 guessing that Xe is K-trivial
1 guessing that Xe is non-K-trivial.

We picture this as a node with two successors (the possible outcomes), and
to each outcome we attach a strategy. We may believe one of these outcomes
at a certain stage, and another at the next. But after infinitely many stages,
we can be sure that one of them is infinitely often visited, and the strategy
for the leftmost infinitely often visited outcome will be successful.

To check whether Xe is K-trivial, we will build a set V as in Lemma 2.6.
While going through the stages we have a witness attached to each possible
outcome, which we intend to enumerate into V . At every stage s we test
whether K(Xe �|σ|) ≤ K(σ) + e for all σ ∈ V [s]. If this is the case, we guess
that Xe is K-trivial, and we use the witness to put a longer string into V .
This way we can make a more accurate guess at the next stage. Otherwise,
there must be some σ ∈ V [s] such that K(Xe �|σ|)[s] > K(σ)[s] + e, and we
keep this σ as a witness, which we can in the end use to build A.

If we infinitely often guess that Xe is K-trivial, we will keep putting longer
strings into V and by Lemma 2.6 we can be sure that Xe is in fact K-trivial.
If we guess this only finitely often, we will eventually get stuck on a witness
σ such that K(Xe �|σ|) > K(σ) + e, from which we can build A. We will go
into this in more detail below.

Formally, the possible outcomes and their witnesses are defined as follows:
at stage s+ 1 the outcome is

0 when ∀σ ∈ V [s], K(Xe �|σ|)[s+1] ≤ K(σ)[s+1]+e. The witness is Y [s] �i
where i is the least number such that V [s] does not contain a string of
that length

1 when ∃σ ∈ V [s] such that K(Xe �|σ|)[s+1] > K(σ)[s+1]+e. The witness
is the shortest σ ∈ V [s] such that K(Xe �|σ|)[s] > K(σ)[s] + e.

We build V as follows:

Building V. At stage s+ 1, put the witness of the current outcome into V .

For building A, the idea is to find out what the witnesses are in the limit.
First we prove that indeed the witnesses behave nicely:
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Lemma 3.7. For each k ∈ N there is a stage s0 and some string σ of length
k such that after stage s0, all witnesses of Ne are compatible with σ.

Proof. Either the outcome is infinitely often 1, and only finitely often 0. Then
the witness will get stuck on the same σ (we keep picking the least) such
that K(Xe �|σ|) > K(σ) + e (since Xe also converges). Or the outcome is
infinitely often 0, and we will keep picking initial segments of Y . Since the
approximation of Y converges, we can be sure that at some stage s0 the initial
segment Y �k has stabilized, and we only pick extensions of this. ut

Definition of A. Now we can compute A from ∅′: at stage k, simultaneously
look for

• a stage sk and a string σk such that the witness of Ne after stage sk is
always an extension of σk.

• a stage s0 such that the witness of Ne stays constant.

By Lemma 3.7, one of the above to stages must exist. If sk is found first, let
A �k:= σk and continue with stage k+ 1. If s0 is found first, let A = σk−1 ∗Y
(where σ−1 is the empty string) and stop the procedure.

Verification. A is defined uniformly from the index e and ∅′. If no stage s0
is found, that means that the witness never stabilizes on a constant value, and
we will keep putting larger numbers into V , making it infinite. So by Lemma
2.6, Xe must be K-trivial and Ne is satisfied. Also by construction, we will
have A = Y , so A is non-K-trivial and all Qe are satisfied. If indeed a stage s0
is found, there must be a least σ ∈ V such that K(Xe �|σ|) > K(σ) + e. The
set A is constructed in such a way the σ is then surely an initial segment. So
Ne is satisfied. And A = σ ∗ Y so A is non-K-trivial and all Qe are satisfied.

Strategy for all Ne

The strategy as described above will not work for satisfying all requirements.
Since we may need to define many initial segments for A to exclude the non-K-
trivial Xe, we can no longer argue that A is non-K-trivial because of the way
we use Y in the construction (compare this to the two cases in the construction
of the Σ0

2 set in the previous section). But we can keep a similar idea, and
we add a secondary witnesses to the nodes to add complexity. If the primary
witness is σ, we get the secondary witness τ using a ∆0

2 function pe with
pe(σ) = τ such that σ ≺ τ and K(τ) > K(|τ |) + e. This way we can get a
non-K-trivial A.

The idea is roughly as follows: we put all strategies together in a priority
tree (see the proof of Theorem B.1). Each node has possible outcomes 0,1
similar to the atomic case above: 0 corresponds to the guess that Xe is K-
trivial, 1 corresponds to Xe not being K-trivial. Again we base our guess on
an infinite c.e. set of strings. We now make one such set Vα for each node
α. Each Vα has only one string of length n for all n ∈ Nα where N[α] is a
partitioning of N and each N[α] is infinite.
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At a stage s we can calculate the current path δs through the tree. We say
that a stage s is an α-stage when α � δs. Only at α-stages will we enumerate
strings into Vα. While going through the stages of the construction we keep
primary witnesses like in the atomic construction and secondary witnesses to
add complexity. They may change as a result of outcomes of strategies with
higher priorities. Below we prove a lemma that on the leftmost infinitely often
visited path (the true path) they will eventually all settle. Then we define A
to be the union of these true witnesses.

We prove another lemma below to show that these true witnesses make A
satisfy all requirements. Finally we need an extra lemma to prove that A is
∆0

2: it turns out that it is not only the union of the true witnesses, but also
the limit of all Vα[s]. We will go into this in more detail in the formal proof
below.

Proof (of Theorem 3.6). Recall that we are given a ∆0
2 family D = {Φ∅

′

f(e) :

e ∈ N} with Xe[s] approximating Xe = Φ∅
′

f(e). We need to satisfy for each e

Qe :∃n[K(A �n) > K(n) + e)]

Ne :[∀n(K(Xe �n) ≤ K(A �n) + e)]⇒ ∀σ ∈ V [K(Xe �|σ|) ≤+ K(σ)]

where V is some c.e. set as in Lemma 2.6. We put all strategies into a priority
tree where the outcomes and witnesses of a node α visited at stage s+ 1 are
as follows:

0 When for all σ ∈ Vα[s] that extend all current witnesses of each β ≺ α the
following holds:

[K(X|α| �|σ|)[s+ 1] ≤ K(σ)[s+ 1] + |α|].

The primary witness σ is the union of current witnesses of all β ≺ α. The
secondary witness τ is p|α|(σ)[s].

1 When there is some σ ∈ Vα[s] that extends all current witnesses of each
β ≺ α such that the follwing holds:

[K(X|α| �|σ|)[s+ 1] > K(σ)[s+ 1] + |α|].

The primary witness σ is the shortest σ ∈ Vα[s] that extends all current
witnesses of each β ≺ α such that the following holds:

[K(X|α| �|σ|)[s+ 1] > K(σ)[s+ 1] + |α|].

The secondary witness τ is p|α|(σ)[s].

Here pe[s] is the approximation to a ∆0
2 function such that

pe(σ) = τ such that τ � σ and K(τ) > K(|τ |) + e.
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Construction. At stage s, calculate the current path δs (we start with the
root and for each node we can calculate the current outcome). Pick the least
number n < s that is in some N[α] for α ∗ 0 ≺ δs and such that there is no
string of that length in the corresponding Vα. Enumerate the least (in the
length-lexicographical ordering) string of length n that is compatible with the
current witness of δs. There might not be such an n; in that case do nothing
and go to the next stage.

In the lemma below we will prove that the witnesses of nodes α reach a
limit in the β-stages when β is the immediate successor of α and both are on
the true path δ. We call this limit the true witness of α. We define A based
in this:

Definition of A. Define A to be the union of the true witnesses of the
true path δ.

Lemma 3.8. Suppose that β ≺ δ and α is the immediate predecessor of β.
The witnesses of α reach a limit in the β-stages.

Proof. Note that the secondary witnesses uniquely follow from the primary
witnesses. So it suffices to show that the primary witnesses converge in the
β-stages. We prove this by induction on the length of α. Assume that it holds
for all α of length < n and let σ be the union of the true witnesses of these
nodes in the δ �n-stages. Let α = δ �n and β = δ �n+1.

Suppose 0 is the leftmost infinitely visited outcome of α: α∗0 ≺ δ. Then by
definition the primary witness of α will be the union of the current witnesses
of all predecessors. Since by the induction hypothesis they converge in the
α-stages to have a union σ, in the limit this σ will be the primary witness for
α.

Suppose α ∗ 1 ≺ δ. In that case Vα will be finite since we only put things
in on stages where α has outcome 0, and since δ is the leftmost infinitely
often visited path, 0 will be visited only finitely often. Note that that the
approximation of Xe converges, so at a large enough stage the primary witness
for α will settle on the least string σ ∈ Vα such that K(X|α| �|σ|) > K(σ)+|α|,
such that σ extends all witnesses of predecessors of α. ut

Before we have defined A as the true witnesses of the nodes on the true path.
Since the path can move around through the tree it is only ∅′′-computable.
To show that A is in fact ∆0

2, we show that we can also find it by looking at
the sets Vα: after some stage the strings that are enumerated into them will
converge to the same A. This follows from the following lemma:

Lemma 3.9. For every node β ≺ δ with true secondary witness σ, there is a
stage after which all strings enumerated into any Vα (α is any node on the
tree) are extensions of σ.

Proof. Take some arbitrary β ≺ δ with true secondary witness σ. Let s∗ be
the stage after which this witness has reached its limit in the δ|β|+1-stages. In
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the following argument all stages are taken to be larger than s∗ and the last
stage where a node to the left of β was visited.

We consider the different possible cases:

• α is to the left of β. Then there are only finitely many α-stages, so only
finitely many things can be enumerated into Vα. After the last stage where
something was enumerated into Vα, the claim is trivially satisfied.

• α is an extension of β and α ≺ δ. In that case by construction only
extensions of σ will be enumerated into Vα.

• α is an initial segment of β, which we split up into the following cases:
– α � β and α ∗ 1 ≺ δ, in which case only finitely many things will be

enumerated into Vα (because this only happens at stages with outcome
0, and since we are on the leftmost infinitely often visited path, this
happens only finitely often). So again the claim is trivially satisfied.

– α � β and α∗0 ≺ δ, in which case we can prove this by finite induction.
Let η0 � ... � ηt be the strings such that ηi � β and ηi ∗ 0 � δ for
each i ≤ t. Fix some i < t and assume that it holds for all ηj with
j < i. We prove it for ηi. Let ρj be the union of all the witnesses of the
predecessors of ηj , for each j < i. And let si be a stage such that for
each j < i
· after si we have K(X|ηj | �|τ |) ≤ K(τ) + |ηj | for each string τ in Vηj

that is an extension of ρj but not of σ.
· the longest string in Vηj

is an extension of σ and after si only
extensions of σ are enumerated into Vηj

such a stage exists because of the induction hypothesis. If a string is
enumerated into Vηi

at stage s > si, then either δs extends the true
outcome of β, or δs � ηj ∗ 1 for some j < i. In the first case (and the
latter does not apply) the enumerated string must be an extension of
the true primary witness σ of β by definition. If δs � ηj ∗ 1 for some
j < i the enumerated string must the current primary witness of ηj ,
but by the choice of si this will extend σ. So in either case it must be
an extension of σ.

• α is to the right of β: α � η such that η ≺ β and η ∗0 ≺ δ and η ∗1 ≺ α. In
this case the length of the witnesses of η go to infinity, because the outcome
of η is infinitely often 0. By the previous item, after some stage the strings
enumerated into them will all extend σ. Since the strings enumerated into
Vα must extend those of Vη, that means they must also extend σ.

In all cases the strings enumerated into Vα are extensions of σ, so this con-
cludes the proof. ut

Verification. Since the tree is finitely branching, we can be sure that there is
indeed an infinitely often visited path, and we take the true path δ to be the
leftmost such. Note that from the construction it follows that at any stage s
the witnesses on the initial segments of δs are linearly ordered. In the lemma
below we show that the strategies at each node α on the true path do what
we want them to do:
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Lemma 3.10. If α ∗ 1 ≺ δ then Vα is finite and K(X|α| �|σ|) > K(σ) + |α|
where σ is the true primary witness of α. If α ∗ 0 ≺ δ then Vα contains a
string of each length in N[α] and X|α| is K-trivial.

Proof. We prove the two cases. If α ∗ 1 ≺ δ then Vα is finite because it is the
leftmost infinitely often visited outcome and we only enumerate strings into
Vα on outcome 0. Since α ∗ 1 ≺ δ, by construction the true primary witness
will be the least σ such that K(X|α| �|σ|) > K(σ)+ |α| and σ extends the true
witnesses of the predecessors of α.

If α ∗ 0 ≺ δ then since we infinitely often have outcome 0, we enumerate
infinitely many strings into Vα. By the way the construction is defined we can
be sure that it contains a string of each length in N[α]. The witnesses of the
predecessors of α will reach a limit in the α-stages by Lemma 3.8, say that
the union of those true witnesses is σ. Then by construction after some stage
only extensions τ of sigma will be enumerated into Vα, and since α ∗ 0 ≺ δ,
it follows that for each such τ , K(X|α| �|τ |) ≤ K(τ) + |α|. With Lemma 2.6
we have that K(τ) ≤+ K(|τ |) for all these τ . It follows that for allmost all
k ∈ N[α], K(X|α| �k) ≤+ K(k) so X|α| is K-trivial. ut

Finally we have all we need to prove that A does indeed satisfy all the re-
quirements:

Lemma 3.11. The set A is ∆0
2 and satisfies all Ne, Qe for e ∈ N.

Proof. From Lemma 3.9 we see that we can find A by taking the limit of all
strings enumerated into all Vα. From the same lemma it follows that an initial
segment of A changes only finitely often before it settles on the true witness.
This makes A a ∆0

2 set.
Next take some e ∈ N. Let α be the unique node of length e on δ, and

let σ be the true primary witness of α. We will have σ ≺ A by definition of
A, and by construction also pe(σ) ≺ A. The function pe(σ) was defined such
that K(pe(σ)) > K(|pe(σ)|) + e, so we can be sure that Qe is satisfied.

For Ne, suppose that Xe is not K-trivial. Then by Lemma 3.10 it follows
that α ∗ 0 6≺ δ. So α ∗ 1 ≺ δ, and K(Xe �|σ|) > σ + e. By definition of A,
σ ≺ A, so also Ne is satisfied. ut

This concludes the proof. ut

As mentioned before the theorem above can be applied to the class of all c.e.
(Σ0

1) sets, since they form a ∆0
2 family. We get the following corollary.

Corollary 3.12. There is a non-K-trivial ∆0
2 set that does not bound any

non-K-trivial Σ0
1 set.

The corollary is quite surprising, since c.e. sets have quite low initial segment
complexity. But the deeper result is the theorem itself, which shows an ele-
mentary difference between the K-degrees and the LK-degrees. For the latter,
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it was proved in [Bar10] that for any nontrivial ∆0
2 set there is a nontrivial c.e.

set LK-below it. Extending that proof led to the result that below any pair
of nontrivial ∆0

2 sets there is one nontrivial c.e. set LK-below both. Because
of that, no ∆0

2 minimal pair can exist in the LK-degrees.
We can conclude from Theorem 3.6 and in particular Corollary 3.12 that

the proof of the impossibility of a ∆0
2 minimal pair in the LK-degrees does

not carry over to the K-degrees. Furthermore, unlike in the previous section,
there is no direct corollary to Theorem 3.6 that shows the existence of a ∆0

2

minimal pair in the K-degrees. This means that the question whether such a
minimal pair can exist, remains open.

To summarize, this chapter investigated arithmetical definability in the
K-degrees. We constructed a non-K-trivial Σ0

2 set that does not bound any
non-K-trivial ∆0

2 set, and we remarked that this construction relativizes to
a non-K-trivial Σ0

n set that does not bound any non-K-trivial ∆0
n set for all

n > 1. Furthermore, the constructed Σ0
2 set forms a minimal pair in the K-

degrees with any non-K-trivial c.e. set. The main result in this chapter was
the existence of a non-K-trivial ∆0

2 set that does not bound any non-K-trivial
set in a given ∆0

2 family.
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Gap functions and minimal pairs

In the previous chapter we discussed non-K-trivial sets that do not bound
any non-K-trivial set in a class of sets. We proved that for all n > 1 there
is a Σ0

n set that does not bound any non-K-trivial ∆0
n set, and that there is

a ∆0
2 set that does not bound any non-K-trivial set in a given ∆0

2 family of
sets. The first induced a minimal pair of a Σ0

2 set with any non-K-trivial c.e.
set, but the latter did not result in a ∆0

2 minimal pair.
In this chapter we investigate a method for constructing minimal pairs in

the K-degrees, namely via gap functions for K-triviality. Gap functions were
used for the first construction of a minimal pair in the K-degrees by Csima
and Montalbán [CM06], as we will present below.

We will see in this chapter that if a gap function is unbounded and non-
decreasing, a minimal pair immediately follows from it. We reconstruct Csima
and Montalbán’s unbounded non-decreasing ∆0

4 gap function, inducing a ∆0
4

minimal pair. We also construct some gap functions with different properties.
Finally, we prove that there cannot be an unbounded non-decreasing ∆0

2 gap
function, which can also be found in our paper [BV10]. That means that this
technique of constructing a minimal pair via a gap function cannot be used
to construct a ∆0

2 minimal pair.

4.1 Gap functions

Before, we defined a set to be K-trivial if its descriptive complexity stays
within a constant from the complexity of the lengths of the segments. Now
we characterize the K-trivial sets using a function that shows how far the
complexity K(X �n) can rise above that of K(n), and we will see that this
is not necessarily a constant function. In fact we will see that we can have
an unbounded non-decreasing gap function for K-triviality, which is quite
surprising considering the definition of K-triviality. The following definition
of a gap function is due to Csima and Montalbán [CM06]:
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Definition 4.1 (Gap function for K-triviality). f : N → N is a gap
function for K-triviality if for all sets X,

X is K-trivial⇔ ∀n K(X �n) ≤+ K(n) + f(n).

When a set X satisfies the righthandside of this, we say that X obeys f . Note
that by the definition ofK-triviality, any function f satisfies the (⇒)-direction,
and in particular the constant 0 function is a gap function. Moreover, note
that any bounded function f also satisfies the (⇐)-direction:

Proposition 4.2. For any bounded function f : N → N, it holds for any set
X that

X is K-trivial⇔ ∀n K(X �n) ≤+ K(n) + f(n).

Proof. (⇒) Follows immediately from the definition of K-triviality.
(⇐) Since f is bounded, there is some b such that for all n ∈ N, f(n) ≤ b.
Now take some arbitrary set X and assume the righthandside:

∀n K(X �n) ≤+ K(n) + f(n).

It follows that
∀n K(X �n) ≤+ K(n) + b.

So X is K-trivial:
∀n K(X �n) ≤+ K(n).

ut

Because of the above proposition, unbounded gap functions are the more in-
teresting case. In this chapter we will show that an unbounded non-decreasing
gap function induces a minimal pair in the K-degrees, and we will show that
such a function does in fact exist. We present the construction as first done
by Csima and Montalbán in their 2006 paper [CM06], to show that a mini-
mal pair in the K-degrees exists. Studying the complexity of these sets was
something that only started later on. In light of that development we investi-
gate whether Csima and Montalbán’s technique can be adapted to construct
a minimal pair of lower complexity, which we answer in the negative for ∆0

2.

4.2 Minimal pairs via gap functions

A minimal pair in the K-degrees consisting of sets A and B must satisfy the
following two properties:

(i) A and B are non-K-trivial
(ii) For any X such that X ≤K A and X ≤K B, X must be K-trivial.
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Intuitively it may seem that two sets A and B can only satisfy the second
requirement when they are alternately of low complexity. Namely when they
satisfy

∀n min{K(A �n),K(B �n)} ≤+ K(n).

However, this is a very tight restriction on the behaviour of both sets. A gap
function for K-triviality gives us a way to circumvent this. Using gap functions
the restriction on the two sets A and B can become the following:

∀n min{K(A �n),K(B �n)} ≤+ K(n) + f(n).

When given an unbounded non-decreasing gap function, this restriction gives
us enough space to construct a minimal pair of the same complexity as the gap
function itself. We will see this in the proof of Theorem 4.3 below, which was
not proved anywhere else but can be extracted from Csima and Montalbán’s
argument in [CM06]. They also constructed an unbounded non-decreasing ∆0

4

gap function and derived a ∆0
4 minimal pair from it using the method below.

We will go into their construction of a gap function in the next section.

Theorem 4.3 (Csima, Montalbán [CM06]). Given an unbounded non-
decreasing gap function f , there exists a minimal pair in the K-degrees such
that both sets have complexity f ⊕ ∅′.

Proof. We will define sets A and B such that they satisfy the requirement
as mentioned before: for all n, min{K(A �n),K(B �n)} ≤+ K(n) + f(n). We
define A and B in stages, making A complex and B of low complexity at odd
stages, and the other way around at even stages. We define them inductively
as follows:

• A0 = B0 = λ the empty string.
• At e+1 if e is even, we find an extension of Ae that adds enough complexity:

let
Ãe+1 � Ae such that K(Ãe+1) > K(|Ãe+1|) + e.

Observe that this is always possible: by the counting condition (see Chap-
ter 1) there is always an extension that raises the complexity sufficiently.
Let me be the length of the added segment:

me = |Ãe+1| − |Ae|.

Next we will add enough zeros to the extension Ãe+1 to get to a length
where the complexity is below the gap function again. This way A will be
of low complexity in the next step, and we can then continue to raise B’s
complexity. First we find the constant by which Ãe+1 is K-trivial if we
extend it with infinitely many zeros: let ce be such that

∀n K((Ãe+1 ∗ 0ω) �n) ≤ K(n) + ce.
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If we can find a number where the gap function grows beyond this constant,
we are safe, since the function is non-decreasing. Since it is unbounded we
are guaranteed to always find such a number ne:

f(ne) > ce.

Now we define

Ae+1 = Ãe+1 ∗ 0ne

Be+1 = Be ∗ 0me+ne .

By adding this many zeros to Be we make Be+1 as long as Ae+1, and
by the inductive argument we can be sure that Be+1 stays below the gap
function.

• At e + 1 if e is odd, follow the above procedure but with the roles of A
and B interchanged.

Observe that by construction, for every e there are n and m such that

K(A �n) > K(n) + e

K(B �m) > K(m) + e.

So both sets are non-K-trivial. Furthermore, by construction we have

∀n min{K(A �n),K(B �n)} ≤+ K(n) + f(n).

Note that this construction relies mostly on f , and we need ∅′ to find the
complexity K at a few points in the construction. Therefore the complexity
of both sets is f ⊕ ∅′. This concludes the proof. ut

With this result, all we have to do to find a minimal pair is construct an
unbounded non-decreasing gap function. We do this in the next section. Later
on in this chapter we will get back to the relation between minimal pairs and
gap functions: we will see then that a minimal pair also canonically induces
a gap function. However, this gap function might not be unbounded, so the
above theorem cannot be extended to a bi-implication.

4.3 An unbounded non-decreasing gap function

The previous section discussed how an unbounded non-decreasing gap func-
tion induces a minimal pair in the K-degrees. However, an even more signifi-
cant result from Csima and Montalbán’s paper [CM06] is the existence of an
unbounded non-decreasing gap function:

Theorem 4.4 (Csima and Montalbán [CM06]). There is an unbounded
non-decreasing ∆0

4 function f such that a set X is K-trivial iff K(X �n) ≤+

K(n) + f(n) for all n.
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With Theorem 4.3 we immediately get the following corollary:

Corollary 4.5. There is a ∆0
4 minimal pair in the K-degrees.

Before reconstructing Csima and Montalbán’s gap function and thus proving
this theorem and its corollary, we note how surprising it is that an unbounded
gap function can exist. For when we want to prove that a set X is not K-
trivial, we show that for every c there is some initial segment X �nc such that
K(X �nc) > K(nc) + c. It seems like an unbounded gap function allows us to
do precisely this.

In fact, if X were to take up exactly all the space that some arbitrary
unbounded non-decreasing f gives (so for all n, K(X �n) = K(n) + f(n))
then it would be non-K-trivial. However, the complexity of a certain segment
X �n heavily depends on the previous segments. If f increases very slow, we
cannot expect to have enough control over the complexity of each X �n to
make a set that takes precisely this value at any n.

Below we will see that if an unbounded non-decreasing gap function f
were computable, it is possible to construct a non-K-trivial set X that obeys
f . The same holds for a ∆0

2 function, which is the main result in this chapter.
But first we show that a more complex function can exclude all non-K-trivial
sets. We present the construction as can be found in Csima and Montalbán’s
paper, but we get into it in much more detail than they do.

What we would like to do, is check every set X for K-triviality. If it is
not K-trivial, we would make sure that it cannot obey f . However, we have
no effective listing of all sets. Below we will see that if there were such an
effective list, we could make a gap function of lower complexity. But for this
case we need to come up with something smarter. What we do, is to first look
at the sets X such that they are K-trivial with constant e + i, but not with
constant e (so X ∈ KT(e + i)\KT(e), where KT(e) is the class of sets that
are K-trivial via constant e). Observe that for any e, KT(e) is finite and we
can list all these sets (see the proof of Theorem 1.14). Then we let e tend to
infinity, and we get the sets that are not K-trivial with any constant.

Proof (of Theorem 4.4). We will make a function fe for each e. We want a
function fe to rule out that a set is K-trivial with constant e:

X /∈ KT(e)⇒ ∃m K(X �m) > K(m) + fe(m).

If we have a set X /∈ KT(e), we get one number m such that K(X �m) >
K(m) + e, which we will use to have fe satisfy the equation above. We will
also make sure that for all e,m > 0, fe(m) ≥ e, and we define f to be

f(m) = min{f2e(m)− e : e > 0}.

This will do exactly what we want it to do. To see this, take some non-K-trivial
set X, then X is not K-trivial with any constant. So for all e, ∃m K(X �m) >
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K(m)+fe(m). Now take an arbitrary c. Then ∃m K(X �m) > K(m)+f2c(m),
and we can be sure that f(m) ≤ f2c(m)− c. So it will follow that

K(X �m) > K(m) + f2c(m)− c+ c ≥ K(m) + f(m) + c.

Making f non-decreasing and unbounded

To get an unbounded and non-decreasing function f , we need the functions
fe to satisfy some more properties. Suppose for each e we have the following:

• fe is non-decreasing
• fe is unbounded
• fe(m) ≥ e for all m, e.

Then we can get that f is non-decreasing and unbounded: suppose for some
m, f(m+ 1) < f(m). We have

f(m) = f2e(m)− e
f(m+ 1) = f2e′(m+ 1)− e′

for some e, e′ > 0. Since f2e(m) − e is the minimum over all e, we have
f2e(m) − e ≤ f2e′(m) − e′. It follows that f2e′(m + 1) − e′ < f2e(m) − e ≤
f2e′(m)− e′. So f2e′(m+ 1) < f2e′(m). This contradicts the claim that f2e′ is
non-decreasing. So f must be non-decreasing.

And f will be unbounded: suppose that for all m, f(m) ≤ q for some bound
q. For each function f2e with e > q, the value of f2e(m) − e is strictly larger
than q for any m, because f2e(m)− e ≥ 2e− e = e > q. Now for each e ≤ q,
since f2e is unbounded, we can find some me such that f2e(me) > 2q. Since
the set of these me is finite, we can take the maximum: k := max{me : e ≤ q}.
For this k we get by construction (f2e is non-decreasing) that if e ≤ q, then
f2e(k)− e > 2q − e ≥ q. So together with the previous we have

f(k) = min{f2e(k)− e : e > 0} > q

which shows that f is unbounded.

Constructing fe

What remains, is to construct functions fe such that they satisfy

• if X /∈ KT(e) then ∃m K(X �m) > K(m) + fe(m)
• fe is non-decreasing
• fe is unbounded
• fe(m) ≥ e for all m, e.
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To make fe unbounded, we not only look at KT(e + i)\KT(e) for increasing
i, but also at KT(e+ i)\KT(e+ j) for j < i. We use this to increase the value
of fe at the right moment, to make the function unbounded.

To construct fe non-decreasing, we mark the values of fe with markers ni,
and keep them in order (n0 < n1 < n2...). In the end we let

fe(m) = e+ i− 1 the least i s.t. m ≤ ni.

Now the strategy is as follows: set n0 = 0, and find n1 such that for every
Y ∈ KT(e + 1)\KT(e), there is an mY < n1 that witnesses that Y /∈ KT(e)
(so K(Y �mY

) > K(mY )+e). Note that such an n1 exists, because KT (e+1)
is finite, so we only need n1 to be larger than finitely many such mY .

Similarly, we pick n2 such that for every Y ∈ KT(e + 2)\KT(e) there is
an mY < n2 such that K(Y �mY

) > K(mY ) + e. And we require a similar
thing for n3. However, now we can come across sets Z ∈ KT(e + 3)\KT(e)
such that the least mZ is in [n1, n2). If Z were in KT(e+ 1), by definition of
n1 we would have been able to find such an mZ < n1, but we did not. So we
know that Z /∈ KT(e + 1). Hence there must be some number lZ such that
K(Z �lZ ) > K(lZ) + e+ 1. We put an extra requirement on n3, namely that
we can also find1 such an lZ < n3.

Formally, we define the sequence n0 < n1 < n2... such that

• for any Y ∈ KT(e + i)\KT(e), there is an mY < ni with K(Y �mY
) >

K(mY ) + e.
• for any Z such that the least mZ such that K(Z �mZ

) > K(mZ) + e is in
[ni−2, ni−1), there is lZ < ni such that K(Z �lZ ) > K(lZ) + e+ i− 2.

Now we define
fe(k) := e+ i− 1 if k ∈ [ni−1, ni).

Since n1 > 0 we have fe(m) ≥ e for all m > 0. For every e this function
is non-decreasing, since n0 < n1 < n2.... It is also unbounded, because for
every q ≥ e− 2 we can find nq−e+2, and by construction k = nq−e+2 gives us
fe(k) = e + (q − e + 2) − 1 = q + 1, so for every attempt of a bound we can
find a value of f that is larger.

We have now constructed the fe for e > 0 such that they are unbounded
and nondecreasing, and fe(m) ≥ e for all m, e. As promised, we define

f(k) := min{f2e(k)− e : e > 0}.
1 Such an n3 exists: suppose it did not. That means that for any choice of n3 > 0,

we have a set Zn3 such that the least mZ such that (Zn3 �mZ ) > K(mZ) + e
is in [n1, n2), but still K(Zn3 �n3−1) ≤ K(n3 − 1) + e + 1. Take all these initial
segments Zn3 �n3−1 for each choice of n3, they form an infinite tree. Since the tree
is finitely branching, by König’s tree lemma we know there must be an infinite
path, Z. For this Z we have for all n that K(Z �n) ≤ K(n) + e + 1: Z is in
KT(e+ 1). This contradicts the choice of n1 and the claim that mZ ∈ [n1, n2)
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As shown before, this f is an unbounded and non-decreasing gap function for
K-triviality.

This function is ∆0
4 because if we want to find f(m) for some m, we need

to find the minimum over all fe(m). Each fe is ∆0
3 because for finding the

value of fe(m) we keep increasing i until we find m ≤ ni. We will find this
value because fe is unbounded. For finding ni for some i we go through the
sets in KT(e+i)\KT(e+j) for j ≤ i, which are ∆0

3 since each KT(e) is ∆0
2 and

finite (see the proof of Theorem 1.14). For any set X /∈ KT(e) we can just go
through all initial segments to find mX such that K(X �mX

) > K(mX) + e,
eventually we will find one. This makes fe a ∆0

3 function, and f a ∆0
4 function.

ut

The above construction became quite complex because we do not have an
effective enumeration of all sets. But if a gap function were only to work
for c.e. or ∆0

2 sets, we would have such an enumeration, and we can make
a function of lower complexity. By a gap function for c.e. sets we mean the
following:

Definition 4.6 (Gap function for c.e. sets). f : N→ N is a gap function
for K-triviality of c.e. sets if for all c.e. sets X,

X is K-trivial⇔ ∀n K(X �n) ≤+ K(n) + f(n).

An analogous definition holds for other complexity classes, such as ∆0
2 sets.

Both in the case of c.e. sets and ∆0
2 sets, we have an effective enumeration,

and in both cases this allows us to construct a gap function of Σ0
2 degree2

for that class. We show this for a gap function for ∆0
2 sets, which is also in

our paper [BV10]. The case for c.e. sets is similar but simpler. Note that both
resemble the proof of Theorem 3.1.

Theorem 4.7. There is an unbounded non-decreasing gap function of Σ0
2 de-

gree for ∆0
2 sets.

Proof. The idea for this function will be to go through the list of all Φ∅
′

e and
whenever it converges and is non-K-trivial, make sure it cannot obey the
function. In other words, we want to satisfy the following requirement:

Re : [Φ∅
′

e [t] is total and Φ∅
′

e [t] >K ∅]⇒ ∃m [K(Φ∅
′

e [t]) > K(m) + f(m) + e].

Note that this requirement is enough, because we can assume without loss of
generality that every set has infinitely many indices in the list (see for more on
this the proof of Theorem 3.1). If we only had one requirement Re to satisfy,
we could make the following function:
2 Note that in this case we do not mean that the graph of the function is Σ0

2 ,
but that the degree of the function is Σ0

2 . This means that the function f has a
∅′-computable approximation f [s] such that for all n, f(n) = lims→∞ f(n)[s] and
it approximates f from above: for all n, if s < t then f(n)[s] ≥ f(n)[t]
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• Let f(n)[s] = n for all n ≤ s until at some stage t we have some number
m > e such that Φ∅

′

e [t] �m↓ and K(Φ∅
′

e �m) > K(m)+2e. Then let f(i)[t] =
e for all i with e ≤ i ≤ m, and f(i)[t] = i for all i with m < i ≤ t.

Observe that this function is by construction unbounded and non-decreasing.
It satisfies the requirement, because if Φ∅

′

e converges and is non-K-trivial we
will find such a number m at a certain stage and we will get f(m) = e. So
K(Φ∅

′

e �m) > K(m) + 2e = K(m) + f(m) + e.
If we want to satisfy all requirements, we need to do some more work.

We make sure that a function does not mess up the previous definition of f
by keeping track of ke[s], the least number that is larger than the witness m
of any Ri with i < e. Then we do the same as above, except now we only
look for some m > ke[s] that witnesses the complexity of Φ∅

′

e , and we only
change the value of f(i) if ke[s] ≤ i ≤ m. We say that Re requires attention
at stage t if there is a number m with ke[t] < m ≤ t such that Φ∅

′

e [t] �m↓ and
K(Φ∅

′

e �m) > K(m) + 2e. We define f as follows:

• At stage t, find the least e such that Re requires attention. Then let
f(i)[t] = e for all i with ke[t] ≤ i ≤ m and f(i)[t] = i for i with m < i ≤ t.
If there is no such e, let f(n)[t] = n for all ke[t] ≤ n ≤ t.

This way f is monotonically approximable from above, so since we only need
∅′ to determine the descriptive complexity K at each stage, this function is
of Σ0

2 degree. Note that there is no injury amongst the requirements, and
each requirement acts only once, so this function will be unbounded and non-
decreasing. All requirements are met, because if they require attention they
will receive it at a certain stage. This concludes the proof. ut

A similar technique can be applied to the list of c.e. sets, to obtain an un-
bounded non-decreasing gap function of Σ0

2 degree for c.e. sets.

Theorem 4.8. There is an unbounded non-decreasing gap function of Σ0
2 de-

gree for K-triviality of c.e. sets.

Proof. We satisfy requirements

Re : We >K ∅ ⇒ ∃m [K(We �m) > K(m) + f(m) + e].

The construction to do this is analogous to the proof of Theorem 4.7. ut

We conclude this section noting that a gap function for c.e. sets can be of even
lower complexity if the requirement for f to be non-decreasing is dropped.
Then we can just go through the requirements above, and set f(m) = e if
K(We �m) > K(m) + 2e, and f(m) = m otherwise. This function will be ∆0

2,
and by construction unbounded. However, it is no longer non-decreasing.
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4.4 No ∆0
2 gap function

In the previous section we showed Csima and Montalbán’s construction of
an unbounded non-decreasing ∆0

4 gap function, thus obtaining a ∆0
4 minimal

pair. In this section we will prove that no unbounded non-decreasing ∆0
2 gap

function can exist. This shows that no ∆0
2 minimal pair can be constructed

this way, though it might exists nonetheless.

Theorem 4.9. There is no unbounded non-decreasing ∆0
2 gap function for

K-triviality.

The proof of this theorem uses the ∆0
2 approximation of f . Before we get into

the proof, we prove the following lemma:

Lemma 4.10. Given an unbounded non-decreasing ∆0
2 function f , we can

find an unbounded non-decreasing ∆0
2 function g ≤ f with an approximation

g[s] such that

• Each g[s] is non-decreasing
• g[s] approximates g from above (for all x, lims→∞ g(x)[s] = g(x) and for

all x and s1 < s2, g(x)[s1] ≥ g(x)[s2]).

Proof (of lemma). Take an unbounded non-decreasing ∆0
2 function f , and

some approximation f [s] to it. First we recursively define approximations h[s]
to a function h such that each h[s] is non-decreasing:

h(0)[s] = f(0)[s]

h(n+ 1)[s] =
{
f(n+ 1)[s] if f(n+ 1)[s] ≥ h(n)[s]
h(n)[s] otherwise

We claim that this approximates the same function: for each n

lim
s→∞

f(n)[s] = lim
s→∞

h(n)[s].

We prove this by induction on n. For n = 0, it follows immediately from
the construction of h. Now assume that for some n we have lims→∞ h(n)[s] =
lims→∞ f(n)[s] = f(n). Now look at n+1. Since lims→∞ f(n+1)[s] = f(n+1),
there is some stage s1 such that for all s ≥ s1, f(n+ 1)[s] = f(n+ 1). Since f
is non-decreasing, we have f(n) ≤ f(n+ 1), and by the induction hypothesis
there is some stage s2 such that for all s ≥ s2, h(n)[s] = f(n). Then we
have for all s ≥ s1, s2 that h(n)[s] = f(n) ≤ f(n + 1) = f(n + 1)[s]. So by
definition of h it follows that for all s ≥ s1, s2, h(n + 1)[s] = f(n + 1)[s].
So lims→∞ h(n + 1)[s] = f(n + 1) = lims→∞ f(n + 1)[s]. This concludes the
inductive proof.

We define g using this function h, assuming that for all n, h(n) has been
assigned a value by stage n. We define g as follows:

g(n)[s] = min{h(n)[t] : n ≤ t ≤ s}.
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By construction this is an approximation from above. We prove that each g[s]
is non-decreasing. By construction of g for all stages t such that n ≤ t ≤ s,
h(n)[t] ≥ g(n)[s]. But each h[t] is non-decreasing, so for all stages u with
n+ 1 ≤ u ≤ s it follows that h(n+ 1)[t] ≥ h(n)[t] ≥ g(n)[s]. So g(n+ 1)[s] ≥
g(n)[s].

Furthermore g must be non-decreasing since each g[s] is. Suppose this is
not true: for some n we have g(n+ 1) < g(n). There are stages s1 and s2 such
that for all s ≥ s1, g(n)[s] = g(n) and for all s ≥ s2, g(n+1)[s] = g(n+1). Now
take some s ≥ s1, s2. For this s we have g(n+1)[s] = g(n+1) < g(n) = g(n)[s].
This is a contradiction.

Finally we prove that g is unbounded. Suppose for a contradiction that for
all n, g(n) ≤ c for some c. Since f is unbounded, we can find some n0 such that
f(n0) > c. This means that for some s0, for all s ≥ s0, h(n0)[s] = f(n0) > c.
Since each h[s] is non-decreasing, we have for all n ≥ n0 and for all s ≥ s0,
h(n)[s] ≥ f(n0). Now we let m ≥ s0, n0 and it follows by definition of g that
g(m) ≥ c. ut

This lemma gives us the opportunity to prove Theorem 4.9. We can do this in
two different ways. One is rather short and constructs a Turing-complete c.e.
set obeying such a function. The other directly constructs a non-K-trivial set
that obeys the function using the approximation to the function. The latter
gives a slightly better understanding of what is going on, so we will present this
proof first. The proof uses a simple version of the decanter method, a common
technique for constructing non-K-trivial sets, that is for example also used
for proving that no K-trivial set can be Turing complete. A discussion of this
method and that specific proof can be found in Appendix C.

Proof (of Theorem 4.9). Suppose that there is an unbounded non-decreasing
∆0

2 gap function. We will construct a set X that satisfies

K(X �n) ≤+ K(n) + f(n) (4.1)

for all n, but is not K-trivial. In order to guarantee non-K-triviality, we need
to satisfy requirements Rb for all b:

Rb : ∃m[K(X �m) > K(m) + b].

For an arbitrary b we can satisfy the requirement Rb as follows: we build a
machine M that describes numbers n. By the recursion theorem we know the
index of the machine M in advance, so we know the coding constant d in the
universal machine. So when we describe a number n with a string of length
rn in M , we can push down the complexity of K(n).

Like in the proof of Theorem C.1, we assume for a contradiction that X
is kept K-trivial by the universal machine. We then go through a process
of describing n with short descriptions rn, waiting for the machines reaction
(K(X �n) ≤ K(n) + b). Then we change X �n so the machine needs to use up
a new description. Since we force K(n) ≤ rn + d, the machine will run out of
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short descriptions, which makes X non-K-trivial. This process is depicted in
the diagram below.

Describe n
with length
rn

Wait for
K(n) ≤ rn+d

Wait for
K(X �n) ≤
K(n) + b

Change X �n

While constructing X, we keep track of the cost functions for describing the
initial segments of X. When the segment X �n changes, all segments up to the
current stage s need a new description. The total weight that the universal
machine needs to spend on this to keep the set K-trivial is given by the cost:

ct(n, s) =
∑
n≤t≤s

2−(K(t)+b).

We want to make the total cost for this exceed 1, to get a contradiction and
show that X cannot be K-trivial. At the same time, we want to have X obey
the gap function. The cost to do this is given by cost cf , which is always
slightly lower because the required new descriptions can be a bit longer. It is
given by the following:

cf (n, s) =
∑
n≤t≤s

2−(K(t)+f(t)+c).

Note that we can rewrite
∑
n≤t≤s 2−(K(t)+f(t)+c) =

∑
n≤t≤s 2−K(t) ·2−(f(t)+c)

and
∑
n≤t≤s 2−(K(t)+b) =

∑
n≤t≤s 2−K(t) · 2−b. We can conclude that

cf (n, s) ≤ 2−(f(n)+c−b) · ct(n, s). (4.2)

Now we can make sure that X is not K-trivial by picking some n, describing
it with a short string, and making at most 2b+d changes in X �n, as in the
diagram above. We might not even need to make all these changes: we can
stop as soon as the total cost for keeping the set K-trivial exceeds 1. Then the
machine describing X will run out of short strings. The key to this argument
will be to only do this on initial segments of X where the gap f(n) is large
enough (we will be more specific in the argument below). With (4.2) we can
keep changing X �n to make the cost of keeping the set K-trivial exceed
1 (thus making X non-K-trivial), while keeping the cost of satisfying (4.1)
below 1, making X obey f .

Suppose that we had a computable gap function f . Then finding the places
where the gap is sufficiently large would be easy. Then it is enough to find
one appropriate n to describe, and change X �n many times. We will work
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this out below. When f is ∆0
2, all we can do is pick some n such that the

approximation at that stage gives a large enough gap. But the approximation
might change, and as soon as the gap is no longer sufficient, we pick a new n
and describe it with a longer string, and go through the diagram again.

If f is computable

First, we find a digit of X where the gap is large enough: larger than b (ac-
tually, larger than b − c would already be enough). So we need f(z) > b.
Note that such a z exists because f is unbounded, and we can find it be-
cause f is computable. Note that for all n ≥ z, we have f(n) > b, since f is
non-decreasing. We are going to describe the number m with a description of
length 0 (we put 〈0,m〉 into a request set L), and we need to make 2(0+b+d)

changes in X past the zth digit, so we choose m = 2(b+d) + z and make the
required changes in X �m.

Now note that the procedure stops as soon as the total cost for K-triviality
(ct) exceeds 1, while the total costs of satisfying (4.1) satisfies

Tcf =
∑
{cf (n, s) : n is put into X at stage s}

and since for all n we put into X, with (4.2):

Tcf ≤ 2−(f(z)+c−b) ·
∑
{ct(n, s) : n is put into X at stage s}.

By construction we have f(z) > b so

Tcf < 2−1 ·
∑
{ct(n, s) : n is put into X at stage s}.

This will not exceed 1, because the loop stops right after the total cost for
ct does. So K(X �n) ≤+ K(n) + f(n), but X is not K-trivial. This is a
contradiction. Therefore, f cannot be computable.

If f is ∆0
2

If f is ∆0
2, we have an approximation f [s] such that for all x, f(x) =

lims→∞ f(x)[s]. With Lemma 4.10 we get another function g below f , such
that g[s] approximates g from above, and each g[s] is non-decreasing.

We can use this to our advantage when we are constructing the set X. We
use a similar approach as for the computable function, but as mentioned, the
approximation might change and require us to describe a different number n.
This makes our diagram look as below:
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Describe mi

with length
ri, where
ri+1 = ri + 1

Wait for
K(mi) ≤
ri + d

Wait for
K(X �mi

) ≤
K(mi) + b

Change
X �mi

g(z) ≤ b

Now at a stage s we can find z such that g(z)[s] > b. We can do this since g[s]
is computable, and unbounded. Note that for all n > z we have g(n)[s] > b,
because g[s] is non-decreasing. Now we will describe a number mi with a
description of length ri. Since we might need to describe many mi now, we
will no longer choose r0 = 0, but we will pick r0 = 1 and put ri+1 = ri + 1.
This guarantees that the weight of the machine for describing mi’s will not be
larger than

∑
i 2−ri = 2 · 2−r0 = 1. Since we will now need to make 2ri+b+d

changes in X past the zth digit, we choose mi = 2ri+b+d + z. Then we can
make the required changes in X �mi . However, if at some stage s′, g(z)[s′] ≤ b,
then we stop this procedure, and we go to i+ 1 where ri+1 = ri + 1. We pick
a new zi+1 such that g(zi+1)[s′] ≤ b and mi+1 = 2ri+1+b+d + zi+1, and start
the procedure again for this mi+1.

Since lims→∞ g[s] = g, eventually we will be at a stage with a number zi
such that g(zi)[s] > b long enough to go through the loop untill the cost Tct
exceeds 1. We let cg =

∑
n≤t≤s 2−(K(t)+g(t)+c) and like before we have

Tcg ≤ 2−(g(z)+c−b) ·
∑
{ct(n, s) : n is put into X at stage s}

so since g(z) > b

Tcg ≤ 2−1 ·
∑
{ct(n, s) : n is put into X at stage s}

and since we made Tct =
∑
{ct(n, s) : n is put into X at stage s} just exceed

1, we can be sure that Tcg ≤ 1. So X satisfies K(X �n) ≤+ K(n) + g(n), and
since g ≤ f we have K(X �n) ≤+ K(n) + f(n). But X is not K-trivial. This
is a contradiction. Therefore, there cannot be a ∆0

2 gap function. ut

4.5 Another proof of Theorem 4.9

As promised we can also prove Theorem 4.9 by constructing a Turing complete
c.e. set. We prove the following theorem, which is in our paper [BV10] in a
slightly different version:



4.5 Another proof of Theorem 4.9 57

Theorem 4.11. If f is ∆0
2, computably approximable from above3 and its

limit is infinity (limn→∞ f(n) =∞), then there is a Turing complete c.e. set
which obeys f .

We get the following corollary:

Corollary 4.12. There cannot be an unbounded non-decreasing ∆0
2 gap func-

tion for K-triviality.

Proof. Suppose there were such a function f . With Lemma 4.10 we get a
function g below f that is approximated from above. It is unbounded and
non-decreasing, so it follows that limn→∞ g(n) = ∞. Applying the theorem
gives a Turing complete c.e. set obeying g. Since g is below f , it also obeys
f . However, by Theorem C.2, no K-trivial set can be Turing complete. So
there is a set obeying f that is not K-trivial, and therefore f is not a gap
function. ut

For the proof of Theorem 4.11 we will construct the required Turing complete
c.e. set using a construction that is very similar to a proof by Frank Stephan
(see [Nie08, 183]).

Proof (of Theorem 4.11). We construct a Turing complete c.e. set A obeying
f in stages, by making sure that for each n, the number of zeros in A �n is
≤ f(n). Then we can describe A �n with its length, and a string of length
f(n) describing4 what places in A �n are 0. This will give us K(A �n) ≤+

K(n) + f(n).
Furthermore, we code numbers from the halting problem into A, to make

it Turing complete. First we present the construction of A, and then we will
show that the complement of A is infinite, so that we can in fact code it this
way.

Start the construction of A with the empty set in the first stage. At each
stage we check for the least initial segment A �n such that A �n has more than
f(n) zeros. We put numbers into A to correct this, as many as necessary start-
ing from the largest. Simultaneously, when m is the least number enumerated
into ∅′ at this stage, enumerate the mth number (in order of magnitude) that
is not yet in A (at that stage) into A.

The complement of A will be infinite if for every number c there is some
initial segment of A such that c digits are zero. We prove that this is the case
by induction on c. For c = 0 it trivially holds. Next assume that for some c−1
3 f is computably approximable from above when there are computable functions
f [s] such that for all x, lims→∞ f(x)[s] = f(x) and for all x, s1 < s2 we have
f(x)[s1] ≥ f(x)[s2].

4 If we have a description with the length n and the number of zeros k, we can do
the following: we go through the approximation of A, which is just computable.
As soon as we find A[s] �n with k zeros, it must be that A[s] �n= A �n since A is
a c.e. set.
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we have some m such that there are precisely c − 1 zeros in A � m. Let t be
the stage where A[t] �m= A �m. Take k ≥ m, t such that for all r ≥ k and
all s, f(r)[s] > c (remember that each f [s] is unbounded and non-decreasing,
and it is an approximation from above). If c is enumerated into ∅′ at some
stage, some number will be enumerated into A simultaneously, let this be v.
If c is not in ∅′, let v = 0.

Now let n ≥ v + 1, k + 1 be the least number such that n− 1 /∈ A[k + 1].
Then if there are more than c − 1 zeros in A �n−1, we are done. Otherwise,
it must be that all numbers strictly between m and n − 1 are in A, since we
assumed that A �m had c− 1 zeros. Note that we picked n ≥ k + 1 so by the
choice of k it follows that for all s, f(n − 1)[s] > c. Therefore we will never
encounter a stage where the number n−1 will be put into A by the first clause
of the construction (fixing the number of zeros).

Furthermore, n − 1 is by assumption the cth digit where A is zero. If it
were put into A by the second clause of the construction (coding of ∅′), that
could only happen because c would be enumerated into ∅′. However, we picked
n ≥ v+ 1 with v the number that is put into A when c is enumerated into ∅′.
Therefore, n− 1 will not be put into A by the second clause either.

It follows that n − 1 can never end up in A. Since we have c − 1 zeros
in A �m by assumption, there will be c zeros in A �n. This concludes the
inductive proof, and shows that we can in fact code the halting problem into
A to make A Turing complete. ut

In Section 4.2 above we showed that an unbounded non-decreasing gap func-
tion induces a minimal pair in the K-degrees (Theorem 4.3). In this section
we also proved that there is no unbounded non-decreasing ∆0

2 gap function.
Unfortunately these results together do not imply anything about there not
being a ∆0

2 minimal pair. For that, we would need to know that a minimal
pair also induces an unbounded non-decreasing gap function.

A canonical way to define a gap function from a minimal pair A and B is
the following:

f(n) := min{K(A �n),K(B �n)} −K(n).

This function f is a gap function: take any set X such that K(X �n) ≤
K(n) + f(n) for all n. It follows that K(X �n) ≤ min{K(A �n),K(B �n)},
and X must be K-trivial.

Note however that the gap function as defined here is not necessarily un-
bounded. But one might wonder whether it is possible that the difference
between min{K(A �n),K(B �n)} and K(n) stays bounded. We pose the fol-
lowing question:

Question 4.13. Can there be non-K-trivial sets A and B such that

min{K(A �n),K(B �n)} ≤+ K(n).
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This seems quite unlikely given results like Theorem 1.9 and Corollary 1.10.
These say that as soon as the set S of numbers n such that K(A �n) ≤+ K(n)
contains an infinite computable set or an infinite c.e. set, then A will be
K-trivial. If it were indeed impossible to have both sets non-K-trivial, the
function f as defined above would be unbounded. In the conclusion we will
suggest this as a topic for further research.

To summarize, we proved that there is no unbounded non-decreasing ∆0
2

gap function, but this does not prove that no ∆0
2 minimal pair can exist. It

does show that the method of using gap functions for minimal pairs will not
work for constructing a ∆0

2 minimal pair.





Conclusion

This thesis studied arithmetical definability in the K-degrees. The main result
we presented, was the construction of a non-K-trivial ∆0

2 set that does not
bound any non-K-trivial set in a given ∆0

2 family of sets. In particular it
follows that there is a non-K-trivial ∆0

2 set that does not bound any non-
K-trivial c.e. set. This is surprising because c.e. sets have quite low initial
segment complexity.

Furthermore, that same result shows a structural difference between the
LK-degrees and the K-degrees. In the LK-degrees, there is a result by Barm-
palias that every nontrivial ∆0

2 set bounds a nontrivial c.e. set [Bar10]. Ex-
tending that proof led to the result that for any pair of nontrivial ∆0

2 sets,
there is one nontrivial c.e. set below both. This shows that a ∆0

2 minimal pair
cannot exist in the LK-degrees [Bar10]. With our current result we see that
this proof does not carry over to the K-degrees right away.

Similar to the result mentioned above, we also proved that for all n > 1,
there is a non-K-trivial Σ0

n set that does not bound any non-K-trivial ∆0
n

set. We constructed a non-K-trivial Σ0
2 set that does not bound any non-K-

trivial ∆0
2 set, and we remarked that this construction relativizes to higher

complexity classes. With the constructed Σ0
2 set we also found a minimal pair

in the K-degrees of lower complexity than what was known so far. We found a
minimal pair consisting of this particular Σ0

2 set with any c.e. set of non-zero
K-degree.

The latter required the introduction of a new definition: that of infinitely
often K-trivial sets. We studied their behaviour and we saw that each K-
trivial set has a quite well-behaved lower cone: every set in the lower cone of
an infinitely often K-trivial set Y is computable in Y ⊕ ∅′. Furthermore we
showed that the class of infinitely often K-trivial sets is uncountable, and we
constructed a Π0

1 class of them that does not contain any K-trivial sets.
Finally we studied gap functions for K-triviality. A result by Csima and

Montalbán showed that an unbounded non-decreasing gap function f always
induces a minimal pair of complexity f ⊕ ∅′ in the K-degrees [CM06]. We
studied several possible gap functions, and we proved that no unbounded
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non-decreasing ∆0
2 gap function can exist. This shows that this method is not

suitable to construct a ∆0
2 minimal pair in the K-degrees. This means that

the question we mentioned in the introduction, whether there is a ∆0
2 minimal

pair in the K-degrees, remains open.

Suggestions for further research

An obvious suggestion for further research is the question whether there is a
∆0

2 minimal pair in the K-degrees. In this thesis we have investigated some
possible approaches to this already, finding that the method of constructing
a minimal pair via a gap function for K-triviality will not work. If one could
prove that a minimal pair always induces an unbounded non-decreasing gap
function, this would, together with our results, imply that no ∆0

2 minimal
pair can exist. This relates to Question 4.13 we posed in the end of Chapter
4, whether it is possible to have sets A and B both non-K-trivial, and satisfy

∀n min{K(A �n),K(B �n)} ≤+ K(n).

Another open question is which sets have countable lower cones in the K-
degrees. We have seen that infinitely often K-trivial sets have lower cones
that behave very nicely, but in general lower cones in weak reducibilities can
be uncountable. Finally we have shown that an unbounded gap function for
K-triviality can be ∆0

4, but not ∆0
2. A natural question is whether there can

be an unbounded non-decreasing ∆0
3 gap function or even one of Σ0

2 degree.



A

Trees

This appendix contains some basic definitions and results concerning trees.
They are used throughout the main text of this thesis. First we look at the
definition of a tree, its complexity and the complexity of its infinite paths.
After that we will turn to an alternative definition of trees. We show that it
amounts to the same. Finally we define perfect trees and prove a lemma about
turning a Π0

1 tree into a computable tree with the same infinite paths, which
we use in the proof of Theorem 2.9.

Definition A.1 (Tree). A tree T is a set of strings that is closed under taking
initial segments.

We say that a tree is computable when it is computable to find whether a
string is in the set or not. Similarly a tree can be of some other complexity
class depending on how difficult it is to find whether a string is in the set. In
many cases we are interested in the infinite paths through a tree:

Definition A.2 (Infinite path in a tree). An infinite path through a tree
T is a set P such that for all n, P �n∈ T . We denote the set of infinite paths
in T as [T ].

Note that in general when a tree T has complexity C, an infinite path is of
higher complexity because we add a quantifier. For example, infinite paths
through computable trees are Π0

1 . However, in the case that the tree has only
finitely many infinite paths, each of them is of the same complexity as the
tree itself. This is because after some length the infinite path is completely
determined (since the nodes will not branch anymore). We use this fact quite
often, for example in the proof that all K-trivial sets are ∆0

2 (they are the
infinite paths through a ∆0

2 tree of finite width, see Theorem 1.14).
Sometimes it is more convenient to use a different definition of a tree: we

view it as a function.

Definition A.3 (Tree (alternative definition)). A tree T is a partial func-
tion on strings (2<ω) such that
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σ ≺ τ ⇒ T (σ) ≺ T (τ)
σ|τ ⇒ T (σ)|T (τ).

The interpretation of this definition is the following: every node is coded with
a string (λ (the empty string) is the root node, and its leftmost successor is 0
and the rightmost is 1). We map each string to a string such that it extends
the string on the predecessor nodes, and it is incomparable to strings that are
not predecessors or successors. If a node is indexed with b, we map it to a
string σb as depicted below:

σ

σ0

σ00

σ000 σ001

σ01

. . .

σ1

σ10

. . .

σ11

. . .

Note that a string on level n is not necessarily of length n, unlike in the
previous definition of a tree. Now we define an infinite path in a tree as
follows:

Definition A.4 (Infinite path in a tree). An infinite path through a tree
T : 2<ω → 2<ω is a set P such that for all n there is some σ ∈ 2<ω of length
n such that T (σ) = P �|T (σ)|.

The complexity of a tree is now defined as the complexity of this function T ,
and once again the infinite paths are usually of a complexity slightly higher,
but when the tree has bounded width, all infinite paths are of the same com-
plexity.

We note that the two Definitions A.1 and A.3 amount to the same when it
comes to their infinite paths. Given a tree as a downwards closed set of strings,
we can index all the nodes like in the picture above. Then we can map each
index to the corresponding string to obtain a function T ′ as in Definition A.3.
This function will have the same complexity and the same infinite paths.

For the other direction, we can take the closure of the range of the function
T under initial segments. This way we obtain a set of strings T ′ of the same
complexity as T . We show that the infinite paths of the two are the same.
Take some infinite path in T , by definition this is also an infinite path in T ′.
Take an infinite path P in T ′, and suppose it is not in T . That means that
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for some n, for all m ≥ n, P �m /∈ T . But by construction then P �m cannot
be in T ′ either, which is a contradiction. So [T ] = [T ′].

Furthermore we define the notion of a perfect tree.

Definition A.5 (Perfect tree). A tree T is perfect if for all σ ∈ T there are
at least two proper extensions τ1, τ2 ∈ T that are incomparable:

∀σ ∈ T ∃τ1, τ2 ∈ T (τ1|τ2 ∧ σ ≺ τ1 ∧ σ ≺ τ2).

A perfect tree necessarily has uncountably many paths, since branches al-
ways split. We use this to prove that certain classes have uncountably many
elements, such as the class of infinitely often K-trivial sets (Theorem 2.7).

Finally we include a lemma here that will be useful in constructing com-
putable trees. It says that based on a Π0

1 tree we can make a computable tree
that has the same infinite paths.

Lemma A.6. Given a Π0
1 tree T , we can define a computable tree T ′ such

that [T ] = [T ′].

Proof. Take some Π0
1 tree T . This means that we have some approximation

T [s] such that strings may be taken out after some stage. We can define
a tree T ′ with an approximation T ′[s] such that at stage s only strings of
precisely length s are put into the tree (and none are taken out), to make
T ′ computable. The idea is to at each stage put all extensions of previously
added nodes into T ′, unless they are an extension of something that was taken
out of T . So instead of going back to shorter strings to take them out (like
in the Π0

1 tree), we make sure that the same branches still have dead ends at
the current stage. It will be a different tree, but with the same infinite paths.
Here is a more formal definition:

• T ′0 = {λ}
• T ′[s+ 1] = T ′[s] ∪ {σ : |σ| = s+ 1 ∧ ∀n ≤ s+ 1(σ �n∈ T [s+ 1])}.

Note that T ′ will be a tree (a set of strings closed under taking initial seg-
ments), because when we put a string in, all its initial segments are in T [s+1]
and therefore they are in all T [s′] for all s′ ≤ s, so they were put into the tree
T ′ at earlier stages. We prove that [T ] = [T ′]. Take an infinite path P ∈ [T ].
Then for any initial segment P �n it is in Ts for all s. So by construction for all
s, ∀n ≤ s, P �n∈ T ′[s], and it follows that P ∈ [T ′]. Next take an infinite path
Q ∈ [T ′], suppose Q /∈ [T ]. That means that for some n and s, Q �n∈ T [s]
but for all s′ > s, Q �n /∈ T [s′]. Then at stage s + 1 of the approximation,
Q �s+1 /∈ T ′[s+ 1] and so Q �s+1 /∈ T ′. This is a contradiction, so Q ∈ [T ]. So
[T ] = [T ′]. ut
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The infinite injury method

In this appendix we construct a c.e. minimal pair in the Turing degrees. This
gives some insight into the construction of a minimal pair in general. Here
we mainly use it as an illustration of the infinite injury method. We use this
method in the proof of a ∆0

2 not bounding any non-K-trivial set in a given
∆0

2 family of sets in Section 3.3. This appendix is mostly based on [DH10, 44],
where the following theorem and its proof can be found.

Theorem B.1 (Lachlan [Lac66], Yates [Yat66]). There exist noncom-
putable c.e. sets A and B such that every set X computable in both A and B
is computable.

With a result from Merkle and Stephan (see [MS07]) and Theorem 1.11 this
gives us a c.e. minimal pair in the C-degrees. Merkle and Stephan showed that
for any Y ⊆ {22k

: k ∈ N}, X ≤C Y implies X ≤T Y . Therefore, if we take
a minimal pair A,B ⊆ {22k

: k ∈ N} in the Turing-degrees, any set X that
is C-below both will be Turing-below both. This makes that set computable,
and with Theorem 1.11 it will satisfy C(X �n) ≤+ C(n) for all n. Therefore
A and B form a minimal pair in the C-degrees.

Before we get into the proof of Theorem B.1, we we briefly look into why
we need a method as strong as the infinite injury method. We take a close look
at the requirements we need to meet to have A and B as in the theorem. For
each e we need to have (where Φe is an effective list of all Turing functionals):

Re : A 6= We

Qe : B 6= We

H〈i,j〉 : ΦAi = ΦBj total⇒ ΦAi computable.

Requirements Re and Qe will make sure that A and B are noncomputable.
By giving a c.e. enumeration for A and B that satisfies H〈i,j〉, we get the
required minimal pair of c.e. sets. For notational convenience, we will adopt
the following requirement Ne instead of H〈i,j〉:
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Ne : ΦAe = ΦBe total⇒ ΦAe computable.

This is something we can do based on Posner’s trick (see [DH10, 48]). Satisfy-
ing all Ne requirements guarantees the satisfaction of all H〈i,j〉 requirements:
suppose that we have all Ne satisfied. Then we cannot have A = B, since
they would then be computable because all Ne hold. Therefore there must
be an n where they differ, without loss of generality assume that n ∈ B and
n /∈ A. Then let f ≤T A,B, that means that there must be i and j such
that f = ΦAi = ΦBj . However, there is also a program that, for all oracles
X, whenever n ∈ X, ΦXe = ΦBj , and whenever n /∈ X, ΦXe = ΦAj . For this
particular e we have

ΦAe = ΦAi = f = ΦBj = ΦBe .

and since all Ne are satisfied by assumption, if ΦAi = ΦBj are total then ΦAe is
computable. Therefore ΦAi is computable, and H〈i,j〉 is satisfied.

So we will meet the following requirements:

Re : A 6= We

Qe : B 6= We

Ne : ΦAe = ΦBe total⇒ ΦAe computable.

If we have just one strategy for each Re and Qe, these may be infinitely injured
by the Ne strategies, which poses a problem. In this case alternative strategies
for Re and Qe will work, but these cannot be used in the finite case. We will
explain this in much more detail below. The solution will be to have a binary
tree of strategies, where every node represents a certain strategy, and splits
into two possibilities representing the two cases (finite and infinite injury). At
a finite stage we have a path through the tree, based on the current outcomes
of the nodes. The outcomes and therefore also this path might change at later
stages. In the end there will be a leftmost infinitely often visited path, which
will turn out to have successful strategies.

How to satisfy the requirements

The basic strategy to satisfy a specific Re is the following: we pick a number x
with the intention of putting it into A (x is a follower). We wait to see whether
x is enumerated into We. If this never happens, we have x ∈ A but x /∈We, so
Re is satisfied. As soon as x is enumerated into We, we also enumerate it into
A, and once again Re is satisfied. An analog strategy will work for Qe. The
problem with Ne′ will be that it might not allow us to put this follower into
the set, but we can circumvent this adapting our strategies for the different
cases.

For meeting some particular Ne we define the following functions: the
length of agreement function l(e, s) shows until what length ΦAe and ΦBe have
the same outcome (and both converge) at stage s. The maximum length of
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agreement function m(e, s) is the maximum length of agreement encountered
so far, and the use function u(e, s) is the longest length used in A or B to
calculate the part up to where both agree. Here are the formal definitions
(where φe is the use of a Turing functional Φe):

l(e, s) = max{n : ∀k < n(ΦAe (k)[s] ↓= ΦBe (k)[s] ↓)}
m(e, s) = max{l(e, t) : t ≤ s}
u(e, s) = max{φAe (l(e, t)− 1)[t], φBe (l(e, t)− 1[t] : t ≤ s}

We say that a stage s is e-expansionary if the length of agreement is longer
than any agreement encountered before: l(e, s) > m(e, s− 1). Then to satisfy
Ne we will act on e-expansionary stages. Note that there will be infinitely
many e-expansionary stages if in fact ΦAe = ΦBe and they are both total. If
they are different, there will only be finitely many, and this distinction is what
the different strategies for Re and Qe will depend on.

Take some n < l(e, s), that means that ΦAe (n)[s] ↓= ΦBe (n)[s] ↓. All we do
now to satisfy Ne, is allow numbers to enter A (as a result of the strategies
for Re and Qe), but freeze the initial segment of B up to φBe (n)[s]: we put
a restraint of length u(e, s) on B. We do this until we encounter the next
e-expansionary stage. At the next e-expansionary stage t, we will again have
ΦAe (n)[t] ↓= ΦBe (n)[t] ↓, and we also have ΦBe (n)[t] = ΦBe (n)[s] since we have
not changed B in the previous step. We lift the restraint on B and this time
we freeze A up to φAe (n)[t] (and we allow numbers into B), until the next
e-expansionary stage u. This way we can be sure that ΦAe (n)[t] = ΦAe (n)[u].

We interchange freezing A and B like this. Whenever ΦAe = ΦBe is total,
there will be infinitely many e-expansionary stages. By the above argument
it follows that ΦAe (n) = ΦAe (n)[s], so we can find the value at n at this finite
stage. When we do this for all n, this makes ΦAe computable, so Ne is met.

Putting the strategies together

As mentioned above, we have strategies for Ne that put a restraint u(e, s)
(of not putting certain numbers in) on either A or B, thus compromising the
strategies we have for satisfying Re′ and Qe′ of weaker priority. In fact the
restrains may even go to infinity, since the length of agreement between A
and B can go to infinity. That means that when we want to put a follower
into A to satisfy Re′ , we are held back from doing so by the restraint that is
part of the strategy for some Ne.

However, note that when this happens (the length of the agreement goes to
infinity), we can be sure that there are infinitely many e-expansionary stages.
So by construction we know that the restraint on A will at some point be
lifted, while putting a restraint on B. At that moment we can act to satisfy
Re′ by putting a number into A. Note that when there are not infinitely many
e-expansionary stages, then it may be that a restraint is never lifted, so we
cannot use this strategy. However, we do know that if we look for a number
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large enough we can put it into A, thus still satisfying Re′ . So in this case
we will have to cancel the follower of Re′ and look for a larger one. This way
we have different strategies for these two cases, and analogously we have two
strategies for satisfying Qe′ .

Finally we may have trouble putting the different strategies for Ne to-
gether. When Ne has infinitely many e-expansionary stages, our strategy for
Re′ of weaker priority would be to wait for a moment that the restraint on A
is lifted. However, there may be another Ne′′ putting restraints on A precisely
when those of Ne are lifted. So again we distinguish between there being in-
finitely or finitely many e-expansionary stages: when there are finitely many
we can do nothing, but when there are infinitely many, we act for Ne′′ of
weaker priority only when the restraints are nested. This will be possible,
because there are infinitely many e-expansionary stages.

We put all these strategies in a binary tree: at each level e we have the
strategies for Re, Qe and Ne. All nodes split into two possibilities: 0 corre-
sponds to there being infinitely many e-expansionary stages, and attached to
that node we have the corresponding strategies on that level. 1 corresponds to
there being only finitely many e-expansionary stages, and that node has the
strategies for that case attached to it. At a finite stage we will of course not
know in what case we truly are, but we have a guess. So at each stage we have
a current path through the tree, a path that may later on still change. After
infinitely many stages there will surely be an infinite path that is infinitely
often visited, and the leftmost such path will turn out to succesfully build the
required A and B.

The formal proof

We can now put together the strategies as described above, and thus prove
Theorem B.1.

Proof (of Theorem B.1). We need to satisfy the requirements

Re : A 6= We

Qe : B 6= We

Ne : ΦAe = ΦBe total⇒ ΦAe computable.

We put all strategies on a tree T = {0, 1}<ω. We have the following corre-
spondence:

0 : there are infinitely many e-expansionary stages
1 : there are finitely many e-expansionary stages

For each σ ∈ T we assign strategies Nσ, Rσ, Qσ for satisfying requirements
N|σ|, R|σ|, and Q|σ|, respectively. We define the notion of σ-stage, m(σ, s) and
an σ-expansionary stage inductively:
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Definition B.2 (σ-stage).

• Every stage is a λ-stage (λ is the root)
• If s is a τ -stage. Let e = |τ |. Then

m(τ, s) = max{l(e, t) : t < s is a τ -stage}

If l(e, s) > m(τ, s), we call s τ -expansionary, and declare s to be a τ ∗ 0-
stage. Otherwise, we declare s a τ ∗ 1-stage.

Finally let δs be the path known at stage s: the unique σ of length s such that
s is a σ-stage. Now, we say that Rσ (and analogously Qσ) requires attention
at a σ-stage s > |σ| if W|σ|,s ∩As = ∅ and one of the following holds:

• Rσ currently has no follower
• Rσ has a follower x ∈W|σ|,s
Now we construct the sets A and B as follows:

• At stage s, compute δs. Initialize all strategies on nodes to the right of
δs, which means that all R- and Q-strategies forget about their current
followers and will have to pick new larger followers, larger than any number
seen so far in the construction. This is the influence of the N -requirement
on δs: it requires no numbers to be put into A and B below the use so far.
We do this only to the right of the current path, because that corresponds
to the guess that there are finitely many e-expansionary stages.

• Find the strongest R- or Q-requirement whose strategy requires attention
at stage s. If this is for example Re (the case for Qe is analogous) with
corresponding strategy Rσ (by the conditions above s must be a σ-stage),
we say that Rσ acts at stage s. If Rσ currently has no follower, appoint
a new large follower. Otherwise, enumerate the current follower into A.
Initialize all strategies attached to nodes properly extending σ.

In the two lemmas below we will verify that the leftmost infinitely often visited
path δ satisfies all requirements. The true path δ is the leftmost infinitely often
visited path:

σ ≺ δ ⇔ ∃∞s(σ ≺ δs) ∧ ∃∞s(δs <lex σ)

Lemma B.3. Each R- and Q-requirement is met.

Proof. Take some arbitrary e and consider Re (Qe is analogous). Let σ = δ �e.
Assume inductively that strategies attached to proper prefixes of σ only act
finitely often. We prove that Rσ is successful. Let s be the least stage such
that

• no strategy attached to a proper prefix of σ acts after stage s (we can find
this because of the induction hypothesis)

• after stage s, δt for t > s never moves to the left of σ.
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Since s is picked to be the least such stage, it follows that Rσ must be initial-
ized at stage s. Therefore, as soon as another σ-stage t > s is encountered, a
new follower x will be appointed for Rσ. After that there is no way to initialize
Rσ again, since none of the strategies with proper prefixes of σ or nodes to
the left will be visited. This follower x will not be put into A if it does not
enter We. But as soon at it does (say, at some stage u), at the next σ-stage
v > u (and there will be one since this is the infinitely often visited path), x
will be enumerated into A. In any case, Re will be satisfied. Finally Rσ has
only acted twice since stage s. Also strategies Re are never initialized, so the
inductive argument goes through. ut

Lemma B.4. Each N -requirement is met.

Proof. Pick some arbitrary e. Let σ = δ �e. If σ ∗ 1 ≺ δ, that means there
are only finitely many e-expansionary stages, so ΦAe 6= ΦBe and Ne is met. So
suppose that σ ∗0 ≺ δ, and that ΦAe is total. Let s be the least stage such that

• no strategy attached to a proper prefix of σ ∗ 0 acts after stage s
• after stage s, δt for t > s never moves to the left of σ.

We show that ΦAe is computable: to compute ΦAe (n), find the least σ ∗ 0 stage
t0 > s such that l(e, t0) > n (which exists, because there are infinitely many
e-expansionary stages). Let t1 < t2... be the σ ∗ 0-stages greater than or equal
to t0. They are e-expansionary, so we have ΦAe (n)[ti] = ΦBe (n)[ti] for all i. Also
for each i we have either ΦAe (n)[ti+1] = ΦAe (n)[ti] or ΦBe (n)[ti+1] = ΦBe (n)[ti].
To see that this does hold, fix some i. At stage ti, all strategies attached to
nodes on the right of σ∗0 will be initialized. So any follower for such a strategy
must be a number greater than any number seen so far. In particular it must
be larger than φAe (n)[ti] and φBe (n)[ti]. By the choice of s no strategies above
or to the left of σ can act after stage ti. So these strategies, that have such
large followers, are the only ones that can put numbers into A or B. They can
only act at σ ∗ 0-stages, and only one strategy will be able to act at such a
stage. So only one number can enter either A �φA

e (n)[ti] or B �φB
e (n)[ti] before

stage ti+1. So either ΦAe (n)[ti+1] = ΦAe (n)[ti] or ΦBe (n)[ti+1] = ΦBe (n)[ti].
It follows that ΦAe (n)[t0] = ΦAe (n)[t1] = ... So ΦAe (n) = ΦAe (n)[t0] and

ΦAe (n) is computable. ut

These two lemmas conclude the proof. ut
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The decanter method

A set is K-trivial if and only if it is low for K (or equivalently low for ML-
randomness [Nie08, 170]). One implication is not too difficult: every set that is
low for K is K-trivial (see Proposition 5.2.3 in [Nie08, 177]). The other direc-
tion requires an intricate proof, that can be found in [Nie08]. This appendix
is dedicated to the basic method behind that proof, the so-called decanter
method, due to Downey, Hirschfeldt, Nies and Stephan [DHNS02]. By extend-
ing that to the so-called golden run method, Nies (together with Hirschfeldt)
was able to prove that every K-trivial set is superlow, and that every K-trivial
set is low for K [Nie05], which is the claim above.

In this appendix we only treat the decanter method, based on [Nie08, 201].
We illustrate this method with the proofs of the following theorems:

Theorem C.1 (Downey, Hirschfeldt, Nies and Stephan [DHNS02]).
No K-trivial set can be weak truth-table complete.

Theorem C.2 (Downey, Hirschfeldt, Nies and Stephan [DHNS02]).
No K-trivial set can be Turing-complete.

The methods of these proofs are also used in Section 4.4, where we construct
a non-K-trivial set below an unbounded non-decreasing ∆0

2 gap function (see
Section 4.4).

The technique relies on a construction to make a set non-K-trivial. In
case of proving that a K-trivial set cannot be Turing complete we assume
that there is one that is, and derive a contradiction by making this particular
set be non-K-trivial.

The method to make A non-K-trivial is roughly the following, as depicted
in the diagram below: first we describe n with a string of length rn (box 1).
We can do this using the Kraft-Chaitin theorem, which will give us a machine
with coding constant d, that we know in advance using the recursion theorem.
Now we wait for a stage s such that the universal machine describes it with the
required length: K(n) ≤ rn+d (box 2). Then if A were K-trivial via constant
b, it would need a short description: we wait for this K(A �n) ≤ K(n) + b
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(box 3). After that, we change A in the first n digits (oval). This requires a
new description of A �n. However, there are only 2rn+b+d strings of length
≤ rn + b+ d (and we forced K(n) ≤ rn + d). So if we make enough changes,
this loop will eventually not go through, which shows that A is non-K-trivial.

Describe n
with length
rn

Wait for
K(n) ≤ rn+d

Wait for
K(A �n) ≤
K(n) + b

Change A �n

Note that in the case of Turing completeness we are in fact not free to construct
a set A as we like. All we have is the assumption that there would be some
K-trivial set A that is Turing complete. However, the assumption that it is
Turing complete will give us the opportunity to make the required changes
in A. To see how this works, it is instructive to first look at a simpler case,
namely that no K-trivial set can be weak truth table complete. We will go
into both proofs below.

C.1 No K-trivial set is weak truth-table complete

In this section we prove Theorem C.1.

Proof (of Theorem C.1). Take some arbitraryK-trivial set A, assume that it is
K-trivial with constant b (for all n, K(A �n) ≤ K(n)+b). Since A is K-trivial
it must be ∆0

2 (by Theorem 1.14), so we have a computable approximation A[s]
to A. Suppose for a contradiction that A is weak truth-table complete. That
is, we have ∅′ ≤wtt A. In order to show that A is K-trivial, we will construct a
machine Md with the Kraft-Chaitin theorem, to describe numbers n with rn.
The coding constant d for this machine is known in advance by the recursion
theorem, so we can use it to force K(n) ≤ rn + d. Then if A is K-trivial we
must have K(A �n) ≤ K(n) + b ≤ rn + d+ b for all n. However, we will reach
a contradiction concerning the number of times A �n needs to be described,
using that A is wtt-complete.

Since by assumption A is wtt-complete, we have ∅′ ≤wtt A. For every c.e.
set B, we have B ≤m ∅′. So we get a wtt-reduction B ≤wtt A. In other words,
B = ΓA for some Turing functional ΓA, and we have a computable function
g(x) such that ∀x use(ΓA(x)) ≤ g(x). This holds for every c.e. set, so the next
step in this proof is to construct a smart c.e. set B and force A to change as
we put elements into B.



C.2 No K-trivial set is Turing complete 75

Describe
g(2b+d) with
length rn

Wait for
K(g(2b+d)) ≤
rn + d

Wait for
K(A �g(2b+d)) ≤
K(n) + b

A �g(2b+d)

changes
Change
B �2b+d

We will describe a cleverly picked number n with a string of length 0. To have
A be K-trivial, that means that the universal machine must describe A �n
with a string of length at most b+d. Observe that there are only 2b+d strings
of this length, and if we can cause that many changes in A �n, the machine
will need at least 2b+d + 1 strings to describe each initial segment A �n. At
this point, it is important to note that if we want to cause 2b+d changes via
B, we will need to look at the initial segment of A up to the use of 2b+d.
In other words, if we cause changes in B �2b+d , they will result in changes in
A �(use(ΓA(2b+d))).

Now we pick n = g(2b+d), since this is an upper bound for the use. We let
L = {〈0, n〉}, which is a bounded c.e. request set, so there is a machine that
describes n with a string of length 0. Now we construct B as follows: wait
for a stage t such that B �2b+d= ΓA �2b+d [t]. Since A[t] approximates A, its
initial segment should have a short description. So we wait for the moment
that K(A �n)[t] ≤ b+ d. Then we put the largest number less than 2b+d that
is not yet in B, into B.

Note that by putting this number intoB, we make sure that, sinceB = ΓA,
it must be that A �(use(ΓA(2b+d))) 6= A[t] �(use(ΓA[t](2b+d))). By our choice of n,
this means that A �n 6= A[t] �n. Now we repeat the same construction: put
another number less than 2b+d that is not yet in B, into B.

By following this procedure, we need the universal machine to describe
2b+d many initial segments A[s] �n, before describing the correct A �n. All
these descriptions need to be of length 2b+d. So the weight is (2b+d + 1) ·
2−(b+d) > 1. This is a contradiction. ut

C.2 No K-trivial set is Turing complete

Proving that no K-trivial set can be Turing complete (Theorem C.2) requires
some fine tuning of the above strategy. We no longer have a computable bound
on the use function, so we cannot pick a smart number to describe in advance.
Instead we need to describe some number and pick a new one as soon as the
use changes. This will add to the weight of the machine we build, so we have
to do this carefully.

Proof (of Theorem C.2).
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The idea

Just like in the previous proof, we take a set A that is K-trivial with constant
b. We have an approximation (A[s]). We will build a machine Md (this index is
known in advance) to describe numbers n. We suppose towards a contradiction
that A is Turing complete: ∅′ ≤T A. Thus for any c.e. set B we have B = ΓA.
We will build a clever set B to cause sufficiently many changes in A to get a
contradiction with the weight of the machine Md.

As pointed out earlier, the difference with the previous proof is that we
no longer have a computable bound on the use of the Turing functional. That
means that if we make changes in B and we require a description of A �n, the
changes in B might have no effect on this initial segment because it only uses
larger numers from A. There is no clever n we can pick to avoid this scenario.
But since we know that B = ΓA, the use will eventually stabilize.

Our strategy will be to keep picking a new n whenever the use of A changes,
and wait for the use to stabilize. The idea is to no longer describe n with a
description of length 0, since this would immediately use up all the weight of
the machine Md. Since we need to describe (many) more n now, this cannot
happen. Instead, we first describe n0 with a string of length r0 quite large,
by enumerating 〈r0, n0〉 into L. When the above case occurs, and we need to
change to a new n1, we describe this with a string of length r1 = r0 + 1. In
this way, whenever we ‘spill’ weight at step i, it will only be 2ri much. We will
see later that in the worst case we could only spill at most once for each index
i, so the total wasted weight

∑
i 2−ri =

∑
i 2−(r0+i) = 2−r0

∑
i ·2−i = 2 · 2−r0

can be kept below any value by picking r0 large enough. The diagram now
looks as follows:

Describe ni
with length
ri, where
ri+1 = ri + 1

Wait for
K(ni) ≤
ri + d

Wait for
K(A �ni

) ≤ K(ni) + b

A �ni

changes
Change
B �2b+d

If the use of
A changes,
put i+ 1

From now on we will distinguish between numbers n for which the regular loop
is ended because the use changes, and the n such that in fact the loop ends
because there are no more short descriptions. In the latter case the strategy is
successful. In the first case we ‘waste’ weight because we describe the number
itself, but no extra weight is required to describe A �n. We put such n into
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a set F1, called a 1-set because only one description of A �n is needed. The
n where first some different A[s] �n 6= A �n requires a description, resulting in
two descriptions of the same length, are put into a set F2, called a 2-set.

First case

For a moment consider the (impossible) case where b = d = 0. Then we could
go through numbers n long enough to have the total weight1 of the numbers
in F2 be some value larger than 1

2 but smaller than 1. This way we keep the
weight of the machine describing the natural numbers low enough (less than
1), while the weight of the machine describing the initial segments of A is
twice this value (because for each n we needed 2 descriptions), so larger than
1.

The procedure. Formally, the procedure described above is the following,
which we call P2(p, q). Here p is the goal (the weight of F2 that we need to
be between 1

2 and 1), and q is the garbage quota (the weight of the numbers
n gone to waste). Together, p and q should add up to some value less than
1, and we assume that q = 2−c for some c. Then the procedure is as follows
(starting out with empty sets F0, F1, F2):

(1) Choose a large2 number m.
(2) Wait for ΓA(m) to converge
(3) Let i be the number of times that the procedure has gone through (2).

Then pick a large number ni and let ri = c+i. Put 〈ri, ni〉 into the request
set L, and put ni into a 0-set F0.
Wait for a stage t such thatK(A �n)[t] ≤ K(n)[t]+b+d (for now b = d = 0)
and take ni out of F0 and put it into F1 (since an initial segment for A
of this length is now described once). Note that if Md is a machine for L,
then such a stage t exists. If weight(F1 ∪ F2) ≤ p, goto (3).
If ΓA(m) changes during this loop the numbers that are already in F1 will
still need two different descriptions, so we can take all of them and put
them into F2. The number ni in F0 is now garbage, since we cannot be
sure that it results in two different descriptions of A �ni . So put F0 = ∅
and goto (2).

(4) Put m into B. This causes A to change, so everything that is now in
F1 needs another description: we put all these numbers into F2 and put
F1 = ∅.

Verification. To see that this produces a bounded request set L, note that we
keep the weight of F1 ∪ F2 ≤ p. The weight that is wasted through F0, is at
most ri once for each i. By our choice of these ri, we get that the weight of
1 the weight of a subset F of N is formally defined as follows: if L is the request

set, consisting of pairs 〈r, n〉, then the weight of F is
∑
{r:〈r,n〉∈L∧n∈F} 2−r.

2 By a large number we mean a number larger than any number seen in the con-
struction so far.
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L is at most p+
∑
i≥1 2−ri = p+

∑
i≥1 2−(c+i) = p+ 2−c ·

∑
i≥1 2−i = p+ q,

which we took to be less than 1.
Next, notice that ΓA is total, so we will at some point reach (4). Then we

get that the weight of F2 is p, the goal, which we took to be greater than 1
2 .

Since all of of the numbers ni in F2 require two descriptions of initial segments
of that length, the weight of the machine describing those exceeds 1. This is
a contradiction, so A is non-K-trivial.

Second case

The procedure as described above only works for the impossible case where
b = d = 0. In fact, if we want to get a contradiction with the K-triviality of A
where for each n we need descriptions such that K(A �n) ≤ K(n)+b ≤ r+b+d
(where r is the length of the description of n), then we need to make sets of n
such that at least 2b+d+1 many descriptions of A �n are needed, instead of just
2 as before. So instead of making a 2-set, we now need to make a 2b+d+1-set
of weight more than 1

2 .
The strategy to do this is to define procedures that make a k-set of weight

pk by calling Pk−1 a few times. Ultimately, this will go down to the level of
P2, which is as defined above. The problem is that while calling a different
procedure, the use of A may change. This cancels the procedure and calls the
same procedure again, but with a smaller garbage quota. Like before, this
guarantees that the total garbage quota is not exceeded.

If a procedure Pi is not cancelled, it picks a number m to put into B, and
calls a procedure with a lower index. Finally this will reach P2, which actually
does the work by describing appropriate numbers n. Note that during this
procedure, each new (lower) level picks a new number m to put into B. So
if we start on procedure of level 2b+d+1, this many numbers will be put into
B, causing that same number of changes, and each of these changes result
in different initial segments of A, because only then are the procedures not
cancelled, and can they end up at P2. So then really 2b+d+1 different strings
are needed to describe initial segments of A, which is a contradiction.

The procedures. Formally, the procedure Pi(p, q) is the following (for i > 2,
and with q = 2−c for some c):

(1) Choose some large number m
(2) Wait for ΓA(m) to converge
(3) Let j be the number of times the procedure has gone through (2). call

Pi−1(2−jq, q′) where q′ = min(q, 2−(wi−1+i+2)) where wi−1 is the number
of Pi−1-procedures started so far.
if weight(Fi−2 ∪ Fi−1) < p goto (3)
If the ΓA(m) changes during this loop, cancel the run of all subprocedures
and goto (2). Note that like in the P2-case, what is in Fi−1 has to be de-
scribed again because of this change, so all these numbers can be put into
the i-set Fi. The numbers in Fi−2 go to waste. Declare Fi−2, Fi−3, ..., F0

empty.
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(4) Put m into B. Now we can put Fi−1 into Fi and put Fi−1 = ∅.

Now for proving the theorem we call Pk( 3
4 ,

1
8 ) with k = 2b+d+1. Now again by

the choice of the garbage quotas, which we make smaller each time we request
a new procedure, we can be sure that the weight of the request set is less
than or equal to 1. And in the end we have a 2b+d+1-set of weight 3

4 , because
this was the goal of the procedure. Now the weight of the machine describing
initial segments of A is at least

3
4
· (2b+d+1) · 2−(b+d) =

3
4
· 2 > 1.

This is a contradiction, and therefore A cannot be K-trivial. So no K-trivial
can be Turing complete. ut
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