
ar
X

iv
:1

00
3.

15
72

v1
 [

cs
.P

L
]

 8
 M

ar
 2

01
0

Expressiveness and Extensions of an Instruction
Sequence Semigroup

MSc Thesis (Afstudeerscriptie)

written by

S.H.P. Schroevers

(born February 20, 1985 in Zaandam, The Netherlands)

under the supervision of Dr. Alban Ponse, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

February 15, 2010 Dr. Inge Bethke
Prof. Dr. Peter van Emde Boas
Dr. Alban Ponse
Prof. Dr. Frank Veltman

http://arxiv.org/abs/1003.1572v1

ar
X

iv
:1

00
3.

15
72

v1
 [

cs
.P

L
]

 8
 M

ar
 2

01
0

Abstract

PGA, short for ProGram Algebra [PvdZ06, BL02], describes sequential programs
as finite or infinite (repeating) sequences of instructions. The semigroup C of finite
instruction sequences [BP09a] was introduced as an equally expressive alternative to
PGA. PGA instructions are executed from left to right; most C instructions come in a
left-to-right as well as a right-to-left flavor. This thesis builds on C by introducing an
alternative semigroup Cg which employs label and goto instructions instead of relative
jump instructions as control structures. Cg can be translated to C and vice versa (and
is thus equally expressive). It is shown that restricting the instruction sets of C and
Cg to contain only finitely many distinct jump, goto or label instructions in either or
both directions reduces their expressiveness. Instruction sets with an infinite number
of these instructions in both directions (not necessarily all such instructions) do not
suffer a loss of expressiveness.

http://arxiv.org/abs/1003.1572v1

Contents

Contents 3

1 Introduction 5

2 Preliminaries 7
2.1 Basic Thread Algebra . 7
2.2 Program Algebra: PGA . 9
2.3 Finite Instruction Sequences and Code Semigroups 12

3 C Instruction Sequences 17
3.1 The Instruction Set . 17
3.2 Semantics . 20
3.3 The Reachability of Instructions . 22
3.4 A Small Variation on C . 23

4 Cg Instruction Sequences 25
4.1 The Instruction Set . 25
4.2 Semantics . 27
4.3 Normalizing Label Numbers . 29
4.4 Freeing Label Numbers . 30
4.5 Cg and Relative Jumps . 31
4.6 Label Instructions as More General Jump Targets 33

5 Translating Instruction Sequences 35
5.1 Translating C to PGA . 35
5.2 Translating PGA to C . 36
5.3 Translating C to Cg . 37
5.4 Translating Cg to C . 40

6 Some Expressiveness Results 43
6.1 The Expressiveness of Subsemigroups of C . 44
6.2 The Expressiveness of Subsemigroups of Cg 50

7 Discussion 53
7.1 Further Work . 53
7.2 Acknowledgements . 53

A Overview of Defined Translations 55

B Proof by Bergstra & Ponse 57

3

4 Contents

B.1 Expressiveness and reduced instruction sets 57

Bibliography 61

Chapter 1

Introduction

Bergstra and Ponse [BP09a] introduce an algebra of finite instruction sequences by present-
ing a semigroup C in which programs can be represented without directional bias: in terms
of the next instruction to be executed, C has both forward and backward instructions and
a C-expression can be interpreted starting from any instruction.

[BP09a] provides equations for thread extraction, i.e. C’s program semantics, and defines
behavioral equivalence. It considers thread extraction compatible (anti-)homomorphisms
and (anti-)automorphisms. Lastly, it discusses some expressiveness results.

C is a recent alternative to PGA [PvdZ06, BL02], short for ProGram Algebra. Contrary
to C, PGA uses infinite instruction sequences to model infinite behavior. Since both PGA
and C are tools that aid in the research on imperative sequential programming, and given
that any “real world” programs are always finite, C appears to be a more realistic approach
to a mathematical representation for sequential programs.

This thesis introduces PGA and C and describes their semantics. It then defines an
alternative to C called Cg which uses label and goto instructions as control structures,
as opposed to C’s relative jump instructions. Behavior preserving mappings are defined
between PGA, C and Cg, thereby establishing that they are equally expressive.

The final chapter of this thesis investigates the expressiveness of subsemigroups of C and
Cg, particularly those from which a finite or infinite number of jump or goto instructions
has been removed, thereby improving on an expressiveness result presented in [BP09a].

Lastly, the reader should take note of Appendix A, which provides a graphical repre-
sentation of some of the (single-pass) instruction sequences defined in this thesis and the
mappings between them.

5

Chapter 2

Preliminaries

In this chapter we introduce the concepts on which the remainder of this thesis builds. In §2.1
basic thread algebra is introduced. This allows us to describe the semantics of instruction
sequences. Next, §2.2 and §2.3 introduce two different takes on the way in which instruction
sequences can be represented: on the one hand there is PGA which describes finite or
infinite single-pass instruction sequences; on the other hand we can take the (arguably more
natural) stance that all instruction sequences must be finite while allowing instructions to
be executed multiple times. It is the latter theory which describes instruction sequence
semigroups, two concrete instances of which will be introduced in the following chapters as
C and Cg.

2.1 Basic Thread Algebra

Basic thread algebra, BTA for short, is a means to describe the behavior of sequential
programs upon execution. BTA takes the position that program execution consists of a
sequence of basic actions which are performed inside some execution environment. It is
assumed that a fixed but arbitrary set of basic actions A is specified; this parameter is often
kept implicit. Upon execution of an action the execution environment yields a boolean reply,
the value of which specifies how execution should proceed.

In this section we will briefly introduce basic thread algebra. For more on this subject
we refer to [PvdZ06, BP09a, BL02]1.

BTA expressions are called threads. The set of all threads is denoted BTA. For any set
A, threads are built using two constants and a single ternary operator:

• The deadlock constant D : BTA.

• The termination constant S : BTA.

• The postconditional composition operator E D : BTA×A× BTA→ BTA.

It follows that each closed BTA expression performs finitely many actions and then
terminates or becomes inactive (in the case of deadlock).

For P ∈ BTA and a ∈ A, the thread P EaDP is often more conveniently denoted a◦P .
The action prefix operator ◦ can be used only if the boolean reply returned after execution
of a does not influence further behavior. Action prefix binds stronger than postconditional
composition. Additionally, for all n ≥ 1 we will define an ◦ P to mean the thread which
performs n a-actions, followed by the behavior described by the thread P . That is, a1 ◦P =
a ◦ P and an+1 ◦ P = a ◦ (an ◦ P).

1In [BL02] BTA is called BPPA.

7

8 Chapter 2. Preliminaries

The approximation operator π : N×BTA→ BTA returns the behavior of a given thread
up to a specified “depth”2, i.e., it bounds the number of actions performed. For all P,Q ∈
BTA and a ∈ A we define,

π(0, P) = D

π(n+ 1, S) = S

π(n+ 1,D) = D

π(n+ 1, P E aDQ) = π(n, P)E aD π(n,Q)

From now on we will write πn(P) instead of π(n, P) for brevity. Since every BTA thread is
finite, it follows that for every P ∈ BTA there exists some n ∈ N such that for all m ∈ N,

πn(P) = πn+m(P) = P.

The inclusion relation on threads in BTA is the partial ordering generated by the following
two clauses:

• For all P ∈ BTA, D ⊑ P .

• For all P, P ′, Q,Q′ ∈ BTA and a ∈ A, if P ⊑ P ′ and Q ⊑ Q′ then P E a D Q ⊑
P ′ E aDQ′.

BTA has a completion BTA∞ which also comprises the infinite threads. BTA∞ is the
cpo consisting of all projective sequences. We define,

BTA∞ = {(Pn)n∈N | ∀n ∈ N(Pn ∈ BTA ∧ πn(Pn+1) = Pn)}.

Now (Pn)n∈N = (Qn)n∈N if Pn = Qn for all n ∈ N. Furthermore we overload notation and
define,

D = (D,D, . . .),

S = (D, S, S, . . .),

(Pn)n∈N E aD (Qn)n∈N = (Rn)n∈N,with

{

R0 = D,

Rn+1 = Pn E aDQn.

This definition also shows how all elements of BTA have a counterpart in BTA∞. The
projective sequence corresponding to a thread P ∈ BTA is (πn(P))n∈N.

The set res(P) of residual threads of P has the following inductive definition:

P ∈ res(P), QE aDR ∈ res(P) =⇒ Q ∈ res(P) ∧R ∈ res(P). (2.1)

Depending on the execution environment a residual thread may be “reached” by performing
zero or more actions.

A thread P is regular if res(P) is finite. Regular threads are also called finite state
threads. Every element of res(P) is a state. We write BTAreg ⊂ BTA∞ for the set of
regular threads.

A finite linear recursive specification over BTA∞ is a set of equations

xi = ti

for i ∈ I with I a finite index set, variables xi and all ti terms of the form S, D or xiEaDxj
with j, k ∈ I and a ∈ A. P ∈ BTAreg iff P is the solution of a finite recursive specification
(see Theorem 1 of [BP09a]).

2In this thesis we will use the convention that N is the set of all natural numbers, including 0. N
+ =

N− {0}. The integers are denoted Z.

2.2. Program Algebra: PGA 9

2.2 Program Algebra: PGA

A program can be viewed as a single-pass instruction sequence. That is, a program is a
finite or infinite sequence of instructions which is executed from left to right such that every
individual instruction is executed at most once—it is either executed or skipped. Single-
pass instruction sequences are the main concept underlying PGA [PvdZ06, BL02]. Given an
(implicit) set A of actions, PGA terms are constructed by concatenating instructions from
the set I, defined as,

I =
⋃

a∈A

{a,+a,−a} ∪
⋃

k∈N

{#k} ∪ {!}.

The instructions in I are called primitive instructions. Let us informally define their behavior
(note that a ∈ A and k ∈ N):

a is a basic instruction. It instructs the execution environment to perform action a. The
boolean reply returned by the environment is disregarded.

+a is a positive test instruction. Like a, it instructs execution of action a. However, only
if the execution environment returns true will the instruction to its immediate right
be executed. Otherwise this instruction is skipped and execution proceeds at the next
instruction.

−a is a negative test instruction. This is the dual of the positive test instruction, in
the sense that it skips the next instruction iff the environment returns true after
performing action a.

#k is a forward jump instruction. This instruction transfers execution to the kth instruc-
tion to its right (i.e., k − 1 instructions are skipped). Note that #0 instructs the
indefinite repetition of this instruction. Hence the behavior of #0 is identified with
deadlock.

! is the termination instruction. It causes successful termination of the program.

The set of PGA terms is denoted P . PGA terms are constructed from primitive instruc-
tions using the binary concatenation operator ; and the unary repetition operator ω. That
is, P is the smallest superset of I that is closed under concatenation and repetition. Thus,
for all X,Y ∈ P , also X ;Y ∈ P and Xω ∈ P . Examples of PGA terms include:

a, +b; #3, (#3; a; b)ω, −c;−c; (−a)ω. (2.2)

2.2.1 First Canonical Form

We define X1 = X and Xn+1 = X ;Xn, for all n ∈ N. Using this notation, PGA defines the
following four axioms for all X,Y, Z ∈ P :

(X ;Y);Z = X ; (Y ;Z) (PGA1)

(Xn)ω = Xω (PGA2)

Xω;Y = Xω (PGA3)

(X ;Y)ω = X ; (Y ;X)ω (PGA4)

These four axioms define instruction sequence congruence. Instruction sequence congruent
PGA expressions execute exactly the same instructions and are thus behaviorally equivalent.
In the remainder of this thesis instruction sequence congruent PGA terms are identified.

(PGA1) states that concatenation is associative. Using (PGA2) and (PGA4) we derive
that Xω = X ;Xω for all X ∈ P . Furthermore, using (PGA1)–(PGA4) every PGA term
can be rewritten to one of the following two forms:

10 Chapter 2. Preliminaries

1. X , where X does not contain the repetition operator, or

2. X ;Y ω, with X and Y not containing the repetition operator.

Any PGA term in one of these two forms is said to be in first canonical form. The set
P 1 ⊂ P contains exactly those PGA terms which are in first canonical form. The function
fst : P → P 1 converts any given PGA term to a first canonical form. Let X1, X2, Y1, Y2 ∈
P , such that X1 and X2 do not contain repetition. Then fst can be defined such that,

fst(Y ω
1) = fst(Y1;Y

ω
1) fst(X1) = X1

fst(Y ω
1 ;Y2) = fst(Y ω

1) fst(X1;X
ω
2) = X1;X

ω
2

fst(X1;Y
ω
1 ;Y2) = fst(X1;Y

ω
1)

It is not hard to see that fst is total and makes use only of (PGA1)–(PGA4).

2.2.2 Second Canonical Form

Another congruence relation defined on PGA terms is structural congruence. It is defined
using the following four axioms which are concerned with chained jump instructions in PGA
terms in first canonical form:

#n+1;u1; . . . ;un; #0 = #0;u1; . . . ;un; #0, (PGA5)

#n+1;u1; . . . ;un; #m = #n+m+1;u1; . . . ;un; #m, (PGA6)

(#k+n+1;u1; . . . ;un)
ω = (#k;u1; . . . ;un)

ω , (PGA7)

and,

#n+m+k+2;u1; . . . ;un; (v1; . . . ; vm+1)
ω =

#n+k+1;u1; . . . ;un; (v1; . . . ; vm+1)
ω. (PGA8)

Using (PGA1)–(PGA8) every PGA term in first canonical form can be rewritten to a struc-
turally congruent PGA term without chained jump instructions (this also implies that the
jump counter of jump instructions into and inside the repeating part of a PGA term is
minimal). Such a term is said to be in second canonical form. As with first canonical forms,
second canonical forms are not unique. However, any second canonical form X ;Y ω can be
converted to an equivalent second canonical form X ′;Y ′ω where X ′ and Y ′ are minimal.
Then X ′;Y ′ω is unique.

The set P 2 ⊂ P 1 contains exactly those PGA terms which are in second canonical form.
The function snd : P → P 2 converts any PGA term to its minimal second canonical form.
We do not provide an implementation here.

2.2.3 The Semantics of PGA

Every PGA term X ∈ P has uniquely defined behavior, in the form of some thread T ∈
BTAreg. The thread extraction operator | |PGA : P → BTAreg yields this thread, for every
PGA term. It is defined as,

|X |PGA =







a ◦ D if X ∈ {a,+a,−a},

a ◦ |Y |PGA if X = a;Y ,

|Y |PGA E aD |#2;Y |PGA if X = +a;Y ,

|#2;Y |PGA E aD |Y |PGA if X = −a;Y ,

|Y |PGA if X = #1;Y ,

|#k+1;X |PGA if X = #k+2;u;Y ,

D if X ∈ {#k,#0;Y,#k+2;u},

S if X ∈ {!, !;Y },

(2.3)

2.2. Program Algebra: PGA 11

Note that this definition does not explicitly mention the repetition operator. Instead it uses
the notion that X is “unfolded” when needed—by means of (PGA4) and possibly (PGA2).
Thread extraction on PGA terms requires one additional rule:

If the equations in (2.3) can be applied infinitely often from left to right
without ever yielding an action, then the extracted thread is D.

(2.4)

Observe that (2.4) is only relevant for PGA terms which contain an infinite sequence of
chained jump instructions. As such it is not applicable to second canonical forms.

Examples Let us apply the thread extraction operator | |PGA to the example PGA terms
of (2.2).

• The behavior of the term a can be derived in a single step according to (2.3):

|a|PGA = a ◦ D.

• +b; #3 appears to be a more complicated example, but its behavior turns out to be
equally simple:

|+b; #3|PGA = |#3|PGA E bD |#2;#3|PGA = DE bD D = b ◦ D.

• It turns out that the single pass instruction sequence (#3; a; b)ω does not perform any
action, despite its infinite length:

|(#3; a; b)ω|PGA = |(#0; a; b)ω|PGA = |#0; (a; b; #0)ω|PGA = D.

Observe that the first step of this derivation applies (PGA7), followed by an application
of (PGA4).

• Lastly, −c;−c; (−a)ω produces infinite behavior. To determine its exact behavior, we
start out with a couple of left-to-right applications of (2.3):

|−c;−c; (−a)ω|PGA = |#2;−c; (−a)ω|PGA E cD |−c; (−a)ω|PGA

= |(−a)ω|PGA E cD (|#2; (−a)ω|PGA E cD |(−a)ω |PGA)

= |(−a)ω|PGA E cD (|#2;−a; (−a)ω|PGA E cD |(−a)ω|PGA)

= |(−a)ω|PGA E cD (|(−a)ω|PGA E cD |(−a)ω|PGA)

= |(−a)ω|PGA E cD c ◦ |(−a)ω|PGA.

At this stage the behavior of −c;−c; (−a)ω has not been fully derived, as the thread
corresponding to (−a)ω still needs to be determined. This thread turns out to be
infinite:

|(−a)ω|PGA = |−a; (−a)ω|PGA

= |#2; (−a)ω|PGA E aD |(−a)ω |PGA

= |#2;−a; (−a)ω|PGA E aD |(−a)ω|PGA

= |(−a)ω|PGA E aD |(−a)ω|PGA

= a ◦ |(−a)ω|PGA.

It follows that |(−a)ω|PGA can be described by the recursive specification Q = a ◦Q.
Now, equating |−c;−c; (−a)ω |PGA with P , we see that the behavior of −c;−c; (−a)ω

is equals P1, as described by the following linear recursive specification:

P1 = P3 E cD P2, P2 = P3 E cD P3, P3 = P3 E aD P3.

(A shorter notation would be P = QE cD c ◦Q, Q = a ◦Q.)

12 Chapter 2. Preliminaries

Proposition 2.1. Each thread definable in PGA is regular, and each regular thread can be
expressed in PGA.

Proof. See e.g. Proposition 2 in [PvdZ06]. Alternatively, the result follows from the following
two observations:

• The code semigroup C introduced in Chapter 3 characterizes the regular threads (see
Proposition 3.1).

• There exist total behavior preserving mappings from PGA to C and vice versa (see
§5.2 and §5.1, respectively).

2.3 Finite Instruction Sequences and Code Semigroups

In PGA each instruction is executed at most once and the repetition operator ω is used to
construct infinite sequences of instructions. The instruction sequence semigroups introduced
in the following chapters, on the other hand, represent only finite instruction sequences in
which instructions can be executed multiple times in any order. This section introduces
some relevant notions and terminology in preparation of the introduction of concrete code
semigroups in Chapter 3 and Chapter 4.

2.3.1 Finite Instruction Sequences

Consider a non-empty instruction set I and an associative binary operation ; on I. We
will call ; the concatenation operator. Instructions can be concatenated, thereby yielding
finite instruction sequences (inseqs) of arbitrary length. For all n ∈ N

+, let

I1 = I, In+1 = {X ;u | X ∈ In, u ∈ I1}.

Then In is the set of instruction sequences of length n. We define

I+ =
⋃

n∈N+

In.

I+ contains all finite, non-empty (length greater than zero) sequences of I-instructions. X
is an I-inseq iffX ∈ I+. An I-inseq will also be called an I-expression. We call ℓ : I+ → N

+

the length function, and it is defined such that ℓ(X) = n iff X ∈ In.
Concatenation is an associative operation, thus (X ;Y);Z = X ; (Y ;Z) for arbitrary

X,Y, Z ∈ I+. Parentheses will therefore usually be omitted, and we write X ;Y ;Z. Note
also, that it trivially follows that for arbitrary n,m ≥ 1,

In+m = {X ;Y | X ∈ In, Y ∈ Im}.

For convenience, we will write I≤n for the set of all I-expressions up to length n. Likewise
I≥n contains all I-expressions of length n or greater. That is,

I≤n = {X ∈ I+ | ℓ(X) ≤ n}, I≥n = {X ∈ I+ | ℓ(X) ≥ n}.

For all i ∈ N
+, we define auxiliary functions σi : I≥i → I which return the ith instruction

in a given I-inseq. That is, if X = u1;u2; . . . ;un, then σi(X) = ui for all 1 ≤ i ≤ n. We
define i =X j iff σi(X) = σj(X). Clearly =X is an equivalence relation.

Next, for all X ∈ I+ and U ⊆ I we define U(X) = {i | σi(X) ∈ U}. In other words,
U(X) contains the positions in the I-inseq X of instructions contained in U .

It will sometimes prove convenient to regard an inseq X as a set whose elements are the
distinct instructions contained in X . So for any X ∈ I+ we write u ∈ X to indicate that
σi(X) = u for some i. X ∩ S and X ∪ S are defined as one would expect them to be (note
that S can be a set or another inseq).

2.3. Finite Instruction Sequences and Code Semigroups 13

About Notation Let X ∈ I+ be an instruction sequence. Throughout this thesis we
will write Xk for k concatenations of X . That is,

X1 = X, Xn+1 = X ;Xn.

What about X0? Our definition of an instruction sequence explicitly excludes the empty
sequence: an I-expression will always contain at least one instruction. Still, within some
contexts it will prove convenient to talk about Xk for any k ∈ N. Throughout this thesis we
will only write X0 as part of sequences which, as a whole, are guaranteed to be non-empty,
and are as such contained in I+ (i.e., the set of proper instruction sequences).

2.3.2 Code Semigroups

Given some instruction set I, every inseq X ∈ I+ is constructed by concatenation of a
finite number of elements in I. Hence I generates I+, denoted <I> = I+. I+ is closed
under the associative binary operation ; and as such I+ is a semigroup with respect to
; . Clearly every instruction set I gives rise to a semigroup (<I>, ;). We will call such a
semigroup an instruction sequence semigroup or simply code semigroup. For an introduction
to semigroup theory we refer to [CP61].

About Notation Let B refer to some code semigroup. Then we write IB for the instruc-
tion set of B. InB denotes the IB-inseqs of length n, and I+B contains all IB-expressions.
Hence we write B = (I+B , ;). When no confusion can arise, IB-instructions and IB-inseqs
may simply be referred to as B-instructions and B-inseqs (B-expressions), respectively.
Whenever B is referred to as a set instead of a semigroup, it is identified with I+B . That is,
B stands for all well-formed B-expressions. Likewise I+B may be referred to as a semigroup,
in which case it is identified with B.

Subsemigroups Let A and B be two semigroups with respect to some operator •, such
that A ⊆ B. Then A is a subsemigroup of B. Equivalently, if (B, •) is a semigroup and
A ⊆ B such that a, b ∈ A implies a • b ∈ A, then A is a subsemigroup of B. Note that the
intersection of any subsemigroups of B is either empty or itself a subsemigroup of B.3

Given an instruction set I we can take a subset of these instructions, I ′ ⊆ I. Observe
that the semigroup <I ′> is a strict subsemigroup of <I>. We will define plenty of such
subsemigroups later in this thesis.

Semigroup Homomorphisms Consider two code semigroups A and B, and a function
f : I+A → I

+
B . Then f is a mapping between instruction sequences. A significant part of this

thesis describes mappings between distinct code semigroups. Most of these mappings are
homomorphisms.

In general, a function f : A → B is a homomorphism between semigroups (A, •) and
(B, ∗) iff f(x • y) = f(x) ∗ f(y), for all x, y ∈ A. It is easy to see that f only needs to be
defined explicitly on elements of A’s generating set. If <G> = A, then for all a ∈ A−G it
is the case that a = g0 • g1 • · · · • gn+1, for some n ∈ N and g0, g1, . . . , gn+1 ∈ G, and hence
f(a) = f(g0) ∗ f(g1) ∗ · · · ∗ f(gn+1) by definition. In the specific case of code semigroups
this implies that a homomorphic function only needs to be defined explicitly on individual
instructions.

2.3.3 Instruction Sequence Semantics

It is the ability to be executed that sets instruction sequences apart from sequences of
arbitrary mathematical objects. Execution of an instruction sequence leads to (possibly

3We will not consider the empty semigroup.

14 Chapter 2. Preliminaries

unobservable) behavior. Thus, for a sequence of objects to be called an instruction sequence,
it must be ascribed a semantics, such that its behavior upon execution is defined.

This thesis will use basic thread algebra to that end. This allows us to define the
semantics of the semigroup C as in [BP09a] and provides an easy way to compare the code
semigroups introduced in this thesis to PGA on a syntactical as well as a semantic level.

In the tradition of PGA instructions are viewed as atomic program components: at any
stage during the execution of a program at most one instruction is “active” (i.e., being
executed).4 We will define the behavior of individual instructions based on their position i
within an instruction sequence X . Execution of an individual instruction may or may not
cause an action to be performed, after which control of execution is transferred to another
position in X . Then, given the position of the first instruction to be executed, the semantics
of the instruction sequence as a whole follows naturally.

The first instruction to be executed is called the initial or start instruction. The leftmost
and rightmost instruction of an inseq are obvious candidates to be designated as such, but
given a specific instruction sequence X , execution can start at any position within X . Thus
for all X ∈ I+ and 1 ≤ i ≤ ℓ(X), the pair (i,X) can be identified with a certain thread,
namely the thread which represents the behavior resulting from the execution of X starting
with the ith instruction. Though not strictly necessary, for any invalid instruction position
i (i.e. i < 1 or i > ℓ(X)) the pair (i,X) will be identified with some default thread D.
Once D has been fixed, every pair (i,X) ∈ Z × I+ is identified with a certain thread T .
Throughout this thesis we will consider only one value for D, namely D, i.e. deadlock.

In this way the thread extraction operator | , | : Z×I+ → BTA∞ specifies the semantics

of a semigroup I+. For convenience we will usually write |X |i instead of |i,X |, but this is
merely a notational matter. For any X ∈ I+, the thread describing the behavior of X if
executed starting from the leftmost instruction is called its left behavior, written |X |→ =

|X |1. Likewise |X |← = |X |ℓ(X)
is called the right behavior of X , meaning the behavior of

X if executed starting from the rightmost instruction.

Once specific code semigroups have been defined—along with suitable thread extraction
operators—it becomes possible to analyze their expressiveness. Given equally expressive
code semigroups A and B one can define mappings between them, such that the behavior
of any inseq X in the domain is in some way reflected by the behavior of the corresponding
inseq Y to which it is mapped in the codomain. Similar mappings can also be defined from
a semigroup A onto itself.

Definition 2.2. Let A and B be two code semigroups on which the thread extraction
operators | , |A : Z × I+A → BTA∞ and | , |B : Z × I+B → BTA∞ are defined, respectively.
Consider arbitrary X ∈ I+A and Y ∈ P and three mappings f : I+A → I

+
B , g : I+A → P and

h : P → I+A . Then,

• f is left behavior preserving if |X |→A = |f(X)|→B .

• f is right behavior preserving if |X |←A = |f(X)|←B .

• f is left-right behavior preserving if it is both left and right behavior preserving.

• f is behavior preserving if it is left or right behavior preserving.

• f is left uniformly behavior preserving if there exists some b ∈ N
+ such that |X |iA =

|f(X)|
b(i−1)+1
B for all i ∈ Z. Observe that every left uniformly behavior preserving

mapping is left behavior preserving.

4One could draw a parallel with the program counter as found in central processing units (CPUs), which
holds the memory address of the instruction that is currently executed (or the instruction which is to be
executed next, depending on the architecture).

2.3. Finite Instruction Sequences and Code Semigroups 15

• f is right uniformly behavior preserving if there exists some b ∈ N
+ such that |X |iA =

|f(X)|biB for all i ∈ Z. Observe that every right uniformly behavior preserving mapping
is right behavior preserving.

• f is left-right uniformly behavior preserving if it is both left and right uniformly be-
havior preserving.

• f is uniformly behavior preserving if it is left or right uniformly behavior preserving.

• g is behavior preserving if |X |→A = |g(X)|PGA.

• h is behavior preserving if |Y |PGA = |h(Y)|→A .5

A behavior preserving mapping will also be called a translation because it preserves the
meaning of the original (single pass) instruction sequence.

This concludes the preliminaries. We are now ready to introduce the code semigroup C
in the next chapter.

5A more general definition would be that h is behavior preserving if there exists a function t : P → Z

such that |Y |PGA = |h(Y)|
t(Y)
A

, but this definition suffices for our purposes.

Chapter 3

C Instruction Sequences

The previous chapter introduced PGA as a means to describe programs and BTA as a means
to describe their behavior. It then introduced an alternative representation of program ob-
jects, namely strictly finite instruction sequences, as opposed to PGA’s infinite single-pass
instruction sequences. Upon specifying an instruction set I the set of finite instruction
sequences generated by concatenating elements of I forms a semigroup. This chapter intro-
duces one such semigroup and its semantics.

C was first described in [BP09a]. C is a code semigroup without directional bias: exe-
cution of a C-inseq can start at the leftmost instruction (the natural choice for most people
in Western society), but may just as well start at the rightmost instruction. In fact, given
some instruction sequence X , any position within X can be designated as starting position.

This chapter is built up as follows: §3.1 will introduce C’s instruction set and provide
some basic examples of C-expressions. It will also motivate the inclusion in the instruction
set of an instruction which upon execution will cause deadlock. Next, §3.2 formalizes the
semantics of C-expressions using thread algebra. Based on this, §3.3 introduces some acces-
sibility relations on instruction positions which will be used throughout this thesis. Lastly,
§3.4 briefly discusses a small syntactic and semantic variation on C.

3.1 The Instruction Set

Given a setA of actions, C defines basic instructionsB, positive test instructionsP, negative
test instructions N and relative jumps J:

B =
⋃

a∈A

{/a, \a}, J =
⋃

k∈N+

{/#k, \#k},

P =
⋃

a∈A

{+/a,+\a}, N =
⋃

a∈A

{−/a,−\a}.

A is a parameter to C which is often kept implicit. Additionally, C has an abort instruction
and termination instruction !. Instructions with a backward slash are called left oriented
or backward instructions; those with a forward slash are called right oriented or forward
instructions. Instructions with a left (right) orientation are also said to have a left (right)
directionality. Formally, C = (I+C , ;), with the set of all C-expressions I+C generated by
C’s instruction set IC , defined as

IC = B ∪P ∪N ∪ J ∪ {#, !}.

Let a, b, c ∈ A. Then examples of C-expressions are

/a, /a; +/a; !; \#3, +/b;−/c;−\c, \#2;−\c. (3.1)

Each C-inseq has a semantics. Before we formalize this, it will prove convenient to informally
describe the meaning of some of the instructions:

17

18 Chapter 3. C Instruction Sequences

/a is a forward basic instruction. It causes execution of the action a, after which the
instruction to its right is executed, if it exists. Otherwise deadlock occurs. Note that
the boolean reply resulting from a’s execution is ignored.

+/a is a forward positive test instruction. Action a is executed. If its boolean reply is
true, then the instruction immediately to its right is executed. On false, however,
this instruction is skipped, and execution proceeds at the second instruction to its
right. If no such instruction exists, deadlock follows.

−/a is a forward negative test instruction. −/a mirrors the behavior of +/a, in the sense
that the effect of the replies true and false is reversed.

/#k is a forward jump instruction. It causes execution of the instruction k positions to its
right, if such instruction exists. Otherwise deadlock will follow.

is the abort instruction. Execution of this instruction causes deadlock.

! is the termination instruction. It causes the program to halt successfully.

The instructions \a, +\a, −\a and \#k are the backward versions of /a, +/a, −/a
and /#k, respectively, in the sense that they have a right-to-left instead of a left-to-right
orientation. For example, execution of \a results in action a, after which the instruction to
its left is executed (if such instruction exists).

A jump instruction /#k or \#k has jump counter k and performs a jump of distance k
instructions. /#k or \#k are said to be relative jumps. The function δ : J → N

+ returns
the jump counter of a given jump instruction (e.g. δ(/#6) = 6).

We define I→C ⊂ IC to be the set forward instructions. Likewise, I←C ⊂ IC denotes the
set of backward instructions. Formally:1

I→C =
⋃

a∈A

{/a,+/a,−/a} ∪
⋃

k∈N+

{/#k},

I←C =
⋃

a∈A

{\a,+\a,−\a} ∪
⋃

k∈N+

{\#k}.

The sets B→ = B ∩ I→C and B← = B ∩ I←C denote the forward and backward oriented
basic instructions, respectively. Likewise for P, N and J. Note that with the exception
of the abort instruction # and the termination instruction !, every C-instruction has a
direction, which is either forward or backward, but not both. That is, I→C ∩ I

←
C = ∅ and

I→C ∪ I
←
C ∪ {#, !} = IC . We write u ∼ v if instructions u and v have the same direction

(or no direction). ∼ ⊂ IC × IC is the directionality relation. It is clearly an equivalence
relation.

Examples These informal definitions of the meaning of each instruction allow us to
verbally describe the meaning of the example C-expressions of (3.1), provided that we agree
upon which instruction is the first to be executed. Since this thesis is written in English,
which has an obvious left-to-right bias, we will designate the leftmost instruction to be the
initial instruction. Thus we will informally describe these inseq’s left behavior.

• /a: Performs action a, after which deadlock occurs.

• /a; +/a; !; \#3: Performs action a twice in a row. If the second action yields a positive
reply, then the program terminates. Otherwise it starts all over.

1Note, again, that the set A of actions is an implicit parameter for C (and thereby for IC , I→
C

and I←
C

).

3.1. The Instruction Set 19

• +/b;−/c;−\c: Performs action b. If this yields the reply true, then action c will
be performed, as specified by the second instruction. Here, a positive reply causes
deadlock and a negative reply causes the third instruction to be executed. If the
action b yields false then the third instruction will also be executed. The action c
as performed by the third instruction causes execution to continue at either the first
or second instruction, depending on whether it yields is a positive or negative reply,
respectively.2

• \#2;−\c: Does not perform any action. Execution of this program immediately causes
deadlock, since the first instruction jumps outside of the inseq.

3.1.1 The Case for an Explicit Abort Instruction

A draft version of the original paper on C [BP09b] provided a definition of the semigroup
C which differs slightly from the one that was published in [BP09a] (which is introduced in
the previous section). Let us refer to the semigroup as it was introduced in [BP09b] by the
name C′.

The instruction set IC′ did not contain an explicit abort instruction. It did however
contain two other instructions which C lacks: /#0 and \#0, both of which signify a jump
of distance zero3. That is, C′ = (I+C′ , ;), with

IC′ = {/#0, \#0} ∪ IC − {#}.

Since /#0 and \#0 are under all circumstances behaviorally indistinguishable, C′ had an
extra axiom (aside from the obvious axiom which states that concatenation is associative)
which stated that no distinction is made between forward and backward jumps of distance
0:

/#0 = \#0.

A jump of distance 0 is not really a jump at all and it is rather meaningless to talk about
the direction of such a jump. Semantically both /#0 and \#0 signify deadlock. Moreover,
the introduction of two distinct but equivalent instructions allows for the definition of a
mapping f on I+C′ such that X = Y while f(X) 6= f(Y).

It was therefore argued that C′ should only contain jumps /#k and \#k for k > 0,
together with a single non-directional abort instruction #, thereby eliminating the need for
the axiom /#0 = \#0 while retaining a single instruction with essentially the same behavior
as /#0 and \#0. This chain of reasoning naturally lead to the definition of an alternative
semigroup, the one introduced in [BP09a] and the previous section under the name C.4

Execution of the abort instruction has the same effect as an attempt to transfer execution
to a non-existing instruction. Since every instruction sequence is finite, one can take any
inseq X ∈ I+C and construct a behaviorally equivalent inseq X ′ by replacing every abort
instruction with a jump to a position < 1 or > ℓ(X). Hence # does not increase C’s
expressiveness. Still, as we will later see, the abort instruction is a convenient addition to
the instruction set.

2Compare the length of this description to that of the actual program, and it becomes apparent that
natural language is not really suited to produce concise descriptions of program behavior. There is also the
problem of the inherent ambiguity of natural language. Luckily basic thread algebra provides a concise and
unambiguous alternative!

3The existence of these instructions was probably inspired by the #0 instruction as found in PGA.
4The introduction of the instruction # is not really a first. A similar instruction can be found in [BL00],

where it is introduced as part of PGA. It must be noted though, that [BL00] ascribes a different semantics
to #, namely meaningless behavior, than to #0, which produces divergent behavior. The latter notion
coincides with what is referred to in this thesis as deadlock (D in basic thread algebra). BTA does not
provide a constant to represent meaningless behavior. As mentioned in a footnote in [BL02], # was later
dropped and should in hindsight be seen as an abbreviation for #0.

20 Chapter 3. C Instruction Sequences

For completeness, we define two homomorphisms f : I+C′ → I
+
C and g : I+C → I

+
C′ which

make the correspondence between C′ and C explicit. They are defined on individual in-
structions u as follows:

f(u) =

{

if u ∈ {/#0, \#0},

u otherwise,
g(u) =

{

/#0 if u = #,

u otherwise.

Now clearly f ◦ g is the identity function on C-expressions. The axiom /#0 = \#0 ensures
that likewise g ◦ f is an identity function on C′-expressions.

3.2 Semantics

As discussed in §2.3.3, C’s semantics are defined using basic thread algebra. Thus any
combination of start position i and inseq X ∈ I+C is assigned some thread |i,X |C . Writing

|X |iC for |i,X |C , the thread extraction operator | , |C : Z× I+C → BTAreg is defined on all
i ∈ Z and X ∈ I+C as,

|X |iC =







D if i < 1 or i > ℓ(X),

a ◦ |X |i+1
C if σi(X) = /a,

|X |i+1
C E aD |X |i+2

C if σi(X) = +/a,

|X |i+2
C E aD |X |i+1

C if σi(X) = −/a,

|X |i+k
C if σi(X) = /#k,

a ◦ |X |i−1C if σi(X) = \a,

|X |i−1C E aD |X |i−2C if σi(X) = +\a,

|X |i−2C E aD |X |i−1C if σi(X) = −\a,

|X |i−kC if σi(X) = \#k,

D if σi(X) = #,

S if σi(X) = !.

(3.2)

In words, the thread |X |iC describes the behavior resulting from the execution of the inseq

X starting at the ith instruction. Recall that we defined |X |→C = |X |1C and |X |←C = |X |
ℓ(X)
C

to mean X ’s left and right behavior, respectively.

Examples We will apply thread extraction on the instruction sequences of (3.1) to de-
termine their left as well as right behavior.

• The C-expression /a consists of a single instruction, and as such its left and right
behavior are equivalent:

|/a|→C = |/a|1C = a ◦ D, |/a|←C = |/a|
ℓ(/a)
C = |/a|1C = a ◦ D.

• Let X = /a; +/a; !; \#3. The left behavior of this instruction sequence is infinite, as
we have seen in §3.1. This is confirmed by several applications of equations in (3.2):

|X |→C = |X |1C = a ◦ |X |2C = a ◦ (|X |3C E aD |X |4C) = a ◦ (SE aD |X |1C).

Observe that |X |→C is recursively defined by the equation P = a ◦ (SE aD P). As for

the right behavior of X , we observe that |X |←C = |X |
ℓ(X)
C = |X |4C = |X |1C = |X |→C .

3.2. Semantics 21

• Let X = +/b;−/c;−\c. Upon trying to extract its behavior, we see that

|X |→C = |X |1C

= |X |2C E bD |X |3C

= (|X |4C E cD |X |3C)E bD (|X |1C E cD |X |2C)

= (DE cD (|X |1C E cD |X |2C))E bD (|X |1C E cD |X |2C).

The behavior is clearly infinite, and no single recursive equation can describe it. The
following linear recursive specification does:

P1 = P2 E bD P3, P2 = P4 E cD P3, P3 = P1 E cD P2, P4 = D.

Now |X |→C = P1 and |X |←C = P3.

• Let X = \#2;−\c. Then |X |→C = D and |X |←C = c ◦ D, because

|X |→C = |X |1C = |X |−1C = D

|X |←C = |X |2C = |X |0C E cD |X |1C = DE cD |X |−1C = DE cD D = c ◦ D

Loops Without Activity C-inseqs may contain chained jump instructions which form
a loop. The equations of (3.2) do not adequately handle this situation, as they do not assign
any specific thread to the execution of such a loop. Hence we introduce an additional rule
for the extraction of behavior from C instruction sequences:5

If the equations in (3.2) can be applied infinitely often from left to right
without ever yielding an action, then the extracted thread is D.

(3.3)

As an example of the application of this rule, consider the C instruction sequence X =
/#3; \#1; !; \#2;#;+\a. Its left behavior is

|X |→C = |X |1C = |X |4C = |X |2C = |X |1C = D.

Here we derive that |X |1C , |X |
4
C and |X |2C equal D by means of three left-to-right applications

of equations in (3.2) followed by application of (3.3). Indeed, the instructions at positions
1, 2 and 4 form a closed loop without any non-jump instructions. This example is also yet
another demonstration of the fact that the left and right behavior of an inseq are in general
not equivalent; the right behavior of X is,

|X |←C = |X |
ℓ(X)
C = |X |6C = |X |5C E aD |X |4C = DE aD D = a ◦ D.

Proposition 3.1. Each thread definable in C is regular, and each regular thread can be
expressed in C.

Proof. Let X ∈ I+C . Following (3.2) and (3.3) we have that for arbitrary i ∈ [1, ℓ(X)] one
of the following is the case (for some j, k ∈ Z):

|X |iC = S, |X |iC = D, |X |iC = |X |jC E aD |X |kC .

Let [i]X = {j ∈ [1, ℓ(X)] | |X |iC = |X |jC} be an equivalence class of positions in X from
which identical behavior can be extracted. Let Q be the corresponding quotient set of
[1, ℓ(X)]. Then for all [i] ∈ Q we define,

P[i] =







S if |X |iC = S,

D if |X |iC = D,

P[j] E aD P[k] if |X |iC = |X |jC E aD |X |kC .

5This rule is near identical to the rule (2.4) which assigns a thread to infinite sequences of chained jump
instructions in PGA.

22 Chapter 3. C Instruction Sequences

Now for all i ∈ [1, ℓ(X)] the thread |X |iC equals P[i], which is completely specified by the
above linear equations and is thus regular.

Conversely, let T ∈ BTAreg be described by the linear equations P0 = t1, P2 = t2, . . . ,
Pn−1 = tn−1. Then there exists an X ∈ I+C with ℓ(X) = 3n such that Pi = |X |

3i+1
C and

thus specifically |X |→C = P0. We construct X as follows: If Pi = S then set σ3i+1(X) = !. If
Pi = D then set σ3i+1(X) = #. Otherwise Pi = Pj E aD Pk, thus we set σ3i+1(X) = +/a.
σ3i+2(X) and σ3i+3(X) are jump instructions to positions 3j + 1 and 3k + 1, respectively.
Positions in X for which no instruction has been specified can be assigned an arbitrary
instruction.

3.3 The Reachability of Instructions

If the equations in (3.2) are read strictly from left to right, then they define for a given inseq
X and an arbitrary instruction at position i in X which action said instruction performs (if
any) and at which program position(s) j execution may proceed. Let us define this relation
between program positions as follows:

Definition 3.2. Let X ∈ I+C . Then the accessibility relation →X ⊂ Z
2 of X is defined as:

i→X j ⇐⇒ for some a ∈ A and k ∈ Z, |X |iC equals one of

{|X |jC , a ◦ |X |
j
C , |X |

j
C E aD |X |kC , |X |

k
C E aD |X |jC}

according to a single left-to-right application of an equation in (3.2).

That is, i→X j iff execution may continue at position j right after the instruction at position
i has been executed. We then call i the source position and σi(X) the source instruction.
Likewise j and σj(X) are the target position and target instruction, respectively.

As usual, →+
X denotes the transitive closure of the relation →X . Likewise →∗X is its

reflexive and transitive closure.

Definition 3.3. Let X ∈ I+C . A program position j is reachable from position i in X if
i →∗X j.6 The set RX,i = {j | i →∗X j} contains i and all positions reachable from i in X .
It’s complement RX,i = Z−RX,i naturally contains those positions which are unreachable
from i. Note that RX,i may include “invalid” program positions, i.e. positions outside of
X .

Definition 3.4. The set EX = {i ∈ [1, ℓ(X)] | i →X j, j /∈ [1, ℓ(X)]} contains the exit
positions of X . That is, execution of an instruction at some position in EX may cause a
position outside X to be “reached”.

Proposition 3.5. Every regular thread can be described by a C instruction sequence in
which every instruction is reachable from the start instruction.

Proof. Consider arbitrary T ∈ BTAreg, X ∈ I+C and i ∈ [1, ℓ(X)] such that |X |iC = T . If
RX,i ∩ [1, ℓ(X)] = ∅, then T , X and i meet the requirements. Otherwise, randomly select
some unreachable position j ∈ RX,i ∩ [1, ℓ(X)].

If the jth instruction is removed from X , then the jump counter of any jump instruction
which jumps over position j should be reduced by one, so as to ensure that its target
instruction remains the same. This is possible since said jump counter must be at least 2.
We do not have to be concerned with any other instruction which can transfer control of
execution to or over position j; such an instruction must itself not be reachable (because
position j isn’t) and has as such no effect on X ’s behavior.

The result of removing the instruction at position j from X is an inseq X ′ such that
either |X ′|i−1C = T or |X ′|iC = T , depending on whether j < i or j > i, respectively. This
process can be repeated until all unreachable instructions are removed.

6Note that every instruction is reachable from itself. This is somewhat unconventional, but convenient
for our purposes.

3.4. A Small Variation on C 23

3.4 A Small Variation on C

For each a ∈ A, C provides four test instructions: +/a, −/a, +\a and −\a. Semantically
speaking the first two of these have immediate counterparts in PGA: +a and −a. The
latter two are backward versions of the former two, and thus are indirectly based on (or
even inspired by) the PGA test instructions as well.

C’s lack of directional bias allows for a different semantics for test instructions, though;
one that is instead inspired by the postconditional composition operator as found in basic
thread algebra. Consider the following two instructions:

+a is the positive test instruction. It performs action a. If the environment returns true
after completion of action a the instruction to the left of the current instruction is
executed. Otherwise the instruction to its right is executed.

−a is the negative test instruction. This instruction mirrors the behavior of +a, in that it
transfers control to the left or right if the action a yields false or true, respectively.

These instructions are syntactically indistinguishable from PGA’s test instructions, but
they differ semantically. We define a code semigroup C′ = (I+C′ , ;) with

IC′ = (IC −P−N) ∪
⋃

a∈A

{+a,−a}.

C′’s semantics can be formalized by altering the set of equations (3.2): the cases related to
σi(X) ∈ {+/a,−/a,+\a,−\a} are no longer applicable, while two cases to handle σi(X) ∈
{+a,−a} need to be added. Thus we define for all i ∈ Z and X ∈ I+C′ ,

|X |iC′ =







D if i < 1 or i > ℓ(X),

a ◦ |X |i+1
C′ if σi(X) = /a,

a ◦ |X |i−1C′ if σi(X) = \a,

|X |i−1C′ E aD |X |i+1
C′ if σi(X) = +a,

|X |i+1
C′ E aD |X |i−1C′ if σi(X) = −a,

|X |i+k
C′ if σi(X) = /#k,

|X |i−kC′ if σi(X) = \#k,

D if σi(X) = #,

S if σi(X) = !.

3.4.1 Behavior Preserving Homomorphisms

Now that the behavior of every C′-expression has been specified, we can answer the question
whether C′ is more or less expressive than C. It turns out that these code semigroups are
equally expressive, because we can define behavior preserving homomorphisms from C to
C′ and vice versa.

First, we define a homomorphism f : I+C → I
+
C′ on individual instructions as follows:

/a 7→ /a; /#4;#;#; \#4, +/a 7→ /#2; /#4;+a; /#7; \#2, # 7→ #;#;#;#;#,

\a 7→ /#4;#;#; \#4; \a, −/a 7→ /#2; /#4;−a; /#7; \#2, ! 7→ !; #;#;#; !,

/#k 7→ /#5k; #;#;#; \#4, +\a 7→ /#2; \#2;+a; \#9; \#2,

\#k 7→ /#4;#;#;#; \#5k, −\a 7→ /#2; \#2;−a; \#9; \#2.

Every C instruction is mapped onto five C′ instructions. Observe that f is left-right uni-
formly behavior preserving. An alternative definition of f could map every C instruction

24 Chapter 3. C Instruction Sequences

onto four C′ instructions, at the expense of being only left or right uniformly behavior
preserving.

The same holds for the homomorphism g : I+C′ → I+C . One can define left or right
uniformly behavior preserving homomorphisms which map every C′ instruction onto three
C instructions. Here, however, we define g such that it is left-right uniformly behavior
preserving:

/a 7→ /a; /#3;#; \#3, /#k 7→ /#4k; #;#; \#3,

\a 7→ /#3;#; \#3; \a, \#k 7→ /#3;#;#; \#4k,

+a 7→ +/a; \#2; /#2; \#3, # 7→ #;#;#;#,

−a 7→ −/a; \#2; /#2; \#3, ! 7→ !; #;#; !.

Chapter 4

Cg Instruction Sequences

The semigroup C introduced in the previous chapter provides two ways to skip one or more
instructions during execution: using a test instruction and using a jump instruction. In both
cases the location of the target instruction (if present) is at a fixed distance from the source
instruction. In other words, the distance over which control of execution is transferred is
static and does not depend on the context (i.e., the instructions surrounding the instruction
which is currently being executed). As a result, inserting a single instruction at an arbitrary
position in some instruction sequence may completely alter its semantics.

To alleviate this problem somewhat, we will introduce an alternative means to transfer
control of execution over arbitrary distances within an instruction sequence. This chapter
defines the semigroup Cg, a close cousin of C. Cg employs label instructions to mark
specific positions within an instruction sequence with a natural number (a label number).
Goto instructions can then specify such a label number as the target of a jump.

Cg’s instruction set is introduced in §4.1. The semantics of Cg-expressions are formal-
ized in §4.2. This chapter then proceeds with §4.3, §4.4 and §4.5 in which certain properties
of label and goto instructions are analyzed and in which some useful transformations of
Cg-expressions are defined. Combined, these sections provide us with the tools required to
analyze Cg and its relation to C and PGA in Chapter 5. Finally, §4.6 briefly discusses an al-
ternative semantics for goto instructions. After defining behavior preserving endomorphisms
on Cg to demonstrate that this alternative semantics does not affect Cg’s expressiveness,
we will not consider it any further.

4.1 The Instruction Set

The semigroup Cg has basic instructions as well as positive and negative test instructions,
just like C. Cg does not have relative jumps /#k and \#k, unlike C. Instead, it has a set
of label instructions L and a set of goto instructions G:1

L =
⋃

l∈N

{/£l, \£l}, G =
⋃

l∈N

{/##£l, \##£l}.

Label instructions mark a specific location within an instruction sequence with a natural
number l. They come in a forward as well as a backward oriented flavor, which determines
whether the instruction to respectively the right or left of the label instruction is executed
next. Goto instructions too are marked with a natural number l and jump to the first label
l with the same orientation in the appropriate direction.

1The notation for label and goto instructions is borrowed from [BL02, PvdZ06], which define a lan-
guage PGLDg as part of the PGA language hierarchy. In PGLDg, there are label instructions £l and goto
instructions ##£l, for all l ∈ N.

25

26 Chapter 4. Cg Instruction Sequences

Formally, the instruction set ICg = L ∪ G ∪ IC − J generates the semigroup Cg =
(I+Cg, ;). Note that since Cg has basic instructions and test instructions, Cg takes an
implicit parameter A of actions, just like C. Examples of Cg-expressions include:

+/a; #, /b; /##£0; /a; /£0; !, /b; /£3;+/a; \##£3, \£5;−\c. (4.1)

Before formalizing Cg’s semantics, let us first informally describe what the intended behavior
of labels and gotos is.

/£l is a forward label instruction. Execution of /£l simply causes the instruction to its
right to be executed, if it exists. Otherwise deadlock occurs.

\£l is a backward label instruction. It is analogous to /£l, except that execution continues
with the instruction to its left.

/##£l is a forward goto instruction. Transfers control of execution to the nearest /£l instruc-
tion to its right, if such an instruction exists. Otherwise deadlock occurs.

\##£l is a backward goto instruction. This instruction will cause execution to continue at
the nearest \£l instruction to its left. And of course, if such a label does not exist,
deadlock will result.

For convenience we will write LG for the set L∪G. The function λ : LG→ N returns the
label number of a given label or goto instruction (e.g., λ(/£6) = 6). As with C-instructions,
we will define two sets I→Cg ⊂ ICg and I←Cg ⊂ ICg, which consist of forward and backward
Cg-instructions respectively. That is,

I→Cg = (I→C ∩ ICg) ∪
⋃

l∈N

{/£l, /##£l},

I←Cg = (I←C ∩ ICg) ∪
⋃

l∈N

{\£l, \##£l}.

Clearly I→Cg ∩I
←
Cg = ∅ and I→Cg ∪I

←
Cg ∪{#, !} = ICg. The sets L

→, L←, G→, G←, LG→ and
LG← are defined as one would expect them to be. Likewise for the directionality relation
∼ ⊂ ICg × ICg.

Examples We will formalize Cg’s semantics in §4.2 below. Still, to create or improve
an intuitive understanding of Cg-expressions and how they differ from C-expressions, let us
briefly describe the behavior of the Cg-inseqs of (4.1). As before, we specify that execution
starts at the leftmost position.

• +/a; #: Performs action a, after which deadlock occurs. This Cg-expression is also a
valid C-expression.

• /b; /##£0; /a; /£0; !: Performs action b and then terminates. Action a is not per-
formed, since the second instruction is a goto instruction which causes execution to
continue at position 4.

• /b; /£3;+/a; \##£3: Performs action b followed by action a. Then deadlock results.
The action a is not repeated, regardless of the value returned by the execution envi-
ronment, because the backward goto instruction will not transfer control of execution
to the forward label instruction: their directionality does not match.

• \£5;−\c: Deadlock. After execution of a backward label instruction the instruction
to its left is executed. Here, no such instruction is present.

4.2. Semantics 27

Orphaned Goto Instructions A goto instruction in some Cg-inseq X which causes
deadlock (by lack of a “matching” label instruction) will be called orphaned. In other
words, given some X ∈ I+Cg and i ∈ G(X), the ith instruction of X is orphaned iff i is an
exit position in X .

Note that although some Cg-expression X may contain labels /£l and \£l, this does not
preclude the possibility that X contains a goto instruction /##£l or \##£l which matches
neither of these labels (and is thus orphaned). For example, in the following expression both
goto instructions are orphaned:

/£0; \##£0; /##£0; \£0.

The C programming language [ISO99, KR88] (not to be confused with the code semigroup
C) allows statements within functions to be marked using labels. The statement goto lbl;
causes program execution to continue at the statement marked with label lbl , provided that
lbl is a label within the same function. The Java programming language [GJSB05] allows
the labeling of code blocks. The statement break lbl; is valid only inside a block labeled
lbl , and indicates that program execution must be resumed after block lbl .2

This shows that C and Java, just like the semigroup Cg, restrict the scope of label
and goto statements. The statements goto lbl; and break lbl; may prevent successful
compilation of a C or Java program X , even when X contains (multiple) statements labeled
with lbl , because of non-overlapping scopes.

When a C or Java compiler encounters a goto or break statement which references
a non-existent or out-of-scope label it may3 yield an error claiming that a certain label
is undefined. Such an error message seems to lay the “blame” for the failure to compile
on the non-existence of some label l, rather than on the incorrectly defined goto (break)
statement. Using the term “orphaned” allows us to indicate that some goto instruction does
not have a matching label instruction without blaming any specific label instruction or label
number.

4.2 Semantics

As goto instructions transfer control to the nearest label instruction (if present) in the
appropriate direction, their semantics depend on the position of said label instruction. In
order to make this relation precise, we define two search functions,

−−−−−→
search(X, i, S) = min({j | j ≥ i, σj(X) ∈ S} ∪ {ℓ(X) + 1}),
←−−−−−
search(X, i, S) = max({j | j ≤ i, σj(X) ∈ S} ∪ {0}).

−−−−−→
search performs a forward search in a given inseq X , starting at position i, for any in-
struction in S. The first position in X containing one such instruction is returned. If no
instruction from S is found then the first position outside of X , (i.e., ℓ(X) + 1) is returned.
←−−−−−
search behaves nearly identical, except that it searches from right to left, and returns 0 if
no instruction is found. Both functions have type I+Cg × Z × P(ICg) → N, where P(ICg)
denotes the powerset of ICg.

As with PGA and C, we will formally define the semantics of Cg-expressions using basic
thread algebra. Let | |→Cg : I

+
Cg → BTAreg be the function that yields the behavior of a given

Cg-expression when executed starting with the leftmost instruction. That is, | |→Cg defines

its left behavior. Likewise | |←Cg : I
+
Cg → BTAreg yields the right behavior of a given Cg-

expression. As with C, we identify |X |→Cg and |X |←Cg with |X |1Cg and |X |
ℓ(X)
Cg , respectively,

2It is actually not quite as simple as this, because of Java’s support for exception handling. Furthermore,
the continue keyword can also be supplied with an optional label, but only if said label precedes an iteration
statement, not just any code block. Also note that Java (currently) does not provide a “regular” goto

statement, although the language does identify goto as a reserved keyword.
3Tested with gcc 4.3.3 and javac 1.6.0 14.

28 Chapter 4. Cg Instruction Sequences

and define auxiliary functions | |iCg : I
+
Cg → BTAreg for all i ∈ Z, such that for all X ∈ I+Cg,

|X |iCg =







D if i < 1 or i > ℓ(X),

a ◦ |X |i+1
Cg if σi(X) = /a,

|X |i+1
Cg E aD |X |i+2

Cg if σi(X) = +/a,

|X |i+2
Cg E aD |X |i+1

Cg if σi(X) = −/a,

|X |i+1
Cg if σi(X) = /£l,

|X |
−−−−→
search(X,i,{/£l})
Cg if σi(X) = /##£l,

a ◦ |X |i−1Cg if σi(X) = \a,

|X |i−1Cg E aD |X |i−2Cg if σi(X) = +\a,

|X |i−2Cg E aD |X |i−1Cg if σi(X) = −\a,

|X |i−1Cg if σi(X) = \£l,

|X |
←−−−−
search(X,i,{\£l})
Cg if σi(X) = \##£l,

D if σi(X) = #,

S if σi(X) = !.

(4.2)

As with PGA and C, we equate an infinite sequence of left-to-right derivations according to
(4.2) which does not yield an action with deadlock:

If the equations in (4.2) can be applied infinitely often from left to right
without ever yielding an action, then the extracted thread is D.

(4.3)

This rule is specifically applicable to infinite loops created using label and goto instructions.
For example, |/£1; \£2|1Cg = D, because

|/£1; \£2|1Cg = |/£1; \£2|2Cg = |/£1; \£2|1Cg.

This example allows for an interesting observation: label instructions can act as control
structures even in absence of a matching goto instruction. Another example is the program
/£5; \a, which left as well as right behavior is described by the equation P = a ◦ P . In
this sense Cg’s label instructions are quite unlike labels in C or Java, where labels cannot
alter the flow of control in absence of another statement which references said label (such
as goto).

Cg, like C, characterizes the regular threads (as stated by Proposition 3.1). We will not
prove that fact here; instead we refer to Proposition 6.7 in §6.2. For completeness we end
this chapter with the left and right behavior of the examples of §4.1:

|+/a; #|→Cg = a ◦D, |+/a; #|←Cg = D,

|/b; /##£0; /a; /£0; !|→Cg = b ◦ S, |/b; /##£0; /a; /£0; !|←Cg = S,

|/b; /£3;+/a; \##£3|→Cg = b ◦ a ◦ D, |/b; /£3;+/a; \##£3|←Cg = D,

|\£5;−\c|→Cg = D, |\£5;−\c|←Cg = c ◦ D.

4.2.1 Accessibility and Exit Positions

The accessibility relation→X defined on C-inseqs X by Definition 3.2 is defined analogously
on Cg-expressions. The same holds for the set RX,i of instruction positions reachable from
position i in X and its complement RX,i (see Definition 3.3). The set of exit positions EX
of a Cg-inseq X is defined as in Definition 3.4.

Note that for Cg-expressions the notion of accessibility and reachability is in a sense more
“artificial” than for C-expressions. This is so because for any orphaned goto instruction on

4.3. Normalizing Label Numbers 29

some position i in an inseq X it is the case that either i →X 0 or i →X ℓ(X) + 1, due to
the definition of the functions

−−−−−→
search and

←−−−−−
search.

We conclude this section with a result analogous to Proposition 3.5.

Proposition 4.1. Every regular thread can be described by a Cg instruction sequence in
which every instruction is reachable from the start instruction.

Proof. Consider arbitrary T ∈ BTAreg, X ∈ I+Cg and i ∈ [1, ℓ(X)] such that |X |iCg = T . If

RX,i ∩ [1, ℓ(X)] = ∅, then T , X and i meet the requirements. Otherwise, randomly select
some unreachable position j ∈ RX,i ∩ [1, ℓ(X)].

To see why j can be removed from X without problems, we need to make two observa-
tions. First, any instruction which transfers control of execution to position j must itself
be unreachable. Second, any instruction which transfers control of execution over position
j must be a goto instruction; the behavior of such instruction will not be affected by the
removal of the instruction at position j (for σj(X) cannot be a matching label instruction).

The result of removing the instruction at position j from X is an inseq X ′ such that
either |X ′|i−1Cg = T or |X ′|iCg = T , depending on whether j < i or j > i, respectively. This
process can be repeated until all unreachable instructions are removed.

4.3 Normalizing Label Numbers

Cg-expressions can contain identical goto instructions which, when executed, cause a jump
to distinct positions within the instruction sequence. Likewise, identical label instructions
can occur multiple times within an expression. For example,

X = /##£7; /a; /£7; /b; /##£7; /c; /£7. (4.4)

Here, even though 1 =X 5, it is easy to see that |X |1Cg 6= |X |
5
Cg. Informally, we may

say that the identical instructions in this expression are not semantically related. In this
section we will make the notion of a semantical relation between label and goto instructions
more precise. This endeavor is motivated by the observation that reasoning about a Cg-
expression X is greatly simplified if any two label and goto instructions in X with the same
label number and direction are known to be related in certain ways.

Definition 4.2. Let X ∈ I+Cg. If i, j ∈ LG(X), σi(X) ∼ σj(X) and λ(σi(X)) = λ(σj(X)),
then the label/goto instructions at positions i and j have the same label number and direc-
tion, and are said to correspond, written i ≈X j.

If i ∈ G(X), j ∈ L(X) and i →X j, then the goto instruction at position i targets the
label instruction at position j, written iyX j.

If i, j ∈ G(X), i =X j and ∃k(i→X k ∧ j →X k), then the identical goto instructions at
positions i and j are said to be target equivalent, written i .X j. Note that target equivalent
goto instructions can be orphaned. Also, non-target equivalent goto instructions need not
be distinct, as in (4.4).

Let y−1X be the inverse of yX . We define

⋆X = .X ∪yX ∪y
−1
X ∪ {(i, i) | i ∈ L(X)}.

Instructions at positions i, j ∈ LG(X) are related iff i⋆X j. X is in label normal form (LNF)
iff i ≈X j implies i ⋆X j for all i, j ∈ LG(X). That is, X is in LNF if and only if any pair of
corresponding instructions is related.

Proposition 4.3. For all X ∈ I+Cg, ⋆X is an equivalence relation on LG(X).

Proof. Let I = {(i, i) | i ∈ L(X)}. ⋆X is reflexive since I ⊆ ⋆X and i .X i for all i ∈ G(X).
⋆X is symmetric because .X , (yX ∪ y

−1
X) and I are. What remains to be proved is that

⋆X is transitive. To that end, let i, j and k be distinct program positions with i ⋆X j and
j ⋆X k. We distinguish three situations:

30 Chapter 4. Cg Instruction Sequences

• If i .X j then either j .X k, in which case i .X k, or j yX k, in which case iyX k.

• If iyX j, then j y−1X k, and hence i .X k.

• If iy−1X j, then j .X k, meaning that k yX i and hence iy−1X k. (Note that j yX k
will not be the case because that would mean i = k, while we defined i and k to be
distinct positions.)

Proposition 4.4. Let X ∈ I+Cg be in label normal form. Then the following properties hold
for all 1 ≤ i, j ≤ ℓ(X):

(a) If i ∈ G(X), j ∈ L(X) and i ≈X j, then iyX j (label instructions are targeted by every
goto instruction with the same label number and directionality).

(b) If i, j ∈ L(X) and i =X j, then i = j (all label instructions in X are distinct).

(c) If i, j ∈ G(X) and i =X j, then i .X j (identical goto instructions are target equivalent).

Proof. Let X ∈ I+Cg be in LNF. Note that i =X j implies i ≈X j for all i, j ∈ LG(X).
Since X is in LNF, i ≈X j implies i ⋆X j. In order, the properties follow from the following
identities:

⋆X ∩ (G(X)× L(X)) = yX ,

⋆X ∩ (L(X)× L(X)) = {(i, i) | i ∈ L(X)},

⋆X ∩ (G(X)×G(X)) = .X .

Proposition 4.5. For any X ∈ I+Cg there exists an X ′ ∈ I+Cg such that X ′ is in label

normal form and |X |iCg = |X ′|iCg for all i ∈ Z.

Proof. Let X ∈ I+Cg. ⋆X is an equivalence relation on LG(X). Let [i]⋆X
be the equivalence

class of i and let LG(X)/⋆X be the quotient set of LG(X) by ⋆X . Let n = |LG(X)/ ⋆X |
be the number of equivalence classes. Now select a bijective mapping f from LG(X)/⋆X
onto [1, n], and construct an inseq X ′ by changing the label numbers of each label and goto
instruction in X such that λ(σi(X

′)) = f([i]⋆X
) for all i ∈ LG(X). Then X ′ is in LNF and

clearly |X |iCg = |X ′|iCg for all i ∈ Z.

4.4 Freeing Label Numbers

In this section we will briefly describe how certain label numbers can be removed from a
Cg-inseq. It turns out that defining certain behavior preserving mappings on Cg instruction
sequences is greatly simplified if one can assume that no label or goto instruction in the input
inseq has a label number present in some set L.

Definition 4.6. A label number l is available in a Cg-expression X if there is no u ∈ X
such that λ(u) = l. That is, no label or goto instruction in X has label number l. To make a
specific label number available, it must be freed. For each l ∈ N we define an endomorphism
fl which frees label number l in a given Cg-inseq. fl : I

+
Cg → I

+
Cg is defined on individual

instructions as follows:

fl(u) =







/£l′+1 if u = /£l′ and l′ ≥ l.

\£l′+1 if u = \£l′ and l′ ≥ l.

/##£l′+1 if u = /##£l′ and l′ ≥ l.

\##£l′+1 if u = \##£l′ and l′ ≥ l.

u otherwise.

(4.5)

4.5. Cg and Relative Jumps 31

Some behavior preserving mappings require several label numbers to be available. Let
L = 〈l1, l2, . . . , ln〉 be an arbitrary finite sequence of natural numbers. Then fL is the
endomorphism which frees the label numbers in L in order. Formally, fL = fln ◦· · ·◦fl2 ◦fl1 .

Proposition 4.7. Let l ∈ N and let L be an arbitrary finite sequence of natural numbers.
Then the endomorphisms fl and fL are left-right uniformly behavior preserving. Moreover,
if L is monotonically nondecreasing, then for every X ∈ I+Cg, all label numbers in L are
available in fL(X).

Proof. fl maps individual instructions onto individual instructions and alters only the label
number of label and goto instructions with a label number ≥ l. Execution of a label
instruction causes the instruction to its left or right to be executed, depending on the
label’s orientation, but irrespective of the actual label number. It is not hard to see that
likewise the position to which goto instructions transfer control of execution is not affected
by the application of fl. Thus fl is left-right uniformly behavior preserving. As fL can be
decomposed into individual applications of functions fl1 , . . . , fln , the same holds for fL.

Since fl only increments label numbers ≥ l, any label number < l which is available
in some inseq X will also be available in fl(X). It follows that if L is monotonically
nondecreasing, then all l ∈ L will be available in fL(X).

4.5 Cg and Relative Jumps

Cg does not have explicit relative jump instructions like C. Yet in Cg, too, some instruc-
tions transfer control of execution relative to their own position: basic instructions, test
instruction and label instructions do so. For example, the label instruction /£6 transfers
control to the instruction to its immediate right, equivalent to a forward relative jump over
distance 1.

Section §4.6 below defines endomorphisms on Cg in order to simulate an alternative
semantics for goto instructions. These endomorphisms map single instructions onto a fixed
number b of different instructions. Under those circumstances care must be taken that
instructions which perform an implicit relative jump behave properly: all relative jump
distances are multiplied by b.

So how does this work? In this section we will describe how relative jumps over distances
up to some arbitrary value k can be emulated using label and goto instructions. As a first
step, consider the following family of Cg-inseqs, defined for every l ≥ 1 and k ≥ 2;

d→l = /£l; /##£l−1 leftk = d→1 ; \£0;d→2 ;d→3 ; . . . ;d→k

d←l = \##£l−1; \£l rightk = d←k ; . . . ;d←3 ;d←2 ; /£0;d←1

The Cg-expressions leftk and rightk contain alternating label and goto instructions, and
an extra label with label number 0. leftk and rightk are meant to be used as subsequences
of larger instruction sequences. Without going into the use of \£0 and /£0 for now, observe
that leftk contains forward label instructions with label numbers 1 though k, each followed
by a forward goto instruction with a label number one less than the number of the preceding
label instruction. The same holds for rightk, except that it contains backward label and
goto instructions.

Next, for all k ∈ N, consider the family of functions φk : ICg → ICg, defined as

φk : u 7→







/##£1 if u = /£l and l ≤ k,

\##£1 if u = \£l and l ≤ k,

u otherwise.

The functions φk map all label instructions with a label number not greater than k to goto
instructions with label number 1.

32 Chapter 4. Cg Instruction Sequences

We now combine leftk, rightk and φk to create endomorphisms relk : I
+
Cg → I

+
Cg, for

all k ≥ 2, defined on individual instructions u ∈ ICg such that,

relk : u 7→

{

leftk; \##£2; \##£1;φk(u); \£0;rightk if u ∈ I←Cg,

leftk; /£0;φk(u); /##£1; /##£2;rightk otherwise.
(4.6)

The functions relk are not quite left or right behavior preserving. Instead, at some higher
level they redefine the semantics of goto instructions with a label number l ≤ k, such that
their behavior mimics that of a relative jump over distance l. As a special case, /##£0
and \##£0 signify a jump over distance zero and as such yield deadlock.4 This alternative

semantics can be made explicit by defining thread extraction operators |X |iCg,k which are

analogous to |X |iCg, except for the fact that the operators |X |
i
Cg,k are defined differently for

instances where i ∈ {j ∈ G(X) | λ(σj(X)) ≤ k}:

|X |iCg,k =







D if i < 1 or i > ℓ(X),

a ◦ |X |i+1
Cg,k if σi(X) = /a,

|X |i+1
Cg,k E aD |X |i+2

Cg,k if σi(X) = +/a,

|X |i+2
Cg,k E aD |X |i+1

Cg,k if σi(X) = −/a,

|X |i+1
Cg,k if σi(X) = /£l,

D if σi(X) = /##£0,

|X |i+l
Cg,k if σi(X) = /##£l and 1 ≤ l ≤ k,

|X |
−−−−→
search(X,i,{/£l})
Cg,k if σi(X) = /##£l and l > k,

a ◦ |X |i−1Cg,k if σi(X) = \a,

|X |i−1Cg,k E aD |X |i−2Cg,k if σi(X) = +\a,

|X |i−2Cg,k E aD |X |i−1Cg,k if σi(X) = −\a,

|X |i−1Cg,k if σi(X) = \£l,

D if σi(X) = \##£0,

|X |i−lCg,k if σi(X) = \##£l and 1 ≤ l ≤ k,

|X |
←−−−−
search(X,i,{\£l})
Cg,k if σi(X) = \##£l and l > k,

D if σi(X) = #,

S if σi(X) = !.

(4.7)

As an example, consider the Cg-inseq X = /##£3; /£3; /a; /b and suppose that we want
to interpret all goto instructions with a label number ≤ 7 as relative jumps. Then,

|X |1Cg,7 = |X |4Cg,7 = b ◦ |X |5Cg,7 = b ◦ D.

Observe that the goto instruction on position 1 transfers control of execution to position 4;
the label instruction with the matching label number at position 2 is bypassed.

Fixing some k ≥ 2, observe that relk maps every Cg-instruction on bk = 4k + 6 Cg-
instructions. relk is defined such that the following equality holds:

|X |iCg,k = |relk(X)|
bk(i−1)+1
Cg = |relk(X)|bkiCg .

Specifically,

|X |→Cg,k = |X |1Cg,k = |relk(X)|1Cg = |relk(X)|→Cg,

|X |←Cg,k = |X |
ℓ(X)
Cg,k = |relk(X)|

ℓ(relk(X))
Cg = |relk(X)|←Cg.

It follows that the alternative semantics for Cg as defined by (4.7) can be simulated using
relk and Cg’s default thread extraction operator.

4See also §3.1.1.

4.6. Label Instructions as More General Jump Targets 33

4.6 Label Instructions as More General Jump Targets

Cg’s goto instructions are defined such that they transfer control to a label instruction
with the same label number and directionality in the appropriate direction (if present). An
obvious alternative behavior is for goto instructions to jump to a label instruction with
the same label number in the appropriate direction, irrespective of its directionality (again,
provided such instruction is present). Put more informally: instead of “accepting” jumps
from a single direction, we may alter Cg’s semantics such that label instructions accept
jumps originating from goto instructions in either direction. In this section we play with
this idea; it turns out that with respect to expressiveness nothing is gained or lost by using
such an alternative semantics. Therefore we will not consider this idea beyond this section.
As a result, readers may choose to skip this section.

This alternative semantics can be described by a thread extraction operator | , |Cg′

which is nearly identical to the operator | , |Cg as defined by the set of equations (4.2) and
rule (4.3), except for the cases involving goto instructions. Specifically (now using the usual

shorthand notation |X |iCg′ instead of |i,X |Cg′):

|X |iCg′ =







D if i < 1 or i > ℓ(X),

a ◦ |X |i+1
Cg′ if σi(X) = /a,

|X |i+1
Cg′ E aD |X |i+2

Cg′ if σi(X) = +/a,

|X |i+2
Cg′ E aD |X |i+1

Cg′ if σi(X) = −/a,

|X |i+1
Cg′ if σi(X) = /£l,

|X |
−−−−→
search(X,i,{/£l,\£l})
Cg′ if σi(X) = /##£l,

a ◦ |X |i−1Cg′ if σi(X) = \a,

|X |i−1Cg′ E aD |X |i−2Cg′ if σi(X) = +\a,

|X |i−2Cg′ E aD |X |i−1Cg′ if σi(X) = −\a,

|X |i−1Cg′ if σi(X) = \£l,

|X |
←−−−−
search(X,i,{/£l,\£l})
Cg′ if σi(X) = \##£l,

D if σi(X) = #,

S if σi(X) = !.

Observe that
−−−−−→
search and

←−−−−−
search now each search for two instructions, namely /£l,

\£l, for some l ∈ N.

4.6.1 Behavior Preserving Homomorphisms

It turns out that this alternative semantics does not affect Cg’s expressiveness. It is straight-
forward to define a homomorphism f such that |X |iCg = |f(X)|iCg′ for all i ∈ Z andX ∈ I+Cg.
f is defined on individual instructions u ∈ ICg such that,

f : u 7→







/£2l if u = /£l,

\£2l+1 if u = \£l,

/##£2l if u = /##£l,

\##£2l+1 if u = \##£l,

u otherwise.

Indeed f ensures that any label number l is even for forward label and goto instructions,
while l is odd for backward oriented instructions. As a result, label instructions in f(X)
will in practice “accept” jumps from goto instructions in only one direction, rendering the
difference between | , |Cg and | , |Cg′ irrelevant.

34 Chapter 4. Cg Instruction Sequences

Conversely, there exists a homomorphism g such that for all i ∈ Z there exists some
j ∈ Z such that |X |iCg′ = |g(X)|jCg. We define g = φ ◦ rel2 ◦ f〈0,1,2〉. The functions f〈0,1,2〉
and rel2 have been defined previously by (4.5) and (4.6), respectively. The function φ is a
homomorphism, defined on individual Cg-instructions u such that,

φ : u 7→







/##£l; \£l; /£l if u = /£l with l > 2,

\£l; /£l; \##£l if u = \£l with l > 2,

u otherwise.

The correctness of g hinges on three observations:

1. By Proposition 4.7, f〈0,1,2〉 is behavior preserving.

2. The homomorphism rel2 alters the semantics of goto instructions with label numbers
≤ 2. These instructions are not present in its input because it is passed the output of
f〈0,1,2〉. As such, rel2 ◦ f〈0,1,2〉 is also behavior preserving.

3. Lastly, φ does not replace label instructions introduced by rel2. It does replace all
other label instructions, such that the resulting subsequence of three instructions mim-
ics the behavior of label instructions as defined by | , |Cg′ if fed to | , |Cg. Any label
replaced by φ is embedded by rel2, ensuring that the behavior of other label, basic
and test instructions is unaffected. This explains the use of rel2: it accommodates
for the implicit relative jumps performed by these instructions.

We conclude with the observation that g is left-right behavior preserving, but not uni-
formly so. This is because the number of instructions output by φ depends on its input. g
can be made left-right uniformly behavior preserving by using an alternative definition of φ
which always outputs three instructions:

φ : u 7→







/##£l; \£l; /£l if u = /£l with l > 2,

\£l; /£l; \##£l if u = \£l with l > 2,

u; /##£1; /##£2 if u ∈ I→Cg ∧ u 6= /£l for l > 2,

\##£2; \##£1;u otherwise.

Chapter 5

Translating Instruction Sequences

Previous chapters introduced the program algebra PGA and the code semigroups C and
Cg. In this chapter we provide behavior preserving mappings between these algebras and
show some properties of these translations.

Though defined on at a syntactic level, a behavior preserving mapping f makes explicit
certain ways in which (groups of) instructions are related on a semantic level. If f : A→ B,
then f tells us something about distinctions and similarities between code semigroups A and
B. If f : A → A, then f (if it is not the identity function), can be seen as a reformulation
instead of a translation. Additionally, if f is an (anti-)homomorphism then it provides some
additional implicit information about how A and B are related. Specifically, it shows that
an A-inseq X can be translated instruction by instruction, independent of context, and
without taking the length of X as an explicit parameter, to some B-inseq Y . For this reason
we aim to define homomorphic instead of arbitrary translations between code semigroups
where possible.1

The translations defined in this chapter will aid us in proving some expressiveness results
in the next chapter. In order, this chapter provides a translation from C to PGA (§5.1),
from PGA to C (§5.2), from C to Cg (§5.3) and from Cg to C (§5.4).

5.1 Translating C to PGA

In this section we define a behavior preserving mapping c2pga : I+C → P . We do so
in three steps: the first two steps apply left behavior preserving mappings to C itself,
thereby converting every C-inseqX to a behaviorally equivalent C-inseq Y which has certain
structural properties. The third step exploits these properties in order to translate every
such Y to a behaviorally equivalent PGA term Z. The translation presented here is based
on the behavior preserving mapping from C onto PGA as defined in section 12 of [BP09a].

1. PGA has basic instructions and test instructions whose semantics are identical to C’s
forward basic and test instructions. C’s backward basic instructions and test instructions
have no direct counterpart in PGA, so we wish to eliminate them. Thus we define a left
uniformly behavior preserving endomorphism f on I+C which removes these backward

1Thinking of A as a high level programming language and B as a lower level programming language or
even machine code, we can view f as an interpreter or compiler. If f is an (anti-)homomorphism then parts
of an A-inseq X can be transformed and possibly even executed before all of X has been read.

35

36 Chapter 5. Translating Instruction Sequences

instructions. f is defined on individual instructions as follows:

/a 7→ /a; /#2;#, \a 7→ /a; \#4;#,

+/a 7→ +/a; /#2; /#4, +\a 7→ +/a; \#4; \#8,

−/a 7→ −/a; /#2; /#4, −\a 7→ −/a; \#4; \#8,

/#k 7→ /#3k; #;#, # 7→ #;#;#,

\#k 7→ \#3k; #;#, ! 7→ !; #;#.

2. In [BP09a] the notion of C-programs is introduced. In essence, a C-program is a C-inseq
which does not contain exit positions. I.e, no instruction transfers control of execution
outside of the instruction sequence; only execution of the termination or abort instruction
will cause program execution to halt. Every C-inseq X can be converted to a C-program,
simply by prefixing and suffixing sufficiently many abort instructions. In order to main-
tain X ’s left and right behavior, additional jump instructions must be added to its left
and right. Let m ≥ 2 be an upper bound on the largest jump counter present in some
C-inseq X . Then a left-right behaviorally equivalent C-program X ′ can be constructed
as

/#m+1; (#)m;X ; (#)m; \#m+1.

Let g be the left-right behavior preserving mapping which performs the above procedure
for arbitrary C-inseqs.

3. Given f and g as defined in the previous two steps, it is immediate that for every C-inseq
X there exists a left behaviorally equivalent C-program X ′ = g(f(X)) which does not
contain instructions from the set B← ∪ P← ∪ N←. Let X ′ = u1; . . . ;un. Then the
following is a behaviorally equivalent PGA term:

(φn(u1); . . . ;φn(un))
ω.

For all n ∈ N
+ the function φn is defined as follows (observe that due to application of

g, necessarily k < n and thus n− k ∈ N
+):

/a 7→ a, /#k 7→ #k, ! 7→ !.

+/a 7→ +a, \#k 7→ #n−k,

−/a 7→ −a, # 7→ #0,

Denoting the above procedure by h, we have that c2pga = h ◦ g ◦ f .

5.2 Translating PGA to C

Defining a translation pga2c : P → I+C turns out to be be a lot easier if PGA terms can be
assumed to be in second canonical form. Hence we start out by defining

pga2c = snd2c ◦ snd .

Recall that snd : P → P 2 is the function defined in §2.2.2 which converts arbitrary PGA
terms to their structurally (and behaviorally) equivalent minimal second canonical forms.
The mapping snd2c : P 2 → I

+
C is a behavior preserving mapping defined on second canon-

ical forms only. Any X ∈ P 2 does not contain chained jump instructions and has one of
two forms:

• X does not contain repetition and thus X = u1;u2; . . . ;un for some n ∈ N
+. We

define
snd2c(u1;u2; . . . ;un) = ψ(u1);ψ(u2); . . . ;ψ(un).

5.3. Translating C to Cg 37

• X = Y ;Zω, and Y nor Z contain repetition, meaning that for some n,m ∈ N
+,

X = u1; . . . ;un; (un+1; . . . ;un+m)ω. Now we define

snd2c(u1; . . . ;un; (un+1; . . . ;un+m)ω) = ψ(u1); . . . ;ψ(un+m); (\#m)max(2,m−1).

The function ψ is as straightforward as can be:

a 7→ /a +a 7→ +/a −a 7→ −/a ! 7→ ! #l 7→

{

if l = 0,

/#l otherwise.

snd2c makes extensive use of the assumptions that can be made about its input (i.e., that
it is in second canonical form). Any jump instruction ui with i ≤ n will not jump beyond
un+m. Any jump instruction ui with i > n will not have a jump counter greater than m−1.
By appending max(2,m−1) \#m instructions, it is ensured that all jump instructions which
transfer control of execution beyond ψ(un+m) indirectly transfer control to the appropriate
instruction. Since un+m−1 and un+m can be test instructions, it is important to append at
least two backward jump instructions.

5.3 Translating C to Cg

In this section we focus on translations from C to Cg. It turns out that there does not
exist a homomorphism which translates arbitrary C-expressions to behaviorally equivalent
Cg-expressions. Theorem 5.1 below gives a proof of this fact.

A convenient way to translate C to Cg is to start out by categorizing every C-expression
based on the largest jump counter it contains. We write C≤k for the subsemigroup of C
which consists exactly of those C-expressions that do not contain instructions /#k′ or \#k′

for k′ > k. Formally, C≤k = (I+C≤k
, ;), with2

IC≤k
= IC − {u ∈ J | δ(u) > k}. (5.1)

Assume the existence of a family of behavior preserving mappings c2cgk : I
+
C≤k
→ I+Cg for

all k ∈ N. Writing c2cg(k,X) for c2cgk(X), the behavior preserving mapping c2cg : I+C →
I+Cg can then be defined on all X ∈ I+C as,3

c2cg : X 7→ c2cg(max{δ(σi(X)) | i ∈ J(X)}, X).

The hypothesized family of functions c2cgk exists. A straightforward definition is (5.3) in
§5.3.1 below. An alternative homomorphic definition is (5.5) in §5.3.2. Since in both cases
c2cgk is only defined for k ≥ 2, a slightly altered definition of c2cg : I+C → I

+
Cg is in place:

c2cg : X 7→ c2cg(max({δ(σi(X)) | i ∈ J(X)} ∪ {2}), X). (5.2)

5.3.1 A Behavior Preserving Mapping from C≤k to Cg

For all k ≥ 2, we define a function c2cgk : I
+
C≤k
→ I+Cg such that,

c2cgk(u1; . . . ;un) = ψk,1(u1); . . . ;ψk,n(un). (5.3)

2Recall that δ : J → N+ returns the jump counter of a given jump instruction.
3Yes, the function name c2cg is overloaded here. Its type is either N×I+

C
→ I+

Cg
or simply I+

C
→ I+

Cg
.

38 Chapter 5. Translating Instruction Sequences

In effect c2cgk replaces the ith instruction of its input X with the output of ψk,i(σi(X)).
The auxiliary functions ψk,i : IC → I

+
C are defined as follows:

ψk,i(u) =







φk,i(/a; /##£[i+1]k+1) if u = /a,

φk,i(+/a; /##£[i+1]k+1; /##£[i+2]k+1) if u = +/a,

φk,i(−/a; /##£[i+1]k+1; /##£[i+2]k+1) if u = −/a,

φk,i(/a; \##£[i−1]k+1) if u = \a,

φk,i(+/a; \##£[i−1]k+1; \##£[i−2]k+1) if u = +\a,

φk,i(−/a; \##£[i−1]k+1; \##£[i−2]k+1) if u = −\a,

φk,i(/##£[i+l]k+1) if u = /#l,

φk,i(\##£[i−l]k+1) if u = \#l,

φk,i(#) if u = #.

φk,i(!) if u = !.

In this definition [n]k+1 stands for the remainder of n after division by k+1, i.e. the smallest
nonnegative value congruent with n (mod k + 1). Thus 0 ≤ [n]k+1 ≤ k for all n. For all
i ∈ N

+, φk,i : I
+
Cg → I

+
Cg embeds its argument between some label and goto instructions

with label number [i]k+1 as follows:

φk,i(U) = /##£[i]k+1; \£[i]k+1; /£[i]k+1;U ; \##£[i]k+1.

Informally, φk,i(U) “guards” the Cg instruction sequence U which replace the C instruction
at position i in the original C-expression using the labels /£[i]k+1 and \£[i]k+1. In this way
a goto instruction /##£[i + l]k+1 or \##£[i + l]k+1 in a Cg-inseq U which replaces the
ith C instruction transfers execution to the Cg-inseq U ′ which replaces the C instruction
at position i+ l or i− l, respectively. In this way the transfer of control of execution over a
relative distance in the original C-inseq is simulated.

Observe that label numbers are repeated (“reused”) with period k + 1. This does not
pose a problem because the original C≤k-expression will not contain relative jumps over a
distance greater than k. (And since k ≥ 2, the implicit relative jumps over distance 1 or 2
performed by test instructions can likewise be simulated.)

The auxiliary functions ψk,i and their helper functions φk,i are defined such that c2cgk

is left-right behavior preserving. Note that it is possible to omit the rightmost \##£[i]k+1

instruction outputted by each call to φk,i, but then c2cgk would no longer be right behavior
preserving.

5.3.2 What About a Homomorphic Translation from C to Cg?

The translation c2cg : I+C → I
+
Cg defined by (5.2) is not homomorphic because it requires

knowledge about the largest jump counter present in its input. It turns out that it is not
possible to define a homomorphic alternative to c2cg.

Theorem 5.1. There does not exist a behavior preserving homomorphism f : I+C → I
+
Cg.

Proof. We prove that no homomorphism f : I+C → I
+
Cg can be left behavior preserving. The

proof that no such f can be right behavior preserving is analogous.
For all n ∈ N

+ we define the following C-inseqs:

noden = +/a; /#3n−1; /#3n+1,

treen = node1;node2; . . . ;node2n−1.
(5.4)

Observe that treen contains 2n exit positions (see Definition 3.4), each containing one of
the rightmost 2n forward jump instructions of treen. Exactly one of these exit positions

5.3. Translating C to Cg 39

1: node1

4: node2

10: node4

• •

13: node5

• •

7: node3

16: node6

• •

19: node7

• •

tree3:

X :

Figure 5.1: Graphical representation of the C-expression tree3;X as defined in (5.4). The
dashed arrows show the order in which the subexpressions node1, . . . ,node7 are concate-
nated (the prefixes denote their positions in tree3). The solid arrows signify jumps between
which a choice is made based on the boolean reply to the a-test in the originating node. As
depicted here, all instructions at exit positions of tree3 jump to distinct positions within
the inseq X . This means that ℓ(X) ≥ 22.

will be reached after n consecutive a-tests, provided that execution starts at position 1.
Every instruction in treen is reachable from position 1. Figure 5.1 provides a graphical
representation of tree3.

Towards a contradiction we will now assume that there does exist a left behavior pre-
serving homomorphism f from the code semigroup C onto the code semigroup Cg.

It is easy to see that for any combination of m ≤ 2n exit positions i1, i2, . . . , im in treen

there exist some X ∈ I+C such that all of the following yield distinct behavior:4

|treen;X |
i1
C , |treen;X |

i2
C , . . . , |treen;X |

im
C .

It follows that f(treen) must have at least 2n − 2 distinct orphaned forward goto instruc-
tions, all of which are reachable from the leftmost instruction.5

For all X ∈ I+Cg, let LX = X ∩ L→ be the set of distinct forward label instructions in

X . Obviously LX = LXk for all k ∈ N
+.

Now take some n, k ∈ N such that 2n − 2 > |Lf(/a)| and k ≥ 3(2n − 1) + 1. Then

|treen; (/a)
k|

1

C will perform at least n+1 consecutive a-actions, irrespective of the boolean

replies they yield. However, this cannot be the case for |f(treen; (/a)
k)|

1

Cg. Some of the
forward goto instructions in f(treen) which are reachable after n a-tests cannot have a
matching label instruction in f((/a)k), because the number of distinct forward label in-
structions |Lf((/a)k)| = |L(f(/a))k | = |Lf(/a)| is smaller than the number of distinct forward
goto instructions (which is at least 2n − 2). Thus we reach a contradiction.

A Behavior Preserving Homomorphism from C≤k to Cg It turns out that the
result of Theorem 5.1 is due to a surprisingly small lack of information about the context of
individual instructions. Once an upper bound on the size of jump counters in the input inseq
is known, a homomorphism can be defined. In other words, there does exists a homomorphic
alternative to the family of behavior preserving mappings c2cgk : I

+
C≤k
→ I+Cg defined by

(5.3) in §5.3.1. We provide one such alternative definition, by building on the work of §4.5.
For all k ≥ 2 we define,

c2cgk = relk ◦ φ. (5.5)

4In fact, infinitely many inseqs X have this property.
5We do not exclude the possibility that either or both of the rightmost two instruction positions of

f(treen) are exit positions containing forward basic instructions, test instructions or label instructions.
This explains the conservative estimate of 2n − 2 instead of 2n orphaned forward goto instructions.

40 Chapter 5. Translating Instruction Sequences

The homomorphism relk : I
+
Cg → I

+
Cg is defined by (4.6) in §4.5. Recall that it causes all

goto instructions with label numbers up to and including k to behave as relative jumps. It
should come as no surprise then that the definition of the homomorphism φ : I+C → I

+
Cg is

straightforward:

φ : u 7→







/##£k if u = /#k,

\##£k if u = \#k,

u otherwise.

Observe that c2cgk is left-right uniformly behavior preserving. (Like relk, c2cgk maps
every instruction in the input instruction sequence to 4k + 6 instructions in the output.)

5.4 Translating Cg to C

Defining a behavior preserving mapping cg2c : I+Cg → I
+
C is rather straightforward. Label

instructions can simply be replaced by relative jumps over distance 1 in the appropriate
direction. Goto instructions are replaced by relative jumps to the position of the label
instruction which they target, if any. Orphaned goto instructions can be replaced by an
abort instruction or a jump outside of the instruction sequence. For convenience we will
choose to do the latter.

For all i ∈ N
+ we define functions φi : I

≤i
Cg → IC such that,

φi(X) =







/#j−i if σi(X) = /##£l and j =
−−−−−→
search(X, i, {/£l}),

\#i−j if σi(X) = \##£l and j =
←−−−−−
search(X, i, {\£l}),

/#1 if σi(X) = /£l,

\#1 if σi(X) = \£l,

σi(X) otherwise.

(5.6)

φi determines whether and how the ith instruction in a given Cg-inseq X should be trans-
lated. Only label and goto instructions are replaced, precisely according to the rules
mentioned. Concatenating the results of appropriate invocations of (5.6), the mapping
cg2c : I+Cg → I

+
C is thus defined:

cg2c : X 7→ φ1(X);φ2(X); . . . ;φℓ(X)(X). (5.7)

Every label and goto instruction is replaced by a jump instruction which mimics its transfer
of control of execution. Other instructions are unaltered. Thus cg2c is left-right uniformly
behavior preserving.

5.4.1 What About a Homomorphic Translation from Cg to C?

The translation cg2c defined by (5.7) is not a homomorphism. It turns out that this is
necessarily so.

Theorem 5.2. There does not exist a behavior preserving homomorphism f : I+Cg → I
+
C .

Proof. We prove that no homomorphism f : I+Cg → I
+
C can be left behavior preserving. The

proof that no such f can be right behavior preserving is analogous.

For all n ∈ N
+ we define the following Cg-inseqs:

noden = /£n; +/a; /##£2n; /##£2n+1,

treen = node1;node2; . . . ;node2n−1.

5.4. Translating Cg to C 41

It is not hard to see that treen contains 2n orphaned goto instructions with label numbers
2n through 2n+1− 1. For example, tree2 contains the orphaned goto instructions /##£4,
/##£5, /##£6 and /##£7:

/£1;+/a; /##£2; /##£3;

/£2;+/a; /##£4; /##£5;

/£3;+/a; /##£6; /##£7.

If execution of treen starts at position 1, then exactly one of the orphaned goto instructions
will be reached after performing n consecutive a-actions. Every orphaned goto instruction
is reachable.

Towards a contradiction we will now assume that there does exist a left behavior pre-
serving homomorphism f from the code semigroup Cg onto the code semigroup C.

For all X ∈ I+C define RX = {j− ℓ(X) | i ∈ [1, ℓ(X)], i→+
X j, j > ℓ(X)}. Informally, RX

contains the offsets of “invalid” positions to the right of X which are reachable from X . We
fix some r such that max(Rf(/a)) ≤ ℓ(f((/a)r)). Then Rf(/a;(/a)r) = Rf((/a)r), and in fact
Rf((/a)k) = Rf((/a)r) for all k ≥ r.

Next we define treen,k = treen; (/a)
k for all n, k ∈ N, and we make two easily verifiable

claims:

(1) For all n ∈ N, k, k′ ≥ 2 and X ∈ I+Cg the identity |treen,k;X |
→
Cg = |treen,k′ ;X |→Cg

holds. To see why this is so, observe that all exit positions in treen,k and treen,k′

are goto instructions and that treen,k and treen,k′ do not contain backward label
instructions. As a result only the last two instructions of treen,k and treen,k′ (which
are /a instructions) may be reachable from a position in the “X-part“ of treen,k;X
and treen,k′ ;X .

(2) For any combination of m ≤ 2n distinct positions of orphaned goto instructions i1,
i2, . . . , im within treen,k there exists an X ∈ I+Cg such that all of the following yield

distinct behavior:6

|treen,k;X |
i1
Cg, |treen,k;X |

i2
Cg, . . . , |treen,k;X |

im
Cg.

Combining these two claims, we must conclude that |Rf(treen,k)| ≥ 2n for all n, k ∈ N.
Now take some n such that 2n > |Rf((/a)r)| and select some k ≥ r such that Rf(treen,k) =
Rf(treen;(/a)k) = Rf((/a)k) = Rf((/a)r). But then |Rf(treen,k)| = |Rf((/a)r)| < 2n. Contra-
diction.

A Behavior Preserving Homomorphism from Cg≤k to C Similar to the definition
of subsemigroups C≤k, we define subsemigroups Cg≤k ⊂ Cg for all k ∈ N. Cg≤k contains
precisely those Cg-inseqs which do not contain goto instructions with a label number greater
than k. That is, we define Cg≤n = (I+Cg≤n

, ;), with

ICg≤k
= ICg − {u ∈ G | λ(u) > k}.

Note that Cg≤k places no restriction on label instructions. As such, the utility of label
instructions with a label number greater than k in a Cg≤k-expression is limited.

As per Theorem 5.2 no total homomorphism from Cg to C can be behavior preserving.
However, the family of behavior preserving functions cg2ck : I

+
Cg≤k

→ I+C (k ∈ N) can be

defined such that each cg2ck is a homomorphism. Given arbitrary k, we define cg2ck on
individual instructions as follows:

cg2ck(u) = φk(u);nextk(u); leftk(u);rightk(u). (5.8)

6Note again that there are in fact infinitely many such X.

42 Chapter 5. Translating Instruction Sequences

Here φk is defined as:

/a 7→ /a, \a 7→ /a, /£l 7→ /#1, /##£l 7→ /#k+l+4,

+/a 7→ +/a, +\a 7→ +/a, \£l 7→ /#1, \##£l 7→ /#l+3,

−/a 7→ −/a, −\a 7→ −/a, # 7→ #, ! 7→ !.

Furthermore, nextk, leftk and rightk are defined as follows:

nextk : u 7→

{

\#2k+6; \#4k+12 if u ∈ I←Cg,

/#2k+4; /#4k+8 otherwise,

leftk : u 7→

{

(\#2k+5)l; \#l+3; (\#2k+5)k−l if u = \£l and l ≤ k,

(\#2k+5)k+1 otherwise,

rightk : u 7→

{

(/#2k+5)l; \#k+l+4; (/#2k+5)k−l if u = /£l and l ≤ k,

(/#2k+5)k+1 otherwise.

The mapping cg2ck : X 7→ Y can be explained using the metaphor of a “highway” that is
laid between successive instructions of X . The highway contains a dedicated lane for each
goto instruction /##£l and \##£l for 0 ≤ l ≤ k, thus resulting in a highway with 2k + 2
lanes. The highway is the result of the functions leftk and rightk. Each Cg≤k-instruction
is mapped onto 2k + 5 C-instructions:

u; v;w;

label/goto “highway” with 2k + 2 “lanes”
︷ ︸︸ ︷

k + 1 “lanes” to the left
︷ ︸︸ ︷

\#2k+5; . . . ; \#2k+5;

k + 1 “lanes” to the right
︷ ︸︸ ︷

/#2k+5; . . . ; /#2k+5
︸ ︷︷ ︸

these 2k + 5 C instructions represent a single Cg≤k instruction

The highway is used solely to mimic the behavior of goto instructions using a finite number
of jumps. The following C-inseq is yielded by cg2ck(/##£l):

/#k+l+4;

k + l + 3 instructions
︷ ︸︸ ︷

/#2k+4; /#4k+8
︸ ︷︷ ︸

φk(/##£l)

; (\#2k+5)k+1

︸ ︷︷ ︸

leftk(/##£l)

; (/#2k+5)l;

right lane l
︷ ︸︸ ︷

/#2k+5; (/#2k+5)k−l
︸ ︷︷ ︸

rightk(/##£l)

entering the “highway”

The intention here is that the effect of /##£l is to jump onto the lth highway lane to the
right. This lane consists of chained jumps, each of distance 2k + 5, until the segment of
C-instructions that is the result of cg2ck(/£l) (note that l ≤ k, for otherwise /##£l would
not be part of the input). There, a jump instruction off the highway can be found:

/#1;

k + l + 3 instructions
︷ ︸︸ ︷

/#2k+4
︸ ︷︷ ︸

to next
Cg≤k

instruction

; /#4k+8 (\#2k+5)k+1

︸ ︷︷ ︸

leftk(/£l)

; (/#2k+5)l;

right lane l
︷ ︸︸ ︷

\#k+l+4; (/#2k+5)k−l
︸ ︷︷ ︸

rightk(/£l)
︸ ︷︷ ︸

2k + 3 instructions

leaving the “highway”

cg2ck maps each Cg≤k-instruction in an inseq X onto 2k + 5 C-instructions in an inseq
Y . Thus the C-instructions corresponding to the ith instruction in X start in Y at position
(i− 1) · (2k + 5) + 1.

It follows that |X |iCg = |cg2ck(X)|
(i−1)(2k+5)+1
C for all i ∈ Z, k ≤ 2 and X ∈ I+Cg. Thus

cg2ck is left uniformly behavior preserving.

Chapter 6

Some Expressiveness Results

As stated in §3.1.1, the abort instruction does not enhance C’s expressiveness as any abort
instruction can be replaced by a jump instruction with a sufficiently large jump counter. In
§5.1 the first of three steps involving the translation of C to PGA involved the elimination of
backward basic/test instructions. These observations naturally lead one to wonder whether
C contains more redundant instructions. There are at least two ways to prove that this is
indeed the case, both of which will be utilized in this chapter.

• On the one hand one can define a procedureM which, given an arbitrary regular thread
T ∈ BTAreg, constructs a C-expression X such that |X |iC = T for some i ∈ [1, ℓ(X)],
using only a subset of all C instructions, regardless of T . Clearly, any instruction
which is not utilized by M irrespective of its input is redundant in the sense that it
does not enhance C’s expressiveness.

• On the other hand one can define a function f on I+C which translates any given inseq
X to a behaviorally equivalent inseq Y , such that certain instructions will never be
present in Y . Again, any such instruction can be deemed redundant from the point of
view of expressiveness.

In our quest to trim C’s instruction set we will inevitably stumble upon instruction sets
which cannot express all threads in BTAreg. As we will later see, there is in fact a hierarchy
of expressive power.

Each C or Cg instruction u has a dual u: for forward instructions this is their backward
counterpart, and vice versa. The abort and termination instructions are their own dual.
Thus e.g. /a = \a, −\b = −/b and # = #. Observe that the dual operator is an involution:
u = u for all u ∈ IC ∪ ICg.

The anti-automorphism rev reverses a given instruction sequence and converts all its
instructions to their dual. It is defined on C and well as Cg instruction sequences. For
example,

rev(+/a; !; \#2) = \#2; !; +/a = /#2; !; +\a.

Observe that rev is an involution, because for all i ∈ [1, ℓ(X)],

σi(X) = σℓ(X)−i+1(rev(X)) = σℓ(X)−(ℓ(X)−i+1)+1(rev ◦ rev(X)) = σi(X).

It is not hard to see that |X |→C = |rev(X)|←C for arbitrary inseq X . It follows that any code
semigroup generated by some set I ⊆ IC or I ⊆ ICg is exactly as expressive as the set of its
duals {u | u ∈ I}. Thus rev tells us something about the expressiveness of subsemigroups
of C and Cg.

The remainder of this chapter is organized as follows: in §6.1 we will be concerned with
the expressiveness of several subsemigroups of C. Specifically, we will show that a reduction
of IC so that it contains only a finite number of forward or backward jump instructions (or

43

44 Chapter 6. Some Expressiveness Results

both) reduces its expressiveness. In §6.2 we will combine the results of §6.1 with some of the
translations defined in the previous chapter and use these to make some statements about
the expressiveness of Cg and some of its subsemigroups.

6.1 The Expressiveness of Subsemigroups of C

In §5.1 it was shown that backward basic instructions and backward test instructions do
not increase C’s expressiveness, by means of a left behavior preserving endomorphism f on
I+C which does not output any of these instructions. In other words, the code semigroup
generated by the instruction set IC −B← − P← − N← is as expressive as C itself. This
instruction set is not minimal, however, since the proper subset P→ ∪ J ∪ {!} suffices. This
is demonstrated by the left behavior preserving endomorphism g, defined on individual
C-instructions by

/a 7→ +/a; /#2; /#1, \a 7→ +/a; \#4; \#5,

+/a 7→ +/a; /#2; /#4, +\a 7→ +/a; \#4; \#8,

−/a 7→ +/a; /#5; /#1, −\a 7→ +/a; \#7; \#5,

/#k 7→ /#3k; !; !, # 7→ /#1; \#1; !,

\#k 7→ \#3k; !; !, ! 7→ !; !; !.

The next question which naturally arises is whether the instruction set P→ ∪ J ∪ {!} is
minimal. For example, can we do with less than infinitely many jump instructions? And if
not, will an infinite but otherwise arbitrary set of jump instructions suffice? We will now
investigate those questions.

Recall the definition of the subsemigroup C≤k in §5.3. As defined by (5.1), C≤k’s in-
struction set does not contain jump instructions with a jump counter greater than k.

Theorem 6.1 (Bergstra & Ponse). Let |A| ≥ 2. There does not exists a value k ∈ N
+ such

that C≤k can express all finite threads.

See the proof of Theorem 7 in [BP09a]; it has been replicated in Appendix B. See the
proof of Theorem 6.2 below for a discussion.

Theorem 6.2. Let A be non-empty. There does not exists a value k ∈ N
+ such that C≤k

can express all finite threads.

Proof. By Theorem 6.1 we conclude that if |A| ≥ 2, then C≤k cannot express all finite
threads. What remains is to be proved is that claim also holds if |A| = 1. We do this by
“patching” the proof by Bergstra & Ponse. As their proof is rather long we will not repeat
it here—instead we summarize some key aspects of the proof, point out why it requires that
|A| ≥ 2 and then proceed to show how this requirement can be eliminated. (Again, the
proof is provided verbatim in Appendix B.)

The proof uses two key notions:

• Following the definition of residual threads by (2.1), the concept of n-residual threads
is defined: Q is a 0-residual thread of P if P = Q. Q is an (n+1)-residual thread of P
if P = P1 E aD P2 and Q is n-residual of either P1 or P2.

• Now a thread P has the a-n-property if πn(P) = an ◦ D and P has 2n − 1 distinct
n-residuals with a first approximation not equal to a ◦ D.1 An instruction sequence
has the a-n-property if a thread with the a-n-property can be extracted from it.

1The sentences following this definition of the a-n-property in [BP09a] make it clear that P is meant to
have 2n instead of 2n − 1 distinct n-residuals with a first approximation not equal to a ◦ D. It turns out
that this slightly weaker definition of the property does not affect the proof in any significant way.

6.1. The Expressiveness of Subsemigroups of C 45

〈a〉

〈a〉 〈a〉

〈a〉 〈a〉 〈a〉 〈a〉

〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉

〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉 〈a〉

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25R26R27R28R29R30R31

T

P1

Q1 P2

Q2

Figure 6.1: Graphical representation of a thread T with the a+5-property. The “leaves”
Rn in this tree represent pairwise distinct 5-residuals of T which are each also distinct from
any m-residual of T for m < 5. This in turns means that all m-residuals for m ≤ 5 are
pairwise distinct. For if e.g. P1 and P2 are not distinct, then Q1 and Q2 are identical as
well, violating T ’s a+5-property. A similar argument holds for any pair of m-residuals with
m ≤ 5.

The proof by Bergstra and Ponse shows that for every k ∈ N there exists an n ∈ N
+

such that no C≤k-expression X has the a-n-property. It does so by assuming the contrary
and taking the minimal value for k in this respect. It is then shown that, given arbitrary
n ∈ N

+, one can find an X ∈ I+C≤k
with the a-n-property for which it is also the case that

X ∈ I+C≤k−1
. This contradicts the assumption that k was minimal.

Let P be a thread with the a-n-property. There are two observations to be made. First, if
n > 1, then the set A of actions contains at least two elements, for otherwise the requirement
that all first approximations of the distinct n-residuals of P must not equal a ◦D cannot be
met.

Second, not only are all of P ’s n-residuals distinct, by extension the same holds of all
m-residuals with m < n. Moreover, since all first approximations of n-residuals of P must
not equal a◦D, it follows that for any m-residual Q and m′-residual R with 0 ≤ m < m′ ≤ n
it is necessarily so that Q 6= R.

Summarizing that second observation, we see that every m-residual (m ≤ n) of a thread
P with the a-n-property is unique. As a result any instruction sequence with the a-n-
property has at least 2n − 1 distinct test instructions with action a.

Analyzing the proof, it turns out that it relies specifically on this second observation
about threads with the a-n-property; requiring that threads with the a-n-property (n > 1)
contain non-a actions is merely a means to that end. It turns out that we can define a
slightly different class of threads with this second property without requiring that |A| ≥ 2:
we say that a thread P has the a+n-property if πn(P) = an ◦ D and P has 2n distinct
n-residuals, none of which equals an (n−m)-residual of P (for m > 0).

To see why every m-residual (m ≤ n) of a thread P with the a+n-property is unique,
assume the contrary: then there are values m and m′ with m ≤ m′ ≤ n such that some m-
residual Q of P equals an m′-residual R of P . But then every (n−m′)-residual of R equals
some (n −m′)-residual of Q. This yields a contradiction, because every (n −m′)-residual
of R is an n-residual of P , which is by definition distinct from any (n −m′)-residual of Q,
because m+ (n−m′) ≤ n. Figure 6.1 attemps to visualize this argument using a thread T
with the a+5-property.

For every n ∈ N
+ a thread P with the a+n-property can be created, such that P performs

only a actions. Fix some n and let g : [0, 2n − 1] → {true, false}n be a bijection, where

46 Chapter 6. Some Expressiveness Results

{true, false}n is the set of all boolean sequences of length n. We write (g(m))d+1 for the
(d+1)th element of g(m). Now we define the family of threads P l for all 1 ≤ l < 2n such
that:2

P l =

{

P 2l E aD P 2l+1 if l < 2n−1,

Qn
2l−2n E aDQn

2l−2n+1 otherwise,
(6.1a)

Q0
m = a ◦ D, (6.1b)

Qd+1
m =

{

Qd
m E aD D if (g(m))d+1 = false,

DE aDQd
m otherwise.

(6.1c)

Informally, the thread P 1 performs n a-actions after which some state Qn
m is reached. Due

to the nature of g, Qn
m 6= Qn

m′ for distinct m and m′. For example, for n = 2 and taking g
such that

0 7→ {false, false}, 1 7→ {false, true}, 2 7→ {true, false}, 3 7→ {true, true},

the following equations are defined:

P 1 = P 2
E aD P 3, P 2 = Q2

0 E aDQ2
1, P 3 = Q2

2 E aDQ2
3,

and,

Q2
0 = Q1

0 E aD D, Q2
1 = Q1

1 E aD D, Q2
2 = DE aDQ1

2, Q2
3 = DE aDQ1

3,

Q1
0 = Q0

0 E aD D, Q1
1 = DE aDQ0

1, Q1
2 = Q0

2 E aD D, Q1
3 = DE aDQ0

3,

Q0
0 = a ◦ D, Q0

1 = a ◦ D, Q0
2 = a ◦ D, Q0

3 = a ◦ D.

Observe that any thread Qn
m performs n+1 a-actions only if the sequence of boolean replies

yielded by the first n actions is exactly according to g(m). Thus each thread Qn
m is a unique

n-residual of P 1 (recall that g is bijective). Since D is a 1-residual of every thread Qn
m,

but not of any thread P l we conclude that P 1 meets the necessary criteria to have the
a+n-property.

Replacing any thread with the a-n-property in the proof of Bergstra & Ponse with a
thread with the a+n-property results in a valid proof which requires only that |A| 6= ∅, as
opposed to |A| > 1. This proves our claim.

We have now established that arbitrarily many distinct jump instructions are required
to let C express all finite threads. It turns out that jump instructions in a single direction
suffice.

Proposition 6.3. Let J→ ⊆ J→ be an infinite but otherwise arbitrary set of forward jump
instructions and let the code semigroup C′ be generated by the instruction set P→∪J→∪{!}.
Then C′ can express all finite thread but no infinite threads. This also holds if P→ is replaced
by N→. If J← ⊆ J← is an infinite but otherwise arbitrary set of backward jump instructions,
then the instruction sets P← ∪ J← ∪ {!} and N← ∪ J← ∪ {!} also generate a code semigroup
which characterizes BTA.

Proof. As C′ does not contain backward instructions, it cannot create any kind of loop (for
all i, j ∈ Z, if i→X j according to some X ∈ I+C′ , then necessarily i < j). Every instruction
sequence is finite, thus so is any thread extracted from a C′-inseq X . What remains to be
shown is that all BTA threads can be described by C′.

Let P ∈ BTA be a finite thread. We will inductively construct a C′ instruction sequence
XP such that |XP |

→
C = P . For convenience we will define F = {δ(u) | u ∈ J→} to be the

set of jump counters of admitted jump instructions.

2In this definition relevant values for d and m are in the ranges [0, n− 1] and [0, 2n − 1], respectively.

6.1. The Expressiveness of Subsemigroups of C 47

If P = S then defineXP = !. If P = D then defineXP = /#k, for some k ∈ F . Otherwise
P = Q E a D R for some a ∈ A and Q,R ∈ BTA. By induction there are XQ, XR ∈ I

+
C′

such that |XQ|
→
C = Q and |XR|

→
C = R.

Create an inseq X ′R from XR by changing the jump counter k of any jump instruction
at an exit position in XR to some value k′ ∈ {j ∈ F | j ≥ k + ℓ(XQ)}. (These are the
instructions which upon execution cause deadlock).

Now we define XP = +/a; /#k;X ′R; (!)
p;XQ, where k ∈ {j ∈ F | j > ℓ(X ′R)} and

p = k− ℓ(X ′R)− 1. It is not hard to see that indeed |XP |
→
C = P . Note that the termination

instructions introduced here are solely for the purpose of padding. They are not reachable
from the leftmost instruction.

A similar construction can be made using negative tests. When using backward jump
instructions create an inseq XP such that |XP |

←
C = P .

Although all finite threads can be expressed using jump instructions in only one direction,
this is not the case for all regular threads. In fact, infinitely many distinct jump instructions
in both directions are necessary.

Definition 6.4. In an instruction sequence X = u1;u2; . . . ;uk ∈ I
+
A an instruction uj is

i-n-relevant if there exists an instruction sequence X ′, created from X by changing uj to

some other instruction u ∈ IA, such that πn(|X |
i
A) 6= πn(|X ′|

i
A). In other words: the nth

projection of the execution of inseq X starting at position i depends on uj . Observe that
any instruction which is i-n-relevant is also i-(n+1)-relevant.

Theorem 6.5. Let A be non-empty and fix some k ∈ N
+. Let IC′ be the largest subset of IC

which does not contain forward (backward) jump instructions with a jump counter greater
than k (i.e., IC′ contains a finite number of forward or backward jump instructions). Then
the semigroup C′ generated by IC′ cannot express all regular threads.

Proof. Let k be fixed and select n such that 2n ≥ 2k + 3. We will assume that C′ restricts
forward jump instructions (a similar argument holds if backward jump instructions are
restricted). Let g : [0, 22n − 1] → {true, false}2n be a bijection, where {true, false}2n is
the set of all boolean sequences of length 2n. We write (g(m))d+1 for the (d+1)th element
of g(m). Now we define the family of threads P l for all 1 ≤ l < 22n such that:3

P l =

{

P 2l E aD P 2l+1 if l < 22n−1,

Q2n
2l−22n E aDQ2n

2l−22n+1 otherwise,
(6.2a)

Q0
m = D, (6.2b)

Qd+1
m =

{

Qd
m E aD P 2n+[m]2n if (g(m))d+1 = false,

P 2n+[m]2n E aDQd
m otherwise.

(6.2c)

Figure 6.2 presents a graphical representation of thread P 1 for n = 2. Observe the
similarities of this set of equations to those presented in (6.1). Recall from §5.3.1 that [m]2n
is the remainder of m after division by 2n. Informally, the thread P 1 performs 2n a-actions
after which some state Q2n

m is reached. Distinct sequences of boolean replies to these actions
result in distinct values form (0 ≤ m < 22n). Due to the nature of g, Q2n

m 6= Q2n
m′ for distinct

m and m′. (To see why, observe that the 2n-residual D of Q2n
m can be reached starting in

state Q2n
m only if the replies to the first 2n a-actions are precisely according to g(m)—and g

is a bijection). Thus each thread Q2n
m is a unique 2n-residual of P 1. Since D is a 2n-residual

of every thread Q2n
m , but not of any thread P l we conclude that P 1 meets the necessary

criteria to have the a+2n-property.
Towards a contradiction assume that there exists a C′-expressionX such that |X |iC = P 1

for some i ∈ [1, ℓ(X)]. We define f(l) = min{i | |X |iC = P l} to be the function which

3In this definition relevant values for d and m are in the ranges [0, 2n− 1] and [0, 22n − 1], respectively.

48 Chapter 6. Some Expressiveness Results

P 1

P 2

P 4

P 8

Q4
0 Q4

1

P 9

Q4
2 Q4

3

P 5

P 10

Q4
4 Q4

5

P 11

Q4
6 Q4

7

P 3

P 6

P 12

Q4
8 Q4

9

P 13

Q4
10 Q4

11

P 7

P 14

Q4
12 Q4

13

P 15

Q4
14 Q4

15

Q3
0

Q2
0

Q1
0

Q0
0

Q3
3

Q2
3

Q1
3

Q0
3

Figure 6.2: Graphical representation of the thread described by P 1 as defined by (6.2),
for n = 2. Observe that the threads P 4, P 5, P 6 and P 7 (i.e. the threads P 2n through

P 2n+1−1) are n-residuals of of P 1. Likewise each thread thread Q4
m = Q2n

m is a 2n-residual
of P 1. Each thread Q4

m is distinct, and each of P 1’s n-residuals is a residual thread of
each thread Q4

m. Expanded are threads Q4
0 and Q4

3 which are defined according to g(0) =
{false, false, false, false} and g(3) = {false, false, true, true}, respectively. Note
that Q0

m = D for all m ∈ [0, 15], thus in particular Q0
0 = Q0

3 = D.

returns the leftmost position in X from which the thread P l can be extracted. Without loss
of generality we will assume that all instructions in X are reachable from position i, for if
not, then by Proposition 3.5 we can create an instruction sequence X ′ for which this does
hold. The largest jump counter of any forward jump instruction in X ′ would be less than
or equal to the largest forward jump distance in X .

For distinct l, l′ < 22n it is the case that P l 6= P l′ (because P 1 has the a+2n-property)
and thus necessarily f(l) 6= f(l′). The n-residuals of P 1 are the threads P l for l ∈ [2n, 2n+1−
1]. The integers in this range are totally ordered by the function f :4

l0, l1, . . . , l2n−1.

No instruction in X is both f(li)-n-relevant and f(lj)-n-relevant for distinct i and j, because
every thread P li is an n-residual of P 1, and P 1 has the a+2n-property. Moreover, the n-
residuals of any thread P li are the threads Q2n

i2n+m, for 0 ≤ m < 2n. The thread P lm in
turn is an 1-residual (and a 2, 3, . . . , 2n-residual) of the thread Q2n

i2n+m. Thus every thread
P lj is a residual thread of every thread P li .

Recall that 2n ≥ 2k + 3 and that C′ does not contain forward jump instructions over a
distance greater than k. Thus for some i < k + 1 all f(li)-n-relevant instructions are left of
position f(lk+1). For if not, then there are k+1 distinct positions < f(lk+1) containing jump
instructions which target k+ 1 distinct positions > f(lk+1). This is not possible because of
the restriction on forward jump counters.

Fix said i, and note that there are at least k + 1 instructions which are f(li)-(n+1)-
relevant to the right of f(lk+1): namely f(lk+2), f(lk+3), . . . , f(l2k+2). This leads to a
contradiction, since this, too, is not possible because of the restriction on jump counters.

4The ordering on [2n, 2n+1 − 1] imposed by f does not need to be the natural ordering of these integers!

6.1. The Expressiveness of Subsemigroups of C 49

Now that it has been established that an upper bound on the value of jump counters
limits expressiveness, even if only in a single direction, the question naturally arises whether
any two infinite collections of forward and backward jump instructions suffice to express all
regular threads. We prove that this is indeed the case.

Theorem 6.6. Let J→ ⊆ J→ and J← ⊆ J← be two infinite but otherwise arbitrary sets of
jump instructions and let the code semigroup C′ be generated by the set P→∪J→∪J←∪{!}.
Then all regular threads can be expressed by C′. This also holds if P→ is replaced by N→,
P← or N←.

Proof. Fix some infinite J→ ⊆ J→ and J← ⊆ J← and select arbitrary T ∈ BTAreg with
states P0, P1, . . . , Pn−1. Then the result of the procedure ConstructInseq(T , {δ(u) | u ∈
J→}, {δ(u) | u ∈ J←}) as outlined in Algorithm 6.1 is a C′-inseq X such that |X |→C = T .

Algorithm 6.1 C-expression construction using a restricted set of jump counters

Require: A regular thread T with states P0, P1, . . . , Pn−1 and infinite sets F,B ⊆ N.
Ensure: A C-inseq X with |X |→C = P0, {δ(u) | u ∈ J→(X)} ⊂ F , {δ(u) | u ∈ J←(X)} ⊂ B.

1: procedure ConstructInseq(T , F , B)
2: s← RandomSelect({j ∈ F | j ≥ 4})
3: z ← n · s · (s− 1) ⊲ Largest (rightmost) instruction position
4: I ← ∅ ⊲ Set of (position, instruction) tuples
5: for i← 0 to n− 1 do
6: for r← 0 to s− 1 do
7: c← (i · s+ r) · (s− 1) + 1
8: if Pi = S then
9: I ← I ∪ {(c, !)}

10: else if Pi = D then
11: d← RandomSelect({j ∈ B | j ≥ c})
12: I ← I ∪ {(c, \#d)} ⊲ Jump outside program: deadlock
13: else if Pi = Pj E aD Pk then
14: I ← I ∪ {(c,+/a)}
15: I ← I ∪Connect(c+ 1, j · s · (s− 1) + 1, z, s, F , B)
16: z ← max{p | ∃u[(p, u) ∈ I]}
17: I ← I ∪Connect(c+ 2, k · s · (s− 1) + 1, z, s, F , B)
18: z ← max{p | ∃u[(p, u) ∈ I]}
19: end if
20: end for
21: end for
22: return ConcatInstructions(I ∪ {(p, !) | 0 < p < z,¬∃u[(p, u) ∈ I]})
23: end procedure

24: procedure Connect(i, j, z, s, F , B)
25: r ← i+RandomSelect({k ∈ F | i+ k > z})
26: l ← r −RandomSelect({k ∈ B | r − k ≤ j})
27: p← ⌊(j − l)/s⌋
28: p← p+ j − (l + p · s)
29: return {(i, /#r−i)} ∪ {(r + k · s, /#s) | 0 ≤ k < p} ∪ {(r + p · s, \#r−l)}
30: end procedure

Suppose we want to transfer control of execution in an inseqX from position i to position
j. Obviously, J→∪J← may not contain the jump instruction required to jump immediately
from i to j. In fact, it may be so that no sequence of jump instructions permitted by
J→ ∪ J← can transfer control of execution from position i to j. For example, if only even

50 Chapter 6. Some Expressiveness Results

jump counters are available, then control of execution cannot be transferred from i to j if
i− j is odd.

Algorithm 6.1 solves this issue by producing an instruction sequenceX in which function-
ally equivalent subsequences of instructions are repeated s times at evenly spaced intervals
of length s− 1. The value of s is selected from the set of permissible forward jump counters
J→, with the sole restriction that s ≥ 4. Thus, for any Pk there are at least s positions
j0, j1, . . . , js−1 (with jm+1 = jm + s− 1) in X from which Pk can be extracted and for any
position i in X there is at least one such position jm such that i = jm (mod s).

Now the general procedure to “connect” a position i to one such jm inX using a sequence
of permissible jump instructions is to extend X with a sequence of jump instructions to the
right of X , as follows. First, select a sufficiently large forward jump instruction f which,
if placed at position i, jumps outside of X to some position r. Second, select a sufficiently
large backward jump instruction b which, if placed at position r, jumps to a position l ≤ j0.
Now observe that, instead of placing b at position r, we can add a sequence of chained
/#s instructions, starting at position r and extending to the right, such that they transfer
control of execution to some position r′ > r. r′ can be selected such that if the backward
instruction b were placed there, it would jump to a position l′ between j0 − (s − 1) and
j0. By adding another j0 − l′ chained /#s instructions starting at position r′, control of
execution will be transferred to a position r′′ > r′ from which the instruction b will target
exactly one of the positions jm. Specifically, m = j0 − l′. The procedure described here
is performed by Connect(i, j1, ℓ(X), s, {δ(u) | u ∈ J→}, {δ(u) | u ∈ J←}), which returns
the required jump instructions and the positions where they should be placed.

The procedure ConstructInseq(T , {δ(u) | u ∈ J→}, {δ(u) | u ∈ J←}) selects a
suitable value s and ensures that for every thread Pi there are s positions j0, j1, . . . , js−1
from which Pi can be extracted. At each of these positions it places a suitable instruction:
! if Pi = S, # if Pi = D and +/a if Pi = Pi′ E aD Pi′′ . In the latter case Connect(. . .) is
used to ensure that indeed either of Pi′ and Pi′′ will be reached after exectution of action
a.

6.2 The Expressiveness of Subsemigroups of Cg

Equipped with the translations of Chapter 5 and the theorems of §6.2, we are now ready to
make statements about the expressiveness of Cg and some of its subsemigroups.

Proposition 6.7. Each thread definable in Cg is regular, and each regular thread can be
expressed in Cg.

Proof. This follows immediately from the fact that c2cg and cg2c are behavior preserving
and total. Since C characterizes the regular threads (see Proposition 3.1), so does Cg.

Theorem 6.8. Let A be non-empty. There does not exists a value k ∈ N
+ such that Cg≤k

can express all finite threads.

Proof. Upon analyzing the family of translations cg2ck as defined in §5.4.1, we see that
they map Cg≤k-expressions to behaviorally equivalent C≤4k+12-expressions.

Thus if Cg≤k can express all finite threads, then so can C≤4k+12. But by Theorem 6.2
this is impossible.

Proposition 6.9. Let G→ ⊆ G→ be an infinite but otherwise arbitrary set of forward
goto instructions and let L→ ⊆ L→ constitute the set of label instructions which match the
goto instructions in G→. Then the code semigroup Cg′ generated by the instruction set
P→ ∪G→ ∪L→ ∪{!} can express all finite threads but no infinite threads. This also holds if
P→ is replaced by N→. If the infinite sets G← ⊆ G← and L← ⊆ L← are defined analogously,
then the instruction sets P← ∪ G← ∪ L← ∪ {!} and N← ∪ G← ∪ L← ∪ {!} also generate a
code semigroup capable of expressing all finite threads.

6.2. The Expressiveness of Subsemigroups of Cg 51

Proof. As in the proof of Proposition 6.3 we observe that Cg′ does not contain backward
instructions. Thus it can only express finite threads, as loops (a requirement for infinite
behavior) cannot be constructed in Cg′. Now we need to show all BTA threads can be
expressed by Cg′.

We will inductively define a Cg′ instruction sequence XP for every P ∈ BTA such that
|XP |

→
Cg = P . Let F = {λ(u) | u ∈ G→} be the set of label numbers of available goto

instructions.
If P = S then XP = !. If P = D then set XP = /##£l, where l is an arbitrary element

of F . Otherwise P = Q E a D R and there are XQ, XR ∈ I
+
Cg′ such that |XQ|

→
Cg = Q and

|XR|
→
Cg = R. Select some label number l ∈ F such that it is not present in XQ or XR. Then

XP = +/a; /##£l;XR; /£l;XQ.
A similar construction can be made using negative tests. When using backward goto

instructions create an inseq XP such that |XP |
←
Cg = P .

Theorem 6.10. Let A be non-empty and fix some value k ∈ N
+. Let ICg′ be the largest sub-

set of ICg which does not contain forward (backward) goto instructions with a label number
k or greater (i.e., ICg′ contains a finite number of forward or backward goto instructions).
Then the semigroup Cg′ generated by ICg′ cannot express all regular threads.

Proof. The proof is analogous to that of Theorem 6.5. Again select n such that 2n ≥ 2k+3
and consider the thread P1 as defined by (6.2). As before the function f(l) = min{i |

|X |iC = P l} induces a total ordering on the range [2n, 2n+1− 1], say l0, l1, . . . l2n−1. Observe
that for some i < k + 1 all f(li)-n-relevant instructions are left of position f(lk+1), for
otherwise there must be k+1 distinct goto instructions on positions < f(lk+1) which target
k + 1 distinct label instructions on positions > f(lk+1); impossible, as ICg′ contains only k
distinct forward goto instructions.

Fixing said i we note that there are at least k+1 positions which are f(li)-(n+1)-relevant
to the right of f(lk+1): this too is impossible, for the same reason. Contradiction.

Chapter 7

Discussion

This thesis can be divided into four parts: the introduction of C and the theory behind it,
the introduction of Cg as an alternative to C, the definition of translations between these,
and several results about the expressiveness of C and Cg.

We have proved that C and Cg are equally expressive by means of the total mappings
c2cg and cg2c. We have also proved that such translations are only possible if the max-
imum jump counter (or label number) in the input inseq is known. As a result c2cg and
cg2c cannot be homomorphic.

We then went on to prove that any subsemigroup of C (Cg) needs to contain infinitely
many jump instructions (matching label and goto instructions) in order to express all finite
threads (Theorem 6.2, Theorem 6.8). In order to express all regular threads it is even
necessary that such a semigroup contains infinitely many jump instructions (label/goto
instructions) in both directions (Theorem 6.5, Theorem 6.10). The upshot is that any such
infinite collection of jump instructions (label/goto instructions) suffices (Theorem 6.6, the
corresponding result for Cg is trivial).

7.1 Further Work

The translations between C and Cg in Chapter 5 use label and goto instructions to mimic
the behavior of jump instructions and vice versa. There are some open questions about
the nature of these translations: it is not known whether alternative behavior preserving
mappings can be defined which employ less jump instructions or label/goto instructions.
More precisely,

• Given an arbitrary value k ∈ N, what is the smallest value k′ ∈ N for which there
exists a behavior preserving mapping f : I+Cg≤k

→ I+C≤k′
? (By definition of equation

(5.8) in §5.4.1 we already know that k′ ≤ 4k + 12.)

• As demonstrated by the translations defined in §5.3, there exist behavior preserving
mappings f : I+C≤k

→ I+Cg≤k
for all k > 2. Is there any value k ∈ N such that for some

k′ < k the mapping f : I+C≤k
→ I+Cg≤k′

is behavior preserving?

7.2 Acknowledgements

First and foremost I want to thank my supervisor, Alban Ponse, for his guidance and most
of all patience; the writing of this thesis took much longer than it should have. I thank
Kyndylan Nienhuis for asking some smart questions about the semantics of Cg, which led
to the inclusion of §4.6.

I thank my family and especially Vera Matei for their support during the writing of this
thesis.

53

Appendix A

Overview of Defined Translations

Figure A.1 provides a graphical representation of the most important sets of (single pass)
instruction sequences introduced in this thesis. Recall that the set I+C contains all C-
expressions. For arbitrary k ∈ N, I+C≤k

is the largest subset of I+C which does not contain

C-inseqs with relative jumps over a distance greater than k. Similarly, I+Cg contains all Cg-

expressions, and I+Cg≤k
contains those inseqs without goto instructions with a label number

greater than k. All PGA terms are contained in P ; the set P 1 is the largest set which is
restricted to single pass instruction sequences in first canonical form. P 2 contains PGA’s
second canonical forms.

I+C I+C≤4k+12
I+C≤k

I+Cg

I+Cg≤k

PP 1 P 2

c2cgk

cg2ck

cg2c

c2cg

fs
t

snd

p
g
a
2
c

sn
d
2
c

Figure A.1: Overview of semigroups and single-pass instruction sequences and certain behav-
ior preserving mappings defined between then, as introduced in this thesis. Dotted arrows
represent homomorphisms. There is also a non-homomorphic version of c2cgk (§5.3.1).

55

Appendix B

Proof by Bergstra & Ponse

The proof of Theorem 6.1 is presented in Section 9 of [BP09a]. As the proof of Theorem 6.2
builds upon this result, Section 9 of [BP09a] is reproduced here verbatim, with kind per-
mission of the authors. Three minor changes have been applied: a section reference has
been updated to point to an equivalent section in this thesis, a footnote has been added and
the last paragraph has been left out, as it is merely an introduction to Section 10 of that
publication.

Observe that [BP09a] uses notation which in some places differs slightly from notation
introduced in this thesis.

B.1 Expressiveness and reduced instruction sets

In this section we further consider C’s instructions in the perspective of expres-
siveness. We show that setting a bound on the size of jump counters in C does
have consequences with respect to expressiveness: let

Ck

be defined by allowing only jump instructions with counter value k or less.

We first introduce some auxiliary notions: following the definition of residual
threads in Section 2.1, we say that thread Q is a 0-residual of thread P if P = Q,
and an n + 1-residual of P if for some a ∈ A, P = P1 E a D P2 and Q is an
n-residual of P1 or of P2. Note that a finite thread (in BTA) only has n-residuals
for finitely many n, while for the thread P defined by P = a ◦ P it holds that P
is an n-residual of itself for each n ∈ N.

Let a ∈ A be fixed and n ∈ N
+. Thread P has the a-n-property if πn(P) = an◦D

and P has 2n− 1 (different) n-residuals which all have a first approximation not
equal to a ◦ D.1 So, if a thread P has the a-n-property, then n consecutive
a-actions can be executed and each sequence of n replies leads to a unique n-
residual. Moreover, none of these residual threads starts with an a-action (by
the requirement on their first approximation). We note that for each n ∈ N

+ we
can find a finite thread with the a-n-property. In the next section we return to
this point.

A piece of code X has the a-n-property if for some i, |X |i has this property. It
is not hard to see that in this case X contains at least 2n − 1 different a-tests.

1It appears that the authors meant to use 2n instead of 2n − 1 in this sentence, though this does not
affect the proof in any serious way. —Stephan

57

58 Appendix B. Proof by Bergstra & Ponse

As an example, consider

X = ! ; \b; +\a; +/a; \#2;+/a; /#2; /c; #

Clearly, X has the a-2-property because |X |4 has this property: its 2-residuals
are b ◦ S, S, D and c ◦ D, so each thread is not equal to one of the others and
does not start with an a-action.

Note that if a piece of code X has the a-(n + k)-property, then it also has the
a-n-property. In the example above, X has the a-1-property because |X |3 has
this property (and |X |6 too).

Lemma 1. For each k ∈ N there exists n ∈ N
+ such that no X ∈ Ck has the

a-n-property.

Proof. Suppose the contrary and let k be minimal in this respect. Assume for
each n ∈ N

+, Yn ∈ Ck has the a-n-property.

Let B = {true, false}. For α, β ∈ B∗ we write

α � β

if α is a prefix of β, and we write α ≺ β or β ≻ α if α � β and α 6= β.
Furthermore, let

B≤n =

n⋃

i=0

Bi,

thus B≤n contains all B∗-sequences α with ℓ(α) ≤ n (there are 2n+1 − 1 such
sequences).

Let g : N→ N be such that |Yn|g(n) has the a-n-property. Define

fn : B≤n → N
+

by fn(α) = m if the instruction reached in Yn when execution started at position
g(n) after the replies to a according to α has positionm. Clearly, fn is an injective
function.

In the following claim we show that under the supposition made in this proof
a certain form of squeezing holds: if k′ is sufficiently large, then for all n > 0
there exist α, β, γ ∈ Bk′

with fk′+n(α) < fk′+n(β) < fk′+n(γ) with the property
that fk′+n(α) < fk′+n(β

′) < fk′+n(γ) for each extension β′ of β within B≤k
′+n.

This claim is proved by showing that not having this property implies that “too
many” such extensions β′ exist. Using this claim it is not hard to contradict the
minimality of k.

Claim 1. Let k′ satisfy 2k
′

≥ 2k+3. Then for all n > 0 there exist α, β, γ ∈ Bk′

with
fk′+n(α) < fk′+n(β) < fk′+n(γ)

such that for each extension β′ � β in B≤k
′+n,

fk′+n(α) < fk′+n(β
′) < fk′+n(γ).

Proof of Claim 1. Let k′ satisfy 2k
′

≥ 2k+ 3. Towards a contradiction, suppose
the stated claim is not true for some n > 0. The sequences in Bk′

are totally
ordered by fk′+n, say

fk′+n(α1) < fk′+n(α2) < . . . < fk′+n(α2k′).

B.1. Expressiveness and reduced instruction sets 59

Consider the following list of sequences:

α1, α2, . . . , α2k+2
︸ ︷︷ ︸

, α2k+3

choices for β

By supposition there is for each choice β ∈ {α2, . . . , α2k+2} an extension β′ ≻ β
in B≤k

′+n with

either fk′+n(β
′) < fk′+n(α1), or fk′+n(β

′) > fk′+n(α2k+3).

Because there are 2k + 1 choices for β, assume that at least k + 1 elements
β ∈ {α2, . . . , α2k+2} have an extension β′ with

fk′+n(β
′) < fk′+n(α1)

(the assumption fk′+n(β
′) > fk′+n(α2k+3) for at least k + 1 elements β with

extension β′ leads to a similar argument). Then we obtain a contradiction with
respect to fk′+n: for each of the sequences β in the subset just selected and its
extension β′,

fk′+n(β
′) < fk′+n(α1) < fk′+n(β),

and there are at least k + 1 different such pairs β, β′ (recall fk′+n is injective).
But this is not possible with jumps of at most k because the fk′+n values of
each of these pairs define a path in Yk′+n that never has a gap that exceeds k
and that passes position fk′+n(α1), while different paths never share a position.
This finishes the proof of Claim 1.

Take according to Claim 1 an appropriate value k′, some value n > 0 and
α, β, γ ∈ Bk′

. Consider Yk′+n and mark the positions that are used for the
computations according to α and γ: these computations both start in position
g(k′ + n) and end in fk′+n(α) and fk′+n(γ), respectively. Note that the set of
marked positions never has a gap that exceeds k.

Now consider a computation that starts from instruction fk′+n(β) in Yk′+n, a
position in between fk′+n(α) and fk′+n(γ). By Claim 1, the first n a-instructions
have positions in between fk′+n(α) and fk′+n(γ) and none of these are marked.
Leaving out all marked positions and adjusting the associated jumps yields a
piece of code, say Y , with smaller jumps, thus in Ck−1, that has the a-n-property.
Because n was chosen arbitrarily, this contradicts the initial supposition that k
was minimal.

Theorem 1. For any k ∈ N
+, not all threads in BTA can be expressed in Ck.

This is also the case if thread extraction may start at arbitrary positions.

Proof. Fix some value k. Then, by Lemma 1 we can find a value n such that no
X ∈ Ck has the a-n-property. But we can define a finite thread that has this
property.

Bibliography

[BL00] Jan A. Bergstra and M. E. Loots, Program Algebra for Component Code, Formal
Asp. Comput. 12 (2000), no. 1, 1–17.

[BL02] , Program Algebra for Sequential Code, J. Log. Algebr. Program. 51
(2002), no. 2, 125–156.

[BP09a] Jan A. Bergstra and Alban Ponse, An Instruction Sequence Semigroup with Invo-
lutive Anti-Automorphisms, Scientific Annals of Computer Science (2009), no. 19,
57–92.

[BP09b] , An Instruction Sequence Semigroup with Involutive Anti-Automorphisms,
CoRR abs/0903.1352v1 (2009).

[CP61] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Volume I,
Mathematical Surveys, no. 7, American Mathematical Society, Providence, Rhode
Island, 1961.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Spec-
ification, third ed., Addison-Wesley, June 2005.

[ISO99] ISO, ISO C Standard 1999, Tech. report, 1999, ISO/IEC 9899:1999 draft.

[KR88] Brian W. Kernighan and Dennis Ritchie, The C Programming Language, second
ed., Prentice-Hall, 1988.

[PvdZ06] Alban Ponse and Mark van der Zwaag, An Introduction to Program and Thread
Algebra, CiE (Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V.
Tucker, eds.), Lecture Notes in Computer Science, vol. 3988, Springer, 2006,
pp. 445–458.

61

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Basic Thread Algebra
	2.2 Program Algebra: PGA
	2.3 Finite Instruction Sequences and Code Semigroups

	3 C Instruction Sequences
	3.1 The Instruction Set
	3.2 Semantics
	3.3 The Reachability of Instructions
	3.4 A Small Variation on C

	4 Cg Instruction Sequences
	4.1 The Instruction Set
	4.2 Semantics
	4.3 Normalizing Label Numbers
	4.4 Freeing Label Numbers
	4.5 Cg and Relative Jumps
	4.6 Label Instructions as More General Jump Targets

	5 Translating Instruction Sequences
	5.1 Translating C to PGA
	5.2 Translating PGA to C
	5.3 Translating C to Cg
	5.4 Translating Cg to C

	6 Some Expressiveness Results
	6.1 The Expressiveness of Subsemigroups of C
	6.2 The Expressiveness of Subsemigroups of Cg

	7 Discussion
	7.1 Further Work
	7.2 Acknowledgements

	A Overview of Defined Translations
	B Proof by Bergstra & Ponse
	B.1 Expressiveness and reduced instruction sets

	Bibliography

