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Abstract

In linguistics, there is a debate between empiricists and nativists: the former
believe that language is acquired from experience, the latter that there is an
innate component for language. The main arguments adduced by nativists
are Arguments from Poverty of Stimulus. It is claimed that children acquire
certain phenomena, which they cannot learn on the basis of experience alone
—and therefore, there has to be some innate component for language. In this
thesis, we show that at least for certain phenomena that are often used in such
arguments, it is possible to explain how children acquire them on the basis of
experience alone, viz. with an Unsupervised Data-Oriented Parsing (U-DOP)
approach to language.

In the first part of the thesis, we develop concrete implementations of U-
DOP, and contribute to the field of unsupervised parsing with two innovations.
First, we develop an algorithm that performs syntactic category labeling and
parsing simultaneously, and second, we devise a new methodology for unsuper-
vised parsing, which can in principle be applied to any unsupervised parsing
algorithm, and which produces the best results reported on the ATIS-corpus so
far, with a promising outlook for even better results.

In the second part of the thesis, we then use these concrete implementa-
tions to show how the acquisition of certain phenomena can be explained in
an empirical way. We look in detail at wh-questions, and then show that the
U-DOP approach is more general than the nativist account by looking at other
phenomena.
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Chapter 1

Introduction

This introduction consists of three sections. First, we will sketch the general
background within which this thesis is to be situated. Next, we will make
explicit what the main aim of this thesis is. Finally, we will give an overview of
the structure of the thesis.

1.1 Background

Current linguistics can roughly be divided into two streams: nativist and em-
piricist approaches. Nativist approaches claim that humans are endowed with
a special ‘language faculty’, encoded on the gene, which distinguishes humans
from other animals. They have a Platonic view on language acquisition: the
main principles and parameters are already innate as ideas in the child’s mind;
language acquisition proceeds as a Socratic dialogue, where experience merely
serves to bring the ideas, already lingering in the background, to the fore. Em-
piricist approaches, on the other hand, try to refrain from assuming innate ideas,
and instead try to show how children can learn language solely on the basis of (i)
experience and (ii) general cognitive capabilities (which are not unqiue to lan-
guage, but are also used in music, visual perception, reasoning, etc.). However,
this does not imply the following:

To say that ‘language is not innate’ is to say that there is no dif-
ference between my granddaughter, a rock and a rabbit. In other
words, if you take a rock, a rabbit and my granddaughter and put
them in a community where people are talking English, they’ll all
learn English. If people believe that, then they believe that language
is not innate. If they believe that there is a difference between my
granddaughter, a rabbit and a rock, then they believe that language
is innate. (Chomsky, 2000, p. 50)

Whereas empiricists try not to assume any innate linguistic principles and
parameters, they do however assume that certain general cognitive capabilities
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are innate. What distinguishes Chomsky’s granddaughter, a rabbit and a rock
are then precisely these general cognitive capabilities. An example of such a
capability is the ability to perform analogical operations, cf. the work of Dedre
Gentner (e.g. Gentner (1997)). Tomasello (2003) shows how this general notion
of analogy is used in language acquisition. In Bod (2009), analogy is presented
as the basis of the computational model of language learning presented there.

Arguments from Poverty of Stimulus. Nativist approaches to lan-
guage acquisition are often argued for using Arguments from Poverty of Stimulus
(APS). For a detailed and precise definition, see Pullum and Scholz (2002). Typ-
ically, such arguments run as follows. It is observed (i) that children can master
a certain language phenomenon (e.g. long-distance wh-questions), and (ii) that
the input they receive is too poor to explain how they mastered that phe-
nomenon (e.g. because they have never heard that kind of construction before).
It is then concluded that (iii) since they cannot have learned the phenomenon on
the basis of input alone, there has to be some kind of innate component which
can explain how they learned the phenomenon (e.g. the island constraints).

The crucial step in such an argument is of course step (ii): for the argument
to go through, the nativist must ensure that this step is backed up. In this thesis,
we will show that at least for certain phenomena which have traditionally played
a role in APS’s it is possible to explain their acquisition on the basis of input
alone. Hence, they can no longer be used in an APS, since step (ii) fails.

Nativist approaches to language. Nativism is closely linked with the
tradition of generative grammar. This tradition was started in the 1950s by
Noam Chomsky under the name transformational grammar. The core idea of
this theory was that sentences have a deep structure and a surface structure,
and that syntactic theory consists of transformations that transform the deep
structure into the surface structure. An important document for this linguistic
tradition is the PhD thesis of Ross (1967), in which the island constraints were
first formulated.

In the 1980s, transformational grammar gradually became obsolete, and the
new Principles and Parameters theory or Government and Binding became the
dominant framework in the generative tradition. More recently (initiated in
1993), the paradigm has shifted again, this time to the Minimalist Program.
The Minimalist Program assumes that the structures proposed by Principles
and Parameters theory are in essence correct, but it wants to explain why the
theory works the way it does.

In this thesis, we will focus on the one hand on the roots of generative gram-
mar, more specifically on the island constraints proposed by Ross (1967), and
on the other hand on more recent work, guided by the version of the minimalist
framework developed in Adger (2003).

Empiricist approaches to language. There are basically two kinds of
empiricist approaches to language: theoretical and computational. The differ-
ence between both is not as much ideological as it is teleological. The aim of
theoretical approaches to language is to establish what the theory of language is
that humans employ, or the mechanism of language acquisition that is actually
going on in infants. Computational approaches, on the other hand, take a more
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behavioristic stance: the ultimate goal is to simulate language, to let computers
do whatever it is that humans do, albeit perhaps not in the same way.

The main theoretical empiricist approaches to language are Usage-Based
Grammar and Construction Grammar. These will be discussed in more detail
in Section 2.1 below.

In computational empiricist approaches to language, there are two streams:
symbolic and non-symbolic approaches. The main example of the latter is con-
nectionism. Connectionism tries to model language with neural networks. Its
main characteristic is that it is not hierarchical: unlike in more ‘traditional’
linguistics, there is no notion of ‘tree’; language consists only of sequences of
strings. An immediate consequence of this is that discontinuous relations among
constituents of a sentence (e.g. the relation between ‘pick’ and ‘up’ in ‘Jacob
picked Bella up’) cannot be captured. More problematic from a modeling point
of view, however, is the restriction that such models can only recognize sen-
tences; they cannot generate sentences. So they can only say of a given sen-
tence whether it is grammatical; they cannot generate grammatical sentences
themselves. Attempts at modeling language acquisition in this framework have
already been made, e.g. in MacWhinney (2004). However, up to now this kind
of work has only been conducted with simple artificial examples, and not yet
with full-scale natural language.

In this thesis, we will work in the symbolic framework of Data-Oriented
Parsing (DOP) (cf. Section 2.2 for more details). Unlike in connectionism, the
notion of ‘tree’ does play an important role here. Consequently, discontinuous
relations can be captured. Moreover, this framework also allows for the genera-
tion of sentences (for a discussion, see Section 2.3), and can be used with actual
natural language, making it more adequate for modeling language acquisition.

Originally, this framework was primarily a computational model, used for
applications in computational linguistics. Recently, however, the framework
has been evolving towards a theory of language, i.e. also claiming theoretical
relevance. For example, Bod (2009) already showed how U-DOP can be used to
model language acquisition, via computational experiments and an investigation
of the Subject Auxiliary Inversion-problem (cf. Chapter 5). This thesis wants
to contribute to this evolution, by investigating more problems in language
acquisition, and accounting for them in an empirical way, in the (U-)DOP-
framework.

Recently, Waterfall et al. (2010) have conducted related work: they also
propose a computational model of language acquisition. The main difference
between our approach and theirs is that they do not really address specific
problems in language acquisition, but focus more on the computational side:
which sentences can be generated, with which precision and recall.

1.2 Aims and methodology

In this section, we will discuss the aims of this thesis, and explain the method-
ology we used to reach them. Then we discuss the necessary limitations of this
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research, and the materials that we used.

1.2.1 Aims

The aims of this thesis are twofold. The main goal is to provide counterevidence
to Arguments from Poverty of Stimulus. Step (ii) of such APS’s says that for
certain phenomena it is not possible to explain how children learn them on the
basis of input alone. We will show that it is possible to explain these phenomena
on the basis of input and a few very general cognitive capabilities, viz. in the
(U-)DOP framework. Note that we do not claim that the solution proposed here
is the correct account of the acquisition of such phenomena; rather, we claim
that is a possible account, and that hence step (ii) of many APS’s is falsified.

To show that an empirical account of these phenomena is possible, we need
to build concrete implementations of the Data-Oriented Parsing framework.
These implementations will be unsupervised parsers, and this brings us to the
next goal of this thesis: we want to contribute to the field of unsupervised
parsing, by providing new implementations which obtain better scores than the
current state-of-the-art.

1.2.2 Assumptions and method

To achieve the main goal, an empirical account of phenomena in language ac-
quisition, we take over the assumptions implicit in the (Unsupervised-)Data-
Oriented-Parsing framework: that language expressions are represented as hi-
erarchical trees, and that new utterances are formed by combining fragments of
trees (subtrees), in line with the general cognitive capability to perform analog-
ical operations. Crucially, this system depends mostly on the input the learner
receives, rather than on principles which are already innate.

To account for the phenomena that are typically used in APS’s, we proceed
as follows. We train the parser developed in Section 3.1 on (a portion of)
the actual input a child receives (cf. Subsection 1.2.4), to model the learning
process. Then we need to explain why, when faced with several alternatives,
children choose the correct alternative. For example, to formulate a yes/no-
question (cf. Chapter 5), children can choose between (1.1) and (1.2); we have
to explain why they utter the grammatical (1.1) and not the ungrammatical
(1.2).

(1.1) is the boy who is eating hungry

(1.2) * is the boy who eating is hungry

At this point, we need to comment on the notion of grammaticality, which
is different in the nativist framework and in the DOP-framework. In the na-
tivist framework, grammaticality is considered absolute: a sentence is either
grammatical or it is not. In the DOP-framework, however, grammaticality is
considered relative: all sentences can be generated, but some are more likely to
be generated (are more grammatical) than others. So the task is not so much

8



to explain why (1.1) is grammatical and (1.2) is ungrammatical, but rather to
explain why children seem to prefer (1.1) over (1.2).

We let our implementation provide a syntactic analysis for both alternatives,
and look at the score of each derivation. The derivation with the best score is
to be preferred over the other one; so the chosen alternative is the sentence with
the best-scoring derivation.1

Crucially, we look at the score of each derivation, not at the tree it produces
as output. Since we cannot know which tree would be the tree constructed by
the child, we prefer to be agnostic as to what is the ‘correct’ tree; therefore, we
consider it irrelevant whether the parser produces the same tree a linguist would
propose. Rather we focus on the relative scores: it is possible to know which
derivation should have the highest score, viz. the derivation of the alternative
that is considered most grammatical.

Problematic with this methodology is that some sentences could not be
parsed by the implementations due to memory issues (if the process required
more than 30 GB RAM). Therefore, the account of phenomena in language
acquisition is a two-pass model. In the first pass, we try the methodology out-
lined above, with the concrete implementation of Section 3.1. However, when
this proved to be impossible due to memory issues (more than 30 GB RAM
required), we backed off to a simpler model in the second pass.

In this second pass, we manually checked which were the shortest derivations
(although this could also be implemented computationally). We proceed as
follows. First, we check whether the entire tree occurs in the corpus; if so, then
this is the shortest derivation, consisting of one step. If we cannot find the
entire tree, we look for the largest fragments in the tree that can be found in
the corpus, and build our derivation with those. So in this second pass, we
do not look at the k-best shortest derivations and the ranking. We only look
for a shortest derivation, i.e. a derivation such that it is not possible to find a
derivation that is strictly shorter. Although the parser (with sufficient memory)
could come up with a derivation we hadn’t thought of, we ensure that at least
it cannot produce an even shorter derivation.

1.2.3 Limitations

In this subsection, we discuss the limitations of the approach adopted in this
thesis.

The first limitation is that we do not take semantics into account. The (U-)
DOP models we work with in this thesis only deal with syntax and not with
semantics. There are already models in the DOP-framework which consider
semantics (e.g. Bod and Kaplan (2003)), but their implementation still needs
further research.

Second, we assume as input for the parser a corpus of sentences with part-
of-speech annotation. This is a common assumption in the field of unsupervised

1However, it is often the case that longer sentences have longer derivations and a higher
ranking score; so when we compare two sentences with a different length, this might be an
issue.
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parsing. However, this does not imply that the system cannot be fully unsu-
pervised: unsupervised part-of-speech taggers are available (e.g. Schütze (1995)
and Biemann (2006)), so they can be used in a preprocessing step.

Third, we often run into technical limitations: some processes either take
too much time, or too much memory to complete. For this reason, we have in-
troduced the two-pass model (cf. supra) to account for phenomena in language
acquisition. Ideally, we would want to account for everything using the imple-
mentations. However, it is important to note that there are no fundamental
problems with the implementations: if the technology would be more advanced
(the working memory larger), they could run without limitations.

1.2.4 Materials

We used two corpora, for the two different parts of this thesis. For the first
part, building concrete implementations of U-DOP, we used the ATIS corpus
(Marcus et al., 1993) to evaluate the implementations, and compare the results
to previous work. This small corpus contains around 500 utterances asking
for travel information. Although most sentences are fairly small, it is still a
relatively difficult corpus for parsing, because the utterances are spontaneous
speech.

For the second part, explaining phenomena in language acquisition, we used
the child-directed speech from the Adam-part of the Childes-corpus (Brown, 1973).
This is real-life data, produced by caretakers to the child; so we have direct ac-
cess to the input the child receives. Remarkably, this only represents a fraction
of the real amount of input a child receives (roughly two hours per fortnight),
so the fact that we can already explain phenomena in language acquisition on
the basis of this small fraction is further support for our approach.

In this thesis, we will use the manually annotated part-of-speech tags of
each corpus. A list of part-of-speech tags for each corpus can be found in the
Appendix. We preferred using the manual tags, rather than the output of an
unsupervised tagger, because we wanted to avoid errors due solely to the tagger.
However, using the manual tags also has its disadvantages, as will become clear
in Subsection 6.3.5: it might be desirable to have a more fine-grained system.

1.3 Overview of the thesis

In this section we will provide an overview of the remainder of the thesis. The
thesis is mainly divided into two parts, reflecting its two research goals.

The first part aims at developing an empiricist theory of language in the
framework of Data-Oriented Parsing, which can then be used in the second
part to explain language phenomena in an empirical way. First, the theoreti-
cal background for the implementations is sketched. We look at Usage-Based
Grammar and Construction Grammar, fairly theoretical linguistic theories to
which Data-Oriented Parsing is closely related. Then we introduce the Data-
Oriented Parsing framework itself, and show how it can be extended towards
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Unsupervised Data-Oriented Parsing (U-DOP).
In the next chapter we will then build concrete implementations on the basis

of these theoretical ideas. We will develop four implementations, two of which
are innovations to the field of unsupervised parsing. The first innovation is to
do the tasks of syntactic category labeling and parsing simultaneously, in the
hope that both tasks will benefit from the interaction. The second innovation
is a new methodology for unsupervised parsing in general, which will give the
best results reported on the ATIS-corpus so far.

In the second part we will then look at specific language phenomena that are
typically used in Arguments from Poverty of Stimulus, and use the implemen-
tations of the first part to show that an empiricist account of these phenomena
can be given.

An introductory chapter provides an overview of the basics of the minimalist
framework, as developed in Adger (2003). These basics will be necessary to
explain the minimalist account of the language phenomena in the next chapters.

The next chapter deals with the phenomenon of Subject Auxiliary Inversion
(SAI). Bod (2009) has already shown how this phenomenon can be captured
empirically; in this chapter, we will investigate whether our approach can also
capture this phenomenon.

Then we move to the main chapter of this thesis, on the phenomenon of wh-
questions. This phenomenon will be studied in depth. First, we will look at all
the details of the nativist account provided by Ross (1967) and the minimalist
framework developed in Adger (2003). Then we will show how the (U-)DOP-
account can capture all the details of this construction in a simple and uniform
way.

Next, we will look at related phenomena, and investigate whether the (U-)DOP-
approach is (i) equally general as the approach developed by Ross (1967), in that
it can be extended to capture other phenomena as well and (ii) even more gen-
eral, in that it can also capture phenomena which fall outside the scope of Ross’
theory.

Finally, we will sum up the results from this thesis (both computational and
theoretical), and look at questions for further research.
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Part I

Developing a U-DOP
theory of language
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In this part, we will develop a U-DOP theory of language. In the first
chapter, we look at the theoretical side. We discuss Usage-Based Grammar and
Construction Grammar, fairly theoretical linguistic framework that are closely
related to the (more computational) Data-Oriented Parsing framework. Next,
we look at the basic Data-Oriented Parsing model, and show how it can be
extended towards Unsupervised Data-Oriented Parsing.

In the next chapter, we will then turn towards concrete implementations of
the ideas given in the first chapter. First, we will implement the basic idea of
shortest derivation U-DOP, as developed in the last section of the first chapter.
Next, we will optimize this implementation, leading to a small loss in F1-score,
but a great gain in space and time efficiency. In the third and fourth sections,
we will present two real innovations to the field of unsupervised parsing. The
first innovation is to do the tasks of parsing and category labeling in one go, in
the hope that this will be to the benefit of both tasks. The second innovation
has not so much to do with concrete parsing techniques, but rather proposes a
general new methodology for unsupervised parsing. We will show how this new
methodology improves the results of the parsers developed in this thesis, but
in principle the methodology can be applied to and improve the results of any
existing unsupervised parser.

In the next part, we will then use these concrete implementations of the
ideas of U-DOP to show that certain problems of language acquisition can be
solved in an empirical way.
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Chapter 2

Theoretical Background

In this chapter, we develop the theory of language that will be adopted in
this thesis from a theoretical point of view. First, we look at two theoreti-
cal linguistic frameworks that are closely related to the Data-Oriented Parsing
framework: Usage-Based Grammar (Bybee, 2006) and Construction Grammar
(Goldberg, 2003). Next, we look at the basic Data-Oriented Parsing model,
which was introduced informally by Scha (1990) and then formally developed in
Bod (1992) and Bod (1993). Finally, we discuss the principles of Unsupervised
Data-Oriented Parsing, building on Bod (2009). In the next chapter, we will
then build concrete implementations, and extend the basic model in various
ways.

2.1 Usage-Based Grammar and Construction Gram-
mar

Usage-Based Grammar and Construction Grammar are primarily theoretical
frameworks; we discuss them here because they constitute a general framework,
of which the Data-Oriented Parsing approach could be considered a computa-
tional implementation. First, we discuss the key components of these frame-
works; in the next section, we will discuss the basics of Data-Oriented Parsing
and show how it relates to Usage-Based Grammar and Construction Grammar.

The major characteristic of these theories of language is that they are usage-
based. Earlier generative approaches to linguistics made a distinction between
competence and performance, i.e. between the internal, abstract knowledge of
a language, and the manifest, concrete use of a language, and focused on the
former. Usage-Based Grammar and Construction Grammar, however, consider
language use the key to our understanding of language: “grammar is the cog-
nitive organization of one’s experience with language” (Bybee, 2006, p. 711).
So it is language use that constitutes the grammar, and not vice versa. Thus,
grammar emerges from experience.

The representation of the grammar is another key point of Usage-Based and
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Constructionist theories. Grammar is conceived as a “construct-i-con” (Gold-
berg, 2003, p. 219), a network of constructions. Constructions are form-meaning
pairings of linguistic patterns with varying size and level of abstractness. So
fairly concrete, fixed patterns such as idioms are constructions (e.g. (2.1)), but
also more abstract, partially specified patterns, such as (2.2), and even very
abstract configurations such as the ditransitive construction, as in (2.3).

(2.1) a penny for your thoughts

(2.2) jog 〈POSS〉 memory

(2.3) 〈AGENT〉 〈DITRANSITIVE VERB〉 〈THEME〉 〈GOAL〉

In the network, the constructions are represented as exemplars, complex items
containing phonological, morphological, syntactic, semantic and pragmatic in-
formation. When a person encounters a language event, every token is classified
and placed in the network. When a token is identical to an already existing
exemplar, it is mapped onto that exemplar, altering it in the process. When
it is not identical, but similar to an existing exemplar, it is placed near it,
creating clusters of similar exemplars. Out of these clusters, constructions can
arise, cf. Figure 2.1. Frequency is considered very important in the Usage-Based
and Constructionist theories of language, and is stored for each exemplar (see
e.g. Bybee (2006)). When a new token is mapped onto an exemplar, the exem-
plar is strengthened, because its frequency is increased.

An important difference with generative approaches to language is the im-
portance of (semi-)idiosyncratic expressions such as idioms. In generative gram-
mar, a distinction is made between the core and the periphery of a language.
All phenomena which are more or less idiosyncratic are considered to belong to
the periphery, and the focus of investigation lies on the core, i.e. the ‘regular’
expressions. In Usage-Based Grammar and Construction Grammar, it is the
periphery that is most important: if we can explain these ‘difficult’ cases, we
should certainly be able to explain the ‘easy’ cases with the same mechanisms.

The production of a new utterance takes place through the combination of
various constructions. For example, out of construction (2.1) it is not possible to
create a new utterance. However, out of (2.2) a whole range of new utterances
can be construed (e.g. jog Bella’s/Edward’s/the Pope’s/the guy with the nice
car his/. . . memory). In this way, Usage-Based and Constructionist theories can
account for the infinite creativity of natural language.

With respect to language learning, these theories hold an entirely differ-
ent view from traditional generative approaches. These argue that language
learners have an innate component, specifically for language, a so-called ‘uni-
versal grammar’. Moreover, the only role empirical input has to play is in
setting the parameters that are already hard-wired. So the learning mechanism
is language-specific and the role of input is limited. In Usage-Based Gram-
mar and Construction Grammar, however, it is argued that “language must be
learnable from positive input together with fairly general cognitive abilities”
(Bybee, 2006, p. 222). So the learning mechanisms are not language-specific,
and empirical input is the basis of all learning.
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Figure 2.1: Emergence of a construction

time 0

input: jog my memory

grammar:

Jog my memory (1)

time 1

input: jog your memory

grammar:

Jog my memory (1) Jog your memory (1)

time 2

input: jog his memory

grammar:

Jog my memory (1) Jog your memory (1)

Jog his memory (1)

Creation of Construction

grammar:

Jog <POSS> memory (3)

Jog my memory (1) Jog your memory (1)

Jog his memory (1)

To summarize, the main characteristics of the Usage-Based Grammar and
Construction Grammar approaches to language are listed in Table 2.1.

2.2 Data-Oriented Parsing

In this section, we will discuss the basic philosophy of Data-Oriented Parsing
(DOP). This was introduced informally first by Scha (1990); we will look at the
simple DOP1/Tree-DOP models for supervised parsing developed in Bod (1992)
and Bod (1993),1 and the non-probabilistic model using the shortest derivation
introduced by Bod (2000); in the next section, we will then discuss the principles
of unsupervised parsing in the DOP-framework.

1For a recent implementation of DOP that is efficient and achieves high accuracy, see
Bansal and Klein (2010).
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Table 2.1: The main characteristics of Usage-Based Grammar and Construction
Grammar

usage-based emphasis on performance/language use
grammar emerges from experience

basic unit constructions
represented as exemplars
importance of frequency
focus on periphery rather than core

production combination of constructions
learning general capabilities (not language-specific)

from experience

Data-Oriented Parsing is essentially an exemplar-based approach: it assumes
that “language understanding and production operates on a store of exemplars”
(Bod, 2006, p. 292). Very broadly, an exemplar is a representation of a lan-
guage experience. More specifically, in DOP, phrase-structure trees are chosen
as representations. Significantly, these trees represent the surface constituent
structure: there is no such thing as deep structure (unlike in generative gram-
mar). Furthermore, there is no representation of the meaning of constituents,
and, at least in these simple models, there are no features such as case, gender
etc. So DOP primarily focuses on syntax, rather than semantics and morphol-
ogy.

It is assumed that language users store all fragments of such representa-
tions, abstract as well as concrete, small as well as large, contiguous as well as
discontiguous. The DOP-philosophy is:

(2.4) Since we do not know beforehand which [fragments] are important, we
should not restrict them but take them all and let the statistics decide.
(Bod, 2009, p. 755)

When producing new utterances, a composition operation combines stored frag-
ments to form grammatical sentences. Frequency plays a crucial role here: frag-
ments with a higher frequency are more ‘imprinted’ (more salient) and are thus
more likely to be used in production.

Formally, the fragments of language representation are subtrees, defined as
follows:

Subtree a subtree of a tree T is a subgraph t of T such that

1. t consists of more than one node

2. t is connected

3. each non-frontier node in t has the same daughter nodes as the cor-
responding node in T
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(Bod et al., 2003, p. 14)

For example, consider the following tree for the sentence ‘the boy kisses Bella’:

S

NP

the boy

VP

kisses Bella

All subtrees for this tree (including the entire tree itself) are given in Figure
2.2.

Figure 2.2: All subtrees for ‘the boy kisses Bella’
S

NP

the boy

VP

kisses Bella

S

NP VP

kisses Bella

S

NP

the boy

VP

S

NP VP

NP

the boy

VP

kisses Bella

To generate new utterances, we define the following composition operation:

Composition the composition of tree t and tree u, written as t ◦ u, is defined
iff the label on the root node of u is identical to the label on the leftmost
nonterminal leaf node of t. If t ◦u is defined, it yields a copy of t in which
a copy of u has been substituted on t’s leftmost nonterminal node (Bod
et al., 2003, p. 15)

For example, we can combine (2.5) and (2.6) to obtain (2.7).2 However, (2.5)
and (2.8) cannot be combined, because the label of (2.5)’s leftmost nonterminal
(Y) is not equal to the label on the root node of (2.8) (Z).

(2.5)
X

Y Z

(2.6)
Y

u V

a b

2Note that we indicate non-terminals with uppercase, and terminals with lowercase.
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(2.7)
X

Y Z

◦ Y

u V

a b

= X

Y

u V

a b

Z

(2.8)
Z

r s

(2.9)
X

Y Z

◦ Z

r s

= undefined

We stipulate that the composition operation is left-associative, so we can write
(t ◦ u) ◦ v as t ◦ u ◦ v. We define a derivation as a sequence of compositions.

The composition-operation allows us to generate trees for a given sentence;
however, mostly there will be more than one possible tree. To disambiguate
between different analyses, we calculate probabilities for trees —the tree with
the highest probability will be considered the best analysis for the sentence.

First, we define the probability of subtrees, P (t). Intuitively, we look at the
relative probability of a subtree: the chance that we pick this subtree out of
all subtrees we could pick (i.e. with the same root label). Let |t| denote the
frequency of subtree t, and root(t) the label of the root node of subtree t. Then
we define:

P (t) =
|t|∑

t′:root(t′)=root(t) |t′|

Now, we can define the probability of a derivation, P (t1 ◦ t2 ◦ · · · ◦ tn). This
is the joint probability of the subtrees t1, . . ., tn. This simple model assumes
that all subtrees are stochastically independent, so the joint probability is the
product of the individual probabilities. Hence, we define:

P (t1 ◦ t2 ◦ · · · ◦ tn) =
n∏

i=1

P (ti)

Finally, note that the same tree can be the result of several derivations. For
example, (2.7) can be derived from (2.5) and (2.6), but also from (2.10) and
(2.11).

(2.10)
X

Y

u V

Z
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(2.11)
V

a b

(2.12)
X

Y

u V

Z

◦ V

a b

= X

Y

u V

a b

Z

The probability of a tree, P (T ), is then calculated by taking the sum of the
probabilities of all its derivations (k is the number of derivations; nj is the
number of subtrees in derivation j; tij is the ith subtree of the jth derivation):

P (T ) =
k∑

j=1

nj∏
i=1

P (tij)

There are also versions of DOP where it is not the probability that disam-
biguates between different analyses, but the length of a derivation: the best tree
is the tree that can be generated by the shortest derivation, viz. the derivation
consisting of the least elements (cf. Bod (2000)). The idea behind this is that
the shortest derivation will use larger fragments, i.e. larger syntactic contexts.
Cognitively speaking, we can think of this as maximizing the structural analogy:
for analyzing/producing new sentences, we try to maximize the similarity with
previously encountered language experiences. Problematic, however, is that this
shortest derivation may not be unique; in the case we resort to a frequency-based
measure.

This frequency-based measure works as follows. We keep track of the fre-
quencies of all subtrees. Then we can rank the subtrees according to their
frequency —the subtree with the highest frequency will have rank 0, the sec-
ond highest rank 1, etc. The idea is that the rank of a subtree indicates how
many subtrees are preferable over that subtree. Of course, we will most likely
also have ties in the ranking; for example, there will be many subtrees with
frequency 1. In such a case, we will do the following. Suppose we have a sub-
tree with frequency r, which has been assigned rank n, and that we now have
s subtrees with frequency r′, where r′ is the largest number strictly less than
r such that there are subtrees with frequency r′. Then we will assign all these
subtrees rank n + 1. However, the next subtree(-group) in the ranking will be
assigned rank n + 1 + s; after all, there are n + 1 + s subtrees preferable over
this subtree(-group). For example, suppose we have the frequencies in (2.13).
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Then the ranking looks as in (2.14).

(2.13)

subtree frequency
s1 3
s2 1
s3 1
s4 5
s5 3

(2.14)

subtree frequency rank
s4 5 0
s1 3 1
s5 3 1
s2 1 3
s3 1 3

When we now have two equally short derivations, we can disambiguate be-
tween them by looking at the rank of their composing subtrees. The ranking
score of a derivation is the sum of the rank of its subtrees. The derivation with
the lowest ranking score is to be preferred. So a derivation consisting of s1 and
s2 will have a ranking score of 1+3 = 4; a derivation consisting of s4 and s5 will
have a ranking score of 0 + 1 = 1. Hence, the latter derivation will be preferred
over the former. If multiple derivations have the same ranking score, we choose
one randomly (although this will not often occur in real life).

The simple DOP-model can be seen as a formal instantiation of the theo-
retical ideas in Usage-Based Grammar and Construction Grammar. In the first
place, it is easy to see that subtrees formalize the notion of ‘exemplars’, in the
sense that they are representations of ‘constructions’: expressions of different
length and different levels of abstractness can be captured. For example, (2.15)
can be considered a representation of construction (2.1), (2.16) of construction
(2.2), and (2.17) of construction (2.3).3

(2.15)
NP

a NP

penny PP

for NP

your thoughts

3Of course, I do not claim that these are the ‘correct’ trees, or that these are the ‘correct’
categories, but clearly DOP would propose some analyses along this line for these construc-
tions.
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(2.16)
VP

jog NP

POSS-NP memory

(2.17)
S

NP VP

VP NP NP

Note, however, that in Usage-Based Grammar exemplars are usually thought
of as complex items, containing a range of information on a morphological,
syntactic, semantic, . . . level. In this simple DOP-model, the subtrees, which
we consider to be exemplars, are clearly not complex items: they store syntactic
information, and frequencies, but for example no semantic information. Later
versions of DOP-models, such as LFG-DOP in Bod and Kaplan (2003), however,
are capable of representing complex information.

Second, the DOP-model is clearly usage-based. The grammar consists of the
subtrees that are extracted from a corpus of language events. Hence, it emerges
from experience. Since the grammar consists of subtrees, and subtrees are the
representation of constructions, we can see that the DOP-model formalizes the
conception of grammar as a ‘construct-i-con’, a repository of constructions.

Third, in Usage-Based Grammar and Construction Grammar new expres-
sions are created by combining constructions; this is exactly what DOP’s compo-
sition operation does. For example, the construction represented by the subtree
in (2.16) can be combined with (2.18), as in (2.19).

(2.18)
POSS-NP

my

(2.19)
VP

jog NP

POSS-NP memory

◦ POSS-NP

my

= VP

jog NP

POSS-NP

my

memory

Fourth, frequency plays an important role in DOP: to disambiguate between
different analyses of a sentence, either probabilities or a ranking, which are both
based on frequencies, are invoked.
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Fifth, with respect to the distinction between the periphery and core of
a language, DOP uses those mechanisms that are developed to account for
the periphery (semi-idiosyncratic constructions are simply considered (fairly
frequent) subtrees), to explain the core. This is exactly the methodology advised
by Usage-Based Grammar and Construction Grammar.

Finally, DOP shares the view on language learning of Usage-Based Grammar
and Construction Grammar. Also in the DOP-model there is no language-
specific component hard-wired in the brain, but language is assumed to be
learned via general cognitive capabilities, the most important of which is the
ability to perform analogy: new structures are analyzed/produced by looking at
similarities in previously encountered structures. Furthermore, also in the DOP-
model the empirical input plays a key role: the grammar consists of subtrees
which are extracted from concrete language experiences.

2.3 Unsupervised Data-Oriented Parsing

The version of DOP developed in the previous section is a theory of super-
vised parsing. This model parses (provides syntactic analyses of) sentences on
the basis of a corpus with sentences that are already syntactically analyzed.
Whereas this provides good results in a computational setting, especially when
a large corpus with such annotations is at the researcher’s disposal, a supervised
parser is not an ideal model for language acquisition. After all, such a model
of language also has to explain how children acquire the corpus of syntactically
analyzed sentences in the first place. (But see Section 3.4 for further elaboration
on this idea.)

For this reason, we turn towards unsupervised parsing. In unsupervised
parsing, no preliminary information is assumed: the only input is a ‘raw’ corpus,
containing sentences without any analysis at all.4 It is safe to assume that also
in language acquisition this is the only input the child receives. The task of an
unsupervised parser is then to assign syntactic analyses to new sentences, on
the basis of the raw corpus.

Following the general DOP-philosophy (cf. (2.4)), we think of unsupervised
data-oriented parsing as follows:

If a language learner does not know which phrase-structure tree
should be assigned to a sentence, s/he initially allows for all pos-
sible trees and lets linguistic experience decide which is the “best”
tree by maximizing structural analogy. (Bod, 2009, p. 760)

For an initial approximation, we do not consider all possible trees, but all binary
possible trees. This is not a principled restriction, but it is merely made for
computational efficiency. Furthermore, this is in line with the Binary Branching

4In most unsupervised parsers, however, it is assumed that the corpus has been prepro-
cessed with a Part-of-Speech Tagger, which assigns a part-of-speech (Noun, Verb,. . .) to each
word in the corpus. Also for the U-DOP parsers developed in this thesis, we will make this
common assumption.
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Hypothesis in Minimalist Grammar (cf. Subsection 4.1.3). In this initial version,
we also do not assign category labels: every constituent is labeled ‘X’. However,
we will show how this restriction can be lifted in Section 3.3.

Intuitively, the parser works in three steps:

1. assign all trees to all sentences in the corpus

2. extract all subtrees from all trees

3. compute the best tree for a new sentence, on the basis of all subtrees

For example, suppose the corpus consists of the sentences ‘the boy sings’, ‘watch
the boy’ and ‘a boy laughs’. Then all possible (binary) trees are as in Figure
2.3. All subtrees that can be extracted from these trees are as in Figure 2.4.
Note that the subtree ‘(X the boy)’ occurs twice.

Figure 2.3: All trees for the sentences ‘the boy sings’, ‘watch the boy’ and ‘a
boy laughs’.

X

X

the boy

sings

X

the X

boy sings

X

X

watch the

boy

X

watch X

the boy

X

X

a boy

laughs

X

a X

boy laughs

On the basis of these trees, we can now parse new sentences, in a similar
way as in the DOP-models discussed in Section 2.2. For example, suppose we
want to parse ‘the boy laughs’. We see that there are two possible trees (the
left tree is generally considered ‘correct’, the right tree ‘wrong’):

Figure 2.4: All subtrees extracted from the trees in Figure 2.3.
X

X

the boy

sings

X

the X

boy sings

X

X

watch the

boy

X

watch X

the boy

X

X

a boy

laughs

X

a X

boy laughs

X

X sings

X (2)

the boy

X

the X

X

boy sings

X

X boy

X

watch the

X

watch X

X

X laughs

X

a boy

X

a X

X

boy laughs
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X

X

the boy

laughs

X

the X

boy laughs

To disambiguate between the trees, we look at the measure of shortest deriva-
tion, as described in the previous section. Neither tree literally occurs in the
corpus, so both trees have a shortest derivation with at least two elements. In-
deed, we see that the shortest derivation is as in (2.20) (for the ‘correct’ tree)
and (2.21) (for the ‘wrong’ tree):

(2.20)
X

X laughs

◦ X

the boy

= X

X

the boy

laughs

(2.21)
X

the X

◦ X

boy laughs

= X

the X

boy laughs

We see that both derivations are equally short, and hence we must resort to the
frequency-based measure. Since ‘(X the boy)’ is the only subtree that occurs
more than once, it gets rank 0; the other subtrees get rank 1. Hence, the rank
for the first derivation is: 1 + 0 = 1; the rank for the second derivation is: 1
+ 1 = 2. The first derivation has the lowest rank, and is hence preferable. So
the parser correctly chooses the first tree as the syntactic analysis for the new
sentence.

Cross-linguistically, the DOP-framework holds an entirely different view
from generative grammar. In generative grammar, it is believed that all hu-
mans are endowed with innate parameters; differences across languages arise
because the empirical input humans receive determines how the parameters
should be set —and a parameter may be set differently in Japanese than in En-
glish. The DOP-framework, however, explains cross-linguistic differences in a
different way. Since the grammar consists only of the fragments one encounters
in actual language experiences, it is obvious that the grammar of a Japanese
learner will be different from that of an English learner: the Japanese learner
has encountered and hence stored different fragments, and will therefore produce
different sentences.

Of course, a chicken-and-egg problem emerges here. What is left to explain,
is how the variation in the input arises in the first place. However, this problem
also arises for generative grammar: linguistic input is needed for the parameter
setting, and the variation in this input is not fully explained. In the end, this
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will need to be dealt with by theories of language evolution. See for example
the work by Jelle Zuidema (e.g. Zuidema (2005)).

Another important difference with generative grammar lies in the class of
sentences that is considered grammatical. In generative grammar, it is assumed
that the grammar defines a well-circumscribed class of sentences that it can
generate; these are grammatical, others are not. In the (U-)DOP-framework,
however, in principle all sentences can be generated. This does not mean that
all sentences are considered grammatical; rather, a different notion of grammat-
icality is used: relative rather than absolute grammaticality, i.e. some sentences
are considered more grammatical than others. So a grammar produced in the
(U-)DOP-framework does not define a class of grammatical sentences, but a
distribution over sentences. This different conception of grammaticality leads
to a certain amount of ‘incommensurability’: it is difficult to compare the two
frameworks, since they differ in their concept of grammaticality. Therefore, a
simplifying assumption has to be made to allow for a comparison: in the (U-
)DOP framework, we only consider the sentences at the top of the distribution
as grammatical. Then we can check whether generative grammar and (U-)DOP
predict the same sentences to be grammatical.

Note that in principle language generation is the process from a semantic
representation to a phonological representation, and language comprehension is
the reverse. As mentioned earlier, the (U-)DOP models used in this thesis do
not use semantics, and hence, are not rich enough to do the full task of language
generation. However, it is possible to generate a distribution over sentences, and
indicate which sentences are more likely to be generated than others.
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Chapter 3

Implementations of U-DOP

In this chapter, our goal is twofold. In the first place, we want to build a
concrete implementation of a U-DOP parser, following the theory outlined in
the previous chapter. This concrete implementation will then be used in the
next part to investigate whether the U-DOP framework can account for certain
problems in language acquisition. In the second place, we want to improve
existing parsing algorithms.

We will build four different parsing algorithms. The first algorithm is a
fairly straightforward implementation of the basic ideas outlined in the pre-
vious chapter, although we will highlight some technical difficulties and their
solutions. The second algorithm is an optimization of the first one, leading to
a computationally more efficient parser, while accuracy results are not hurt too
much. The third and fourth algorithm are real innovations which contribute
new methods to the field of unsupervised parsing. The third algorithm is, to
the best of our knowledge, the first parsing algorithm that merges the tasks
of category labeling and parsing, hoping to improve both by the interaction.
Finally, the fourth algorithm involves a new methodology which can simulate
supervised parsing, while being in fact completely unsupervised, giving the best
results on the ATIS-corpus reported so far. Moreover, this new methodology
also has the fastest parsing times.

3.1 K-best shortest derivations with ranking as
a second phase

In this section, we will develop our first parsing algorithm, a straightforward im-
plementation of the shortest derivation – U-DOP theory outlined above. First,
we will consider some technical problems (and their solutions) related to the
training and parsing phase of the implementation. Next, we will discuss its
evaluation.
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3.1.1 The training phase

The first step in building a parser is to train on a training corpus. In U-DOP,
this encompasses steps 1 and 2 of Section 2.3:

1. assign all trees to all sentences in the corpus

2. extract all subtrees from all trees

The task of the training phase is thus to build a subtreebank, containing all
subtrees of all trees for all sentences in the training corpus; these subtrees can
then subsequently be used in the parsing phase. Moreover, we must keep track
of the frequencies of the subtrees, to build a ranking which can be used as a
second phase to decide among the k-best derivations (cf. Section 2.2).

In practice, we do step 1 and 2 at the same time. We read the corpus
sentence per sentence, and for each sentence we first compute all possible trees
and then extract all subtrees from those possible trees, before moving on to the
next sentence.

A first computational problem arises with the computation of all possible
trees for a sentence: even though we make the simplification of working only with
binary trees, the number of possible trees for a sentence still grows exponentially
with the sentence length. This problem can be solved by storing all possible
trees efficiently in a chart. For example, the two possible binary trees for the
sentence ‘the boy sings’ are:

X

X

the boy

sings

X

the X

boy sings

These can be stored efficiently in a chart as follows (the numbers indicate
word indices: the element X in cell (i,j) represents a constituent/node in the
tree spanning from word i to word j):

0 1 2
0 the X X
1 boy X
2 sings

PCFG-reduction
The second computational problem is the number of subtrees that can be ex-

tracted from all these possible trees; this also grows exponentially with sentence
length. The solution for this problem lies in the Goodman PCFG-reduction
(Goodman, 2003). This PCFG-reduction was originally developed for super-
vised Data-Oriented Parsing, but it has been adapted to U-DOP in Bod (2007).
In this thesis, we will develop a further reduction.

The original idea was that a derivation in DOP can be mimicked by a deriva-
tion with PCFG-rules. In the training phase, each node in each tree is assigned
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a unique number, its address. Non-terminals with their address are called ‘in-
terior’ nodes; non-terminals in their original form ‘exterior’ nodes. The idea is
that interior nodes serve to “keep subtrees connected” after they are split into
rules. For example, the trees for ‘the boy kisses Bella’ and ‘Bella kisses the boy’
then look as follows:1

(3.1) S@1

NP@2

the boy

VP@3

kisses Bella

S@4

Bella VP@5

kisses NP@6

the boy

Next, eight PCFG-rules are extracted for each node. Suppose we have a node
such as

A@j

B@k C@l

Then we generate the following rules (Xi is the nonterminal at address i):

Aj → BC A→ BC
Aj → BkC A→ BkC
Aj → BCl A→ BCl

Aj → BkCl A→ BkCl

(We skip over the details of how to derive the probabilities for these rules; this
is only necessary for probabilistic parsing, not for shortest derivation-parsing.)
Now for each DOP-derivation, we can have a homomorphic PCFG derivation,
which starts with an exterior non-terminal (without an address), then uses inte-
rior and exterior non-terminals for the intermediate steps, and ends with exterior
(non-)terminals. For example, the tree for the sentence ‘the boy kisses the boy’
can be derived in the ‘classic’ DOP-way as in (3.2); the homomorphic PCFG
derivation is given by applying the rules listed in (3.3) (note how the indices
‘glue’ together rules belonging to the same fragment in the derivation).

(3.2)

S

NP

the boy

VP

◦ VP

kisses NP

the boy

= S

NP

the boy

VP

kisses NP

the boy

1Note that this is the method for supervised parsing; hence, there is a unique tree for each
sentence, viz. the tree given in the training corpus.
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(3.3)

1. S → NP@2 VP
2. NP@2 → the boy
3. VP → kisses NP@6
4. NP@6 → the boy

When we now move to unsupervised parsing, the naive idea would be that we
assign unique addresses to each node in every tree for each sentence. However,
this will quickly lead to an explosion of PCFG-rules. Therefore, Bod (2007)
makes the simplifying assumption that we assign unique addresses to each node
in the parse forest for each sentence. For example, the first approach would give
rise to the trees and PCFG-rules in Figure 3.1 for the sentences ‘the boy kisses
Bella’ and ‘Bella kisses the boy’ (88 rules). In contrast, the second approach
leads to the parse forests and PCFG-rules in Figure 3.2 (70 rules). So for these
two simple sentences we already see a large reduction in the amount of rules.
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Figure 3.1: The trees and PCFG-rules for ‘the boy kisses Bella’ and ‘Bella kisses
the boy’, according to the naive approach. Duplicate rules were deleted.

X@1

X@2

the boy

X@3

kisses Bella

X@4

X@5

the X@6

boy kisses

Bella

X@7

the X@9

X@8

boy kisses

Bella

X@10

the X@11

boy X@12

kisses Bella

X@13

X@14

X@15

the boy

kisses

Bella

X@16

Bella X@17

kisses X@18

the boy

X@19

Bella X@20

X@21

kisses the

boy

X@22

X@23

Bella kisses

X@24

the boy

X@25

X@26

Bella X@27

kisses the

boy

X@28

X@29

X@30

Bella kisses

the

boy

X@1 → X X X → X X X@16 → Bella X X → Bella X
X@1 → X@2 X X → X@2 X X@16 → Bella X@17 X → Bella X@17
X@1 → X X@3 X → X X@3 X@17 → kisses X X → kisses X

X@1 → X@2 X@3 X → X@2 X@3 X@17 → kisses X@18 X → kisses X@18
X@2 → the boy X → the boy X@18 → the boy

X@3 → kisses Bella X → kisses Bella X@19 → Bella X
X@4 → X Bella X → X Bella X@19 → Bella X@20 X → Bella X@20

X@4 → X@5 Bella X → X@5 Bella X@20 → X boy X → X boy
X@5 → the X X → the X X@20 → X@21 boy X → X@21 boy

X@5 → the X@6 X → the X@6 X@21 → kisses the X → kisses the
X@6 → boy kisses X → boy kisses X@22 →X X

X@7 → the X X@22 → X@23 X X →X@23 X
X@7 → the X@9 X → the X@9 X@22 → X X@24 X → X X@24
X@9 → X Bella X@22 → X@23 X@24 X → X@23 X@24

X@9 → X@8 Bella X → X@8 Bella X@23 → Bella kisses X → Bella kisses
X@8 → boy kisses X@24 → the boy

X@10 → the X X@25 → X boy
X@10 → the X@11 X → the X@11 X@25 → X@26 boy X → X@26 boy

X@11 → boy X X → boy X X@26 → Bella X
X@11 → boy X@12 X → boy X@12 X@26 → Bella X@27 X → Bella X@27
X@12 → kisses Bella X@27 → kisses the

X@13 → X Bella X@28 → X boy
X@13 → X@14 Bella X → X@14 Bella X@28 → X@29 boy X → X@29 boy

X@14 → X kisses X → X kisses X@29 → X the X → X the
X@14 → X@15 kisses X → X@15 kisses X@29 → X@30 the X → X@30 the

X@15 → the boy X@30 → Bella kisses

In our implementation, we have even further reduced the amount of rules.2,3

We follow Bod (2007) in assigning a unique address to each node in the parse
forest for each sentence, but we assign the same address to nodes having the

2Thanks to Lorenz Demey for the inspiration for this idea.
3The approach adopted here is somewhat similar to the ‘packed graph encoding’ in Bansal

and Klein (2010).
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Figure 3.2: The parse forests and PCFG-rules for ‘the boy kisses Bella’ and
‘Bella kisses the boy’, according to the approach in Bod (2007). Duplicate rules
were deleted.

0 1 2 3
0 the X@1 X@2 X@3
1 boy X@4 X@5
2 kisses X@6
3 Bella

0 1 2 3
0 Bella X@7 X@8 X@9
1 kisses X@10 X@11
2 the X@12
3 boy

X@1 → the boy X→ the boy X@7 → Bella kisses X → Bella kisses
X@4 → boy kisses X→ boy kisses X@10 → kisses the X → kisses the

X@6 → kisses Bella X→ kisses Bella X@12 → the boy
X@2 → X kisses X → X kisses X@8 → X the X → X the

X@2 → X@1 kisses X → X@1 kisses X@8 → X@7 the X → X@7 the
X@2 → the X X→ the X X@8 → Bella X X → Bella X

X@2 → the X@4 X → the X@4 X@8 → Bella X@10 X → Bella X@10
X@5 → boy X X → boy X X@11 → kisses X X → kisses X

X@5 → boy X@6 X → boy X@6 X@11 → kisses X@12 X → kisses X@12
X@5 → X Bella X → X Bella X@11 → X boy X → X boy

X@5 → X@4 Bella X → X@4 Bella X@11 → X@10 boy X → X@10 boy
X@3 → X X X → X X X@9 → X X

X@3 → X@1 X X → X@1 X X@9 → X@7 X X → X@7 X
X@3 → X X@6 X → X X@6 X@9 → X X@12 X → X X@12

X@3 → X@1 X@6 X → X@1 X@6 X@9 → X@7 X@12 X → X@7 X@12
X@3 → X Bella X@9 → X boy

X@3 → X@2 Bella X → X@2 Bella X@9 → X@8 boy X → X@8 boy
X@3 → the X X@9 → Bella X

X@3 → the X@5 X → the X@5 X@9 → Bella X@11 X → Bella X@11

same yield. For example, in the parse forests in Figure 3.2, nodes X@1 and X@12
have the same yield: they cover the same terminals, viz. ‘the boy’. Therefore,
we will assign them the same address, collapsing the PCFG-rules involving these
nodes. More concretely, the parse forests and the PCFG-rules in our approach
are in Figure 3.3. Of course, in this small example, the gain is rather small (we
have 1 rule less than the approach of Bod (2007)). However, when considering
a large corpus, where the same yields show up very often, the reduction gained
can be quite significant: from 2,527,641 rules extracted from the child-directed
speech of the Adam-part of the Childes corpus (Brown, 1973) to 914,744 rules.
Finally, we note that a reduced PCFG not only improves the memory usage,
but also the speed of the algorithm: fewer rules mean fewer possibilities to be
considered.

The final thing we need to consider is the weight attributed to these rules.
In a regular PCFG, rules are assigned probabilities. However, we will use this
PCFG for parsing with the shortest derivation. Therefore, we will assign weight
1 to rules headed by an interior non-terminal, and weight 0.5 to rules headed
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Figure 3.3: The parse forests and PCFG-rules for ‘the boy kisses Bella’ and
‘Bella kisses the boy’, according to the approach taken in this thesis. Duplicate
rules were deleted.

0 1 2 3
0 the X@1 X@2 X@3
1 boy X@4 X@5
2 kisses X@6
3 Bella

0 1 2 3
0 Bella X@7 X@8 X@9
1 kisses X@10 X@11
2 the X@1
3 boy

X@1 → the boy X→ the boy X@7 → Bella kisses X → Bella kisses
X@4 → boy kisses X→ boy kisses X@10 → kisses the X → kisses the

X@6 → kisses Bella X→ kisses Bella
X@2 → X kisses X → X kisses X@8 → X the X → X the

X@2 → X@1 kisses X → X@1 kisses X@8 → X@7 the X → X@7 the
X@2 → the X X→ the X X@8 → Bella X X → Bella X

X@2 → the X@4 X → the X@4 X@8 → Bella X@10 X → Bella X@10
X@5 → boy X X → boy X X@11 → kisses X X → kisses X

X@5 → boy X@6 X → boy X@6 X@11 → kisses X@1 X → kisses X@1
X@5 → X Bella X → X Bella X@11 → X boy X → X boy

X@5 → X@4 Bella X → X@4 Bella X@11 → X@10 boy X → X@10 boy
X@3 → X X X → X X X@9 → X X

X@3 → X@1 X X → X@1 X X@9 → X@7 X X → X@7 X
X@3 → X X@6 X → X X@6 X@9 → X X@1 X → X X@1

X@3 → X@1 X@6 X → X@1 X@6 X@9 → X@7 X@1 X → X@7 X@1
X@3 → X Bella X@9 → X boy

X@3 → X@2 Bella X → X@2 Bella X@9 → X@8 boy X → X@8 boy
X@3 → the X X@9 → Bella X

X@3 → the X@5 X → the X@5 X@9 → Bella X@11 X → Bella X@11

by an exterior non-terminal. Since we use weights instead of probabilities, we
will henceforth speak of a CFG rather than a PCFG. The score of a derivation
is obtained by multiplying the weights of the rules used (Rd is the set of rules
used in derivation d):

score(d) =
∏

r∈Rd

weight(r)

In this way, the derivation using these CFG-rules which maximizes the score
will be the shortest derivation: using a rule with an interior non-terminal
(i.e. building a subtree-element of the derivation) will not change the score,
using a rule with an exterior non-terminal (i.e. starting a new element in the
derivation) will lower the score. The fewer rules with exterior non-terminals are
used (i.e. the fewer elements are introduced in the derivation), the better the
score.

33



Ranking
The task of the training phase is to produce two objects which can be used

in the parsing phase: a CFG and a ranking. The CFG will be used to form
derivations, and the ranking as a second phase, to decide among the k-best
derivations. The computational problems with the CFG are solved supra. A
final problem is now the size of the ranking (see Section 2.2 for more information
on how this ranking is built). This is a list with all subtrees extracted from the
corpus, and their rank number, so this can become very large very fast. To
reduce the size of this list, we are inspired by Zipf’s law (cf. Manning and
Schütze (1999, p. 23)): there are very few subtrees which occur frequently, and
most subtrees occur only very rarely. More specifically, a large proportion of
the subtrees on the list has frequency 1 (e.g. for the child-directed speech of the
Adam corpus around 80%). Therefore, we replace this large amount of subtrees
with just one line: the rank number of subtrees with frequency 1. When we
now want to calculate the rank of a subtree in a derivation, we first check if it
is present in the ranking. If it is, we use the frequency given by the ranking; if
it is not, we assume that it has frequency 1, and assign it the rank specified in
the additional line. Note that it is impossible that we encounter a subtree in
a derivation that has in fact frequency 0 (i.e. it does not occur in the training
corpus): after all, the subtrees in a derivation are built on the basis of the
CFG-rules with unique nodes, extracted from the training corpus.

For example, the ranking in (2.14) will now look as follows:

(3.4)

subtree frequency rank
s4 5 0
s1 3 1
s5 3 1

subtrees with freq 1 1 3

Of course, in this small example, the gain is not so large: just one line. How-
ever, taking Zipf’s law into account, the gain will be very large when the corpus
is large, and there are many subtrees with frequency 1. For the child-directed
speech from the Adam corpus, for example, the amount of subtrees in the rank-
ing is reduced from 25,370,505 to 4,731,034.

3.1.2 The parsing phase

With the CFG and the ranking provided by the training phase, we can build
a parser which provides syntactic analyses for new sentences. The parsing of a
sentence occurs in two steps:

1. generate the k-best derivations

2. for each of the k best derivation, compute its rank, and take the derivation
with the best (= lowest) rank

For the first step, we follow the third algorithm of Huang and Chiang (2005),
the lazy k-best algorithm. In this algorithm, first a traditional Viterbi-chart
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is created (cf. Manning and Schütze (1999, p. 396)), which numerates in an
efficient way all possible subderivations. Next, the algorithm starts at the root
node and recursively looks for the k-best derivations. A detailed explanation of
the workings of this algorithm can be found in Brakel and Smets (2009).

When we have found the k-best derivations, we compute for each derivation
its rank, by looking up the ranks of the composing subtrees, and taking the sum.
Finally, the parser outputs the derivation with the lowest rank as its analysis
for the sentence at hand.

3.1.3 Evaluation

For comparison with other approaches, we evaluate the parser on the Air Travel
Information System (ATIS) corpus (Marcus et al., 1993). This small corpus
contains around 500 utterances asking for travel information. Although most
sentences are fairly small, it is still a relatively difficult corpus for parsing,
because the utterances are spontaneous speech.

Following Brakel and Smets (2009), we split the ATIS corpus randomly ten
times into 90% training corpus and 10% test corpus. In each iteration, we train
the parser on the training corpus, and let the parser provide syntactic analyses
for the test corpus (we set the parameter of the number of derivations to be
considered (i.e. k) to 100, 10 and 1).4 Next, we compared the analysis proposed
by the parser with the gold standard: the manual annotation of the corpus.

From the gold standard, we ignored all productions that do not lead to a
yield (following Brakel and Smets (2009)), and binarized the trees according to
the procedure described in Goodman (1996). For all evaluation calculations, we
used a self-written program that implements the evaluation measures used in
Klein (2005).

Note that, following other research in this area, we only consider sentences
of length 10 or less. Recall that we used part-of-speech tags rather than words
as the raw corpus that serves as input. We look at the unlabeled precision,
recall and F1-score (since all constituents simply have the label ‘X’, no labeled
comparison with the gold standard is possible) and we take the average over the
ten iterations. The scores are calculated as follows:

Precision number of correct constituents
number of constituents proposed by the parser

Recall number of correct constituents
number of constituents in the gold standard

F1 2∗Precision∗Recall
Precision+Recall

The results of the basic implementation developed in this section, together
with a comparison with other approaches, can be found in Table 3.1.

To illustrate the benefits of taking all subtrees, of all depths rather than
just depth 1 as in regular (P)CFG-parsing, we also evaluated the parser on the

4Obviously, for the setting k = 1, we do not rank the derivations in the second phase. If
multiple derivations are equally short, we choose one randomly.
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Table 3.1: Comparison of results. We compare with the systems EMILE and
ABL from van Zaanen and Adriaans (2001), the algorithm described in Brakel
and Smets (2009), the CDC-model proposed by Clark (2001) and the current
state-of-the-art on the ATIS-corpus: the CCM-model developed in Klein (2005).
We vary the parameter of the number of derivations to consider from 1 to 10 to
100. (Results better than the state-of-the-art are in bold.)

Previous approaches
Model R P F1
EMILE 16.8 51.6 25.4
B & S 29.0 29.0 29.0
ABL 35.6 43.6 39.2
CDC 34.6 53.4 42.0
CCM 47.6 55.4 51.2

Basic implementation Version with short CFG
Model R P F1 Model R P F1

basic100 36.4 36.7 36.6 basic100-short 28.5 28.7 28.6
basic10 53.2 53.3 53.2 basic10-short 36.3 36.7 36.5
basic1 58.5 58.9 58.7 basic1-short 56.5 56.8 56.6

ATIS corpus with another methodology (short in the table). From the CFG
that is the result of the training phase, we delete all rules containing interior
nodes (i.e. nodes with unique addresses, e.g. X@i). Since all interior nodes are
deleted, every time a rule from this short CFG is used, a new element of the
derivation is started. Hence, the derivation will only consist of elements which
correspond to CFG-rules; for example, the element corresponding to the rule
X → Y Z is a subtree of depth 1:

(3.5) X

Y Z

As can be seen from Table 3.1, the score is worse with the short-CFG for
each setting of the parameter (1, 10 and 100). Hence, we conclude that it is
better to include subtrees of all depths. Therefore, parsing with all subtrees is
superior over regular (P)CFG-parsing.

We see that the results improve the fewer derivations we consider. This
indicates that the idea of using the shortest derivation is better than a frequency-
based measure such as the ranking. However, it is remarkable that the basic1(-
short) algorithm performs so well; after all, if there are multiple derivations that
are equally short, this algorithm will pick a random one. Moreover, when used
with the short-CFG, all derivations will be equally long (since only binary rules
are used, all derivations will use the same number of rules), so the algorithm will
always choose a random derivation, which makes it even more surprising that
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it scores so well. I cannot say why this algorithm performs so well; in any case,
it indicates that using maximal overlap/the shortest derivation as a criterion is
better than using frequency/the ranking.

A comparison with earlier results shows that the basic implementation of
shortest-derivation U-DOP outperforms the current state-of-the-art results on
the ATIS corpus. Moreover, the CCM-model that produces this state-of-the-art
was trained on the much larger Wall Street Journal corpus, whereas our models
were only trained on 90% of the ATIS corpus. So we see that our models perform
better even though they have access to less training data.

We would also like to evaluate the parser on the Wall Street Journal corpus,
for better comparison with approaches such as Bod (2007). However, because
this corpus is so large (around 7000 sentences), the CFG (and hence, the number
of possibilities in a derivation) becomes so large that the parsing of new sentences
takes too long to complete the evaluation.

3.2 Optimizing: looking just at the ranking

Since the previous algorithm is rather slow, we try to optimize it. The basic
idea is that instead of using the ranking merely as a second phase after the
best derivations have been calculated, we will use dynamic programming to
calculate directly the derivation with the lowest rank.5 The training phase is
entirely similar to that described above. Below we describe the new parsing
phase.

Intuitively, this algorithm stresses more the importance of frequency in lan-
guage processing, rather than maximal analogy. Parsing with the shortest
derivation will make use of large composing elements, which are often not so
frequent. In contrast, this new algorithm will primarily use the most frequent
building blocks, which are often not so large. Having these two parsers at our
disposal, it will be interesting to see which disambiguation criterion will prove
to be most succesful, in the first place at parsing sentences in general (w.r.t. F1-
scores), but in the second place also at explaining the problems of language
acquisition in Part II.

An example where this approach might perform better is when a sentence
can be derived by either (i) one very rare tree (so the derivation consists of
just one step, viz. this rare tree), or (ii) two very frequent subtrees. The first
approach (of the previous section) will prefer the first derivation, whereas the
second approach (of this section) will prefer the second: the rank of the rare tree
will be very high, and the rank of the subtrees very low —so in sum, the rank
of the second derivation will still be lower than that of the first, even though
it consists of two composing elements (recall: the lower the rank, the better).
However, in practice, it is difficult to find such a situation: most of the time
the combination of the two frequent subtrees will also occur in the corpus; in
that case, the shortest-derivation criterion will also choose the correct analysis,

5Thanks to Federico Sangati for the inspiration for this idea.
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since it will use that combination of the two subtrees as the single element in
the derivation.

So we expect the new algorithm to have a slightly worse F1-score than the
previous algorithm. After all, it is possible that the derivation with the lowest
rank is not included in the k-best shortest derivations. In this case, the previous
algorithm will not output this ‘wrong’ tree, but this algorithm will, and hence,
it will not output the ‘correct’ tree. Nevertheless, the main advantage of this
new algorithm is that it is signifcantly faster than the previous one.

The optimized algorithm is summarized in Figure 3.4 (numberOfWords is
the number of words in a sentence, e.g. for ‘Edward kisses Bella’ we have num-
berOfWords=3). First, we initialize the score of all terminals to 0. Then, we
loop through the chart diagonal per diagonal, starting with the smallest con-
stituents; e.g. constituents at diagonal 1 have a span of 2 (span 2 words),
constituents at diagonal 2 have a span of 3, etc. . . Next, we look at each cell
(i, j) on the diagonal. Note that constituents in cell (i, j) span from word i
to word j. Then we consider all possible first-constituent – second-constituent
combinations which lead to that span (e.g. first-constituent X with span (i, k)
and second-constituent Y with span (k + 1, j) where i ≤ k < j). Now we look
up in the CFG which nodes can be the head of those two constituents, i.e. all
nodes X such that X → first-constituent second-constituent is a rule in the
CFG. Note that we no longer use the weights attributed to the rules in the
CFG; we merely use the CFG for listing the possibilities, no longer for choosing
the (k-)best one(s).

Next, we look at each of those possible heads, and calculate the score for
that head in that position. In the end, the top node with the lowest score will
be the best derivation. The score of a head consists of three parts: the score of
both its composing elements, and the treeScore. The purpose of the score is to
keep track of the rank of the derivation so far (i.e. of the sum of the ranks of all
subtrees used in the derivation so far). Initially, the score starts at 0. When the
head is an interior non-terminal, we simply pass on the ranks of the composing
elements, and define the treeScore to be 0, because the present element of the
derivation is not yet finished. When an entire subtree of the derivation has been
calculated (i.e. the head is an exterior non-terminal), the treeScore is the rank
of that subtree. Through the dynamic programming this rank propagates up
to the top node. Of course, we also store the backtrace for each element, which
keeps track of the optimal path leading up to that element.
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Table 3.2: Comparison of results, including the optimized algorithm. (Results
better than the state-of-the-art are in bold.)

Model R P F1
EMILE 51.6 16.8 25.4
B & S 29.0 29.0 29.0
ABL 43.6 35.6 39.2
CDC 53.4 34.6 42.0

optim-short 44.2 44.5 44.4
optim 48.3 49.0 48.7
CCM 55.4 47.6 51.2
basic1 58.5 58.9 58.7

basic1-short 56.5 56.8 56.6

Figure 3.4: The new algorithm, calculating the derivation with the lowest rank
through dynamic programming.

for all elements in cells (i, i) (for 0 ≤ i < numberOfWords) do
score(element)=0

end for
for diagonal = 1 to numberOfWords-1 do

for all cells (i, j) on diagonal do
for all combinations (firstConst,secondConst) with span (i,j) do

for all heads such that (head → firstConst secondConst) ∈ CFG do
newScore = score(firstConst) + score(secondConst) + treeScore
if newScore < score(head) then

score(head) = newScore
backtrace(head) = (firstConst, secondConst)

end if
end for

end for
end for

end for

treeScore =

{
0 if head is an interior node
ranking(subtree) o/w

For evaluation, we have performed the same procedure as in Section 3.1.3:
10 random train/test-splits of the ATIS corpus. The results, together with an
overview of the results of other approaches, can be found in Table 3.2. Conform
our expectations, this optimized algorithm performs worse than the basic imple-
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Table 3.3: The time in seconds per sentence that each algorithm needs for train-
ing and parsing. All experiments for obtaining these results were conducted on
an Acer Aspire M3710 desktop computer, with a Pentium Dual Core processor,
2.5GHz, 4GB RAM.

Model Training Parsing
basic1 0.14 26.44
basic10 0.14 46.94
basic100 0.14 97.17

optim 0.14 11.30

mentation, and even worse than the state-of-the-art. Nevertheless, it still has its
fruitfulness due to its efficiency. The training time is of course the same as for
the basic algorithm; parsing, however, takes much less time with the optimized
algorithm, as can be seen from the data in Table 3.3.

For comparison, we also evaluated the version with the short-CFG method-
ology (cf. Section 3.1.3), to investigate whether it is also useful for this parser to
include subtrees of all depths. Indeed, we find that the version with the short-
CFG again performs a bit worse than the version which considers all subtrees.

3.3 Merging category labeling and parsing

In this section, we provide an extension to existing parsing methods. Up to
now, unsupervised parsing has always been inherently unlabeled (see e.g. Bod
(2007) and Klein (2005)). Additionally, some research has been done into sep-
arate labeling algorithms, which take the output of an unsupervised parser as
input, and produce labels for the constituents that the unsupervised parser pro-
posed (e.g. Reichart and Rappoport (2008) and Smets (2010)). The algorithm
described here aims at doing the labeling and parsing simultaneously, in the
hope that this will produce better results for both tasks.

The algorithm consists of 5 steps:
(1) First, we assign unique addresses to all nodes in the parse forest for

each sentence, but the same address to nodes with the same yield (similar to
our version of the Goodman (P)CFG-reduction in Section 3.1.1). So the nodes
are X@1, X@2 . . . Then we extract all subtrees from the parse forests of all
sentences.

(2) In the second step, we apply techniques from Distributional Semantic
Models (DSMs).6 First, we build a co-occurrence matrix, with the nodes with
their address (X@1, X@2 . . .) as rows, and the extracted subtrees as columns.
The value of cell (i, j) is then the number of times node i occurs in subtree

6For an introduction to DSMs, see Evert and Lenci (2009); for more details on the appli-
cation of DSMs to syntactic category labeling, see Smets (2010, Section 4).
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j. Next, we apply two dimensionality reductions. First, we set a limit to the
subtrees that can occur as columns in the matrix: we only consider subtrees with
a frequency greater than f (in the experiments, we set f to 100). Second, we
apply Singular Value Decomposition (SVD), and reduce the matrix to s columns
(in the experiments, we set s to 100). Finally, we perform k-means clustering
on the reduced matrix, grouping the nodes into k groups (in the experiments,
we set k to 2).7

(3) From the previous step, we know which group each node belongs to. In
this step, we now replace each node X@i with X`@i, where ` is the group node
X@i belongs to according to the k-means analysis (so 1 ≤ ` ≤ k). So instead of
nodes X@1, X@2, X@3 . . . we now have nodes X`@1, Xm@2, Xn@3 . . . in the
parse forests.

(4) Now we can proceed with training the parser as before (cf. Section 3.1.1).
With respect to the CFG, the only difference is that instead of rules X@i →
X@j X@s, we will now have rules Xk@i→ X`@j Xm@s. For the ranking, there
is a greater difference. Rather than simply listing all subtrees in one ranking,
we now have separate rankings for each syntactic category (i.e. a ranking for
all subtrees headed by X1, another for all subtrees headed by X2, . . ., another
for all subtrees headed by Xk). Recall the intuitive idea behind the ranking: a
subtree’s rank reflects how many subtrees are preferred over it —and subtrees
headed by a different syntactic category are incomparable.

(5) In the final step, we parse sentences in the same way as before (cf. Section
3.1.2). The resulting trees will now bear syntactic category labels X1, X2,. . .,Xk
(with k the parameter for the k-means clustering). For a complete (labeled)
comparison with a manually annotated gold standard, a final step is needed: a
mapping between the proposed categories (X1, . . ., Xk) and the categories in
the gold standard (NP, VP, . . .).

For example, suppose we have a training corpus consisting of the sentences
‘the girl saw the boy’, ‘the boy saw the girl’, ‘the boy walked’ and ‘a girl walked’.
The parse forests for the first step are:

0 1 2 3 4
0 the X@1 X@5 X@8 X@10
1 girl X@2 X@6 X@9
2 saw X@3 X@7
3 the X@4
4 boy

0 1 2
0 the X@4 X@19
1 boy X@18
2 walked

7Note that k here signifies the number of labels/groups into which the data are clustered.
This parameter must not be confused with the parameter used above the indicate the number
of derivations to consider. (We refrained from using a different letter, to adhere to the standard
terminology.)
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0 1 2 3 4
0 the X@4 X@12 X@15 X@17
1 boy X@11 X@13 X@16
2 saw X@3 X@14
3 the X@1
4 girl

0 1 2
0 a X@20 X@22
1 girl X@21
2 walked

Now when we extract all subtrees and apply the techniques from Distribu-
tional Semantic Models, we will find that the constituents X@1 and X@4 are
very similar: there are a lot of contexts in which both can occur, for example
in the places marked with ‘GOAL’ in these subtrees:

X

GOAL saw

X

GOAL X

saw the

X

GOAL X

X

saw GOAL

X

GOAL X

saw X

Since these constituents have many contexts in common, the clustering algo-
rithm will put them together in one category. So we can say that the algorithm
has discovered the category ‘Noun Phrase’: constituents which can occur in the
subject and the direct object position.

In the third step, we label each constituent in the parse forest with its cluster
label, and the forests look as follows:

0 1 2 3 4
0 the X1@1 X2@5 X2@8 X2@10
1 girl X2@2 X2@6 X2@9
2 saw X2@3 X2@7
3 the X1@4
4 boy

0 1 2
0 the X1@4 X2@19
1 boy X2@18
2 walked

0 1 2 3 4
0 the X1@4 X2@12 X2@15 X2@17
1 boy X2@11 X2@13 X2@16
2 saw X2@3 X2@14
3 the X1@1
4 girl

0 1 2
0 a X1@20 X2@22
1 girl X2@21
2 walked

Now, suppose we want to find a derivation for ‘the girl walked’. Since this
sentence does not occur yet in the training corpus, the shortest derivation cannot
consist of just one step: it minimally needs two composing elements. We find
that the following two derivations are possible:
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Table 3.4: The time in seconds per sentence that each algorithm needs for
training and parsing. We report the time both for the algorithm with parsing
only (cf. Table 3.3), and for the algorithm with labeling and parsing. All
experiments for obtaining these results were conducted on an Acer Aspire M3710
desktop computer, with a Pentium Dual Core processor, 2.5GHz, 4GB RAM.

Previous algorithms Labeling+Parsing
Model Training Parsing Model Training Parsing
basic1 0.14 26.44 basic1 7.34 25.72
basic10 0.14 46.94 basic10 7.34 46.35
basic100 0.14 97.17 basic100 7.34 132.46

optim 0.14 11.30 optim 7.34 10.30

X2

X1 walked

◦ X1

the girl

= X2

X1

the girl

walked

X2

the X2

◦ X2

girl walked

= X2

the X2

girl walked

Since both derivations are equally short, we need the ranking to decide which
one is the best. The rank of the first derivation is 6 + 1 = 7; the rank of the
second derivation is 0 + 28 = 28. Hence, we prefer the (correct) first derivation.

It is easy to see how the parsing phase of this parser will proceed a lot
faster: fewer possibilities need to be considered. For example, if we have already
established subderivations for X1 and X2, we only need to consider constituents
that can be at the left-hand-side of the rule . . . → X1 X2. If we did not have
the labeling, we would have to consider all constituents which can be at the
left-hand-side of the rule . . . → X X, which would be a lot more. The training
phase of this parser is still a bit inefficient: it takes a long time and a lot of
memory (to build the co-occurrence matrix). This problem will definitely be
taken up in further research. However, it is for an NLP-system still preferable
to have a slow training phase (which in principle needs to be done only once),
and a fast parsing phase (which will need to be done a lot), than vice versa. So
in this respect this parser is definitely superior over the other two (in Sections
3.1 – 3.2).

In Table 3.4, we see how the training phase indeed takes much more time,
when adding the labeling component, and that the parsing phase is slightly
faster (except for the labeling+basic100-algorithm, where it takes longer than
the version without labeling). Of course, on the small ATIS corpus the gains
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Table 3.5: Results for experiments with the Labeling+Parsing-algorithm, com-
pared with the results of earlier sections. We report the results both for the
algorithm with parsing only (cf. Table 3.2), and for the algorithm with labeling
and parsing. Reported are unlabeled recall, precision and F1-score. The pa-
rameters are: f = 100, s = 100, k = 2. (Results better than the state-of-the-art
are in bold; cf. Table 3.1.)

Previous results of this thesis 10 rounds ATIS with Labeling+Parsing
Model R P F1 Model R P F1
optim 48.3 49.0 48.7 optim 46.0 46.4 46.2

basic100 36.4 36.7 36.6 basic100 40.8 41.1 40.9
basic10 53.2 53.3 53.2 basic10 52.9 53.9 53.4
basic1 58.5 58.9 58.7 basic1 56.0 56.3 56.2

in parsing time are not so large —this difference will be more outspoken when
considering larger corpora.

Also the possibility to compare the labeled bracketing of the parser with
the gold standard bracketing is a large contribution: other parsing algorithms
can only compare unlabeled bracketing; other labeling algorithms can compare
labels, but for the bracketing they need to rely on other parsers.

The final question is whether this parser is also superior with respect to
F1-scores: our claim is that the incorporation of a labeling algorithm not only
allows for labeled bracketing at all, but also improves the quality of the unlabeled
bracketing, i.e. the bracketing benefits from the labeling. Previous unsupervised
algorithms could not check this, because all existing labeling algorithms rely on
an unsupervised parser in the first place.

Problematic for this algorithm is that it needs quite a large training corpus
to get the data for the second step: we need much co-occurrence information in
order to get the clustering right. For this reason, separate labeling algorithms
such as Smets (2010) were evaluated on the basis of the Wall Street Journal
corpus —and on this large corpus they got quite good results. However, eval-
uation on such a large corpus is not yet feasible with the algorithm described
here: even though we have dimensionality reduction techniques to reduce the
size of the co-occurrence matrix, we still need to extract all subtrees of all possi-
ble trees and keep track of their frequency, which leads to memory issues when
using a large corpus. Therefore, we were only able to evaluate the algorithm on
the basis of the small ATIS corpus; moreover, it only made sense to cluster into
two categories: for more categories, we would need more data. The results can
be found in Table 3.5. We only look at unlabeled bracketing results, so we only
look whether this algorithm gets better parsing results; to see whether it also
gets better labeling results, we would have to cluster into 26 categories, so that
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we can compare with the gold standard —and we would need much more data
to be able to cluster into 26 categories.

We see that the results of the Labeling+Parsing algorithm are no improve-
ment of the results of the parsing algorithm on its own; in fact, in some cases
the results even deteriorate. We believe this is due to the fact that there are not
enough data available to do the labeling right —and with a flawed labeling, also
the bracketing results will be worse. However, we still think that in principle the
addition of the labeling component will also improve the (unlabeled) bracketing
results —only, we would need to be able to evaluate on a larger corpus to test
this. Therefore, further research should certainly concentrate on optimizing the
algorithm so that this hypothesis can be further investigated.

3.4 A new approach to unsupervised parsing

In this section, we will present another innovation to the field of unsupervised
parsing. The innovation lies not so much in the parsing techniques themselves,
but rather in the methodology: we will simulate supervised parsing, while still
assuming no richer input than an unannotated corpus of text.8

Current U-DOP parsers have one flaw: they take all subtrees into account, so
also the ‘flawed’ ones. For example, every time the parser encounters in its train-
ing phase a sentence containing the sequence ‘noun coordinating-conjunction’
(e.g. in the sentence ‘Bella loves wolves and vampires’), the subtree (X noun
coordinating-conjunction) is extracted, even though this subtree does not occur
in the ‘correct’ parse of the tree. Of course, U-DOP’s main argument is that
the frequency will rule out ‘flawed’ subtrees. However, this argument does not
apply to this case: the flawed subtree (X noun coordinating-conjunction) will be
fairly frequent, because it is extracted every time a conjunction is encountered.

This inclusion of ‘flawed’ subtrees is countered effectively by a supervised
DOP-parser, since such a parser only extracts subtrees from the ‘correct’ trees.
With such a parser, subtrees like (X noun coordinating-conjunction) will not
be extracted, or only with a very low frequency. However, using a supervised
parser would not say much about language acquisition. The question remains:
how do children acquire the training corpus of (correctly) parsed trees in the
first place? Since we want to model (certain aspects of) language acquisition in
this thesis, we cannot make use of a supervised parser.

Therefore, we still start from a corpus that could be the input for any un-
supervised parser, i.e. without syntactic annotations. It is safe to assume that
this is the input children receive. Hence, a parser assuming only this input
is adequate for modeling language acquisition (in contrast with a supervised
parser). Next, we simulate supervised learning on the basis of this corpus in
the following way.9

8Although we do require part-of-speech tags, like most current unsupervised parsers.
9This approach is in many aspects similar to the one in Bod (2007). However, whereas

we use all correct subtrees, Bod uses only those subtrees used in the derivations. Though
probably more fruitful in the long run, the latter approach requires much larger training
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The algorithm consists of five steps:
(1) First, we divide the training corpus into two parts: an Extraction Corpus

(EC) and a Held-out Corpus (HC). For now, we follow Bod (2007) in splitting
the training corpus in half: 50% EC and 50% HC. However, it is possible that
other divisions might be more fruitful.

(2) In the second step, we train an unsupervised parser on the EC. This can
be any of the unsupervised parsers discussed above, or even other unsupervised
parsers such as those of Bod (2007) or Klein (2005).

(3) Third, we parse the HC on the basis of this parser trained on the EC.
Again, parsing can proceed as with any of the parsers discussed above, or an-
other unsupervised parser. The output of this step is a syntactically annotated
corpus that can serve as input for a supervised parser.

(4) In the fourth step, we use the parsed HC as the annotated training corpus
for a supervised parser. Note that again, in principle all supervised parsers can
be used in this step. Our proposal is a simple adaptation of the unsupervised
parsers developed in Sections 3.1 – 3.2: rather than taking all subtrees from all
possible trees, we now only extract those subtrees of the ‘correct’ trees, i.e. of
the trees the unsupervised parser in step 3 proposed. Parsing then proceeds in
the same way as above.

(5) Finally, we can use the supervised parser trained in step 4 to parse new
test sentences. In our proposal, this parsing algorithm will be identical to that
of the parsers in Sections 3.1 – 3.2.

The problem mentioned in the beginning of this section will be solved with
this methodology: the expectation is that subtrees like (X noun coordinating-
conjunction) won’t occur very often in the parsed HC, and hence have a very
high rank. Therefore, the (supervised) parser trained on the parsed HC will
prefer other subtrees (with a better ranking score) over this one.10

With respect to efficiency, we see the same scheme as with the labeling
parser from Section 3.3: the training phase takes quite long, but the parsing

corpora, and hence will not be further explored in this thesis.
10Of course, it is possible to debate what exactly the ‘correct’ tree for a coordination struc-

ture is. However, speaking from a (U-)DOP point-of-view, we believe a strong argument
can be made for the analysis proposed here, viz. (X noun (X coordinating-conjunction noun))
rather than (X (X noun coordinating-conjunction) noun). After all, a language user will never
encounter sentences ending with a sequence ‘noun coordinating-conjunction’, so the subtree
(X noun coordinating-conjunction) cannot occur at the end of a sentence. In contrast, she
will encounter sentences ending with the sequence ‘coordinating-conjunction noun’, and hence
the subtree (X coordinating-conjunction noun) can occur at the end of a sentence. So based
on the EC (X noun coordinating-conjunction) and (X coordinating-conjunction noun) are
equally likely to occur; hence, a parser trained on the EC alone would be able to give a pretty
good score to sentences like ‘what do you love chicken and’ (it could use the frequent subtree
(X noun coordinating-conjunction). However, in the HC, sentences such as ‘what do you
love chicken and’ will not occur, whereas sentences like ‘you love chicken and what’ will occur.
Therefore, in the second phase (after training on the parsed HC), the subtree (X coordinating-
conjunction noun) will be more frequent than the subtree (X noun coordinating conjunction).
So the crucial idea is that, contrary to normal unsupervised parsing, we also assume that the
HC, the corpus to be parsed, contains ‘grammatical’ sentences, and that these will improve
the parsing results. Since this thesis is not about providing correct analyses of structures, but
rather about modeling relative grammaticality, we won’t go into more detail here.
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Table 3.6: The time in seconds per sentence that each algorithm needs for
training and parsing. We report the time both for the algorithm without the new
methodology (cf. Table 3.3), and with the new methodology. All experiments
for obtaining these results were conducted on an Acer Aspire M3710 desktop
computer, with a Pentium Dual Core processor, 2.5GHz, 4GB RAM.

Previous algorithms New methodology
Model Training Parsing Model Training Parsing
basic1 0.14 26.44 basic1 4.24 0.02
basic10 0.14 46.94 basic10 7.76 0.04
basic100 0.14 97.17 basic100 28.38 36.13

optim 0.14 11.30 optim 1.96 0.04

of new sentences goes very fast. For NLP applications, this is what we want,
since training only needs to be done once, and parsing all the time. The training
phase comprises steps 1 – 4; the parsing phase step 5. The bottleneck in training
lies in Step 3: the parsing of the HC. This still takes long, because it is based
on the quite large CFG extracted from the EC. In contrast, the parsing of
new sentences in step 5 is based on the CFG extracted from the ‘correct’ trees
produced in step 4, which is much smaller.

In Table 3.6, we see the training and parsing times for the basic and opti-
mized algorithms, first without the new methodology, and then with the new
methodology. We see that the training takes a bit longer, but that the gain
in parsing time is huge.11 Contrary to the Labeling+Parsing-algorithm, we see
already a significant gain on the small ATIS corpus.

Another disadvantage of this approach might be that one would expect it
to need a large training corpus. After all, since the parses for the sentences in
the HC form the basis for the final parser, we want these parses to be as good
as possible —hence, the training corpus on which their parses are based (the
EC) should be as large as possible. However, the EC is only 50% of the original
training corpus. A solution to this problem is the leave-one-out-methodology :12

instead of dividing the training corpus into two separate halves, the EC and the
HC, we let the EC be the whole corpus, and the HC one sentence that is removed
from the EC —this procedure is repeated for each sentence. So, for example, if
the training corpus has 500 sentences, we parse the first sentence (= HC) on the
basis of sentences 2 – 500 (= EC); then we parse the second sentence (= HC) on
the basis of sentences 1, 3 – 500 (= EC) and so on until we parse the last sentence

11Only the basic100-algorithm still takes surprisingly long to parse. The reason for this
is that, after the listing of the possibilities, this algorithm still has to compute the 100-best
derivations —and this still takes some time. So we still see a great increase in time efficiency,
but the advantage is less outspoken than with the other algorithms, because it is overshadowed
by the second step in parsing, i.e. the extraction of the 100-best derivations.

12Thanks to Federico Sangati for this suggestion.
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(= HC) on the basis of sentences 1 – 499. The training phase of this procedure
can be done efficiently by first training on all sentences (all 500 in the example),
and then removing at each iteration the rules for the sentence in the HC (for
example, all rules extracted from sentence 1 in the first iteration). Although
this procedure deals with the sparse data problem (the training corpus used as
the basis for the parses now only contains one sentence less than the original
training corpus), it suffers greatly in speed: because all sentences need to be
parsed, rather than just half of the sentences in the corpus, the time needed
for step 3 is greatly increased —and step 3 was already the slowest step in the
algorithm. Considering the results on the ATIS corpus, however, we needn’t
worry about data sparsity issues: even on this small corpus we obtain results
that are better than the state-of-the-art.

For evaluation, we first applied the same methodology as in the previous
sections: 10 rounds of train/test-splits on the ATIS corpus;13 the results can be
found in Table 3.7. However, because of the slowness of Step 3 of the algorithm,
it was impossible to complete the evaluation for the algorithm using the (slower)
basic implementation; using the (faster) optimized implementation (optim), we
do obtain results. We see that this algorithm achieves better results with the new
methodology: we gain 5% in F1-score. This is in accordance with our general
claim that this new methodology achieves better results with any unsupervised
parser.

To further investigate the possibilities of this new methodology, we also
evaluated it with the inferior version of the basic implementation, i.e. with the
short-CFG (containing only subtrees of depth 1). Also in this case, we see that
the version with the new methodology systematically performs better than the
old version, for each setting of the parameter (1, 10 and 100). Since we already
know that the version with the short-CFG always performs worse than the ‘full’
version (cf. the results in Table 3.1), this gives a promising outlook on the results
with the new methodology and the full CFG – these will most likely be even
better. This hope is further nourished by the difference between the results of
the new methodology with the optimized algorithm and the full CFG, and the
new methodology with the optimized algorithm and the short-CFG: also in this
case, the version with the full CFG performs vastly better.

We also evaluated the methodology with the leave-one-out solution (cf. Table
3.8). However, it was so slow that we could only obtain results for the new
methodology with the optimized algorithm. Somewhat surprisingly, we see that
the results are slightly worse with this solution.

Finally, it is also possible practically to apply this methodology to parse the
ATIS corpus on the basis of training on the Wall Street Journal corpus, but
only when using a short-CFG in Steps 2 and 3 (cf. Table 3.9). Note that these
results are directly comparable with those of the state-of-the-art (Klein, 2005):
also Klein trained on the WSJ and tested on ATIS. We proceeded as follows.
(1) We divided the WSJ into 50% EC and 50% HC (using the leave-one-out

13So for every experiment round, we take 45% of the whole corpus for the EC, 45% for the
HC and 10% as a test corpus.
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Table 3.7: Results for experiments with the new methodology, compared with
the results of earlier sections. (Results better than the state-of-the-art are in
bold; cf. Table 3.1.)

Previous results of this thesis 10 rounds ATIS with new methodology
Model R P F1 Model R P F1
optim 48.3 49.0 48.7 optim 51.7 56.2 53.9

optim-short 44.2 44.5 44.4 optim-short 40.36 45.53 42.71
basic100-short 28.5 28.7 28.6 basic100-short 46.4 66.1 49.8
basic10-short 36.3 36.7 36.5 basic10-short 48.1 65.1 55.3
basic1-short 56.5 56.8 56.6 basic1-short 52.0 65.6 58.0

methodology was not feasible, because this would involve parsing the entire
WSJ, which could not be completed in time). (2) We extract all subtrees
from the EC using the methodology described in Subsection 3.1.1, which is the
training phase of both the basic and the optimized algorithm. (3) We parse HC
using the short version of a parser. (4) We extract all subtrees from the parsed
HC. (5) We parse the ATIS corpus using the full version of the parser used in
step 3; so for the line ‘optim’ in Table 3.9, we used optim-short in step 3 and
(full) optim in step 5; for the line ‘basic1’, we used basic1-short in step 3 and
(full) basic1 in step 5, etc.

We see that the results are better when we train on this larger corpus. Again,
this provides a promising perspective: the results with the full CFG will most
likely be even better. Interestingly, the differences between the optimized and
the basic implementation with various parameters when training on such a large
corpus disappear. More specifically, it are the trees that the algorithms produce
that are identical, not the derivations. We think that this is due to the fact
that the short version of the parsers is used in step 3, and the fact that we train
on already parsed trees (= the output of step 4). Both facts greatly reduce the
amount of rules and hence the amount of possibilities: therefore, the ambiguity
as to which is the correct tree is greatly reduced. In any case, the fact that the
optimized algorithm performs as good as the basic implementation provides a
promising perspective, since the former is much more efficient than the latter.

3.5 Summary

In this chapter, we have built four implementations of a U-DOP inspired unsu-
pervised parser. Already the first, straightforward implementation of the basic
U-DOP ideas performed better than the current state-of-the-art on the ATIS
corpus. However, this implementation was very slow and inefficient, so we devel-
oped an optimization of it. The scores of this optimization were slightly worse,
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Table 3.8: Results for experiments with the new methodology, using the leave-
one-out methodology. (Results better than the state-of-the-art are in bold;
cf. Table 3.1.)

10 rounds ATIS with leave-one-out
Model R P F1
optim 50.0 55.0 52.4

Table 3.9: Results for experiments with the new methodology, using the WSJ as
training corpus. (Results better than the state-of-the-art are in bold; cf. Table
3.1.)

Parse ATIS based on WSJ with new methodology
Model R P F1
optim 58.6 64.1 61.2

basic100 58.6 64.1 61.2
basic10 58.6 64.1 61.2
basic1 58.6 64.1 61.2

but the gain in space and time efficiency was signficant.
Next, we developed two innovations to the field of unsupervised parsing.

First, we built an algorithm that is the first one to do the tasks of labeling and
parsing simultaneously. The hypothesis is that both tasks will benefit from this
interaction. However, we were unable to test this hypothesis up to now, because
the training corpus needs to be quite large for the labeling component, which
brings along some memory issues. Second, we developed a new methodology
for unsupervised parsing, which can in principle be used by any unsupervised
parser. In this chapter, we have applied it succesfully to the parsers developed
in Sections 3.1 and 3.2. Because of computational issues, we could only conduct
experiments with the weaker versions of the parsers, i.e. with a short-CFG
(not considering all subtrees). However, already these weaker versions showed
impressive results, which provide a promising outlook for use with the ‘full’
version of the parsers. Although its training phase is a bit slower than that
of the other implementations, its parsing phase is by far the fastest. This is
exactly what we want from an NLP-application: training (which needs only be
done once) may be a bit slow, as long as the parsing (which needs to be done
often) goes fast. Interestingly, this new methodology both gives the best F1-
scores, and the best parsing times: it is both the fastest and the best performing
algorithm proposed in this thesis.

The results we have obtained so far are thus already better than the current
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state-of-the-art, and we see a great potential for even better results. However, to
obtain these better results, we need to be able to evaluate on larger corpora, and
with the full versions of the parsers. Therefore, the first thing further research
should focus on is to optimize the existing parsers, so that space and time issues
become less pressing. Second, the delicate interplay between maximal analogy
(shortest derivation) and frequency (ranking) as disambiguation criteria needs to
be further investigated. It is clear that both criteria should play a role, but how
much influence each criterion has needs to be further worked out. Looking at
the F1-scores, we would predict that maximal analogy should play a bigger role
than frequency: the implementations based on the shortest derivation achieve
higher scores than the implementations based on the ranking.

The primary goal of this thesis, however, is to explain problems of lan-
guage acquisition without resorting to nativist hypotheses, postulating innate
constraints and principles. Now that we have working implementations of the
U-DOP framework, we can use these in the next part to model how children
can acquire certain constructions in an empirical way.
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Part II

Typical problems in
language acquisition
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After having introduced our U-DOP theory and implementation of language
acquisition, we will now look at various problems of language acquisition. These
are constructions of which nativist linguists typically maintain that it is impos-
sible that children could acquire them on the basis of evidence only (e.g. Crain
and Thornton (2006)); they claim that certain principles have to be innate in
order to account for the fact that children can learn the (un)grammaticality of
these constructions.

First, we will give an introduction to the current state-of-the-art in the na-
tivist linguistic tradition: Minimalist Grammar. We will introduce all principles
and machinery necessary to understand a minimalist account of the construc-
tions under investigation.

Next, we will look at certain constructions in more detail. In the first place,
we will look at all details of wh-questions. According to nativists, wh-questions
can be accounted for by a coherent set of constraints, viz. the island constraints.
We will try to account for this construction in an empirical way in the simple
framework of DOP. Note that we do not claim that these constraints are wrong,
or that they cannot be innate; rather, we refute the nativist argument that the
constraints have to be innate, by showing that a purely empiricist explanation
based on general structure-induction techniques is possible.

In the second place, we look at related phenomena, that can be explained by
the same constraints, and show that the U-DOP approach is at least as general as
the nativist approach in that it can also account for these phenomena. Moreover,
we also discuss phenomena that are not explainable by the constraints, but that
our U-DOP approach can explain, thus showing that the U-DOP approach is
more general.
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Chapter 4

The Basics of Minimalist
Grammar

In this chapter we will give a short introduction to the theoretical framework of
Minimalist Grammar (MG), mainly based on Adger (2003). We will introduce
all aspects of the framework necessary for developing a minimalist account of
the phenomena discussed in the further chapters. The reader who is acquainted
with MG can skip this chapter. In the next chapters we will then compare the
minimalist account of the constructions with the explanation emerging from the
U-DOP theory developed in Part I.

4.1 System architecture and basic elements

In this section, we will describe the general system architecture of the Minimalist
Grammar framework, and explain the basic elements on which the system builds.
In the next section, we will use these elements to build the main structure of
sentences.

4.1.1 System architecture

The main components of the system’s architecture are represented in Figure
4.1. The principal component is the syntactic component : it contains syntactic
objects on which syntactic operations such as Merge, Move and Adjoin can
be performed (cf. Subsections 4.1.3 and 4.1.5). The input for the syntactic
component is the numeration, or the lexical component: a collection of lexical
items. The interface between this component and the syntactic component is
grounded in the ‘Select’ relation: a syntactic derivation starts off by selecting
lexical items from the numeration. The syntactic component also interfaces
with the semantic component: the Conceptual-Intentional system (C-I system).
The syntactic component outputs a Logical Form (LF), on which interface rules
can apply to link the syntax with the semantics. For example, to account for
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Figure 4.1: the basic components of the minimalist system

the fact that morphological inflections influence meaning, there is an interface
rule such as (4.1) which applies to the LF that the syntactic component outputs
and feeds into the C-I system.

(4.1) Interpret a noun specified with [number:plural] as referring to a group of
entities.

Finally, the syntactic component also interfaces with the Articulatory-Perceptual
system (A-P system). To interface with this component, the syntactic compo-
nent outputs a Phonetic Form (PF), which is the result of Spellout. Spellout is
a set of rules, such as (4.2), to transform a syntactic object into a representation
that can interface with the AP-system.

(4.2) Pronounce v[uInfl:past] as ed

4.1.2 Features

The smallest unit in the syntactic component is the lexical item, which is selected
from the numeration. Lexical items are specified with features:

Feature a morphosyntactic feature is a property of words that the syntax is
sensitive to and which may determine the particular shape a word has
(Adger, 2003, p. 24)

Features can be either privative or valued. Valued features can have different
values; for example, the feature ‘number’ can have the value ‘singular’ or ‘plural’.
This is represented as in (4.3). Privative features have no value; they are either
present or they are not; for example, the feature ‘noun’ is present on nouns, but
not on other lexical items. This is represented as in (4.4).

(4.3) (a) [number:singular]
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(b) [number:plural]

(4.4) [N]

A further distinction can be made between interpretable and uninterpretable
features. Interpretable features have an effect on the semantic representation.
For example, the ‘number’ feature indicates whether we are talking about one
object, or more than one. Uninterpretable features, on the other hand, do
not affect the semantic representation; these are purely syntactic in nature.
For example, the ‘case’ feature only influences the syntax. We will indicate
that a feature is uninterpretable by putting a u in front of it, e.g. [ucase:] is
the uninterpretable feature ‘case’. Since interpretable features influence the
semantic representation, they have to be accessible at the interface between the
syntactic and the semantic component (the LF); rule (4.1), for example, uses
the interpretable ‘number’-feature. Uninterpretable features, however, must
be eliminated before the semantic rules apply. This principle is called ‘Full
Interpretation’:

Full Interpretation the structure to which the semantic interface rules apply
contains no uninterpretable features (Adger, 2003, p. 85)

This elimination of uninterpretable features is caused by the syntactic opera-
tions.

4.1.3 Trees and Merge

In MG, syntactic objects always take on the form of a tree. Out of two syntactic
objects (incl. lexical items), a new tree can be constructed via the operation
Merge. First, note that each syntactic object has a label ; usually, this label
is formed out of the features of the object.1 Now suppose that we have two
syntactic objects with labels ‘X’ and ‘Y’. Then Merge can create a new syntactic
object with label ‘Z’ by combining ‘X’ and ‘Y’:

Z

X Y

We say that Z immediately contains X and Y. The usual terminology of
nodes, mothers, daughters, root and terminal nodes applies. Like we said, Merge
can construct a tree out of two syntactic objects; in MG, Merge is not allowed
to create unary or n-ary branching trees (for n > 2). This is called the Binary
Branching Hypothesis.

A more detailed definition of Merge will be discussed in the next subsection,
after we have introduced some other necessary concepts.

So far, the Merge operation seems very similar to the operations in U-DOP
(cf. Section 2.2). However, there are some differences. First, Merge does not
distinguish between (4.5) and (4.6): it does not specify the linear order of the

1E.g. an object with feature [N] will have as label ‘N’.
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elements it merges, whereas in (U-)DOP (4.5) and (4.6) are two distinct sub-
trees. Of course, natural language does have a fixed word order (at least in
English) —this is taken care of in MG by linearizing the structures.2

(4.5)
Z

X Y

(4.6)
Z

Y X

Second, Merge only combines objects at their root nodes. So we can Merge (4.5)
and (4.7) to obtain (4.8), but we cannot insert one constituent inside another:
we cannot Merge (4.5) and (4.9) to obtain (4.10). Note, however, that we would
be able to combine (4.5) and (4.9) in the U-DOP formalism.

(4.7)
R

S T

(4.8)
M

Z

X Y

R

S T

(4.9)
X

S T

(4.10)
Z

X

S T

Y

4.1.4 Theta-roles and checking

MG distinguishes between arguments and adjuncts. Arguments are constituents
that are obligatory for the grammaticality of a sentence (e.g. (4.11) is grammat-
ical, but (4.12) is not, because the argument ‘Edward’ is missing). Adjuncts
are optional: they can be left out without influencing the grammaticality of the
sentence (e.g. both (4.11) and (4.13) are grammatical, even though the adjunct
‘every day’ is left out in (4.11)).

2How structures are linearized is explained in the next subsection.

57



(4.11) Bella loves Edward.

(4.12) * Bella loves.

(4.13) Bella loves Edward every day.

We say that predicates subcategorize for certain kinds of expressions. These
expressions can be of different semantic types. For example, in (4.14) the predi-
cate (‘give’) subcategorizes for an Agent (something that initiates the action, in
casu ‘Bella’), a Theme (something that undergoes the action, in casu ‘the book’)
and a Goal (something towards which the action is oriented, in casu ‘Edward’).
Agent, Theme and Goal (among others) are called thematic roles or θ-roles.

(4.14) Bella gives the book to Edward

So a predicate assigns θ-roles to constituents in a sentence. More specifically, a
predicate has to assign each θ-role it has to a constituent in a sentence, other-
wise the sentence is ungrammatical (e.g. (4.12) is ungrammatical, because the
predicate’s Theme-role is not assigned). Moreover, each constituent in the sen-
tence can only be assigned one θ-role (e.g. we cannot say that in (4.12) ‘Bella’
is both the Agent and the Theme, meaning that she loves herself). These two
observations taken together constitute the Unique θ-Generalization:

Unique θ-Generalization each θ-role must be assigned but a constituent can-
not be assigned more than one θ-role (Adger, 2003, p. 81)

The apparatus to enforce this generalization consists of categorial selectional
features (c-selectional features).

C-selectional features a c-selectional feature is a categorial feature on a lex-
ical item, which does not determine the distribution of the lexical item
itself; rather it determines the category of the elements which will be able
to Merge with that lexical item

For example, the predicate ‘love’ carries two c-selectional features, [uN,uN],3 in-
dicating that it can Merge with two items which have themselves the categorial
feature [N] (indicating that they are nouns). Recall the distinction made above
between interpretable and uninterpretable features. Clearly, these c-selectional
features have a purely syntactic function and are thus uninterpretable. There-
fore, we mark them with a u, to distinguish them from the interpretable cate-
gorial features. Above we mentioned the principle of Full Interpretation: unin-
terpretable features must be deleted before LF. Now we have all the machinery
in place to establish this.

We have the following two principles:
3Recall that u in front of a feature indicates that it is uninterpretable. So the ‘N’-feature

on ‘love’ is uninterpretable, because it indicates which category of elements will be able to
Merge with ‘love’, but the ‘N’-feature on ‘Edward’ is interpretable, because it indicates the
category of ‘Edward’ itself.
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Checking Requirement uninterpretable (c-selectional) features must be checked,
and once checked, they can delete

Checking under Sisterhood an uninterpretable c-selectional feature F on a
syntactic object Y is checked when Y is sister to another syntactic object
Z which bears a matching feature F

Suppose we have the following tree:

X

Y[uF] Z[F]

Y has an uninterpretable feature F, which needs to be checked according to
the Checking Requirement. Z bears a matching feature F, and is in a sisterhood
relation with Y, so by Checking under Sisterhood Y’s [uF] can be checked:

X

Y[uF] Z[F]

At the point where LF will be produced, all checked features will delete, and
Full Interpretation will be satisfied.

A more concrete example is the following. Suppose we have the lexical items
love[V,uN] and Edward[N]. We can Merge these two items and get

VP

love[V,uN] Edward[N]

Now we can check the uninterpretable uN-feature and get

VP

love[V,uN] Edward[N]

Note that we need a constituent with a matching feature for all c-selectional
features on a predicate. The link with the Unique θ-Generalization is now fairly
straightforward: each θ-role is associated with a c-selectional feature and hence,
each θ-role will be associated with a constituent in the sentence. A remaining
problem is how to determine which constituent gets which θ-role; this is called
the Linking Problem and will be dealt with in Subsection 4.2.1.

Now we see that Merge is triggered by feature checking: we need to Merge
with other constituents to be able to check uninterpretable features. Then we
have the following definition of Merge:

Merge 1. Merge applies to two syntactic objects to form a new syntactic
object

2. the new syntactic object is said to contain the original syntactic ob-
jects, which are sisters but which are not linearized

3. Merge only applies to the root nodes of syntactic objects
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4. Merge allows the checking of an uninterpretable c-selectional feature
on a head, since it creates a sisterhood syntactic relation

(Adger, 2003, p. 90–91)

This is the most specific definition given in Adger (2003). When we look at
Chomsky (1995), the definition proposed there is not much clearer:

Applied to two objects α and β, Merge forms the new object K,
eliminating α and β [. . .] K must be constituted somehow from the
items α and β [. . .] The simplest object constructed from α and β
is the set {α, β}, so we take K to involve at least this set, where α
and β are the constituents of K [. . .] K must therefore at least (and
we assume at most) be of the form {γ, {α, β}}, where γ identifies
the type to which K belongs, indicating its relevant properties. Call
γ the label of K. (Chomsky, 1995, p. 243)

Although both definitions are not mathematically precise, we can gather what
is meant. Consider trees as graphs, i.e. tuples (V,E) such that E ⊆ V ×V , with
E being the set of edges, and V the set of vertices. Now suppose we have two
graphs/trees A and B, with α ∈ V (A) the root node of A, and β ∈ V (B) the
root node of B. Furthermore, let H be a vertex such that H /∈ V (A) ∪ V (B).
Then we define the Merge of A and B as follows:

MergeH(A,B) =: M such that{
V (M) = {H} ∪ V (A) ∪ V (B)
E(M) = {(H,α), (H,β)} ∪ E(A) ∪ E(B)

So if A and B are trees with heads α and β, then MergeH(A,B) is a tree
with head H, which contains A and B (and has α and β as daughters).

Note that this definition keeps intact the property of Merge to not specify a
linear order, i.e. to not distinguish between (4.5) and (4.6).

Now we can define heads in an independent way:

Head the head is the syntactic object which selects in any Merge operation
(Adger, 2003, p. 91)

An important property of heads is that they project : when a head is merged
with another constituent, its features are projected to the new syntactic ob-
ject. We distinguish between minimal, intermediate and maximal projections.
The minimal projection is the lexical item itself (designated e.g. ‘N’). When all
c-selectional features of a head are satisfied, we call it a maximal projection (des-
ignated e.g. ‘NP’). Note that only maximal projections can be merged with other
heads (otherwise the unchecked c-selectional features would remain unchecked
and the derivation would eventually crash because the Checking Requirement
would not be satisfied). With an intermediate or bar-level projection, there are
still some c-selectional features to check (designated e.g. ‘N’). The sister of a
bar-level projection is called a specifier.
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Now we can say how structures are linearized (recall that Merge doesn’t
specify a linear order). In English, heads come to the left of the complements
they select; specifiers, however, occur to the left of their head. Adjuncts, finally,
can appear either to the left or the right of the phrase they adjoin to.

4.1.5 Other syntactic operations

Recall the difference between arguments and adjuncts made above. In the
previous section we have shown how Merge is triggered by the need for c-
selectional feature checking. So arguments are incorporated in a sentence via
the Merge-operation. Adjuncts, however, are entirely optional —so there are
no c-selectional features triggering their Merge into the sentence. Therefore, a
new syntactic operation Adjoin is defined, which is not triggered, but can be
applied to every maximal projection.

Adjoin inserts a phrasal object into another phrasal object at its outermost
level. It does not create a new object, it expands one of the old ones by
stretching its outermost layer into two parts and inserting the adjoined
object between them (Adger, 2003, p. 112)

For example, in the following tree YP is adjoined to XP:

XP

XP YP

So the resulting object still has all the features of the phrase to which the
adjunct is adjoined.

The final operation that can be performed on syntactic objects is Move.

Move takes a structure formed by applications of Merge, and then moves
one of the elements of that structure into another position in the tree
(Adger, 2003, p. 132)

We will see examples of the workings of Move in the next section.

4.2 Basic structure of sentences

In this section, we will gradually build the basic structure of sentences. We
start with the structure of the VP, gradually enlarging our scope to the TP and
finally to the CP.

4.2.1 Structure of the VP

Intuitively, we would build the VP as follows:
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VP

VP

subject V

V complement

adjunct

For example, the structure of ‘Bella kisses Edward quickly’ would be:

VP

VP

Bella [N] V[uN]

kiss [uN] Edward [N]

quickly

We see that Full Interpretation is satisfied. The predicate ‘kiss’ has two
c-selectional features. The first one is checked by ‘Edward’; the second one is
projected to the bar-level projection, where it is checked by ‘Bella’.

However, in the minimalist Framework this simple structure is rejected,
building on an argumentation making use of ditransitives (for more details,
see (Adger, 2003, Section 4.4)). An additional layer called v (‘little v’) is
introduced. The basic structure of the verb phrase is thus as follows:4

vP

vP

subject v

v VP

V complement

adjunct

Again, based on an argumentation making use of ditransitives, the operation
Move will apply to the verb V, and Move it to v. The resulting structure is (note
that V has adjoined with v, and the angled brackets indicate the trace of V):

4The c-selectional feature that selects the subject is now no longer on V , but on v.
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vP

vP

subject v

v

V v

VP

〈V〉 complement

adjunct

So the structure of ‘Bella kisses Edward quickly’ is:

vP

vP

Bella [N] v [uN]

v

kisses v

VP

〈kisses [uN]〉 Edward [N]

quickly

We see that the verb ‘kiss’ only has one c-selectional feature, which is checked
by ‘Edward’. The new constituent v bears an additional c-selectional feature,
which is projected up to the bar-level projection, where it is satisfied by ‘Bella’.
All uninterpretable features are checked, and Full Interpretation is satisfied.

The question remains why the VP merges with v. Since v doesn’t assign
a θ-role to the VP, we cannot argue that Merge is triggered by c-selectional
features in this case. Rather, a new mechanism is introduced: the Hierarchy of
Projections. For now, the Hierarchy of Projections takes the form of (4.15); we
will amend it in later sections.

(4.15) v > V

This hierarchy states that what is left of the >-sign always has to merge with
what is right of the >-sign. So here we stipulate that v will always merge with
V.

Now we are also able to solve the linking problem: the machinery already
ensures that each θ-role is associated with a unique constituent, but how do
we know with which constituent a θ-role is linked? The answer lies in the
Uniformity of θ-Assignment Hypothesis (UTAH):

UTAH identical thematic relationships between predicates and their argu-
ments are represented syntactically by identical structural relationships
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when items are Merged (Adger, 2003, p. 138)

So by the structural position of a constituent, we know with which θ-role it can
be linked. Following the trees given above, it is claimed that

• an NP that is the daughter of a vP is interpreted as an Agent

• an NP that is the daughter of a VP is interpreted as a Theme

• a PP that is the daughter of V is interpreted as a Goal

For example, the sentence ‘Edward shows it to Bella’ has the following structure:

vP

Edward v [uN]

v

show v

VP

it V [uN]

〈show [uP]〉 PP

to Bella

Now we see that ‘Edward’ is the daughter of a vP and hence interpreted
as the Agent; ‘it’ is the daughter of a VP and interpreted as the Theme; and
finally, ‘to Bella’ is the daughter of V, and interpeted as the Goal.

4.2.2 Structure of the TP

In Minimalist Grammar, it is argued that there is an additional layer on top of
the vP: the TP. The minimal projection of the TP, the category T, hosts the
tense features for the whole sentence. The argumentation for introducing this
extra layer is based on modals and VP-ellipsis. Again, we need the Hierarchy of
Projections to explain why Merge between T and vP takes place; the adapted
(but not yet final) version is in (4.16):

(4.16) T > v > V

The general structure of the TP is the following:
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TP

Subject T

T vP

〈Subject〉 v

v

V v [uInfl:]

VP

〈V〉 Object

We see that the verb has moved to v, as before, but now also the Subject has
moved, to the specifier of TP. This is to account for the fact that subjects appear
to the left of modals. We also see another new technicality: the feature [uInfl:].
Recall that we made a distinction between privative and valued features. Up
to now, we have only encountered privative features (the c-selectional features).
[uInfl:] is a valued feature; it doesn’t have a value yet, but it will be assigned a
value simultaneously with its checking. For features of this kind, we don’t apply
the Checking under Sisterhood-principle (as we did for c-selectional features),
but we define a new kind of relation, Agree:

Agree in a configuration X[F:val] · · · Y[uF:] where · · · represents c-command,
then F checks and values uF, resulting in X[F:val] · · · Y[uF:val] (Adger, 2003,
p. 169)

So according to the Agree relation, an uninterpretable feature gets a value and
is checked at the same time, and it doesn’t have to be in a sisterhood relation
with a matching feature —c-command suffices.5 This relation holds between
T and v to ensure that the tense features that T hosts will be pronounced on
the verb. Furthermore, there is an additional condition on the Agree-relation,
which will become important later on:

Locality of Matching Agree holds between a feature F on X and a matching
feature F on Y if and only if there is no intervening Z[F] (Adger, 2003,
p. 238)

With intervention defined as follows:

Intervention in a structure [X · · · Z · · · Y], Z intervenes between X and Y iff
X c-commands Z and Z c-commands Y (Adger, 2003, p. 238)

Auxiliaries are said to have a category of their own (Perf, Prog), which can
optionally be merged with a vP. When we also consider negation (Neg) and
the passive (Pass), the Hierarchy of Projections looks as follows (the brackets
indicate that the Merge is optional):

5C-command is defined as follows: “a node A c-commands a node B if, and only if A’s
sister either: (a) is B, or (b) contains B” (Adger, 2003, p. 117).
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(4.17) T > (Neg) > (Perf) > (Prog) > (Pass) > v > V

Based on the position of negation (after the auxiliary), it is claimed that the
auxiliary must move to T, to end up higher than the negation. To explain what
triggers this movement, a new technicality is introduced: feature strength.

Feature strength a strong feature must be local [i.e. in a sisterhood relation]
to the feature it checks/is checked by (Adger, 2003, p. 179)

We can represent this schematically as in (4.18). X bears an uninterpretable
strong feature F, which needs to be checked. Since X is in a c-command rela-
tionship with Y, Agree can take place between X and Y. However, since F is a
strong feature, Y has to be in a local relationship; hence, Y is Moved.

(4.18) X[uF*] · · · Y[F] −→ X[uF*]Y[F] · · · 〈Y[F]〉

Now we can account for the movement of an auxiliary to T. We say that the
[uInfl:] feature on the auxiliary is strong. T checks and values this feature, and
since it is strong, it has to move to ensure that it is in a sisterhood relation with
T. For example, the structure of the sentence ‘Edward has kissed Bella’ before
movement is as follows (the Perf-feature on the auxiliary checks and values the
(weak) uInfl-feature on v):

TP

Edward T

T [past] PerfP

has [Perf,uInfl:*] vP

〈Edward〉 v

v

kiss v [uInfl:Perf]

VP

〈kiss〉 Bella

Now, in order to check the strong uInfl-feature on the auxiliary, it has to
Agree with T, and because the feature is strong, the auxiliary must move to a
position where it is a sister of T.
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TP

Edward T

T

has
[Perf,uInfl:past*]

T [past]

PerfP

〈has
[Perf,uInfl:past*]〉

vP

〈Edward〉 v

v

kiss v [uInfl:Perf]

VP

〈kiss〉 Bella

4.2.3 Structure of the CP

The final layer we add to the structure of a sentence is the CP. The difference
between the TP and the CP is that the former deals with tense, aspect and other
properties of the event picked out by the verb, whereas the latter indicates how
the hearer should think of the proposition expressed by the clause. For example,
a complementizer such as ‘that’ indicates that the proposition is considered a
fact, whereas a complementizer such as ‘whether’ indicates that the proposition
is a question about facts.

To enforce Merge between the CP and the TP, we adapt the Hierarchy of
Projections to its final version:

(4.19) C > T > (Neg) > (Perf) > (Prog) > (Pass) > v > V

Like T hosts the tense-features, C hosts a clause-type-feature, with values
[Q] (question) and [Decl] (declarative). This feature is interpretable on C, and
hence does not need to be checked. However, this feature can check and value
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an uninterpretable clause-type-feature on T. So we have as structure:

(4.20) CP

C [Decl] TP

Subject T

T [uclause-type:Decl] vP

rest of sentence

4.3 Summary

To summarize, we provide an overview of all the principles and technicalities
discussed above.

basic unit syntactic object, tree
syntactic operations Merge

Move
Adjoin

features valued / privative
interpretable / uninterpretable
weak / strong

Full Interpretation Checking Requirement
Checking under Sisterhood
Agree
Locality of Matching

θ-roles Unique θ-Generalization
UTAH

Hierarchy of Projections C > T > (Neg) > (Perf) > · · ·
· · · > (Prog) > (Pass) > v > V

Finally, we take a look at the final structure of a simple sentence such as
‘Edward kisses Bella’. ‘Bella’ checks the uninterpretable c-selectional feature on
‘kiss’; next, ‘kiss’ moves to v. The uninterpretable c-selectional feature on v is
projected to the bar-level projection, where it is checked by ‘Edward’. v also
has a [uInfl:]-feature, which can be checked and valued by the [Pres]-feature on
T. Since [uInfl:] is weak on v, no moving is necessary. T also bears a [uclause-
type:]-feature, which can be checked and valued by the [Decl]-feature on C.
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CP

C [Decl] TP

Edward [N] T

T
[Pres, uclause-type:Decl]

vP

〈Edward [N]〉 v [uN]

v

kiss v
[uInfl:Pres]

VP

〈kiss [uN]〉 Bella [N]

In contrast, U-DOP proposes the following tree for this sentence:

X

Edward X

kisses Bella

Note that this U-DOP representation is very simple and overgenerates widely:
as discussed at the end of Section 2.3, U-DOP can generate all sentences (but
imposes a distribution on them). Nevertheless, as we will show in the next
chapters, this simple, overgenerating framework can solve problems of language
acquisition; the involved technical machinery as described in this chapter is not
necessary.

According to Chomsky et al. (2002), the language-specific component of the
brain that is unique for humans, or the Faculty of Language in the Narrow
sense (FLN), “comprises only the core computational mechanisms of recursion”
(Chomsky et al., 2002, p. 1573).6 From the overview in the table above, and
the exposition in this chapter, it is clear that at least this version of minimalism
assumes quite a lot more. Rather, it seems that the U-DOP framework discussed
in Part I better fits the image sketched in Chomsky et al. (2002).

6However, we believe a good case can be made for recursion being not typically linguistic.
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Chapter 5

Subject Auxiliary Inversion

In the previous chapter we have discussed the framework of Minimalist Gram-
mar. In this chapter, and the next two chapters, we will put this to use to ac-
count for several linguistic phenomena. Moreover, we will investigate whether
the U-DOP approach developed in Part I is also adequate for accounting for
these phenomena.

The first phenomenon we will discuss is Subject Auxiliary Inversion (SAI).
This phenomenon is one of the most prominent instantiations of poverty-of-
stimulus arguments (cf. Crain and Thornton (2006)). The problem lies in the
fact that out of (5.1), children could deduce a structure-independent rule like
(5.2). However, such a rule would generate structures like the ungrammatical
(5.3), rather than the grammatical (5.4). The task of the researcher is thus to
explain how children acquire a different rule than (5.2) and produce (5.4) rather
than (5.3).

(5.1) the farmer is beating a donkey ⇒ is the farmer beating a donkey?

(5.2) “to form a Yes/No question, move the first verbal element is, can, has,
. . . of the declarative statement to the front” (cf. Crain and Thornton
(2006))

(5.3) the farmer who is beating a donkey is mean ⇒ is the farmer who 〈is〉
beating a donkey is mean?

(5.4) the farmer who is beating a donkey is mean ⇒ is the farmer who is
beating a donkey 〈is〉 mean?

An empirical approach to this problem has already been undertaken in Bod
(2009). In this chapter, we will investigate whether our approach can also
explain this problem empirically (following the methodology outlined in Sub-
section 1.2.2). In a first section, however, we will show how the framework of
Minimalist Grammar, as described in the previous chapter, deals with Subject
Auxiliary Inversion.
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5.1 The minimalist account

Recall from Section 4.2 the basic structure of a sentence:

CP

C TP

Subject T

T

Auxiliary T

PerfP

〈Auxiliary〉 vP

〈Subject〉 v

v

Verb v

VP

〈Verb〉 Direct Object

It is clear that in yes/no-questions the auxiliary occurs before the subject.
Hence, the auxiliary on T must move to a position before the subject, the C
position:

CP

C

T

Auxiliary T

C

TP

Subject T

〈T〉

〈Auxiliary〉 〈T〉

PerfP

〈Auxiliary〉 vP

rest of sentence

This movement is triggered by the [uclause-type]-feature on T. This is a
strong feature; therefore, T has to move into a local (sisterhood) relation with
C, so that the [uclause-type]-feature can be valued and checked by the [Q]-
feature on C:
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CP

C

T [uclause-type:Q*]

Auxiliary T

C [Q]

TP

Subject T

〈T〉

〈Auxiliary〉 〈T〉

PerfP

〈Auxiliary〉 vP

rest of sentence

Of course, problems arise when C bears a [Decl]-feature, indicating that the
sentence is a statement rather than a question. In that case, this movement
should not take place: in that case, the auxiliary occurs after the subject. The
solution proposed for this problem is that the [uclause-type]-feature is considered
strong when valued with [Q], and weak when valued with [Decl]. So when C
bears a [Q]-feature, the [uclause-type]-feature on T is valued with [Q], and
hence considered strong, triggering movement from T to C. When C bears a
[Decl]-feature, the [uclause-type]-feature on T is valued with [Decl], and hence
considered weak, triggering no movement at all.

Finally, we will see how this treatment of yes/no-questions interacts with
do-support. For an explanation of do-support, we need a new syntactic entity,
the chain, and a pronunciation rule, the Pronouncing Tense Rule (PTR). The
minimalist vision on do-support is that it is a last resort : when the PTR cannot
apply, do-support will apply instead.

Chain a chain is an object which is formed by an Agree operation. Whenever
one feature checks against another, we say that the two syntactic objects
entering into the checking relation are in a chain. Each link in the chain
must c-command the next one. If c-command does not hold, then the
chain is broken. (Adger, 2003, p. 192)

Pronouncing Tense Rule in a chain (T[tense], v[uInfl: tense]), pronounce
the tense features on v only if v is the head of T’s sister. (Adger, 2003,
p. 192)

Now consider interrogative questions without an auxiliary (no PerfP or
ProgP). This is the structure for the interrogative version of the sentence ‘Ed-
ward kissed Bella’:
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CP

C

T [uclause-type:Q*] C [Q]

TP

Edward T

〈T〉 vP

〈Edward〉 v

v

kiss v

VP

〈kiss〉 Bella

Once the movement from T to C has taken place, T no longer c-commands
v. Hence, the chain is broken, and the PTR cannot apply. Therefore, we resort
to do-support, and we pronounce some form of ‘do’ on the place of T, and get:
‘did Edward kiss Bella?’.

5.2 The U-DOP account

In this section, we will investigate whether an empirical, usage-based account
like the U-DOP framework developed in Part I can explain Subject Auxiliary
Inversion (following the two-pass model outlined in Subsection 1.2.2). In par-
ticular, it has to be able to account for the difference in grammaticality between
the following sentences:

(5.5) is the boy eating

(5.6) * is the boy who eating is hungry

(5.7) is the boy who is eating hungry

In (5.6), we could say that Rule 5.2 is applied: the first auxiliary is fronted. In
contrast, in (5.7), it is not the first auxiliary that is fronted, but the auxiliary
from the matrix sentence.

When we try to let our parser (100-best shortest derivations, with ranking
as a second phase, cf. Section 3.1) parse these sentences, we run into memory
issues: the parsing of (5.6) and (5.7) takes too much memory (more than 30 GB
RAM). Therefore, we back off to the second pass of the two-pass model, and
look for the shortest derivation ourselves. Now we have to explain why (5.7) is
more grammatical than (5.6).

We look at the subtrees from the child-directed speech of the Adam part of
the Brown corpus (Brown, 1973), and check how (5.5 – 5.7) can be derived.
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First, we investigate whether the entire tree can be found in the subtree-bank:
if so, then the shortest derivation consists of that one tree; otherwise, we check
whether we can split the tree into two subtrees of the subtree-bank, etc, . . .

For (5.5), the shortest derivation consists of at least two elements: the entire
tree was not found in the subtreebank (ranking: 14,799 + 594 = 15,393):1

X

is X

X eating

◦ X

the boy

= X

is X

X

the boy

eating

The sentence in (5.7) is of the same complexity: its shortest derivation also
consists of two elements (ranking: 1,585,992 + 86,536 = 1,672,528):

X

is X

X

X

the boy

X

hungry

◦ X

who X

is eating

= X

is X

X

X

the boy

X

who X

is eating

hungry

Finally, the sentence in (5.6) is the most complex: it only has derivations with
four or more elements (ranking: 1,585,992 + 594 + 135 + 4,085 = 1,590,806):

X

is X

X X

who X

◦ X

the boy

◦ X

eating X

◦ X

is hungry

1Of course, there are many possible shortest derivations; in our examples, we give just one.
We ascertained that there are no shorter derivations, i.e. derivations with fewer elements.
Note that we used part-of-speech tags as input to our parser; here we give the words for ease
of exposition.
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= X

is X

X

the boy

X

who X

eating X

is hungry

So when a child has to choose between (5.6) and (5.7) to express its thoughts,
it will always choose (5.7), because this sentence has the shortest derivation (the
ranking does not matter in this case). In this way, the U-DOP framework can
account for Subject Auxiliary Inversion: without any rules, the child will always
choose the correct alternative, based on the input it has received (in this case, the
child-directed speech from the Adam-part of the Brown corpus). So we see that
the criterion of shortest derivation works: children will choose that alternative
which bears the greatest similarity with what they have already encountered.

In the derivations, we also see that the preference for (5.7) has some linguistic
basis: the difference in the derivations is caused by the relative clauses ‘who is
eating’ in (5.7) vs. ‘who eating’ in (5.6). U-DOP can capture the fact that the
first relative clause is more grammatical than the second one, because the latter
does not occur in the input.2 Hence, the derivation of the relative clause-part
of (5.6) is more complicated, because we can only use fairly abstract subtrees,
whereas for the structure of the first relative clause we have more concrete
subtrees at our disposal. We see this for example in the second step of the
derivation of (5.7): the subtree (X who (X is X)) can be used, which is a
common structure for a relative clause.

When we look at our other criterion, the ranking, we see that this can also
explain SAI. We let the parser developed in Section 3.2 provide analyses for (5.5
– 5.7),3 and we get the following results.4 The derivation for (5.5) is (rank: 4
+ 16 + 594 = 614):5

2At least not in the child-directed speech of the Adam-part of the Brown corpus. So it is
possible that this relative clause does occur in ‘real life’ child-directed speech. However, even
in that case, it would still be very rare, and hence have little influence.

3As was noted in Section 3.2, this parser works more efficient. Hence, we do not run into
any memory problems here.

4When comparing the ranks of these derivations with the ranks of the derivations above,
it is obvious that these derivations will have a much lower rank, since they are meant to
optimize the frequency/ranking criterion; however, when comparing the number of elements
in the derivations, the derivations above will be the shortest, since they are meant to optimize
the maximal overlap/shortest derivation criterion.

5Note that these are not assumed to be the trees that would be proposed by a linguist.
Since there is no way of knowing what would be the ‘correct’ trees, i.e. the trees a child
would have in mind, we focus on what we can know: the difference in relative grammaticality,
formulated in the ranking score. See also the methodological remarks in Subsection 1.2.2 and
Section 6.3.
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X

is X

◦ X

X eating

◦ X

the boy

= X

is X

X

the boy

eating

We see that this derivation consists of more elements, but that its composing
elements are more frequent (have a lower (and hence, better) rank).

The derivation for (5.7) has a higher rank, since this is a more complex
sentence (rank: 4 + 20 + 16 + 13 + 77 + 594 = 724):

X

is X

◦ X

X hungry

◦ X

X eating

◦ X

X is

◦ X

X who

◦ X

the boy

= X

is X

X

X

X

X

the boy

who

is

eating

hungry

Finally, the derivation for (5.6) has the highest rank, so the worst score
(rank: 4 + 20 + 25 + 16 + 77 + 594 = 736):6

X

is X

◦ X

X hungry

◦ X

X is

◦ X

X eating

◦ X

X who

◦ X

the boy

6The subtrees of both derivations look the same, and therefore one would expect the rank
to be equal; however, the verb ‘is’ can be assigned two part-of-speech tags, viz. ‘v:cop’ when
it is used as a copula verb, and ‘aux’ when it is used as an auxiliary. Therefore, the subtrees
used in the derivations are not really the same, since different part-of-speech tags for ‘is’ are
used.
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= X

is X

X

X

X

X

the boy

who

eating

is

hungry

So we see that also according to the frequency-based ranking criterion, chil-
dren will prefer the grammatical (5.7) over the ungrammatical (5.6) when they
have to choose between the two alternatives: they will choose that alternative
whose composing parts they have encountered most frequently.

5.3 Summary

In this chapter, we have first introduced the minimalist account of Subject Aux-
iliary Fronting, and shown how this framework can correctly predict differences
in grammaticality. However, this account needs the fairly involved machinery
of Minimalist Grammar, as described in Chapter 4, and even some additional
tweaks have to be made to make everything fit. For example, in the original
machinery, features are either strong or weak on a constituent. To account
for SAI, however, we must allow that features can be weak on a constituent
when they are valued with one value, and strong on that same constituent when
valued with another value. Also the analysis of do-support needs new techni-
calities (e.g. the notion of chains), and a whole new mechanism: a last-resort
rule —when all else fails, we apply do-support.

So the minimalist framework can account for SAI, but at a great theoretical
cost. The U-DOP framework, in contrast, needs only five things:

1. representations of language expressions: trees

2. fragments of representations: subtrees

3. composition operation: ◦

4. disambiguation mechanism: shortest derivation / ranking based on fre-
quency / . . .

5. input: a corpus of language expressions that may be assumed to be the
input a child has received
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Whereas the input plays only a small role in the minimalist framework (in the
account of SAI even no role at all —the grammar does all the work), it is crucial
in the U-DOP account: both to provide composing elements for derivations
(subtrees), as well as to provide information about frequency (rank).

So we see that the poverty of stimulus argument with respect to SAI is re-
futed. The poverty of stimulus argument says that it is impossible that children
learn such complex constructions on the basis of input alone —therefore, innate
constraints are necessary. However, in this section we have shown that it is
possible to account for SAI mainly on the basis of the input, viz. in the simple
framework of U-DOP.
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Chapter 6

WH-questions

In the remainder of this thesis, we will look at a range of phenomena that in gen-
erative linguistics are claimed to be explained by a coherent set of constraints,
viz. the island constraints. The phenomenon that is most heavily studied in
this research area is that of wh-questions. In this chapter, we will investigate
this phenomenon in depth; in the next chapter, we will look at related phenom-
ena. First, we go back to the roots of generative grammar: the PhD thesis of
Ross (1967), where the island constraints were first developed. Next, we de-
scribe how the more recent framework of minimalism, as described in Chapter
4, deals with wh-questions. Finally, we show that it is not necessary to assume
innate constraints, but that the U-DOP theory developed in Part I can deal
with wh-questions in an empirical way.

6.1 The basic explanation of Ross (1967)

The framework that Ross worked in was that of transformational grammar.
The syntactic component consists of two parts: a set of context-free phrase
structure rules, which generate deep structures, and a set of transformations,
which convert deep structures into surface structures.

WH-questions are formed by the transformational rule Question:

(6.1) Question

Q – X – NP – Y
1 2 3 4 OBLIG=⇒

1 3 + 2 0 4
Condition: 3 dominates WH + some

In general, such rules state that if you have a configuration like the left-hand-
side of the arrow, it obligatorily has to be transformed into the configuration
specified in the right-hand-side. Variables like X and Y can range over all strings,
including the null string.
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So in this case, the configuration we start from has a Q element (a non-
pronounced element that signifies we’re dealing with a question), then an ar-
bitrary string (labeled with variable X), then a noun phrase, and then again
an arbitrary string (labeled with variable Y). The transformation consists in
moving the noun phrase to a place between the Q-element and the string X.

For example, the question ‘who did Bella kiss yesterday’ is derived from ‘did
Bella kiss who yesterday’ as follows:1

Q – did Bella kiss – who – yesterday
1 2 3 4 OBLIG=⇒

1 3 + 2 0 4
Q who + did Bella kiss yesterday
Condition satisfied: ‘who’ dominates WH + some

It is clear that variables like X and Y are indispensable in rules like (6.1):
the place of X can be filled by an infinite variety of strings, cf. (6.2 – 6.4) (the
string spanned by X is in italics); this infinite variety cannot be captured in a
finite conjunction. We say that wh-questions can be infinitely deeply embedded:
(6.2) has level 1 of embedding, (6.3) level 2, (6.4) level 3, and in principle we
could go on building sentences with ever deeper embeddings. This phenomenon
is called ‘unbounded scope’.

(6.2) who did Bella kiss

(6.3) who did Jacob say that Bella kissed

(6.4) who did Sam order Jacob to say that Bella kissed

With respect to language acquisition, the puzzle lies in the fact that children
only hear constructions of level 1 —but how is it then possible that they can
generalize (certainly as adults) this simple construction to more complex ones
like (6.3) and (6.4)? Ross answers this question with the variables in Rule 6.1.
We will come back to how our U-DOP approach solves this in Subsection 6.3.1.

The immediate next observation, however, is that although variables are
indispensable, they also cause problems: by Rule 6.1, we can also derive the
ungrammatical sentences (6.5 – 6.8) (again the string spanned by X is in italics).

(6.5) * who did you know a girl who is jealous of

(6.6) * what do you love chicken and

(6.7) * who was that you loved obvious

(6.8) * which did you read book

1Do-support and auxiliary inversion are not dealt with in Ross’ thesis. In the next section,
we will discuss the minimalist account of wh-questions, where these details are dealt with.

80



Now the question is, how do children know that they can generalize from what
they hear in (6.2) to (6.3) and (6.4), but not to (6.5 – 6.8)?

To this end, Ross proposes the island constraints: these constraints define
islands, within which certain rules are constrained to operate.

There is a specific class of rules which obey the constraints. Ross makes a
distinction between ‘copying’ and ‘chopping’ transformations. The former move
a constituent, but leave behind a ‘trace’ (not in the modern sense of the word,
but a pronominal form); the latter move a constituent, and leave nothing behind.
Now Ross stipulates that only the latter obey the island constraints. Moreover,
only chopping transformations where the chopped constituent is moved over a
variable obey the constraints.

In the next section, we will introduce the constraints, and look at their effect
on wh-questions. In the next chapter, we will look at other transformations
which should obey the constraints, and also at a transformation that doesn’t
obey the constraints. We will show that, whereas Ross’ island constraints only
apply to chopping transformations with movement over a variable, our U-DOP
approach is more general in that it can capture all kinds of constructions.

6.1.1 Complex NP Constraint

Ross’ first constraint is the Complex NP Constraint. Intuitively, this constraint
says: “elements of relative clauses cannot be questioned”. Formally, it is stated
as follows:

No element contained in a sentence dominated by a noun phrase
with a lexical head noun may be moved out of that noun phrase by
a transformation (Ross, 1967, p. 127)

An illustration can be found in Figure 6.1. This means that wh-phrases can

Figure 6.1: An illustration of the Complex NP Constraint

move out of VPs, as in (6.2 – 6.4), but they cannot move out of ‘complex’ NPs.
A complex NP consists of a lexical head (so not a pronominal form like ‘it’),
and a sentence (most likely, a relative clause). For example, (6.9) and (6.10)
are ungrammatical, because ‘who’ moved out of the complex NP ‘a girl who is
jealous of 〈who〉’.

(6.9) * who did you know a girl who is jealous of?
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(6.10) * who did she say you know a girl who is jealous of?

With this constraint, we have now ruled out the first of the ungrammatical
sentences in (6.5 – 6.8).

Although there are some counterexamples to this constraint in certain di-
alects, Ross “believe[s] the Complex NP Consraint to be universal” (Ross, 1967,
p. 138). So this constraint is assumed to be part of the language-specific com-
ponent of the brain that is present in all humans, and hence, to apply in all
languages. In Section 6.3, we will see that it is not necessary to assume such
a universal, innate constraint, and that this behavior of wh-questions can also
be explained on the basis of empirical input alone (together with some general
cognitive capabilities).

6.1.2 Coordinate Structure Constraint

The second type of wh-questions which should be constrained has to do with
coordination. Consider, for example, (6.11) and (6.12).

(6.11) * what do you love chicken and

(6.12) * what did Bella read a book and Edward sing

Intuitively, the constraint says: “a conjoined NP cannot be questioned”. For-
mally, Ross formulates this constraint as follows:

In a coordinate structure, no conjunct may be moved, nor may
any element contained in a conjunct be moved out of that conjunct
(Ross, 1967, p. 161)

An illustration can be found in Figure 6.2. So (6.11) is ungrammatical, because

Figure 6.2: An illustration of the Coordinate Structure Constraint

‘what’ is a conjunct in the coordinate structure ‘chicken and 〈what〉’ and hence
cannot be moved. Similarly, (6.12) is ungrammatical, because ‘what’ is an
element contained in the conjunct ‘Edward sings 〈what〉’, and according to the
constraint, it cannot be moved out of this conjunct.

Now the question how children know that sentences like (6.6) are ungram-
matical is answered: also the Coordinate Structure Constraint is considered
universal, and part of the language-specific component of the brain.
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6.1.3 Sentential Subject Constraint

The third constraint deals with the interesting difference in grammaticality be-
tween (6.13) and (6.14):

(6.13) who was it obvious that you loved?

(6.14) * who was that you loved obvious?

Formally, the constraint is formulated as follows:

No element dominated by an S may be moved out of that S if that
node S is dominated by an NP which itself is immediately dominated
by S (Ross, 1967, p. 243)

An illustration can be found in Figure 6.3.

Figure 6.3: An illustration of the Sentential Subject Constraint

This constraint applies to structures with a subject NP that itself consists
of a sentence (e.g. ‘that you loved Edward’ in ‘that you loved Edward is obvi-
ous’). According to the constraint, it is not allowed to move elements out of
that NP-sentence. However, when this NP is not the subject of the sentence
(e.g. ‘that you loved Edward’ in ‘it is obvious that you loved Edward’), it is
allowed to move elements out of that NP-sentence. So according to this con-
straint, (6.13) is grammatical, because ‘who’ was moved out of the NP-sentence
‘that you loved 〈who〉’ in ‘it was obvious that you loved 〈who〉’. However, (6.14)
is ungrammatical, because ‘who’ was moved out of the sentence ‘that you loved
〈who〉’ in ‘that you loved 〈who〉 is obvious’.

We included this constraint for completeness’ sake, but it is not really in-
teresting for investigation: sentences of this kind are rarely found in speech, let
alone in child-directed or -produced speech. We believe that these structures
are learned by schooling, rather than some automatic mechanism.

Interestingly, Ross himself does not consider this constraint to be universal,
but rather language-specific. It is claimed that each language has a ‘conditions-
box’; if a constraint is present in the conditions-box of a certain language, it
applies to all relevant rules of that language. So there are languages where the
Sentential Subject Constraint does not apply to wh-questions (e.g. Japanese),
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but then it also does not apply to other chopping transformations; in languages
where the Sentential Subject Constraint applies to one chopping transformation,
i.e. it is in the conditions-box, it also applies to all other chopping transforma-
tions.

6.1.4 Left Branch Condition

The final constraint Ross proposed to restrict the seemingly unbounded scope
of wh-questions is the Left Branch Condition:

No NP which is the leftmost constituent of a larger NP can be re-
ordered out of this NP by a transformational rule. (Ross, 1967,
p. 207)

An illustration can be found in Figure 6.4.

Figure 6.4: An illustration of the Left Branch Condition

This means intuitively that you can only move elements which were right of
the head of an NP, not elements left of the head. For example, (6.15) is gram-
matical, because the entire NP is moved; (6.16), however, is not, because ‘which’
is moved out of the NP ‘〈which〉 book’, where it was the leftmost constituent.

(6.15) which book did you read

(6.16) * which did you read book

Problematically, the condition only speaks of NPs. The difference in gram-
maticality between (6.17) and (6.18) can then only be explained by analyzing
‘how’ as deriving from an underlying NP, and stating that the adjective ‘sane’ is
dominated by an NP; otherwise, the Left Branch Condition cannot be enforced.

(6.17) how jealous is Jacob

(6.18) * how is Jacob jealous

Similar to the previous constraint, also the Left Branch Condition is not
assumed to be universal, but language-specific. Therefore, it may or may not
be present in the conditions-box for a specific language. If it is present, then it
applies to all ‘relevant’ rules, viz. all chopping transformations with movement
over a variable.
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6.1.5 Summary

In this section, we have seen how the foundations of the generative grammar
approach to wh-questions were laid. The seemingly unbounded scope was ex-
plained by using variables in transformational rules. To rule out ungrammatical
sentences which can then arise, certain constraints were imposed. These con-
straints do not only apply to wh-questions, but to all chopping transformations
with movement over a variable.

Two of these constraints are assumed to be universal: the Complex NP
Constraint and the Coordinate Structure Constraint. The other two constraints,
the Sentential Subject Constraint and the Left Branch Condition, are language-
specific, and may or may not be present in the conditions-box of a language; if
they are present, they apply to all relevant rules.

With respect to language acquisition, it is assumed that children have the
transformational rule Question (cf. (6.1)), and the two universal constraints
in the language-specific component of the brain. In this initial version of gen-
erative grammar, it is not yet stated how children acquire the (contents of the)
conditions-box: how do they know which language-specific rules apply to their
language? Later versions of generative grammar claim that this occurs via a
system of parameters, which may be set according to the input children receive.

This initial account still leaves many issues on wh-questions open; there-
fore, we will look in the next section at what the current framework in gen-
erative grammar, minimalism, has to say about wh-questions. In Section 6.3
we will then see how our U-DOP approach accounts for the facts concerning
wh-questions in an empirical way.

6.2 The minimalist account

The framework of Minimalist Grammar, as developed in Chapter 4, deals with
wh-questions in more detail. In this section, we will first discuss the basic
explanation for wh-questions. Next, we will focus on several problematic con-
structions and how they can be solved. Finally, we will discuss the minimalist
view on the island constraints of Ross, which were discussed above.

6.2.1 Basic explanation

Recall the basic structure we built in Section 5.1 for a simple yes/no-question,
e.g. ‘did Edward kiss Bella’. The [uclause-type]-feature on T is valued by the
[Q]-feature on C, and hence strong. Therefore, T must move into a sisterhood
relation with C.
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CP

C

T
[uclause-type:Q*]

C [Q]

TP

Edward T

〈T〉 vP

〈Edward〉 v

v

kiss v

VP

〈kiss〉 Bella

When we now look at a question which contains a wh-element (an element
which bears a [wh]-feature), we see that the wh-element occurs before the aux-
iliary, and hence must be in the specifier of CP. Therefore, it must move to that
place from somewhere lower in the structure where it is assigned its θ-role. For
example, in (6.19), the wh-element ‘who’ is assigned its θ-role by ‘kiss’, and by
the UTAH, it must then be a daughter of the VP. To obtain the surface struc-
ture, however, ‘who’ must be moved so that it is in the specifier of CP, before
the auxiliary. The structure then looks as follows:

(6.19) who did Edward kiss

CP

who C

C

T
[uclause-type:Q*]

C [Q]

TP

Edward T

〈T〉 vP

〈Edward〉 v

v

kiss v

VP

〈kiss〉 〈who〉
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Now the question arises what triggers this movement. This is established
by proposing an optional, strong [uwh*]-feature on C[Q].2 Since this feature is
uninterpretable, it must be checked. It can be checked by the wh-element lower
in the structure, but since it is a strong feature, this wh-element must move into
a local configuration with C. We can see this at work in the following structure.
Note that the [uwh*]-feature on C is projected to the bar-level projection.

CP

who [wh] C [uwh*]

C

T
[uclause-type:Q*]

C [Q]

TP

Edward T

〈T〉 vP

〈Edward〉 v

v

kiss v

VP

〈kiss〉 〈who〉

The optionality of the [uwh*]-feature on C[Q], however, leads to problems.
Sentences where the wh-element is not moved, like (6.20), can be given a gram-
matical structure: there is no uninterpretable, strong feature that forces the
wh-element to move, so it simply stays in place, and all uninterpretable features
can be checked.3

(6.20) * did Edward kiss who

2Note that we are now defining features on configurations, rather than on basic categories:
the features we introduced earlier either were or were not present on a syntactic category; the
[uwh*]-feature can only be present on C, when the [Q]-feature is also present.

3For an explanation of the appearance of do-support, see Section 5.1.
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CP

C

T
[uclause-type:Q*]

C [Q]

TP

Edward T

〈T〉 vP

〈Edward〉 v

v

kiss v

VP

〈kiss〉 who

A possible solution is to make the [uwh*]-feature on C[Q] obligatory, rather
than optional. In this case, the wh-element must move in order to check the
uninterpretable strong [uwh*]-feature, causing sentences like (6.20) to be un-
grammatical. However, now problems arise with yes/no-questions: they have
no wh-element to check the uninterpretable feature; hence, the Checking Re-
quirement (cf. Section 4.1.4) will not be met, and the derivation will eventually
crash. The minimalist solution to this problem is to propose a null operator,
Op, which bears a [wh]-feature. In this way, the [uwh*]-feature on C[Q] can be
checked by the [wh]-feature on Op. This null operator is Merged directly into
the specifier of the CP. Now the structure for ‘did Edward kiss Bella’ looks as
follows:

CP

Op [wh] C [uwh*]

C

T
[uclause-type:Q*]

C [Q]

TP

Edward T

〈T〉 vP

〈Edward〉 v

v

kiss v

VP

〈kiss〉 Bella
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This is the basic set-up for wh-questions in the minimalist framework. How-
ever, there are still several problems left to be dealt with. These will be consid-
ered in the next subsections.

6.2.2 Subject WH-questions

The first problem that we encounter are subject wh-questions. Naievely, we
might propose the following structure for sentences like (6.21). The subject is
assigned its θ-role by v; by the UTAH, it originally occurs as the daughter of
vP. Then, the [wh]-feature on the subject checks the [uwh*]-feature on C[Q],
causing it to move into a local configuration with C[Q].

(6.21) who has kissed Bella

CP

who [wh] C [uwh*]

C

T
[uclause-type:Q*]

C [Q]

TP

〈who〉 T

〈has〉 〈who〉 kissed Bella

Problematic with this approach, however, is that we still assume T to C
movement, triggered by the valuing of [uclause-type] on T with the [Q]-feature
of C, causing the [uclause-type]-feature to be strong, and hence forcing T to
move into a local configuration with C. But with sentences like (6.22), where
there is no auxiliary, such T to C movement shouldn’t occur. If it did occur,
the chain would be broken (T would no longer c-command v), and do-support
would arise (cf. Section 5.1), leading to the ungrammatical (6.23).

(6.22) who kissed Bella

(6.23) * who did kiss Bella

Note that the T to C movement, which is the root of the problem, arises
because the [uclause-type]-feature on T is valued by the [Q]-feature on C. There-
fore, the solution to the problem is to let the [uclause-type]-feature on T be
valued by something else, viz. the [wh]-feature of the wh-subject. In this way,
the uninterpretable feature can be checked, and it is not strong, so no movement
will arise. We see this at work in the following structure:
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CP

who [wh] C[uwh*]

C[Q] TP

〈who [wh]〉 T

T
[uclause-type: wh]

vP

〈who〉 v

v

kiss v

VP

〈kiss〉 Bella

In its original place, the wh-subject allows the checking and valuing of
[uclause-type] on T; because of this, T needn’t be checked by [Q] on C any-
more, and hence it doesn’t have to move. Next, the wh-subject moves to the
specifier of CP to be able to check [uwh*] on C. In this way, no uninterpretable
features are left unchecked, and the Checking Requirement is satisfied.

6.2.3 WH-questions in situ

The obligatory strong [uwh]-feature on C[Q] forces the wh-element to move.
However, this is not always desirable: in (6.24) and (6.25), we want the wh-
element in italics to stay in situ, i.e. in its original place.

(6.24) Edward kissed who

(6.25) who kissed what

Questions like (6.24) are called echo questions, questions like (6.25) multiple
wh-questions. Minimalist Grammar quickly dispenses with questions of the first
type, because they are not considered ‘real’ questions:

Echo-questions are usually used to express surprise or amazement,
or to simply request that a Part of a sentence should be repeated for
clarity. They are not questions in the usual sense of the word, and
don’t seem to involve the kind of semantics [of regular questions].
(Adger, 2003, p. 352)

Since these are not ‘real’ questions, it is assumed that the C-element does not
bear the [Q]-feature (which marks interrogative statements), and hence it cannot
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bear the [uwh-feature] (which only appears on configurations C[Q], cf. Footnote
2). However, in the data we are looking at, viz. child-directed speech, echo ques-
tions seem to be the preferred way of requesting information. An example from
the child-directed speech in the Adam-part of the Childes-corpus (Brown, 1973)
is in (6.26). In this example, it is clear that there is no surprise or amazement,
and that it is not a request that a part of a sentence be repeated: the mother
simply asks for information about ‘the little boy’s name’.

(6.26)

MOTHER: Rin-tin-tin is the doggie.
CHILD: no.
MOTHER: the little boy’s name is what?
CHILD: Rin-tin-tin.
MOTHER: no, that’s the doggie.
(Adam Corpus, file 9, lines 2213 – 2226)

Therefore, we believe that echo questions should be explained with the same
mechanism as ‘regular’ wh-questions. The minimalist framework is unable to
establish this; in Section 6.3, we will show how our U-DOP approach is able to
do this.

The explanation for multiple wh-questions is fairly straightforward. Build-
ing on the analysis of subject questions in the previous section, the following
structure for (6.25) is proposed.

CP

who [wh] C[uwh*]

C[Q] TP

〈who [wh]〉 T

T
[uclause-type: wh]

vP

〈who〉 v

v

kiss v

VP

〈kiss〉 what [wh]

The [wh]-feature on the wh-subject first checks and values the [uclause-type]-
feature on T, ensuring that no T to C movement (and hence no do-support) takes
place. Next, the wh-subject is moved to the specifier of CP where it can check
the [uwh*]-feature on C. The [wh]-feature of the direct object (‘what’) doesn’t
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check anything, but this is not necessary, since it is an interpretable feature. All
uninterpretable features are checked, so the derivation is correct.

6.2.4 Superiority

Problematic with the approach in the previous section to multiple wh-questions
is that it still has to explain how sentences like (6.27) can be ruled out: isn’t
it possible that the [wh]-feature on the direct object (rather than the subject)
checks the [uwh*]-feature on C, and hence moves to the specifier of CP, as in
the following structure?

(6.27) * what who kissed

CP

what [wh] C[uwh*]

C[Q] TP

who [wh] T

T
[uclause-type: wh]

vP

〈who〉 v

v

kiss v

VP

〈kiss〉 〈what〉

The answer lies in the principle of Locality of Matching (cf. Section 4.2.2): a
head checks the closest matching feature it c-commands. In (6.27), [uwh*] on C
cannot be checked by [wh] on ‘what’, because there is an intervening constituent
with the feature [wh], viz. ‘who’.

Following this line of thinking, it is easy to see that it will always have to
be the highest wh-phrase that moves; this is called the Superiority Effect. We
can also see this at work in, for example, (6.28) and (6.29): the direct object is
located higher than the prepositional phrase; hence, it is the direct object that
moves.

(6.28) who did Bella introduce to whom

(6.29) * who did Bella introduce who to
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However, this approach runs into problems with questions like (6.30) and
(6.31): in principle (6.30) should be grammatical, and (6.31) not, because the
subject is higher than the direct object, and hence it is the subject that should
move.

(6.30) which poet wrote which ode

(6.31) which ode did which poet write

In the minimalist framework, this is explained in pragmatic terms, by the D-
linking effect. However, we believe that sentences like (6.30) and (6.31) are not
fundamentally different from (6.28) and (6.29), and hence should be explained
by the same mechanism. In Section 6.3, we will show how our U-DOP approach
can establish this.

6.2.5 Embedded WH-questions

When wh-questions are embariseedded, we again run into problems with re-
spect to auxiliary inversion. Since the verbs that select wh-questions can also
select yes/no-questions (cf. (6.32) and (6.33)), they have a [uQ]-feature, which
is satisfied by the Q-feature on C.

(6.32) I wondered if Edward has kissed Bella

(6.33) I wondered who Edward has kissed

Now, similarly as with subject questions, the problem arises that the [Q]-
feature on C will value the [uclause-type]-feature on T, making it strong, and
hence causing T to move to C. But if T moves to C, the auxiliary occurs before
the subject, and we would expect the ungrammatical (6.34) and (6.35) to arise,
rather than (6.32) and (6.33).

(6.34) * I wondered if has Edward kissed Bella

(6.35) * I wondered who has Edward kissed

The rather ad-hoc solution to this problem is to state that if C is embedded,
then it values the [uclause-type]-feature of T as weak [Q], rather than strong
[Q]. So with respect to the [uclause-type]-feature on T, we have the following
possibilities:

1. [uclause-type: Decl]: in a declarative sentence, the feature is valued by
the [Decl]-feature on C, and it is weak, so no movement arises

2. [uclause-type: Q*]: in a ‘regular’ interrogative sentence, the feature is
valued by the [Q]-feature on C, and it is strong, causing movement from
T to C

3. [uclause-type: wh]: in subject questions, the feature is valued, not by a
feature on C, but by the [wh]-feature on the wh-subject; the feature is
weak, and doesn’t have to be checked by C, so no movement arises
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4. [uclause-type: Q]: in an embedded question, the feature is valued by the
[Q]-feature on C, and it is weak, so no movement arises

6.2.6 Long-distance WH-movement

In the next two subsections, we will see how the minimalist framework is a fur-
ther development of Ross’ initial observations. In this subsection, we will see how
long-distance wh-movement, which corresponds to Ross’ notion of unbounded
scope, discussed in the beginning of Section 6.1, is treated in the minimalist
framework. In the next section, we will look at how Ross’ island constraints fit
in the framework, and at how additional islands can be formulated.

The basic observation is that (except for some restrictions) wh-elements can
move to the front of the sentence from an unlimitedly deep position. We repeat
the examples given above:

(6.2) who did Bella kiss 〈who〉

(6.3) who did Jacob say that Bella kissed 〈who〉

(6.4) who did Sam order Jacob to say that Bella kissed 〈who〉

It is obvious that the wh-element is assigned its θ-role at its original po-
sition (indicated in angled brackets). We also see that the wh-element occurs
in front of the sentence in the surface structure. Now the question is: does
the movement from the original to the front position occur in one or multiple
steps? The minimalist answer is that the movement occurs in multiple steps:
“a wh-expression cannot skip a specifier of CP when it moves” (Adger, 2003,
p. 363). So a wh-element moves from one specifier of CP to the next. We see
this in the following structure for (6.3):

94



CP

who C

C

T C

TP

Jacob T

〈T〉 vP

〈Jacob〉 v

v

say v

VP

〈say〉 CP

〈who〉 C

that TP

Bella kissed 〈who〉

The wh-element ‘who’ is assigned its θ-role in the lowest TP, by the predicate
‘kiss’. Then the first step is movement to the specifier of the lowest CP. In the
second step, ‘who’ moves to the specifier of the top CP, satisfying its [uwh*]-
feature.

Now the question is: how do we ensure that movement takes place in this
way? We define the concept of phases (CPs, but also other constituents can be
phases) and formulate the Phase Impenetrability Constraint (PIC):

Phases constituents which have the property that only their specifier is acces-
sible for feature matching (Adger, 2003, p. 389)

Phase Impenetrability Constraint (PIC) feature matching reaches no fur-
ther than the specifier of an embedded phase (Adger, 2003, p. 386)

Moreover, we assume that an embedded C can optionally bear [uwh*]. Now
we can derive long distance wh-questions in a correct way. If we look at the
structure for (6.3) given above, we see that, because of the PIC, the wh-element
on the bottom of the structure is not allowed to check the [uwh*]-feature of the
top CP; hence, it cannot move there in one step. However, the wh-element is
allowed to check the optional [uwh*]-feature on the embedded CP, so it moves
to the specifier of the embedded CP. Once the wh-element is in the specifier of
the embedded CP, it is allowed to check the [uwh*]-feature of the top CP, and
it can move to its final place, the specifier of the top CP.
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A final problem arises. As the theory stands now, the sentence in (6.36) is
considered grammatical:

(6.36) * who seemed kissed Bella

After all, we can have the following derivation. We start with the TP ‘who
kissed Bella’. We make it into a CP by merging it with C[uwh*]. The [uwh*]-
feature on C can be checked by ‘who’, which then moves to the specifier of the
CP. We have the following intermediate structure:

CP

who[wh] C[uwh*]

C TP

〈who〉 kissed Bella

Now we can Merge ‘seem’, and make it into another TP. Then ‘who’ moves
again to satisfy the [uN*]-feature on T (i.e. to become the subject of the matrix
clause).4

TP

who[N] T[uN*]

T vP

v

seem v

VP

〈seem〉 CP

〈who[wh]〉 C[uwh*]

C TP

〈who〉 kissed Bella

Finally, we can make this TP into a CP by Merging a C. Then ‘who’ moves
to its final place, the specifier of the top CP, to check the [uwh*]-feature on C.

4A lot of irrelevant details, such as the discussion of the EPP-feature and the fact that
noun phrases are actually determiner phrases, are omitted, because they are not important
for the constructions discussed in this thesis.
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CP

who[wh] C[uwh*]

C TP

〈who[N]〉 T[uN*]

T vP

〈who〉 seemed kissed Bella

The (again, rather ad-hoc) solution to this problem is by imposing a restric-
tion on Improper Movement :

Improper Movement Restriction only wh-features are visible in the speci-
fier of CP (Adger, 2003, p. 388)

With this restriction, the movement in the second step of ‘who’ from the
specifier of the first CP to the specifier of the TP is not triggered: since ‘who’
is in the specifier of a CP, only its [wh]-feature is visible; its [N]-feature is not.
Hence, it cannot be used to check the [uN*]-feature on T, and it does not move
to the TP.

Without this step in the derivation, the ungrammatical (6.36) cannot be
derived, and the problem is solved.

6.2.7 Islands

In this final subsection, we will see how the minimalist framework deals with
Ross’ island constraints, and we will look at how additional islands can be
defined.

An island is defined as “a constituent which is impervious to wh-movement”
(Adger, 2003, p. 389). The island constraints as formulated by Ross can be
captured by the notion of ‘phase’ and the PIC.

The Complex NP Constraint (cf. Section 6.1.1) can be captured by treating
NPs as phases, like we did with CPs. Informally, the Complex NP Constraint
says that elements cannot move out of a ‘complex’ NP, viz. an NP which itself
dominates a sentence (e.g. a relative clause). If NPs are phases, then they have
to obey the PIC.

For example, consider (6.9), repeated below. Its ungrammaticality is ex-
plained by Ross’ Complex NP Constraint, because ‘who’ is moved out of the
complex NP ‘a girl who is jealous of 〈who〉’. In the minimalist framework, its
ungrammaticality is explained as follows. If we want to build a derivation of
this sentence, we first build the CP ‘whowh whorel is jealous of 〈whowh〉 ’. The
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wh-element moves to the specifier of the CP to check the [uwh*]-feature of the
CP.5

(6.9) * who did you know a girl who is jealous of?

CP

whowh[wh] C[uwh*]

C TP

whorel T

T vP

〈whorel〉 v

v

is v

AP

jealous of 〈whowh〉

Next, this CP merges with ‘a girl’ to form an NP, which is then merged with
‘know’ and the top CP is built.6

5Note that the subject ‘who’ is not a wh-element, but a relative pronoun. Hence it cannot
be used to satisfy the [uwh*]-feature of the CP. To distinguish between the ‘wh-who’ and the
‘relative who’, we label them with subscripts: whowh and whorel.

6Again we omit irrelevant details, like the precise structure of the NP ‘a girl who is jealous
of 〈who〉’.
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CP

C

T C[uwh*]

TP

you T

〈T〉 vP

〈you〉 v

v

know v

VP

〈know〉 NP

a girl whorel is jealous of 〈whowh〉

Now to make the derivation succesful, the uninterpretable [uwh*]-feature
on C must be checked. The only element that could check this is ‘whowh’.
However, because of the PIC, this is impossible: the NP is a phase, and feature
matching cannot reach further than the specifier of an embedded phase, i.e. the
[uwh*]-feature on C can only be checked by elements up to the specifier of the
NP.

Since we cannot build a derivation for (6.9), the sentence is ungrammatical.
In this way, Ross’ Complex NP Constraint is captured by the more recent min-
imalist framework. The other constraints developed by Ross (cf. Subsections
6.1.2 – 6.1.4) can be captured in a similar fashion.

Ross’ constraints already capture the fact that wh-elements cannot move out
of complex NPs, coordinate structures, sentential subjects and the left branch
of an NP. In the minimalist framework, we can explain a few additional islands,
i.e. other configurations that wh-elements cannot move out of.

For example, also wh-phrases themselves are islands:

It is impossible to move a wh-phrase out of a CP with another wh-
phrase in its specifier. (Adger, 2003, p. 389)

For example, (6.37) is ungrammatical, because ‘what’ has moved out of the CP
‘who saw 〈what〉’, which has ‘who’ in its specifier.

(6.37) * what did you ask who saw 〈what〉

The ungrammaticality of (6.37) is immediately explained by the PIC and the
fact that CPs are phases: the [uwh*]-feature on the highest CP cannot be
checked by the [wh]-feature on ‘what’, because ‘what’ is not in the specifier of
the embedded CP —hence, it is unaccessible for feature matching.
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6.2.8 Summary

In the last two sections, we have discussed some phenomena which the nativist
approach to language can explain: of all given sentences, the theory correctly
predicted whether they were grammatical or ungrammatical. However, we had
to extend the theory developed in Chapters 4 and 5 a bit: next to the principles
and technical apparatus discussed in Sections 4.3 and 5.1, we also needed the
following:

null operator Op[wh]
phases constituents of which only the specifier is

accessible for feature matching
CPs, NPs, . . .

Phase Impenetrability Constraint feature matching reaches no further than
the specifier of an embedded phase

Improper Movement Restriction only wh-features are visible in specifier
of CP

islands constituents out of which wh-elements
cannot move

In the next section, we will investigate whether the much simpler framework
of U-DOP, developed in Part I, can also account for these sentences, i.e. whether
it can also predict which ones are (un)grammatical.

6.3 The U-DOP account

In this section, we will investigate whether the U-DOP approach developed in
Part I can be used to adequately model the acquisition of wh-questions. For
most phenomena, the crucial question is: how do children know that sentence
A is grammatical, and sentence B is not? Or, in other words, how do children
know that they can produce sentence A, but cannot produce sentence B?

In general, the U-DOP answer to these questions is: there is no such thing as
absolute grammaticality, there is only relative grammaticality. Hence, the dis-
tinction between grammatical and ungrammatical sentences is irrelevant; rather,
we explain why children prefer some sentences over others. So where a nativist
approach to language acquisition tries to explain how children know that sen-
tence A is grammatical and sentence B is not, the empiricist approach developed
in this thesis tries to explain how it comes about that children prefer sentence
A over sentence B.

In this section, we will look at the phenomena discussed in the two previous
sections. Our methodology is the following (cf. Subsection 1.2.2). We look at the
child-directed speech from the Adam part of the Brown Corpus (Brown, 1973).
We assume that this is the input a child receives,7 so we train our parser on

7Note that this assumption makes the problems of language acquisition harder than they
are: in reality, a child receives much more input. Therefore, when we can explain phenomena
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these sentences.8 Eventually, we let our parser provide analyses for the sentences
under investigation, and we look at the relative scores: the sentence with the
best score is considered the more grammatical one.

Finally, we need to make a methodological remark. When we let our parser
analyze the sentences under investigation, we only look at the scores, we do
not look at the trees. We believe that it is not relevant whether the tree the
parser proposes is identical to the tree a linguist would propose; after all, we
cannot know which is the ‘correct’ tree, i.e. which is the tree constructed by the
child. Therefore, we only look at the score of a derivation: we can know which
sentence should have the best score, viz. the more grammatical one.

6.3.1 Unbounded scope

The first phenomenon we need to account for, is the seemingly unbounded
scope that wh-movement has: wh-questions can have infinitely deep levels of
embedding. The puzzle lies in the fact that children only hear constructions
of level 1, e.g. (6.38) —but how is it then possible that they can generalize
(certainly as adults) this simple construction to more complex ones of levels 2
and 3 (e.g. (6.39 – 6.40))?

(6.38) who did you steal from?

(6.39) who did he say you stole from?

(6.40) who did he want her to say you stole from?

In the previous sections, we saw the initial nativist answer developed by Ross
(1967): a transformational rule with variables; in the more recent framework
of minimalism, this is explained by a complex interplay between the Phase
Impenetrability Constraint and the Feature Checking Requirement.

With our U-DOP theory, the answer is very clear: children can build con-
structions like (6.39) and (6.40) by simply using fragments they heard before.
When we let our parser parse sentence (6.38), we get the following derivation:

(6.41)
X

who X

did X

◦ X

X from

◦ X

you steal

= X

who X

did X

X

you steal

from

already on the basis of this small input, we can be sure that they can also certainly be
explained in reality.

8Normally, we will use the parser from Section 3.1, looking at the 100-best shortest deriva-
tions, with the ranking as a second phase. Note that we train on the basis of part-of-speech
tags; in the examples we will use words for ease of exposition.
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Of course, this is not the shortest derivation; however, it is the best weigh-
off between counting the steps in the derivation, and taking the frequency into
account: this derivation consists of three highly frequent subtrees (ranking 1,153
+ 7 + 488 = 1,648), whereas the shortest derivation consists of only one subtree
(viz. the entire tree) with ranking 26,223.

Sentences (6.39) and (6.40) could not be parsed by the parser, because of
memory limitations. Therefore, we back off to the second pass of the two-pass
model (cf. Subsection 1.2.2). We find that sentence (6.39) also has the entire tree
as its shortest derivation (ranking 2,325,562), and sentence (6.40) can be parsed
with as few as 2 subtrees (ranking 1,585,992 and 75,747; totalling 1,661,739),
cf. (6.42).

(6.42)

X

who X

did X

he X

want X

her X

to X

◦ X

say X

you X

stole from

= X

who X

did X

he X

want X

her X

to X

say X

you X

stole from

Looking at the speech produced by Adam himself, it is interesting to see
that he has only produced (6.38), not (6.39) and (6.40) —so while he did not
produce these constructions, he could have, if he were prompted to do so (under
the assumption that children can perform analogical operations).

In this subsection, we have shown how the unbounded scope of wh-questions
can be explained in the U-DOP approach, viz. by the combination of fragments
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heard earlier. In the next subsections, we will explain how ungrammatical in-
stantiations of wh-constructions can be prevented, without resorting to innate
constraints.

6.3.2 Complex NP Constraint

The first problem has to do with ‘complex’ NPs. We observe a difference in
grammaticality between (6.39 – 6.40) and (6.43 – 6.44):

(6.43) * who did you know a girl who is jealous of?

(6.44) * who did she say you know a girl who is jealous of?

Now the question is, how do children know that they can generalize from what
they hear in (6.38) to (6.39) and (6.40), but not to (6.43) and (6.44)? To answer
this question, we look at relative grammaticality: we compare sentences with
the same level of embedding, i.e. (6.39) and (6.43), both of level 2, and (6.40)
and (6.44), of level 3.

Similar to (6.39) and (6.40), (6.43) and (6.44) cannot be parsed by the
parser, due to memory issues. Therefore, we again backed off to the second pass
of the two-pass model. We found that (6.43), unlike (6.39) can only be derived
with minimally three subtrees (cf. (6.45)), although its ranking score is better
(590,659 + 1,153 + 26,010 = 617,822). On the other hand, (6.40) and (6.44)
can both be derived with two subtrees (cf. (6.46)), but in this case, the ranking
score of (6.44) is worse (2,325,562 + 1,264,000 + 26,010 = 3,615,572).

(6.45)

X

who X

did X

you X

know X

X

a girl

X

◦ X

who X

is X

◦ X

jealous of
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= X

who X

did X

you X

know X

X

a girl

X

who X

is X

jealous of

(6.46)

X

who X

did X

she X

say X

you X

know X

◦ X

X

a girl

X

who X

is X

◦ X

jealous of
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= X

who X

did X

she X

say X

you X

know X

X

a girl

X

who X

is X

jealous of

Now we can see that at each level the construction with movement out of VPs
is relatively speaking more grammatical than the construction with movement
out of NPs. So the Complex NP Constraint emerges naturally from the data:
based on the input they receive, children can figure out that constructions as
in (6.39) and (6.40) are more grammatical than those in (6.43) and (6.44). The
nativist argument that the Complex NP Constraint must be innate, because
otherwise children wouldn’t be able to tell the difference between generalizing
to (6.39) – (6.40) and to (6.43) – (6.44), is now of course directly rebuked: they
can know the difference according to the U-DOP approach.

A small remark is in order, though. It is remarkable that according to
one disambiguation criterion (ranking) (6.40) is indeed preferable over (6.44),
but according to another (shortest derivation), we cannot tell the difference
in grammaticality. Moreover, according to one criterion (shortest derivation)
(6.39) is preferable over (6.43), but according to another (ranking) (6.43) is
preferable over (6.39)! We believe this is due to the delicate interplay between
desiring on the one hand maximal structural overlap, i.e. the shortest derivation,
and on the other hand, the most frequent subtrees, i.e. the lowest ranking score.
It is clear that both frequency and derivation length play a role in parsing, but
the details of this interplay still need to be further investigated. In any case,
it cannot be claimed that there is no non-innate way of telling the difference
between (6.39 – 6.40) and (6.43 – 6.44): both can be explained, albeit not yet
in a uniform way.

Finally, it is noteworthy that neither (6.43) nor (6.44) are produced by
Adam. We could make the same argument here as in Subsection 6.3.1 —that
he could produce them if he wanted to—, but the parsing results suggest that
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if he wanted to express the meaning of (6.43) or (6.44), he would have chosen a
‘more grammatical’ sentence (with a shorter derivation / better ranking score).

6.3.3 Coordinate Structure Constraint

The second problem involves coordination. There is a difference in grammati-
cality between (6.47) and (6.48).

(6.47) you love chicken and what?

(6.48) * what do you love chicken and?

Now the question is: how do children know that (6.48) is ungrammatical?
Unfortunately, we cannot develop the same line of reasoning here as above.
When we let our parser parse these sentences we get the following results:

(6.49)
X

you X

X what

◦ X

love X

chicken and

= X

you X

X

love X

chicken and

what

(ranking: 10,595 + 169,145 = 179,740)

(6.50)
X

what X

do X

you X

love X

◦ X

chicken and
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= X

what X

do X

you X

love X

chicken and

(ranking: 5,347 + 9,392 = 14,739)

We see that both derivations are equally short, and that the ranking score
of the ungrammatical sentence is even better than that of the grammatical
sentence. So within the current framework, we cannot explain how children
know that (6.47) is more grammatical than (6.48). However, this does not
mean that it is impossible to explain this in an empirical (non-nativist) way.

We think that the reason that the ungrammatical sentence scores so well, is
the fact that the subtree (X noun coordinating-conjunction) has an unusually
low ranking score. This comes about because the parser takes into account all
subtrees that can be extracted from the training corpus, also the ‘flawed’ ones.
So every time the parser encounters a sentence containing the sequence “noun
coordinating-conjunction” (e.g. in the perfectly grammatical sentence ‘Bella
loves werewolves and vampires’), the subtree (X noun coordinating-conjunction)
is extracted, even though this subtree doesn’t occur in the ‘correct’ parse of
the sentence.9 This inclusion of ‘faulty’ subtrees is countered effectively by a
supervised DOP-parser, since such a parser only looks at the ‘correct’ trees.
Such a parser would then give a much worse score to (6.48), because either
it couldn’t use (X noun coordinating-conjunction) as a fragment (if it didn’t
occur), or because (X noun coordinating-conjunction) would have a much worse
(i.e. higher) ranking score (because it certainly wouldn’t occur very frequently).

However, using a supervised parser would not solve the problem of language
acquisition. The question remains: how do children acquire the training corpus
of (correctly) parsed trees in the first place? For this problem, we can take
the approach developed in Section 3.4. In this approach, an initial corpus (the
Extraction Corpus) is trained on in the usual, unsupervised, way. The unsuper-
vised parser resulting from this is used to parse a second corpus (the Held-out
Corpus). The result is then a corpus with syntactically annotated trees that
can be used as the input for a supervised parser. In this way, we can simulate
supervised parsing in an unsupervised way: we still assume no richer input than
a raw corpus of part-of-speech tags.

Now the expectation is that subtrees like (X noun coordinating-conjunction)
won’t occur very often in the parsed HC. Therefore, the (supervised) parser
trained on the HC will give a much worse score to (6.48), because either it
couldn’t use (X noun coordinating-conjunction) as a fragment (if it wasn’t used

9See Subsection 3.4 for a discussion on the ‘correctness’ of this analysis.
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in the derivations), or because (X noun coordinating-conjunction) would have
a lower frequency and hence a much worse ranking score. Unfortunately, ap-
plying this methodology to the child-directed speech of the Adam corpus would
require parsing half of the corpus (around 11,000 sentences), which the parsers
developed in this thesis cannot yet do in a feasible amount of time.

6.3.4 Sentential Subject Constraint

The third constraint applies to constructions with a sentential subject, such as
(6.51) and (6.52).

(6.51) who was it obvious that you loved?

(6.52) * who was that you loved obvious?

As noted above, we include them in this overview for completeness’ sake, but we
do not believe that they are relevant to language acquisition: sentences of this
kind are rarely found in speech, let alone in child-directed or -produced speech.
We believe that these structures are learned by schooling, rather than by some
automatic mechanism.

6.3.5 Left Branch Condition

The Left Branch Condition has to do with the difference in grammaticality
between (6.53) and (6.54):

(6.53) which book did you read?

(6.54) * which did you read book?

When we let our parser parse these two sentences, we get the following deriva-
tions:

(6.55)

X

X

X you

read

◦ X

which X

◦ X

book did

= X

X

X

which X

book did

you

read

(ranking: 608 + 743 + 8,708 = 10,059)
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(6.56)

X

X

which did

X

◦ X

you X

read book

= X

X

which did

X

you X

read book

(ranking: 12,809 + 1 = 12,810)

So when looking at the 100-best derivations, we get a derivation of three
elements for (6.53), while one of two elements for (6.54). At first sight, one
might think that this means that the parser (incorrectly) prefers (6.54) over
(6.53). However, this version of the parser also takes the ranking into account,
and then (6.53) is preferred over (6.54). Moreover, when looking at the shortest
derivation only, we find that (6.53) can be parsed in just one step (the entire
tree), whereas (6.54) would always need at least two steps. So also with re-
spect to the shortest derivation-criterion (6.53) is to be preferred over (6.54).
Hence, it is certainly possible in this case to explain how children can infer
that (6.53) is more grammatical than (6.54), without resorting to claims about
innate constraints.

Recall that the Left Branch Condition was also invoked to explain the differ-
ence in grammaticality between (6.57) and (6.58). However, for this explanation
to work the implausible assumption had to be made that ‘how jealous’ is an NP.
We would like for the U-DOP account to explain the difference, without making
such an assumption.

(6.57) how jealous is Jacob

(6.58) * how is Jacob jealous

Problematically, however, the parser trained on the Adam-part of the Childes
corpus cannot do this. It finds for both sentences a shortest derivation of one
tree, because both occur literally in the corpus. Hence, the ranking must be
used to decide between both derivations. It turns out that the ranking of (6.57)
is much higher (2,325,562) than that of (6.58) (693,021); therefore, the parser
would incorrectly prefer (6.58) over (6.57).

A quick inspection of the data reveals why the parser would make such a
wrong decision. The reason is that there is only one sentence like (6.57) in the
corpus (‘how old are you’), and there are five sentences like (6.58); therefore the
ranking of (6.58) is better. Of course, it still seems strange that there are five
sentences like (6.58), until one sees the examples:

(6.59) why is it dangerous

(6.60) why is it naughty

(6.61) why is it nighttime
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(6.62) why is it dark

From this inspection of the data it is clear that the parser only goes wrong
because it cannot tell the difference between ‘how’ and ‘why’, since it only looks
at part-of-speech tags. However, a more advanced version of the parser, which
could look at words rather than part-of-speech tags, would be able to succesfully
recognize the difference, and hence prefer (6.57) over (6.58). So there is a way
children could learn that from the input; only, we would need a more advanced
parser (or a more refined part-of-speech annotation) to actually implement this.

6.3.6 Subject WH-questions

In the next subsections, we turn to issues with wh-questions that are not consid-
ered by Ross, but which are explained in the minimalist framework, cf. Section
6.2. We will now explain these phenomena in an empirical way.

The first issue arises with subject wh-questions: we have to explain how
children know that (6.63) is the grammatical way of asking such a question, and
(6.64 – 6.66) are not.

(6.63) who kissed Bella

(6.64) * kissed who Bella

(6.65) * did who kiss Bella

(6.66) * who did kiss Bella

When we let our parser (100-best derivations, with ranking as a second phase)
parse these sentences, we get the following derivations:

(6.67)
X

who X

◦ X

kissed Bella

= X

who X

kissed Bella

(ranking: 22 + 6,694 = 6,716)

(6.68)
X

X Bella

◦ X

kissed who

= X

X

kissed who

Bella

(ranking: 24 + 6,978 = 7,002)
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(6.69)
X

did X

X Bella

◦ X

who kiss

= X

did X

X

who kiss

Bella

(ranking: 4,230 + 8,527 = 12,757)

(6.70)
X

X

X kiss

Bella

◦ X

who did

= X

X

X

who did

kiss

Bella

(ranking: 4,636 + 2,563 = 7,199)

We see that, although all alternatives have equally short derivations, the
parser will prefer the correct alternative, (6.63), because it has the best (=
lowest) ranking score. So if we consider the U-DOP parser to be a model
of language acquisition, we can explain how children will utter (6.63) when
formulating a subject wh-question, and not (6.64 – 6.66): the former is preferred
over the latter.

So we see that also the phenomenon of subject wh-questions can be explained
without resorting to the complex, supposedly innate machinery of minimalism;
in this subsection we have shown that it is at least possible to predict the
(most) grammatical alternative, solely based on the input children receive and
the simple U-DOP framework.

6.3.7 WH-questions in situ

Recall from Subsection 6.2.3 that there are two types of wh-questions in situ:
echo-questions, such as (6.71), and multiple wh-questions, such as (6.72). The
former are not really explained in the minimalist framework: they are not con-
sidered ‘real questions’; the latter are explained via the regular processes of
feature valuing and checking.

(6.71) Edward kissed who

(6.72) who kissed what

In the U-DOP framework, these constructions are fairly easily generated. We
let our parser parse them, and get the following derivations:
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(6.73)
X

Edward X

◦ X

kissed who

= X

Edward X

kissed who

(ranking: 21 + 6,978 = 6,999)

(6.74)
X

who X

◦ X

kissed what

= X

who X

kissed what

(ranking: 22 + 6,978 = 7,000)

For example, an alternative for (6.71) such as (6.75) is considered less gram-
matical: its derivation has a much worse ranking score.

(6.75) * did Edward kiss who

(6.76)

X

X

did X

who

◦ X

Edward kiss

= X

X

did X

Edward kiss

who

(ranking: 11,282 + 10,109 = 21,391)

So the U-DOP framework provides a very simple explanation of wh-questions
in situ, without considering them something special, or developing special tech-
nical tricks: children can simply generate these type of questions using fragments
they heard before.

6.3.8 Superiority

In Subsection 6.2.4, we observed that a superiority effect takes place with multi-
ple wh-questions: the ‘superior’ wh-phrase is the one that gets moved. However,
in certain cases this effect does not occur. Therefore, the minimalist account
had to take refuge in a combination of syntax and pragmatics to deal with all
cases of superiority. In this subsection, we will show how the U-DOP account
can deal with all cases in a uniform matter.

In the first place, we need to explain why multiple wh-questions are formed
like (6.72) from the previous subsection, and not like (6.77). The derivation by
our parser of (6.72) can be found above in (6.74); the derivation of (6.77) is
in (6.78). We clearly see that, although both derivations are equally long, the
parser will prefer (6.74), because its ranking score is better.
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(6.77) * what who kissed

(6.78)
X

what X

◦ X

who kissed

= X

what X

who kissed

(ranking: 22 + 8,527 = 8,549)

Second, we see that the superiority effect also plays with other types of
constituents. For example, (6.79) is grammatical, but (6.80) is not, because
in the original structure ‘Edward kissed 〈who〉 〈when〉’, ‘who’ is the superior
wh-phrase, and hence needs to move (according to the minimalist framework).

(6.79) who did Edward kiss when

(6.80) * when did Edward kiss who

Our parser could not parse these sentences because of memory issues. There-
fore, we backed off to the second pass of the two-pass model and checked manu-
ally what the shortest derivations are (cf. Subsection 1.2.2). The derivation for
(6.79) is in (6.81), that for (6.80) in (6.82).

(6.81)

X

who X

did X

Edward X

◦ X

kiss when

= X

who X

did X

Edward X

kiss when

(ranking: 247,312 + 21,404 = 268,716)

(6.82)

X

when X

did X

Edward X

◦ X

kiss who

= X

when X

did X

Edward X

kiss who

(ranking: 287,863 + 6,978 = 294,841)

Again the U-DOP theory makes the correct predictions: (6.79) is preferable,
because its derivation has a lower ranking score.
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Finally, we need to account for cases where the superiority effect does not
play. For example, both (6.83) and (6.84) are grammatical. The minimalist
framework cannot in itself explain this; it needs to resort to pragmatics.

(6.83) which poet wrote which ode

(6.84) which ode did which poet write

In U-DOP, such issues do not arise. As we discussed in the end of Section 2.3,
U-DOP generates all sentences. So in principle, all sentences are grammatical.
This does not mean that all sentences are equally likely to be uttered: U-DOP
imposes a distribution on the set of all sentences: some sentences are more
grammatical, i.e. more likely to be uttered, than others.

The fact that both (6.83) and (6.84) can be generated is therefore trivially
explained: since all sentences can be generated, also these sentences can be gen-
erated. (The U-DOP approach has no problem to explain why some sentences
can be generated; it has more difficulty to explain why some sentences cannot
be generated, cf. Footnote 4 of Chapter 7.) When we let our parser parse both
sentences, we get the derivations in (6.85) and (6.86).

(6.85)
X

X X

which ode

◦ X

which X

◦ X

poet wrote

= X

X

which X

poet wrote

X

which ode

(ranking: 29,081 + 743 + 9,060 = 38,884)

(6.86)
X

X

which X

X

◦ X

ode did

◦ X

which X

◦ X

poet write

= X

X

which X

ode did

X

which X

poet write

(ranking: 8,274 + 8,708 + 743 + 9,060 = 26,785)
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We see that (6.85) is preferred over (6.86) when taking the shortest derivation
as the criterion, but (6.86) is preferred over (6.85) when taking the ranking into
account. In any case, we see a different pattern here from the examples with
superiority above. Hence, we have eluded the superiority effect for these special
cases, without having to do anything special: we can account for both the cases
with superiority (6.77 – 6.80) and those without (6.83 – 6.84) in a uniform way.

6.3.9 Embedded WH-questions

Another problem which the minimalist framework can only solve with an ad-hoc
solution, has to do with embedded questions. With embedded questions, aux-
iliary fronting mustn’t occur. Hence, (6.87) should be considered grammatical
and (6.88) not.

(6.87) I wonder who you had kissed

(6.88) * I wonder who had you kissed

In the U-DOP framework, this can be explained fairly straightforward. We
could not let the parser parse the sentences, due to memory issues, so we did
a manual check of possible derivations. Both sentences can be derived in one
step, cf. (6.89) and (6.90), so the shortest derivation criterion cannot be used
for disambiguation. However, when we look at the ranking scores, we see that
the U-DOP approach correctly prefers (6.89).10

(6.89)
X

I X

wonder X

who X

you X

had kissed

(ranking: 1,585,992)

10It might seem surprising that trees like (6.90) are found at all in the corpus; however, this
is explained when we look at the actual sentences from which this tree is derived: ‘what do
you mean what do I want’ and ‘let’s see what shall we make’. These are not ‘real’ embedded
sentences, with indirect speech, but the first sentence uses reported speech, and the second
sentence merely puts two questions next to each other. When we use punctuation, this is
immediately clear: ‘what do you mean: “what do I want”’ and ‘let’s see, what shall we make’.
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(6.90)
X

I X

wonder X

who X

had X

you kissed

(ranking: 2,325,562)

So we see that the U-DOP framework can also account for this construction
in a simple and straightforward way, in contrast with the minimalist framework,
which needs technical tricks to accomplish this.

6.3.10 WH-islands

Finally, we saw that the minimalist framework was also capable of dealing with
‘other islands’, i.e. other constituents that wh-phrases cannot move out of. An
example of such an island are wh-islands: wh-phrases cannot move out of wh-
phrases. We see this in (6.91) and (6.92): the former is grammatical, but the
latter is not, because ‘what’ has moved out of the wh-phrase ‘who saw 〈what〉’.

(6.91) you asked who saw what

(6.92) * what did you ask who saw

The U-DOP framework can also account for these sentences easily. We let
our parser parse both sentences, and we find the derivations in (6.93) and (6.94).

(6.93)

X

you X

asked X

who X

◦ X

saw what

= X

you X

asked X

who X

saw what

(ranking: 14,231 + 6,978 = 21,209)

116



(6.94)

X

what X

X saw

◦ X

did X

you X

ask who

= X

what X

X

did X

you X

ask who

saw

(ranking: 2,892 + 35,439 = 38,331)

Both alternatives have a shortest derivation of two steps, but we can use the
ranking as a disambiguation criterion: (6.93) has a lower ranking than (6.94)
and is hence preferable. Hence, U-DOP makes the correct prediction that (6.91)
is the more grammatical sentence.

So the additional islands that the minimalist framework proposes can also
be explained by U-DOP in a very straightforward way.

6.4 Conclusion

In this chapter we have studied the phenomenon of wh-questions in depth. First,
we looked at the basis for every nativist account of wh-questions, viz. the PhD
thesis of Ross (1967). This account already captured basic facts concerning the
construction, but still left open many details. Next, we discussed the account
of wh-questions in a more recent nativist framework, viz. minimalism, building
further on the theory described in Chapter 4. Finally, we showed that each of the
problems that occurred in the discussion of the two nativist frameworks could
be accounted for by the usage-based U-DOP theory developed in Part I. We
did not constrain ourselves to only showing that the theory could in principle
explain the phenomena, but we conducted actual computational experiments,
using the implementations from Chapter 3. With this methodology, we could
model the acquisition of wh-questions on the basis of (a small portion of) the
real-life data that a child receives —this makes the U-DOP approach all the
more plausible.

Interestingly, the main difference between the nativist and the U-DOP ac-
count of wh-questions is the role of the input. In the nativist account, the
construction is mostly explained by involved theoretical machinery; in the U-
DOP account, however, the machinery is fairly limited, and the input plays a
large role.

Note that we do not claim to have given the correct way of modeling the
acquisition of wh-questions. Rather, we hope to have proven false the nativist
argument that these constructions cannot be explained on the basis of input
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alone, by showing that it is at least possible to explain these constructions with
(a version of) the usage-based U-DOP theory.
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Chapter 7

Related phenomena

Recall from Section 6.1 that Ross claimed that the constraints he proposed to
account for wh-questions are fairly general and apply to a well-defined class of
other rules as well. In this section, we will show that our U-DOP account of
Part I is at least equally general, by showing that it also can account for these
other phenomena. Moreover, we will show that the U-DOP account is even
more general, by applying it to a phenomenon that is no element of the class of
rules obeying the constraints, viz. left dislocation.

Since the examples for the phenomena in this chapter are fairly intricate, we
will find that more often than not the implementation of the parser is not able to
analyze the sentences due to memory issues. However, we believe this reflects the
way children would respond to such sentences: also they would have difficulty
with processing them. Therefore, also with respect to processing difficulties, the
U-DOP approach is more adequate at modeling language acquisition than the
nativist account.

7.1 Relative clause formation

The phenomenon that is most closely related to wh-questions is relative clause
formation. It, too, is accounted for by a transformational rule:

(7.1) Relative Clause Formation
W – [NP NP – [S X – NP – Y ]S ]NP – Z
1 2 3 4 5 6 OBLIG=⇒

1 2 4 + 3 0 5 6
Condition: 2 = 4

For example, the sentence ‘I saw that the boy that kissed Bella was jealous’
is derived as follows:
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I saw that – [NP the boy – [S that – the boy – kissed Bella ]S ]NP – was jealous

1 2 3 4 5 6
OBLIG

=⇒

1 2 4 + 3 0 5 6
Condition: 2 = 4

Complex NP Constraint. The first constraint this rule has to obey is the
Complex NP Constraint (cf. Subsection 6.1.1). This means that (7.2) should be
grammatical, but (7.3) not. In (7.2), the moved phrase ‘the vampire’ is moved
out of the non-complex NP ‘a book about 〈the vampire〉’; in (7.3), however,
‘the vampire’ is moved out of the complex NP ‘a book which was about 〈the
vampire〉’, which is not allowed.

(7.2) the vampire who I read a book about is dangerous

(7.3) * the vampire who I read a book which was about is dangerous

Given the complexity of these sentences, it is not surprising that we ran into
memory issues when we tried to let our parser parse them. This is also plausible
from a language acquisition modeling point of view: it is unlikely that children
are confronted with such sentences, let alone utter them theirselves.

Therefore, we backed off to the second pass of the two-pass model, following
the methodology outlined in Subsection 1.2.2. We find the following derivations:

(7.4)

X

X

the X

vampire X

X

is dangerous

◦ X

who X

I X

read X

◦ X

a X

book about
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= X

X

the X

vampire X

who X

I X

read X

a X

book about

X

is dangerous

(ranking: 1,585,992 + 123,195 + 5,719 = 1,714,906)

(7.5)
X

X

the X

vampire X

X

is dangerous

◦ X

who X

I X

read X

◦

X

a X

book X

which X

◦ X

was about
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= X

X

the X

vampire X

who X

I X

read X

a X

book X

which X

was about

X

is dangerous

(ranking: 1,585,992 + 123,195 + 184,665 + 12,745 = 1,906,597)

We see that the derivation for (7.3) consists of four steps, whereas the deriva-
tion for (7.2) consists of only three steps. Hence, the U-DOP approach correctly
prefers the latter.1

Coordinate Structure Constraint. The second constraint that has to
be obeyed is the Coordinate Structure Constraint (cf. Subsection 6.1.2). This
means that (7.6) should be grammatical and (7.7) not.

(7.6) Bella loves vampires and werewolves who are unstable

(7.7) * werewolves who Bella loves vampires and are unstable

Again it was not feasible to let our parser parse these sentences; therefore,
we backed off to the second pass of the two-pass model and found the following:

1Of course, the ranking score of (7.4) is also better than that of (7.5). However, in this
second pass of the two-pass model, we first look at the length of the derivations; the ranking
is only used to break ties.
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(7.8)

X

Bella X

loves X

vampires X

◦ X

and X

werewolves X

◦ X

who X

are unstable

= X

Bella X

loves X

vampires X

and X

werewolves X

who X

are unstable

(ranking: 1,264,000 + 209,755 + 132,727 = 1,606,482)

(7.9)

X

X

werewolves X

X

are unstable

◦ X

who X

Bella X

◦ X

loves X

vampires and
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= X

X

werewolves X

who X

Bella X

loves X

vampires and

X

are unstable

(ranking: 515,341 + 2,325,562 + 169,145 = 3,010,048)

Although both derivations are equally short, we see that the ranking criterion
makes the right decision: (7.8) has a lower ranking score and is hence preferred
over (7.9).

Sentential Subject Constraint. Third, the Sentential Subject Constraint
must apply (cf. Subsection 6.1.3). Therefore, (7.10) must be predicted to be
more grammatical than (7.11).

(7.10) Edward who it is obvious that you love is dangerous

(7.11) * Edward who that you love is obvious is dangerous

Not surprisingly, the parser could not parse these sentences either. Again
this is actually cognitively plausible: even adults have to think about (7.10)
before they grasp its meaning. We backed off to the second pass of the two-pass
model and found the following:

(7.12)

X

X X

is dangerous

◦ X

Edward X

who X

◦ X

it X

is X

obvious X

that X

you love

124



= X

X

Edward X

who X

it X

is X

obvious X

that X

you love

X

is dangerous

(ranking: 175 + 23,274 + 2,325,562 = 2,349,011)

(7.13)

X

X

Edward X

who X

X

◦ X

that X

you X

love X

◦ X

is obvious

◦ X

is dangerous

= X

X

Edward X

who X

that X

you X

love X

is obvious

X

is dangerous

(ranking: 23,274 + 6,444 + 4,085 + 4,085 = 37,888)
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We see that the derivation in (7.12) has three steps, whereas the derivation
in (7.13) needs four steps. Hence, the U-DOP approach correctly predicts that
(7.10) is more grammatical than (7.11).2

Left Branch Condition. The final constraint the rule has to obey is the
Left Branch Condition. According to this condition, (7.14) should be grammat-
ical and (7.15) not.

(7.14) Stephenie whose book you read is happy

(7.15) * Stephenie whose you read book is happy

Again, we could not let our parser parse these sentences, so we backed off
to the second pass of the two-pass model. We find that both (7.14) and (7.15)
have a shortest derivation of three steps (cf. (7.16) and (7.17)). However, there
is a clear difference in ranking score: the score of (7.16) is much better than the
score of (7.17). Hence, our parser correctly predicts that (7.14) will be preferred
over (7.15).

(7.16)
X

X

Stephenie X

X X

you read

X

◦ X

whose book

◦ X

is happy

= X

X

Stephenie X

X

whose book

X

you read

X

is happy

(ranking: 34,424 + 49,493 + 4,085 = 88,002)

(7.17)
X

X

Stephenie X

X

is happy

◦ X

whose X

◦ X

you X

read book

2Of course, the ranking score of (7.13) is better than that of (7.12); however, in this second
pass of the two-pass model, the ranking is only used to break ties.
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= X

X

Stephenie X

whose X

you X

read book

X

is happy

(ranking: 590,659 + 743 + 14,574 = 605,976)

In this section we have shown that the U-DOP approach that we succesfully
applied to wh-questions can also be extended to account for other, similar struc-
tures such as relative clauses. In the next sections, we will look at structures
which are gradually more dissimilar from wh-questions, and show that U-DOP
can still account for them. In this way, we hope to show the generality of the
U-DOP approach.

7.2 Extraposition from NP

In Section 6.1, we explained which rules are subject to the island constraints
according to Ross: so-called ‘chopping’ transformations where the chopped con-
stituent is moved over a variable. Now when we look at the rule for Extraposi-
tion from NP in (7.18), we see that, formally speaking, this rule must obey the
constraints: constituent S (= 2) is chopped and moved over variable Y (= 3).

(7.18) Extraposition from NP
X [NP NP︸ ︷︷ ︸ – S ]NP – Y

1 2 3 OBLIG=⇒

1 0 3+2

For example, the sentence ‘the book was Stephenie’s which I read’ is derived
from ‘the book which I read was Stephenie’s as follows:

(7.19) Extraposition from NP
∅ [NP the book︸ ︷︷ ︸ – which I read ]NP – was Stephenie’s

1 2 3 OBLIG=⇒

1 0 3+2

So the rule has to obey the constraints. However, according to Ross, this
does not explain the difference in grammaticality between (7.20) and (7.21).
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(7.20) that Jacob picked Bella up who loves Edward is possible

(7.21) * that Jacob picked Bella up is possible who loves Edward

The Complex NP Constraint cannot explain this, because it applies to elements
of a sentence dominated by an NP, and here the moved constituent ‘who loves
Edward’ is a sentence dominated by an NP. Therefore, a new concept is intro-
duced: ‘upward boundedness’.

Upward bounded a rule [is] upward bounded if elements moved by that rule
cannot be moved over [the boundaries of the first sentence above the ele-
ments being operated on] (Ross, 1967, p. 298)

The rule Extraposition from NP is then claimed to be upward bounded,
and this explains the difference between (7.20) and (7.21). After all, ‘who loves
Edward’ cannot be moved over the boundaries of “the first sentence above the
elements being operated on”, i.e. the ‘that’-clause. In (7.20), the constituent is
merely moved within these boundaries, which is allowed; in (7.21), however, it
is moved over the boundaries, which leads to an ungrammatical sentence.

So to explain the phenomenon of Extraposition from NP, Ross needs addi-
tional machinery. We will now show that this is not necessary in the U-DOP
account.

As expected, our parser could not parse these sentences due to memory
issues. Therefore, we checked the possible derivations manually, and we found
the following:

(7.22)

X

X X

is possible

◦ X

that X

Jacob X

picked X

◦ X

Bella X

up X

◦ X

who X

loves Edward
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= X

X

that X

Jacob X

picked X

Bella X

up X

who X

loves Edward

X

is possible

(ranking: 175 + 465,494 + 149,372 + 465,494 = 1,080,535)

(7.23)
X

X X

X

is possible

X

◦ X

that X

Jacob X

picked X

◦ X

Bella up

◦ X

who X

loves Edward

= X

X

that X

Jacob X

picked X

Bella up

X

X

is possible

X

who X

loves Edward

(ranking: 3,257 + 465,494 + 176,910 + 465,494 = 1,111,155)

Both derivations consist of four elements, so the ranking needs to break the
tie. We see that the ranking of (7.22) is lower than that of (7.23), so the U-DOP
approach correctly prefers (7.20) over (7.21).
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So we see that U-DOP can account for the problematic instantiations of
Extraposition from NP without introducing additional machinery. In this sense,
the U-DOP approach is more general than Ross’ island constraints.

7.3 Topicalized sentences

In the next two sections, we will discuss the closely related phenomena of top-
icalization and left dislocation. Interestingly, the former obeys the constraints,
but the latter does not. It is this difference that initially probed Ross into dis-
tinguishing between ‘chopping’ and ‘copying’ transformations: topicalization is
a chopping transformation, which needs to obey the constraints; left dislocation
is a copying transformation, and hence doesn’t need to obey the constraints.

Our goal in these two sections is to show that we do not need to distinguish
between these two very similar phenomena: they can be explained with the
same mechanisms in the U-DOP framework. Then also in this sense (next to
the one in the previous section), our U-DOP approach is more general than
Ross’ constraints: we can explain more phenomena in a uniform way.

In this section, we will show how U-DOP explains that topicalization seems
to obey the island constraints.

Complex NP Constraint. The first constraint that topicalization has to
obey is the Complex NP Constraint. Hence, (7.24) should be more grammatical
than (7.25).

(7.24) this girl I believed that he kissed

(7.25) * this girl I know the boy who kissed

Of course, our parser was not able to parse these sentences. We think this is
also plausible from a language acquisition modeling point of view: it is highly
unlikely that children hear this kind of sentences, let alone utter them their-
selves.

Therefore, we backed off to the second pass of the two-pass model, and found
the following:

(7.26)
X

X X

I X

believed X

that X

he kissed

◦ X

this girl
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= X

X

this girl

X

I X

believed X

that X

he kissed

(ranking: 123,195 + 30,164 = 153,359)

(7.27)
X

X

this girl

X

◦ X

I X

know X

the X

boy X

who kissed

= X

X

this girl

X

I X

know X

the X

boy X

who kissed

(ranking: 8,551 + 2,325,562 = 2,334,113)

We see that both sentences have equally short derivations, but that the
ranking of (7.26) is much lower than that of (7.27). Hence, U-DOP correctly
prefers (7.24) over (7.25).

Coordinate Structure Constraint. Second, topicalization must obey the
Coordinate Structure Constraint. Hence, (7.28) should be preferred over (7.29).

(7.28) Edward and this boy the girl kissed

(7.29) * this boy the girl kissed Edward and
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Our parser could not parse these sentences due to memory limitations, and
hence, we backed off to the second pass of the two-pass model. We found the
following shortest derivations for these sentences:

(7.30)
X

X X

X

this girl

kissed

◦ X

Edward X

and X

◦ X

this boy

= X

X

Edward X

and X

this boy

X

X

the girl

kissed

(ranking: 3,190 + 111,567 + 30,164 = 144,921)

(7.31)
X

X X

X

the girl

X

kissed X

◦ X

this boy

◦ X

Edward and

= X

X

this boy

X

X

the girl

X

kissed X

Edward and

(ranking: 11,687 + 30,164 + 70,422 = 112,273)

Both derivations consist of three elements, and the ranking predicts the
wrong alternative to be the more grammatical: (7.31) has a lower (and hence
better) ranking than (7.30). In fact, this is basically the same problem as in
Subsection 6.3.3: the ranking of the subtree (X noun coordinating conjunction)
is better than it should be. We believe that the same solution as in Subsec-
tion 6.3.3 would apply here: the new methodology which simulates supervised
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parsing would probably assign a much worse (i.e. higher) score to that subtree,
causing the entire rank of derivation (7.31) to increase. Note that the difference
in rank between both derivations is fairly small, so in that case, the rank of the
entire derivation in (7.31) will probably be higher (i.e. worse) than the rank of
(7.30), and (7.28) will correctly be preferred over (7.29). Unfortunately, it is
not yet possible to investigate this on the basis of the actual Childes-data, since
this would involve parsing half of the corpus (around 11,000 sentences), which
could not be done in a feasible amount of time.

Sentential Subject Constraint. The third constraint the rule of topi-
calization has to obey is the Sentential Subject Constraint. This means that
(7.32) should be more grammatical than (7.33). Note that (7.33) is in fact
grammatical, but not with the intended meaning. If the predicate ‘obvious’
applies to the girl, then the sentence is perfectly grammatical. However, if the
predicate ‘obvious’ applies to the statement ‘that he kissed this girl’, then it is
ungrammatical.

(7.32) this girl it is obvious that he kissed

(7.33) * this girl that he kissed is obvious

Similar to the previous examples of the Sentential Subject Constraint, our
parser could not parse these sentences. Therefore, we backed off to the second
pass of the two-pass model, and found the derivation in (7.34) for (7.32) and in
(7.35) for (7.33).

(7.34)
X

X

this girl

X

◦ X

it X

is X

obvious X

that X

he kissed
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= X

X

this girl

X

it X

is X

obvious X

that X

he kissed

(ranking: 8,851 + 2,325,562 = 2,334,413)

(7.35)
X

X

this X

X

is obvious

◦ X

girl X

that X

he kissed

= X

X

this X

girl X

that X

he kissed

X

is obvious

(ranking: 693,021 + 415,940 = 1,108,971)

Both sentences have a shortest derivation of two steps, so we need the ranking
to break the tie. We see that (7.35) has a lower, and hence better ranking
score than (7.34); so (7.33) will be preferred over (7.32). This is actually not
surprising, since it is the semantics that make (7.33) ungrammatical, and our
parser has no access whatsoever to semantics. Moreover, the parser looks at
part-of-speech tags rather than words (we give the words in the examples for
ease of exposition), so the derivation for (7.33) is the same as for (7.36), which
is in fact fairly grammatical. Note that using words instead of part-of-speech
tags alone would not solve the problem; a semantic component is really needed
to explain the difference in acceptability. For example, (7.36) is grammatical
when ‘nice’ is applied to the girl, but not when ‘nice’ is applied to the statement,
meaning ‘it is nice of him to kiss this girl’.
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(7.36) this girl that he kissed is nice

So the U-DOP approach cannot explain the difference in grammaticality
between (7.32) and (7.33). However, this problem has more to do with semantics
than syntax, so we do not consider it a disadvantage of the U-DOP account.

Left Branch Condition. Finally, topicalization has to obey the Left
Branch Condition. According to this condition, (7.37) should be grammatical
and (7.38) not.3

(7.37) Stephenie’s book I read

(7.38) * Stephenie’s I read book

These sentences our parser could parse. We found the following derivations:

(7.39)

X

X

X I

read

◦ X

Stephenie’s book

= X

X

X

Stephenie’s book

I

read

(ranking: 608 + 2,784 = 3,392)

(7.40)

X

X

Stephenie’s X

book

◦ X

I read

= X

X

Stephenie’s X

I read

book

(ranking: 3,139 + 488 = 3,627)

Both sentences have a shortest derivation of two elements, but the ranking
score of (7.39) is better than that of (7.40). Hence, the parser correctly prefers
(7.37) over (7.38).

In this section, we have shown that the U-DOP account can be used to
explain the behavior of sentences with topicalization. In the next section, we
will investigate whether this account is more general than the Ross’ constraints,
and can account for the highly similar phenomenon of left dislocation.

3In the Childes corpus, possessives such as ‘Stephenie’s’ are analyzed as one word, with
part-of-speech tag ‘n(:prop)|cat-POSS’.
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7.4 Left dislocation

In this section, we will investigate whether the U-DOP approach is general
enough to also capture phenomena that lie outside the scope of Ross’ islands
constraints, such as left dislocation.

In the first place, an account of left dislocation must show that the island
constraints do not apply. For frameworks with an absolute notion of grammati-
cality, this is difficult: they have to show why some sentences which are thought
to be ungrammatical, turn out to be grammatical after all. However, for ap-
proaches such as U-DOP, which honor a relative notion of grammaticality, this is
trivial: all sentences are grammatical to some degree (because all sentences can
be generated), so also the sentences violating the presumed constraints (because
also these sentences can be generated).4

When we let our parser parse (7.41) and (7.42), for example, we see that
the sentence violating the Coordinate Structure Constraint (7.42) can be derived
with as few steps as the ‘regular’ sentence, and even has a better ranking score!5

(7.41) Bella loves vampires and werewolves

(7.42) werewolves, Bella loves vampires and them

(7.43)
X

Bella X

loves X

X werewolves

◦ X

vampires and

4We are aware that this may seem too simplistic as an explanation. However, as we noted
in the discussion of U-DOP’s generating capacity at the end of Section 2.3, this idea that
all sentences can be generated shifts the weight of the workload to the sentences that are
generally considered to be unacceptable. The greatest challenge for U-DOP lies in explaining
why humans judge certain sentences to be less acceptable than others. So where we can
simplistically imagine the workload for a nativist linguist to be 50% explaining grammatical
sentences and 50% explaining ungrammatical sentences, the workload for the U-DOP approach
is 100% explaining sentences that are considered to be ungrammatical: it gets the grammatical
sentences for free, but has to work harder for the others.

5Of course, it might be considered a disadvantage of the U-DOP approach that it now
predicts that (7.42) is slightly more grammatical than (7.41).
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= X

Bella X

loves X

X

vampires and

werewolves

(ranking: 70,422 + 9,392 = 79,814)

(7.44)
X

X X

loves X

vampires X

and them

◦ X

werewolves Bella

= X

X

werewolves Bella

X

loves X

vampires X

and them

(ranking: 46,902 + 18,150 = 65,052)

Since accounting for the fact that left dislocation does not obey the Coor-
dinate Structure Constraint means showing that sentences violating it, such as
(7.42), are grammatical, the U-DOP account can easily do this. In the first
place, the U-DOP account has no difficulty whatsoever with explaining why
sentences are grammatical, i.e. can be generated (since all sentences can be
generated). In the second place, because such sentences also seem to be easily
derivable, with a good ranking score, and hence high up the grammaticality
scale.

Showing that sentences are grammatical is rather trivial for U-DOP (al-
though it is a hard task for the nativist approaches). More difficult is explaining
why some sentences are considered ungrammatical. For a complete account of
left dislocation, we should therefore also explain the restrictions on this con-
struction.
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A restriction that is mentioned (but not explained) by Ross, is the fact that
the moved constituent must be moved to the left of the main clause; movement
merely to the left of a subordinate clause results in an ungrammatical sentence.
For example, (7.45) is grammatical, because ‘Edward’ is moved to the left of the
main clause;6 (7.46), on the other hand, is ungrammatical, because ‘Edward’ is
only moved to the left of the subordinate clause ‘that you love 〈Edward〉’.

(7.45) Edward, that you love him is obvious

(7.46) * that Edward, you love him is obvious

Our parser could not parse these sentences due to memory issues, so we backed
off to the second pass of the two-pass model. We found the derivation in (7.47)
for (7.45) and in (7.48) for (7.46).

(7.47)
X

X

Edward X

X

is obvious

◦ X

that X

you X

love him

= X

X

Edward X

that X

you X

love him

X

is obvious

(ranking: 590,659 + 57,785 = 648,444)

(7.48)
X

X

that X

X

is obvious

◦ X

Edward X

you X

love him

6Note that the grammaticality of (7.45) also shows that the Sentential Subject Constraint
does not apply to left dislocation.
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= X

X

that X

Edward X

you X

love him

X

is obvious

(ranking: 876,625 + 415,940 = 1,292,565)

We see that both derivations are equally short, but the ranking chooses the
correct alternative: (7.47) has a lower ranking than (7.48), so (7.45) is preferred
over (7.46).

So we see that U-DOP can both account for the fact that left dislocation does
not obey the island constraints, as for the constraints that left dislocation does
have to obey. Therefore, the U-DOP approach is more general than the nativist
approach: rather than postulating constraints, and then making a distinction
between constructions obeying them and constructions that do not obey them,
U-DOP can account for all kinds of constructions in a uniform way.

7.5 Conclusion

In this chapter, we have seen how the U-DOP approach to language acquisition is
more general than the nativist approach, as expressed in Ross’ island constraints.
First, we have shown how the U-DOP approach is at least equally general, by
showing how it can, similarly to the islands constraints, easily be extended to
other constructions such as relative clause formation.

Then we have seen an example where Ross’ island constraints do not suffice
to capture all facets of a phenomenon: to explain the restrictions on Extraposi-
tion from NP Ross needed the additional notion of ‘upward boundedness’. We
have shown that the U-DOP approach has no need for such an extension and
can explain the problematic cases for Extraposition from NP in the same way
as it explained all the other phenomena.

Finally, we looked at two closely related phenomena: topicalization and
left dislocation. The former obeys the constraints, the latter does not. To
explain this difference in behavior, Ross makes a distinction between chopping
and copying transformations: the former obey the constraints, the latter do
not. We showed that the U-DOP approach can account for both phenomena
without distinguishing between them, and can also capture other aspects of left
dislocation, other than that it does not obey the constraints. So the U-DOP
approach is shown to be more general in several ways: it can account for the
fact that some transformations obey the constraints, for the fact that some
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transformations do not obey the constraints, and for additional facts about the
latter transformations.

Remarkable is that in this chapter the parser was often incapable of parsing
the sentences under investigation, and that we had to resort to the second pass
of the two-pass model quite a few times. We believe this is not a disadvantage
of the U-DOP approach per se. In the first place, this difficulty is merely due
to practical reasons —it is not the case that the parser is in principle unable
to parse these problematic sentences. So in the future, when the hardware will
be more advanced, and computers will have more working memory, the parser
will be able to parse these sentences. After all, the second pass of the two-pass
model already shows that it is in principle possible to find derivations for these
sentences.

Second, we believe that this difficulty with parsing is also cognitively plau-
sible. If we want the parser to model the way a child would process these
sentences, it is only to be expected that it will have difficulty with the examples
in this chapter: also a child would have difficulty processing these far-fetched
sentences that are rarely encountered in speech. So in a certain sense, the effort
the parser has with these sentences is in line with the effort a child would have.
Therefore, the parser models language acquisition more accurate than the na-
tivist approach: in the nativist approach differences in processing difficulty are
not reflected at all.

In sum, in this chapter we have shown that (i) the U-DOP approach is more
general than the nativist approach with Ross’ islands constraints, and (ii) that
the sometimes far-fetched examples that the nativist framework comes up with
are equally difficult for our parser as they would be for a child, so that the
parser more accurately models language acquisition with respect to processing
difficulties.
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Chapter 8

Conclusion

This concluding chapter consists of two sections. In the first section, we discuss
the results obtained in this thesis, both of a computational and a theoretical
nature. In the second section, we look at some questions for further research
that arose throughout the thesis.

8.1 Results

Recall that the goals of this thesis were twofold: on the one hand, to contribute
to the field of unsupervised parsing, by developing implementations of U-DOP;
on the other hand, to refute Arguments from Poverty of Stimulus by using those
implementations to show that certain language phenomena can be accounted
for in an empirical way.

The first goal has certainly been achieved. Already the basic implementation
of U-DOP (Section 3.1) obtains results on the ATIS-corpus that are better than
the state-of-the-art. We contributed two innovations to the field of unsupervised
parsing. The first innovation, doing syntactic category labeling and parsing
simultaneously (Section 3.3), did not yet show promising results (only a slight
improvement on the basic implementation), but we think this is due to the small
corpus on which the evaluation was carried out. The second innovation, a new
methodology for unsupervised parsing (Section 3.4), turned out to be a great
success: although its training phase took somewhat longer, its parsing phase
was extremely fast (0.02 seconds per sentence). This is the behavior that we
want from an NLP-application: training (which only needs to be done once)
may be slow, as long as the parsing (which needs to be done often) goes fast.
Moreover, this new methodology achieved by far the best results on the ATIS-
corpus (61.2%, compared to Klein (2005)’s 51.2%). Furthermore, these results
were achieved with an inferior version of the algorithms; this gives a promising
outlook for when evaluation can be carried out with the full versions.

With respect to the second goal, we have carried out an in-depth study of
the phenomenon of wh-questions. First, we showed the involved machinery that
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the nativist account (as formulated in Ross (1967) and Adger (2003)) needs
to explain all details of this construction. Next, we showed how the U-DOP
approach can capture all these details in a simple and uniform way in most of
the cases. Hence, we have shown that at least for this phenomenon, Arguments
from Poverty of Stimulus can no longer be invoked: step (ii), where it is claimed
that children cannot learn the phenomenon on the basis of input alone, is now
refuted. Furthermore, we have shown that the U-DOP approach can easily be
extended to cover other phenomena, even phenomena that fall out of the scope
of the traditional nativist account developed in Ross (1967). In Table 8.1, an
overview is given of all the phenomena discussed in this thesis, and whether
they can be succesfully explained in the U-DOP framework.

So we demonstrated that the U-DOP approach, which is conceptually much
simpler, is as adequate as the involved nativist accounts, and even more general:
more phenomena can be captured in a uniform way.

8.2 Questions for further research

Both in the computational (Part I) and the theoretical component (Part II) of
this thesis several questions for further research arose.

In the computational component, the immediate first concern is to build
more efficient implementations. This is necessary to be able to perform further
evaluation, especially for the Labeling+Parsing-algorithm, but also to be able
to use them more for theoretical questions: quite often, we had to back off to the
second pass of the two-pass model in the theoretical part of this thesis, because
the parser could not analyze the sentences due to memory issues.

Second, the delicate interplay between frequency (ranking) and maximal
structural overlap (shortest derivation) merits further exploration. It is clear
that both should play a role, but it should be further investigated how the
interaction should work. Guided by the F1-scores obtained by the different
implementations, we hypothesize that maximal structural overlap will play the
largest role: the implementations on the basis of the shortest derivation (basic)
mostly scored better than the implementations based on the ranking (optim).

In the theoretical component, the first concern is also to have more efficient
implementations, so that more phenomena can be investigated in the first pass
of the two-pass model (i.e. by using an implementation), rather than having to
back off to the second pass.

Second, it is desirable to add a semantic component to the framework. As we
saw in Section 7.3, the unacceptability of some sentences can only be explained
by taking semantics into account. This has already been done in Bod and
Kaplan (2003), but further work definitely needs to be conducted in this area.

Finally, the work done in this thesis is only a first step to investigate phe-
nomena that are used in Arguments from Poverty of Stimulus. Further work
must certainly look at other phenomena (e.g. binding, NPI’s, . . .) that are tra-
ditionally used in these arguments, and investigate whether it is indeed the case
that they cannot be learned from input alone.
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Table 8.1: An overview of all phenomena discussed in this thesis. The column
‘Method’ indicates whether the first or the second pass of the two-pass model
was used, and the column ‘Succesful?’ indicates if the U-DOP approach was
succesful, or how it could be amended.

Phenomenon Method Succesful?
Subject Auxiliary Inversion (5.2) 2nd pass yes
WH-Questions
Unbounded Scope (6.3.1) 2nd pass yes
Complex NP Constraint (6.3.2) 2nd pass interplay shortest derivation/ranking
Coordinate Structure Constraint (6.3.3) 1st pass new approach (3.4)
Left Branch Condition (6.3.5) 1st pass yes
Left Branch Condition ‘how’ 1st pass more fine-grained POS-tags
Subject WH-questions (6.3.6) 1st pass yes
WH in situ (6.3.7) 1st pass yes
Superiority (6.3.8) 1st pass yes
Extended Superiority 2nd pass yes
No Superiority 1st pass yes
Embedded WH-questions (6.3.9) 2nd pass yes
WH-islands (6.3.10) 1st pass yes
Relative Clause Formation (7.1)
Complex NP Constraint 2nd pass yes
Coordinate Structure Constraint 2nd pass yes
Sentential Subject Constraint 2nd pass yes
Left Branch Condition 2nd pass yes
Extraposition from NP (7.2) 2nd pass yes
Topicalization (7.3)
Complex NP Constraint 2nd pass yes
Coordinate Structure Constraint 2nd pass new approach (3.4)
Sentential Subject Constraint 2nd pass semantics
Left Branch Condition 1st pass yes
Left Dislocation (7.4)
Coordinate Structure Constraint 1st pass yes
Restriction 2nd pass yes
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Appendix A

POS-tags of the ATIS
corpus

(We disregarded all punctuation information.)

CC coordinating conjunction
CD cardinal number
DT determiner
EX existential there
FW foreign word
IN preposition or subordinating conjunction
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
LS list item marker
MD modal
NN noun, singular or mass
NNS noun, plural
NNP proper noun, singular
NNPS proper noun, plural
PDT predeterminer
POS possessive ending
PRP personal pronoun
PRP$ possessive pronoun
RB adverb
RBR adverb, comparative
RBS adverb, superlative
RP particle
SYM symbol
TO to
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UH interjection
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd person singular present
WDT wh-determiner
WP wh-pronoun
WP$ possessive wh-pronoun
WRB wh-adverb
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Appendix B

POS-tags of the Childes
corpus

(We disregarded all punctuation information.)

adj adjective
adv adverb
adv:int adverb, intensifying
adv:wh adverb, question
aux auxiliary
co communicator
conj:coord conjunction, coordinating
conj:subord conjunction, subordinating
conj:prag conjunction, pragmatic
det determiner
det:poss determiner, possessive
inf infinitive marker (to)
n noun
n:prop noun, proper
n:adv noun, adverbial
num number, cardinal
ptl particle
prep preposition
pro pronoun, personal
pro:refl pronoun, reflexive
pro:poss pronoun, possessive
pro:dem pronoun, demonstrative
pro:indef pronoun, indefinite
pro:exist pronoun, existential
pro:wh pronoun, question
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qn quantifier
v verb
part verb, present participle
v:cop verb, copula
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