A modern back-end for a dependently typed language

MSc Thesis (Afstudeerscriptie)
written by

Remi Turk
(born January 11, 1983 in Rotterdam)

under the supervision of Dr Andres L6h and Dr Piet Rodenburg, and
submitted to the Board of Examiners in partial fulfillment of the requirements
for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
October 19, 2010 Dr Andres Loh

Dr Piet Rodenburg

Prof. Dr Frank Veltman

Prof. Dr. Jan van Eijck

nza
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Contents

1 Introduction 2
1.1 Overview of the following chapters 3

2 Introduction to Agda 5
2.1 Agda —thelanguage 5
2.1.1 Expressionso 6

2.1.2 The structure of an Agda program 6

213 Types 7

2.1.4 Datadeclarations L. 8

2.1.5 Function definitions 10

216 Records 12

2.1.7 Postulates and primitives 12

2.2 Agda — the internal syntax 13
2.2.1 Datatypes and constructors 13

2.2.2 Function definitions 18

223 Records 20

2.2.4 Axioms and primitives L. 21

3 Introduction to GRIN 23
3.1 Bindings e 24
3.2 Values 24
3.3 Expressions Lo 25
34 Tags 26
3.5 Case alternatives o oL o 27
3.6 Seg-patterns.o 28
3.7 Anexample 28

4 Compiling Agda to GRIN 29
4.1 Comparing an Agda and a GRIN module 29
4.2 Compilation overview 32
4.3 Compiling built-in datatypes 33
4.4 Compiling primitives 0oL 35
4.5 Renaming identifiers oo 0oL 35
46 Modules 36
4.7 Datatypesand recordso 36
4.7.1 Preprocessing datatype and record definitions 37

4.7.2 Creating GRIN bindings 37

4.8 Compiling functions L 38
4.8.1 Compiling a functions’ left-hand side: Patterns 39

4.8.2 Compiling a functions’ right-hand side: Expressions . . . 44

5 Optimizations
5.1 Deaddata
5.2 Dead data elimination
5.2.1 Overview
5.2.2 Created-by analysis
5.2.3 Dead variable detection
5.2.4 Connecting producers to consumers
5.2.5 Dead field analysis oo
5.2.6 Removing the found dead data

6 Discussion
6.1 Related work
6.1.1 Epigram to G-machineo
6.1.2 Agda to Haskell to STG
6.1.3 IdristoEpic
6.2 Contributions e
6.3 Futureworko

A Infrastructure for generating GRIN bindings

B Infrastructure for generating GRIN expressions

51
o1
92
54
35
35
96
96
a7

59
99
99
63
64
64
65

66

68

Abstract

This thesis describes the connection between Agda, a modern dependently typed
functional language and GRIN, a modern functional back end language, and
compares the resulting system with the existing alternatives.

Acknowledgements

First T would like to thank both of my advisors, Andres L6h and Piet Rodenburg,
for supervising me for over four times the originally allotted time. I would also
like to thank Wouter Swierstra for passing on the original idea for this thesis to
Andres. Atze Dijkstra and Jeroen Fokker were able to help me on whenever I got
stuck with their EHC/UHC compiler, for which I thank them. I am grateful to
my fellow students Chris Regenboog and Arvid Halma, for keeping me company
during many hours of staring at IMTgX and, to a small extent, beer and tea
glasses. Finally, I would like to thank my father for relentlessly bothering me
to finally finish this thesis.

Introduction

The field of functional programming has undergone two major evolutions in the
last few decades. The first change is that whereas two decades ago a functional
program usually ran multiple orders of magnitude slower than its imperative
counterpart, compiler technology for functional languages has now reached the
point of being capable of generating code that is in some cases competitive with
C and FORTRAN. Second, the type systems of new functional programming
languages are becoming more and more complicated, moving from being based
on the simply typed A-calculus to being based on A-calculi like the calculus of
inductive constructions. These systems are blurring the lines between program-
ming languages and type theories, thereby situating themselves between editors
and compilers on the one hand, and proof assistants on the other hand.

Relatively little work has been done however on connecting these two parts
of the functional programming world. In this thesis, a newly built back-end
for Agda, a new functional language based on dependent type theory, is in-
troduced. This new back-end is based on GRIN, which is a modern back-end
language designed for optimization and efficient compilation to recent processor
architectures. In addition, it is shown how existing optimizations for depen-
dently typed languages can be introduced into and generalized using the GRIN
optimization framework.

The following diagram gives an overview of the current situation:

Haskell GHC - STG

Ulf Norell ' Urban Boquist

v ¥
Agda - - » GRIN
This thesis

In it, a solid arrow (—) from a to b with label ¢ means that language a is being
compiled to language b by compiler c¢. A dashed arrow (— — —) from a to b
with label ¢ implies that b was designed with a as a basis or inspiration by c.

In the left top of the diagram is Haskell, the canonical example of a lazy
functional language. The top arrow is GHC, the most commonly used com-
piler for Haskell, which uses STG as its back-end intermediate language.[12]
Then in 1999, Urban Boquist presented a new back-end language in his PhD
thesis.[8] This new language, called GRIN, was intended for (whole-program)
optimization and efficient compilation to modern CPU architectures. His proto-
type back-end using GRIN was, however, never published. The Utrecht Haskell
Compiler[6] is a recently released compiler that compiles Haskell into GRIN
(and ultimately into machine code).

However, the only currently available Agda compiler compiles Agda to Haskell
(with some GHC specific extensions), and then uses GHC to generate an ex-
ecutable program. This is suboptimal due to the imperfect match between
(mostly the type systems of) Agda and Haskell and because Haskell is intended
as a programming language for human beings, not as a target for compilers.
Consequently, much information that could be useful in later stages of compila-
tion is lost in the translation from Agda to Haskell. In addition, GHC uses the
rather old STG as its back end language.

One thing that is not shown in the diagram is the work of Edwin Brady. In
his PhD thesis[10] he describes a compiler including a number of optimizations
for Epigram, which is a predecessor to Agda. However, the back end language
used in his thesis is the G-machine, which is a predecessor of STG that is even
less suited for compilation to modern micro architectures.

This thesis introduces the first compiler that uses the modern back end
language GRIN to compile the modern dependently typed language Agda. Fur-
thermore, it is shown how three optimizations that were developed for Agda’s
close cousin Epigram can be generalized within the GRIN optimization frame-
work, and may then even be used to subsume an important part of the current
GRIN optimizations.

1.1 Overview of the following chapters

In chapter 2, the programming language Agda is introduced. This introduction
is not meant as a programming tutorial, but should enable the reader to com-
prehend simple Agda programs and to understand some of the challenges and

advantages of a dependently typed programming language. Some parts of the
language are not explained at all, as they are beyond the scope of this thesis.
These parts are mostly in the module system and in the syntactic sugar intended
to make working with Agda more convenient.

The GRIN back-end for this thesis does not work directly on Agda code,
however: The front-end first parses and type checks it, after which the back-end
is passed a set of data structures called Agda internal syntaz. The second part
of this chapter introduces the data types used for this internal syntax.

Chapter 3 introduces the Graph Reduction Intermediate Notation, or GRIN.
GRIN is immediately introduced as a set of data types and not as a language
with a concrete syntax, because neither the back-end nor the programmer needs
to work with GRIN in concrete syntax form.

Chapter 4 is the first chapter dealing with the newly built back-end itself.
It goes into detail on all aspects of the implementation of the translation from
Agda’s internal syntax to GRIN.

Chapter 5 is about optimization. This chapter explains how a number of
optimizations designed for a close cousin of Agda can be adapted and generalized
for the combination of Agda and GRIN.

Finally, the thesis ends with a discussion of related work, contributions and
future work in chapter 6.

Introduction to Agda

In this section we will introduce Agda[15], one of the two main technologies this
thesis is based on. Both Agda the language and some of the Agda compiler
internals will be explained here. After this section the reader should be able
to understand the example Agda programs and the intermediate language that
Agda compiles into.

2.1 Agda — the language

Agda is a dependently typed programming language based on Martin-Lof’s type
theory.[14] Martin-Lo6f’s type theory is essentially a typed A-calculus, although
certainly not a simply typed A-calculus.[2] Several things are remarkable about
Agda:

e Agda is a total language. That is, all functions in Agda are total, i.e.
defined for all inputs. By implication, Agda is not a Turing complete
language.

e Agda is a pure language, which means that functions in Agda have no
side-effects: The only result of calling a function is its return value, and
calling a function twice with the same arguments yields the same result.

Taken together, this means that functions in Agda are mathematical functions
from sets to sets. In addition, the language is extended with data types and lots
of syntactic sugar to make the language more pleasant to actually program in.

As this thesis is about an Agda back end, however, we will not discuss much
of the syntactic sugar, nor will we spend much time on the intricacies of the
type system. We will especially not give an introduction to dependently typed
programming. Instead, this chapter will focus on the syntactic structure of Agda
programs.

Before continuing to explain the high level structure of an Agda program,
we will first explain a bit about the syntax of expressions in Agda.

2.1.1 Expressions

Expressions can be found almost everywhere in an Agda program, and will
be used in most of the examples in the coming sections. Therefore, they will
be explained at this point, before going on to types. Because expressions are
so common in Agda, it is convenient that their syntax is rather lightweight:
An expression consists of either just a variable or of an expression applied to
another expression. Application is written by juxtaposition, which means that
application of ey to e; is written as e es.

As in many other functional languages, functions in Agda are automatically
curried so, for example, the function plus on natural numbers is really a function
of one natural number that, when applied, yields a function of a natural number
to a natural number. Application is also left-associative. That is, e; e e3 means
(e1 e2) e, which is a natural fit with curried functions.

Identifiers may consist of almost any sequence of unicode characters, includ-
ing symbols that in most programming languages are reserved for operators.

Identifiers may also contain underscores (—), in which case they can be used
as (infix or even mixfix) operators. This way, after defining a function _+_, one
can write suc (m + n), which means the same as suc ((—+_m) n).

Finally, functions may have both explicit and implicit parameters. Implicit
arguments are intended to be inferred and inserted by the compiler. In cases
where the compiler is not able to infer an implicit argument, it can be made
explicit by enclosing the argument in {...}. An explicit argument may also
be given as _, in which case the compiler will try to infer it as if it were an
implicit argument. For example, if f is a function of two implicit and two
explicit parameters (in that order) then f {z} y _ passes z for the first implicit
parameter, leaves the second implicit parameter for the compiler to infer, passes
y for the first explicit parameter and leaves the second explicit parameter for
the compiler to infer.

2.1.2 The structure of an Agda program

An Agda program consists of one or more modules, each of which may in turn
contain other modules. Furthermore, each module consists of a number of dec-
larations. The two most important kinds of declarations are data type declara-
tions and function (or variable) declarations. In addition, a program may also
contain declarations for records, postulates and primitives. These will all be
explained in the next few sections.

To give the reader a first taste of what an Agda program looks like, a simple
but complete example module follows now. The declarations in this example
need not be completely understood yet as they will be explained in detail in the
following sections.

module RunningErample where
data N : Set where

zero : N

suc : N - N
—+_ : N—- N> N
zero + n =n
sucm+ n = suc (m + n)

data Vec (o : Set) : N — Set where

[] : Veca zero

—i_:{n: N} - a = Vecan — Veca (sucn)
_H : {a: Sety{mn : N} - Vecam — Vecan — Veca (m+ n)
[] 4 ys = ys

(z:as) H ys = z = (zs H ys)

This module, named RunningEzample, first declares a data type representing
Peano numbers and a corresponding addition function, then a data type of
vectors and a function for appending two such vectors, and finally declares a
variable containing a vector of two numbers.

2.1.3 Types

Agda is a statically typed programming language. Like in most such languages,
one may have types like Bool and N in Agda. Types may also be parameterized
by other types, so there may be a type List Bool, or List N. These types are
the application of List to Bool and N, respectively: The syntax of types is the
same as the syntax of expressions.

A major difference between Agda and most other statically typed languages
(including simply typed A-calculus) however, is that in Agda terms and types
do not live in separate worlds: Types are also terms. This leads to a number of
important consequences.

e Terms have types, so if types are also terms, then should types not also
have types? They do. For example, the types mentioned before all have
type Set, which can be written as Bool : Set, N : Set etcetera. And we
also have Set : Set;, and more in general, Set,, : Set, ;1.

e If a type is also a term, then it should be possible to have functions
accepting types as arguments, or returning types. In fact, we have already
shown such a function: List : Set — Set, so List Bool is not only the
type of lists of booleans, but also the application of the List function to
the Bool type.

e Types can be parameterized by other types, but in fact, they can be pa-
rameterized by arbitrary terms. In Agda, one may have a type Vec Bool 2 :
Set, the type of vectors of booleans of length 2. Of course, Vec : Set —
N — Set.

Agda is also a dependently typed language: Types may depend not only on
constant values, but on arbitrary terms, including the values of other function
parameters.

For example, although it is possible to define functions NAppend : List N —
List N — List N, boolAppend : List Bool — List Bool — List Bool and so
on, this is actually not necessary in Agda, as it is possible to define one function
that appends lists of arbitrary type: append : (o : Set) — List « — List a —
List o, which means that append takes one parameter of type Set called a, and
then two parameters whose type is List applied to this «, finally yielding a value
of again List o. In other words, in a dependently typed language, parametric
polymorphism need not be implemented as a separate type system feature: It
has become a special case of dependent types.

Things are more complicated for the type of the append function for the
vector datatype mentioned above. If we have xzs : Vec Bool 2 and ys
Vec Bool 3, then wvecAppend zs ys : Vec Bool 5, but what type should
vecAppend itself have? The answer is vecAppend : (« : Set) (mn : N) —
Vecam — Vecan — Veeca(m+ n), so vecAppend first takes the type of
the vector elements and two natural numbers as parameters® , followed by two
vectors of the lengths corresponding to the two natural number parameters, and
then returns a vector whose length is equal to the sum of the first two vectors.
This assumes, of course, that there is also a plus function of type N — N — N.

Finally, when types are terms, and types may contain other expressions,
the question arises when two types are considered equal by the compiler. The
answer is that in order to be considered equal, the normal forms of the types
must be equal. This has already been used by the previous example, where we
saw that vecAppend xs ys has type Vec Bool 5, which is the normal form of
Vec Bool (2 + &), the type deduced from vecAppends type signature.

2.1.4 Data declarations

In Agda, one can declare new datatypes. Each data declaration introduces a
new type to the program?. It also declares zero or more data constructors which
are used to build values of said datatype.

A data declaration first specifies the name and type of the new datatype,
and then states for each of the constructors what its name and type is.

More formally, a data declaration looks like

data D A : I' — Set; where
[T @1 — DAtl

cn i ©, — DA,

The first line declares D to be a new datatype with parameter telescope
A and index telescope I', and specifies what universe level D is a member of.
Then zero or more constructors are defined. Each constructor has a name,
¢;, a telescope of constructor arguments, ©; and, when applied, yields a value
parameterized by A and ¢;.

Telescopes are sequences of types of arguments, where the types of later
arguments may depend on earlier types. Each argument may be either explicit
or implicit. The formal syntax of telescopes is this:

I''AO® == ¢
| (name : type)T' telescope
| {name : type}T" telescope (implicit)

Data declarations will now be further explained using two examples. The
first example defines a datatype for Peano natural numbers:

data N : Set where
zero : N
suc : N — N

! Note that (m : N) — (n : N) has been abbreviated to (m n : N).
20r in many cases actually a whole family of new types

This should be read as follows: The type N is a simple datatype without pa-
rameters or indices that lives in Set.® It has two constructors, one of which is
a simple value: zero. The other constructor takes an element of N as its argu-
ment and constructs its successor, which is of course again an element of N. In
practice, this declaration introduces three new identifiers (N, zero and suc) into
the current scope. All can be used in other (type) declarations and expressions,
and the constructors may also be used when pattern matching. An example of
such an expression would be suc (suc zero), which is of type N and represents
the number 2.

As we have just seen, Agda datatypes can be used for what in other languages
are called tagged unions and records, or in yet other languages sums of products.
In fact, however, Agda’s data declarations are more powerful, as the following
example demonstrates.

data Vec (o« : Set) : N — Set where
[] : Veca zero
—i_:{n: N} - a = Vecan — Veca (sucn)

This declaration defines the vector type parameterized both by its element
type and by its length.
A number of things should be clarified about this definition:

e An identifier in Agda may contain underscores (_). Such an identifier can
be used as an operator by filling in arguments for the underscores.

e The A telescope declares the type parameters of the datatype, which must
occur in the same way in all constructor types. In this case, there is only
one type parameter, « : Set, which is the element type parameter of the
defined vector type. Each constructor gets all type parameters as implicit
parameters, so the full type of _:: _is {a : Set} {n : N} —» a —
Vecaon — Vec a (suc n)

e The I telescope declares the type indices of the datatype. Where the type
parameters scope over the entire data declaration, the indices are local
and differ between constructors. Vec has only one type index, which is of
type N and represents the length of the vector.

e []is a perfectly normal identifier in Agda. In this case it is the name used
for the empty vector, which contains zero elements.

e _::_ (pronounced “cons”) is a constructor that appends an element to the
front of a vector, taking the new element and a vector of length n to a
vector of length suc n. The first argument ({n : N}, the length of the
vector) is an implicit parameter, which means that it will not be written
down by the programmer but instead inferred by the compiler.

An example vector expression is false :: (true :: []) which has type Vec Bool 2
(assuming a suitable Bool datatype). This example can also be written without
using either infix operators or implicit arguments, in which case it is the rather
unreadable _::_ {N} {1} false (—::_ {N} {0} true ([] {N})).

3 Setq is usually abbreviated as just Set.

The final example declares a data type for representing proofs of proposi-
tional equality:

data _=_{a : Set} (z : &) : @« — Set where
refl : x = x

The _ = _ type has two type parameters (an implicit parameter « : Set and
an explicit z : «) and one type index («). Its only constructor, refl, has no
explicit arguments at all. It does, however, get both type parameters of _=_ as
implicit parameters, so we actually have refl : {« : Set} {z : a} — =z = z.
Equivalently, this can also be written without using implicit parameters and

infix operators as refl : {a : Set} {z : a} - _=_{a} zz.
The natural number example was rather obvious, but what is _ = _ good
for? This is best explained by an example: If p is a value of type n = suc k

then p is a proof that n = suc k.

2.1.5 Function definitions

A function definition has the following form:

f:A =t
fP1,1 e P1om = €1

fpn,l e Pnm = €n

A function definition first declares the name and type of the function in the
type signature. Then all the function clauses are defined. The type signature
is comparable to the first line of a datatype declaration: The function name
is stated, followed by its type. A function type consists of a telescope for the
function parameters, followed by the result type of the function.

What follows are the function clauses. The left hand side of a function clause
consists of the function name followed by a pattern for each of the parameters in
the telescope A. A pattern is either a variable or a constructor followed by one
pattern for each of its (zero or more) fields. The right hand side of the function
clause is an arbitrary term, and may use the variables bound in the left hand
side.

When a function is called, its arguments are pattern matched against the
patterns of each function clause from top to bottom. The first clause whose
patterns match the arguments is executed. Functions in Agda are total, so the
type checker will ensure that every possible combination of arguments that can
be passed to the function matches at least one of the function clauses.

Again, we will clarify by giving a few examples. The first uses the first data
declaration of the data type subsection, and defines a plus function over natural
numbers:

4 : N—- N =N
zero+n = n
sucm+n = suc(m+ n)

10

First, _+_ is declared to be a function taking two natural numbers to another
natural number.*

Just like with data type definitions, functions with names containing un-
derscores (_) can be called as operators, so _+_ can also be used as a binary
operator. The first clause, zero + n = n, means that if the first argument
to _+ _ matches zero and the second argument matches n, the result will be
n. The compiler can distinguish between constructor patterns like zero and
variable patterns like n using its knowledge about the parameter types.

If the first clause does not match, that is if the first argument is not zero,
then the first argument must be of the form suc m, where m is some arbitrary
element of N, and the second clause will be selected.

A more complicated example is the vecAppend function from the section
about types, although it has a slightly different name and type here.

_H : {a: Set}{mn : N} = Vecam — Vecan — Veca(m+ n)
[] Hoys = ys
(z::x8) H ys = z:: (zs H ys)

++ is a function of five parameters, of which the first three are implicit
parameters: In most circumstances the programmer need not specify those pa-
rameters, as the type checker will be able to infer them. The rest of its type
is as explained before: It takes a vector of length m and one of length n and
returns a vector of length m + n. Its definition is very similar to the definition
of _+ _: Appending two vectors is defined by structural recursion on the first
vector argument. Note that the implicit parameters are not specified at all in
the definition itself.

The final function definition example uses the propositional equality datatype
again.

|

w
1
8
Il
™

—trans s {a: Sett{zyz:a} >z =y >y =
—trans refl refl = refl

=—trans is a function of six parameters, of which only the last two are non-
trivial. The other arguments are all implicit as their value can always be inferred
from the last two arguments. Although the type signature is rather complicated,
the function has only one rather simple clause: _=_ has only one constructor,
which has no arguments. Therefore, this one clause covers all the possible
combinations of arguments that can be passed to =—trans: The real work here,
is of course done by the Agda type checker when it checks that this simple
definition actually has the stated type. An example of its use would be that
assuming

n: N
p:suc(n+mn) = sucn+n
qg:sucn+n = n-+sucn
we have that
=—transp q : suc(n+mn) = n+ sucn

4 Strictly speaking, it is defined to be a function taking one natural number to another
function taking one natural number to a natural number: Functions in Agda are curried.

11

2.1.6 Records

A record declaration in Agda is used to define record types (known as “structs”
in e.g. C). In Agda, a record declaration is purely syntactic sugar for a datatype
declaration with exactly one constructor and a new module containing functions
that can be used to extract the values a record.

record List (o : Set) : Set where
field
length : N
vector : Vec a length

This example defines a new parameterized record type List with two fields. The
first field, length, is a simple natural number, but the other field, vector has a
type dependent on the value of the first field: Records in Agda can actually be
dependent record types.

zs © List N
xs = record {length = suc (suc zero);vector = zero :: suc zero :: []}

Then, zs is defined as a value of this new dependent record type, where the
compiler is left to infer the value of the first value for us. As can be seen,
records are not constructed using an explicit constructor function but using
special record syntactic sugar.

n: N
n = List.length zs

Finally, the length function from the automatically generated List module is
used to retrieve the length of the Vec inside the List.

2.1.7 Postulates and primitives

The last two forms of declarations are postulates and primitives. Syntactically,
the two are very similar:

postulate
Int : Set
primitive
primIntegerPlus : Int — Int — Int

Both declarations begin by specifying what kind of declaration they are. Then
one or more type signatures follow. The meaning of both declarations differs
quite a bit, however:

A postulate or axiom tells the type checker to assume the existence of the
given identifiers with the specified types, but those new identifiers do not have
any computational meaning. They cannot be further evaluated by either the
interactive Agda prompt or the compiler while type checking, and trying to
compile a program with postulates will usually result in the compiler failing
with an error message.

In contrast, although a primitive also brings an identifier with the given
type in scope, it definitely does have computational content here. A primitive

12

declaration is a request to the compiler to add code for this function, usually
because the function could not (efficiently) be implemented with Agda code.
There is a fixed list of primitive functions that can be added and used in this
way.

2.2 Agda — the internal syntax

So far, we have described the Agda surface syntax. That is, we have looked at
the input to the Agda compiler. As this thesis is actually about connecting the
Agda front end to the EHC back end, we will now describe what the output of
the Agda front end looks like. This output is what we call Agda internal syntax.
Internal syntax is one of the three major kinds of syntax trees used in the Agda
compiler, the other two being concrete syntax and abstract syntaz.

Agda’s concrete syntax is a set of datatypes meant to exactly represent what
the compiler found in the files it parsed. All syntactic sugar is still present, as
is all information about comments and line and column numbers. In Agda’s
abstract syntax, part of the syntactic sugar has been removed and scope analysis
has been performed. Some of the range information has also been removed and
type information is only available in so far as the programmer has provided type
signatures. Agda’s type checker works on the abstract syntax and transforms it
into internal syntax. In internal syntax, all types are explicit. It is this internal
syntax that we will now further discuss, as this is what the Agda back ends
use: The interpreter, the Haskell back end and the EHC back end. The internal
syntax will be presented as a set of Haskell datatypes, in a slightly simplified
form from the actual datatypes used in Agda.

An Agda program in Internal Syntax is essentially a list of definitions.

type InternalSyntaxAgdaProgram = [Definition)

This list contains all definitions of all compiled Agda modules together, so all
the identifiers in it must be fully qualified to prevent namespace clashes, that
is, in the internal syntax an identifier bar from the module Foo will always be
represented as "Foo.bar". All definitions have a qualified name and a type, but
the other fields are different depending on what kind of declaration it was.

data Definition = Defn QName Type Defn
data Defn

= Datatype NN [@QName]

| Constructor N QName

| Function | Clause)

| Record [QName]

| Aziom

| Primitive String

We will again use examples from our RunningExample module to explain what
the different kinds of Agda declarations are compiled to.

2.2.1 Datatypes and constructors

Again, we begin with datatype declarations. In Agda’s internal syntax, datatypes
and their constructors have been separated. The list of the names of its con-
structors is (almost) all that is left of a datatype itself.

13

data Defn
= Datatype NN [QName]
| Constructor N QName

The Datatype constructor has three fields: The number of type parameters of
the datatype, the number of type indices and the list of constructor names.
The Constructor constructor has fields for its number of parameters and for the
name of the datatype it is a constructor of.

There are two more things that need to be explained before we can go on to
the first example, and they are the internal syntaxes for types and terms.

data Type = El Sort Term
data Sort = Type N

Recall that the internal syntax is the output of the type checker, so all types
and parameters are known, whether explicit or implicit. Together with the fact
that types are just terms, this means that a type in the internal syntax is built
from a term (recall that in Agda, types are terms, too) and the sort of which
the type is an element. A sort is just the type of a type. A sort itself stores
only its universe level, that is, what the n in Set,, is. The definition of Term,
the internal syntax representation of an Agda term, will be explained now.

data Term
= Var N [Term]

A Term may be a variable, represented by a de Bruijn index. Variables may be
applied to other Terms.

| Def QName [Term]

A Term may be a global identifier, again applied to zero or more other Terms.
| Con QName [Term]

A Term may also be a constructor applied to zero or more other Terms.
| Lam Term

A Term may be a A, containing the body of the function. This is the first Term
that binds de Bruijn indices that can then be referenced by Var constructors.
For example, the term \z — z would be encoded as Lam (Var 0).

| Pi Type Type

The other constructor introducing new de Bruijn indices is Pi, representing
the dependent function types. The arguments to Pi are the domain and the
codomain of the function type. A de Bruijn index is then bound referring to
the value of the domain type that is actually passed. For example, the term
(o : Set) — List o could be encoded as

Pi (El Typer Typey) (El Typey (Def "Prelude.List" [Var 0 []]))

| Fun Type Type

14

Fun is a term for representing the non-dependent function types. Its use is
almost the same as Pi, except that no new de Bruijn indices are introduced.
Note that both Pi and Fun represent types, which in Agda are also Terms.

| Sort Sort

The other kinds of types that a Term can represent, besides (dependent) func-
tion types, are sorts: Sety, Set; etc. These are represented by the Sort con-
structor.

| Lit Literal

Finally, a Term in Agda can be a literal. Although it not been used so far in the
examples, Agda supports integer, double, string and character literals. Their
internal syntax representation uses this auxiliary definition.

data Literal
= Litint Integer
| LitFloat Double
| LitString String
| LitChar Char

We will now give an example datatype definition in Agda internal syntax. Recall
the definition of our vector datatype:

data Vec (o : Set) : N — Set where
[] : Veca zero
u:{n: N} - a = Vean — Veca (sucn)

This is then compiled into three different Definitions, one for the type construc-
tor and one for each data constructor. The first is a Datatype and tells us about
the Vec type constructor:

let arg; = El Type; (Sort Typey)
argy = Fl Typey (Def "RunningExample.N" [])
res = Fl Type; (Sort Typeo)
in Defn "RunningExample.Vec"
(El Typey (Pi argy (El Type; (Fun argy res))))
(Datatype 1 1 ["RunningExample. []", "RunningExample._::_"])

First, it should be noted that in the name of readability, a few liberties have
been taken with the exact syntax: (Type n) has been written as Type,, to save
a bit on the number of parentheses. Also, we use Haskell’s let—in syntax to
divide the Definition into more intelligible parts.

That said, we will now explain the actual Definition for Vec.

e The first field is the fully qualified name of the thing defined, which is
RunningEzrample. Vec in this case.

e The second field of the Defn constructor is the Type of Vec. Again, the
internal syntax has already been type checked, and on almost every level
of the internal syntax terms are annotated with their type. In this case,
the Type field represents the type (o : Set) — N — Set, which is

15

indeed the type of the type constructor Vec. The outermost Type; tells
us that the type itself has type Set;.

Inside, we find a Pi constructor, which is the constructor specifying a
dependent function type. Pi itself has two fields: The domain and the
codomain of the function type. The domain type is here an element of
Setg (represented by T'ypeg) which is itself an element of Set; (represented
by Typey).

The codomain of the dependent function type is again a function type,
although this time non-dependent one, which is why a Fun instead of a Pi
constructor is used. The domain of this function type (argz) is N : Sety.
Def identifier arguments is the representation of an identifier applied to
a number of arguments; In this case, the identifier "RunningExample.N"
applied to no arguments at all.

This is also the first indication of another fact about Agda’s internal syn-
tax: There is no constructor for application. Instead, every constructor
representing something that might be applied to something has a list of
arguments (often empty) representing the things that it is applied to.

Finally, the codomain of the innermost Fun is the same as the first argu-
ment: Setg : Sety, represented by El Type; (Sort Typeo).

e The last field of this Definition, of type Defn, is a Datatype constructor:
Vec is a datatype (constructor). As Vec has one type parameter (a : Set)
and one type index (N), the corresponding fields both have 1 as their
value. The third field is the list of the names of its constructors, of which
Vec has two.

The second Definition is a Constructor and tells us about the data construc-
tor [].

let arg; = EIl Typey (Sort Typey)
res = El Typey (Def "RunningExample.Vec"
[Var 0 [], Con "RunningExample.zero" []])
in Defn "RunningExample. []"
(El Type, (Pi arg; res))
(Constructor 1 "RunningExample.Vec")

Again, we will describe the fields of the Defn constructor, although the first
field has nothing new and will therefore not be explained again

e The second field is the internal syntax representation of the type of the []
constructor, which happens to be {« : Set} — Vec a zero. Again, the
type of this type is Sety, represented by Type;. The type itself is once
more a dependent function type, and thus represented by a Pi constructor.
Its domain (arg;) is again a Sety : Set;. [] is a constructor of the Vec
datatype, so the codomain must ultimately be Vec applied to something,
which is itself an element of Set.

The arguments of Vec are what is new here: The first Var 0 [], is a local
variable applied to no arguments. The 0 is the variable name, or rather,
the de Bruijn index of the variable. In this case, Var 0 [] thus stands for
«a, the only argument of []. This also explains why both Pi and Fun have

16

two Type fields: Because of the use of de Bruijn indices as variables, Pi
can bind an argument without having to explicitly name it.

The second argument is Con "RunningExample.zero" []| and represents
the data constructor zero. Note that just like Def and Var, the Con
constructor has a list of arguments, too.

e The third field of the Defn is a Constructor constructor. It tells us that
the [] constructor has 1 parameter, and that the corresponding datatype
is Vec.

The third Definition that compiling the declaration of the Vec datatype
results in represents the _::_ constructor.

let arg; = El Typey (Sort Typey)
arg, = FEl Typeg (Def "RunningExample.N" [])
args = FEl Typeg (Var 1 [])
args = FEl Typeo (Def "RunningExample.Vec" [Var I [], Var 0])
res = El Typey (Def "RunningExample.Vec"
[Var 1 [], Con "RunningExample.suc" [Var 0 []]])
in Defn "RunningExample._::_"
(El Typey (Pi argy (El Typeo (Pi argy
(El Typey (Fun args (El Typeg (Fun args res))))))))
(Constructor 1 "RunningExample.Vec")

e The second field describes the type of _::_, which is
{a: Set} - {n:N} - a = Vecan — Veca (sucn)

Thus, _:: _is a constructor of 4 parameters (although its type is curried).
Except for the first parameter, which has a type of sort Set;, all param-
eters have types of sort Sety. The first two parameters are dependent,
i.e. their function type is a dependent function space. Therefore, they are
represented by a Pi constructor, whereas the other two parameters use a
Fun constructor. Then there are the types of the arguments themselves

arg; The first argument to _::_ is of type Sety.
args The second must be a natural number: Its type is N.

args The type of the third argument is the value of the most-recently-
but-one bound argument, that is, the value of the first argument.

arg, The fourth argument must be of type Vec a n, which is represented
by applying the identifier Def "RunningExample.Vec" to the most-
recently-but-one (Var 1 []) and the most recently (Var 0 []) bound
arguments.

The resulting value is then also a vector: n, being bound by the most-
recent (syntactically speaking) dependent function type, is represented by
Var 0 []. Then Con "RunningExample.suc" [Var 0 []] is the repre-
sentation of the application of the constructor suc to this n. Also, «,
being bound by the most-recently-but-one function type, is represented
by Var 1 []. Finally, Def "RunningExample.Vec" is applied to both the
representation of a and of suc n.

17

e The third field is of course again a Constructor constructor. It has one
point of interest: Tt says “1”, even though the Agda _::_ data constructor
has four arguments. The reason for this is that this “1” represents the
number of type parameters, of which _:: _has only 1; Its other parameters
are either type indices (in the case of {n : N}) or regular constructor field
parameters (in the cases of o and Vec a n).

2.2.2 Function definitions

An internal syntax Definition representing an Agda function will contain a Defn
with the Function constructor.

data Defn

| Function [Clause)
For example, take the definition of the vector append function (_+-)

_H : {a: Set}{mn : N} = Veecam — Vecan — Veca(m+ n)

[] 4 ys = ys
(z::x28) H ys = z:: (zs H ys)

This will then be compiled into the following Definition:

Defn "RunningExample. _++_"

type
(FPunction [clause;, clauses])

The type field in this Definition will be shown for completeness. However, as
it contains no new features of the internal syntax representation, it will not be
further explained.

argy = FEl Type; (Sort Typeo)

arg, = FEl Typeo (Def "RunningExample.N" [])

args = FEl Typeo (Def "RunningExample.N" [])

argy, = FEl Typey (Def RunningEzample. Vec [Var 2 [], Var 1 []])

args = FEl Typey (Def "RunningExample.Vec" [Var 2 [], Var 0 []])

res = FElTypeo (Def "RunningExample.Vec" [Var 2 [], Def "RunningExample._+_" [Var 1 [], Var

type = El Typey (Pi argy (El Typey (Pi args (El Typeg (Pi args
(El Typegy (Fun argy (El Typeg (Fun args res)))))))))

The representation of an Agda function clause is as follows

data Clause = Clause [Pattern] ClauseBody
data Pattern = VarP String
| ConP QName [Pattern]
| DotP Term
| LitP Literal
data ClauseBody = Body Term
| Bind ClauseBody
| NoBind ClauseBody
| NoBody

18

A Clause consists of a list of Patterns, representing the pattern constructors and
variables on the left hand side of the clause, and of a ClauseBody representing
the right hand side of the clause. A Pattern can be a pattern variable with a
certain variable name, or it can be a constructor pattern with a certain qualified
name and a list of Patterns. It can also be a DotP or a LitP, which will
be explained when necessary. A ClauseBody describes which of the pattern
variables of the Pattern list actually bind de Bruijn indices and which do not,
and finally describes the actual expression on the right hand side of the clause
if there is one.

The NoBody constructor requires some further explanation, as it is only used
for an Agda feature which has not yet been explained, namely, functions without
a right hand side. Suppose a datatype False is defined having no constructors
at all:

data Fualse : Set where

Under the Curry-Howard isomorphism, this datatype then represents the false
proposition, having no proof. Given this datatype we can then define the fol-
lowing function:

elim—False : {a : Set} — False — «
elim— False ()

This function then represents the principle of explosion, or ex falso quodlibet:
Given a value of type Fulse, we can produce a value of any arbitrary type.
The () here tells the Agda compiler that the function pattern matches on an
argument which cannot take any value at all, and thus it makes no sense to give
a right hand side for the function either as it cannot possibly be called.

Before showing the actual internal syntax that the first clause of our example
function _H_ is compiled into, it may help to show this clause without much of
its syntactic sugar.

—H—{a} {.zero} {n} [l ys = ys

There are two differences between this version and the original ([] H ys = ys):
First, its implicit parameters have been made explicit by placing them between
curly brackets (“{}”). Second, the second implicit parameter is a constructor
pattern prefixed with a dot. This tells Agda it should not actually pattern match
on this argument because its value can be inferred from the other patterns.
In this case, because the vector is empty ([]), its length must be zero. The
representation of this clause in internal syntax is this:

clause; = Clause
[VarP "a"
, DotP (Con "RunningExample.zero" [])
, VarP "n"
, ConP "RunningExample. [1" []
, VarP "ys"

]
(Bind (Bind (Bind (Bind (Body (Var 0 []))))))

Note that in internal syntax, all parameters have become explicit parameters.
Apart from that, the Pattern list should be self explanatory by now. However,

19

the ClauseBody deserves further explanation. It contains nested Bind construc-
tors for each of the VarP constructors in the Patterns, meaning that all variable
patterns actually do bind de Bruijn indices. The body of this function is then
Var 0 []: The most recently bound variable, which is VarP "ys". Note that as
de Bruijn indices are used, the variable names ("a", "n" and "ys") exist mostly
for debugging reasons.

We can now turn to the second clause. Before giving its internal syntax, we
will again first give a mostly-desugared version of this clause.

H{a}{(suem)}{n} (cu_{m}zas)ys = _u_z (—H_1zs ys)

Note in particular that the pattern variable m is bound by its occurrence as an
implicit field in the _:: _ constructor pattern. The value of the second (implicit)
pattern is then deduced by the type checker to be suc m, which is why the
second pattern is a dot-pattern.

We now show the internal syntax of the second clause of _H-_.

clause, = Clause

[VarP "a"

, DotP (Con "RunningExample.suc" [Var 3 []])

, VarP "n"

, ConP "RunningExample._::_" [VarP "n", VarP "x", VarP "xs"]

, VarP "ys"

}

(Bind (Bind (Bind (Bind (Bind (Bind (Bind (Body

(Con "RunningExample._::_"

[Def "RunningExample._+_" [Var 3 [], Var 4 []], Var 2 []
, Def "RunningExample._++_" [Var 6 [], Var 3 [], Var 4 [], Var 1

D)

As can be seen from the Pattern list, _+- has five parameters. The second
parameter uses a DotP constructor, which means for our purposes means that
it can be regarded as a variable: There will be no pattern matching on it,
and it binds a single de Bruijn index. The fourth parameter demonstrates that
variables can be bound from within constructor patterns. In fact, in the internal
syntax, patterns can still be nested arbitrarily deep. The order in which patterns
bind de Bruijn indices is textually from left to right: ys is referred to by Var 0,
zs by Var 1, z by Var 2 and so on.

2.2.3 Records

An internal syntax Definition representing an Agda record declaration will con-
tain a Defn with the Record constructor.

data Defn
| Record [QName]
Consider the declaration of our earlier List record:

record List (o : Set) : Set where
field

20

[], Var 0]]

length : N
vector : Vec a length

In internal syntax, this has been turned into the following Record definition

Defn "RunningExample.List"
(El Typey (Pi (El Typey (Sort Typeo)) (El Typey (Sort Typeo))))
(Record ["RunningExample.List.length", "RunningExample.List.vector"])

As can be seen from this definition, the type represents Sety — Setg, the type
of the List type constructor. Note also that the fields of the record are qualified
not only by the module RunningExample, but also by the newly introduced
record/module List.

In addition to this Record definition, two Function definitions are also gener-
ated. The first of these definitions represents the selector function for the length
field

Defn "RunningExample.List.length"
type

(Function [clause;])

type is actually the following

let arg; El Type;y (Sort Typeo)
argy = Def "RunningExample.List" [Var 0 []]
res = ElTypey (Def "RunningExample.N" [])
in type = El Type; (Pi argy (El Typeo (Fun (El Typey args) res)))

and represents the type of the RunningEzample.List.length selector function:
{a: Set} - Listaa - N

clause; = Clause [VarP "a", ConP "RunningExample.List" [VarP "x", VarP "x"]]
(NoBind (Bind (NoBind (Body (Var 0 [])))))

The Clause is more interesting: First, it can be seen that in Agda’s internal
syntax, one can pattern match on records just like on types defined using a data
declarations. The name of the record type is then used as the constructor name.
It should also be noted then when, in internal syntax, a record is constructed
in an expression, this is also done just as with normal datatypes. Here too, the
record name is used as the constructor. Second, in this pattern match, both
variables are called "x". Although this seems to lead to an ambiguity, it does
not actually do so as the variable names are ignored in favour of using de Bruijn
indices. The body of the clause shows that, from left to right in the text, the
first and the third pattern variables are not to be bound to de Bruijn indices.
For this reason, the second pattern variable can be referenced using Var 0 [].

The internal syntax definition of RunningExample.List.vector is similar and
will be omitted for brevity.

2.2.4 Axioms and primitives

data Defn

21

| Aziom
| Primitive String

What is called a “postulate” in Agda itself is called an “axiom” in the internal
syntax. Once one knows an axiom’s name and type, there is nothing more to
say about the axiom, so this constructor has no fields at all. Primitives are
only slightly more interesting from an internal syntax point of view. As the
compiler has to generate code for a primitive, it should know the exact name
of the primitive, without having to know in what module it was declared. The
primitives name is what the String field is for.

22

Introduction to GRIN

GRIN, or Graph Reduction Intermediate Notation, is a language designed for
compiler back ends for (lazy) functional languages. As its name suggests, it
is based on graph reduction, the common evaluation model for non-strict lan-
guages. GRIN is essentially a very simple functional language with explicit
evaluation order and support for expressing lazy evaluation.

Its most important features when compared to e.g. the more well known G-
machine, are that many things have been shifted from being primitive notions to
being expressible within the language. For example, closures are not a primitive
concept in GRIN, but can instead be represented as normal GRIN values. In
addition, GRIN exists in a number of “dialects”, differing mostly in how low-level
they are. For example, in the highest level there is an instruction implementing
call-by-need evaluation, whereas in the lower GRIN levels this has been replaced
by explicit update and fetch operations. Due to these properties, GRIN is very
suitable for all kinds of program transformations and optimizations.

We will now give a small example of what GRIN code looks like. Recall our
Agda vector append function (_+_) which, without most of its syntactic sugar,
looks like this

H:(a: Set)(mn :N) - Veecam — Vecan — Veca (_+_mn)
_H_a.zeron [] ys = ys
Hoa.(suem)n(_:_mazas)ys = _u_(_+_mn)zx (_H_ammnzsys)

This will be compiled into the following GRIN function:

_H— a m n vecl vec?
= ewval vecl;\vecl' —
case vecl’ of
(C[]) — eval vec2
(C_iom/ zxs) —
store (F_+_m/ n);\i —

23

store (F_+H—_am' n zs vec2); \zs —
unit (C_:_ i 29)

The first thing to note is that no longer is there any kind of type signature.
Indeed, GRIN is an untyped language. However, types in Agda are terms,
and the Agda-to-GRIN translator treats all terms as equals, so types do still
exist in the GRIN code as normal GRIN values. Second, it still looks quite
a bit like a functional program, which was to be suspected, as GRIN is still a
mostly functional (albeit very low level) language. However, as opposed to truly
functional programs, although like monadic programs, the ordering of execution
is explicit in this program: the z;\y — =z construct first executes z and then
executes z, with y bound to the result of 2. The other thing that is clearly non-
functional about this example is the use of eval and store. These two constructs
support the implementation of laziness in GRIN, and will be explained in the
next sections.

This example is the last GRIN program that will be shown as such in this
thesis; as GRIN is used as the back-end of our compiler, we are actually much
more interested in viewing the GRIN language as a set of datatypes than in
what its concrete syntax is. So it is the GRIN datatypes that the next sections
will focus on.

3.1 Bindings

Just like an Agda program, a GRIN program consists of a bunch of definitions,
or bindings.

data GrBind
= Bind HsName [HsName] GrExpr
| Rec [GrBind]

As GRIN is an untyped language there are only function (or variable) defini-
tions and no datatype declarations. There may be, however, mutually recursive
definitions. A GRIN function binding consists of the name of the function, the
list of its parameters (which are just simple names, no patterns like in Agda)
and the expression, or body, of the function.

3.2 Values

Before delving into the details of what expressions (GrEzpr) in GRIN look like,
we will first explain what values in GRIN are. Values in GRIN come in two
kinds, words and nodes.

e Words are most often pointers to nodes. A word may also be a primitive
integer: An integer value implemented directly on the level of machine
integers. Words are the only kind of values that can be passed to functions.

e Nodes are compound values. They correspond mostly to Agda or Haskell
(algebraic) datatypes. A node cousists of a tag and zero or more fields.
These fields themselves always contain words, not nodes. Nodes are the
only values that can be returned from functions in GRIN. The tag is used
to distinguish different constructors and determines the number of fields.

24

As functions always take words as arguments and return nodes, some converting
of values will often be necessary. GRIN constructs exist for storing a node value,
which yields a (pointer) word value, and for evaluating a pointer value, which
will return a node value. These constructs and their use will be explained in
more detail later.

The GRIN datatype corresponding to GRIN values, GrVal, contains one
important extra case: A GrVal may also be a wvariable. GrVal is defined as
follows:

data GrVal
= Var HsName

A variable can be one of a few things: A global identifier, a function parameter
(bound by a GrBind) or a local variable (bound by GrExpr_ Seq). A variable
may be either a word-value or a node-value.

| LitInt Int

The LitInt constructor is used to denote word-values that are machine integers.
Note that GRIN knows no literal pointers, making LitInt the only way to write
a word-value directly in GRIN code.

| Node GrTag [GrVal]

The Node constructor can be used to build a node-value. As can be seen in
the definition, a Node consists of a tag and zero or more values. Although not
enforced by the type, these fields may not be node-values themselves: They must
be word values. The definition of GrTag will be explained in a later section.

| BasicNode GrTag HsName
| EnumNode HsName

Finally, there are the constructors BasicNode and EnumNode. A BasicNode is
conceptually the same as a normal Node, but only works for primitive types like
machine integers. EnumNode is intended for simple enumeration types such as
Bool. Both are used to interface between normal GRIN functions and functions
built-in to the run-time system.

3.3 Expressions

data GrEzpr
= App HsName [GrVal]
| Call HsName [GrVal]

The first kinds of expressions in GRIN are two different ways of applying a func-
tion In both cases, the HsName (GRIN’s equivalent of Agda’s @Name) is the
identifier of the function to call, and the list of GrVal are the arguments to the
function. The difference is what identifiers can be passed: Call is intended for
applying known functions only, that is, applications where the function applied
is known statically. In practice, this means that the HsName in that case will

25

directly be the name of a global function. App on the other hand, expects the
HsName to be a function parameter or local variable. In other words, App is
for higher-order application.

| Unit GrVal

Unit can be used to “lift” a value to the expression level. It can be used to
bind a node to a variable name, but is most often used at the end of a function
definition to return a node.

| Ewval HsName
| Store GrVal

These are the constructs used to convert between nodes and words or, alter-
natively, to help implementing laziness. Ewal takes a variable name that must
be a pointer value, and evaluates whatever the value points to. The result will
be a node value. Store, on the other hand, takes a node value and stores it,
returning a word value pointing to the stored node.

| FFI String [GrVal]

FFI stands for “foreign function interface”. GRIN has no primitives for inter-
acting with the world outside GRIN. Instead, it provides the FFI instruction as
a way of calling arbitrary C-functions. The String argument tells the compiler
what function to call. Also, only pointers and some primitive types may be
passed to C.

| Seq GrExpr GrPatLam GrExpr

Seq stands for “sequence”. Seq e p es is what has been written as ej;\p — es
above, and first executes ey, binds the results to the pattern p and then executes
eo. The different forms of what GrPatLam can be will be explained later.

| Case GrVal [GrAlt)

In GRIN there is only one way of conditional control flow: Pattern matching
using Case expressions. The first argument to a Case constructor is the ex-
pression to pattern match on, and the second argument is a list of the different
cases, whose exact meaning will be explained later.

3.4 Tags

Every Node has a GrTuag, telling the compiler what kind of node it is. Ulti-
mately, when GRIN is compiled into even lower level intermediate languages
(and finally machine code), all tags will simply be machine integers, but while
in GRIN tags still have some structure.

data Grlag
= Con GrTagAnn Int HsName

The simplest kind of tag is a Con tag, which means that the Node represents a
constructor in Agda-country. A Con has three fields:

26

e A GrTagAnn is about constructor-arities. A GrTagAnn contains two Int
fields, the first of which is the arity of the constructor we are working with,
and the second is the maximum of the arities of all the constructors of the
datatype this constructor belongs to:

data GrTagAnn = TagAnn Int Int

e The Int field specifies the actual tag, that is, the number of the constructor
we are dealing with.

e Finally, the HsName is the name of the constructor, which is mostly for
debugging purposes.

Recall for example our earlier N datatype. Its zero constructor is be compiled
to the following GRIN GrVal

Node (Con (TagAnn 0 1) 0 "zero") []
and the Agda expression suc zero to
Node (Con (TagAnn 1 1) 1 "suc") [Var "x"]

where "x" would be a pointer to above zero node.

As indicated before, GRIN has no built-in closures, yet is intended as an in-
termediate language for lazy languages. Instead of directly supporting closures,
GRIN allows closures to be represented by ordinary Nodes with special tags.
The following GrTag constructors are intended for this goal:

| Fun HsName
| App HsName

Nodes with an App or Fun tag represent the application of a function. For
example, Node (Fun "f") [Var "x", Var "y"] is a node representing the ap-
plication of a function f to z and y. GRIN knows nothing about currying, so
this implies that f is actually a function with arity 2. The difference between
Fun and App is the same as with their GrEzpr equivalents: Fun is for known
and App for unknown functions. So in the above Fun "f", the name "f" should
be bound with a Bind. If it would have been a name bound by as a function
parameter, case pattern or seq pattern, it would have been App "f" instead.

| PApp Int HsName

Finally, a PApp stands for partial application, applying a function to less argu-
ments than it expects. The Int arguments indicates the number of arguments
that is still missing.

3.5 Case alternatives
Recall the Case constructor of the GrExpr datatype:
| Case GrVal [GrAlt)

Each branch of a Case construct contains a pattern and an expression:

27

data GrAlt
= Alt GrPatAlt GrExpr
data GrPatAlt
= PatAltLitInt Int
| PatAltNode GrTag [HsName]
| PatAltOtherwise

It can be seen that there are three possible patterns to match on: The first is
for pattern matching on literal integers, which map to the built-in integer type.
A PatAltNode matches on a certain tag and binds the remaining fields of the
node to the given HsNames. Finally, a PatAltOtherwise is a default case that
always matches and does not bind any variables.

3.6 Seg-patterns

The last GRIN datatype left to explain is GrPatLam, the type of the patterns
bound by Seq expressions.

data GrPatLam
= PatLamVar HsName
| PatLamBasicAnnot HsName
| PatLamBasicNode HsName
| PatLamEnumAnnot | GrTag] HsName
| PatLamEnumNode HsName

For now, the only important pattern is the PatLamVar: Seq e; (PatLamVar "x") e
simply means that in e, "x" will be bound to the result of e;. The other pat-
terns all for marshalling primitive types to and from C, and will be explained
when necessary.

3.7 An example

As the end of this GRIN introduction, this is the previous _+_ GRIN function
again, but this time shown directly as a data structure instead of a program.

Rec [Bind "_++_" ["a", "m","n", "vecl", "vec2"]
(Seq (Eval "vecl") (PatLamVar "vecl’")
(Case "vec1"
[Alt (PatAltNode (Con (TagAnn 0 3) 0 "[1") [])
(Fval "vec2")
, Alt (PatAltNode (Con (TagAnn 8 3) 1 "_::_") ["m’>","x", "xs"])
(Seq (Store (Node (Fun "_+_") [Var "m*", Var "n"])) (PatLamVar "i")
(Seq (Store (Node (Fun "_++_") [Var "a", Var "m*", Var "n", Var "xs", Var "vec2"]))
(PatLamVar "zs")
(Unit (Node (Con (TagAnn 3 3) 1 "_::_") [Var "i", Var "x", Var "zs"]))))
1))]

Compare the verbosity of the abstract syntax to the more simple version of the
GRIN concrete syntax shown on page 23.

28

Compiling Agda to GRIN

This chapter will start by comparing the structure of an archetypical Agda
internal syntax program to the GRIN code it is compiled into. A high altitude
overview will then be given of the structure of the implemented compiler. The
infrastructure created to aid this compilation will also be introduced. Then,
each part of the compilation will be discussed in detail.

4.1 Comparing an Agda and a GRIN module

This section will show the outline of a very simple but representative Agda
program and compare it with the Agda internal syntax program it is transformed
into. Then, the Agda internal syntax will be compared with the GRIN code it
is finally compiled into.

29

Agda Agda internal syntax

module A where module A where
data D; : Set where data A.D; : Set
Ci: Dy con A.Cy of A.D1 : A.D;
Co: Dy = Dy con A.Cy of ADI : ADy — A.Dy
type : ...
QCIyi_--- def :\0 — ...
1Cry = ol
module B where def :\A.C 0 — ...
open import A \A.C 0 — ...
data Dy : Set — Set where module B where
Cs :...Dy ... data B.D, : Set — Set
h con B.C3 of B.Dy : ... A.Dy ...
hey = ...f... fun B.h
{-# BUILTIN ... t #-} type : ...
postulate ¢ : Set def :\10 — ... Af ...
primitive prim : ... postulate B.t : Set

primitive B.prim : ...
BUILTIN ... B.t

The left column shows the outline of a simple Agda program consisting
of two modules with a few simple definitions. The right column shows the
corresponding Agda internal syntax in pseudo-syntax. The most important
differences between the structures of the Agda source and the Agda internal
syntax are:

e Datatype definitions have been split into separate definitions for the type
constructor and the value constructors.

e The separate parts of function definitions have been merged: The type
signature and each clause of a function is now part of one definition.

e Every non-local identifier is fully qualified in Agda internal syntax
e Parameter names have been replaced by De Bruijn indices.

The Agda internal syntax program will now be compared to the GRIN code
it is compiled into.

30

Agda internal syntax

GRIN

module A where
data A.D; : Set
con A.Cy of A.D1
con A.Cy of A.D1 :

: ADl

impossible = ...
SetX = ...
A_D1 = SetX

A.D1 — ADl A_Cl = ...

fun A.f A C20 = ..

type : ... Rec

def :\O > ... AfO =
fun A.g A g10 = case 1 of

type : ... A_Cy — ...

def :\A.C 0 — ... A_Cy — ...

\A.C 0 — ... B Dy 0 = SetX
module B where B C3...=...A Dy ...

data B.Dy : Set — Set Rec
con B.Cs of B.Dy : ... ADy ... B hi10 = A_f
fun B.h B t = SetX

type : ... -

def :\10 — ... Af ... B_prim ... = ...
postulate B.t : Set

primitive B.prim : ...
BUILTIN ... B.t

The most important differences between the structures of the Agda internal
syntax and the GRIN code are:

The module structure has disappeared: All modules are collapsed into one
set of GRIN bindings.

Some definitions are combined into Recursive groups.

All different types of Agda definitions are compiled into just one (the only)
kind of GRIN binding.

Even type constructors have become function bindings.

A few extra bindings are added: impossible and SetX. These might be
considered to form part of the run-time system.

No type signatures exist anymore

Primitive declarations are compiled into fixed pieces of GRIN code. Prim-
itive declarations can be considered as optional pieces of the run-time
systemmn.

No vestiges remain of the existence of built-in pragmas (although they are
still stored in a separate map of all built-in pragmas).

31

4.2 Compilation overview

This section will give an overview of compiling from Agda internal syntax to

GRIN. The top-level view of compiling Agda’s internal syntax to GRIN begins

by collapsing the module structure of the Agda internal syntax. As every name

in Agda internal syntax is already fully qualified, this is a rather simple task.
Then, a number of lookup tables are constructed:

e A table is constructed from all BUILTIN pragmas. Creating this mapping
serves two purposes.

— It links the information from BUILTIN pragmas for constructors to
the information from the BUILTIN pragmas for the corresponding
types. This allows the compiler to make requests such as “give me
all the constructors of whatever type I should use as BOOL”.

— It checks whether all the required BUILTIN pragmas have been given,
and whether they have been defined in a correct way.

e An arity lookup table is constructed.

This is a mapping from top-level identifiers to their arities. Note that, al-
though in Agda all functions are curried and thus have arity one, functions
in GRIN can have any (fixed) number of parameters, and this is used for
efficiency reasons.

This table is not used to find the arity of data, and in particular record,
value constructors though. The reason for this is that in Agda internal
syntax, record type and value constructors have the same name. However,
as in general they do not have the same arity, this mapping can only be
used for retrieving the arity of the record type constructor, and not for the
arity of the record value constructor. Then, in order to be able to treat
record and data types in the same way, we also do not use the mapping
for the arities of datatype constructors.

e The special name lookup table is created.

Agda’s identifiers cannot be used as such in GRIN: Agda identifiers can
contain almost any unicode character, while GRIN identifiers are limited
to a subset of ASCII. In addition, there is no one-one mapping from Agda
name spaces to GRIN name spaces. For these reasons, there is a somewhat
complicated renaming scheme from Agda names to GRIN names. Certain
names however (e.g. main and True) must be treated specially in order
to allow the run-time system to work correctly.

Thus, a mapping is created containing the translation for these special
names.

e Two datatype information lookup tables are constructed.

Two interlinked mappings are created containing information about de-
fined datatypes. One of these maps each datatype name to all information
about that datatype, and the other maps each constructor name to all in-
formation about that constructor. Note that during the creation of these
mappings, records are treated as (syntactic sugar for) datatypes with a
single constructor, and from that point on need no special treatment.

32

The next part then is the actual generation of GRIN bindings, which take
place in the following order.

1.

Compile postulates (described in more detail in section 4.3)

This part walks over all declared postulates, checks them for validity and
either emits the corresponding GRIN code or fails with an error message.

. Compile primitives (described in more detail in section 4.4)

This part walks over all declared primitives, checks them for validity and
either emits the corresponding GRIN code or fails with an error message.
Generate run-time system bindings

A few fixed GRIN bindings are always generated for later use by other
generated code.

Generate bindings for data/record type/value constructors (described in
more detail in section 4.7)

For each datatype and each data constructor, a GRIN binding is generated.
This is done based on the datatype information lookup table constructed
before, so records are treated as single constructor datatypes here too.

Check whether main has the right type.

Compile all functions, grouping them by mutual recursion group. (de-
scribed in more detail in section 4.8)

This ultimately results in a list of GRIN bindings. Then, EHC is used to compile
these GRIN bindings into a C' program, and GCC is used to compile and link
the C program.

In the following sections, all this will be explained in more detail.

4.3 Compiling built-in datatypes

The compiler supports two different classes of “built-in datatypes”™ Types that
are defined as perfectly normal Agda datatypes, but have special support in
the back end for primitive functions, and types that are defined in Agda as
postulates, and whose actual definition is created only in the back end. The
first class of built-in datatypes currently consists of the following types:

e N is the datatype of (peano) natural numbers.

In Agda, as in many other programming languages, it is possible to write a
special kind of comment called a pragma, which is used to tell the compiler
about various things that the compiler has to know about, but that do not
really fit into the language. For example, Agda allows the programmer to
use literal numbers, like 0 or 42. However, Agda does not have a primitive
type for numbers, so the programmer will have to use one of a fixed set
of compiler pragma to tell the compiler what to translate literal numbers
into. For example, the programmer could write

data N : Set where
zero : N

33

suc : N — N

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

Now, using these “BUILTIN” pragmas, the Agda compiler knows that the
literal 2 must be interpreted as suc (suc zero).

e Bool is also a perfectly normal Agda datatype

data Bool : Set where
false : Bool
true : Bool

However, the compiler supports special pragmas for it

{-# BUILTIN BOOL Bool #-}
{-# BUILTIN FALSE false #-}
{-# BUILTIN TRUE true #-}

When these built-in pragmas are used, the Agda front end checks that Bool
is indeed a valid type for use as a boolean. (e.g. that it has exactly two
constructors, both of which are nullary, etcetera. Note that Agda does not
care what names are used.) The back end then uses the information from
the built-in pragmas to be able to construct boolean values in primitive
functions like primlIntegerEquality : Integer — Integer — Bool.

The other class of built-in datatypes consists of two types

e Integer is a datatype that can be defined and used as follows

postulate

Int : Set

{-# BUILTIN INTEGER Int #-}
primitive

primlIntegerPlus : Int — Int — Int

An Int value is then implemented as a machine integer

e World is a datatype used for the implementation of monadic IO. It can
be defined as follows:

postulate

World : Set

{-# BUILTIN WORLD World #-}
primitive

primPutInt . Int — World — Int

Its further use will be explained in section 4.9.

34

4.4 Compiling primitives

When the compiler encounters a primitive, it proceeds as follows: First, it
checks whether the GRIN back end actually supports this particular primitive,
and terminates with an error message if it does not. Otherwise, it checks what
names to use for the primitive function itself and, if necessary, for the built-in
types it uses, and generates the hard coded definition for the primitive using
these names.

4.5 Renaming identifiers

Renaming identifiers from Agda to GRIN follows the following main scheme:
Qualified names in Agda (QName) contain a magic number that is unique
for each name. We take the last part of the qualified name, and add the
magic number as a suffix, and add an underscore (_) as a prefix. For example,
RunningExample. Vec might become Vec 42. The underscore is added to all
user defined Agda names to ensure that no collisions can occur with internally
generated names, which never start with an underscore. The last part of the
qualified name is added merely to make the intermediate GRIN code somewhat
more readable for compiler debugging purposes. The magic number added at
the end is what actually guarantees each name to be unique, a property which
is required in GRIN. In addition, we may have to escape part of the name, as
Agda identifiers can use almost any valid Unicode character, while GRIN only
supports a more limited subset.!

There are, however, three classes of names that do not follow the previous
renaming scheme:

e The EHC back end expects a few constructs to have certain names in
order to be able to interface with some primitive functions. For example,
the compiler must be able to generate code for the primitive function
primIntegerEquality :: Int — Int — Bool. In order to generate the
Bool values to return, they are required to be called FALSE and TRUF in
GRIN. Another example is that the compiler must be able to find the main
function. Therefore, care is taken to ensure that the boolean constructors
are renamed to FALSE and TRUEF, and that the Agda function main is
called main in GRIN.

e The second class is the class of value constructors. When defining a
datatype one declares, among others, the name of the datatype construc-
tor, and the names of the value constructors. However, when declaring a
record, one does not explicitly declare the name of its one value construc-
tor: After all, records values are always constructed using record {...} in
Agda. Unfortunately, within Agda internal syntax however, both record
types and record values simply use the name of the record type construc-
tor. To prevent nasty clashes between them, we use a separate namespace

L BHC does in fact do its own escaping of GRIN identifiers when compiling further down
to C, but is tailored to escaping the characters which can occur in Haskell but not in C.
Agda’s set of valid characters for use in identifiers is larger than Haskell’s, so EHC’s escaping
is unfortunately inadequate for our purposes.

35

for value constructors: For both datatype and record types, all value con-
structors are prefixed not with _ but with con . In this manner, we do
not run into conflicts between type and value constructors while still being
able to otherwise treat datatypes and record types in the same way in our
back end.

e Finally, some GRIN bindings are added for which we generate our own
names without any renaming at all. For example, bindings are always gen-
erated for the GRIN value SetX, which is the value that all types reduce
to in our GRIN implementation, and impossible, which is a special value
that aborts the problem with an error message and is used in cases where
GRIN expects some code, but that we know are actually unreachable. In
addition to that, when compiling Agda lambda’s and pattern matching
code, we often generate internal helper functions whose names we always
prefix with, respectively, lam _ and alt .

4.6 Modules

The first interesting piece of code of the compilation overview is

let defs = mainModuleDefinitions U otherModulesDefinitions
builtins = mainModuleBuiltins U otherModulesBuiltins

This is (apart from a few minor renaming issues) the only part where special
care has to be taken to support Agda modules. The implementation of support
for modules works as follows: The compiler first retrieves from the Agda front
end the definitions and information about “BUILTIN” pragmas of the “main”
module. Then, it asks an Agda utility function to construct a list of all modules
used by the “main” module (directly or indirectly through other modules). This
list is then used to retrieve the definitions and information about the “BUILTIN”
pragmas of these modules. For brevity, the part so far has not been shown in
the overview.

In Agda’s internal syntax, all identifiers are already globally unique (due to
the fact that they are already fully qualified, and there are no local names), so
it is then a simple matter to union all definitions of both the “main” module and
all the visited modules together. For built-ins the situation is only slightly more
complicated: Multiple modules may contain “BUILTIN” pragmas for the same
types, but they will then all be exactly the same. Therefore, the union-function
used for built-ins does not require the built-in mappings to be entirely disjoint:
There may be, for example, two built-ins for NATURAL, but if one of them says
N, the other has to say exactly the same. This merging of modules happens in
the code shown above.

From then on, we can go on compiling as if there was only one big module
from the start. As GRIN is a language meant for whole program compilation
anyway, this does not impede separate compilation either.

4.7 Datatypes and records

Compilation of datatypes consists of two separate parts. During the first part,
all information from the internal syntax program about datatypes and records

36

is collected into one single data structure. The second part consists of iterating
over this data structure and generating various GRIN bindings based on what
is found in this structure.

The reason behind this split is that during compilation of other parts of
the program (e.g. while compiling functions, or primitives) the compiler often
needs to know all kinds of information about constructors used there. Therefore,
constructing the big datatype information data structure is one of the first things
the GRIN back-end does.

In both parts, records are treated as a special case of datatypes.

4.7.1 Preprocessing datatype and record definitions

The first step in compiling datatypes consists of iterating over them all and
creating a data structure containing all the information about type and value
constructors. In particular, two mappings are created:

e from datatype (or record) name to a Datalnfo value holding information
about that datatype (or record type) (Map QName Datalnfo)

e from datatype (or record) value constructor to a ConstructorInfo value
holding information about that constructor (Map QName ConstructorInfo)

Datalnfo is defined as follows:

data Datalnfo = Datalnfo
{diName :: HsName
, diArity 2 Int
, diMazxConArity :: Int
, diConCount ;o Int
, diCons i [ConstructorIngfo]

}

It consists of the name of the datatype, the arity of the type constructor, the
maximum arity of all its value constructors, the number of constructors it has
and a list of the corresponding ConstructorInfo values. ConstructorInfo has the
following definition:

data Constructorinfo = ConstructorInfo
{ciName :: HsName
,ctTagNr = Int
, ciArity :: Int
,ciData :: Datalnfo
}

It contains the name of the constructor, the tag number that will represent this
constructor when the program is finally compiled from GRIN to C (or some
other low-level back-end language), the constructor arity and the corresponding
Datalnfo.

4.7.2 Creating GRIN bindings

Once all needed information about datatypes defined and used in the program
has been collected, the compiler can proceed to the second step in compiling

37

datatypes: GRIN bindings need to be generated for all these types and con-
structors.

However, there are also types used in each Agda program that have no
definition in the internal syntax program: Sety, Set; etcetera. In GRIN, these
types are all collapsed into one type called SetX. Note that this has little to do
with the possibility of having Set : Set, because GRIN is an untyped language
anyway. A binding SetX is generated as if SetX where a nullary constructor of
a singleton type. As we will shortly see, SetX is also slightly abused for another
purpose.

Then, the compiler iterates over all items in the Datalnfo mapping and for
each datatype performs the following actions:

e A GRIN binding is generated of the same name and arity as the type
constructor, that returns the value SetX. Note that this means that any
Agda type application such as e.g. Vec Bool N will, when compiled to
GRIN, ultimately evaluate to SetX. This is not the right answer, as
Vec would ideally be a true constructor and Vec Bool N a normal form.
However, as we have no type case, there is no way to distinguish different
types and we can get away with this shortcut.

e In addition, one binding is generated for each value-level constructor. This
GRIN binding has the same name and arity as the corresponding con-
structor.? When called, it constructs a GRIN Node corresponding to the
desired constructor. Now, if a constructor is encountered while compiling
Agda internal syntax expressions, the compiler can simply emit a call to
the function of the same name, without needing to worry whether the
constructor call is fully saturated or not.

4.8 Compiling functions

The compilation of Agda internal syntax functions starts with the following
piece of code:

mapM _ (genRecBindGroup o mapM _ compileFunction)
$ groupMutuals functionDefinitions

First, a list of all Agda internal syntax functions is retrieved and grouped into
sets of mutually recursive functions using groupMutuals. This is quite easily
done, as each function contains a “mutually recursive set ID”. Then, each func-
tion in each list of mutually recursive functions is independently compiled into
one or more GRIN bindings using compile Function. Finally, genRecBindGroup
wraps each set of mutually recursive GRIN bindings into a Rec construct.

The rest of this section will be about compileFunction, which compiles a
single Agda internal syntax function into one or more GRIN bindings. The
work performed by this function consists of two major parts:

e Compiling the left-hand side side (that is, the patterns) into GRIN pattern
matching code.

2Note that in case of record types a constructor has been invented to make records fit in
the general datatype scheme.

38

e Compiling the right-hand side (an Agda internal syntax expression) into
GRIN code.

These will be explained in more detail in the following sections.
The following is an overview of how compilation of a function proceeds:

compileFunction :: Definition — GrinT TCM ()
compileFunction definition = do
— Disconnect LHSs from RHSs
let funName = defName definition
clauses = funClauses (theDef definition)
(pmcClauseNums, numToBruijn Term)
= disconnectCaseRHSs (genPMClauses clauses)

— Compile LHSs (pattern match compilation) into a CaseTree

args < genArgs o length o clauseArgs $ head clauses

caseTree < compPatMatchClauses freshGrinName freshDummyName
(LZ.fromList args) pmcClauseNums

— Compile RHSs into GRIN code,
— top-level-lifting each duplicated RHS into a function first
let rhsinfoMap = M .intersectionWith (,) numToBruijnTerm
$ M.fromListWith (const $ first succ)
[(num, (1, transMap))
| (transMap, Just num) < F.toList caseTree]
rhsMap < traverse (compCaseRHS (un@QName funName)) rhsInfoMap

— Reconnect RHSs to the LHSs that have become a CaseTree.
— (Add error-code for any remaining “impossible” cases.)
let caseTree’ = maybe
(GrExpr _Eval $ HNm "impossible")
(mapIndex "compileFunction" rhsMap)
o snd
< $ > caseTree

— Compile CaseTree into a GRIN binding

hsFunName < getHsName funName

execExprT [] (compileCaseTree caseTree’)
>= genBind hsFunName args

4.8.1 Compiling a functions’ left-hand side: Patterns

In Agda’s internal syntax, the left-hand side of each function clause consists of
a number of potentially nested patterns. At run-time, the first clause whose
patterns match the actual arguments passed to a function is actually executed.
In GRIN however, a function has no patterns at all. Instead, a function has a
number of arguments that are simple variables. When called, a function may
perform case analysis on these variables, one at a time and not nested. Thus,
an Agda function consisting of one or more clauses that match on one or more
patterns must be compiled into a GRIN function that has only variables as its
arguments, and then chooses which right-hand side to execute by performing
case analysis (effectively in the form of a decision tree) on these arguments.

39

Unfortunately, during this compiling of multiple function clauses into one
function definition with an explicit case tree, right-hand sides could get dupli-
cated. As an example, consider the boolean AND operator:

A : Bool — Bool — Bool
true N true = true
_ AN = false

When compiling this into GRIN, it will ultimately become

Bind "_&&_" ["al", "a2"|
(Seq (Ewval "a1") (PatLamVar "v1i")
(Case "v1"
[Alt (PatAltNode (Con (TagAnn 0 0) 1 "true") [])
(Seq (Eval "a2") (PatLamVar "v2")
(Case "v2"
[Alt (PatAltNode (Con (TagAnn 0 0) 1 "true") [])
(Unit (Node (Con (TagAnn 0 0) 1 "true") []))
, Alt PatAltOtherwise
(Unit (Node (Con (TagAnn 0 0) 0 "false") []))
1))
, Alt PatAltOtherwise
(Unit (Node (Con (TagAnn 0 0) 0 "false") []))

D)

Note that the right hand side false, which occurs only once in the Agda code,
occurs twice in the GRIN code. In this case that is not a problem, as false is
a very small expression. In general however, compiling pattern matching can
cause arbitrarily large expressions to be duplicated a number of times.
Therefore, extra care is taken to prevent such duplication by lifting each
right-hand side expression that will be duplicated into its own function. In this
way, only the call to such a new function will be duplicated, thereby bounding
the amount of duplicated work. It is for this reason that the above overview
of function compilation is more complicated than a simple “first compile the
left-hand sides of each function, and then compile the right-hand sides”.

PMClauses

When compiling the left-hand side of a function, the first step consists of trans-
forming the function definition from Agda’s internal syntax into our own types
for pattern matching clauses:

data Pat con var
= PatVar var
| PatCon con [Pat con var]
data PMClause con var a
= PMClause (ListZipper (Pat con var)) a

A ListZipper a is just a list with a cursor, or “current location”, enabling some
operations to be performed much more efficiently than with a normal list. We
use a function genPMClauses to generate these PMClause values based on the
Agda internal syntax.

40

genPMClauses :: [Clause] — [PMClause QName Nat (Maybe Term)]

We use QName for constructors and Nat (de Bruijn indices) for variables here,
just like in the original Agda internal syntax. Note that the right-hand side is
still in Agda internal syntax (that is, a Term). However, as this may be an
impossible case, there may not be a right-hand side: Hence the Maybe Term.

The next step is necessary to prevent duplicating the right-hand sides. Given
a list of (pattern matching) function clauses, it returns these function clauses
with each Term replaced by a separate natural number, together with a mapping
that identifies each such natural number with the corresponding Term.

disconnectCaseRHS's
[PMClause con var (Maybe a)]
— ([PMClause con var (Maybe Nat)], Map Nat a)

Thus, instead of duplicating arbitrary terms, we will duplicate natural numbers,
which can be easily tested for. When such duplication is then found, we will not
substitute the original expression again, but only a call to the top-level-lifted
version of such an expression.

These functions are then combined to translate an Agda internal syntax
function definition into a list of pattern match clauses with numbers for right-
hand sides, called pmcClauseNums, and a mapping from these numbers to the
real right-hand sides, numToBruijnTerm.

compileFunction definition = do
— Disconnect LHSs from RHSs
let funName = defName definition
clauses = funClauses (theDef definition)
(pmcClauseNums, numToBruijnTerm)
= disconnectCaseRHSs (genPMClauses clauses)

Compiling into CaseTrees

The next step is the actual pattern match compiling, which turns a list of
PMClauses into a CaseTree:

data CaseTree con var a
= Leaf a
| Impossible
| Branch var [(Maybe (con, [var]), CaseTree con var a)]

A CaseTree has three constructors:

o A Leaf is a trivial CaseTree. It is used for a single term without any
pattern matching.

e Impossible is used for functions with no clauses at all. (e.g. False-
elimination.)

e Branch var alts pattern matches on wvar, and alts is a list of alterna-
tives. Each alternative consists of a pair, of which the first element is a

41

Maybe (con,[var]), which can be either a Nothing, implying a default-
case, or a Just, in which case the con is the constructor it matches and
the [var] the list of variables that the fields of con are bound to. The
second part of an alternative is again a CaseTree.

The function that actually turns the list of PMClauses into a CaseTree is
compPatMatchClauses:

compPatMatchClauses
(Monad m, Functor m, Ord con, Ord var)
= (String — m var’)
— (String — m var)
— ListZipper var’
— [PMClause con var a]
— m (CaseTree con var’ (Map var var', a))

When called as compPatMatchClauses freshNamel freshName2 funArgs pmcs,
the first two arguments are functions generating fresh variable names for the
two (potentially) different types of variables used. funArgs is the list(zipper)
of variables that the patterns in the PMClauses are actually matching on, and
pmecs is are the clauses themselves. Finally, a CaseTree is returned. Note that
the leaves of the returned CaseTree contain not only the right hand sides of the
original clauses, but also a substitution for the variables in the PMClauses: The
variables bound by the CaseTree are not (and cannot be, in general) the same
variables as those bound by the original clauses.
This function is used as follows:

— Compile LHSs (pattern match compilation) into a CaseTree

args <+ genArgs o length o clauseArgs $ head clauses

caseTree < compPatMatchClauses freshGrinName freshDummyName
(LZ.fromList args) pmcClauseNums

First, the correct number of GRIN function arguments is created, after which
the PMClauses (called pmcClauseNums) are compiled into a CaseTree (called
caseTree). This value caseTree is of type CaseTree QName HsName (Map Nat HsName, Maybe Nat).

Compiling each right-hand side exactly once

At this point, we can find out what right-hand sides are in danger of being
duplicated, simply by checking which numbers occur more than once in the
CaseTree. Depending on this, we will now do one of two things:

e If a number occurs exactly once, we can simply compile the corresponding
Agda internal syntax Term into a GRIN GrEzpr, of course also using the
substitution returned by compPatMatchClauses.

e If it occurs more than once, we lift the corresponding Term into the top-
level and then compile it into GRIN. That is, the right-hand side is pa-
rameterized by all the variables in scope, and becomes a GrExpr inside
of a completely new top-level GRIN GrBind. Then a GRIN expression
calling this new GRIN function with the correct arguments is substituted
for the original right-hand side.

42

The code in the function definition compiler doing this is:

— Compile RHSs into GRIN code,
— top-level-lifting each duplicated RHS into a function first
let rhsInfoMap = M .intersectionWith (,) numToBruijnTerm
$ M.fromListWith (const $ first succ)
[(num, (1, transMap))
| (transMap, Just num) < F.toList caseTree]
rhsMap < traverse (compCaseRHS (un@QName funName)) rhsInfoMap

Based on the previously constructed values caseTree and numToBruijnTerm,
this creates a value rhsinfoMap :: Map Nat (Term, (Int, Map Nat HsName)),
which maps each number representing a right-hand sides to all information that
is needed to compile such a right-hand side:

e An Agda internal syntax Term.
e An Int that is the occurrence count of the right-hand side in the CaseTree.

e A Map Nat HsName that translates de Bruijn numbers as used in Agda
internal syntax to GRIN HsNames.

This mapping is then traversed using the function compCaseRHS. That is,
compCaseRHS is applied to each value in the mapping, and a new mapping
is created where each key maps to the result of compCaseRHS applied to the
original value.

compCaseRHS
String
— (Term, (Int, Map Nat HsName))
— GrinT TCM GrEzpr

compCaseRHS then performs the check explained at the start of this section
and either

e compiles the expression directly into GRIN code using compile TermToNode.
This function is described in more detail in section 4.8.2.

e or lifts it to its own top-level function using liftCaseRHS, which in turn
also calls compileTermToNode.

The liftCaseRHS function has the following type

liftCaseRHS
String
— [HsName]
— Term
— GrinT TCM GrEzpr

and works as follows: liftCaseRHS name listOfVariablesInScope term, it gen-
erates a function with a name based on name (in practice, name will be the
name of the Agda internal syntax function that is being compiled) and with one
argument for each variable in scope, that when called evaluates whatever the
Agda internal syntax term is compiled to. It also returns a GRIN expression
that performs such a call.

43

Reconnecting left-hand and right-hand sides

So far, we have compiled the left-hand sides of all function clauses into one
big CaseTree pointing to numbers representing right-hand sides, and we have
compiled each right-hand side into GRIN expressions. The next step, therefore,
is to replace these numbers by the GRIN expressions they represent. This is done
by the following code, with a few minor complications: The CaseTree doesn’t
actually point directly to Nat, but to (Map Nat HsName, Maybe Nat). The first
part, the variable substitution, is no longer relevant and can be trivially thrown
away. The second part is a Maybe Nat, because some function clauses may
not actually have any right-hand side due the clause matching on impossible
cases. This is easily solved by substituting some GRIN code that aborts the
program with an error message in such cases. Note that ideally, such cases do
not occur at all: As long as no “unsafe” Agda features are used, “impossible”
really means “impossible”, in which case such impossible clauses can simply be
optimized away.

— Reconnect RHSs to the LHSs that have become a CaseTree.
— (Add error-code for any remaining “impossible” cases.)
let caseTree’ = maybe

(GrExpr_Eval $ HNm "impossible")

(mapIndex "compileFunction" rhsMap)

o snd

< $ > caseTree

Compiling CaseTrees

The only thing left to do is to compile the resulting CaseTree into GRIN case
analysis code, and generate the actual GRIN binding:

— Compile CaseTree into a GRIN binding

hsFunName < getHsName funName

execEzprT [] (compileCaseTree caseTree’)
>= genBind hsFunName args

This uses the function compileCaseTree, which turns a CaseTree of GRIN ex-
pressions into a GRIN expression itself:

compileCaseTree
CaseTree QName HsName GrExpr
— EzprT (GrinT TCM) GrEzpr

This function simply recurses trough the CaseTree, turning it into a number of
nested GRIN GrExzpr _Case expressions. The resulting GrEzpr is finally turned
into a GRIN binding using the aforementioned genBind and erecExprT.

4.8.2 Compiling a functions’ right-hand side: Expressions

We have now seen an overview of how a function is compiled into GRIN, and we
have seen the details of compiling the left-hand side. A more in-depth explana-
tion of compiling the right-hand side of a function — that is, expressions — will

44

now follow. Compiling the right-hand side of a function always begins with the
function compCaseRHS (see section 4.8.1), which either directly or indirectly
via liftCaseRHS calls the function compile TermToNode. This function is one of
two functions that recursively call each other to perform the actual compilation
of an Agda internal syntax Term into a GRIN GrExpr:

compileTermToNode :: Term — ExprT (GrinT TCM) GrExpr
compileTermToWord :: Term — ExprT (GrinT TCM) GrVal

compileTermToNode compiles the right-hand side of a function — an Agda in-
ternal syntax term — into a GRIN expression that returns a node value. In
the process of doing so, it may use genFEzpr to emit “statements’ calculating
intermediate results (or more properly, to emit GRIN expressions that will be
later combined into the function body using Seq). compileTermToWord is a
close cousin to compileTermToNode that compiles a Term into a word value.
The difference is that where the final return value of compileTermToNode is
an expression returning a node value, compile TermToWord returns the name
of a variable to which the wanted word value has been assigned. Another way
of looking at this is that the result of compileTermToNode is a GRIN expres-
sion that, when executed computes the weak head normal form (WHNF) of
the compiled Term, whereas compile TermTo Word returns a pointer to a thunk
representing the compiled Term.

We will now describe compileTermToNode in more detail. This function
performs case analysis on the Term and uses the result to decide what kind of
GRIN code to generate. Recall the definition of Term:

data Term
= Con QName [Term)|
| Def QName [Term]
| Var N [Term]
| Lit Literal
| Lam Term
| Fun Type Type
| Pi Type Type
| Sort Sort
An explanation will follow of what GRIN code it generates for each of these
constructors.

e Con QName [Term)|

When compileTermToNode encounters an Agda internal syntax value con-
structor, it first looks up the arity of the constructor and the name it
will have in the generated GRIN code, and then calls a utility function
compCallToNode with this name, arity and the arguments passed to the
constructor. This function will then construct the correct GRIN code to
call the corresponding GRIN constructor function.

e Def QName [Term]

This is treated almost the same as the previous constructor. The arity
of the global binding (which may be any non-value-constructor global

45

identifier) and its GRIN name are looked up, after which compCallToNode
takes care of constructing the actual call.

There is one exception though: If the QName has the value primNatTolInteger,
which is a primitive function intended to efficiently convert user-defined
Peano numbers to efficient machine integers, and if it is applied to an inte-
ger literal, then we do not generate the code to construct the Peano number
together with a call to primNatTolnteger to convert it to a machine inte-
ger. Instead, we immediately insert wanted machine integer. Using this
hack, the programmer may write code such at primNatToInteger (1000000 :
N) : Int without being afraid that a million suc-constructors will be cre-
ated and processed.

e Var N [Term]

For locally bound variables, there are two possibilities: If the Var has no
arguments, simply emit an Fval GRIN construct. If it does have argu-
ments, we perform the following steps:

— Emit an Fval constructo to evaluate the variable name.

— QCall compileTermToWord once for each of the arguments. This effec-
tively generates GRIN code that creates thunks for the arguments.

— Emit an App construct with the evaluated variable as function and
the thunks as arguments.

o Lit Literal

At the moment, the only literal values supported are integers. These are
currently compiled into Peano naturals using the built-ins NATURAL,
SUC and ZERO as explained in section 4.3.

o Lam Term

GRIN does not support lambdas, so we build a lambda-lifted top-level
function for the lambda using the function lambdaLift Term: GRIN does
not support lambdas, so whenever we find a (nested) A-abstraction, we
create a new function with as its arguments all the variables in scope at
the point where the A occurred and the parameters of the (nested) A itself.
This is done using the following function:

lambdaLift Term
Term
— ExprT (GrinT TCM) (HsName, Nat, | Term])

Then, compCallToNode is used to construct GRIN code to partially apply
this new top-level function to the variables in scope.

o Fun Type Type, Pi Type Type, Sort Sort

As explained in section 4.7.2, the Set,, hierarchy has been collapsed in
GRIN, and even normal types are compiled down to SetX. Therefore, all
these constructors are simply compiled to an Fuval of SetX.

compileTermToWord is very similar to compileTermToNode, although it of
course uses compCallToWord as its most important utility function. The im-
portant helper functions compCallToNode and compCallToWord will now be
explained.

46

Compiling function calls

The compCallToNode and compCallTo Word functions have the following type
signature:

compCallToNode :: HsName — Nat — [Term] — EzprT (GrinT TCM) GrExpr
compCallToWord :: HsName — Nat — [Term] — FExprT (GrinT TCM) GrVal

That is, given the name of the function that should be called, its arity, and its not
yet compiled arguments, it constructs GRIN code to execute this call. The first
action performed by both compCallToNode and compCallTo Word is to compile
the not yet compiled arguments into GRIN words, using compile TermToWord.
What happens then depends on the arity of the function and on the actual
number of arguments it is being passed.

compCallToNode name arity args = do
args’ < mapM compileTermToWord args
let nArgs = L.genericLength args
case (arity, arity ‘compare’ nArgs) of
(0,GT) — error "impossible: length args < O"
(0,EQ) — return $ GrExpr_Eval name
(0,LT) — do
f « genFreshExzpr $ GrExpr _Eval name
return $ GrExpr App [args’'
(o, GT) — return $ GrEzpr_Unit
$ GrVal _Node (GrTag PApp (fromIntegral $ arity — nArgs) name) args’
(L, EQ) — return $ GrEzpr_Call name args’
(o, LT) — do
let (argsl, args2) = splitAt (fromIntegral arity) args’
f < genFreshExpr $ GrEzpr _Call name argsl
return $ GrExpr App f args2

Let us first consider the case where the arity of the function is zero. This
means that the GRIN bindings really doesn’t represent a function but a constant
applicative form. Then there are three further possibilities:

e The arity is greater than the number of arguments passed. As we already
know the arity is zero, this means that a negative number of arguments is
being passed. This is obviously nonsense, so we had better terminate the
compiler with an error message.

e The arity is equal to the number of arguments passed. That is, no ar-
guments are being passed at all. In this case we can simply evaluate the
global binding.

e The arity is smaller than the number of arguments passed. This means
that although the global GRIN binding has arity zero, it will evaluate to
a function. Therefore, we generate code to evaluate the binding, and call
the resulting function with the passed arguments.

The other alternative is that the arity of the function being called is greater
than zero. In that case, there are again three possibilities:

47

e The arity is greater than the number of arguments actually passed. In
other words, the function is being partially applied. Therefore, we have
to create a “P(artial) Application” Node.

e The arity is equal to the number of arguments passed. This is the one
case where we can actually create code to do a perfectly normal function
call, which is what we do.

e The arity is smaller than the number of arguments passed. We first gen-
erate code to call the function with as many arguments as it wants, like in
the previous case. This function call will then evaluate to another func-
tion. We generate additional code to apply the resulting function to the
remaining arguments.

compCallToWord is a variation on the same theme. When compCallToNode
has a simple name it must evaluate it to create a node, while compCallTo Word
can simply return the name. On the other hand, function calls cannot be ex-
ecuted directly. Instead, nodes are created and stored representing such calls,
and the pointer to such a node is returned. To help keep things manageable,
we add a few helper functions to create code for storing such nodes.

storeApp :: HsName — [GrVal] — GrExpr
storeApp fun args
= GrEzpr_Store $ GrVal_Node (GrTag _App (HNm "_"))
(GrVal_Var fun : args)
storeFun :: HsName — [GrVal] — GrExpr

storeFun fun args
= GrEzpr_Store (GrVal _Node (GrTag _Fun fun) args)

storePApp :: Int — HsName — [GrVal] — GrEzpr

storePApp n fun args
= GrEzpr_Store (GrVal _Node (GrTag PApp n fun) args)

One more thing to note about this is that storing an application of an un-
known function is actually using an internal GRIN function called _ to do the
actual call. The function to call is passed as its first argument. The code for
compCallToWord follows for completeness.

compCallToWord name arity args = do
args’ < mapM compileTermToWord args
let nArgs = L.genericLength args
GrVal _Var ‘lift M*
case (arity, arity ‘compare* nArgs) of
(0, GT) — error "impossible: length args < O"
(0,EQ) — return name
(0,LT) — do
f « genFreshExpr $ storeFun name []
genFreshExpr $ storeApp f args’
(o, GT) — genFreshExpr $ storePApp (fromlIntegral $ arity — nArgs) name args’
(., EQ) — genFreshExpr $ storeFun name args’
(o, LT) — do
let (args1, args2) = splitAt (fromIntegral arity) args’

48

f < genFreshEzpr $ storeFun name argsl
genFreshExpr $ storeApp f args2

4.9 10

10 in GRIN works by defining main to be of type World — Int. The Int is a
GRIN built-in machine integer, and World is a magic token type that may or
not be optimized away. In Agda, both these types are brought into scope by a
postulate declaration and marked with a BUILTIN pragma.

Note that, as far as the compiler is concerned, main need not be referentially
transparent. E.g., the use of the primitive function primPutint : Int —
World — Int easily breaks referential transparency. It is up to the designer
of the prelude to encapsulate this functionality in a referentially transparent
way, most likely by defining World to be an abstract and private type, and
by only exposing a set of combinators that cannot be used in such a way to
break referential transparency. For example, in the following example, World
is defined to be private and therefore invisible in other modules, and IO is
declared abstract, so the fact that IO a is really World — a is also invisible
outside of this module. Then, two combinators return and = are defined,
making /0 into a monad. This monad is essentially a reader monad over World,
but makes sure of proper sequencing of side effects using the primitive primSeq
function, which returns its second argument after evaluating its first argument
to weak head normal form. Finally, primPutInt is defined to be private, and
thus invisible outside of the module. The only way to use it is through the putint
function, which doesn’t use the type World but IO and thus cannot be abused
to break referential transparency. Finally, because built-ins can be declared
only once and because World is private, there is no way for code outside of this
module to mess with World itself.

postulate

Int : Set
private

primitive

primSeq : {a b : Set} — a = b — b

infixr 0 _§!
% :{ab: Set} - (a > b) - a—0Db
8z = primSeqz (f z)

{-# BUILTIN INTEGER Int #-}

abstract
private
postulate
World : Set

10 : Set — Set
10 a = World — a

{-# BUILTIN WORLD World #-}

return :{a: Set} - a — I0a
return a w = a

49

infixl 7 >=

S>= :{ab: Set} - I0a = (a - I0b) - 10D
f>=9 =\w— (g8fuw)w
private

primitive

primPutInt : Int — World — Int

putint : Int — 10 Int
putint = primPutint

50

Optimizations

In this chapter we will look at a few optimizations originally introduced by
Brady[10] for Epigram and the G-machine, and will investigate how they can be
adapted and generalized to work in the framework of GRIN transformations.

5.1 Dead data

Take the following few Agda definitions, which are again the familiar vector and
addition.!

data Vec (o : Set) : N — Set where
[] : Veca zero
i:(n:N) > a = Veecan — Veca (sucn)

H:(a: Set)(mn :N) - Veecam — Vecan — Veca(m+n)
_H_a.zeron [] ys = ys
Hoa.(suem)n(_:_mzas)ys = _u_(m+n)z (_H_amn zs ys)

Note that there is an important redundancy in this piece of code: Every _::_
value contains as one of its fields the length of its tail, even though, whenever a
function actually uses the length of a vector, it could already know the length:
The type checker requires us to pass it as an argument. In this case, the ac-
tual length of the list is “pattern matched” on using a dot-pattern, which gets
compiled to nothing at all.

Instead, we could also have written the definition of _+H-_ as follows:

_H-_azeron[]ys = ys
_Hoa(suem)n (ci_mzas)ys = —u_(m+n)z (—H_amnxs ys)

IThey are shown with all parameters explicit because, after all, optimizations are usually
performed after desugaring

51

Now, the length field of the vector-constructor is no longer used — it has become
a dot-pattern instead. As Brady proves in his thesis[10], this translation can in
fact be mechanically performed for every function and thus, the length field is
truly redundant.

However, once this translation has been performed, we can actually go fur-
ther: By pattern matching on the natural number, it has already been uniquely
determined what constructor the vector will be. In other words, the generated
code need not test what tag the vector constructor has but can directly retrieve
the correct values from memory. In addition, when all code using vectors is
being translated in this way, no code will ever look at the tag, and we need
never store it either.

This is based on the fact that in some cases, the value of a type index,
which will always be passed as a parameter to satisfy the type checker, com-
pletely determines the value of a constructor tag or field. These optimizations
are respectively called forcing and detagging by Brady. Brady also introduces
an optimization called collapsing that, when both tag and all non-recursive
fields of a constructor are removed, then removes the entire constructor. This
optimization too can be implemented based on the analysis introduced in this
chapter.

In the next sections, we will adapt and expand this concept for use in the
whole-program optimizing GRIN compiler.

5.2 Dead data elimination

Brady’s optimizations could rather directly be translated from working on a level
intermediate between Epigram and G-code to working on Agda intermediate
syntax. However, it is also possible to actually put the our new intermediate
language GRIN to good use and split Brady’s optimizations into two largely
orthogonal parts, one working on Agda internal syntax (or even on the Agda
source language) and one working on low level GRIN code:

e First, datatype definitions can be analyzed to find out how much of each
constructor can be determined based on the value of type indices. Pattern
matching code on these types can then be expanded to also pattern match
on these indices, and use variables bound by indices instead of constructors
as much as possible.

This analysis and transformation works on a relatively high level, on Agda
internal syntax. In fact, it can even be performed by the programmer: The
second version of the _+-_ function seen above is exactly the result of this
transformation on the first version.

As this part of the optimization is already explained by Brady in detail,
we will not treat it further here.

e The second part is a low level GRIN whole program optimization, and
might be called a form of “dead data elimination” It analyses the entire
program and removes constructor tags and fields (and in the full version
also function parameters and local variables) wherever it can prove they
will not be used. As a side effect, it will also find constructors being
applied without ever being used and case alternatives that cannot ever

52

match. After the first transformation, and together with other GRIN
transformations (notably trivial case optimization[8]), this optimization
subsumes Brady’s optimization: Not only does it do everything that forc-
ing, detagging and collapsing do, it is also able to detect cases where a
program does not in practice use certain fields or tags, even though this
cannot be determined based on type information alone. Being a whole
program optimization is crucial here.

In fact, together with aggressively inlining GRIN eval and apply calls, this
dead data elimination also subsumes the eval/apply inlining transforma-
tion that is crucial in the design of the entire GRIN framework, although
it is conceivable that it would not in practice be used as such due to ef-
ficiency considerations. This is not entirely surprising because points-to
analysis, a static analysis that forms the basis for eval /apply inlining, has
been generalized into a new analysis called created-by analysis for the new
optimizations.

In this chapter we will focus on the analysis stage, as the actual removal
of tags and fields based on the analysis is rather trivial.

There are a few reasons for choosing to split and generalize Brady’s op-
timization in this way. One reason is that by splitting the optimization, the
first part becomes simpler: The first part need not concern itself with actually
removing any tags or fields, only with adding additional patterns. This may
not seem like an important difference, but the removal of tags and fields at a
stage in the compiler pipeline where the program representation is still typed is
rather problematic: The same tags and fields may be removed in some uses of
a datatype, but not in others, causing a single type to have multiple represen-
tations. Only in the later and more low-level stages of GRIN transformations
does it become practical to extend GRIN to support nodes without tags. In
addition, by splitting the optimization into two parts, they can be implemented
and tested independently.

A more important reason is that the second part of our new optimization is
a useful optimization in itself. Take for example the following program:

data List (o : Set) : Set where
nil : List «
cons : o« — List o« — List «
length : {« : Set} — Listaa — N

length nil = zero

length (cons — xs) = suc (length zs)

filter : {a : Set} — (o — Bool) — List« — List«
filter p nil = nil

filter p (cons x zs) = if px
then cons x (filter p xs)
else filter p xs

count : {a : Set} — (@ — Bool) — Lista — N
count p xs = length (filter p xs)

The program first defines List datatype, which is just like the previous Vec, but
the length of a List is not reflected in its type. It also defines a function length

53

which obviously calculates the length of a List, a function filter which takes a
predicate and a list and returns a new list containing only those elements of
the input satisfying the predicate and, finally, a function count that combines
length and filter to count the number of elements satisfying a predicate.

Of course this is only a fragment of a complete program, but let us assume
that count is the only caller of filter.?

Now, when count is called, filter will recurse over the passed list and con-
struct a new list. The only user of this new list is then length, which does not
do anything at all with the elements of the newly created list.

The new optimization is capable of detecting that the elements of the list
created by filter are in fact guaranteed not to be used by the code being com-
piled. It may then decide not to calculate and store these elements, and may
shrink the size of each list cell.

Note that this may happen even if the elements of the list parameter to
filter cannot be removed, which means that this optimization may introduce a
non-uniform representation of datatypes.

A third reason for implementing the second part as a general dead tag/field
elimination stage is that it makes dead parameter elimination much easier to im-
plement: In a first-order language, dead parameter elimination is quite straight-
forward. One checks for unused function parameters and removes them from
both function definition and callers. Unfortunately, dead parameter elimination
is much more complicated in a language with lazy and higher-order functions
and partial applications. However, because GRIN implements all of these us-
ing GRIN nodes, we need merely implement the traditional first-order dead
parameter elimination, and dead field elimination will take care of the rest.

5.2.1 Overview

A short overview will now be given of the different parts of dead data elimination.
In the next few sections we will explain each step in more detail.

e Created-by analysis

The first step in performing dead data elimination is to construct a con-
servative approximation of which code may have created the value of
each constructor field in existence during execution of the program, called
created-by analysis. This is a straightforward generalization of the existing
points-to analysis that forms an important part of the GRIN optimization
framework.

e Dead variable detection

We are interested in eliminating unused constructor fields, so for each
case alternative, we must find out which constructor fields are bound to
variables that subsequently remain unused.

e Connecting producers to consumers

Based on the results of the created-by-analysis, we construct a bipartite
graph consisting of all producers (expressions that create GRIN construc-
tor nodes) and all consumers (case alternatives).

2In real world programs, where a function like filter is probably used in many places,
this may still very well be true due to inlining (e.g. after performing the static argument
transformation) of filter into its callers.

54

e Dead field analysis

Then, we inspect the connected components of the created graph to de-
termine which fields, tags and complete nodes are unused, and whether
we may remove them or not.

e Removing the found dead data

The last step, which has not yet been implemented, is to actually remove
those elements from the code.

Except for the last step, a prototype of this optimization has been implemented
for a simplified version of the GRIN abstract syntax that is used by EHC.

5.2.2 Created-by analysis

The first part of the analysis is a slightly modified form of points-to analysis.
Points-to analysis is a static code analysis technique in which a set of possible
values is determined for each variable, heap reference and function result in
the program. This analysis is performed by EHC on a relatively high-level
form of GRIN, before eval/apply inlining, and the results of the analysis are
kept up to date during the following transformations into optimized and low-
level GRIN. Due to the fact that for our purposes we only need the points-to
analysis information in a stage of the compiler pipeline after eval /apply inlining,
the points-to analysis in the prototype has been implemented directly on a
simplified form of the post eval/apply inlining low-level GRIN. In the prototype,
this analysis has been extended by remembering, for each of the sets of possible
node values, which expressions may have created the node. We call this extended
form of points-to analysis a created-by analysis. Although the EHC points-to
analysis is significantly more complicated than the prototype (due to having to
work with the full, high-level form of GRIN), this extension is expected to be
straightforward to implement in EHC too.

5.2.3 Dead variable detection

When the heap points-to analysis has been completed, the next step is dead
variable detection or, more specifically, dead case alternative bound variable
detection. Currently, this part consists of walking through the program and
for each case alternative calculating the difference between the set of variables
bound by the alternative and the set of variable occurring in the body of the
alternative.

In addition, we represent the tag of the case alternative as the zeroth field of
its constructor. We consider a tag to be dead when the case expression contains
only a single alternative.

In a production implementation this analysis should be more intelligent as
there may be interactions between, for example, dead fields and dead parame-
ters: The current system does not detect dead parameters and will fail to detect
a variable that is only used as a dead argument as such. To make matters more
complicated, parameters may be dead or alive depending on the liveness of other
constructor fields, and there may even be cycles in such deadness chains.

To deal with such cycles, the current system would not merely need a smarter
dead variable detection, but would have to be set up to generate equations of

55

the form “this field is dead when a certain set of variables is dead”. A separate
equation solver could then calculate the final set of dead variables, parameters,
fields and tags.

5.2.4 Connecting producers to consumers

The next step, which in the current implementation is intertwined with the
previous step, consists again of walking through the entire program and, for
each Case expression, looking up in the environment what expressions may
have created the node contained in the variable that is being case analysed.
Based on this information, a bipartite graph is created, which consists of the
following:

e The first set of vertices represents the producers: all expressions that
create nodes. Each vertex is a pair of (EzprID, Tag).

e The second set of vertices represent the consumers: all case alternatives.
Each vertex is a pair of (EzprID, Tag).

e Each edge connects a node-producing expression to a consuming case-
alternative that may get a node created by the producer as its node.

5.2.5 Dead field analysis

We calculate the connected components of the created bipartite graph. Each
resulting vertex set falls into one of three classes:

e The set consists of a single producer. This producer expression thus has
no consumers. At this point, the entire node-producing expression may
be removed, and its result replaced by a dummy value.

Thus, a DummyNode constructor has to be added to the GrVal type. The
original produced GrVal value can be replaced by the new GrVal _DummyNode.

This value is guaranteed not to ever be analyzed by a case expression.
However, it may still be returned using unit (from functions, for exam-
ple), stored and re-fetched, so it may not be entirely eliminated from the
program in all cases. In later GRIN transformations, and when the final
GRIN code is transformed into e.g. C, DummyNode should be treated as
a singleton constructor.

The set requires no further analysis or action.

e The set consists of a single consumer. This consuming case alternatives
has no corresponding node-creating expression, and will thus never be
executed: It is a dead case alternative that can safely be removed. When
the case alternative has been removed, the set requires no further analysis
or action.

This removal overlaps with the normal eval/apply inlining step.
e The set consists of at least one producer and at least one consumer. In
this case, we group each producer with the set of all its consumers. (Con-

sumers may thus occur in more than one set.) For each pair of producer
and consumer-set, we now calculate which fields (including the tag, its

56

zeroth field) are dead in all consumers. In the current implementation,
we consider a field to be dead if and only if its binder does not occur
in the body of the case alternative. A more advanced implementation
would be based on a system of constraints about dead fields, variables
and parameters combined with a constraint solver.

Fields that are found to be dead in all consumers are marked as dummy.
Fields that are marked as dummy in all pairs are marked as removable. If
a field is neither dummy nor remowvable, it is marked active.

5.2.6 Removing the found dead data

Finally, the result of the previous analysis can be used to actually remove dead
data. Implementing this rather simple step seemed not very useful in the current
prototype implementation. We will, however, discuss what needs to be done
and what further extensions to GRIN have to be made in order to support this
optimization.

As we have already dealt with both kinds of singleton vertex sets, we will
only treat the sets consisting of at least one producer and one consumer here.

Each field (including the tag, the “zeroeth field”) in the set of consumers
and producers will now be labeled as either active, dummy or removable. We
will now, both for node producing expressions and for node consuming case
alternatives, determine what needs to be done for each of these three cases.

Active fields

When a field is active, the field will actually be used, and thus nothing will be
done.

Dummy fields

When a field has been marked as dummy, this means its value will never be
used but cannot be entirely omitted because its consumers expect the field to
be there. This is because at least one of these consumers will share a producer
with another consumer that does actually use the corresponding field.

After extending the GrVal type with a DummyWord constructor, we may
now use DummyWord as the value of the field that has been marked as dummy
in the node producing code. Note that in many cases, the original word value
stored in the field will no longer be used, thus causing new dead fields, variables
etcetera. When finally compiling low-level GRIN into e.g. C, a DummyWord
constructor can either be compiled into the value 0 (whether it be a null-pointer
or the integer 0) or simply not be written at all: Fields that are guaranteed not
to be read may as well be left uninitialized.

In the dummy field consuming code, nothing need be done: The “split fetch”
transformation will later turn the pattern match into individual instructions for
retrieving the value of each field. As the dummy field is obviously unused, its
fetch instruction will be removed by a subsequent dead expression removal pass.

For cases where a tag instead of a normal field has been marked as dummy,
we also have to extend GrTag with a DummyTag constructor. In node pro-
ducing code, this can be used to replace the old value analogously to the way
DummyWord is used for fields. A dummy tag in node consuming code can

57

only occur when the consuming code consists of a case expression with a single
alternative. The current “split fetch” transformation already omits the fetch in-
struction for such a known tag value, so one may either leave the GrTag in the
consuming code as it is, or replace it too with a DummyTag constructor, which
should then be treated by “split fetch” as just another known tag, depending on
what is more convenient for later analysis stages.

Removable fields

When a field (or tag) has been marked as removable, not only is the value of
the field irrelevant, even the space it takes can be reclaimed. This means that
in both all producers and all consumers of the vertex set, we can completely
remove the field, thereby “shifting” all later fields to the left to take its place.
If a tag is marked as remowvable things are somewhat more complicated: The
most straightforward approach is to add a NoTag constructor to the GrTag
datatype. Then, the “split fetch” stage should be taught that when the tag is a
NoTag, the fields start at position 0 instead of 1, and the final transformation
from low-level GRIN to e.g. C should do the same to the node producing code.

In addition, because GRIN nodes contain some meta-information about their
arity and the maximum arity of all constructors, it may be necessary to “clone” a
datatype and pretend that e.g. a pair type from which the first element has been
removed and the normal pair were actually defined as two separate datatypes
in Agda.

58

Discussion

We will begin this chapter with a discussion of how the presented new Agda
back end compares to other relevant work. This thesis’ contributions will then
be discussed, and several possible directions for future work will be listed.

6.1 Related work

There are a number of other projects that are related to this thesis. The most
comparable one is Edwin Brady’s PhD thesis, which we will therefore discuss
first.

6.1.1 Epigram to G-machine

In his PhD thesis, Edwin Brady develops a translation from the dependently
typed language Epigram to the G-machine [10, 13, 11]. Epigram is a close cousin
to Agda, and the G-machine is an older relative of GRIN.

Before explaining more about the differences between Brady’s work and this
thesis, a small summary will be given of the differences between Agda and Epi-
gram, and between GRIN and the G-machine. Finally, the differences between
both compilers will be discussed.

Agda versus Epigram

Epigram[4] is a dependently typed programming language designed by Conor
McBride and James McKinna. The design of Agda is greatly inspired by Epi-
gram, so there are many similarities between both languages.

The main non-syntactic language difference between Agda and Epigram is
that Epigram generates an eliminator for every inductive family, while Agda
is based on dependent pattern matching. Epigram provides support for using
eliminators in such a way that it looks like pattern matching — essentially a

59

kind of generalized views[16]. Agda, on the other hand, generalizes the pat-
tern matching in function definitions in Haskell to dependent pattern matching.
These different approaches to discriminating constructors of datatypes lead to
a few important differences:

e An Agda function definition may pattern match on nested patterns or,
a variation on the same theme, on multiple function arguments. The
order in which these different patterns are discriminated is left unspecified
(although there are obviously some dependencies). This means that an
Agda compiler has to compile the pattern matching function definitions
into a function with an explicit case tree, something that in otherwise
equivalent Epigram code has already been done by the programmer.

e When compiling Epigram code, the programmer-written code does not
pattern match, it only contains calls to compiler generated eliminator
functions. Of course, these eliminator functions will still be using pattern
matching when compiled down to GRIN (or the G-machine), but when
compiling Epigram code, all the pattern matching will be localized to one
function for each datatype.!

This means that changing the representation of a datatype or the imple-
mentation of pattern matching, most likely for efficiency reasons, needs
only to generate different eliminator functions. This is likely to be easier
than replacing many pattern matches scattered over the program.

G-machine versus GRIN

Brady uses the G-machine as his back-end language instead of GRIN. The most
important differences are:

e The G-machine uses a (multiple) stack-based model. All modern main-
stream CPU architectures use a register based model, as does GRIN. A
stack-based model makes both optimization transformations and the final
translation into efficient machine code unnecessarily difficult on modern
CPUs.

e GRIN is explicitly designed for whole-program analysis. As a consequence,
GRIN compilers can make use of a number of optimization techniques
that are not available when using a system intended to support separate
compilation.

e The G-machine has the concept of closures and higher order functions
built-in, whereas in GRIN these are built on top of lower level features.
This in turn means that GRIN optimizations working on normal data
values will also work on closures.

e The G-machine is designed and described as a wirtual machine, while
GRIN is an intermediate notation. Although this is no fundamental tech-
nical difference, it does represent a difference in attitude: Whereas the
focus with the G-machine is on executing code, the design of GRIN is

LOf course, the Epigram programmer may write new “eliminators” which can be used just
like the compiler generated eliminators, which is one of its great attractions. However, these
new eliminators are ultimately defined in terms of the original compiler generated eliminators.

60

focused on transforming GRIN code into other GRIN code and, in partic-
ular, optimization.

Structure of the compilers

Now that we have discussed the most important differences between both the
source languages and the intermediate languages, we will discuss the main dif-
ferences in the structure of both compilers.

Brady’s (not actually implemented) compiler is, more than the new GRIN
back end for Agda, established on a pipeline structure. This pipeline is based
on transformations between a number of intermediate languages. Note that
a number of earlier pipeline stages such as parsing and type checking are not
relevant here, and therefore omitted. The first intermediate language used by
Brady is called TT. TT is a dependently typed A-calculus with definitions,
inductive families and equality. In the next stage, TT is transformed into ExTT",
a variation on TT permitting annotations on terms that can safely be deleted.
An ExTT’ to ExTT’ optimization stage follows. Then, the resulting ExTT’ code
is transformed into RunTT’, which is a simplified version of ExTT’ consisting
of only super combinator definitions. Another optimization stage follows (this
time from RunTT’ to RunTT’) and finally G-code (code for the G-machine) is
generated. Now, the differences between the structure of the two compilers will
be discussed in detail.

Brady starts by type checking Epigram programs and elaborating them into
the core language TT. TT is somewhat comparable to Agda’s internal syntax,
but there are important differences: Agda’s internal syntax is purely an imple-
mentation language; its denotational and operational semantics have not for-
mally been defined. This is of course not as nice a starting point for a compiler
as a formally defined A-calculus. Just as with Epigram itself, TT supports dis-
criminating the constructors of inductive families by providing eliminator rules.
Instead, Agda’s internal syntax supports multiple pattern matching function
clauses for the same purpose. However, TT’s elimination rules (also called ¢-
schemes) are generated by the compiler in the form of pattern matching function
clauses too.

The next step in the compilation of an Epigram program is that the TT code
is translated into ExTT’? Patterns in a t-scheme definition in ExTT’ may be
annotated to specify that they are not necessary to compute its result. In a later
stage, these patterns may then be deleted. There are two classes of patterns
that can be annotated in this way: Repeated variables and arguments that are
not in constructor form. In Agda, these can only be written as dot-patterns
in the source code. Having no computational content, dot-patterns are then
turned into fresh variables during the translation from Agda’s internal syntax
to GRIN.

Then, ExTT’ is compiled into RunTT’. This is done using Johnsson’s su-
percombinator lifting algorithm[11]. The elimination rules are translated using
a variation on Augustsson’s pattern matching compiler.[7] Note that the full
generality of Augustsson’s pattern matching compiler is not needed when com-
piling Epigram: It is only used to translate elimination rules, and thus only for
simple non-nested pattern matches. In addition, arguments that are annotated

2We are only discussing the optimizing approach here. Brady also describes a naive ap-
proach that is beyond the scope of this thesis.

61

for deletion in ExTT’ are removed from the pattern matching code. In the Agda
case, these arguments would be fresh (unused) GRIN variables, generated from
dot-patterns in Agda. These fresh variables may then be analyzed by the newly
introduced dead data elimination and possibly removed.

Then, Brady describes two optimization stages. The first transforms ExTT’
using elimination rules into ExTT’ making direct recursive calls. As Agda is
based on pattern matching all the way from the beginning down to GRIN, no
corresponding stage exists in the Agda compiler. However, even if Agda was
changed to use elimination rules in the same way as Epigram, such a stage would
still not be necessary, as the standard GRIN inlining that is performed anyway
can be relied upon to inline functions that do nothing but pattern match.

The other optimization stage works on RunTT’, and performs some stan-
dard optimizations like inlining and dead parameter elimination that the Agda
compiler can also leave to GRIN transformations. This stage also drops impos-
sible cases, something that the Agda GRIN back-end does as part of its pattern
match compilation.

Neither ExTT’ nor RunTT’ have a real counterpart in the translation from
Agda internal syntax to GRIN. This is partly due to the fact that repeated
arguments in Agda are already marked as dot-patterns by the programmer (or
by the implicit-parameter resolution machinery), and to some extent due to
the fact that the Agda-to-GRIN compilation is not setup as a pipeline. The
reason it does not have a pipeline-architecture is partly an historical accident,
and partly a consequence of the fact that we choose to perform all optimizations
after compilation to GRIN.

Finally, RunTT’ is translated into G-machine code. Brady introduces a few
minor modifications to the G-machine to deal with compiling a dependently
typed language and to take advantage of the earlier optimizations in ExTT’.

Differences in optimization techniques

Brady invents a number of optimizations and describes them in terms of his
own intermediate languages, ExTT’ and RunTT’. These optimizations are per-
formed before the generation of G-machine code. Thanks to the fact that we use
GRIN as our back-end language, we can achieve the same results by one trans-
formation within Agda’s internal syntax. This is accomplished by implementing
a number of new GRIN-to-GRIN transformations, in addition to one source to
source (or in practice, Agda internal syntax to Agda internal syntax) trans-
formation. These transformations are then also somewhat more general than
Brady’s optimizations, and may also allow other — possibly non-dependently
typed — languages to reap the benefits of these optimizations.

It should be noted that Brady is interested both in evaluation at compile-
time (recall that type checking in a dependently typed language may cause
evaluation of terms) and when running the compiled program. However, when
evaluating while type checking, the program may still turn out to be type in-
correct. As some of Brady’s optimizations crucially depend on properties such
as well-typedness, this means that these optimizations may not be used when
evaluating at compile-time.? As Agda’s GRIN back-end starts working with in-
ternal syntax, which has already been type-checked, it obviously only concerns

3Well-typedness is not the only such property. The absence of free variables is another.

62

itself with run-time evaluation. Therefore, it need not worry about when which
optimizations are valid.

6.1.2 Agda to Haskell to STG

The first back end to the Agda compiler, MAlonzo®*, generates Haskell (albeit
with some GHC extensions) — the language on which Agda is based, and the
language in which the Agda compiler itself is written.

Using Haskell as a target language for an Agda compiler has one major
advantage: Simplicity. As Agda is based on Haskell, much of Agda’s syntactic
structures can be trivially translated to Haskell. For example, whereas in GRIN
every application needs to be given a name explicitly, Haskell supports the
same kind of nested expressions as Agda. Pattern matching too is supported
in almost the same way in Haskell and Agda (internal syntax). In fact, when
translating Agda functions and datatypes to Haskell, the main complication is
often the different name spaces and rules of what constitutes an identifier in
both languages.

Such a direct translation also immediately leads to a large disadvantage:
Haskell is not a dependently typed language, and therefore unable to express
many of the types used in Agda programs. This is solved with a liberal sprin-
kling of the GHC primitive function unsafeCoerce :: a — b. Although this
function is only used in a technically safe way due to the type correctness of de-
pendently typed original program, the use of this function is discouraged, highly
implementation specific, and its use causes GHC to be rather conservative in
applying some optimizations to the program.

This is actually exemplary for the use of Haskell as a target language: It is a
programming language designed to be used by programmers, not by compilers.
As a result, whenever an Agda compiler wants to make decisions about low
level behaviour of the compiled program (such as decisions about sharing or
strictness), the compiler has to be extremely careful to generate Haskell code in
such a way that GHC will not interfere and decide otherwise.

In addition, Haskell is not a total language: Functions may not terminate,
and pattern matching may fail. This in turn means that GHC cannot make
many of the assumptions that a native Agda compiler could in aggressively
optimizing the program, leading to larger and slower code.

Using Haskell as a target does have other advantages: The run-time system
becomes very easy to implement, as one may use Haskell to code all primitive
and supporting functions, whereas they all had to be implemented directly in
GRIN for this thesis. In addition, using existing Haskell libraries from within
Agda is obviously much easier when your target language is Haskell.

The other major difference between the GHC/Haskell back end and the new
GRIN back end is that GHC uses the older STG as its back end language,
which has not been designed as a language suitable for effective optimizations
for modern micro architectures, and which is not designed for whole program
optimization. As the newly introduced optimizations rely on the whole program
optimization capabilities of GRIN, this generalization of Brady’s optimizations
would be impossible when using STG (by way of GHC) as the back end language.

4 We ignore the two earlier compiler back ends for Agda, Agate and Alonzo, because they
also emitted Haskell, and because they have been completely replaced by MAlonzo.

63

6.1.3 Idris to Epic

Edwin Brady, after completing his PhD thesis on compiling Epigram to the G-
machine, has gone on to develop the dependently typed programming language
Idris[9, 5], and its back end language Epic[3]. Although not much information is
available on this ongoing work, Brady’s earlier forcing, detagging and collapsing
optimizations have been implemented for the system and do indeed yield large
performance gains.[1] Idris is quite similar to both Epigram and Agda, while
Epic seems to be much closer to STG than to GRIN. In particular, Epic is not
designed to be used for whole program optimizing transformations, and laziness
is built into the language, and not built on top of other primitives.

6.2 Contributions

This thesis provides the following contributions:

e The feasability of developing a modern (GRIN-based) back end for Agda
has been (constructively) proven. Almost the full language is supported,
including dependent datatypes, records and functions, compilation of pat-
tern matching, modules, primitive types and functions and input/output.

No serious dependent type specific difficulties in compilation were encoun-
tered, although several possibilities for new optimizations compared to the
current uses of GRIN did present themselves.

The only fundamental difference compared to compiling a non-dependently
typed language is the handling of types: Whereas Haskell compilers such
as GHC are able to erase all types in a special type erasure transforma-
tion at compile-time, we collapse all types (and types of types, etc) into
the value level, and rely on optimization techniques such as dead param-
eter elimination, extended with our new dead data elimination design to
remove all unnecessary type information from the program.

e Three optimizations developed for a predecessor of Agda have been trans-
lated to the combination of Agda and GRIN. Instead of directly modifying
the existing optimization to work on Agda instead of Epigram, it has been
split into two independent parts: An Agda source to source translation
and a generic GRIN optimization. In addition, a few minor extensions had
to be proposed to the GRIN language for use by the new optimization.

The resulting new optimization strictly subsumes the original optimiza-
tion. Whereas the original optimization removes fields and tags if it can
prove that they need never be used, the new optimization uses whole pro-
gram information to check whether fields happen to be used in the current
program. The set of fields (and tags) that are not used in the current pro-
gram of course fully includes the set of fields that are not used in any
possible program.

Together with an aggressive application of the standard inlining transfor-
mation, the new optimization additionally subsumes the existing eval/apply
inlining. This optimization, based upon points-to analysis that has been
extended to created-by analysis, lies at the core of GRIN’s claim for being
well suited for compilation to modern micro architectures.

64

6.3 Future work

There are a number of interesting topics for further research based upon the
work in this thesis:

e The optimizations introduced in chapter 5 currently exist in part as a pro-
totype (the different analyses stages), while other parts have merely been
sketched (the actual removal, and the equation solver for dead variable,
parameter, tag and field detection). Implementing this optimization in
a concrete GRIN back end such as EHC should be relatively straightfor-
ward, and would yield interesting data on the advantages in performance
that this optimization might yield. A relevant complication might be the
existence of non-termination, incomplete pattern matching and side ef-
fects when using the new optimization for EHC’s currently only front end
language — Haskell.

e The current connection between Agda and GRIN supports most but not all
of Agda the language: Some parts that are not or partially supported are
sized datatypes, primitive types such as strings and floating point numbers
and many built-in functions. In addition, both Agda and EHC are research
projects under active development, so bit rot will unfortunately remain a
persistent problem, unless the Agda-GRIN connection is integrated into
Agda and, additionally, EHC’s back end library stabilizes.

e Haskell is a non-strict language, and EHC uses the usual evaluation strat-
egy for compiled programs: call-by-need. Explicit strictness annotations
and strictness analysis can then be used to introduce occasional call-by-
value applications for performance reasons. Due to the fact that every
function in Agda is total, the used evaluation strategy matters only when
considering performance. An interesting avenue of research would be com-
bining both call-by-need and call-by-value within the same Agda program,
using either explicit annotations or some sort of strictness utility analysis
to decide when to use which kind of evaluation.

e This thesis has focused entirely on generating and optimizing code for ex-
ecution at run-time. However, in a dependently typed language such as
Agda, substantial amounts of code may be executed during type check-
ing. Generating GRIN code for execution during type checking would
be an interesting topic of research. Considering the fact that GRIN is a
whole program compiler, while only part of the program is available at
each stage of type checking, this would be a rather ambitious endeavour.
In addition, during type checking, some of the properties (such as type
correctness) that make advanced optimization possible are not guaranteed
yet, complicating efforts at optimization.

65

Infrastructure for generating GRIN
bindings

The main components of the infrastructure to facilitate compiling Agda inter-
nal syntax definitions to GRIN bindings are two monad transformers: GrinT
and EzprT. The former is primarily intended to aid in the generation of GRIN
bindings, whereas the latter is designed for generating GRIN expressions within
bindings. Most of the actual code generation uses both of these monad trans-
formers.

In this appendix, GrinT will be introduced. This monad transformer facil-
itates the generation of GRIN bindings by supporting three different kinds of
operations: Asking for pre-calculated information about the GRIN internal syn-
tax code and command line flags, generating fresh names and emitting GRIN
bindings. All actual generation of GRIN code is done from within this monad.

newtype GrinT m a
= GrinT (WriterT (Endo [GrBind])
(ReaderT GrinTInfo (StateT Integer m)) a)

The GrinT monad transformer is the composition of three standard monad
transformers:

e StateT Integer The state monad part contains an Integer, which is used
exclusively for the generation of unique names for GRIN identifiers.

Based on this part of the GrinT monad transformer is the function
freshGrinName :: Monad m = String — GrinT m HsName

Note that this function only takes care of generating unique names, not
of the mapping from Agda to GRIN names.

e ReaderT GrinTInfo The reader monad part contains a GrinTInfo, which
is a collection of the look-up tables generated in the first phase of compiling
the Agda internal syntax.

66

Functions based on this part of the definition are, among others

getFunction :: Monad m = QName — GrinT m Definition
getArity it Monad m = @QName — GrinT m Nat
hasGrinFlag :: Monad m = String — GrinT m Bool

e WriterT [GrBind] The writer monad part is meant for actually generating
code or, to be more precise, for generating GRIN bindings.

The function exposing the functionality offered by this part of the GrinT
monad transformer is

genBind :: Monad m
= HsName — [HsName] — GrExpr — GrinT m ()

Given a name, arguments and a GRIN expression, this function generates
a GRIN binding.

Finally, there is a function that, when given a GrinTInfo and a GrinT computa-
tion, runs the computation and returns the list of all generated GRIN bindings.

execGrinT :: Monad m = GrinTInfo — GrinT m () — m [GrBind]

67

Infrastructure for generating GRIN
expressions

The other monad transformer is EzprT. This transformer is built to support in
the generation of GRIN expressions, as opposed to GrinT which is for generating
entire GRIN bindings. The definition of the FzprT monad transformer is as
follows

newtype EzprT m a
= ExprT (WriterT (Endo GrExpr) (ReaderT [HsName| m) a)

As can be seen from the definition, it is composed of two standard monad
transformers

e ReaderT [HsName] Agda’s internal syntax is based on de Bruijn indices,
whereas GRIN uses explicit variables. This reader monad transformer
provides the mapping between those. In particular, it provides access to a
list of GRIN names, of which the GRIN name corresponding to de Bruin
index n can be found at the index n in the list:

getVarName :: Monad m = Nat — FExzprT m HsName

o WriterT (Endo GrExpr) Just like in GrinT', a WriterT is used to allow for
the actual generation of code. However, where GrinT could use a simple
list of bindings, with one binding generated after another, the situation
for ExprT is more complex. Recall that the definition of GrEzpr looks as
follows

data GrEzpr
= App HsName [GrVal]
| Case GrVal [GrAlt]
— lots of other constructors...
| Seq GrExpr GrPatLam GrExpr

68

In particular, note that GrEzpr itself is a recursive datatype: A GRIN
function binding contains only one expression as its body, but this ex-
pression will in all but the most simple cases have been nested using the
Seq constructor. However, all a writer monad requires is something that
is a Monoid. Now, Seq expr pat has type GrExpr — GrEzpr, and
thus Endo (Seq expr pat) (of type Endo GrEzpr) is a Monoid, and so
we can have a WriterT (Endo GrEzpr) which builds a composition of
GrEzpr — GrEzpr functions that will prepend nested expressions using
Seq to their final argument. The functions using this writer monad are

genExpr :: Monad m = GrPatLam — GrExpr — EzprT m ()
genFreshExpr :: Monad m = GrEzpr — ExprT (GrinT m) HsName

The first directly uses the underlying WriterT monad, while the second
first uses GrinTs freshGrinName to generate a fresh variable to create a
GrPatLam from, and then calls genEzpr on the result.

The last EzprT function explained here is analogous to execGrinT":
execEzprT :: Monad m = [HsName| — FExprT m GrExpr — m GrExpr

erecErprT, when given a “de Bruijn to GRIN name” mapping and an
FEzprT computation returning an expression, will run the computation
and return the nested expression consisting of the expression returned by
the computation preceded by all the expressions generated during this
computation through calls to one of the genFEzpr variants.

To clarify the use of genFreshExpr and execExprT we will now give an
example

foo :: Monad m = ExprT (GrinT m) (HsName, HsName)
foo = do

vl < genFreshExpr (Call "-" [Var "x", Var "y"])

v2 <« genFreshExpr (Call "abs" [Var "z"])

return (v1, v2)

The ExprT computation foo generates GRIN code to calculate the differ-
ence between the (integer) variables and z and y and the absolute value
of z, and returns the names of the GRIN nodes in which the results have
been stored. Now, the Haskell expression execExprT [] foo' has type
Monad m = GrinT m GrEzpr and, when executed, will yield the
following GRIN expression

Seq (Call "-" [Var "x", Var "y"]) (PatLamVar "v_0")
(Seq (Call "abs" [Var "v_0") (PatLamVar "v_1")
(Call "square" [Var "v_1" D)

! Note that it has been given the empty mapping from de Bruijn indices to GRIN variables,
which is not a problem as foo does not use any Agda internal syntax variables.

69

Bibliography

[1] Blogpost about idris forcing, detagging and collapsing.
http://www-fp.cs.st-and.ac.uk/wordpress/7p=140.

[2] Some simply typed A-calculus introductions.
http://en.wikipedia.org/wiki/Simply_typed_lambda_calculus
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
Barendregt?

[3] Website of epic - a supercombinator compiler.
http://www.cs.st-andrews.ac.uk/ eb/epic.php.

[4] Website of epigram. http://www.e-pig.org.
[5] Website of idris. http://www.cs.st-andrews.ac.uk/ eb/Idris/.

[6] Website of the utrecht haskell compiler.
http://www.cs.uu.nl/wiki/bin/view/UHC/WebHome.

[7] L. Augustsson. A compiler for lazy ml. In LFP ’84: Proceedings of the
1984 ACM Symposium on LISP and functional programming, pages 218
227, New York, NY, USA, 1984. ACM.

[8] U. Boquist. Code Optimisation Techniques for Lazy Functional Languages.
PhD thesis, Chalmers University of Technology, April 1999.

[9] E. Brady. Idris, a language with dependent types . extended abstract.

[10] E. Brady. Practical Implementation of a Dependently Typed Functional
Programming Language. PhD thesis, Durham University, 2005.

[11] T. Johnsson. Efficient compilation of lazy evaluation. In SIGPLAN Notices,
pages 58—69, 1984.

[12] S. L. P. Jones. Implementing lazy functional languages on stock hardware:
the spineless tagless g-machine - version 2.5. Journal of Functional Pro-
gramming, 2:127-202, 1992.

[13] C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69-111, 2004.

[14] B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-
Léf’s Type Theory — An Introduction. Oxford University Press, 1990.
http://www.cs.chalmers.se/Cs/Research/Logic/book/.

70

[15] U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Goteborg, Sweden, Septem-
ber 2007.

[16] P. Wadler. Views: A way for pattern matching to cohabit with data ab-
straction, 1986.

71

	Introduction
	Overview of the following chapters

	Introduction to Agda
	Agda – the language
	Expressions
	The structure of an Agda program
	Types
	Data declarations
	Function definitions
	Records
	Postulates and primitives

	Agda – the internal syntax
	Datatypes and constructors
	Function definitions
	Records
	Axioms and primitives

	Introduction to GRIN
	Bindings
	Values
	Expressions
	Tags
	Case alternatives
	Seq-patterns
	An example

	Compiling Agda to GRIN
	Comparing an Agda and a GRIN module
	Compilation overview
	Compiling built-in datatypes
	Compiling primitives
	Renaming identifiers
	Modules
	Datatypes and records
	Preprocessing datatype and record definitions
	Creating GRIN bindings

	Compiling functions
	Compiling a functions' left-hand side: Patterns
	Compiling a functions' right-hand side: Expressions

	IO

	Optimizations
	Dead data
	Dead data elimination
	Overview
	Created-by analysis
	Dead variable detection
	Connecting producers to consumers
	Dead field analysis
	Removing the found dead data

	Discussion
	Related work
	Epigram to G-machine
	Agda to Haskell to STG
	Idris to Epic

	Contributions
	Future work

	Infrastructure for generating GRIN bindings
	Infrastructure for generating GRIN expressions

