
SEQUENCES WITH TRIVIAL
INITIAL SEGMENT COMPLEXITY

MSc Thesis (Afstudeerscriptie)

written by

Tom Florian Sterkenburg
(born April 18th, 1986 in Purmerend, The Netherlands)

under the supervision of Dr. George Barmpalias, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
February 3rd, 2011 Prof.dr. Benedikt Löwe (chair)

Prof.dr. Harry Buhrman
Prof.dr.ir. Paul Vitányi
Dr. Piet Rodenburg
Dr. George Barmpalias

i

Die Gestalt! sagte er, und Naphta sagte hochtrabender Weise:
�Der Logos!� Aber der, welcher vom Logos nichts wissen wollte,
sagte: �Die Vernunft!� während der Mann des Logos �die Pas-
sion� verfocht. Das war konfus. �Das Objekt� sagte der eine, und
der andere: �das Ich!� Schließlich war sogar von �Kunst� auf
der einen und �Kritik� auf der anderen Seite die Rede und jeden-
falls immer wieder von �Natur� und �Geist� und davon, was das
Vornehmere sei, vom �aristokratischen Problem�. Aber dabei war
keine Ordnung und Klärung, nicht einmal eine zweiheitliche und
militante; denn alles ging nicht nur gegeneinander, sondern auch
durcheinander, und nicht nur wechselseitig widersprachen sich die
Disputanten, sondern sie lagen in Widerspruch auch mit sich selbst.

Thomas Mann, Der Zauberberg

ii

Voor Christine

Abstract

The field of algorithmic randomness is concerned with making precise the intu-
itive notion of the randomness of individual objects, and is grounded on concepts
from computability theory. Not only do different formalisations of irregularity,
incompressibility and unpredictability lead to the same class of random binary se-
quences, they also allow us to compare such sequences on their randomness or their
power to find regularities in other sets. Much like the Turing-degrees of compu-
tational content, we can define degrees of randomness. A triviality notion with
respect to such structures is that of the K-trivial sets, the sets all of whose initial
segments are trivial in the sense that they are easily compressible.

This thesis provides a general discussion of algorithmic randomness, as well
as original results concerning two topics related to sequences with trivial initial
segment complexity. First we apply the classical notion of splitting in the c.e.
Turing-degrees to the c.e. degrees of randomness given by the LR-, K- and C-
reducibilities. But the main topic is a question by Downey, Miller and Yu about
the arithmetical complexity of the function that computes the finite number of K-
trivial sets via a given constant. Representing these sets as paths of certain trees, we
find a solution to this problem by inspecting the general complexity of calculating
the number of paths of trees and reducing the complexity of our particular family
of K-triviality trees.

iii

Acknowledgements

I want to thank George for first acquainting me with the area of algorithmic
randomness in his January project, the project that led me to pursue this subject
further; for embarking on this thesis with me and introducing me to true research,
especially during the hard work in the summer break, for pushing me the last
months, having started on another master’s programme, to make haste with the
final write-up, which I now, in December, Amsterdam caught in snow again as
it was in January, finally found time for; thus concluding this year of my thesis.
Thank you for your committed supervision, for your dedication to the subject, and
for the many cappuccino’s at the Zeedijk.

Thanks to Charlotte for accompanying me the first half year; I enjoyed the
discussions we had before you – unfortunately, for me – decided to finish your
thesis in time. Thanks also to my other fellow students. Finally, I would like to
thank all nonlogician people around me for not trying to stop me from spending
way too much time on a subject of which I could neither convincingly explain to you
the nature nor the relevance; in spite of the occasional look of horror on opening
one of my textbooks (which I fondly remember), I like to believe that you had some
inkling of the beauty I found in it.

Tom Sterkenburg
Amsterdam, December 2010

v

Contents

Abstract iii

Acknowledgements v

Introduction 1

Chapter 1. Algorithmic randomness 3
1. Randomness and computability theory 3
2. Statistical tests: Martin-Löf randomness 4
3. Descriptive complexity: Kolmogorov complexity 6
4. Degrees of randomness 9

Chapter 2. Splitting in degrees of randomness 11
1. The classical splitting theorem 11
2. Splitting in the c.e. LR-degrees 14
3. Splitting in the c.e. K- and C-degrees 18

Chapter 3. The number of K-trivial sets 23
1. The problem 23
2. The paths of trees 25
3. The number of paths 30
4. Families of trees 33
5. The jump hierarchy 39
6. From ∆0

2 trees to c.e. trees 43
7. From K-triviality trees to c.e. K-trivial trees 48
8. The lowness indices of K-trivial sets 53
9. The complexity of GK 56
10. The number of low for K sets 58

Conclusion 63
Further questions 64

Samenvatting (in Dutch) 67

Bibliography 69

Index 71

vii

Introduction

Randomness is a concept that seems, almost by definition, to evade an ex-
act definition. Examples are easy enough to produce: if we toss a fair coin a
number of times in a row and assign 0’s to tails and 1’s to heads, we unroll a
sequence like 1011010111010101111... that is irregular, unpredictable and hard to
describe – in short, random. Much unlike sequences as 0000000000000000... and
00110011001100..., that follow a clear pattern and certainly do not look very ran-
dom. But how to make this difference precise?

Classical probability theory has little to say about randomness of single objects.
Any binary sequence like the above of length n has the same probability 2−n,
whether it looks random or not. In the general case of infinite sequences, all single
objects have probability zero. For the present problem, we will have to shift our
attention to the objects themselves, and, one way or another, put a definition of
randomness in terms of their characteristics, their overall structure – but the thing
is that random objects lack any structure. Indeed, we can wonder if any attempt to
describe randomness in a formal way would not be contradictory. Does randomness
not cease to be randomness if it is captured in a strict definition?

The present thesis is on the subject of algorithmic randomness, that developed
from the aim to provide just such a definition. In its approach to this problem, the
discipline relies on notions of algorithmic effectiveness from computability theory1.
This field, in turn, is directed at formalising what it means for a problem or pro-
cedure (function, set, relation) to be computable in principle. Its core assumption
is the Church-Turing thesis that everything that we would intuitively consider an
algorithm can be modeled by means of Turing machines, some kind of idealised
computers.

The main idea of algorithmic randomness is to impose a bound of computability
or effectiveness on characterisations of randomness. Rather than the problematic
demand that a random sequence should have no regularities at all, we propose,
roughly, that a sequence should be called random if there is no effective way, no
algorithm, to detect any regularities in it. This general idea has led to different
formalisations, based on different features of randomness, calling a sequence random
if it passes all effective tests for particular properties, if it cannot be effectively
compressed, or if there is no successful effective gambling strategy to predict its
bits.

In this thesis, we concentrate on two specific topics in algorithmic randomness,
both related to sequences with trivial initial segment complexity. First we apply a
particular technique of classical computability theory to structures of computably
enumerable levels of randomness. Second and most importantly, we look into an

1Also commonly known as recursion theory. There is some debate about the proper name;

see for example [Soa96].

1

2 INTRODUCTION

open problem of Downey, Miller and Yu ([DH10, Section 10.1.4], [Nie09, Problem
5.2.16]) about the complexity of a function related to a type of very nonrandom
sequences. We present a solution of this question. This work is also the subject of
the paper [BS10] of George Barmpalias and me.

Overview. Out of the necessity to pick a starting point somewhere, it is as-
sumed throughout this thesis that the reader is familiar with the fundamentals of
computability theory. We will, however, devote our first chapter to a discussion of
the background and basic intuitions of algorithmic randomness, covering the main
concepts and results from the literature. After a number of preliminary observa-
tions, we go into a more detailed examination of the two main formalisations that
we will work with in this thesis, those of Martin-Löf randomness and Kolmogorov
complexity. We consider the test concept of Martin-Löf, the notion of universal
and oracle test, both the plain and the prefix-free variant of Kolmogorov com-
plexity and the corresponding (universal) machines, the Kraft-Chaitin Theorem for
building such machines, and Schnorr’s Theorem that connects both approaches.
Next we look at the levels or degrees of randomness induced by the specific ran-
domness reducibilities C, K, LR and LK, and the corresponding lowness notions
of K-triviality, low for K and low for random; we see that these are equivalent.

The next two chapters present original research in two distinct but related
directions. Chapter 2 is about splitting constructions in c.e. degrees of randomness,
derived from the classical Sacks Splitting Theorem of splitting c.e. Turing-degrees.
This classical procedure is given a detailed introduction, before we move to the c.e.
LR-degrees, and demonstrate how we can adapt the splitting construction of Sacks
to first split a c.e. set in two c.e. sets of strictly lower LR-degree and subsequently in
two c.e. sets of incomparable LR-degree. With a single construction we then show
how to split c.e. K-degrees in two c.e. K-degrees that are both of incomparable
K-degree and strictly K-below the original degree. The same construction passes
over to splitting in the c.e. C-degrees. We briefly consider questions of density in
these degree structures that arise in this context.

In Chapter 3, we first give the statement and context of the question of Downey,
Miller and Yu about the arithmetical complexity of the function that computes the
number of K-trivial sets via given constant. The problem is rephrased as counting
the number of paths of certain trees, so we introduce concepts such as families
of trees and K-triviality trees that we use in our approach. We then direct our
attention to basic properties of trees with finitely many paths and the complexity
of counting the number of paths in such trees, and later make the generalisation to
families of trees. Following this, we embed these complexity results in statements
about the jump hierarchy. The next step is to take up the strategy of reducing
the complexity of families of trees, starting with Σ0

1 and ∆0
2 trees in general, and

concluding with the K-triviality trees that we are really interested in. All that
remains at that point is finding out how to calculate the low2-ness indices of the
reduced K-triviality trees, after which we combine the previous work in establishing
a definite complexity of the function concerned, thus answering the open question.
Finally, with the same methodology, we also answer the related question about the
low for K sets.

CHAPTER 1

Algorithmic randomness

To lay the ground for the rest of the thesis, we give a condensed overview of
the area of algorithmic randomness and its connection to computability theory. We
discuss the underlying intuition and the necessary technicalities of two of the main
approaches to the formalisation of the intuitive concept of randomness of individ-
ual sequences, the statistical tests of Martin-Löf and the descriptive complexity of
Kolmogorov. This leads us to exact definitions of degrees of randomness, and the
associated lowness notions of very nonrandom sets.

More detailed information on both the technical and the philosophical aspects
of the field can be found in [Nie09], [DH10], [LV08], [vL87].

1. Randomness and computability theory

The goal that originated the field of algorithmic randomness is to capture the
informal notion of randomness. Confining ourselves to objects that are infinite
binary sequences (i.e., elements in Cantor space, 2ω), we seek for a way to for-
mally distinguish intuitively random from nonrandom sequences, so sequences like
01001101100... (that could be obtained by repeated toin cossing) from sequences
like 0101010101... (following a simple pattern). We can think of random sequences
as the outcome of a trial that produces infinitely many bits, where each bit is in-
dependent and has an equal chance of being either a 0 or a 1. However, we want
to find a way of judging randomness by looking at the single complete object itself
and disregarding how it was produced.

There are several properties that are associated with the informal notion of
randomness. An intuitively random sequence is one that is irregular, that lacks any
patterns and structure. It should be hard to describe, and impossible to compress
significantly. We expect such a sequence to be induced by chance; its development
should not be predictable. At the same time, we think of a random sequence as
typical in the sense that it satisfies the statistical properties given by probability
theory. Another way of putting this is saying that such an object should not have
any atypical, exceptional properties – if on a given sequence the number of 1’s is
not equal in the limit to the number of 0’s, this is a rare circumstance and we would
not consider the sequence to be random.

Actually, in a first modern approach to random sequences, Von Mises [vM19]
tried to base probability theory on random sequences, whose existence he took to
be empirical fact.1 He required such sequences, that he called Kollektivs, to sat-
isfy the conditions that the ratio of 1’s tends to a limit (embracing the frequency
interpretation of probability) and that any infinite subsequence taken out by some

1An approach very different from that of Kolmogorov, who departed from an abstract axiom
system the application of which to real phenomena is justified a posteriori.

3

4 1. ALGORITHMIC RANDOMNESS

admissable selection rule shows the same frequency limit (formalising the impossi-
blity of predicting the occurence of 1’s). Later, Church ([Chu40]) proposed to take
as these selection rules the computable functions. The attempt failed because the
definition still included atypical (hence nonrandom) sequences2, but we see here the
first connection of computability theory to randomness.

More recent proposals were directed at exploiting particular properties such
as typicalness (Martin-Löf tests), incompressibility (Kolmogorov complexity) and
unpredictability (martingales), and proved to be more fruitful. Their success is
supported by the fact that they all isolate the same class of random sequences. The
approach of martingales, making precise the infeasibility of a successful gambling
strategy on a succession of trials that constitute a random sequence, will receive no
further attention in this thesis; but the other two will play an important role and
are discussed in more detail in the next two sections.

Both the formalisations of Martin-Löf and of Kolmogorov are grounded on com-
putability theoretic definitions. Moreover, they permit the meaningful subdivision
of sets into different degrees of randomness, and there are tight links between the
characterisations of information content of sets from the perspective of computa-
tional complexity and from that of the level of randomness.3 The next chapter
provides a good example of the application of computability theoretic techniques
to hierarchies of randomness.

2. Statistical tests: Martin-Löf randomness

Taking his cue from the provision that random sequences should not possess
any atypical features, the idea of Martin-Löf [ML66] was to devise a statistical
test for all of these exceptional properties, and call a sequence random if it passes
them all. For any such atypical property, the family of sets that satisfies it is a
null class, a class A such that µ(A) = 0 with µ the uniform measure on Cantor
space.4 Having thus identified undesirable properties with null classes, we would
like a random sequence to stay clear of them.

A test as conceived by Martin-Löf checks if a given set really does evade the
null class for one particular property. Here we can use the fact that A is a null class
precisely if there exists a sequence (Gm)m∈N of open sets such that limm µ(Gm) = 0
andA ⊆

⋂
mGm, so we have a sequence of classes of decreasing measure, converging

to the null class that represents the rare property that is tested. The classes, critical
regions, are of increasing confidence level, and if the set that is being tested happens
to be contained in one such critical region, it is rejected with the corresponding
confidence. Only if the set is rejected on all confidence levels, we decide that it
exhibits the particular property – it cannot be random. If, on the other hand, the
set passes all these tests, so is not in any of the null classes they test for, it has no
exceptional property and we take it to be random.

But we cannot ask a random sequence to avoid all null classes: then no sequence
A is random as the singleton {A} is null as well. Analogously, the probability of
satisfying all properties of probability one is zero. So we have to choose which

2In particular, sequences that did not satisfy the law of the iterated logarithm ([Vil39]).
3Naturally, we can view infinite binary sequences as (the characteristic functions of) sets of

natural numbers. We use the notions of infinite sequence and set interchangeably.
4The canonical topology is based on basic open sets (or cylinders) [σ] for σ ∈ 2<ω , where [σ]

is the class of all infinite extensions of σ. The measure of [σ] is µ([σ]) = 2−|σ|.

2. STATISTICAL TESTS: MARTIN-LÖF RANDOMNESS 5

statistical anomalies, and hence their corresponding null classes, we want to take
into account. Martin-Löf focused with his test concept on effective null classes.

To be more precise, he required the sequence of open classes to be uniformly
computably enumerable, and the convergence effective. An open class A is effec-
tively open if the basic open cylinders are given by a computably enumerable (c.e.)
set of strings, so A = [W] for some c.e. W . Then, given the standard enumeration
(We)e∈N of c.e. sets, a uniformly c.e. sequence (Gm)m∈N of open sets is accompanied
by a computable f such that Gm = [Wf(m)] for all m. The convergence is effective

if µ(Gm) < 2−m for each m. The full definition is as follows.

Definition 2.1. A Martin-Löf test is a uniformly c.e. sequence (Gm)m∈N of open
sets such that for all m ∈ N, µ(Gm) ≤ 2−m. A given set A fails the test if
A ∈

⋂
mGm, otherwise it passes the test. If A passes each such test, it is Martin-

Löf random.

Let MLR be the class of all Martin-Löf (ML) random sets. These sets are
sometimes called 1-random. Since there are only countably many tests, the class
of the sets that are intercepted by one of them is still null, which means that the
class MLR has measure one. Thus most sets by far are ML-random.

Note that Martin-Löf’s formalisation of randomness is a negative one: if any
reasonable attempt to pin the set down fails, we just say it must be random. The
choice of what is reasonable here is rather pragmatic. Deciding on a certain class
of tests reflects a choice of a particular class of properties that we think random
objects should possess, and necessarily leaves out others. Computability theory
might not be the right intuition to isolate this class; and even so, we still have
freedom in choosing the level of effectiveness. For example, the weaker notion of
Schnorr randomness is based on tests that can only use open sets with computable
measure, and for the stronger notion of 2-randomness the tests are permitted to
use the halting set ∅′ as an oracle. We will not go into these alternative notions
of randomness in this thesis. It appears the important statistical properties are
satisfied by the definition of Martin-Löf, and it interacts nicely with computability
theoretic concepts and formalisations of randomness we will introduce below.

To avoid the hassle of having to work with infinitely many different tests, we
can fix a listing (Gek)e,k∈N of all Martin-Löf (ML) tests (indexed by e), where Gek
is uniformly c.e. in e, k. Let Ub = ∪e∈NGeb+e+1. Then (Ub)b∈N is uniformly c.e.

and the convergence is effective5, so it is an ML-test. What is more, if A ∈ ∩mGem
for a particular test (Gem)m∈N, so A ∈ Gem for every m, also A ∈ Gb for every
b, hence A ∈ ∩bUb. That means that every A that is not ML-random, and thus
intercepted by some test, must be contained in ∩bUb as well. Accordingly, a set
is not ML-random precisely if it is not in this one particular test, making (Ub)b a
universal Martin-Löf test.

Fact 2.2. There exists a universal Martin-Löf test (Ub)b, meaning that A ∈ MLR
if and only if A /∈ ∩bUb.

As the open sets of a test are given by c.e. sets of strings, we can also look at
an ML-test as a sequence of machines that output strings. Identifying machine M
with its range, a set of strings, an ML-test is a uniform sequence (Md)d of machines

5We have µ(Ub) ≤
∑
e 2−(b+e+1) = 2−b−1

∑
e 2−e = 2−b−1 · 2 = 2−b.

6 1. ALGORITHMIC RANDOMNESS

outputting finite binary strings such that µ(Md) < 2−d and Md+1 ⊆Md. Then we
can also use oracle machines, leading to relativised versions of ML-randomness.

Definition 2.3. An oracle Martin-Löf test (Me)e is a uniform sequence of ora-
cle machines outputting finite binary strings, such that for every d and oracle A,
µ(MA

d) < 2−d and MA
d+1 ⊆MA

d . Set B is A-random, B ∈ MLRA, if for every oracle

ML-test (Me)e, it holds that B /∈ ∩eUAe .

Naturally, there also exists a universal oracle ML-test.

3. Descriptive complexity: Kolmogorov complexity

The intuition behind the approach6 that bears Kolmogorov’s name is that a
string that is not random must exhibit regularities that allow for a shorter descrip-
tion of the string. A way of visualising this is that the description or code of the
string acts as the input for some program, that can exploit the regularities to re-
trieve the complete string. The much shorter code can thus be said to capture all
information content of the nonrandom string. The patterns in the bits of the string
make it compressible.

Notice that the foregoing only makes sense for finite strings – an infinite random
string probably has no finite descriptions at all. But we can say that an infinite
sequence is random if all its initial segments are incompressible.

3.1. The plain descriptive complexity. In making this concept precise, we
take machines (partial computable functions) M that map strings to strings. Then
an M -description for finite string σ ∈ 2<ω is a code τ ∈ 2<ω such that M(τ) = σ.
Each machine can be viewed as representing a particular decompression algorithm
or rule, and can only accept short descriptions for the strings that have a pattern
that follow this rule. The length of the shortest M -description of a string is what
we call the Kolmogorov complexity (relative to M) of the string.

Definition 3.1. The (Kolmogorov) CM -complexity of string σ ∈ 2<ω relative to
machine M is

CM (σ) = min{|τ | : M(τ) = σ}.

But as before we can construct from the effective list (Me)e∈N of all machines an
optimal or universal machine U that simulates all machines and thus combines all
rules. Simply define U to feed τ to machineMe if it receives the universal description
0e−1τ itself. Then U(0e−1τ) = σ precisely if Me(τ) = σ, so the shortest universal
description of any σ only differs a constant e from the shortest Me-description of
the same string. This gives us a reason to claim that we have a truly objective
notion of the shortest description of a string. We denote the length of the shortest
universal description of string σ by C(σ).

Now we can say that string σ is b-incompressible if its universal description
gives a compression of less than b bits, so C(σ) > |σ| − b. But the counterintuitive
situation arises that there can be no infinite string all of whose initial segments are b-
incompressible for the same constant b, thwarting our plan to define the randomness
of sets by the incompressibility of their initial segments. However patternless an
infinite sequence may be, there are always complexity dips where an initial segment
suddenly has a short description. The problem is caused by the fact that the

6As developed in [Sol64], [Kol65], [ZL70], [Lev73, Lev76], [Cha75].

3. DESCRIPTIVE COMPLEXITY: KOLMOGOROV COMPLEXITY 7

information content is not only in the bits of the description (as we intended), but
also in the length of the description, permitting the machine to “cheat” by using
this information as well.

3.2. The prefix-free descriptive complexity. Somehow, we have to get
rid of the additional information that is given by the length of a string. We would
succeed if we could bring this information back in the bits of the string, by forcing
the string to encode its own length. To that end, we restrict our machines by taking
away the blank symbol; so the reading head will have to infer from the string itself
when it has read the last bit. Such machines are precisely the ones with a prefix-
free domain, that is, a domain in which no string is the prefix of another. Again
we can construct a universal prefix-free machine that simulates all other so-called
prefix-free machines – let U(0e1τ) 'Me(τ) with (Me)e the list of all machines that
is modified to make them all prefix-free.7

Definition 3.2. The (prefix-free Kolmogorov) K-complexity of string σ ∈ 2<ω is

K(σ) = min{|τ | : U(τ) = σ},

with U an agreed-upon universal prefix-free machine.

Along with a few other advantages, the prefix-free variant solves the problem
of complexity dips. There exist sets all of whose initial segments have high K-
complexity – and they happen to be precisely the sets that are random according
to Martin-Löf’s definition.

Fact 3.3 (Schnorr’s Theorem [Sch73]). Set A is Martin-Löf random if and only
if there exists b such that ∀n K(A � n) > n− b.

Since the shortest universal description of any string is not more than an index
constant e longer than the shortest Me-description of the same string, K(σ) ≤
KMe(σ) + e, we can construct our own machines to show upper bounds on the K-
complexity of strings. For instance, consider the machine N that on input τ looks
for a decomposition in two strings ρ and σ such that the second has length n, so
|σ| = n, and the first is a universal description for n, so U(ρ) = n. If it finds such
a decomposition, it outputs the second part σ. Now N is prefix-free because U is,
and if ρ is a shortest universal description for n = |σ|, then ρσ is an N -description
for σ; hence N(ρσ) = σ. It follows that K(σ) ≤ K(|σ|) + |σ|+ d for any string σ,
where d is the index of N .8

This upper bound can be further improved by looking at the machine M with
M(0|σ|1σ) = σ, which is prefix-free because σ and τ have to be equal if 0|σ|1σ 4
0|τ |1τ . It implies that K(σ) ≤ 2|σ| + b for some b and all σ, so in particular
K(|σ|) ≤ 2 log |σ|+b. Substituting this in the inequality of the previous paragraph,
we obtain the following bound.

7For this modification, only accept the computation Me(τ)[s] = σ at stage s if it is not the
case that Me(ρ) is defined at an earlier stage for some ρ such that ρ < τ or ρ 4 τ . Also note that

the additional 1 in 0e1τ makes sure that the domain of U is prefix-free.
8Whenever we talk about the Kolmogorov complexity of a natural number, we mean the

complexity of the string that respresents it. An efficient representation would be by an ordering
of all strings first by length and then lexicographically. Then the length of the representing string

of n is approximately logn.

8 1. ALGORITHMIC RANDOMNESS

Fact 3.4. For some constant c,

∀σ ∈ 2<ω (K(σ) ≤ 2 log |σ|+ |σ|+ c).

The next important result will provide us with a convenient way of constructing
prefix-free machines. First we note that the measure of the open set generated by
the domain of a prefix-free machine is bounded. We call this measure the weight of
the machine.9

Definition 3.5. The weight of prefix-free machine M is∑
σ∈dom(M)

2−|σ|.

Since prefix-free M has bounded weight, clearly also
∑
σ 2−KM (σ) ≤ 1. The

observation that any prefix-free machine has bounded weight can be turned around.
If we have an infinite sequence of natural numbers ni such that the sum of all 2−ni

is bounded, we can infer the existence of a corresponding prefix-free sequence of
strings with exactly these lengths. A useful way to look at this is in terms of request
pairs of lengths and strings, where we want the string to get a description of the
associated length. The following theorem, also known as the Machine Existence
Theorem, effectivises this observation into a useful tool for constructing prefix-free
machines.

Fact 3.6 (Kraft-Chaitin Theorem [Kra49],[Lev73],[Cha75]). For a c.e. set R of
requests 〈n, σ〉 ⊆ N× 2<ω such that∑

〈n,σ〉∈R

2−n ≤ 1,

we can effectively obtain a prefix-free machine M such that for all lengths n and
strings σ

〈n, σ〉 ∈ R ⇐⇒ ∃τ (|τ | = n & M(τ) = σ).

Moreover, an index d of M can be effectively obtained from the index of the request
set R.

As an example, the set of requests 〈2 log n + 2, n〉 for all nonzero n ∈ N has
weight

∑
n 2−2 logn−2 = 1/2

∑
n 1/n2 ≤ 1, and even leaves room for a description

of a few bits for n = 0, so there must be a machine that recognises a description of
length 2 log n+ 2 for each n.

Fact 3.7. For some constant c,

∀n ∈ N (K(n) ≤ 2 log n+ c).

In the rest of the thesis, the Kraft-Chaitin Theorem is silently invoked whenever
we build prefix-free machines by enumerating descriptions and have to watch that
we do not add too much weight. In addition, by the Recursion Theorem we can
assume we know the index of the c.e. request set and hence of the machine in
advance, which is of course useful because it is the constant by which the length of
the shortest universal descriptions may differ.

9The weight of M can be interpreted as its halting probability. In an experiment where we

start machine M and toss a coin to determine the next input bit whenever M asks for it, this is

the probability that M halts, that is, the probability that the string we feed it is in its domain.
Chaitin’s famous random real Ω is given by the halting probability of an agreed-upon universal

machine.

4. DEGREES OF RANDOMNESS 9

4. Degrees of randomness

Much like Turing or m-reduciblity hands us a way of comparing sets to their
computational content, our formalisations of randomness point to reduciblities that
make it meaningful to consider one set to be more random than another, or more
powerful in detecting patterns.

4.1. Reducibilities. If all initial segments of one set have a descriptive com-
plexity that is not significantly greater than the descriptive complexity of those
of another set, we are in a good position to say that the second set is at least as
random as the first. This is formalised in the notions of K- and C-reducibility.

Definition 4.1 ([DHL04]). Set A is K-reducible to set B, and we write A ≤K B,
if there exists a constant b such that

∀n ∈ N (K(A � n) ≤ K(B � n) + b).

Likewise, A ≤C B if

∀n ∈ N (C(A � n) ≤ C(B � n) + b).

We can also compare sets according to their strength as an oracle in making
possible short descriptions. Then one set is at least as powerful as another if it
allows for descriptions that are not signicantly longer – it is as least as useful in
compressing strings.

Definition 4.2 ([Nie05]). Set A is LK-reducible to set B, and we write A ≤LK B,
if there exists a constant b such that

∀σ ∈ 2<ω (KB(σ) ≤ KA(σ) + b).

Invoking the definition of Martin-Löf randomness, we can compare the strength
of oracles on their ability to “derandomise” whole sets, decreasing the class of sets
that are still random.

Definition 4.3 ([Nie05]). Set A is LR-reducible to set B, and we write A ≤LR B,
if

MLRB ⊆ MLRA.

Actually, the LR- and LK-reduciblities are equivalent: A ≤LK B precisely if
A ≤LR B. They are weak reducibilities in the sense that they are implied by Turing
reducibility. This does not hold for the K-reducibility: we may have A ≤T B but
A �K B.

Two sets are equivalent with respect to a particular reducibility if they reduce
to each other. The class of all sets can be partitioned in degrees of sets that are
equivalent in this sense. So sets A and B are K-equivalent, and we write A ≡K B,
if both A ≤K B and B ≤K A; and a K-degree is a class of sets that is closed under
K-equivalence. Likewise for the C-, LK- and LR-reducibilities. Thus we have what
we could call levels of randomness. There is always a lowest level or degree, the one
that contains the computable sets.

4.2. Lowness notions. The least degrees induced by the reducibilities we
discussed are classes of sets that are very nonrandom, or as weak as can be in
compressing and derandomising.

We start with the sets in the lowest K- and C degrees, the sets whose initial
segments have a Kolmogorov complexity not more (up to a constant) than that of

10 1. ALGORITHMIC RANDOMNESS

the string representing their lengths. Equivalently, their initial segments are not
more complex than those of any computable set.

Definition 4.4 ([Sol75]). Set A is K-trivial if there exists a constant b such that

∀n ∈ N (K(A � n) ≤ K(n) + b).

A is C-trivial if there is b such that ∀n ∈ N (C(A � n) ≤ C(n) + b).

Both definitions obviously encompass all computable sets. It appears that the
class of C-trivials coincides with the computable sets (Meyer, unpublished). This
is not the case for the class K of K-trivial sets: there are incomputable K-trivials
[Sol75].

The lowest degree in the LK-degrees consists of the sets that are worst at
compressing.

Definition 4.5 (Muchnik, unpublished). Set A is low for K if there exists a con-
stant b such that

∀σ ∈ 2<ω (K(σ) ≤ KA(σ) + b)).

Finally, the lowest degree in the LR-degrees is characterised as follows.

Definition 4.6 ([Zam90], [KT99]). Set A is low for ML-randomness if

MLRA = MLR.

We denote the classes of low for K’s and low for randoms byM and L, respec-
tively.

The combined efforts of several authors have uncovered that the main lowness
properties we have just seen are in fact equivalent. The classes K,M and L consist
of the very same sets.

Fact 4.7 ([Nie05], [HNS07]). Set A is K-trivial if and only if it is low for K if
and only if it is low for random.

It points at a rather striking link between the properties of being computation-
ally weak and being far from random, i.e., having trivial initial segment complexity.

CHAPTER 2

Splitting in degrees of randomness

The Sacks Splitting Theorem is a standard result of computability theory that
states that any noncomputable c.e. set can be split into two disjoint sets that do
not compute another given set. The general method of Sacks restraints introduced
in the construction of this splitting can be used to prove similar results in different
degree structures. In this chapter, we will apply it to split nontrivial c.e. sets within
degrees of randomness, induced by the reducibilities that we saw in the introduction.

We start by giving a detailed account of the classical Sacks Splitting Theorem.
All further splitting constructions in this chapter will draw from that presentation,
allowing us to focus on the details that differ.

The c.e. degree structures we then look at are those of the LR-, K- and C-
degrees, respectively. For all these structures with their corresponding interpreta-
tions of complexity, we show how to split a nontrivial set into two sets of strictly
lower complexity, as well as into two sets that have incomparable complexity. With
the exception of the case of the LR-degrees, these two requirements are in fact
equivalent.

The splitting theorems answer the question of downward density in the corre-
sponding c.e. degree structures. We briefly discuss related problems of density in
these structures.

1. The classical splitting theorem

The construction in the proof of the Sacks Splitting Theorem [Sac63] divides
a given c.e. but noncomputable set A into two disjoint sets that both are not in
the Turing-cone1 above a certain set B. We will simplify this to the case A = B,
so we will look at a construction that divides a given nontrivial c.e. set A into two
disjoint sets that both contain strictly less information than A.

1.1. Splitting into sets of strictly lower degree. The following presenta-
tion is based on [Soa10],[Coo04].

Theorem 1.1. For c.e. A >T ∅, there exist c.e. A0 and A1 such that A0 tA1 = A
and A0, A1 <T A.

Proof. We are given a computable enumeration {A[s]}s∈N of A such that
(without loss of generality) one new element is enumerated at each stage. This
element we have to put in either A0 or A1, in such a way that we satisfy the
requirement

R〈e,i〉 : A 6= ΦAi
e

for all e and for i = 0, 1, making sure that A cannot reduce to A0 or A1.

1The (Turing-)cone above a set X is the class of all sets that compute X.

11

12 2. SPLITTING IN DEGREES OF RANDOMNESS

At each stage s and for each index e we have a length of agreement between
ΦAi
e and A, given by

l(e, i)[s] = µx(A[s] � x 6= ΦAi
e [s] � x).

A requirement R〈e,i〉 is only endangered if the length of agreement

l(e, i) = lim
s
l(e, i)[s]

goes to infinity, but we actually try to protect the agreement by putting a restraint
on the maximal use of Ai in computations within the length of agreement:

r(e, i)[s] = µx(ΦAi�x
e [s] � l(e, i)[s] ↓).

The trick is that reaching an infinite length of agreement monitored by these Sacks
restraints, which is the only way the requirement can be evaded, will give us a sure
way of computing A, contrary to assumption.

Construction. Start with Ai[0] = ∅ for i = 0, 1. At stage s + 1, we have a
new x ∈ A[s+1]−A[s]. If x is not below any restraint r(e, i)[s], put x into A0[s+1].
Otherwise, take the least 〈e, i〉 such that x ≤ r(e, i)[s]. This is the restraint with
the highest priority . We will respect this restraint, and enumerate x not in Ai
but in the other set, A1−i. Now it might be the case that x is below restraints
r(e′, 1− i)[s] for higher 〈e′, 1− i〉 > 〈e, i〉. Then we say the requirement R〈e′,1−i〉 is
injured by this x.

Verification. We will show by induction that each requirement is satisfied.
For this we need to show at the same time that a requirement is injured only
finitely often and that the restraints will settle. So to show this for 〈e, i〉, suppose

that for all 〈e′, i′〉 < 〈e, i〉, R〈e′,i′〉 is injured only finitely often, A 6= Φ
Ai′
e′ , and

r(e′, i′) = lims r(e
′, i′)[s] exists and is finite.

We start by proving that R〈e,i〉 is injured finitely many times. Wait for a stage
t such that all restraints r(e′, i′) have settled, and choose an r greater than any of
them. Then wait for stage v > t where the initial segment of A up to r has settled:
A[v] � r = A � r. Now no x below any r(e, i)[w] with w ≥ v can enter Ai, because
in that case some higher priority R〈e′,1−i〉 would have forced x to injure R〈e,i〉. But
then x would be below the upper bound r on all higher priority restraints, and
could not appear into A in the first place because by this stage A � r has settled.
Thus R〈e,i〉 cannot be injured from stage v on.

Now for the main part, the verification of requirement R〈e,i〉. Take any number

n and suppose instead that A = ΦAi
e . Then the length of agreement l(e, i) =∞, so

there must be some stage s such that not only R〈e,i〉 is respected from then on but
also l(e, i)[s] > n. As the restraints will not be injured, the length of agreement
cannot decrease unless at some stage s′ > s an element x < l(e, i)[s′] is enumerated
into A, meaning A[s′ + 1] � x 6= A[s] � x = ΦAi

e [s] � x. But then the restraints will
make sure this disagreement is preserved forever, and we end up with A 6= ΦAi

e ,
contradicting our hypothesis. Thus the length of agreement cannot decrease from
s on, and to see whether n ∈ A it suffices to check if n ∈ ΦAi

e [s], a computable
operation. As we took A to be incomputable, we conclude that A 6= ΦAi

e .
Note that the restraints not only try to protect agreements in order to provide

a way of computing A in case an agreement will not stop growing, but, just as
importantly, also preserve a disagreement caused by a sufficiently small new element
in A.

1. THE CLASSICAL SPLITTING THEOREM 13

To make the induction work, we still have to show that the restraint r(e, i) will
settle. By our result that A 6= ΦAi

e , there is a least x such that A(x) 6= ΦAi
e (x).

So from some stage on, the initial segments of A and ΦAi
e up to but not including

x have settled and are the same. Now wait for a stage s such that also A(x)[s] =
A(x), and, by the first result, R〈e,i〉 will not be injured anymore. If ΦAi

e (x)[t] is
divergent at every stage t ≥ s from then on, the length of agreement will stay
at x. Then the computations for all inputs up to x will be preserved since the
corresponding restraint cannot be breached anymore, so r(e, i)[s] will stay put and
r(e, i) = r(e, i)[s]. Otherwise, if ΦAi

e (x)[t] ↓ at a later stage t ≥ s, we know that this
computation will also be preserved because the length of agreement then includes
x. Since ΦAi

e (x)[t] = ΦAi
e (x) 6= A(x), the length of agreement has stabilised and

the restraint r(e, i)[t] = r(e, i) has settled in this case as well. �

1.2. Splitting into sets of incomparable degree. The fact that c.e. A is
not Turing-reducible to one of its disjoint c.e. halves A0 and A1 is equivalent to the
fact that A0 and A1 are Turing-incomparable, i.e., that we have both A0 �T A1

and A1 �T A0 (denoted as ‘A0|TA1’). For this reason, the splitting parts cannot be
computable either, and must be of a degree strictly between the computable degree
and that of A.

Proposition 1.2 (Folklore). For splitting A = A0 tA1 of c.e. A into disjoint c.e.
A0 and A1,

A0|TA1 ⇐⇒ A0, A1 <T A.

Proof. We make use of the fact that A is of the same Turing-degree as the join
A0 ⊕ A1. To see this, note that A0, A1 ≤T A because to establish whether x ∈ A0

(say) we check if x ∈ A, and if so, we can enumerate c.e. A0 and A1 until x appears
in one of them. Hence A0⊕A1 ≤T A. It is immediate that A = A0tA1 ≤T A0⊕A1,
and the equivalence follows.

(=⇒) If A would reduce to (say) A0 we would have A0 ⊕ A1 ≤T A0, hence
by A1 ≤ A0 ⊕ A1 it follows that A1 ≤ A0. So they are comparable. Likewise for
A ≤T A0.

(⇐=) If A0 and A1 are comparable, say A0 ≤T A1, then A1 ≡T A0⊕A1 ≡T A
(the join being the supremum), so in particular, A ≤T A1. Likewise for A1 ≤T
A0. �

Even though in the Turing case these two facts are equivalent, we lose this
property if we later move to splitting in the c.e. LR-degrees. Therefore we also look
at a construction that is explicitly directed at splitting A into two incomparable
sets. We define the lengths of agreement as

l(e, i)[s] = µx(A1−i[s] � x 6= ΦAi
e [s] � x)

and the restraints r(e, i)[s] just as before, and try to satisfy for all e and i = 0, 1
the requirement

R〈e,i〉 : A1−i 6= ΦAi
e .

Construction. Again starting with A0[0] = A1[0] = ∅, at any new stage s+1
we look for the least 〈e, i〉 such that the new x ∈ A[s+ 1]−A[s] is not larger than
the length of agreement l(e, i)[s] or the restraint r(e, i)[s]. If none is found, just
put x into A0. If we do find such a least 〈e, i〉, enumerate x into A1−i instead. We

14 2. SPLITTING IN DEGREES OF RANDOMNESS

now look at both the restraint and the length of agreement, and say that R〈e′,i′〉 is
injured if some x below l(e′, i′)[s] or r(e′, i′)[s] is put into Ai′ .

Verification. Inductively assume that for all 〈e′, i′〉 < 〈e, i〉, R〈e′,i′〉 is injured

only finitely often, A 6= ΦAi
e , and r(e′, i′) exists and is finite.

The requirement R〈e,i〉 is injured only finitely often by a similar argument as
before, but now also applied to the length of agreement. So we take an r beyond
all higher priority restraints and lengths of agreements, wait for A up to r to settle,
and argue that any x injuring R〈e,i〉 after this stage must do so by directions of a
higher priority requirement, meaning that x is below r and would change the part
of A we assumed already settled.

To verify requirement R〈e,i〉, assume that A1−i = ΦAi
e , so l(e, i) = ∞. Given

any n, wait for the first stage s after which the requirement is never injured and the
length of agreement exceeds n. As in this case also elements within the length of
agreement of ΦAi

e and A1−i are disallowed, no element up to n can be put into Ai.
But neither can any x ≤ n be put into A1−i, because as before that would create a
disagreement that is preserved and results in A1−i 6= ΦAi

e . Hence, as we must put
such elements in one of A0 or A1, nothing up to n will be enumerated into A from
this stage on. Thus n ∈ A precisely if n ∈ A0[s] ∪ A1[s], making A computable.
This is a contradiction, so it must be the case that A1−i 6= ΦAi

e .
The argument that the length of agreement and restraint will stabilise on a

finite value is identical to the one in the previous construction. �

2. Splitting in the c.e. LR-degrees

Now that we have examined splitting in the Turing degrees, we will look at
ways of splitting a nontrivial set in the LR-degrees. Recall from the introduction
that we have A ≤LR B if MLRB ⊆ MLRA, and the fact that it is implied by Turing-
reducibility. As members of the ‘nontrivial’ degree we now take sets that are not
low for random, so the nontrivial sets are those strictly LR-above the computable
sets.

The definition of LR-reducibility does not allow for a straightforward transla-
tion of the devices we used in the splitting in the c.e. Turing degrees. If we want
to prevent that A ≤LR B, how can we effectively define a length of agreement that
measures how close we are to MLRB ⊆ MLRA? Therefore we use a more convenient
characterisation of this reducibility. The following equivalence was first established
in [KH07], and given a more direct presentation and proof in [BLS08a]. Here we
look at ML-test members as c.e. sets of strings, as explained in the introduction.

Fact 2.1 ([KH07]). For all sets A and B, the following are equivalent:

(1) A ≤LR B;
(2) for some member UA of a universal ML-test relative to A, there is a V B

c.e. in B such that µ(V B) < 1 and UA ⊆ V B.

Intuitively, the length of agreement with respect to A ≤LR B and a particular
V B would identify (under the assumption of a fixed listing of elements) up to what
point elements in UA are in V B , and the restraint is put on the use of B by V in
calculating these elements.

In the remainder of this section, we first review the result in [BLS08a] of
splitting a nontrivial c.e. set into two c.e. sets of strictly lower LR-degree. As this

2. SPLITTING IN THE C.E. LR-DEGREES 15

does not imply that the thus obtained sets are also of incomparable LR-degree, we
will introduce a different construction to achieve that. Finally, we have a brief look
on how these splittings relate to the questions of density.

2.1. Splitting into sets of strictly lower c.e. LR-degree. In [BLS08a],
an adapted splitting argument is presented that divides a nontrivial c.e. set into
two c.e. sets of strictly less information in the LR-sense, that is, that are worse at
derandomising than the original set. The construction is identical to the classical
one, except for the definition of the restraints and lengths of agreements. The latter
are protected to make sure that any broken requirement will show the original set
to be nontrivial, but this time not in the sense of being computable but in the sense
of being low for random.

Theorem 2.2 ([BLS08a, Theorem 5.5]). For c.e. A >LR ∅, there exist c.e. A0

and A1 such that A0 tA1 = A and A0, A1 <LR A.

Proof. This time, we want to distribute elements enumerated into A over A0

and A1 in such a way that we satisfy

R〈e,i〉 : UA * V Ai
e

for all e and for i = 0, 1. Here U is a universal oracle Martin-Löf test, and (Ve, qe)e∈N
an effective enumeration of tuples (V, q) with V a c.e. operator and q a dyadic
rational2 such that µ(V X) < 1 − q for all sets X. If we can fulfill every such
requirement, the equivalence of Fact 2.1 tells us that A is not LR-reducible to A0

or A1.
Our new length of agreement has to express up to what point elements in UA

are in V Ai
e . To define it, we use a computable enumeration (σi) of finite strings

appearing in UA[t] at some stage, where each σ is enumerated once in this list for
each time it appears in some UA[t] with new use. A string σs that is enumerated
as stage t and is still in UA[t′] with the same use at a later stage t′, is said to have
remained in UA. Then l(e, i)[s] gives the maximum n such that the nth member
of the sequence is enumerated by stage s and all σi for i ≤ n are in V Ai

e [s] or have
not remained in UA.

The restraint on the use of Ai is given by

r(e, i)[s] = µx ∀i ≤ l(e, i)[s] (σi ∈ UA[s] ⇒ σi ∈ V Ai�x
e [s]).

Note that in this definition of length of agreement, anything new appearing in UA

will be enumerated anew and will thus be greater than (have an index greater
than) the current length of agreement. In other words, new elements in UA cannot
breach the length of agreement. The restraints’ only purpose is in protecting the
agreement, and we do not need it to keep a sudden disagreement as before.

Construction. We do exactly the same as in the classical splitting construc-
tion: for new x ∈ A[s+ 1]−A[s] we look for the highest priority restraint r(e, i)[s]
above x and put x in A1−i. If none is found, x goes into A0.

Verification. The inductive verification of the facts that the requirements
are injured only finitely often and that the restraints will settle is essentially the
same as in the classical case. For the first, suppose all R〈e′,i′〉 with 〈e′, i′〉 < 〈e, i〉 will

2A dyadic rational can be written in the form z2−n for some integer z and natural number
n. So they are the real numbers with a finite binary expansion.

16 2. SPLITTING IN DEGREES OF RANDOMNESS

be respected from some stage on, and choose an r greater than all the corresponding
restraints. After the stage where A � r has settled, no x below the current restraint
for 〈e, i〉 can enter Ai or it would have been enforced by a higher priority R〈e′,i′〉 and

x ≤ r changes A � r after all. For the second, under the assumption that UA * V Ai
e

let σn be the first string in our enumeration that remains in UA with the same use
and that is not in V Ai

e . Beyond the stage where each σi for i < n has not remained
in UA or the part of Ai that is used by V in calculating it has settled, and the
requirement R〈e,i〉 is no longer injured, σn cannot appear in V Ai

e [s] anymore. For if
it does, the length of agreement l(e, i)[s] is put to n, and the restraint protects the
calculation of σn, making us end up with σn ∈ V Ai

e after all. And if it does not,
clearly the length of agreement and also the restraint will move no more.

To verify R〈e,i〉, assume to the contrary that UA ⊆ V Ai
e . Then l(e, i) goes

to infinity and we can find a stage s such that the restraints rs′(e, i) will not be
injured for stages s′ after s. Then we can enumerate a set of strings E by putting
finite string σi into it at stage s′ if i ≤ l(e, i)[s′] and σi ∈ UA[s′]. Since V Ai is
protected by the restraints on Ai, by its definition the length of agreement cannot
decrease (it does not matter if anything leaves UA, nor if anything is added). So
if UA is contained in V Ai

e then everything that appears in UA will be enumerated
into E and the restraints guarantee that everything in E will also be in V Ai

e . Thus
UA ⊆ E ⊆ V Ai

e and µ(E) ≤ µ(V Ai
e) < 1− q, so as E is c.e., we have A ≤LR ∅. But

this contradicts our assumption that A is not low for random. �

2.2. Splitting into sets of incomparable c.e. LR-degree. In the LR-
degrees, the join operator ‘⊕’ does not determine a supremum [Nie05]. So the
proof of Proposition 1.2 breaks down in this degree structure, and we cannot claim
that a c.e. set that is not low for random can be split into two LR-incomparable
sets just by the result of the previous section. That is why we present here a
construction that achieves this explicitly.

Theorem 2.3. For c.e. A >LR ∅, there exist c.e. A0 and A1 such that A0tA1 = A
and A0|LRA1.

Proof. The lengths of agreement and restraints are defined like in the previous
theorem, and the requirements we must satisfy are given by

R〈e,i〉 : UA1−i * V Ai
e .

Construction. We can again keep to the strategy in the corresponding Tur-
ing case. So for new x at stage s+ 1, we try to find the highest priority R〈e,i〉 such
that x is not above the length of agreement l(e, i)[s] or the restraint r(e, i)[s], and
put x in A1−i.

Verification. We look at the verification of R〈e,i〉, the rest of the argument
being the same as before.

If l(e, i) = ∞ then there is a stage s where the requirement will be respected
and the length of agreement exceeds a given n. The length of agreement is preserved
as before, and now nothing below it can be put into Ai. In other words, every new
element up to the length of agreement that appears in A must be put into Ai−1.
So n is in A precisely if it is in Ai[s] or A1−i. That makes A computable in A1−i.

2. SPLITTING IN THE C.E. LR-DEGREES 17

Now after reaching s we build a c.e. set of finite strings E exactly as we did in the
previous construction, enumerating σi at stage s′ if i ≤ l(e, i)[s′] and σi ∈ UA1−i [s′].
Again UA1−i ⊆ E ⊆ V Ai

e and µ(E) < 1 − q, so A1−i ≤LR ∅ and A1−i is low for
random. But we have just demonstrated that A is A1−i-computable, so A cannot
have more information than A1−i already has. That implies that A is low for
random as well, and we have reached our contradiction. �

This is actually a stronger version of Theorem 2.2, because if the splitting parts
are LR-incomparable they must also be strictly LR-below the original set. After
all, A0, A1 ≤LR A and if also A0 ≥LR A then we would end up with A1 ≤LR A0.

2.3. Density in the c.e. LR-degrees. We call a degree structure downward
dense if for any given nonminimal degree, there is always a third degree to be
found strictly between that degree and the lowest degree. The construction of the
previous section, providing a method of obtaining a nontrivial splitting part that is
strictly below the original set, shows that the c.e. LR-degrees do have this property.

Corollary 2.4 (from Theorem 2.3). The c.e. LR-degrees are downward dense.

Proof. Given any nonminimal LR-degree, each member A can be split with
the construction of Theorem 2.3 into LR-incomparable c.e. A0 and A1. None of
these two sets can be LR-reducible to ∅, for if A0 ≤LR ∅ then certainly A0 ≤LR A1,
contrary to A0|LRA1. And both are LR-below A, as they are computable in A
and Turing-reducibility implies LR-reducibility; but they cannot be of the same
LR-degree as A, since (as noted before) A1 ≡LR A again implies A0 ≤LR A1. So
A0 and A1 are of degrees that are strictly between the lowest degree and the degree
we started with. �

The next question that presents itself is that of general density. Given any
two degrees, one strictly above the other, is there a degree strictly between them?
The Sacks Density Theorem [Sac64] gives an affirmative answer for the c.e. Turing
degrees. For the c.e. LR-degrees only a weaker result is known.

Fact 2.5 ([BLS08b]). For c.e. sets B and C with B ≤T C and B <LR C, there
is c.e. A such that B ≤T A ≤T C and B <LR A <LR C.

So this theorem requires the first degree to be computable in the second, which
is is no way enforced by the fact that the first LR-reduces to the second. The
general problem is still unsolved and in fact one of the open questions in [MN06].

Question 2.6. Are the c.e. LR-degrees dense?

Then there is the question of upward density . Depending on whether the degree
structure has a maximal degree that has no degrees above it, it either asks if there
is always a degree strictly between any given degree and this maximal degree, or
whether for every degree there is always a degree higher than it. Every c.e. Turing-
degree is below the complete degree 0′, so the c.e. Turing-degree structure has a
maximum element. From the general density then follows that the Turing-degrees
are upward dense.

This property passes over to the c.e. LR-degrees. Consider the LR-degree
containing the complete c.e. sets (there is one single degree containing all these

18 2. SPLITTING IN DEGREES OF RANDOMNESS

sets, as A ≡T implies A ≡LR B)3. Any c.e. set is computable in a complete set,
hence LR-reducible to a set in this degree. Thus it is a maximum degree, and there
can be no degree strictly above it.

Fact 2.7. There is a maximum c.e. LR-degree.

The weaker density result above then suffices to show that there is always a
c.e. LR-degree strictly between any given c.e. LR-degree and the maximum c.e.
LR-degree.

Corollary 2.8 (From Theorem 2.5). The c.e. LR-degrees are upward dense.

Proof. Take any c.e. LR-degree a that is strictly below the maximum c.e.
LR-degree. Pick an arbitrary c.e. A ∈ a. This set is certainly computable in ∅′,
member of the maximum degree. Then by Theorem 2.5 we can find a set B such
that A <LR B yet B <LR ∅′. We conclude that there is a c.e. LR-degree strictly
between a and the maximum degree. �

3. Splitting in the c.e. K- and C-degrees

Finally we look at the structures of the K- and the C-degrees, that classify sets
according to their (prefix-free) initial segment complexity. We start with the prefix-
free case, where we show how to split c.e. sets that surpass the lowest degree of
sequences with trivial prefix-free initial segment complexity, the K-trivials. Recall
that this is really the same class we saw in the previous section, that of the low
for randoms. Essentially the same construction provides for splitting in the c.e.
C-degrees. Here the trivial sets are precisely the computable ones.

Contrary to the LR-case, for the K- and C-splitting we do not need to introduce
separate constructions for splitting into sets of incomparable degree and sets of
strictly lower degree.

Lemma 3.1. For splitting A = A0 tA1 of c.e. A into disjoint c.e. A0 and A1,

A0|KA1 =⇒ A0, A1 <K A,

and

A0|CA1 =⇒ A0, A1 <C A.

Proof. It follows from the observation that A0 and A1 are identity bounded
Turing-reducible to A that they are K-reducible to A. Indeed, to determine if x is
in (say) A0, we can check if x ∈ A. If so, we know it is in one of the disjoint parts
A0 and A1; and we can computably enumerate both of them until x appears in
one. That means that Ai � n can be described using A � n, so the initial segment
complexity of the former is no more than that of the latter, up to a constant. Hence
Ai ≤K A. And if A0 and A1 are K-incomparable then certainly not A ≤K Ai
because that would imply A0 ≤K A1 (and vice versa).

It follows in the same way from A0, A1 ≤ibT A that A0, A1 ≤C A. So if A0|CA1

then A �C A0, A1 just as in the prefix-free case. �

3This degree contains even more sets, as there exists a c.e. incomplete A with A ≡LR ∅′
[Nie05].

3. SPLITTING IN THE C.E. K- AND C-DEGREES 19

3.1. Splitting in the c.e. K-degrees. In the construction of Theorem 2.2,
the splitting into two strictly LR-lower sets, we can directly infer that the splitting
parts must also be strictly Turing-below the original set. For if it were the case that
Ai ≡T A, then (LR-reducibility being implied by Turing reducibility) we would end
up with Ai ≡LR A after all. But K-reducibility does not follow so easily, so we are
not allowed to make this simple step in the present case. Instead, we execute the
familiar Turing-splitting construction in parallel with the new splitting procedure
that makes sure the new sets are of incomparable initial segment complexity.

Theorem 3.2. For c.e. A >K ∅, there exist c.e. A0 and A1 such that A0tA1 = A,
and

• A0, A1 <T A;
• A0|KA1;
• A0, A1 <K A.

Proof. In the course of enumerating the elements of A into either A0 or A1,
we now have two requirements to satisfy. For all e ∈ N (interpreted as functional
index and as constant for K-triviality, respectively) and i = 0, 1, we want to enforce

• R〈2e,i〉 : A 6= ΦAi
e , and

• R〈2e+1,i〉 : ∃n (K(Ai � n) > K(A1−i � n) + e).

Thus we make sure that A is not computable in A0 or A1 and that Ai does not
K-reduce to A1−i. The last in conjunction with Lemma 3.1 immediately gives us
A0, A1 <K A as well.

Both types of requirements have their own type of length of agreement and
restraint . At each stage s and for each e the length of agreement is given by

• l(2e, i)[s] = µx(A[s] � x 6= ΦAi
e [s] � x);

• l(2e+ 1, i)[s] = µn(K(A1−i � n)[s] > K(Ai � n)[s] + e),

on which we put the restraint

• r(2e, i)[s] = µx(ΦAi�x
e [s] � l(2e, i)[s] ↓);

• r(2e+ 1, i)[s] = maxt≤s l(2e+ 1, i)[t].

Note that the second restraint is defined in such a way that it cannot decrease.
The verification will show that reaching an infinite length of agreement monitored
by the restraints forces us to acknowledge A as K-trivial, contrary to assumption.

Construction. Starting with A0[0] = A1[0] = ∅, if x ∈ A[s+ 1]−A[s] is not
below any restraint r(e, i)[s], put x into A0[s + 1]. Otherwise, take the least 〈e, i〉
such that x ≤ r(e, i)[s], the restraint with the highest priority. We want to protect
Ai and put x in A1−i. As usual, if x is below restraints r(e′, 1 − i)[s] for higher
〈e′, 1− i〉 > 〈e, i〉 we say that the requirement R〈e′,1−i〉 is injured by this x.

Verification. We again seek to show by induction that each requirement is
satisfied and at the same time that a requirement is injured only finitely often and
that the restraints will settle. So suppose that for all 〈e′, i′〉 < 〈e, i〉, R〈e′,i′〉 is
injured only finitely often, R〈e′,i′〉 is satisfied and r(e′, i′) = lims r(e

′, i′)[s] exists
and is finite.

We start by proving that R〈e,i〉 is injured finitely many times, in the exact same
way as before. When all higher priority restraints have settled, choose an r above
all of them and wait for A � r to settle; then R〈e,i〉 cannot be injured because that
could only be by a new element below r.

20 2. SPLITTING IN DEGREES OF RANDOMNESS

Now for the main part, the verification of requirement R〈e,i〉. Take any number

n and suppose instead that the requirement is violated: A = ΦAi
e if e is even or

∀n (K(A1−i � n) ≤ K(Ai � n)+e) if e is odd. In both cases, the length of agreement
l(e, i) goes to infinity, so there must be some stage s from where R〈e,i〉 is always
respected such that also l(e, i)[s] > n.

If e is even, the argument is just as before. If some new x below the current
length of agreement is enumerated in A, the disagreement A[s](x) 6= ΦAi

e (x)[s] is
preserved and we would have A 6= ΦAi

e . So that cannot happen, and the length of
agreement will not decrease; thus to see if n ∈ A we only have to check if n ∈ ΦAi

e [s].
As we took A to be incomputable (otherwise it would be K-trivial), we conclude
that A 6= ΦAi

e .
In the second case, if l(e, i)[s] > n then the restraint r(e, i)[s] must be above

n as well. The restraint cannot decrease and will not be injured, so nothing up
to n can be put into Ai, which means Ai[s] � n = Ai � n. We can do the same
for any n we like, so this proves Ai computable and hence K-trivial. But then
by our assumption A1−i, having an initial segment complexity never more than e
bits above that of Ai, must be K-trivial as well. The descriptions for the initial
segments of A1−i can serve as descriptions for the initial segments of the original
A (all the additional information it needs is the computable same initial segment
of Ai), so A itself is K-trivial. This is a contradiction, which leads us to conclude
that in fact the requirement must be satisfied.

The induction is completed with showing that the restraint r(e, i) will settle.
By our previous result there is a least n such that, depending on whether e is even
or odd, A(n) 6= ΦAi

e (n) or K(A1−i � n) > K(Ai � n) + e. The argument in the first
case is identical to the one in the proof of Theorem 1.1. In the second case, beyond
the stage s where A0 and A1 up to n− 1 have settled and the shortest description
of both initial segments is found, the length of agreement must stay at n too. Thus
the restraint must settle as well. �

3.2. Splitting in the c.e. C-degrees. The construction of Theorem 3.2
above does not use any special properties of prefix-free Kolmogorov complexity
that the plain complexity lacks, so a virtually identical proof shows the same result
for C-reducibility.

Proposition 3.3. For c.e. A >C ∅, there exist c.e. A0 and A1 such that A0tA1 =
A, and

• A0, A1 <T A;
• A0|CA1;
• A0, A1 <C A.

Proof. The same requirements R〈2e+1,i〉 with ‘C’ substituted for ‘K’ make
sure that Ai �C A1−i, and with Lemma 3.1 also A0, A1 ≤C A. Plugging in the
Turing-splitting construction gives A0, A1 <T A.

The definition of the lengths of agreement and restraints for the C-splitting
is also no different, apart from replacing ‘C’ for ‘K’. If R〈2e+1,i〉 is evaded then
∀n (C(A1−i � n) ≤ C(Ai � n) + e), and the fact that we can determine any initial
segment by waiting for the length of agreement to grow sufficiently long shows Ai
to be C-trivial, hence also A1−i. Therefore A ≤C ∅, contrary to assumption. The
rest of the inductive argument needs no adaptations. �

3. SPLITTING IN THE C.E. K- AND C-DEGREES 21

3.3. Density in the c.e. K- and C-degrees. The splitting parts in the
construction of Theorem 3.2 are certainly not K-trivial, or they would not be K-
incomparable. This proves that the c.e. K-degrees are downward dense. The same
applies for the c.e. C-degrees.

Corollary 3.4 (From Theorem 3.2 and Proposition 3.3). The c.e. K-degrees and
the c.e. C-degrees are downward dense.

Similar to the situation with the LR-degrees, it is as yet unknown whether for
any given c.e. set and a second c.e. set strictly K-above (C-above) it, there always
exists a third c.e. set strictly K-inbetween (C-inbetween) the two.

Question 3.5. Are the c.e. K-degrees dense? The c.e. C-degrees?

The K- and C-degrees are less connected to the Turing-degrees than the LR-
degree were. In particular, regarding the question of upward density, we cannot as
easily show that that the structure has a maximal degree. Indeed, it is unknown if
they exist.

Question 3.6. Is there a maximal c.e. K-degree? A maximal c.e. C-degree?

We do know that all c.e. sets have very low initial segment complexity, which
might prove to be relevant for this question. Intuitively, every initial segment of a
c.e. set can be fully described by just two numbers: the length n and the number
m of ones in the segment. Then we only have to enumerate the set until we have
m elements below n. In the case of the plain descriptive complexity, we can encode
both numbers in strings of length log n and concatenate them in one description
– they can be recovered separately because they have the same length. For the
prefix-free case, an upper bound follows from the subadditivity property4 and the
bound on the complexity of numbers given by Fact 3.7 of Chapter 1.

Fact 3.7 (Barzdins’ Lemma [Bar68]). For any c.e. set A, there exists a constant
b such that

∀n ∈ N (C(A � n) ≤ 2 log n+ b),

and a d such that
∀n ∈ N (K(A � n) ≤ 4 log n+ d).

We can even claim that all c.e. sets are very close to K-trivial. The following
definition makes this precise.

Definition 3.8. Set A is infinitely often K-trivial if there is a constant b with

∃∞n ∈ N (K(A � n) ≤ K(n) + b).

Any c.e. set holds this property, because it has such short descriptions for the
initial segments given by its true enumerations. We say that an emumeration of
n in c.e. A at stage s is true if it finishes the initial segment, in the sense that no
elements below n will be enumerated after s and hence A[s] � n = A � n. Every c.e.
set must have infinitely many of such enumerations. Then we can define a prefix-
free M that for every output 0n from the universal machine waits for a stage s such
that n is enumerated in A and then outputs A[s] � n. This way, the descriptions of

4For all σ and τ it holds that K(〈σ, τ〉) ≤ K(σ) + K(τ) + b for some b. Here 〈σ, τ〉 is a
standard way of encoding two strings into one. The subadditivity property is another feature the

plain C-complexity lacks.

22 2. SPLITTING IN DEGREES OF RANDOMNESS

the infinitely many true enumerations will be descriptions for true initial segments
of A – so infinitely many initial segments have a description not longer, up to an
index constant, than that of their length.

Fact 3.9 ([BV10, Proposition 2.2]). Every c.e. set is infinitely often K-trivial.

We will meet the infinitely often K-trivials again in the next chapter.

CHAPTER 3

The number of K-trivial sets

The vast majority of sets is captured by our formal characterisation of ran-
domness. That leaves little room for the highly nonrandom sets, as collected in
the class of K-trivial sets. Putting all K-trivial sets in a cumulative hierarchy of
classes Kb of sets that are K-trivial via constant b, we have a strict finite bound on
the cardinality of each of the levels of this hierarchy.

So one could think of a function that for any given constant returns the finite
cardinality of the corresponding level, that is, the number of K-trivials via this
constant. It has been an open problem where exactly in the arithmetical hierarchy
such a function would reside. Finding a solution to this problem is the topic of the
current chapter.

We depart from a representation of K-trivial sets as paths of certain trees,
reducing our problem to the computation of the number of paths of members of
families of trees. A substantial part of this chapter is thus devoted to an investi-
gation of the complexity of calculating the number of paths of such trees. At the
same time, we look for ways of reducing the complexity of the representing trees
themselves. The combination of these two approaches will lead us to an answer to
our question.

Finally, we also raise and solve the related problem about the number of sets
that are low for K.

The main lines of the present chapter are summarised in [BS10].

1. The problem

We state the main problem and its context, and sketch the approach we take
to solve it.

1.1. The number of K-trivial sets. The K-trivial sets are quite rare. For
any particular constant, there is only a limited number of sets that can be com-
pressed within this constant. After all, there are only so many strings of any length
that can receive from the universal machine a description that is not more than a
constant b bits longer. That is to say, and here we apply the notion of K-triviality
to individual strings as well, there are only so many strings of any length that are
K-trivial via b.

Definition 1.1. A string σ ∈ 2<ω is K-trivial via b if K(σ) ≤ K(|σ|) + b.

Indeed, we can find a specific constant c such that there are less than 2b+c

strings of any particular length K-trivial via given b.

Fact 1.2 ([Cha76]). There is a constant c such that for all constants b, and all
lengths n,

#{σ | K(σ) ≤ K(n) + b & |σ| = n} < 2b+c.

23

24 3. THE NUMBER OF K-TRIVIAL SETS

As a convenient way of representing the members of K, the K-trivial sets, we
will make heavy use of the following trees of K-trivial strings.

Definition 1.3. For constant b ∈ N, we call

TKb = {σ | ∀n < |σ| (K(σ � n) ≤ K(n) + b)}

the K-triviality tree via b.

Recall the definition of a tree as a set of strings that is closed under initial
segments. In the following, we call an infinite binary sequence X ∈ 2ω a path of
tree T if all its initial segments X � n are in T . The set of paths of T is denoted
[T].

Let Kb be a shorthand for the class of K-trivial sets via b. We can view these
classes as forming a cumulative hierarchy of the all the members of K, with the sets
of Kb at the b-th level. Now it is not hard to see that the paths of K-triviality tree
TKb are precisely the sets X such that K(X � n) ≤ K(n) + b for all n ∈ N, that
is, the sets that are K-trivial via b. In short, [TKb] = Kb. Furthermore, Fact 1.2
also serves as an upper bound on the number of strings on level n of tree TKb (the
number of strings of length n in TKb), since every string on the n-th level of TKb is
a string of length n that is K-trivial via b. In particular, we have a bound on the
number of paths of the tree – that is, on the number of sets on the b-th level of the
cumulative hierarchy, the number of K-trivials via b.

Fact 1.4 ([Zam90]). There is a constant c such that for all constants b, the number
of sets that are K-trivial via b is less than 2b+c.

So the cardinality of Kb is below 2b+c. The exact number naturally depends
on the particular universal machine that we choose. A more interesting question
is how we can uniformly compute this number. That is, given a constant b, what
do we need to find the number of sets that are K-trivial via b? Note that this may
still depend on the universal machine. The aim of this chapter is to answer the
question:

What is the complexity of uniformly calculating the number of
sets that are K-trivial via given constant b? Does it depend on
the universal machine?

Using the trees TKb , we can make this a bit more precise. We first introduce
the concept of a family of trees.

1.2. Families of trees. The TKb have arithmetical complexity ∆0
2, as this

is the complexity of the membership question. After all, σ is in TKb precisely if
we have K(σ � n) ≤ K(n) + b for its finitely many initial segments σ � n, and
the K-complexity of a string is computable in ∅′. Hence, with Post’s Theorem,
determining membership is in ∆0

2.
We call the sequence (TKb)b∈N of all K-triviality trees a ∆0

2 family of trees,
meaning that it is a uniformly ∆0

2 sequence of sets. Each member TKb is ∆0
2 in its

constant b. In the same way, a computable family (Te)e∈N has members Te = {n |
P (e, n)} with P a computable property. And a c.e. family of trees is a uniformly
c.e. sequence of trees.

Definition 1.5. Class (Te)e∈N is a ∆0
m family of trees if each Te = {n | P (e, n)}

for a ∆0
m property P . Likewise for Σ0

m and Π0
m families of trees.

2. THE PATHS OF TREES 25

If all trees in a family only have a finite number of paths, we can imagine a
function that on an index of a tree in this family returns its number of paths.

Definition 1.6. For family F = (Ti)i∈N of trees with finitely many paths, define
function GF by

GF (i) = #[Ti].

The G-function of the family (TKb)b∈N of all K-triviality trees we denote by
GK. So GK(b) returns the number of trees that are K-trivial via constant b –
GK(b) = #[TKb] = #Kb.

1.3. The question and its solution. We thus ask for the arithmetical com-
plexity of this function GK. This is a question that was originally put forward by
Downey, Miller and Yu. They showed that it is certainly not in ∆0

2, indicating that
it is a considerably complex function. Nevertheless, it is not hard to establish that
it is in ∆0

4. We will demonstrate these bounds along the way.

Question 1.7 ([DH10, Section 10.1.4], [Nie09, Problem 5.2.16]). What is the
complexity of the function GK? In particular, is it in ∆0

3?

We will approach the problem from two main angles. First, we investigate what
we can say about the complexity of calculating the number of paths for general
families of trees. Second, we try to find ways to reduce the complexity of families
of trees, with the aim of finding a less complex representation of our K-triviality
trees.

In the following two sections, we discuss some basic properties of trees with
finitely many paths and what is needed to establish the exact number of paths.
The fourth section generalises the results of the preceding section to families of
trees. Subsequently, we relate the complexity of calculating the number of paths
to the jump hierarchy, in particular to high2 and low2 degrees.

In the sixth and seventh section, we make serious work of reducing the com-
plexity of families of trees, resulting in a transformation of our family of K-triviality
trees in a c.e. family of trees that are themselves K-trivial. Following this, we see
how we can find the low2-ness indices of these trees, to connect with the earlier
results related to the jump hierarchy. In the concluding section, the main results
are brought together in the solution of our problem.

2. The paths of trees

In this section, we make a number of general observations about the complexity
of single trees, to set the stage for the results we develop in the rest of the chapter.

2.1. The complexity of paths. We begin by investigating the complexity
of the paths of the most general kind of trees we are interested in, those with only
finitely many paths. The main property of paths in such trees is that they are all
isolated .

Definition 2.1. Path X of tree T is isolated if there exists an n ∈ N such that the
only path extending initial segment X � n is X itself.

Clearly, if we climb from the root any path in a tree with exactly n paths, we
will see at most n− 1 times a branch diverting from our path that can grow into a
path itself. So from some point on we have only one infinite extension ahead of us,
which means our path is isolated.

26 3. THE NUMBER OF K-TRIVIAL SETS

Fact 2.2. All paths in a tree with finitely many paths are isolated.

This property gives us a way to compute all paths directly from the tree itself.

Proposition 2.3. All paths in a computable tree with finitely many paths are com-
putable.

Proof. Suppose we want to compute pathX of computable tree T with finitely
many paths. We know X to be isolated, so let n be such that the only infinite
extension of X � n is X itself. Then we can compute X solely from the finite
information X � n.

Naturally, we know X � m with m ≤ n from X � n. To determine X � m for
m > n, compute all extensions σi of X � n of length m in the computable tree.
One of these extensions must be the X � m we are looking for. So we compute all
extensions of these extensions, level by level. The true initial segment of X is the
only one that is an initial segment of a path, so all other extensions σi 6= X � m will
no longer have extensions at some level in the tree. We will notice when we have
computed all extensions at that level, and σ is the only one left that has extensions
at that level. Then we can conclude σ = X � m. �

The general statement is just a relativisation of the computable case.

Corollary 2.4. All paths in a tree T with finitely many paths are computable in
T .

Proof. To compute path X of tree T with finitely many paths, take X � n as
an initial segment that only has X as infinite extension. If we assume that we have
full knowledge of T , we may determine any larger segment X � m just as we did in
the proof of Proposition 2.3. �

Via this basic result, the complexity of the trees TKb also bounds the complexity
of the K-trivial sets.

Corollary 2.5. All K-trivial sets are ∆0
2.

Proof. Let A be K-trivial via a constant b. Then A is a path of the tree TKb .
As this tree has finitely many paths, it will be able to compute A. And as TKb itself
is ∆0

2, so is A. �

It is not hard to see how to use Corollary 2.4 to obtain trees that not only
compute all of their finitely many paths, but are in fact of the same Turing-degree
as the join of all the paths.

Corollary 2.6. For any tree with finitely many paths Xi for i < n, there exists a
tree with exactly the same paths that has the same degree as ⊕i<nXi.

Proof. Let given tree T have n paths Xi (i < n). From their least upper
bound in the Turing degrees, ⊕i<nXi, we can, by definition, compute all Xi, so
it is straightforward to build a tree T ′ with just those paths using only ⊕i<nXi.
And Corollary 2.4 says that all Xi are then computable in T ′, giving that certainly
⊕i<nXi ≤T T ′. Taken together, we have ⊕i<nXi ≡T T ′ for T ′ with the same paths
as our original T . �

2. THE PATHS OF TREES 27

2.2. Reducing the complexity of trees. A strategy that will prove to be
fruitful in solving our main problem is transforming trees of a certain arithmetical
complexity to trees of a lesser complexity, while leaving the paths of these trees
invariant. As a first step in that direction, in this section we look at what we can
do with computable, computably enumerable, and Π0

1 trees.
It is well-known that any Π0

1 tree can be reduced to a computable tree without
affecting its paths.

Proposition 2.7 (Folklore). For every Π0
1 tree, there is a computable tree with the

same paths.

Proof. The complement of a Π0
1 set of strings is a c.e. set of strings, so for any

given Π0
1 tree T we can enumerate the elements outside it. Call this c.e. complement

R.
We define T ′ as the set of all strings σ such that at stage s = |σ|, the computable

approximation Rs does not (yet) contain σ nor any of its initial segments. So

T ′ = {σ | ∀τ 4 σ (τ /∈ R|σ|)}.
Obviously, this tree is computable.

Now any σ in T will never be enumerated in the complement R. Neither will
any of its initial segments, T being a tree. So they will certainly not be in Rs with
s = |σ|, which means that σ falls within the definition of T ′. Thus all strings in T
will be in T ′, and in particular, all paths of T will also be paths of T ′.

To see that no more paths are in T ′, take arbitrary X /∈ [T]. Then for some
sufficiently large n we must have that X � n /∈ T , so X � n is enumerated in
complement R at some stage s. But if X � n ∈ Rt for all later stages t ≥ s, the
definition of T ′ excludes any extensions of X � n from being in it. Thus X /∈ [T ′]
as well. That shows that computable T ′ has precisely the same paths as our given
Π0

1 tree T . �

It is not possible to show the same for c.e. trees. We can even give a counterex-
ample with solely computable paths.

Theorem 2.8. There exists a c.e. tree (with only computable paths) such that no
computable tree has the same paths.

Proof. We are going to construct our c.e. tree T by diagonalising over an
effective list (Φe)e∈N of all partial computable functions of strings to {0, 1}. Of
course, we are only really interested in the members that are total functions Φ such
that τ ≺ σ and Φ(σ) imply Φ(τ), that is, the characteristic functions of computable
trees. An effective list of only these functions, however, cannot exist (by standard
diagonalisation); the important thing is that (Φe)e∈N contains them all.

We build T in stages. First of all, we will develop the leftmost branch of strings
of 0’s, adding the string 0s at each stage s. Then for each Φe we will work from
the node 0e1, trying to make different paths in that cone1. This way the strategies
for the different functions obviously cannot interfere with each other.

Construction. We describe the strategy for function Φe. First wait until
stage s0 = e+ 1 is reached. Then at each later stage s > s0, compute Φe(σ)[s] for
all extensions σ � 0e1 of length up to s. Repeat this procedure until at some stage

1The cone of a string is the set of all its finite extensions.

28 3. THE NUMBER OF K-TRIVIAL SETS

t, function Φe returns 0 in at most t execution steps for all extensions σ � 0e1 of
the same length l ≤ t. At that point, we add the string 0e10t and all its prefixes to
T . In all following stages u, we continue developing this branch by adding strings
0e10u.

Verification. The construction performs a lot of work for functions Φe that
do not correspond to trees at all, but we do not care about that. If Φe indeed gives
a tree Te, we can distinguish two cases. Either there is a path in the cone above
0e1 in Te, or there no such path. In the first case, the construction keeps looking
in vain for a level l in Te where there is no extension of 0e1, so Φ(e) ↓= 0 for all
σ � 0e1 with |σ| = l. Then nothing above σ will ever be added, and Te has a
path that T does not. In the second case, a level without extension of 0e1 is found,
and an infinite path 0e10ω is developed. Of course, this path is not in Te. Thus
[T] 6= [Te].

Performing the same strategy for every e then makes sure that no computable
tree has the same infinite paths. All paths in T will be of the form 0ω (the left-
most path) or 01e0ω for some e ∈ N, and these, having finite information, are all
computable. �

Combining this result with Proposition 2.7 gives the somewhat stronger:

Corollary 2.9. There exists a c.e. tree (with only computable paths) such that no
Π0

1 tree has the same paths.

Proof. From the fact that for every Π0
1 tree there is a computable tree with

the same paths, we can conclude that the c.e. tree from Theorem 2.8 has different
paths from any Π0

1 tree as well. �

Notice that the previous construction yielded a tree with infinitely many paths
(there will be infinitely many partial computable Φe that give a tree that contain
no paths in the cone of 0e1). It must be so, because for any finite number of
computable sets we can easily construct a computable tree with just those sets as
paths.

Alternatively, we can construct such a c.e. tree with noncomputable paths. In
that case the number of paths can be bounded. Indeed, a tree with just one noncom-
putable path will not be computable (Proposition 2.3). Hence any noncomputable
path that can be the unique path of a c.e. tree will do.

Proposition 2.10. For every ∆0
2 set we can construct a c.e. tree with just this

path.

Proof. Given Z ∈ ∆0
2, we have an approximation Z = lims Zs for a com-

putable sequence (Zs)s∈N. Now we can construct c.e. T by enumerating Zs � s
and its initial segments at every stage s. Then the only path that will emerge is
Z = lims Zs. �

So we can just pick any noncomputable member of ∆0
2 to be the single path in

our c.e. tree.

Corollary 2.11. There exists a c.e. tree with only one path such that no computable
tree has precisely the same paths.

2. THE PATHS OF TREES 29

Proof. Take any noncomputable ∆0
2 set. By the result above there exists a

c.e. tree T with this set as only path. Furthermore, no computable tree can have
this set as its only path, because that would make the set computable. So no
computable tree has the same paths as T . �

2.3. C.e. trees of bounded width. We can further demand that our trees
not only have a finite number of paths, but also contain no more than a certain
finite number of strings at any level. Such trees are said to have bounded width.

Definition 2.12. The width of a tree is the lowest upper bound on the cardinality
of its levels. A tree has bounded width if its width is finite.

This restriction has its impact on the complexity of the trees. For example,
for these kind of c.e. trees we can at all times find computable trees with the same
paths.

Proposition 2.13. For any c.e. tree of bounded width, there exists a computable
tree (of bounded width) with precisely the same paths.

Proof. For any c.e. tree T of bounded width, we know there is a maximal
n such that at infinitely many levels there are n strings, and thus a level k above
which no level contains more than n strings.

From this n and k, we can construct a computable subtree T ′ as follows. Enu-
merate elements of T until we have found n strings of the same length above k. As
there are infinitely many levels of T with n elements, this must happen eventually.
Then we add these strings and all their initial segments to T ′. We go on looking
for n strings of the same length at ever higher levels, repeatedly adding these and
their initial segments to T ′.

Now subtree T ′ has the same paths as T . For any path X in [T], clearly each
level in T contains an initial segment of X. So as soon as we have found n strings
at some level, one of these strings must be the initial segment of the path. Then
any time n strings of any particular level and its initial segments are added to T ′,
certainly all initial segments of X up to n are added as well. As this is done for
ever higher levels, all of X will be in T ′.

The constructed tree T ′ is computable because to determine whether σ is in
T ′, we just have to wait until the construction adds n strings of a higher level to
T ′. As noted before, this is guaranteed to happen. Since these n strings are all
strings of that level in T , hence in T ′, we can conclude that σ is in T ′ if and only
if it is an initial segment of one of these strings, that is, contained in T ′ after that
stage. �

The paths of a c.e. tree of bounded width themselves must be very simple as
well, which follows directly from applying Proposition 2.3 to the previous result.

Corollary 2.14. All paths in a c.e. tree of bounded width are computable.

Proof. We saw before that all paths in a computable tree with finitely many
paths are computable. Since for any c.e. tree of bounded width (hence, naturally,
with a finite number of paths) there exists a computable tree of bounded width
with exactly the same paths, the fact that the paths of the latter are all computable
implies that the paths of the former are computable as well. �

Nevertheless, c.e. trees of bounded width are not so simple as to be necessarily
computable themselves, as the following straightforward construction shows.

30 3. THE NUMBER OF K-TRIVIAL SETS

Proposition 2.15. There exists a noncomputable c.e. tree of bounded width.

Proof. Let (Φe)e∈N be an enumeration of all partial computable functions
from finite strings to {0, 1}, as in Proposition 2.8. We will build our c.e. T in such
a way that it disagrees on string 0e1 for all Φe that correspond to a tree.

At each stage s, we compute Φe(0
e1)[s], if it was still divergent at stage s− 1,

for all e < s. As soon as a Φe(0
e1)[s] converges, we will put 0e1 into T if Φe(0

e1)
returns 0, and do nothing if it returns 1.

This way, for any Φe that is the characteristic function of a tree Te, we have
that 0e1 ∈ T if Φe(0

e1) = 0 and 0e1 /∈ T if Φe(0
e1) = 1. So 0e1 ∈ T if and only if

0e1 /∈ Te.
Additionally, the width of the resulting tree T is never more than 2. At each

level s only 0s and possibly 0s−11 are contained in T . �

3. The number of paths

The next step is looking at the complexity of calculating the exact number of
paths in a tree with finitely many of them.

3.1. Computable trees. First we note that the question whether a tree has
paths at all is very easily expressible. Tree T does if it has strings of any length:

∀n∃σ (|σ| = n & σ ∈ T).

So for computable trees this is a Π0
1-question, as the existential quantifier is bounded

(there are only finitely many strings of any particular length, so only finitely many
strings to be searched through). That makes it decidable with the help of oracle ∅′.

Fact 3.1. The question whether a computable tree has paths is uniformly decidable
by ∅′.

The exact number of paths is slightly more difficult to determine.

Proposition 3.2. The number of paths of a computable tree with finitely many
paths is uniformly computable in ∅′′.

Proof. The following algorithm will compute the number of paths of a given
computable tree T with finitely many paths.

We first ask if T has any paths at all, as above. If not, the number is 0.
Otherwise, starting at 1, we ascend through the natural numbers, testing for each
n whether T has at least n paths. As soon as we get a negative answer for some
n+1, we will know that the tree has n paths. Since T has only finitely many paths,
this search must terminate with such an answer at some point.

The tree has at least n paths if there exists a group of n strings σ0, . . . , σn−1

of the same length, such that at every higher level in the tree there are extensions
τi for each of these σi:

∃σ0, . . . , σn−1 ∈ T (∀i, j < n (|σi| = |σj |) & ∀l > |σ0| P (l, σ0, . . . , σn−1))),

with

P (l, σ0, . . . , σn−1) ≡ ∃τ0, . . . , τn−1 ∈ T (∀i < n (|τi| = l & σi ≺ τi)
expressing that all σ0 to σn−1 have an extension at level l.

This is a Σ0
2-question, hence in ∆0

3, hence decidable in ∅′′. Thus the whole
algorithm, calculating the number of paths of T , can be executed in ∅′′. �

3. THE NUMBER OF PATHS 31

This procedure can be easily relativised.

Proposition 3.3. The number of paths of an A-computable tree with finitely many
paths is uniformly computable in A′′.

Proof. To determine the finite number of paths of A-computable tree T , we
can just trace the algorithm of Proposition 3.2 above. Asking if T has paths at all
is in ΠA

1 , and the query about the group of strings that has extensions at each level
is now in ΣA2 . Thus we can perform it using A′′. �

We can improve on this upper bound within a restricted class of computable
trees, those with no infinite anti-chains.

Definition 3.4. An anti-chain on tree T is a set of pairwise incomparable strings
in T . A split on T is a pair of strings σ0, σ1 (for any σ ∈ 2<ω) in T .

Having a bound on the length of the anti-chains is equivalent to having only
a finite number of splits. For if tree T has an infinite number of splits, we can
build an infinite anti-chain by repeatedly looking for a split (that grows in two
different subtrees, where at least one must have infinitely many splits as well), and
continuing this procedure in the subtree with infinitely many splits after adding a
string in the other subtree to the anti-chain. Conversely, if T contains an infinite
anti-chain, we can reason that every two elements of this anti-chain imply a split
below them in the tree (as they are incomparable, they cannot be on the same
branch), giving an infinite number of splits in total.

Fact 3.5. A tree has finitely many splits if and only if it does not contain infinite
anti-chains.

For a computable tree with no infinite anti-chains, already the halting set suf-
fices to calculate the number of paths.

Theorem 3.6. The number of paths of a computable tree without infinite anti-
chains is uniformly computable in ∅′.

Proof. A tree T without infinite anti-chains has a bounded number of splits,
so there is a level above all splits. We look for this level k by asking whether

∀n ≥ k ((|σ| = n & σ ∈ T)⇒ ¬(σ0 ∈ T & σ1 ∈ T)),

a Π0
1-question solvable by ∅′.
Then the number of infinitely extendible strings of length k is exactly the

number of infinite paths of T . So these are the strings σ of length k such that

∀n > k ∃τ(|τ | = n & σ ≺ τ),

which we can again test using ∅′. �

3.2. Computably enumerable trees. Next we look at computably enumer-
able trees. Determining whether a c.e. tree has any paths at all still amounts to
checking if it has a string of any length, but because we now need the halting set
to settle membership of the tree, this question is in Π0

2.

Fact 3.7. The question whether a c.e. tree has paths is uniformly decidable by ∅′′.

The same goes for determining the exact number of paths of a tree with finitely
many paths.

32 3. THE NUMBER OF K-TRIVIAL SETS

Proposition 3.8. The number of paths of a c.e. tree with finitely many paths is
uniformly computable in ∅′′′.

Proof. Any c.e. tree is of a degree below 0′. With Proposition 3.3 we have
that the degree of the problem of determining its number of paths is below 0′′′, so
computable in ∅′′′. �

We can improve on this upper bound if we confine ourselves again to the more
restricted class of c.e. trees that have bounded width.

Theorem 3.9. The number of paths of a c.e. tree of bounded width is uniformly
computable in ∅′′.

Proof. Given the program that enumerates c.e. tree T with finitely many
paths and bounded width, we first want to find the maximum number n such that
infinitely many levels in T contain n many strings. As our tree is of bounded width,
such a maximum must exist.

So for this number n there are infinitely many levels k with n distinct strings,
that is, for all levels l there is a level k > l such that there are distinct σ0, . . . , σn−1

of length k in T , and indeed any string of length k in T is one of these σi. As
membership in c.e. T is Σ0

1, this constitutes a Π0
2-question. Furthermore, n is the

largest number for which this holds: there is a level l such that at all later levels
k > l there are at most n distinct strings in T ; more precisely, for all stages s
there are less than n+ 1 distinct strings of length k in T [s]. This is clearly again a
Π0

2-question, so the oracle ∅′′ will provide us with this n.
Let k be a level above which there will be no more than n distinct strings at

the same level. Now we can define a c.e. sequence {(σl0, . . . , σln−1)}l∈N of n-tuples
of strings of the same length on T – simply put every enumerated string of length
k+ i in the same temporary tuple, and only insert the tuple in the sequence if it is
filled with n elements. Note that we can insert the tuples in the sequence in such a
way that they are ordered by the length of their elements. The important property
of this sequence is that any infinite path through our tree T clearly has to intersect
all of the tuples.

We start by checking if the number of infinite paths might be n. This is the
case if there is some level l such that for all greater h all strings in (σl0, . . . , σ

l
n−1)

have an extension in (σh0 , . . . , σ
h
n−1). To be even more exact, if there is some stage s

where a tuple (σl0, . . . , σ
l
n−1) of level l has been enumerated, such that for all stages

t any enumerated (σh0 , . . . , σ
h
n−1) of higher level h contains extensions of all strings

in the former tuple. If ∅′′ answers this Σ0
2-question in the positive, the number of

paths equals n and we are done.
Otherwise, for each level there must exist a greater level such that not all

strings in the n-tuple of the former level have an extension in the n-tuple of the
latter level. By taking out all n-tuples (σl+1

0 , . . . , σl+1
n−1) that do have an extension

for all strings in the directly preceding n-tuple (σl0, . . . , σ
l
n−1), we obtain a subse-

quence {(σh0 , . . . , σhn−1)}h∈N of the original sequence where for each h there is a σ in

(σh0 , . . . , σ
h
n−1) without an extension in (σh+1

0 , . . . , σh+1
n−1). If we now remove these

τ in all n-tuples of the sequence, we get an infinite sequence of (n− 1)-tuples. As
none of the τ we removed could be extended, each infinite path trough T still has
to intersect all of the (n− 1)-tuples in our new sequence.

4. FAMILIES OF TREES 33

Now we can check if the number of infinite paths is n−1, as we did above for n.
If there is indeed some level l such that for all greater h all strings in (σl0, . . . , σ

l
n−2)

have an extension in (σh0 , . . . , σ
h
n−2), we conclude that the number is n− 1. If not,

we know there cannot be n − 1 paths. Then we continue as before, defining a
subsequence of (n− 2)-tuples.

This way we define sequences of ever smaller tuples, until we hit upon the right
number. On reaching this number, our check must yield a positive result, and we
know we have reached the true number of infinite paths. �

Actually, we could have gotten to the same result via another route.

Proposition 3.10. For any c.e. tree of bounded width, in ∅′′ we can uniformly
construct a computable tree (with bounded width) that has the same paths.

Proof. In Proposition 2.13, we saw how we could construct a computable
tree with the same paths as a given c.e. tree T with bounded width. This was
not a uniform construction, because it depends on the n and k that stand for the
maximal number such that there are infinitely many levels with that many strings,
and a level such that no higher level contains more than that number of strings,
respectively.

But these n and k can be found from the index of T by means of two-quantifier
questions. To be a little bit more precise, n is the first number such that for all
levels there is a greater level that has n strings, and from some level on there are no
levels with n+ 1 strings. And k is the first level such that at all greater levels there
are no more than n strings. Inspection of the complexity of these searches reveals
that they can be done in oracle ∅′′. That means that the whole construction can
be performed uniformly in the index of the c.e. tree, using ∅′′. �

So with the help of ∅′′ a computable subtree T ′ of given c.e. T with bounded
width can be constructed, and, by Proposition 3.2, with the same oracle we can
calculate the number of paths of this computable T ′ as well. As T has the same
number of paths as T ′, this is an alternative demonstration that the number of
paths of c.e. tree with bounded width is computable in ∅′′.

4. Families of trees

Now that we have seen what we need to determine the existence or indeed the
number of paths in a given tree for various classes of computable and c.e. trees, we
shift our attention to families of such trees.

Analogous to the G-function, we will associate with each family of trees with
finitely many paths a function that determines whether a given tree has paths at
all. For such a family of trees F = (Ti)i∈N, let

HF (i) =

{
1 if #[Ti] > 0

0 otherwise
.

4.1. Calculating the number of paths. Since the algorithms we gave in
the previous section were all uniform, the complexity results about calculating the
existence and number of paths of single trees immediately transfer to families of
trees.

34 3. THE NUMBER OF K-TRIVIAL SETS

Corollary 4.1 (of Fact 3.1 and Proposition 3.2). For computable family F of trees
with finitely many paths, HF ≤T ∅′ and GF ≤T ∅′′.

Proof. All members Ti of the uniformly computable sequence F are com-
putable from a single algorithm that takes indices i. But then we can adapt this
algorithm to ask the ∅′-decidable question about the computable tree given by i.
This is an algorithm for HF , hence this function is computable in ∅′. In the same
way we can execute the uniform procedure of Proposition 3.2 on each given index,
giving GF ≤T ∅′′. �

The relativisation of the foregoing is straightforward.

Corollary 4.2. For A-computable family F of trees with finitely many paths,
HF ≤T A′ and GF ≤T A′′.

Proof. To determine the finite number of paths of A-computable tree T , we
can just trace the algorithm of Proposition 3.2 above. Asking if T has paths at all
is in ΠA

1 , and the query about the group of strings that has extensions at each level
is now in ΣA2 . Thus we can perform it using A′′. �

With the fact that the family (TKb)b∈N of K-triviality trees is ∆0
2, hence ∅′-

computable, we obtain the first upper bound on the complexity of the GK function.

Corollary 4.3. The function GK is in ∆0
4.

Proof. From Corollary 4.2 we get GK ≤T ∅′′′. �

Now that we have upper bounds on the complexity of the H- and G-functions,
we may wonder if they are strict. In the next two sections, we show for computable
and c.e. families of trees that indeed they cannot be improved in general.

4.2. Computable families of trees. We have just seen that ∅′ can uniformly
establish the existence of paths in any member of a computable family of trees. As
could be expected, such H-function is not computable in general. We can make
this explicit by constructing a computable family of trees for which the halting set
∅′ is directly coded into the information whether a given tree in the family has any
path. The problem of determining the existence of a path for a tree in this family
then truly has degree 0′.

Theorem 4.4. There exists a computable family F of trees (with only finitely many
paths) such that the degree of HF is 0′.

Proof. With Corollary 4.1 we know that the H-function for any computable
family of trees must be below ∅′. So our goal is to construct a computable family
F of trees such that HF ≥T ∅′.

We use the standard enumeration (φe)e∈N of all partial computable functions.
For each index e, we want to construct a tree Te that has no paths if φe(e) converges
(hence e ∈ ∅′), and one path if it does not (e /∈ ∅′). The idea is that we only develop
one branch, the leftmost one, and keep doing that as long as the computation of
φe(e) continues.

If the computation φe(e)[s] does not yet converge, we add the string 0s to the
tree. The result is that the leftmost branch of only 0’s is extended with one, to
length s. But if φe(e)[s] does converge, we will stop the construction of this tree
immediately.

4. FAMILIES OF TREES 35

Now if φe(e) is in fact divergent, the computation of φe(e) will never settle. So
we will keep on extending our branch, and it will grow into an infinite path. If, on
the other hand, φe(e) converges, at some stage the computation will halt. At that
point we will stop expanding the branch, and our tree will have no paths. Thus
HF (e) = 1 precisely if φe(e) ↓, and HF (e) = 0 precisely if φe(e) ↑.

Finally, the tree is computable in its index e. To see if a string 0t of length t is
in it, we just have to construct the tree up to the same height as this length, that
is, compute φe(e) up to stage t. Only if φe(e)[t] does not converge, will the string
be in the tree. �

Every tree in the family of the above construction only consists of strings of 0’s.
That means that none of these trees has any splits. So even though this family F of
trees is complex in the sense that HF is above ∅′, it is very simple in the sense that
its members do not have any nontrivial anti-chains. Indeed, by Theorem 3.6 the
number of paths of every tree in this family is already computable in ∅′, resulting
in a function GF below ∅′.

So if we want to take the next step by coding ∅′′ in the number of paths of
a computable family of trees (by Corollary 4.1, we also had that ∅′′ is an upper
bound on its G-function), we already know that the trees in this family must have
infinitely many splits. The next Theorem 4.5 yields such a family.

For the construction in that theorem, we need to go into a small technicality.
Suppose we want to approximate a computation ΦA(n) on some n ∈ N that uses
a c.e. oracle A. In general, we would like this approximation to have the property
that if ΦA(n) diverges, also ΦA(n)[s] diverges for infinitely many stages s. As
the approximation may be unstable, forever jumping between values, this is not
necessarily the case. So we have to enforce it, which we do by modifying the
approximation in a minor way. This is called the hat trick .

The trick comprises making ΦA(n)[s] divergent if an x below the current use
φA(n)[s] is enumerated in A at this stage s. As a change in value of the approx-
imation must be caused by a change in the oracle, any such change will now give
a divergent state. So if the original approximation changed value infinitely often
(thus diverged), the new one will diverge infinitely often.

Theorem 4.5. There exists a computable family F of trees such that the degree of
GF is 0′′.

Proof. We are going to construct a sequence of computable trees such that
the tree with index e has two paths if Φ∅

′

e (e) halts, and one path if it does not.
Then the function GF returning the number of paths from a tree index e directly
computes ∅′′. With Proposition 3.2, we thus have GF ≡T ∅′′.

Using the fact that c.e. ∅′ has a computable approximation, we can compute the
approximation Φ∅

′

e (e)[s] of the e-th oracle function with oracle ∅′ at every stage s.

We assume we have applied the hat trick to our approximation, so if Φ∅
′

e diverges, its
approximations will do so at infinitely many stages. With the help of the outcomes
of these adapted Φ∅

′

e (e)[s], we construct the tree with index e in stages.
The backbone of the tree is the leftmost branch of only 0’s, which we build by

adding the string 0s at each stage s. As long as the approximation Φ∅
′

e (e)[s] at these
stages does not diverge, we only develop this branch. But if at some stage t we have
that Φ∅

′

e (e)[t] converges, we create a new branch, by adding in addition the string

36 3. THE NUMBER OF K-TRIVIAL SETS

0t−11. Now we keep developing both branches, adding both 0u and 0t−110u−t−1 at
each new stage u, but only if Φ∅

′

e (e)[u] does not diverge again at this u. If it does,
we simply stop developing the second branch, starting anew if at a later stage the
approximation happens to converge again.

Now if Φ∅
′

e (e) eventually converges, from some stage on we will keep on extend-

ing the second branch, and our tree has two paths. If, on the other hand, Φ∅
′

e (e)
diverges, our hat trick guarantees that the approximation diverges infinitely often.
Hence any second branch will always end up being cut off, and will have no chance
of growing into a path. So in this case the tree has precisely one path. In the end,
GF (e) = 2 precisely if e ∈ ∅′′ and GF (e) = 1 precisely if e /∈ ∅′′.

Furthermore, the tree is computable in the index. To see if a string of a certain
length is in it, we only have to construct the tree up to the same height as this
length, which we can do in a computable way. �

The same argument can be located in any degree.

Proposition 4.6. For any degree a, there exists an a-computable family F of trees
such that the degree of GF is a′′.

Proof. If we allow ourselves to use A in performing a construction as in Theo-
rem 4.5 above, we can code A′′ in a family of trees by computing the approximations
ΦA
′

e (e)[s] at each stage s. We may of course do this because A′ is c.e. in A. Then
we construct trees for each index e precisely as in the original procedure, enforcing
that the e-th tree has one path if ΦA

′

e (e) diverges (so e /∈ A′′) and two paths if it
converges (e ∈ A′′). Adding Corollary 4.2, the resulting family has a G-function
that is of the same degree as A′′ ∈ a′′. �

4.3. Computably enumerable families of trees. Turning to c.e. families
of trees with finitely many paths, we first have by Corollary 4.2 that ∅′′ decides if
any given member has paths at all. Again we can make this upper bound on the
H-function strict.

Theorem 4.7. There exists a c.e. family F of trees such that the degree of HF is
0′′.

Proof. In this case, we want the e-th tree Te in our family F to have no paths
if Φ∅

′

e (e) converges (hence e ∈ ∅′′), and one path if Φ∅
′

e (e) diverges (hence e /∈ ∅′′).
Thus its H-function computes ∅′′, and indeed HF ≡T ∅′′. We again develop only
one branch, the leftmost one, and keep doing that as long as approximations to the
computation keep changing.

We build the tree with index e in stages, computing Φ∅
′

e (e)[s] at each stage s.
If this computation yields the same value as the one in the previous stage, we do
nothing. But if the result of this computation is divergent, or different from the
result in the previous stage, we add the string 0u with u the height of the tree so
far plus one. The result in the second case is that we extend the leftmost branch
by one.

Now if Φ∅
′

e (e) is in fact divergent, the values of Φ∅
′

e (e)[s] as s increases will
never settle. So we will keep on extending our branch, and it will grow into an
infinite path. If, on the other hand, Φ∅

′

e (e) converges, at some stage it will settle,

and Φ∅
′

e (e)[t] will always converge to the same value for every t greater than some s.
Then from this stage s on, we will never find the opportunity to expand the branch

4. FAMILIES OF TREES 37

again, and our tree will have no paths. Thus HF (e) = 1 precisely if Φ∅
′

e (e) ↓, and

HF (e) = 0 precisely if Φ∅
′

e (e) ↑.
Finally, the tree is computably enumerable in its index e. The previous is a

clearly computable procedure for enumerating strings in the tree with index e. �

Similar to the computable case, the previously constructed family only con-
tains trees without splits. Via a straightforward relativisation of Theorem 3.6, the
number of paths of any given tree in the family is computable in ∅′′. So again
we have this discrepancy between a H-function that is as simple as possible and a
G-function that is as complex as can be.

Finally, the upper bound of ∅′′′ on the G-function of c.e. families of trees is
tight as well. The coding of this oracle in such a family does need some more work
now, because we cannot approximate ∅′′′ as easily as we could ∅′′. The problem is
that ∅′′ as an oracle has no simple c.e. approximation, as ∅′ had.

We do have that ∅′′ is c.e. in ∅′, so there exists a c.e. operator W such that
W ∅

′
= ∅′′. Let us define computable f : N× N→ N as follows.

f(e, s) =

{
s if ΦW

∅′

e (e)[s] ↑
〈σ, τ〉 if ΦW

∅′

e (e)[s] ↓
,

where σ is the use of ∅′[s] in the calculation of the members of τ ≺W ∅′ [s], the

latter being the use in the convergent computation of ΦW
∅′

e (e)[s]. In our construc-
tion of the sequence of trees we can now use the following equivalence.

Lemma 4.8. For computable f defined as above,

e ∈ ∅′′′ ⇐⇒ lim
s

inf f(e, s) exists.

Proof. In the following, we assume that the hat trick has been applied already.
We first show that for each k ∈ N, there are infinitely many stages s such that the
initial segment W ∅

′
[s] � k equals ∅′′ � k.

Each element n that is in ∅′′ � k, will from some stage s on also always be in the
approximations to W ∅

′
� k. This is because it will be enumerated by a computation

of W ∅
′

with a certain use of ∅′, and this part of ∅′ will have settled at some point.
It is only about elements m that are not in ∅′′ � k that the approximations to W ∅

′

might never be conclusive about: one might always find a later stage u such that
W ∅

′
(m)[u] = 1, because W may compute this with ever greater use.
However, if we wait for the stage where the part of ∅′ has settled that is used for

the computations of every element that is truly in ∅′′ � k, we have that at every later
stage v where a true enumeration into ∅′ takes place, indeed W ∅

′
[s] � k = ∅′′ � k

holds. Say only the initial segment ∅′ � m is used by any computation of W ∅
′

that
enumerates an element in ∅′′ � k, and this segment has settled by stage s. Now
consider the true enumeration of n > m in ∅′ at a later stage v. A computation
of W ∅

′
[v] that enumerates an element p /∈ ∅′′ below k has a use either up to n or

greater than n. But in the first case, the use is a true initial segment of ∅′, which
would mean that in fact p ∈ ∅′′. And in the second case any such computation
would have been made divergent by the hat trick (after all, an n within the use is
enumerated into the oracle). Hence no element p /∈ ∅′′ below k could be enumerated

38 3. THE NUMBER OF K-TRIVIAL SETS

by W ∅
′
[v]. And since every n ∈ ∅′′ � k is indeed enumerated at this stage, we have

W ∅
′
[s] � k = ∅′′ � k. As there are infinitely many true enumerations, there are

infinitely many s such that the initial segment W ∅
′
[s] � k equals ∅′′ � k.

We are now ready to prove the lemma.
(=⇒) For the left-to-right direction, if e ∈ ∅′′′ then Φ∅

′′

e (e) ↓ with a certain

use k. By the result above, the part W ∅
′
[s] � k that is used of the oracle will be

correct infinitely many times. So at infinitely many stages the same convergent
computation will be performed. That means f(e, s) must return the same part σ
of the oracle infinitely many times,

(⇐=) Conversely, if the limit infimum of f does exist, some pair 〈σ, τ〉 will keep
coming back as outcome of f(e, s) for ever greater s. That means that again and

again the initial segment τ of approximations to oracle W ∅
′

is used in approxima-
tions to computations of the e-th oracle machine on input e, and that in calculating
the elements in this segment, the same initial segment σ of approximations to ∅′ is
used. But every initial segment of c.e. ∅′ will settle at some point, so this recurring
σ must in fact be a correct initial segment. So all computations by W ∅

′
with use σ

are valid as well, meaning that the 1’s in τ must be correct. �

Theorem 4.9. There exists a c.e. family F of trees such that the degree of GF is
0′′′.

Proof. We want to code ∅′′′ by constructing for index e a c.e. tree Te with two
paths if Φ∅

′′

e (e) halts, and one path if it does not. We make use of the equivalence

between the convergence of ΦW
∅′

e (e) and the existence of lims inf f(e, s).
We develop the leftmost path of 0’s as before, adding 0s at each stage s. Next we

compute the outcome f(e, s). We make a distinction between active and inactive
outcomes, initially setting all possible outcomes to inactive. If f(e, s) = n and n
is currently inactive, we make this n active and we add the string 0s−11 to the
tree, creating a branch on the leftmost path. If n was active already, we continue
expanding the branch that we created when it was last turned active. So we add
the string 0t−110s−t and all of its initial segments, with t the least stage such that
on all stages between t and s the outcome n is active. Finally, we make all greater
m > n inactive.

The crux of the construction is that whenever an outcome becomes inactive,
the branch built for it so far will never be continued. So the only outcome that will
give rise to an infinite path is one that is infinitely often visited and will never be
made inactive from some stage on. But that is precisely the lowest outcome that
is infinitely often given, i.e., lims inf f(e, s). So if lims inf f(e, s) indeed exists, the
tree will have two paths, the leftmost one and the branch belonging to outcome
lims inf f(e, s). If it does not, only the leftmost path will be developed into infinity.
Thus the tree has two paths if e ∈ ∅′′′, and one path if e /∈ ∅′′′. �

The previous construction must give trees with unbounded width, because the
upper bound of ∅′′ established in Theorem 3.9 makes it impossible to code ∅′′′ in
the G-function of a sequence of c.e. trees with bounded width. But if we allow our
trees to be just a little more complex, we can construct such a sequence of trees of
bounded width. Namely, there exists a computable sequence of difference of c.e.
trees of bounded width such that the function computing the number of paths of
a given tree, computes ∅′′′. In the enumeration of difference of c.e. (d.c.e.) sets,

5. THE JUMP HIERARCHY 39

also called 2-c.e. sets, any element may be removed after it is added, but after that
it cannot be enumerated again.2 The construction in the following proof is nearly
identical to the one we have just seen, but it results in trees of bounded width.

Theorem 4.10. There exists a d.c.e. family F of trees with bounded width such
that the degree of GF is 0′′′.

Proof. We will again code ∅′′′ by constructing trees Te that have two paths
if Φ∅

′′

e (e) ↓, and one path if Φ∅
′′

e (e) ↑. This time we allow ourselves to remove an
already added string once, resulting in d.c.e. trees.

As before, we calculate f(e, s) = n at each stage s, making n active and creating
a new branch deviating from the leftmost path of 0’s (i.e., adding 0s−11) if n was
at that time inactive. And if n was active already, we extend the branch we created
for it earlier. But in the current construction, we do not just make all m > n
inactive, we also remove all strings in branches created at levels above the starting
point of the branch for n. To be precise, if t is the least stage such that n is active
on all stages from t to s, we add the string 0t−110s−t and its initial segments, but
we remove all strings 0i1 and their extensions for i > t.

Now we still have that if lims inf f(e, s) exists, there is one smallest outcome
that is infinitely often visited, hence infinitely often visited and always active from
some stage s on. Then this branch will grow into a path, yielding a tree with two
paths (including the leftmost one). Otherwise, if lims inf f(e, s) does not exist, only
the leftmost path remains. Furthermore, there can never be more than two strings
at the same level of the tree. Creating a new branch will just add the second string
to the highest level; and the moment a branch is extended for an already active n
(adding a string to each level between the current level and the level the branch
started), all branches in-between are removed. So at any of these levels, only two
strings remain, the one in the leftmost path and the one in the branch of n.

Thus the procedure yields for each e a tree with maximum width of two, that
has two paths if e ∈ ∅′′′, and one path if e /∈ ∅′′′. Finally, in the construction of
Te every branch can only be created at the highest level s at stage s, meaning that
no branch that is removed can be reconstructed. Hence no single string can be
removed more than once from Te, making it a proper d.c.e. tree. �

5. The jump hierarchy

The moral of the previous section is that the complexity of the G-function of a
family of trees is generally two jumps higher than the complexity of the family itself.
The sharpest expressions of this observation are Corollary 4.2 and Proposition 4.6.

Recall that a set A is high2 if its double jump can compute ∅′′′, so ∅′′′ ≤T A′′.
A set B is low2 if its double jump is computable by ∅′′, so B′′ ≤T ∅′′. The previous
observation leads in a very natural way to a characterisation of these two classes.

5.1. High2 and low2 degrees.

Theorem 5.1. Set A is high2 if and only if there is an A-computable family F of
trees with finitely many paths such that ∅′′′ ≤T GF .

Proof. (=⇒) Assume that we have high2 A, so ∅′′′ ≤ A′′. The function GF
of the A-computable family F we obtain via Proposition 4.6 computes A′′. Hence,

2See [Ers68] for a generalisation of this, the Ershov hierarchy of n-c.e. sets.

40 3. THE NUMBER OF K-TRIVIAL SETS

with our assumption, ∅′′′ ≤T GF . It follows that there is an A-computable family
of trees F with finitely many paths and GF that computes ∅′′′.

(⇐=) Proposition 3.3 yields that A′′ suffices to determine the number of paths
of a tree in a family that is computed by A. Then if we have such a family F of
trees where in addition GF computes ∅′′′ (and we assume this F exists), we know
that GF is computed by A′′. From ∅′′′ ≤T GF and GF ≤T A′′ it is immediate that
A is indeed high2. �

Given any A-computable family of trees, we can explicitly code A in it. Then
we obtain a family of trees that is computed by A and also computes A, so a family
that is in fact of the same degree as A. Of course, if the previous family computed
∅′′′, we can make sure the adapted one still does. Conversely, any family of trees
that is of the same degree as A naturally computes A. This means that replacing
“A-computable” by “of the degree of A” makes no difference to the validity of the
statement above. The same holds for the following, translating the statement in
terms of degrees.

Corollary 5.2. A degree a ≤ 0′ is high2 if and only if it computes a family F of
trees such that the degree of GF is 0′′′.

Proof. Virtually immediate from Theorem 5.1. The fact that we take a to be
below 0′ implies that this particular GF must in fact have degree 0′′′. For if A is
of degree below 0′, then the G-function of any family of trees computable from A
must also be computable in ∅′′′. This again follows from Proposition 3.3. �

For the degrees that are low2 we also have a nice characterisation in terms of
the G-function of families of trees.

Theorem 5.3. A set A is low2 if and only if every A-computable family F of trees
with finitely many paths has GF ≤T ∅′′.

Proof. (=⇒) Suppose that A is low2, so A′′ ≤T ∅′′. We turn once more to
Proposition 3.3, which gives us that for any A-computable family of trees F , the
function GF reduces to A′′. Then again transitivity of ≤T yields GF ≤T ∅′′.

(⇐=) Here we perform the construction of Theorem 4.6 again on given A,
obtaining an A-computable family F of trees with GF of the same degree as A′′.
Then, assuming that every A-computable family of trees has a G-function that is
computable in ∅′′, we have that A is low2 from A′′ ≤T GF and GF ≤T ∅′′. �

Corollary 5.4. A degree a is low2 if and only if every family F of trees with finitely
many paths that it computes has GF computable in 0′′.

Proof. This follows directly from Theorem 5.3. �

The next observation returns to single low2 trees, and is essentially a corollary
of Proposition 3.3. It will be put to good use at the end of the chapter in answering
the main question.

Proposition 5.5. Given a tree with finitely many paths and its low2-ness index,
the number of paths it has is uniformly computable in ∅′′.

Proof. The low2-ness index e of tree T gives us the oracle procedure Φe that
with the help of ∅′′ yields T ′′. The relativised procedure of Proposition 3.3 describes
the algorithm that computes the number of paths of T ′′, invoking Φe with ∅′′ to

5. THE JUMP HIERARCHY 41

answer questions about T ′′. So we can uniformly ∅′′-compute T ’s number of paths
from its low2-ness index. �

5.2. High2 and low2 c.e. degrees. We can state the same characterisations
for degrees and families of trees that are c.e. Obviously, in case of a c.e. degree
we will still know that it is high2 as soon as we have found a (c.e.) family of trees
with G-function of degree 0′′′ that is computed by it. But for the other direction,
producing such a family of trees for a given c.e. degree, we have to make our hands
dirty in constructing the family in a computable way. The following construction
will help us with that.

Theorem 5.6. For all c.e. sets A, any A′′-computable function is computable in
the G-function of some c.e. A-computable family of trees with finitely many paths.

Proof. Let function g be computable in A′′. This is the same as saying that g
is a ∆0

3 function relative toA. We exploit the fact that there exists an approximation
procedure for ∆0

3 functions ([SS90, p. 207]). Namely, for every ∆0
3 function there

must be a total computable function f with two arguments, that approaches our
∆0

3 as follows. For any n ∈ N, if we look at the value of the limit infimum (as s
goes to infinity) of f(n, s) as a pair of natural numbers (using the inverse of the
standard pairing function), and take the first coordinate, then we get the output of

the ∆0
3 function on input n. In our case, that means that for g ∈ ∆0,A

3 , there must
be some total A-computable function ΦA of two arguments such that for all n ∈ N

g(n) = (lim inf
s

ΦA(n, s))0

(where “()0” denotes the first inverse of the standard pairing function).
Our aim is to enumerate for each n ∈ N a tree Tn that has a number of paths

equal to lim infs ΦA(n, s) + 1. That way the G-function of the resulting family of
trees clearly codes function g. Moreover, since we use A-computable approximations
to g in building them, all trees will be computable in A.

Construction. We describe the construction of Tn for fixed n ∈ N. First of
all, the leftmost branch is developed by inserting 0s at stage s. Then, at the same
stage s, we put in Tn all active strings 0u10j1 and their prefixes.

The active strings, at stage s, are those strings 0u10j1 for u, j smaller than s
that satisfy

• ΦA(n, u− 1)[s] ≤ j;
• ΦA(n, u)[s] > j;
• ΦA(n, v)[s] ↑ or ΦA(n, v)[s] > j for all u < v < s.

Verification of paths. Let lim infs ΦA(n, s) = m. We start by showing that
tree Tn has the right number of paths, so #[Tn] = m+ 1.

Suppose that j < m and u is the least number such that ΦA(n, u) has grown
beyond j, so ΦA(n, v) > j for all v ≥ u. Then the string 0u10j1 will be active
infinitely often, because from some stage on ΦA(n, u − 1) ≤ j and ΦA(n, u) > j
have settled (the enumeration of c.e. oracle A has finished within their use), and
there will always be new stages s where ΦA(n, v)[s] ↑ or ΦA(n, v)[s] > j for all
u < v < s. To see the latter, suppose that ΦA(n, v)[s] < j for some v strictly
between u and s. This must be wrong, so apparently the oracle A still has to
change within its use; and if a true enumeration into A finishes this initial segment

42 3. THE NUMBER OF K-TRIVIAL SETS

for good in a later stage, under the assumption that we have applied the hat trick
again, every computation for a v′ that uses at least the same part of the oracle will
diverge, and computations using smaller segments must be correct, giving outcomes
larger than j. Hence, for all these 0u10j1 for j < m a path will be developed, and
there are at least m+ 1 paths (including the leftmost one) in Tn.

And these are all the paths of Tn, because all other strings 0u10j1 will only be
active finitely many times. For if j ≥ m, then there will always be a v ≥ u such that
the computation ΦA(n, v) eventually gives an outcome below j (the limit infimum
being m ≤ j), forever blocking the third condition after some large enough stage.
And if j < m but u is different from the least number such that ΦA(n, v) > j for all
v above it, either ΦA(n, u− 1)[s] > j (if u is below this number) or ΦA(n, u)[s] ≤ j
(if u is above this number) for sufficient large s. Thus Tn has exactly m+ 1 paths.

Verification of effectiveness in A. It remains to show that our c.e. fam-
ily of trees is computable by A. Suppose we want to know if string σ is in some Tn.
If σ is not a sequence of only 0’s (in which case it is part of the leftmost branch, and
trivially in Te), it has to have prefix 0u1 for some u ∈ N. With A we can compute
ΦA(n, u), and find the first stage s0 where the computation converges with output
y, and the segment that is used of A has settled (so ΦA(n, u) = y is correct).

If 0u10j ≺ σ for some j ∈ N that is at least as great as output y, it suffices to
look at Tn[s0] to determine if σ is in Tn. After all, σ � 0u10j with j ≥ y can only
be added if a string 0u10k1 with k ≥ j becomes active, and this can never happen
after stage s0 because ΦA(n, u)[s] = y ≤ j ≤ k for s ≥ s0 prevents the second
condition from being fulfilled.

Otherwise, σ has prefix 0u10j1 with j < y. Extensions of 0u10j1 are only
added if this string is active, and are all of the form 0u10j10s for stages s. So for
any σ with prefix 0u10j1 in Tn, we must have σ = 0u10j10k for some k ∈ N. Now
we search for a stage s larger than k such that either 0u10j1 becomes active at s,
or one of ΦA(n, u− 1)[s] or ΦA(n,w)[s] for some w > u converges with correct use
and gives outcome > j or ≤ j, respectively. We must find such a stage, because
if 0u10j1 never becomes active, total ΦA must converge to values that violate the
conditions for becoming active permanently. We already know the second condition
to be satisfied eventually, as ΦA(n, u) = y > j. Therefore, either ΦA(n, u− 1) > j
(breaking the first condition) or ΦA(n,w) ≤ j for w > u (the third condition).

In the first case, if 0u10j1 becomes active, our σ = 0u10j10k is enumerated in
Tn. In the other case, we can be sure that 0u10j1 will not become active in the
future, and if σ is not in Te[s] at this stage s, it will never be in Tn. Thus we have
established whether σ ∈ Tn or not, demonstrating that any Tn in our c.e. family is
computable in A. �

With the previous work, the characterisations of high2 and low2 c.e. degrees
follow automatically.

Corollary 5.7. A c.e. degree a ≤ 0′ is high2 if and only if it computes a c.e. family
F of trees such that the degree of GF is 0′′′.

Proof. (=⇒) Given a c.e. set A that is high2, we want to construct in A a
c.e. family of trees with a G-function that codes ∅′′′. The fact that A′′ is above ∅′′′
just means that we can compute ∅′′′ with some function that is computable in A′′.
Applying Theorem 5.6 above, we obtain a c.e. A-computable family F of trees with

6. FROM ∆0
2 TREES TO C.E. TREES 43

finitely many paths with GF that computes ∅′′′. By Proposition 3.8, function GF
in fact has degree 0′′′.

(⇐=) This direction is an instance of the one in the equivalence of Corollary
5.2. If c.e. degree a computes a c.e. family of trees F with GF ≡T ∅′′′, then it
follows that it is high2. �

Corollary 5.8. A c.e. degree a ≤ 0′ is low2 if and only if every c.e. family C of
trees with finitely many paths that it computes has GC computable in 0′′.

Proof. (=⇒) If a c.e. degree a is low2, then by Corollary 5.4 all families of
trees with finitely many paths that it computes, including the c.e. families, have a
G-function computable in 0′′.

(⇐=) Let f be the characteristic function of A′′ for c.e. A of degree a. Certainly
f ≤T A′′, and by Theorem 5.6 we derive the existence of a c.e. A-computable family
F of trees with finitely paths such that f ≤T GF . Under the assumption that the
G-function of every c.e. A-computable family of trees with finitely many paths is
computable in 0′′, we may conclude from A′′ ≡T f and f ≤T GF that a is low2. �

6. From ∆0
2 trees to c.e. trees

Having seen the general complexity of the G-function of families of computable
and c.e. trees and the relation with the jump hierarchy, we now pick up the topic
of reducing the complexity of trees. In section 2.2 we considered the possibilities of
reducing c.e. and Π0

1 trees to trees of a lower arithmetical complexity but with the
same paths; in this section, we investigate what we can do with ∆0

2 trees.

Theorem 6.1. For every ∆0
2 tree we can uniformly construct a c.e. tree that has

the same paths.

Proof. Given a ∆0
2 tree T , we may assume that its computable approximation

(T [s])s∈N is such that if some σ is in T [s], then so are all initial segments τ ≺ σ. We
can adapt an approximation that does not satisfy this by only accepting σ ∈ T [s]
if also τ ∈ T [s] for all τ ≺ σ, and changing it to σ /∈ T [s] otherwise. If T is indeed
a tree, this clearly makes no difference in the limit.

Now, assuming such an approximation, we construct c.e. tree T ′ by enumerating
σ as soon as we find σ ∈ T [s] at some stage s ≥ |σ|.

To see that all paths of T will be paths of T ′, it suffices to notice that T is a
subset of T ′. Any string that is truly in T will remain in the approximations from
some point on, and so is inserted in T ′ on reaching a state beyond the length of the
string.

Conversely, suppose that X is not a path of T . That just means there is some
initial segment ρ ≺ X that is not in T . On this, too, the approximations will always
agree after some stage s0. But then level s0 in T ′ cannot contain an extension of
ρ. For if it did, this extension would have to be added after stage s0. And that is
impossible with our approximation, because if the extension is in T [s] then so is ρ
itself, which we excluded for s ≥ s0. Thus X � s0 is not in T ′, and X /∈ [T ′]. That
concludes the proof that c.e. tree T ′ has the same paths as the given ∆0

2 tree T . �

Even though we can always find a c.e. tree with the same paths for a given
∆0

2 tree, we do not have much control over the Turing degree of this c.e. tree. For
some ∆0

2 trees of low computational complexity, we can only find such c.e. trees of

44 3. THE NUMBER OF K-TRIVIAL SETS

maximal complexity. We will show this as a corollary of the more general Theorem
6.2 below.

Theorem 6.2. In every degree a there exists a tree (with only computable paths)
such that every tree with exactly the same paths computes a.

Proof. Let a be some degree, and f a function of this degree with range
{0, 1}. We construct tree T by the outcomes of f(e) for every e ∈ N. Whenever
f(e) = 0 we insert all strings 02e10n (for all n ∈ N) in T . Otherwise, if f(e) = 1,
put 02e+110n for al n in T .

Our tree T is directly constructed from f , and we can compute any f(e) from
T by looking which of 02e1 and 02e+1 is in. So T ≡T f , and T is of the same degree
a. Additionally, all its paths, of the form 0i10ω, are computable.

Now suppose that T ′ is some tree that happens to have exactly the same paths
as T . We can compute any f(e) from T ′ as follows. Knowing that either 02e10ω

or 02e+110ω is a path of T ′, and that there are no other paths extending 02e1 or
02e+11, we just search for a level where one of 02e1 and 02e+11 has no extensions
anymore. In the first case, the path of T ′ and T must be 02e+110ω, so by the
construction of T we can be sure that f(e) = 1. In the second case, we know that
f(e) = 0. That makes f computable in T ′, so any given tree with the same paths
as T ∈ a indeed computes degree a. �

We need some standard concepts to derive our corollary from this result. First,
we call a function diagonally noncomputable if for each e ∈ N, it gives a differ-
ent output on e than Φe(e) does (with (Φe)e∈N the standard enumeration of p.c.
functions). Such a function is far from computable because with every partial
computable Φe it already disagrees on the very value e.

Definition 6.3. A total function f : N → N is diagonally noncomputable (d.n.c.)
if f(e) 6= Φe(e) for all e ∈ N.

We call a degree d.n.c. if it contains a d.n.c. function. Such degrees that are also
c.e. must be maximally complex by Arslanov’s Completeness Criterion [Ars81],
that states that a c.e. set is complete if and only if it computes a diagonally non-
computable function.

Furthermore, we want to posit a d.n.c. degree that is nevertheless low. This
we get by the Low Basis Theorem [JS72] that every nonempty Π0

1 class has a low
member. The class of d.n.c. functions with range {0, 1} (represented as infinite
binary strings),

{f ∈ 2ω | ∀e, s φe(e)[s] ↓6= f(e)},
is certainly Π0

1.

Corollary 6.4. There exists a ∆0
2 tree of low degree (with only computable paths),

such that all c.e. trees that have the same paths are of degree 0′.

Proof. By the discussion above, the Low Basis Theorem asserts the existence
of some low d.n.c. degree a. By Theorem 6.2 above there is a tree T of this degree
a (with only computable paths) such that all trees with the same paths compute
a; and this is the low (hence ∆0

2) tree we are looking for. For suppose there is
some c.e. tree T ′ with the same paths as T . Then c.e. T ′ computes d.n.c. degree
a. Applying Arslanov’s Completeness Criterion, we conclude that T ′ must be of
degree 0′. �

6. FROM ∆0
2 TREES TO C.E. TREES 45

If we forget about computable paths, we can also find such a tree of bounded
width.

Corollary 6.5. There exists a ∆0
2 tree of low degree with width 1, such that all c.e.

trees that have the same path are of degree 0′.

Proof. Take some low set X of d.n.c. degree (which must exist by the Low
Basis Theorem), and let tree T only consist of this path X. Any other tree T ′ with
only this unique path clearly computes (the d.n.c. degree of) X. If, moreover, T ′

is c.e., Arslanov’s Completeness Criterion implies that T ′ is complete, so in degree
0′. �

At the same time, we can find for every ∆0
2 tree a c.e. tree with the same paths

that does not have the power to wtt-compute any d.n.c. function. The construction
of such a c.e. tree is an extensive augmentation of the construction in Theorem 6.1,
where we did not have to worry about any additional conditions in constructing a
c.e. tree from a given ∆0

2 tree.
The new construction requires a diagonalisation argument over an effective

list of all weak truth table reductions. More precisely, this is an enumeration
(Ψe;ψe)e∈N of functionals associated with partial computable functions that bound
their use. The enumeration is effective because we can effectively build a list of
all possible pairs of functionals and p.c. functions, and this construction procedure
we can modify to make sure that the p.c. functions converge if the associated
functionals do, and that their use remains below that prescribed by the functions.
Further, since our new tree will act as an oracle, we assume the functionals take as
oracles sets of strings. Then the use of an oracle in a particular computation is the
length of the longest string that was involved in a query.

Theorem 6.6. For every ∆0
2 tree, there exists a c.e. tree with the same paths that

wtt-computes no diagonally noncomputable function.

Proof. The core of our construction of a c.e. tree T ′ with the same paths as
a given ∆0

2 tree T is still the procedure of Theorem 6.1, but now we also want to
satisfy the requirements

Re : ΨT ′

e is not diagonally noncomputable

for all e ∈ N, to ascertain that this c.e. T ′ cannot wtt-compute any d.n.c. function.
Here the Ψe are taken from the effective enumeration (Ψe;ψe)e∈N of all weak truth
table reductions that we discussed above.

Fulfilling a requirement Re means that we have ΨT ′

e (n) ↓= φn(n) for some
n. In order to achieve this for all requirements, we construct a p.c. function g
from values given by the ΨT ′

e , and for which we know in advance that it will
reflect the computations of the diagonal function. This latter seemingly paradoxical
property we obtain from the Recursion Theorem, that gives us an index k such
that function g = φk before we even start building it. Now we can define q(e, n)
to return the index of a function that for any input value just computes φe(n).
So φe(n) ' φq(e,n)(m) for any m ∈ N, and in particular φk(n) ' φq(k,n)(q(k, n)).
Taking as a shorthand p(n) = q(k, n) we thus have that g(n) ' φp(n)(p(n)) for all
inputs n ∈ N.

Now we want to find for each Ψe an input value n on which it converges with
oracle T ′, and define g(n) to return the same output value. Since we do not know

46 3. THE NUMBER OF K-TRIVIAL SETS

exactly when these computations settle, we will have to make repeated attempts.
For the strategy of Re, we will try values of the form 〈e, n〉 with n ∈ N, i.e., values
in N[e]. At the beginning of each stage s of the construction, we define ne,s to be

the least element n ∈ N[e] such that g(n) is not yet defined or equals ΨT ′

e (p(n))[s].
We say that requirement Re requires attention at stage s if

• for all i ≤ ne,s, computation ΨT ′

e (p(i))[s] converges, and
• for all i ≤ ne,s, if g(i) is defined at the beginning of s then it is different

from ΨT ′

e (p(i))[s].

If Re requires attention, we can be sure that g(ne,s) is not yet defined. For otherwise

we would have that g(ne,s) 6= ΨT ′

e (p(i))[s]. But by the definition of ne,s, either

g(ne,s) is still undefined or g(ne,s) = ΨT ′

e (p(i))[s].
Meanwhile, we have to put strings of our original T in the tree T ′ we construct

to ensure it has the same paths, as we did in the construction of Theorem 6.1.
But we do want to have more control over the changes in oracle T ′, lest the oracle
computations keep changing and we will never succeed in fulfilling our requirements.
To that end, we employ movable markers le that point to certain levels of T ′. Define
marker le,s at stage s to be the least number strictly above all markers li,s for i < e,
and strictly above all defined uses ψe(p(i))[s] for i ≤ ne,s. We construct T ′ in such
a way that changes strictly below level le (so within the use ψe(p(ne))) are always
accompanied by changes below level le−1. That way, it suffices that the levels up
to le−1 have settled to know that the use ψe(p(ne)) has stabilised.

Construction. At stage s+ 1, perform the following.

(1) Look for the least string σ of the precise length lk[s] < s for some k, such
that σ is in T [s] but not in T ′[s]. When found, enumerate it and all its
extensions of length strictly below lk+1[s] into T ′.

(2) Let e be the least up to s such that Re requires attention – this is the

requirement with the highest priority. Define g(ne,s) = ΨT ′

e (p(ne,s))[s].

We write T ′ � n for the set of strings in T ′ of length less than n.

Verification of requirements. We start with showing that all require-
ments Re will be satisfied by our tree T ′. Fix an arbitrary e ∈ N. By induction,
assume that for all i < e we have that li,s and ni,s have limits li and ni, and that
Ri will be satisfied. Let s0 be the first stage where markers le−1,s have settled at
le−1 and T ′ � le−1 + 1 remains constant for all s ≥ s0.

If after this stage s0 our requirement Re never needs attention, there will be
at each s > s0 some value i such that ΨT ′

e (p(i))[s] ↑ or ΨT ′

e (p(i))[s] = g(i). A
function that is not total or equals φp(i)(p(i)) on p(i) is for a fact not diagonally
noncomputable, so in that case we do not have to do any work. We can also be
sure that ne settles after s0, because if the requirement will not be able to act and
define g on any value in N[e] any longer, there is a smallest n ∈ N[e] such that g(n)
will always remain undefined. The ne,s can then never grow beyond this value, and
change only finitely many times beneath it, as the part of oracle T ′ that is used by
Ψe in calculating from p(ne,s) for these ne,s has settled at some point.

If Re does require attention at some later stage s, it will be the requirement
of the highest priority. So the construction acts for Re and defines g(ne,s) to be

ΨT ′

e (p(ne,s))[s]. The latter has to converge, as that was a condition for Re requiring

6. FROM ∆0
2 TREES TO C.E. TREES 47

attention. This equality will be preserved in all later stages, unless oracle T ′ changes
within the use ψe(p(ne,s))[t] at a stage t > s.

But this cannot happen after stage s0. For a change in T ′ � ψe(p(ne,s))[t]
implies a change in T ′ � le−1 + 1, in contradiction with our choice of s0. To see this
implication, observe that the first step of the construction enforces that if an element
of length below le,t is enumerated into T ′, this is accompanied by the enumeration
of an element below length le−1,t. For if this element is not below le−1,t itself, it is
enumerated because it is the extension of a new element of precisely length le−1,t.
Hence if T ′ � le,t changes, then so will T ′ � le−1,t + 1. And by its definition le,t
is strictly greater than the use ψT

′

e (p(ne,s))[t], so if T ′ � ψT
′

e (p(ne,s))[t] changes,
so does T ′ � le,t. By stage s0, marker le−1 and initial segment T ′ � le−1 + 1 have

settled, so it follows that T ′ � ψT
′

e (p(ne,s))[t] must have settled as well.

That proves that g(ne,s) equals ΨT ′

e (p(ne,s)), that is,

ΨT ′

e (p(ne,s)) = φp(ne,s)(p(ne,s)).

Thus ΨT ′

e is certainly not diagonally noncomputable, fulfilling requirement Re. The
later ne,t can never exceed this ne,s, so we can again take for granted that ne settles.
To finish the induction, we notice that the limit le, the least strictly above all li for
i < e and all ψe(p(ne)) for i ≤ ne, will then be reached as well.

Verification of paths. It remains to prove that T ′ has the same paths as
T . The easy direction is that [T] ⊆ [T ′], owing to the fact that σ ∈ T will be
enumerated in T ′ as soon as all smaller strings in T are enumerated in T ′. Hence
T ⊆ T ′.

For the converse, let X /∈ [T]. So there is some initial segment σ ≺ X that
is not in T , and the approximations will not dispute that after some stage. Nor
will any extensions of σ be in later approximations of T , by the enumeration we
chose. Now take an even larger stage s0 such that also all levels up to |σ| in T ′ have
settled. Our claim is that no extension of σ of length s0 can appear in T ′. Then
X � s0 is not in T ′, so that would suffice to demonstrate that X /∈ [T ′].

Suppose that some τ of length s0 is enumerated in T ′, say at stage s1 + 1.
Then it is an extension in the cone of some least ρ that is enumerated at the same
stage. By the construction, this ρ is enumerated because some extension τ ′ < ρ was
found in T [s1]. This τ ′ is certainly no extension of σ, as these will not appear in
approximations of T this far in the construction. Hence prefix ρ is not an extension
of σ either, σ 64 ρ. Now the length of ρ is larger than that of σ (because T ′ up to
level |σ| had settled by this stage), so the fact that ρ 4 τ is not an extension of σ
implies that τ is not an extension of σ. Thus any string of length s0 enumerated in
T ′ is not an extension of σ. Hence we have shown that X /∈ [T ′]. That concludes
the proof that [T ′] ⊆ [T], so [T ′] = [T] �

Another version of Arslanov’s Completeness Criterion says that a c.e. set is weak
truth table-complete if and only if it weak truth table-computes a d.n.c. function.
This leads to the following corollary.

Corollary 6.7. For any ∆0
2 tree, there exists a c.e. tree with the same paths that

is not wtt-complete.

48 3. THE NUMBER OF K-TRIVIAL SETS

Proof. Immediate from Theorem 6.6, with Arlanov’s Completeness Criterion
that a c.e. set is wtt-incomplete precisely if it does not wtt-compute a d.n.c. func-
tion. �

In summary, there exist low ∆0
2 trees with only computable paths such that

any c.e. tree with the same paths must be complete; but even for these ∆0
2 trees

there must still exist c.e. trees with the same paths that are not wtt-complete.
Additionally, we can rephrase the previous result in terms of Kolmogorov com-

plexity. Recall from the previous chapter that an infinitely often K-trivial set has
infinitely many K-trivial initial segments, and that every c.e. set is infinitely often
K-trivial. Furthermore, we call a set complex if a lower bound on the plain Kol-
mogorov complexity of its initial segments is given by an unbounded non-decreasing
computable function.

Definition 6.8. A set A is complex if there is a computable order f such that
C(A � n) ≥ f(n) for all n ∈ N.

Now in [KHMS06] it was shown that for c.e. sets, being complex is equivalent
to being able to compute a d.n.c. function.3

Corollary 6.9. For any ∆0
2 tree, there exists an infinitely often K-trivial tree with

the same paths. Moreover, this tree is not complex.

Proof. Immediate from Theorem 6.6, with the givens that any c.e. set is
infinitely often K-trivial and that it is complex precisely if it does not wtt-compute
a d.n.c. function. �

Note that in order to bring a tree, a set of strings, in accordance with the notion
of K-triviality, we have to code it as an infinite binary sequence. The standard way
is to assign strings a natural number by ordering them first by length and then
lexicographically.

7. From K-triviality trees to c.e. K-trivial trees

In this section, we will finally apply our strategy of complexity reduction to
the trees we are really interested in, the K-triviality trees TKb . Being ∆0

2 trees, we
know from the previous section that there exist c.e. trees with the same K-trivial
paths. At the end we even saw that we can find such c.e. trees that are infinitely
often K-trivial themselves. We will show in a moment that we can in fact reduce
these particular ∆0

2 trees to c.e. trees that are fully K-trivial.

We start with an observation about trees that are computable in a c.e. set.

Proposition 7.1. For given tree computable in a c.e. set, there exists a computably
enumerable tree with the same paths that is computable in the same c.e. set as well.

Proof. Let T be a tree that is computable in a c.e. set A. Since T is ∆0
2 as

well, we can construct a c.e. tree T ′ with the same paths precisely as in Theorem
6.1. So under the assumption that we have an approximation to T that gives a tree
at any time, we put σ in T ′ if σ is in T [s] at a stage s ≥ |σ|.

3Incidentally, a result in the discussion of infinitely often K-trivials in [BV10] is that a set
is infinitely often K-trivial if it is not complex.

7. FROM K-TRIVIALITY TREES TO C.E. K-TRIVIAL TREES 49

This time we we also have the c.e. A that computes T , so T = ΦA for some
functional Φ. But then we can determine in A for every string σ when the approx-
imation T (σ)[s] will stabilise, and remain the same for all s after some s0. �

This will be useful because of the known fact that every K-trivial set (hence,
tree) is computable in some computably enumerable K-trivial set.

Fact 7.2 ([Nie05]). Every K-trivial set is computable in a c.e. K-trivial set.

Further, the class of K-trivials is closed under the join operator.

Fact 7.3 ([DHNS03]). If X,Y ∈ K, then also X ⊕ Y ∈ K.

Then we can use the method of Proposition 7.1 of obtaining a c.e. tree to show
that for every K-triviality tree there exists some c.e. K-trivial tree with the same
paths.

Proposition 7.4. For all constants b, there is c.e. K-trivial tree that has the same
paths as TKb .

Proof. The tree TKb only has a finite number n of paths, that are all K-trivial.
Let Xi for i < n denote these sets, and let X be the join ⊕i<nXi. Proposition 2.6
gives us a tree R with the same paths as TKb and of the same degree as X.

Note that X is K-trivial as well, since the K-trivials are closed under join. We
also remarked above that every K-trivial set is computable in some c.e. K-trivial
set. Take A to be such a c.e. and K-trivial set that computes X. Since tree R has
the same degree as X, c.e. A will also compute R. Now Proposition 7.1 asserts that
for tree R computable in c.e. A there exists some c.e. tree with the same paths as R
that is also computable in A. Call this c.e. tree R′. Being computable in K-trivial
A, this new tree R′ has to be K-trivial as well. Thus R′ is a c.e. K-trivial tree that
has the same paths as R, hence as TKb . �

However, if we are willing to put more work in it, we can improve this result
drastically. For it is possible to effectively transform the complete family of K-
triviality trees to a family of c.e. K-trivial trees with the same paths.

For this construction, we define the approximation to the K-triviality tree TKb
at stage s as

TKb [s] = {σ | ∀τ 4 σ (K(τ)[s] ≤ K(|τ |)[s] + b)}.
So the approximations are trees and all their strings appear to be K-trivial at the
corresponding stage.

We also have to make more explicit our way of coding sets of strings into sets
of numbers, that was needed to make sense of K-trivial trees. We define f to
be a computable 1-1 function from the set of finite strings 2<ω onto the natural
numbers N, ordering all strings first by length and then lexicographically. A set of
finite strings can thus be identified with an infinite binary sequence, where the n-th
digit signifies whether the string corresponding to n (via the inverse of f) is in or
not.

Theorem 7.5. There is a uniformly c.e. sequence (Tb)b∈N of trees such that for all
b ∈ N, member Tb has the same paths as TKb and is K-trivial via 2b + c, for some
constant c.

50 3. THE NUMBER OF K-TRIVIAL SETS

Proof. With the help of the approximations to the K-triviality trees we aim
to computably enumerate for all b a K-trivial tree Tb sharing the same paths with
TKb . The K-triviality of Tb is enforced by building a prefix-free machine Mb that
has sufficiently short descriptions. In the end, we will take all these Mb together in
the machine M = ∪bMb, that accounts for the constant c.

The main complication we have to overcome in the construction is the fact
that we have to add short descriptions in Mb for the initial segments of (the binary
code of) Tb. We must be careful that this does not become too costly, as there is
only so much weight we can put in Mb with our descriptions. Our strategy is to
exploit the fact that changes in the initial segment of Tb are caused by new strings
appearing in the approximations to TKb , strings that must look K-trivial at that
stage themselves. So these strings in TKb [s] have short descriptions in the universal
machine U , and this gives us some room to put short descriptions in Mb. Indeed, we
are sure to be safe if we never put more weight in our machine than there appears
in the universal machine.

We define the function g to help us pick at each stage the changed initial
segments whose descriptions we want to count against U -descriptions.

g(n, s) = µk (
∑
k≤i≤s

2−K(i)[s] < 2−n)

It is not hard to see from the definition that g is uniformly computable and non-
decreasing in n. Moreover, it will have a limit g(n) = lims g(n, s).

Construction. At stage s+ 1, perform the following for every b < s.

(1) Search for the least k < s such that that the Mb-description of Tb up to
k is too large, KMb

(Tb � k)[s] > K(k)[s] + 2b. If such k exists, give a
sufficiently short description of this initial segment by enumerating into
Mb a description for Mb � k of length K(k)[s] + 2b.

(2) Look for the least string σ /∈ Tb[s] such that both f(σ) and g(f(σ), s) are
smaller than s, and that has an extension τ � σ in TKb [s] with g(f(σ), s) <
f(τ) < s. On finding such σ, we enumerate τ and all its initial segments
< σ into Tb. (Note that all prefixes ≺ σ are already in, or σ would not be
the least string satisfying the above.)

This enumeration has changed initial segments Tb � n for n ≥ f(σ), so
for these segments up to length s we enumerate new descriptions of length
K(n)[s] + 2b in Mb, making sure that KMb

(Tb[s+ 1] � n) ≤ K(n)[s] + 2b
for all n < s.

Verification of trees. With the above construction we enumerate the trees
in a computable and uniform way. To verify that the construction yields c.e. Tb
with all the properties we require, fix a b ∈ N. First we look at the paths of Tb.

All paths of Tb must be paths of TKb because, just as in the construction in
Theorem 6.1, the moment the approximation to TKb will always exclude a certain
initial segment, no extensions of it will ever be put in Tb.

all strings in Tb are in TKb . This is easy to see from the second step in the
construction, keeping in mind that if a string is in TKb [s] then so are all its prefixes.

Conversely, take X to be a path of TKb . We want to show that any initial
segment X � n is enumerated in Tb at some stage. So take σ = X � n for any n ∈ N.

7. FROM K-TRIVIALITY TREES TO C.E. K-TRIVIAL TREES 51

Pick a stage beyond n where the initial segment of Tn below f(σ) has settled (so
membership in c.e. Tb has been decided for every string smaller than σ, in the sense
of the ordering by f) and g of f(σ) has reached its limit g(f(σ)) = lims g(f(σ), s).
After this stage, we wait until we find an extension τ of σ in TKb that is large enough
to satisfy f(τ) > g(f(σ)). As σ is infinitely extendable in TKb and f is increasing on
the length of its inputs, we are sure to find such a stage and such a string. Finally,
we wait for stage s0 such that also s0 > f(τ). If σ has not been enumerated
yet, it will be now. For at this stage we have that both f(σ) < f(τ) < s0 and
g(f(σ), s0) = g(f(σ)) < f(τ) < s0 for τ � σ in TKb , and σ is the least such string
not yet in Tb. This triggers the second part of the construction to enumerate τ and
all its prefixes, including σ, into Tb. Thus X � n ∈ Tb, for all n. That concludes the
proof that all paths of TKb are in Tb, and indeed that they have exactly the same
paths.

It remains to show that Tb is K-trivial. If we can enumerate descriptions as the
construction prescribes, we do have that KM (Tb � n) ≤ K(n)+2b for all n ∈ N. The
first step provides for a first description of each initial segment of Tb, and replenishes
it if the length K(n) drops too much. At each stage this is done for at most one
initial segment, but as K(n) settles for each n at some point, new descriptions have
to be given for any segment only finitely often. Any changes in the initial segments
themselves are taken care of by the second step, where new descriptions are issued
for the Tb � n that are affected by the enumeration of new elements. Thus if we
take M = ∪bMb, we have KM (Tb � n) ≤ K(n) + 2b for all n. But the difficulty lies
in verifying that we really have the space to follow the construction in giving all
these short descriptions, i.e., that the weight of all descriptions for machine M is
bounded.

Verification of bounded weight. First we consider the weight of the de-
scriptions that are produced in step 1 of the construction. There, a new Mb-
description of an initial segment Tb � n is given precisely if a description from the
universal machine of n shows up that is too short. Then this new Mb-description
is 2b bits longer than the description from the universal machine. That means
that the total weight wb of all Mb-descriptions issued in step 1 of the construction
is bounded by the weight of all U -descriptions, the domain of U , divided by 22b.
But the weight of the domain of U is not more than 1, so the weight of all Mb

descriptions issued in step 1 is bounded by 2−2b. Thus wb < 2−2b ≤ 2−b.
As for the weight that is spent in the second step, we observe that the larger

part can be counted against the weight of unique U -descriptions. Suppose that at
stage s we have picked string σ with extension τ . If we view Tb as a binary sequence,
the enumeration of new elements corresponds to changes of the digits on positions
between and including f(σ) and f(τ). Now consider the initial segments Tb � i for i
in the interval I = [f(σ), g(f(σ), s)]. As we demanded that g(f(σ), s) < |τ | < f(τ),
all Tb � i for these i will need new descriptions; and the length of the description
issued for Tb � i is K(i)[s] + 2b. So their total weight is

w′b,s :=
∑
i∈I

2−K(i)[s]−2b.

Let us now look at the prefixes τ � i for the i in the same interval. This
makes sense, as all these i are below g(f(σ), s) < |τ |. We have that τ is in TKb [s],
along with all its prefixes. Then this approximation to TKb , holding all strings with

52 3. THE NUMBER OF K-TRIVIAL SETS

prefixes that appear K-trivial at this stage, guarantees that K(ρ)[s] ≤ K(|ρ|)[s] + b
for all these prefixes ρ 4 τ . In particular, K(τ � i)[s] ≤ K(i)[s] + b for all our i.
Then their total weight is at least∑

i∈I
2−K(i)[s]−b = 2b ·

∑
i∈I

2−K(i)[s]−2b,

which is 2b times greater than the total weight w′b,s of the descriptions of Tb � i for
i ∈ I we added.

If we can show that during the whole procedure we use every string in TKb at
most once for this trick, we may claim to have counted these descriptions against
unique U -descriptions. Indeed, the τ � i for i ∈ I are all strings that are inserted in
Tb at stage s, because by f(σ) > |σ| they are all extensions of σ. None of them was
in Tb before (because σ was not), nor will any be enumerated again. So the sets of
U -descriptions that are used in different stages are disjoint, and each such set has
2b more weight than the Me-descriptions we counted it against. That means that
the sum of the w′b,s for all stages s is certainly less than 2b times the weight of the
domain of the universal machine. In short,

w′b :=
∑
s

w′b,s < 2−b · wgt(U) < 2−b.

Then we are still left with the weight of the new descriptions for Tb � j with
j > g(f(σ), s). This is where the definition of g comes in. After all, the total weight
of all shortest U -descriptions at s of j above g(f(σ), s) is bounded by 2−f(σ). The
segments Tb � j receive descriptions that are 2b bits longer than the corresponding
U -descriptions of the j, so the total weight w′′e,s of these Me-descriptions is bounded

by 2−f(σ)−2b. To derive the upper bound on the sum of these weights over all stages,
we use that each σ is enumerated in Tb at most once and that f is 1-1 onto N. We
get

w′′b :=
∑
s

w′′b,s <
∑
s

2−f(σs)−2b

≤
∑
ρ∈2<ω

2−f(ρ)−2b

≤
∑
i∈N

2−i−2b = 2−2b
∑
i∈N

2−i = 2 · 2−2b ≤ 2−b+1.

Bringing everything together, we have that the final total weight of Mb is

wgt(Mb) = wb + w′b + w′′b < 2−b + 2−b + 2−b+1 < 2−b+2.

Hence the total weight of M = ∪bMb, below the sum of 2−b+2 over all b ∈ N,
is bounded by a finite number. That proves that our M really is a prefix-free
machine. �

Looking closely at the previous proof, we see that its construction can in fact
show something more general.

Corollary 7.6. There exists constant c such that given ∆0
2 tree T (by ∆0

2 index
e) and constant b via which all its paths are K-trivial, we can uniformly produce a
c.e. tree T ′ with the same paths as T that is K-trivial via 2b+ e+ c.

8. THE LOWNESS INDICES OF K-TRIVIAL SETS 53

Proof. In applying the construction of Theorem 7.5 to the list of K-triviality
trees, the facts that we essentially used were that all the trees are ∆0

2 and that the
paths are K-trivial via a known constant. So with some minor adjustments, we
should be able to apply the construction to all combinations of ∆0

2 indices e and

constants b. In the cases that this is a meaningful combination, so Φ∅
′

e gives a tree
that has paths K-trivial via b, this construction must uniformly give a c.e. tree with
the same paths that is K-trivial via a specific constant.

In the original construction we enumerated for the new tree for index b descrip-
tions that were 2b bits longer than the universal descriptions of the lengths; now
we enumerate for the new tree for index-constant combination 〈e, b〉 descriptions
that are 2b+ e bits longer than the lengths. Then if 〈e, b〉 indeed yields a valid ∆0

2

index e for a tree that is K-trivial via b the weight of machine M〈e,b〉 is bounded by

2−b−e+2. By simply prohibiting the machine for 〈e, b〉 to receive more than 2−b−e+2

weight, we ensure that we do not spend too much if the combination 〈e, b〉 is not
valid. The final machine M = ∪e,bM〈e,b〉 has a weight bounded by∑

b,e

2−b−e+2 =
∑
b

(2−b+2 ·
∑
e

2−e) =
∑
b

2−b+3 <∞,

so the construction is feasible. If we let c be the coding constant of M , the complete
procedure yields for ∆0

2 tree with index e and constant b via which it is K-trivial a
c.e. tree with the same paths that is K-trivial via 2b+ e+ c. �

8. The lowness indices of K-trivial sets

We now know that we can transform our sequence of K-triviality trees in a c.e.
sequence of K-trivial trees. These trees are particularly nice to work with because
of the fact that all K-trivials are low.4

Fact 8.1. Every K-trivial set is low.

For this fact means that all K-trivials are also low2, and we have seen in
Proposition 5.5 that the number of paths of a tree with given low2-ness index is
already computable in ∅′′.

But then we still have to find a way of obtaining the actual lowness indices.
We first show that the information of ∅′ will not do in finding the lowness-index
of a K-trivial set, as a consequence of the following theorem. This theorem is an
extension of [Nie06, Theorem 5.1], where it is proven that we can construct a c.e.
set that is not computable in a given low c.e. set and its lowness index. Actually,
the possibility of this extension is noted in [Nie06, Corollary 5.7], but not given a
proof.

In our construction, as well as in the original, a K-trivial set is built via the
elegant method of cost functions.5 Here we define the cost function

c(x, s) =
∑
x<i≤s

2−Ks(i)

4Directly proven in [Nie09, Section 5.4] as an introduction to the decanter method that is
ultimately used to show that every K-trivial is low for random.

5Introduced in [KT99] to construct an incomputable c.e. low for random set, and subse-
quently used in [DHNS03] to build an incomputable c.e. K-trivial set. Both provide a solution
to Post’s Problem whether there exists an incomputable but noncomplete c.e. set.

54 3. THE NUMBER OF K-TRIVIAL SETS

to represent the cost of the potential enumeration of x into the set A we are building.
We try to make sure that the sum

(1) S =
∑
x,s

{c(x, s) | x = µy(y ∈ A[s]−A[s− 1])}

of the costs of the least elements enumerated at each stage is bounded (if multiple
elements are enumerated at the same time, clearly their total cost is covered by the
cost function of the least one). If we succeed, we say that the enumeration obeys
the cost function. By [Nie09, Theorem 5.3.10], this is sufficient to ensure that our
set is K-trivial.

Theorem 8.2. For an effective sequence {(Bi, Ji)}i∈N of pairs of low c.e. sets and
approximations to their lowness indices, we can effectively produce a K-trivial set
that is not computable in any of the sets Bi.

Proof. In order to be incomputable in any of the c.e. Bi of the effective
sequence, we want the K-trivial set A we construct to satisfy the requirements

R〈e,i〉 : A 6= ΦBi
e

for all e, i ∈ N.
The obvious way to meet R〈e,i〉 is to enumerate an x ∈ N[〈e,i〉] in A if we find

that ΦBi
e (x) = 0; but as Bi may change, we can never be sure we arrived at the

definite computation. However, we know that Bi is low, and this provides us a
handle for guessing whether the computation is correct.

We use auxiliary sets of oracles, in which we enumerate the use of the cor-
responding Bi in the oracle computation if we find an x that could serve in the
diagonalisation. We would like to be able to ask if this use is a correct initial
segment of Bi, so we can be sure the computation will not change. What we do
is asking whether there is an initial segment of Bi that will be enumerated in the
auxiliary set. This question is c.e. in Bi, which means, Bi being low, that it is ∆0

2.
So there is a computable approximation to this question, which we can uniformly
obtain from the correct lowness index of Bi.

But we are only given a computable approximation Ji = (ji,s)s∈N to lowness
index ji of Bi. To keep track, we let mi,s be the total number of changes in the
approximation to the lowness indices of Bi by stage s. For each requirement R〈e,i〉,
we will start enumerating a new auxiliary set De,i,mi,s

if the lowness index changes.

Now the ∆0
2 question that we ask to look ahead if we have the correct use is as

follows:

“is use σ an initial segment of Φ∅
′

j(m), if the lowness index j(m)

afterm number of changes is the right one, so indeed Φ∅
′

j(m) = B′i?”

We assume it is approximated by computable g, so

lim
s
g(e, i,m, s) =

{
1 if Φ∅

′

j(m) = B′i ⇒ ∃σ ≺ Φ∅
′

j(m) (σ ∈ De,i,m)

0 otherwise

Construction. At stage s > 0, perform the following for each 〈e, i〉 < s.
Look for the least x ∈ N[〈e,i〉] such that

ΦBi
e (x)[s] = 0 & c(x, s) ≤ 2−(〈e,i〉−n),

8. THE LOWNESS INDICES OF K-TRIVIAL SETS 55

with n = #(A[s − 1] ∩ N[〈e,i〉]) the number of elements enumerated in A for this
requirement so far. So this is an element that seems not to be in ΦBi

e and would not
add too much weight to A. First put use B[s] � u with u = φBi

e (x)[s] in De,i,mi,s .

Now if this use of B is correct, it looks like the ΣBi
1 question has a positive answer,

and lims g(e, i,mi,s, s) = 1. We try to certify this by looking for the first stage
t ≥ s such that g(e, i,mi,t, t) = 1, or there is either a change in the used part of B,
so B[t] � u 6= B[s] � u, or in the approximation to the lowness index, ji,t 6= ji,s. In
the latter cases, we see it has failed; but in the first case, there is some evidence we
are on the right track, so in that case we insert x in A.

Verification. To verify R〈e,i〉, assume towards a contradiction that A = ΦBi
e .

Let mi be the number of times the approximation to the lowness index of Bi has
changed before it settles at the right index ji. We can distinguish two cases: either
lims g(e, i,mi, s) = 1 or lims g(e, i,mi, s) = 0.

In the first case, there will be a σ = Bi[s] � u enumerated in De,i,mi
that

is in fact a correct initial segment of Bi, as a result of finding an x such that
ΦBi
e (x)[s] = 0. Since u = φBi

e (x)[s] is correct, we can be sure that x /∈ ΦBi
e .

Moreover, in waiting for confirmation, we will never see this segment of Bi change
after s; and neither will the approximation to the lowness index change because
it has already changed mi times. But since lims g(e, i, s) = 1, at some later t we
will definitely see g(e, i, t) = 1. At that point, x is enumerated in A, and we have
A(x) 6= ΦBi

e (x) after all.
Otherwise, if lims g(e, i,mi, s) = 0, we must have that g(e, i,mi, s) = 0 for all

s beyond some s0. We can take s0 such that ji has settled as well. There is no way
that any x ∈ N[〈e,i〉] can be enumerated in A at a later t ≥ s0, because we are not
allowed to do so unless g(e, i,mi, t) = 1. Say there were n numbers enumerated for
the requirement in A before this stage. With our assumption that A = ΦBi

e , we are
sure to find x ∈ N[〈e,i〉] and s ≥ s0 such that ΦBi

e (x)[s] = ΦBi
e (x) = 0 with correct

use and also c(x, s) ≤ 2−(〈e,i〉−n). Then the construction will enumerate the correct
segment σ ≺ Bi, which means that lims g(e, i,mi, s) = 1, contrary to assumption.

For the verification of the K-triviality of A, we only have to show that the
enumeration obeys the cost function. But every time we enumerate an x for a re-
quirement R〈e,i〉 : A 6= ΦBi

e , and n elements have been enumerated for this require-

ment before, we have made sure that the cost c(x, n) is not more than 2−(〈e,i〉+n).
Then S as defined in 1 is certainly not more than

∑
〈e,i〉 2

−(〈e,i〉)(
∑
n 2−n) =∑

〈e,i〉 2
−(〈e,i〉+1) = 4, hence bounded. Thus the cost function is obeyed, and A

will be K-trivial. �

It is a result from [DHNS03] that there is an effective listing of the c.e. K-
trivial sets with constants (not necessarily the least ones).

Fact 8.3. There is an effective sequence of pairs of ∆0
2 indices and constants such

that for each c.e. K-trivial set there is an index and the set is K-trivial via the
associated constant.

That shows that we cannot find the lowness index via the K-triviality constant.

Corollary 8.4. The lowness index of a given set that is K-trivial via given constant
is not uniformly computable in ∅′.

56 3. THE NUMBER OF K-TRIVIAL SETS

Proof. Assume for a contradiction that we know how to uniformly compute
in ∅′ the lowness index from any given K-trivial set and its associated constant.
Then we can transform the effective sequence of all c.e. K-trivial sets with constants
into an effective sequence of all c.e. K-trivial sets with ∆0

2 approximations to their
lowness indices. But by Theorem 8.2 above, that implies the existence of a K-trivial
set that is not computable in any of the sets in that sequence. As every K-trivial
set must be computable in some c.e. K-trivial set, this is impossible. �

Still, we can manage it with the help of ∅′′.

Proposition 8.5. The lowness index of a given set that is K-trivial via given
constant is uniformly computable in ∅′′.

Proof. Let A be some K-trivial set, and let Φ∅
′

e give its characteristic function.
We want to define a 0′′-computable function f that gives a lowness index f(e) for

A (so Φ∅
′

f(e) = A′) from the given index e, using ∅′′.
We will make use of the fact that the sets that are low for K are uniformly low

[Nie09, Proposition 5.1.2]. That means that for every such set X, which satisfies
∀n (K(n) ≤ KX(n) + b) for some constant b, we can compute the lowness index
directly from the associated constant b. Recall that the notions of K-triviality and
lowness for K are equivalent, so for our K-trivial X there must also be a constant
via which it is low for K. It suffices to uniformly compute this constant (in ∅′′), to
show that the required f can indeed be defined.

To find it for our given X, we just try every possible b ∈ N in ascending order,
each time asking whether ∀n (K(n) ≤ KX(n) + b) holds. As K(n) and KX(n) are
both computable in ∅′, this is a question that is solved by ∅′′. When it is true for
b but false for b− 1, we will know we have found our b.

Thus on given e such that Φ∅
′

e = X for K-trivial X, function f first uses ∅′′ to
compute the constant b for which X is low for K, and then executes the function
that uniformly computes a lowness index from this constant. �

As explained in the beginning of the section, it is the low2-ness indices that we
are really interested in. But it is a standard computability theoretic fact that if we
have the index of a reduction from A to B we can obtain one of the reduction from
A′ to B′.

Corollary 8.6. The low2-ness index of a given set that is K-trivial via given con-
stant is uniformly computable in ∅′′.

Proof. By Theorem 8.5 we ∅′′-uniformly obtain index i such that Φ∅
′

i = A′

for given K-trivial A and constant. Consider the ∅′-executable program that for
given e looks for initial segment τ ≺ ∅′, stage s and length n that give σ = Φτi [s] � n
(an initial segment of A′) such that Φσe (e)[s] ↓. This program will terminate if and
only if e ∈ A′′, and ∅′′ can decide if it terminates. The index of the program that
decides this is a low2-ness index of A. �

9. The complexity of GK

We can finally bring the results of the previous sections together to determine
whether our GK is in fact ∆0

3. Recall from Corollary 4.3 that it is certainly ∆0
4.

For completeness’ sake, we first also give the proof that it is not in ∆0
2.

9. THE COMPLEXITY OF GK 57

In the first section of this chapter, we already noted that GK(b) = O(2b). This
can be made even stronger.

Fact 9.1 ([DH10, Theorem 10.1.11]).
∑
b∈NGK(b)/2b <∞.

It follows that

lim
b

GK(b)

2b
= 0.

This fact is exploited in the proof that GK /∈ ∆0
2.

Proposition 9.2 ([DH10, Theorem 10.1.13]). The function GK is not ∆0
2.

Proof. We assume that GK does have an effective approximation (Gs)s∈N,
and derive a contradiction from that. This we do by employing this approximation
in the construction of a prefix-free machine that renders more sets K-trivial via a
certain constant than GK actually asserts.

As mentioned before, by the Recursion Theorem we may assume we know in
advance the index d of the machine we construct. Now take r to be a constant via
which the computable set ∅ is K-trivial. Let bs be the least number above r such
that

Gs(bs)

2bs
< 2−d.

Then bs might not be defined for all s – but for our purposes it is enough that
it is for sufficiently large s, and this is guaranteed by the result that GK(b)/2b

approaches zero as b increases.

Construction. At stage s+ 1, see if the approximation to b has changed, so
bs 6= bs−1.

• If it does, we start a new attempt to build too many K-trivial sets. Define
the sets Aσ as 0s1σ0ω for all σ of length bs − d.

• If b does not change at this stage, so bs = bs−1, let s0 be the last stage
where b did change. We try keeping the original sets Aσ K-trivial via
bs0 . Note that by the choice of bs above the constant r via which ∅
is K-trivial, we do not have to worry about the initial segments 0n for
n ≤ s0. Therefore we only enumerate for the n with s0 < n ≤ s new
descriptions of Aσ � n of length K(n)[s] + bs − d into M (if indeed still
KM (Aσ � n)[s] > K(n)[s] + bs0 − d).

Verification. The weight of M is bounded by that of the universal machine,
because for every n ∈ N, only the initial segments Aσ � n for the σ of length bs − d
with s = n get new descriptions. For if this stage has not been reached yet, no
initial segments of this length will be considered; on reaching this stage, as long as
the approximation bso = bs stays the same new descriptions of the current Aσ � n
may be given; and if later on the approximation bt of b has changed from bs, only
new descriptions for initial segments of length greater than t > s are enumerated.
The initial segments up to n of the 2bs−d different Aσ all receive a description of
length K(n)[s] + bs− d, so in the end there is no more weight added to M than the
descriptions of n add to the universal machine.

Now at some point bs settles (so it is the least such that GK(bs)/2
bs < 2−d),

and we will no longer have to redefine the Aσ. We can be sure that K(Aσ � n) ≤
K(n) + bs for n ≤ s because Aσ � n = 0n and K(0n) ≤ K(n) + r ≤ K(n) + bs.

58 3. THE NUMBER OF K-TRIVIAL SETS

For n > s, the construction ascertains that KM (Aσ � n)[s] = K(n)[s] + bs − d, so
K(Aσ � n)[s] = K(n)[s] + bs. Thus ∀n (K(Aσ � n) ≤ K(n) + bs) for all our Aσ,
and we have 2bs−d sets that are K-trivial via bs. But that is in conflict with the
value GK(bs) gave previously, since 2bs−d/2bs = 2−d.

We conclude that there can be no computable approximation to function GK,
so it is not a ∆0

2 function. �

We have arrived at the answer to our question.

Theorem 9.3. The function GK is ∆0
3.

Proof. Our function GK behaves exactly the same as the G-function cor-
responding to the uniformly c.e. family of K-trivial trees of Theorem 7.5. This
function is computable in ∅′′, as follows. Given b ∈ N, we can determine a Φ∅

′

e

that computes the tree Tb and by Corollary 8.6 we can then uniformly compute its
low2-ness index. Finally, by Proposition 5.5, we uniformly compute the number of
paths.

Thus GK is computable in ∅′′ as well. That makes it ∆0
3. �

Now that we have established the arithmetical complexity of GK, we may still
wonder how strong it is as an oracle. Is the halting set, or even the double jump,
encoded in the information about the number of K-trivials via each constant? This
is a question that could still depend on the particular universal machine we choose.

Question 9.4. Is ∅′ or even ∅′′ computable in GK? Does this depend on the choice
of the underlying universal prefix-free machine?

10. The number of low for K sets

Set A is low for K via constant b if A as an oracle will not help to compress
any string more than b bits. So the class Mb consists of the sets A such that for
all strings τ we have K(τ) ≤ KA(τ) + b. Then the paths of the ∆0

2 tree

TMb = {σ | ∀s ∈ N ∀l > |σ| ∀τ ∈ 2<|σ| ∃ρ ∈ 2l (ρ � σ & K(τ) ≤ Kρ(τ)[s] + b)}
are precisely the sets inMb. Admittedly, this is not as easy to see as it was for the
K-triviality trees.

Proposition 10.1. Set A is low for K via b if and only if A is a path of TMb .
Moreover, TMb is a ∆0

2 tree.

Proof. Take any initial segment A � n of given A that is low for K via constant
b. Then for every stage s and level l > n, for extension ρ = A � l we have K(τ) ≤
Kρ(τ)[s]+b from the facts that K(τ) ≤ KA(τ)+b and KA(τ) ≤ Kρ(τ) ≤ Kρ(τ)[s].
So all initial segments of A are in the tree, giving A ∈ [TMb].

Conversely, if A is not low for K via b, so K(τ) > KA(τ) + b for at least one τ ,
there is some part σ ≺ A that is used in giving such a short description of τ . So,
for all extensions ρ � σ, we have K(τ) > Kρ(τ)[s] + b for large enough s. But then
initial segment σ cannot be in the tree TMb , and A is certainly not a path.

To show that the trees are ∆0
2, we explain how ∅′ can decide the membership

question. Given string σ, it first computes the values of K(τ) for all shorter strings
τ . Then it is a Π0

1 question whether for all stages s and higher levels l there is an
extension ρ � σ such that Kρ(τ)[s] + b is above all the previously computed values,
so that is solvable by ∅′ as well. �

10. THE NUMBER OF LOW FOR K SETS 59

Now the problem of this section is the complexity of the function GM with

GM(b) = [TMb].

Remember that in the proof of Proposition 8.5 we had to calculate the low for
K constant from a c.e. set’s K-triviality constant, and that we needed oracle ∅′′ to
do it. Unfortunately, it cannot be done in an effective way.

Fact 10.2 ([DHNS03]). We cannot effectively obtain a constant d via which c.e.
set A is low for K from A and a constant b via which A is K-trivial.

This means that the result of our previous chapter that the GK function is in
∆0

3 is not directly transferable to the current problem.
Still, it is an easy matter to obtain a K-triviality index of a low for K set. Take

a prefix-free oracle machine M that on oracle X and output 0n of the universal
machine returns the initial segment X � n. Thus a universal machine description
for n is turned in an MX -description for X � n. If d is the coding constant of this
machine, clearly KX(X � n) ≤ K(n) + d. So if A is low for K with constant b, we
have that K(A � n) ≤ KA(A � n) + b ≤ K(n) + b + d for each n ∈ N. Hence A is
K-trivial via b+ d.

Fact 10.3 ([Nie09, Proposition 5.2.3]). There exists a constant d such that for all
sets A, if A is low for K via constant b, then it is K-trivial via constant b+ d.

That means that always GM(e) ≤ GK(e + d), and we can directly infer the
following fact from its counterpart Fact 9.1 for the GK function.

Fact 10.4.
∑
b∈NGM(b)/2b <∞.

This fact allows us to show that GM is not ∆0
2 in a way that has a resemblance

to how we proved Proposition 9.2 that GK 6∈ ∆0
2.

Theorem 10.5. The function GM is not ∆0
2.

Proof. From the assumption that we do have a computable approximation
(Gs)s∈M of GM, we construct a prefix-free oracle machine M that makes more
sets low for K via a certain constant than originally given by GM. The Recursion
Theorem gives us a constant d of this machine in advance. By Fact 10.4 above, at
every stage s we let bs be the least such that

Gs(bs + d)

2bs+d
< 2−d

Construction. At stage s = 0, choose an anti-chain of 2b0 pairwise incom-
parable strings σ0,i (i < 2b0). At any later stage s+ 1, check if bs = bs−1.

• If that is still the case, let σs,i = σs−1,i for all i < 2bs . We want to give a
new M -description for every string τ of length strictly smaller than s. The
M -description for τ must be smaller than that of the universal machine
with any oracle σs,i0

ω, up to constant bs. So

KM (τ)[s] ≤ min
i<2bs,i

Kσi0
ω

(τ)[s] + bs

for all τ with |τ | < s.

60 3. THE NUMBER OF K-TRIVIAL SETS

• If not, bs 6= bs−1, pick one σs−1,j such that the weight of M so far is less
than the weight of the universal machine relativised to σs−1,j0

ω for this
j, so

wgt(M [s− 1]) < wgt(Uσs−1,j0ω

[s− 1]).

Subsequently, take 2bs pairwise incomparable extensions of this σs−1,j ,
and let them be the new σi,s for i < 2bs , abandoning the previous anti-
chain.

Verification. There are two parts to the verification. First, we have to prove
that we can perform the above construction at all; second, we have to show that it
achieves what we want.

To prove that the construction can be done, we have to demonstrate that we
can give enough sufficiently small descriptions in case bs = bs−1, and that we can
find an appropriate j if bs 6= bs−1. This is achieved by proving with simultaneous
induction that for all s

(2) wgt(M [s]) ≤ 2−bs
∑
i<2bs

wgt(Uσs,i0
ω

)[s]

and that, if bs 6= bs−1,

(3) ∃j < 2bs−1(wgt(M [s− 1]) ≤ wgt(Uσs−1,j0s

[s− 1])).

In the base case, s = 0, (2) and (3) hold trivially because M is still empty and
there is no earlier stage where b changed. For the induction step, assume that they
hold at stage s− 1.

Suppose that we have that bs 6= bs−1 for this stage s. It is not possible that (3)
fails, because in that case wgt(M [s − 1]) > wgt(Uσs−1,j0s

[s − 1]) for all j < 2bs−1 .
Then certainly

wgt(M [s− 1]) > 2−bs−1

∑
i<2bs−1

wgt(Uσs−1,i0
ω

)[s− 1],

contrary to the induction hypothesis that (2) holds at s− 1.
Moreover, wgt(M [s]) = wgt(M [s − 1]) because there are no descriptions enu-

merated in M at this stage. The new σs,i for i < 2bs are all extensions of a string
σs−1,j of the previous anti-chain that did satisfy (3). Hence

wgt(Uσs,i0
ω

[s]) ≥ wgt(Uσs−1,j0ω

[s− 1]) ≥ wgt(M [s− 1]) = wgt(M [s])

for all i < 2bs , satisfying (2) for s.
If, on the other hand, we have bs = bs−1 for our s, condition (3) is trivially

met. To verify that (2) holds as well, observe that any increase in the weight of M
is due to a new description of a length m appearing in one of Uσs,i0

ω

[s] for i < 2bs ,
causing an increase of 2−m in

∑
i<2bs wgt(U

σs,i0
ω

[s]). The increase in the weight of

M for this description is 2−m−bs . Thus, by the induction hypothesis that (2) holds
for s − 1, the weight of M is still below 2−bs times the total weight of all Uσs,i0

ω

.
It follows that (2) will also hold for s. That completes the induction, and the proof
of (2) and (3). Thus the construction is valid.

It is left to show that the construction indeed gives too many low for K sets.
As b = lims bs must settle at some point, there are only a finite number of stages s
where bs 6= bs−1. At the last such stage, the final anti-chain (σi)i<2b is formed. Then

10. THE NUMBER OF LOW FOR K SETS 61

the construction guarantees that KM (τ) ≤ mini<2bs Kσi0
ω

(τ) + b for all strings τ .
Hence, with d the coding constant of M , we have K(τ) ≤ Kσi0

ω

(τ) + b+ d for all
τ and all of our σi. But then the 2b sets σi0

ω are all low for K via constant b+ d,
and we must have GM(b+ d) ≥ 2b. But this contradicts the fact that we took the
bs such that for b = lims bs we have GM(b+ d) < 2b+d2−d = 2b.

Thus a computable approximation of GM must lead to an absurdity, and we
conclude that GM /∈ ∆0

2. �

Fact 10.3 will also lead the way to a positive solution of the complexity of GM.

Theorem 10.6. The function GM is ∆0
3.

Proof. Since we know of a constant d such that every set that is low for K
via b is K-trivial via b + d, we have that [TMb] ⊆ Kb+d. But then we can apply
Corollary 7.6 from the previous chapter to convert our ∆0

2 family of trees (TMb)b∈N
to a c.e. family of trees (Tb)b∈N that are K-trivial via uniformly obtained constants.

Now the proof proceeds as Theorem 9.3 about GK. With the help of oracle
∅′′, by Corollary 8.6 we can uniformly compute the low2-ness index of tree Tb, and
Proposition 5.5 then says that we can compute its number of paths. Thus we can
compute GM(b) on any b in ∅′′, so indeed GM ∈ ∆0

3. �

Conclusion

In this thesis, we concentrated on two separate topics in the field of algorithmic
randomness in general and about sequences with trivial initial segment complexity
in particular. By the overview in the introductory first chapter and the range of
methods and concepts we encountered in the two following chapters, I hope to have
given the reader an appreciation of both the scope and depth of the general subject.

As a poignant example of the intertwining of algorithmic randomness with
computability theory, in the second chapter we transferred the technique of split-
ting in c.e. Turing-degrees to the c.e. degrees induced by reducibilities with respect
to randomness – degrees that contain sequences with quite trivial initial segment
complexity because c.e. sets are not very random. After introducing the classical
construction of the Sacks Splitting Theorem for splitting a noncomputable c.e. set
into two c.e. sets strictly Turing-below the original one, we showed how adapted
versions can be used to split c.e. sets that are not low for random into c.e. sets
of strictly lower LR-degree and of incomparable LR-degree, respectively. We con-
cluded with presenting a construction that likewise splits c.e. sets of the nontrivial
C- or K-degrees into sets of both strictly lower and incomparable C- or K-degree.

The main part of the thesis, however, consists of the third chapter, that is
devoted to a question of Downey, Miller and Yu about the arithmetical complexity
of the function that computes the finite number of sets that are K-trivial via given
constant. Put more concretely, if we haveK-triviality trees TKb whose paths coincide
with the sets that are K-trivial via b, this function computes the number of paths of
any given member of the family (TKb)b∈N of trees. Thus, as one part of our strategy,
we set out to examine the general complexity of calculating the number of paths of
members of certain families of trees, and found that this calculation can generally
be done in an oracle that lies two jumps higher than the degree of the family of
trees itself. Significantly, if a single tree is low2 we can compute its number of paths
in ∅′′.

The other part of our strategy aimed at reducing the complexity of the ∆0
2

family of K-triviality trees without touching the paths of its members. Discussing
such reductions of particular and general types of Π0

1, Σ0
1 and ∆0

2 trees, we finally
arrived at a c.e. family of trees with the same paths, such that the trees are K-
trivial themselves. Here we connected again with the other approach, noting that
all K-trivial sets are low2 and hence we could compute the number of paths of
these trees in ∅′′ from their low2-ness indices (that are ∅′′-computable as well). We
concluded that the arithmetical complexity of our function is ∆0

3, thereby settling
the question.

63

64 CONCLUSION

Further questions

There are a number of yet unanswered questions we touched upon throughout
the thesis.

Density in the c.e. randomness degrees. The work on splitting in the c.e.
randomness degrees raised the question about the density of those degrees. For
example, we saw that the c.e. LR-degrees are downward dense and upward dense,
but the matter of general density is still undecided. For the c.e. C-and K-degrees,
the splitting theorems implied their downward density, but it is unknown whether
they are dense in general and whether they have maximal degrees. The latter is
related to the question whether for given c.e. set there is a second c.e. set with only
0’s in the odd positions yet that is still K-above the first one. The c.e. sets are not
very complex in the K-sense, lying very close to each other; and having spent some
time on them, this is what seems to make these questions difficult to solve.

The trees of K-trivial sets and low for K sets. We already remarked that
it is an interesting open question whether we can compute ∅′ or even ∅′′ with the
help of function GK. Likewise for GM. One could further ask if the ∆0

2 K-triviality
trees are in fact complete (they are not m-complete).

In [Nie09, Section 5.2], Nies also considers the function Gfin that calculates the
number of finite (that is, having only 0’s from some point on) K-trivial sequences
via given constant. This function is also in ∆0

3. For it is a consequence of our
work (as explained in [BB10, Section 3]) that we can in fact obtain in ∅′′ a list of
indices of the K-trivial paths of the transformed K-triviality trees in our c.e. family.
Then we only have to count how many of them are finite, and it is decidable in ∅′′
whether a given set is finite. It looks more difficult to settle the same question for
the function Gcom related to the computable K-trivials.

It is likely that the function GC for the C-trivial sets is ∆0
3 via the same method-

ology.

The number of low for random sets. We have defined hierarchies for the
K-trivial and the low for K sets, and established the arithmetical complexity of the
function that returns the number of members of each given level of these hierarchies.
What about the remaining lowness notion that we treated in this thesis, the class L
of low for random sets A with MLRA = MLR? This definition does not immediately
suggest a parametrisation as in the cases of the K-trivials and the low for K’s.

One way to address this problem, though it remains somewhat artificial, would
be to use the equivalent definition that there exists a member UA of a universal
Martin-Löf test relative to A with a c.e. set W of strings such that µ(W) < 1 and
UA ⊆ W , gotten by Fact 2.1 of Chapter 2 since the low for randoms are precisely
the sets A ≤LR ∅. Then we could fix an oracle universal ML-test (Ub)b∈N, and let
Le contain sets A such that UA ⊆ We for a particular member U of the test and
this specific We of a computable enumeration (We)e∈N of all c.e. sets of strings with
measure below one.

In [BLS08a], a particular universal ML-test (Ub)b∈N is constructed with the
property that for every other oracle ML-test (Vb)b∈N we can uniformly compute
k ∈ N such that Vb+k ⊆ Ub. For any member U of this test, there are for each c.e.
W with µ(W) < 1 only finitely many A such that UA ⊆We, as shown in [BLS08a,
Theorem 7.1]. An extension of the construction in this theorem even yields the

FURTHER QUESTIONS 65

specific bound 2c+e on the number of A with UA ⊆We, for some constant c. If we
then define GL(e) to return #{A | UA ⊆We}, we have GL(e) ≤ 2c+e.

One could likewise ask for the complexity of GL.

The set of K-trivial strings. In the previous chapter, we extended the def-
inition of K-triviality to finite strings in order to define the trees TKb as the sets
of strings with only K-trivial initial segments. By concentrating on the strings
themselves and disregarding the initial segments, we obtain the sets

K<ωb = {σ | K(σ) ≤ K(|σ|) + b}
of finite strings K-trivial via b. In the same way, C<ωb = {σ | C(σ) ≤ C(|σ|) + b} is
the set of strings that are C-trivial via b. This we can put in contrast with what is
usually taken to be the collection of nonrandom strings, the set

RC = {σ | C(σ) < |σ|}.
By an intricate argument, Kummer has shown that RC is truth table complete

[Kum96]. The answer to the question for its prefix-free counterpart RK depends
on the choice of the underlying prefix-free machine [MP02].

With respect to the parallel question whether the sets K<ωb and C<ωb are truth
table complete (also related to the question of the completeness of the K-triviality
trees), we can claim they are wtt-complete (even uniformly in the constant b) but
not m-complete. Due to considerations of space and time, the proofs are omitted
from this thesis; they may be included in a future paper. The question about
tt-completeness is still open.

Samenvatting

Het vakgebied van algoritmische randomness komt voort uit de vraag hoe we
op een formele wijze random (toevallige, willekeurige) objecten kunnen herkennen,
waarbij we ons voor het gemak beperken tot (oneindige) reeksen van nullen en enen.
Intüıtief zien we dat een regelmatige binaire reeks als 0101010101010101... zeker niet
toevallig is, in tegenstelling tot een reeks als 101101011101010111... die we bijvoor-
beeld ontwikkelen door een munt op te gooien. De eerste heeft een voorspelbaar
verloop, bezit duidelijke patronen en is eenvoudig te beschrijven, eigenschappen
die de tweede allemaal mist. Maar het definiëren van “toevallig” als het ontbreken
van elk patroon voert onvermijdelijk tot een tegenspraak; sterker, we kunnen ons
afvragen of het vangen van het fenomeen toeval of willekeur in een exacte definitie
niet op zich al contradictoir is.

Een oplossing wordt gevonden in de discipline van de berekenbaarheidstheo-
rie (of recursietheorie), welke gericht was op het formaliseren van de notie van
algoritme, van wat überhaupt berekenbaar is. Als we de Church-Turing These
accepteren, die beweert dat alles wat intüıtief berekenbaar is gegeven wordt door
de vermogens van gëıdealiseerde computers die we Turing-machines noemen, dan
hebben we een exacte karakterisering van berekenbaarheid of effectiviteit. Dit geeft
ons een praktische grens aan de soort patronen die we puur toeval willen kunnen
ontzeggen: een toevallig object is dan, grofweg, een object waarbij we niet in staat
zijn op effectieve wijze patronen te herkennen. Verschillende formaliseringen die op
dit idee voortborduren hanteren bijvoorbeeld effectieve testen op patronen, effec-
tieve comprimeertechnieken, en effectieve gokstrategiën om vast te stellen dat een
object structuur heeft en dus niet toevallig is.

In deze scriptie geven we eerst een beknopt overzicht van de belangrijkste con-
cepten, intüıties en resultaten van het vakgebied. We beschouwen in enig detail de
twee belangrijkste formaliseringen voor deze scriptie, Martin-Löf’s testconcept en
Kolmogorov-complexiteit, en zien dat deze dezelfde klasse van toevallige reeksen
bepalen. Vervolgens besteden we aandacht aan reduceerbaarheden die resulteren in
niveaus of graden van toeval. Concreet kunnen we met de C- en K-, en de LK- en
LR-reduceerbaarheden oneindige reeksen (ook te interpreteren als verzamelingen)
vergelijken aan de hand van respectievelijk hun comprimeerbaarheid (hun mate van
toeval) en hun kracht als orakel om patronen in andere verzamelingen te vinden (hun
kracht om te “derandomiseren”). Deze reduceerbaarheden geven ook aanleiding tot
laagste graden of noties van trivialiteit; en deze kenschetsen de verzamelingen die
de meest triviale initiële-segmentcomplexiteit hebben en dus volstrekt niet toeval-
lig zijn (de K-triviale verzamelingen), en de verzamelingen die waardeloos zijn als
orakel in het vinden van regelmatigheden (laag voor K).

67

68 SAMENVATTING

Vervolgens presenteren we origineel onderzoek binnen twee specifieke onderwer-
pen in algoritmische randomness. Beide hebben te maken met reeksen met initiële
segmenten van erg lage complexiteit – dus reeksen die ver van toevallig zijn.

Ten eerste voeren we een techniek in de klassieke Turing-graden van bereken-
baarheid over naar onze gradenstructuren van toeval. Dit is de constructie gegeven
door de Splitsstelling van Sacks, die een gegeven berekenbaar opsombare (b.o.)
maar onberekenbare verzameling splitst in twee b.o. onberekenbare verzamelingen
die van een strikt lagere Turing-graad zijn en ook elkaar niet kunnen berekenen.
Ondanks het feit dat b.o. verzamelingen ver van toevallig zijn, kunnen we met
licht aangepaste constructies b.o. verzamelingen die niet van de laagst mogelijke
toevalsgraad zijn splitsen in b.o. verzamelingen van strikt lagere maar nog steeds
niet volstrekt triviale toevalsgraden (die bovendien onvergelijkbaar zijn). Dit geldt
zowel voor de LR- als de C- en K-gradenstructuren. Deze resultaten bevestigen
de neerwaartse dichtheid van deze b.o. gradenstructuren (tussen elke b.o. graad en
de laagste graad zit strikt een derde b.o. graad), en leiden tot de vraag naar de
algemene en opwaartse dichtheid van deze b.o. gradenstructuren, waar we kort bij
stil staan.

Maar het hoofdonderwerp van de scriptie is een open probleem van Downey,
Miller en Yu. Voor elke constante zijn er maar een zeer beperkt aantal verzamelin-
gen K-triviaal via deze specifieke constante, en zij vroegen naar de aritmetische
complexiteit van de functie die voor elke gegeven constante het precieze aantal zulke
verzamelingen retourneert. Een geschikte manier om de K-triviale verzamelingen
via constante b te representeren is als de oneindige paden van een bepaalde binaire
boom, die we de K-trivialiteitsboom via b zullen noemen. Dan geeft de functie in
kwestie voor invoer b dus het aantal paden van de K-trivialiteitsboom via b.

Als een eerste aanzet tot de oplossing van ons probleem, bestuderen we voor
algemene klassen van bomen met maar eindig veel paden de complexiteit van het
berekenen van het exacte aantal paden. De conclusie van dit onderzoek is dat voor
een familie van zulke bomen van zekere Turing-graad, een orakel dat in de tweede
sprong van deze graad ligt krachtig genoeg is om ons in staat te stellen van elke
boom in de familie het aantal paden uit te rekenen. In het bijzonder geldt dat we
het aantal paden van een boom die laag2 is al kunnen bepalen met behulp van de
tweede sprong ∅′′.

Tegelijkertijd zoeken we naar manieren om de complexiteit van families van
bomen te verlagen zonder aan de paden van de bomen te komen. Hierbij komen we
uiteindelijk tot het resultaat dat we onze familie van K-trivialiteitsbomen kunnen
reduceren naar een berekenbaar opsombare familie van bomen met dezelfde paden,
bomen die bovendien zelf K-triviaal zijn. Een relevante eigenschap van K-triviale
verzamelingen is hier dat deze laag2 zijn, en dat de bijbehorende indices uniform
berekenbaar zijn met orakel ∅′′. Nu volgt met de uitkomst hierboven dat we onze
functie dus kunnen berekenen middels ∅′′, waarmee we de aritmetische complexiteit
op ∆0

3 bepaald hebben. Dit beantwoordt de open vraag. Tot slot komen we via een
vergelijkbare strategie tot een antwoord op de analoge vraag voor de functie die het
exacte aantal verzamelingen berekent die laag voor K via een gegeven constante
zijn.

Bibliography

[Ars81] M. M. Arslanov. Some generalizations of a fixed-point theorem. Izv. Vyssh. Uchebn.

Zaved. Mat., 228(5):9–16, 1981.
[Bar68] Ja. M. Barzdins. Complexity of programs which recognize whether natural numbers

not exceeding n belong to a recursively enumerable set. Dokl. Akad. Nauk SSSR,

182:1249–1252, 1968.
[BB10] George Barmpalias and Martijn Baartse. On the gap between trivial and nontrivial

initial segment prefix-free complexity. Preprint., 2010.

[BLS08a] George Barmpalias, Andrew E. M. Lewis, and Mariya Soskova. Randomness, lowness
and degrees. J. Symbolic Logic, 73(2):559–577, 2008.

[BLS08b] George Barmpalias, Andrew E. M. Lewis, and Frank Stephan. Π0
1 classes, LR degrees

and Turing degrees. Ann. Pure Appl. Logic, 156(1):21–38, 2008.

[BS10] George Barmpalias and Tom Sterkenburg. On the number of infinite sequences with

trivial initial segment complexity. Preprint., 2010.
[BV10] George Barmpalias and Charlotte Vlek. Kolmogorov complexity of initial segments of

sequences and arithmetical definability. Preprint., 2010.

[Cha75] Gregory J. Chaitin. A theory of program size formally identical to information theory.
J. Assoc. Comput. Mach., 22:329–340, 1975.

[Cha76] Gregory J. Chaitin. Information-theoretic characterizations of recursive infinite strings.

Theoret. Comput. Sci., 2(1):45–48, 1976.
[Chu40] Alonzo Church. On the concept of a random sequence. Bull. Amer. Math. Soc., 46:130–

135, 1940.

[Coo04] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton, FL, 2004.
[DH10] Rod Downey and Denis Hirshfeldt. Algorithmic Randomness and Complexity.

Springer-Verlag, to appear, 2010.

[DHL04] Rod G. Downey, Denis R. Hirschfeldt, and Geoff LaForte. Randomness and reducibil-
ity. J. Comput. System Sci., 68(1):96–114, 2004.

[DHNS03] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals.
In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore,
2003. Singapore Univ. Press.

[Ers68] Yuri L. Ershov. A certain hierarchy of sets. Algebra i Logika, 7(1):47–74, 1968.
[HNS07] Denis R. Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles.

J. Lond. Math. Soc. (2), 75(3):610–622, 2007.

[JS72] Carl G. Jockusch, Jr. and Robert I. Soare. Π0
1 classes and degrees of theories. Trans.

Amer. Math. Soc., 173:33–56, 1972.

[KH07] Bjørn Kjos-Hanssen. Low for random reals and positive-measure domination. Proc.
Amer. Math. Soc., 135(11):3703–3709 (electronic), 2007.

[KHMS06] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity

and the recursion theorem. In STACS 2006, volume 3884 of Lecture Notes in Comput.

Sci., pages 149–161. Springer, Berlin, 2006.
[Kol65] A. N. Kolmogorov. Three approaches to the definition of the concept “quantity of

information”. Problemy Peredači Informacii, 1(vyp. 1):3–11, 1965.
[Kra49] L.G. Kraft. A device for quantizing, grouping and coding amplitude and modulated

pulses. MSc. Thesis, MIT, 1949.

[KT99] Antońın Kučera and Sebastiaan A. Terwijn. Lowness for the class of random sets. J.
Symbolic Logic, 64(4):1396–1402, 1999.

69

70 BIBLIOGRAPHY

[Kum96] Martin Kummer. On the complexity of random strings (extended abstract). In STACS

96 (Grenoble, 1996), volume 1046 of Lecture Notes in Comput. Sci., pages 25–36.

Springer, Berlin, 1996.
[Lev73] L. A. Levin. The concept of a random sequence. Dokl. Akad. Nauk SSSR, 212:548–550,

1973.

[Lev76] L. A. Levin. The various measures of the complexity of finite objects (an axiomatic
description). Dokl. Akad. Nauk SSSR, 227(4):804–807, 1976.

[LV08] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its appli-

cations. Texts in Computer Science. Springer, New York, third edition, 2008.
[ML66] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–

619, 1966.

[MN06] Joseph S. Miller and André Nies. Randomness and computability: open questions.
Bull. Symbolic Logic, 12(3):390–410, 2006.

[MP02] Andrej A. Muchnik and Semen Ye. Positselsky. Kolmogorov entropy in the context
of computability theory. Theoret. Comput. Sci., 271(1-2):15–35, 2002. Kolmogorov

complexity.

[Nie05] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.
[Nie06] André Nies. Reals which compute little. In Logic Colloquium ’02, volume 27 of Lect.

Notes Log., pages 261–275. Assoc. Symbol. Logic, La Jolla, CA, 2006.

[Nie09] André Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford
University Press, Oxford, 2009.

[Sac63] Gerald E. Sacks. On the degrees less than 0′. Ann. of Math. (2), 77:211–231, 1963.

[Sac64] Gerald E. Sacks. The recursively enumerable degrees are dense. Ann. of Math. (2),
80:300–312, 1964.

[Sch73] C.P. Schnorr. Process complexity and effective random tests. J. Comput. System Sci.,

7:376–388, 1973. Fourth Annual ACM Symposium on the Theory of Computing (Den-
ver, Colo., 1972).

[Soa96] Robert I. Soare. Computability and recursion. Bull. Symbolic Logic, 2(3):284–321,
1996.

[Soa10] Robert I. Soare. Computability Theory and Applications:The Art of Classical Com-

putability. Springer-Verlag, 2010. To appear.
[Sol64] R. J. Solomonoff. A formal theory of inductive inference. I. Information and Control,

7:1–22, 1964.

[Sol75] R. Solovay. Handwritten manuscript related to Chaitin’s work. IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 215 pages, 1975.

[SS90] Richard A. Shore and Theodore A. Slaman. Working below a low2 recursively enu-

merably degree. Arch. Math. Logic, 29(3):201–211, 1990.

[Vil39] J. Ville. Étude critique de la notion de collectif, volume 3 of Monographies des Prob-

abilités. Gauthier-Villars, Paris, 1939.
[vL87] M. van Lambalgen. Random sequences. PhD Dissertation, Universiteit van Amster-

dam, The Netherlands, 1987.
[vM19] R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische

Zeitschrift, 5:52–99, 1919.
[Zam90] D. Zambella. On sequences with simple initial segments. Technical report ML 1990-05,

ILLC, Universiteit van Amsterdam, 1990.

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the basing of

the concepts of information and randomness on the theory of algorithms. Uspehi Mat.
Nauk, 25(6(156)):85–127, 1970.

Index

C-trivial, 10, 64

string, 65

G-function, 25, 33, 39, 58

H-function, 33

K-trivial, 10, 18, 21, 23, 48, 53, 57, 59, 63

infinitely often, 21, 48

string, 23, 48, 65

n-c.e., 39

1-randomness, see Martin-Löf randomness

2-c.e., see difference of c.e.

2-randomness, 5

anti-chain, 31, 35

Arslanov’s Completeness Criterion, 44

c.e., see computably enumerable

Cantor space, 3

Chaitin’s number Ω, 8

coding constant, 59

complete, 64

m, 64

truth table, 65

weak truth table, 47, 65

complex, 48

complexity

arithmetical, 24, 58, 63

descriptive, 6

initial segment, 18

complexity dips, 6

computability theory, 5

computable, 5, 24

computable enumeration, 11

computably enumerable, 5, 11, 21, 24, 48

cone, 27

Turing, 11

cost function, 53

d.c.e., see difference of c.e.

d.n.c., see diagonally noncomputable

decanter method, 53

degree, 9

C, 9, 18, 63, 64

K, 9, 18, 63, 64

LK, 9

LR, 9, 14, 63

complete, 17

computable, 13

computably enumerable, 13, 63

diagonally noncomputable, 44

high2, 39

low, 44

low2, 39

maximal, 17, 21, 64

maximum, 17

minimal, 17

Turing, 17, 36, 43, 63

density, 17, 21

downward, 17, 21, 64

general, 17, 64

upward, 17, 21, 64

description, 6, 21, 23, 50, 57

universal, 6

diagonally noncomputable, 44, 48

difference of c.e. 38

disjoint, 11, 18

dyadic rational, 15

effective, see computable

Ershow hierarchy, 39

family of trees, 24, 63

function

∆0
3, 41

computable, 49

diagonally noncomputable, 44

pairing, 41

partial computable, 6, 45

total computable, 41

unbounded non-decreasing, 48

functional, 45

halting probability, 8

hat trick, 35

hierarchy

arithmetical, 23

jump, 39

high2, 39

incomparable

71

72 INDEX

C, 18

K, 18

LR, 16

Turing, 13

incompressible, 6

index

∆0
2, 53, 55

low2-ness, 53, 58, 61, 63

lowness, 53

initial segment, 18, 24, 41, 48, 50, 57, 59, 65

injury, 12

join, 13, 16, 26, 49

Kollektiv, 3

Kolmogorov complexity, 4, 6, 18, 48

plain, 6, 20, 21, 48

prefix-free, 7, 18, 21

Kraft-Chaitin Theorem, 8

law of the iterated logarithm, 4

length of agreement, 12, 14, 19

limit infimum, 37, 41

low, 44, 53

uniformly, 56

Low Basis Theorem, 44

low for K, 10, 56, 58, 64

low for random, see low for Martin-Löf
randomness

low2, 39, 53, 63

machine, 5, 6

prefix-free, 7, 50, 57, 65

prefix-free oracle, 59

universal, 6, 21, 23, 50, 57

universal prefix-free, 7

Machine Existence Theorem, see

Kraft-Chaitin Theorem

Martin-Löf randomness, 5

low for, 10, 14, 53, 63

Martin-Löf test, 4, 5

oracle, 6

universal, 5, 14, 64

martingale, 4

measure, 4

movable marker, 46

nonrandom string, 65

null class, 4

open cylinder, 4

open set, 4

oracle, 45, 58

machine, 6

order, see unbounded non-decreasing
function

path, 24

computable, 27, 44

isolated, 25

Post’s

Problem, 53

Theorem, 24
priority, 12

Recursion Theorem, 8, 57, 59
reduction

C, 9

K, 9, 19
LK, 9

LR, 9

m, 9
identity-bounded Turing, 18

Turing, 9, 11

weak truth table, 45
relativisation, 6, 26, 31, 34

request, 8

requirement, 11
restraint, see Sacks restraint

Sacks
Density Theorem, 17

restraint, 12, 14, 19

Splitting Theorem, 11, 63
Schnorr

randomness, 5

Theorem, 7
split, 31, 35

splitting, 13
subadditivity, 21

supremum, 16

tree, 24
K-trivial, 48, 58, 63

K-triviality, 24, 48, 63
∆0

2, 43, 48, 58, 63

Π0
1, 27, 63

computable, 26, 27, 30

computably enumerable, 27, 31, 43, 48,

63
family of, 33, 39, 49

level, 24

true enumeration, 21, 41

uniform, 5, 24

use, 14, 41, 45

weak reducibility, 9

weight, 8, 50, 57
width, 29

bounded, 29, 32, 38, 45

