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Abstract

In this thesis I will give a formal definition of side effects. I will do so by
modifying a system for modelling program instructions and program states,
Quantified Dynamic Logic, to a system called DLAf (for Dynamic Logic with
Assignments as Formulas), which in contrast to QDL allows assignments in
formulas and makes use of short-circuit evaluation. I will show the underlying
logic in those formulas to be a variant of short-circuit logic called repetition-
proof short-circuit logic.

Using DLAf I will define the actual and the expected evaluation of a single
instruction. The side effects are then defined to be the difference between the
two. I will give rules for composing those side effects in single instructions,
thus scaling up our definition of side effects to a definition of side effects in
deterministic DLAf-programs. Using this definition I will give a classification of
side effects, introducing as most important class that of marginal side effects.
Finally, I will show how to use our system for calculating the side effects in a
real system such as Program Algebra (PGA).
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1
Introduction

1.1 What are side effects?

In programming practice, side effects are a well-known phenomenon, even though
nobody seems to have an exact definition of what they are. To get a basic idea,
here are some examples from natural language and programming that should
explain the intuition behind side effects.

Suppose you and your wife have come to an agreement regarding grocery
shopping. Upon leaving for work, she told you that “if I don’t call, you do not
have to do the shopping”. Later that day, she calls you to tell you something
completely different, for instance that she is pregnant. This call now has as side
effect that you no longer know whether you have to do grocery shopping or not,
even though the meaning of the call itself was something completely different.

Another example is taken from [9]. Suppose someone tells you that “Phoebe
is waiting in front of your door, and you don’t know it!” This is a perfectly
fine thing to say, but you cannot say it twice because then it will no longer
be true that you don’t know that Phoebe is waiting (after all, you were just
told). Here, the side effect is that your knowledge gets updated by the sentence,
which makes the latter part of that sentence, which is a statement about your
knowledge, false.

As said, in programming practice, side effects are a well-known phenomenon.
Logically, they are interesting because the possible presence of side effects in a
program instruction sequence invalidates principles of propositional logic such
as commutativity (φ∧ψ ↔ ψ∧φ) and idempotency (φ∧φ↔ φ). The textbook
example is the following program:

x:=1

if (x:=x+1 and x=2) then y

Here the operator := stands for assignment and = for an equality test. Assuming
an assignment instruction always succeeds (that is, yields the reply true), in
the above example the test φ ∧ ψ, where φ is the instruction x:=x+1 and ψ the
instruction x=2, will succeed and therefore, y will be executed. However, should
the order of those instructions be reversed (ψ ∧ φ), this no longer will be the
case. The reason is that the instruction φ has a side effect: apart from returning
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2 CHAPTER 1. INTRODUCTION

true, it also increments the variable x with 1, thus making it 2. If φ is executed
before ψ, the test in ψ (x=2) will yield true. Otherwise, it will yield false.

It is easy to see that should φ∧ψ be executed twice, the end result will also
be false. Therefore, for χ = φ ∧ ψ, we have that χ ∧ χ 6↔ χ.

1.2 What are steering fragments?

Now that I have given a rough idea of what side effects are, the reader is probably
wondering about the second part of my thesis title: that of steering fragments.
A steering fragment or test is a program fragment which is concerned with the
control flow of the execution of that program. To be exact, a steering fragment
will use the evaluation result of a formula (which is a Boolean) and depending
on the outcome, will steer further execution of the program. Thus, a steering
fragment consists of two parts: a formula and a control part which decides what
to do with the evaluation result of that formula. Throughout this thesis, I will
be using the terms steering fragment and test interchangeably.

The formula in a steering fragment can either be a primitive or a compound
formula. The components of a compound formula are usually connected via
logical connectives such as ∧ and ∨, or involve negation. If the formula of a
steering fragment is compound, we say that the steering fragment is a complex
steering fragment.

We have already seen a classical example of a (complex) steering fragment
in the previous section: the if . . . then instruction. In the example above, the
formula is a compound formula with x := x + 1 and x = 2 as its components,
connected via the logical connective ∧. The control part of this steering frag-
ment consists of if and then and the prescription to execute y if evaluation of
x:=x+1 and x=2 yields true.

1.3 Related work

The main contribution of this thesis is to construct a formal model of side effects
in dynamic logic. Because of that, I only had limited time and space to properly
research related work done in this area. Despite that, I will briefly describe some
references I have come across throughout this project.

Currently, a formal definition of side effects appears to be missing in litera-
ture. That is not to say that side effects have been completely ignored. Attempts
have been made to create a logic which admits the possibility of side effects by
Bergstra and Ponse [5]. Furthermore, an initial, informal classification of side
effects has been presented by Bergstra in [1]. I will return to those references
later in this thesis.

Black and Windley have made an attempt to reason in a setting with side
effects in [7, 8]. In their goal to verify a secure application written in C using
Hoare axiomatic semantics to express the correctness of program statements,
they encountered the problem of side effects occurring in the evaluation of some
C-expressions. They solved the problem by creating extra inference rules which
essentially separate the evaluation of the side effect from the evaluation of the
main expression.
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Also working with C is Norrish in [17]. He presents a formal semantics for C
and he, too, runs into side effects in the process. Norrish claims that a semantics
gives a program meaning by describing the way in which it changes a program
state. Such a program state would both include the computer’s memory as well
as what is commonly known as the environment (types of variables, mapping of
variable names to addresses in memory etc.). Norrish claims that in C, changes
to the former come about through the actions of side effects, which are created
by evaluating certain expression forms such as assignments. Norrish’ formal
semantics for C is able to handle these side effects.

Böhm presents a different style of axiomatic definitions for programming lan-
guages [6]. Whereas other authors such as Black and Windley above use Hoare
axiomatic semantics which bases the logic on the notion of pre- or postcondition,
Böhm uses the value of a programming language expression as the underlying
primitive. He relies on the fact that the underlying programming language is an
expression language such as Algol 68 [21]. Expressions are allowed to have ar-
bitrary side effects and the notions of statement and expression coincide. Böhm
claims that his formalism is just as intuitive as Hoare-style logic and that the
notion of ‘easy axiomatizability’ — which is a major measurement of the quality
of a programming language — is a matter of a choice of formalism, which in
turn is arbitrary.

In this thesis I will develop a variant of Dynamic Logic to model side effects.
Dynamic Logic is used for a wide range of applications, ranging from modelling
key constructs of imperative programming to developing dynamic semantic the-
ories for natural language. An early overview of dynamic logic is given by Harel
in [15]. More recently, Van Eijck and Stokhof have given an extensive overview
of various systems of dynamic logic in [11].

1.4 Overview of this thesis

Intuitively, a side effect of a propositional statement is a change in state of
a program or model other than the effect (or change in state) it was initially
executed for. In this thesis I will present a system that makes this intuition
explicit.

First, in Chapter 2 I will present the preliminaries on which my system, that
can model program instructions and their effect on program states, is based.
This system, which I present in Chapter 3, will be a modified version of Quan-
tified Dynamic Logic, overviews of which can be found in [15, 11].

After introducing some terminology and exploring the logic behind this sys-
tem in Chapters 4 and 5, I can formally define side effects, which I will do in
Chapter 6. In Chapter 7 I will proceed to giving a classification of side effects,
introducing marginal side effects as the most important class.

In Chapter 8 I will present a case study to see this definition of side effects
in action. For this I will use an — again slightly modified — version of Program
Algebra [3]. I will end this thesis with some conclusions and some pointers for
future work.
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2
Preliminaries

2.1 Introduction

In order to say something useful about side effects, we need a formal definition.
Such a definition can be found using dynamic logics. The basic idea here is that
the update of a program instruction is the change in program state it causes.
This allows us to introduce an expected and an actual evaluation of a program
instruction. The expected evaluation of a program instruction is the change
you would expect a program instruction to make to the program state upon
evaluation. This may differ, however, from the actual evaluation, namely when
a side effect occurs when actually evaluating the program instruction. The side
effect of a program instruction then is defined as the difference in expected and
actual evaluation of a program instruction.

To flesh this out in a formal definition, we first need a system that is able
to model program states and program instructions. Quantified Dynamic Logic
(QDL) is such a system. QDL was developed by Harel [14] and Goldblatt [13].
It can be seen as a first order version of Propositional Dynamic Logic (PDL),
which was developed by Pratt in [19, 20]. Much of the overview of both PDL
and QDL I will give below is taken from the overview of dynamic logic by Van
Eijck and Stokhof [11].

Dynamic logic can be viewed as dealing with the logic of action and the
result of action [11]. Although various kinds of actions can be modelled with
it, one is of particular interest for us: the actions performed on computers,
i.e. computations. In essence, these are actions that change the memory state
of a machine, or on a somewhat higher level the program state of a computer
program.

Regardless of what kinds of actions are modelled, the core of dynamic logic
can in many cases be characterized in a similar way via the logic of ‘labelled
transistion systems’. A labelled transition system or LTS over a signature 〈P,A〉,
with P a set of propositions and A a set of actions, is a triple 〈S, V,R〉 where S

is a set of states, V : S → P(P ) is a valuation function and R = { a→⊆ S × S |
a ∈ A} is a set of labelled transitions (one binary relation on S for each label
a).

There are various versions of dynamic logic. Before I will introduce two of
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6 CHAPTER 2. PRELIMINARIES

these, I will first describe the setting I will be using in my examples. This setting
consists of a toy programming language that is expressive enough to model the
working examples I need to discuss side effects.

2.2 Toy language

My toy language should be able to handle assignments and steering fragments.
The steering fragment can possibly be complex, so our toy language should be
able to handle compound formulas: multiple formulas (such as equality tests)
connected via logical connectives. In particular, I will be using short-circuit
left and ( ∧rb ) and short-circuit left or ( ∨rb ) as connectives. Finally, assignments
should be allowed in tests as well: they are, in line with what one would expect,
defined to always return true.

As toy language I will first present the WHILE language defined by Van Eijck
in [11]. We will see soon enough that we will actually need more functionality
than it offers, but it will serve us well in the introduction of PDL, QDL and the
illustration of the problems we will run into.

The WHILE language works on natural numbers and defines arithmetic ex-
pressions, Boolean expressions and programming commands. Arithmetic ex-
pressions a with n ranging over numerals and v over variables from a set V are
defined as follows:

a ::= n | v | a1 + a2 | a1 ∗ a2 | a1 −· a2

Boolean expressions are defined as:

B ::= > | a1 = a2 | a1 ≤ a2 | ¬B | B1 ∨B2

Finally, we define the following programming commands:

C ::= SKIP | ABORT | v := a | C1;C2 | IF B THEN C1 ELSE C2

For the sake of simplicity, we will postpone the introduction of the WHILE
command until after we have presented our modified system in Chapter 3.

The semantics of the arithmetic expressions are fairly self-explanatory. We
assume that every numeral n in N has an interpretation I(n) ∈ N and let g
be a mapping from V to N. We then have the following interpretations of the
arithmetic expressions, relative to initial valuation or initial program state g:

JnKg := I(n)

JvKg := g(v)

Ja1 + a2Kg := Ja1Kg + Ja2Kg

Ja1 ∗ a2Kg := Ja1Kg ∗ Ja2Kg

Ja1 −· a2Kg := Ja1Kg −· Ja2Kg

The semantics of the Boolean expressions are standard as well, writing T for
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true and F for false:

J>Kg := T

Ja1 = a2Kg :=

{
T if Ja1Kg = Ja2Kg

F otherwise

Ja1 ≤ a2Kg :=

{
T if Ja1Kg ≤ Ja2Kg

F otherwise

J¬BKg :=

{
T if JBKg = F

F otherwise

JB1 ∨B2Kg :=

{
T if JB1Kg = T or JB2Kg = T

F otherwise

The semantics of the commands of the toy language can be given in various
styles. Here I take a look at a variant called structural operational seman-
tics [11]. It is specified using a transition system from pairs of a state and a
command, to either a state or again a state and a (new) command.

First I will give the transitions for the assignment command. It looks like
this, where we write g[v 7→ t] for the valuation which is like valuation g except
for the variable v, which has been mapped to t:

(g, v := t) =⇒ g[v 7→ JtKg]

Here we have the pair of state g and the assignment command v := a at the
start of the transition. After the transition, we only have a new state left, since
the execution of this command has finished in a single step.

The SKIP command does nothing: it does not change the state and it finishes
in a single step.

(g,SKIP) =⇒ g

In structural operational semantics, there are two rules for sequential com-
position, one for when program C1 finishes in a single step and one for which it
does not.

(g, C1) =⇒ g′

(g, C1;C2) =⇒ (g′, C2)

(g, C1) =⇒ (g′, C ′1)

(g, C1;C2) =⇒ (g′, C ′1;C2)

Finally, we have the rules for conditional action. There are two (similar)
rules, depending on the outcome of the test:

(g, IF B THEN C1 ELSE C2) =⇒ (g, C1)
JBKg = T

(g, IF B THEN C1 ELSE C2) =⇒ (g, C2)
JBKg = F
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2.3 Propositional Dynamic Logic

Now that I have introduced the toy language, it is time to take a look at the
first version of dynamic logic we are interested in: Propositional Dynamic Logic
(PDL in short). The language of PDL consists of formulas φ (based on basic
propositions p ∈ P ) and programs α (based on basic actions a ∈ A):

φ ::= > | p | ¬φ | φ1 ∨ φ2 | 〈α〉φ
α ::= a | ?φ | α1;α2 | α1 ∪ α2 | α∗

As the name suggests, PDL is based on propositional logic. This means that
the usual properties such as associativity and duality are valid and will be used
throughout. Furthermore, we can use the following abbreviations:

⊥ = ¬>
φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2)

φ1 → φ2 = ¬φ1 ∨ φ2

φ1 ↔ φ2 = (φ1 → φ2) ∧ (φ2 → φ1)

[α]φ = ¬〈α〉¬φ

The relational composition R1 ◦R2 of binary relations R1, R2 on state set S
is given by:

R1 ◦R2 = {(t1, t2) ∈ S × S | ∃t3((t1, t3) ∈ R1 ∧ (t3, t2 ∈ R2))}

The n-fold composition Rn of a binary relation R on S with itself is recursively
defined as follows, with I the identity relation on S:

R0 = I

Rn = R ◦Rn−1

Finally, the reflexive transitive closure of R is given by:

R∗ =
⋃
n∈N

Rn

To define the semantics of PDL over basic propositions P and basic actions A,
we need the labelled transistion system T = 〈ST , VT , RT 〉 for signature 〈P,A〉.
The formulas of PDL are interpreted as subsets of ST , the actions as binary
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relations on ST . This leads to the following interpretations:

J>KT = ST

JpKT = {s ∈ ST | p ∈ VT (s)}
J¬φKT = ST − JφKT

Jφ1 ∨ φ2K
T = Jφ1K

T ∪ Jφ2K
T

J〈α〉φKT = {s ∈ ST | ∃t(s, t) ∈ JαKT and t ∈ JφKT }

JaKT =
a−→T

J?φKT = {(s, s) ∈ ST × ST | s ∈ JφKT }
Jα1;α2K

T = Jα1K
T ◦ Jα2K

T

Jα1 ∪ α2K
T = Jα1K

T ∪ Jα2K
T

Jα∗KT = (JαKT )∗

The programming constructs in our toy language are expressed in PDL as fol-
lows:

SKIP := ?>
ABORT := ?⊥

IF φ THEN α1 ELSE α2 := (?φ;α1) ∪ (?¬φ;α2)

Although PDL is a powerful logic, it is not enough yet to properly model the
toy language we need. The reason for that is the need for assignments. Since
assignments change relational structures, the appropriate assertion language
is first order predicate logic, and not propositional logic [11]. So instead of
PDL, which as the name suggests uses propositional logic, we need a version
of dynamic logic that uses first order predicate logic. This is where Quantified
Dynamic Logic (QDL in short) comes in.

2.4 Quantified Dynamic Logic

The language of QDL consists of terms t, formulas φ and programs π. For
functions f and relational symbols R we have:

t ::= v | ft1 . . . tn
φ ::= > | Rt1 . . . tn | t1 = t2 | ¬φ | φ1 ∨ φ2 | ∃vφ | 〈π〉φ

π ::= v := ? | v := t | ?φ | π1;π2 | π1 ∪ π2 | π∗

In the case of natural numbers, examples of f are +, ∗ etc. and examples of
R are ≤ and ≥. The same abbreviations as in PDL are used, most notably
⊥ = ¬> and [π]φ = ¬〈π〉¬φ.

The random assignment (v := ?) does not increase the expressive power of
QDL [11]. It can, however, be nicely used to express the universal and existential
quantifier:

∃vφ↔ 〈v := ?〉φ
∀vφ↔ [v := ?]φ
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The pair (f,R) is called a first order signature. A model for such a signature
is a structure of the form

M = (EM , fM , RM )

where E is a non-empty set, the fM are interpretations in E for the members
of f and the RM similarly are the interpretations in E for the members of R.
Now let V be the set of variables of the language. Interpretation of terms in M
is defined relative to an initial valuation g : V → EM :

JvKMg = g(v) (QDL1)

Jft1 . . . tnK
M
g = fM (Jt1K

M
g , . . . , JtnK

M
g ) (QDL2)

Truth in M for formulas is defined by simultaneous recursion, where g ∼v h
then means that h differs at most from g on the assignment it gives to variable
v:

M |=g > always (QDL3)

M |=g Rt1 . . . tn iff (Jt1K
M
g , . . . , JtnK

M
g ) ∈ RM (QDL4)

M |=g t1 = t2 iff Jt1K
M
g = Jt2K

M
g (QDL5)

M |=g ¬φ iff M 6|=g φ (QDL6)

M |=g φ1 ∨ φ2 iff M |=g φ1 or M |=g φ2 (QDL7)

M |=g ∃vφ iff for some h with g ∼v h,M |=h φ (QDL8)

M |=g 〈π〉φ iff for some h with gJπK
M
h ,M |=h φ (QDL9)

The same goes for the relational meaning in M for programs:

gJv := tKMh iff h = g[v 7→ JtKMg ] (QDL10)

gJ?φK
M
h iff g = h and M |=g φ (QDL11)

gJπ1;π2K
M
h iff ∃f with gJπ1K

M
f and f Jπ2K

M
h (QDL12)

gJπ1 ∪ π2K
M
h iff gJπ1K

M
h or gJπ2K

M
h (QDL13)

gJπ
∗KMh iff g = h or gJπ;π∗KMh (QDL14)

The above definition makes concatenation (;) an associative operator:

(π1;π2);π3 = π1; (π2;π3)

As a convention, we omit the brackets wherever possible.
Although QDL goes a long way to modelling our toy language and program

states, we are not quite there yet. The modifications we have to make come to
light when we examine the expressive power of QDL. QDL currently has more
expressive power than it has semantics defined for. This problem surfaces when
the modality operator is nested within a test, like this:

?(〈v := t〉>)

This is the program ?φ, with φ = 〈π〉ψ, π = v := t and ψ = >. As the semantics
of QDL are currently defined, the program π will make a change to an initial
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valuation g if it is interpreted in it, returning valuation h where the assignment g
had for variable v will be expressed by t. This is expressed by QDL10. However,
the current semantics only assign relational meaning to a test instruction ?φ as
long as g = h, as expressed by QDL11.

Another similar example is the following:

?(〈v := v + 1; v := v −· 1〉>)

Although this situation should be similar as above, it is not: because the pro-
gram state gets changed twice, QDL now is able to assign semantics to this
program since the program state gets returned to the original state by the sec-
ond program instruction (and we therefore have g = h).

So, not only can we devise even a very simple correct QDL-program for
which there are no semantics defined, we can also give a very similar example
for which QDL does define semantics. Not only does that somewhat erratic
behavior seem undesirable, but the nature of the examples here present us with
a problem when we are considering side effects. Exactly for the situations in
which side effects occur, namely when an instruction in a test causes a change
in the program state, there are no semantics defined in QDL. Therefore, I am
going to have to modify QDL so that it does define semantics in those situations.
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3
Modifying QDL to DLAf

3.1 Introducing DLAf

In this chapter I will present Dynamic Logic with Assignments as Formulas, or
DLAf in short, the resulting dynamic logic after making two major modifications
to QDL. The modifications I will make are such that DLAf can model the
specific kinds of constructions that we are interested in. This means that, like
the name suggests, we have to introduce semantics for assignments in formulas.
Furthermore, we will drop or modify some other QDL-instructions that we do
not need. Because of that DLAf evades the problem of QDL mentioned in
Section 2.4 of the previous chapter and one other problem I will get back to in
Section 3.3. Before I introduce DLAf, however, I will show the modifications
that need to be done to Van Eijck’s WHILE language so that it can model the
instructions we need.

In the WHILE language, Boolean expressions are assumed to cause no state
change upon evaluation. However, for our purpose this is inadequate. We
want to allow assignments in tests as well and they cause a state change. This
warrants the first modification to the WHILE language and its semantics: as-
signments are allowed in Boolean expressions. The second modification is that
the Boolean OR function will be replaced by a short-circuit version:

B ::= > | a1 = a2 | a1 ≤ a2 | ¬B | B1 ∨
rb
B2 | v := a

The new semantics for Boolean expressions are like the semantics defined by
Van Eijck, with as major difference that there are now semantics defined for
assignments:

Jv := aKg := T

Furthermore, Boolean expressions now might introduce a state change, so every
command containing a Boolean expression (which for now only is the IF THEN
ELSE command) should account for that. In structural operational semantics,
we take a look at how the Boolean expression changes the state and perform
the remaining actions in that new state:

(g,B) =⇒ g′

(g, IF B THEN C1 ELSE C2) =⇒ (g′, C1)
JBKg = T

13
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And similar for the case that JBKg = F .
As said, there is one more thing that needs to be modified in the language

above. In order to be properly able to reason about side effects, the order in
which the tests get executed is important. Because of that, the OR construct
in Boolean expressions needs to be replaced by a short-circuit directed version:

JB1 ∨
rb
B2Kg :=


T if JB1Kg = T

T if JB1Kg = F and for (g,B) =⇒ g′, JB2Kg′ = T

F otherwise

We will make use of its dual, the short-circuit left and ( ∧rb ) too. It is defined
similarly as above. As a convention, from here on ∨rb and ∧rb can be used
interchangeably in definitions, unless explicitly stated otherwise. Both ∨rb as
well as ∧rb are associative. We again omit brackets wherever possible.

All we have left to define now is the state change a Boolean can cause. This
is defined as follows:

(g,B) =⇒

{
g[v 7→ JtKg] if B = (v := t)

g o.w.

Missing in the above WHILE language are the random assignment and the
existential quantifier. This is because I have decided to drop them. The reason
for that is that they can cause non-deterministic behavior and in this thesis,
we are not interested in the (side effects of) non-deterministic programs. In
fact it is questionable whether we can say anything about side effects in non-
deterministic programs, but I will return to that in my possibilities for future
work in Chapter 9. Aside from that, in our context of (imperative) programs,
the random assignment is an unusual concept at best. The same goes for the
formula ∃vφ.

With those modifications to the toy language in mind, we can take a look
at the similar modifications that need to be made to QDL. In the resulting
dynamic logic DLAf, we keep the same terms:

t ::= v | ft1 . . . tn

In DLAf we of course drop the random assignment and existential quantifier,
too. By dropping them, we lose the quantified character of QDL. Because of
that, the resulting logic is no longer called a quantified dynamic logic. The
first major change to QDL, besides the absence of the random assignment and
the existential quantifier, is that I replace the 〈π〉φ command with the weaker
[v := t]>:

φ ::= > | Rt1 . . . tn | t1 = t2 | ¬φ | φ1 ∨
rb
φ2 | φ1 ∧rb φ2 | [v := t]>

This modification explicitly expresses the possibility of assignments in formulas.
All other programs, however, are no longer allowed in formulas. Because of this
modification we will avoid a number of problems that QDL has, while keeping
the desired functionality that there should be room for assignments in formulas.
I will address these problems in detail in Section 3.3.

We have also replaced the ∨ connective with its short-circuit variant ( ∨rb )
and for convenience, have explicitly introduced its dual ( ∧rb ). We will return to
the motivation for this change at the end of this chapter.



3.1. INTRODUCING DLAF 15

We also need to replace the QDL-formula associated with this command
(QDL9). The truth in M for the new command is defined as follows:

M |=g [v := t]> always (DLA9)

It should come as no surprise that this always succeeds, since assignments always
succeed and yield true. Since this formula always succeeds, we replaced the
possibility modality (〈v := t〉>) for the necessity modality ([v := t]>). The
reason we keep this formula in the form of a modality at all (and not just
v := t), is because formulas of this form can change the initial valuation. This
is in sharp contrast to the basic formulas t1 = t2 and Rt1 . . . t2, which do not
change the initial valuation and are typically not modalities. Because of that,
it is unintuitive to write the assignment formula as v := t.

On a side note: in our toy language we do simply write v := t for the assign-
ment, regardless of where it occurs. This is because in the world of (imperative)
programming, assignments are allowed in steering fragments.

We will see below that we are going to accept possible state changes in
formulas, in contrast to the original QDL versions. For this we will use a
mechanism to determine when a state change happens, that is, a function that
returns the program(s) that are encountered when evaluating a formula φ. This
function is defined as follows:

Definition 1. The program extraction function ΠM
g : φ → π returns for

formula φ the program(s) that are encountered when evaluating the formula given
modal M and initial valuation g. It is defined recursively as follows:

ΠM
g (>) = ?>

ΠM
g (Rt1 . . . tn) = ?>
ΠM

g (t1 = t2) = ?>
ΠM

g (¬φ) = ΠM
g (φ)

ΠM
g (φ1 ∨

rb
φ2) =

{
ΠM

g (φ1) if M |=g φ1

ΠM
g (φ1); ΠM

h (φ2) if M 6|=g φ1 and gJΠ
M
g (φ1)KMh

ΠM
g (φ1 ∧rb φ2) =

{
ΠM

g (φ1) if M 6|=g φ1

ΠM
g (φ1); ΠM

h (φ2) if M |=g φ1 and gJΠ
M
g (φ1)KMh

ΠM
g ([v := t]>) = (v := t)

In the first three cases, no programs are encountered. Therefore, the pro-
gram extraction function returns the empty program (?>). The formula ¬φ is
transparent, that is, it returns any program encountered in its subformula φ.
Because of the short-circuit character of ∨rb and ∧rb , a case distinction is made
here: in case of ∨rb , φ2 will not be evaluated if φ1 yields true, therefore only
the program(s) encountered in φ1 will be returned. Otherwise, the result is a
concatenation of the program(s) encountered in φ1 and φ2. Obviously, for ∧rb
the opposite is the case and this clause is derivable from the previous one using
duality. Finally, if the formula is an assignment, the program equivalent of that
assignment is returned.

Because the evaluation of a formula now can cause a state change, the orig-
inal definition for the truth in M of ∨rb (QDL7) is no longer valid. In case φ1
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contains an assignment, φ2 must be evaluated in a different valuation, namely
the one resulting after evaluating φ1 in the initial valuation:

M |=g φ1 ∨
rb
φ2 iff for gJΠ

M
g (φ1)KMh ,M |=g φ1 or M |=h φ2 (DLA7a)

Since we have added ∧rb to formulas as well, we also explicitly have to define the
truth in M for ∧rb , which is similar to the updated definition of ∨rb :

M |=g φ1 ∧rb φ2 iff for gJΠ
M
g (φ1)KMh ,M |=g φ1 and M |=h φ2 (DLA7b)

Although ∨rb and ∧rb use short-circuit evaluation, we do not explicitly have to
define them as such above because we will make sure, via the program extraction
function and an updated version of QDL11 (see below), that the valuation does
not change as a result of φ2 when M |=g φ1 is true (in case of ∨rb ) or false (in
case of ∧rb ).

We can now turn our attention to programs in DLAf. Besides the absence
of the random assignment, what a program π can be does not change:

π ::= v := t | ?φ | π1;π2 | π1 ∪ π2 | π∗

To remedy the problem that more things can be expressed in QDL than there
are semantics for, we need, as mentioned earlier, to accept that a state change
can occur when evaluating a program containing formulas. In the case of QDL,
that only is the test instruction, given semantics earlier in QDL11. So, as second
major change we need to replace QDL11 by:

gJ?φK
M
h iff

{
M |=g φ and g = h if ΠM

g (φ) = ?>
M |=g φ and gJΠ

M
g (φ)Kh otherwise

(DLA11)

The choice here is in place to avoid looping behavior when evaluating gJ?>Kh.
The definitions above make extensive use of the empty program (?>). In

what follows, it will be handy to know that the empty program is truly empty.
In particular, we would like to have π; ?> = π and ?>;π = π. I will prove that
below.

Lemma 3.1.1. For any program π, initial valuation g, output valuation h and
model M

gJπ; ?>KMh iff gJπK
M
h

Proof. The proof follows from the above defined QDL-axioms:

gJπ; ?>KMh iff ∃f gJπK
M
f and f J?>Kh

Since we have f J?>Kh iff f = h and M |=f >, and since the latter is always
true, we have

gJπ; ?>KMh iff gJπK
M
h

Lemma 3.1.2. For any program π, initial valuation g, output valuation h and
model M

gJ?>;πKMh iff gJπK
M
h
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Proof. Similar as for Lemma 3.1.1.

The change to QDL11 has remedied the problem that there are expressions
in QDL for which there are no semantics defined. Of course I made a second
major change — namely replacing 〈π〉φ by [v := t]>. The reason for that will
come to light as soon as I will reintroduce the WHILE command in Section 3.3.
Before I will do that, however, I will first discuss a working example to provide
some more insight into the inner workings of DLAf.

3.2 A working example

In this section I will present a working example to illustrate how DLAf works.
I will use the following program, presented here in our toy language:

x := 1;

IF (x := x+ 1 ∧rb x = 2)

THEN y := 1

ELSE y := 2

In DLAf, this translates to:

x := 1;

(?([x := x+ 1]> ∧rb x = 2); y := 1)

∪
(?¬([x := x+ 1]> ∧rb x = 2); y := 2)

The valuations g, h, . . . are defined for all variables v ∈ V, i.e. they are total
functions. Usually we are only interested in a small number of variables, e.g. x
and y, in which case we talk about a valuation g such that g(x) = JtKMg , g(y) =

Jt′KMg , or if valuation h is an update of valuation g, h = g[x 7→ JtKMg , y 7→ Jt′KMg ]

(which is a shorthand for g[x 7→ JtKMg ][y 7→ Jt′KMg ]). In all examples we discuss
we take for M the model of the natural numbers and we use numerals to denote
its elements.

Since we are working on natural numbers, as constants we have n ranging
over numerals, as functions we have +, ∗ and −· , and as extra relation we have
≤. Our model M contains those constants, functions and relations. Assume we
have an initial valuation g that sets x and y to 0: g(x) = g(y) = 0. We will
now first show how the program in our toy language gets evaluated using the
structural operational semantics we provided in Chapter 2:

(g,
(
x := 1; IF (x := x+ 1 ∧rb x = 2) THEN y := 1 ELSE y := 2

)
) =⇒

(g[x 7→ 1],
(
IF (x := x+ 1 ∧rb x = 2) THEN y := 1 ELSE y := 2

)
)

We now need to know if J(x := x + 1 ∧rb x = 2)Kg[x7→1] = T . We can easily see
that it is and furthermore updates the valuation again by incrementing x by 1.
Thus we get as valuation g[x 7→ 2] and we can finish our evaluation as follows:

(g[x 7→ 2],
(
y := 1

)
) =⇒ g[x 7→ 2, y 7→ 1]
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Having seen how our example program evaluates using the semantics for our toy
language, we can turn our attention to the evaluation using DLAf. We need to
ask ourselves if gJπK

M
h exists (with π the program above), that is, if there is a

valuation h that models the state of the program after being executed on initial
valuation g.

Schematically, π can be broken down as follows:

π ::= π0;π1

π0 ::= x := 1

π1 ::= (?φ0;π2) ∪ (?¬φ0;π3)

π2 ::= y := 1

π3 ::= y := 2

φ0 ::= φ1 ∧rb φ2

φ1 ::= [x := x+ 1]>
φ2 ::= x = 2

The break-down above paves the way to evaluate gJπK
M
h using the DLAf-

axioms given in the previous sections. We start by applying QDL12:

gJπK
M
h = gJπ0;π1K

M
h

iff ∃f s.th. gJπ0K
M
f and f Jπ1K

M
h

We find f by evaluating gJx := 1KMf using QDL10 and QDL1:

gJx := 1KMf iff f = g[x 7→ J1KMg ]

= g[x 7→ 1]

Now we need to evaluate f J(?φ0;π2) ∪ (?¬φ0;π3)KMh . Using QDL13, we get:

f J(?φ0;π2) ∪ (?¬φ0;π3)KMh iff f J?φ0;π2K
M
h or f J?¬φ0;π3K

M
h

First we turn our attention to f J?φ0;π2K
M
h . Using QDL12 again we get ∃d such

that f J?φ0K
M
d and dJπ2K

M
h . To evaluate the former, we need to use our own rule

DLA11. Here we need the program extraction function Π for the first time:

f J?φ0K
M
d = f J?([x := x+ 1]> ∧rb (x = 2))KMd

iff M |=f [x := x+ 1]> ∧rb (x = 2)

and f JΠ
M
f ([x := x+ 1]> ∧rb (x = 2))KMd

We will first have a look at the program extraction function Π. Below we will
see how it calculates the programs that are encountered while evaluating the
formula (x := x+ 1) ∧rb (x = 2):

ΠM
f ([x := x+ 1]> ∧rb (x = 2)) = ΠM

f ([x := x+ 1]>); ΠM
f (x = 2)

= (x := x+ 1); ?>

Therefore, we have:

f J?φ0K
M
d = f J?([x := x+ 1]> ∧rb (x = 2))KMd

iff M |=f [x := x+ 1]> ∧rb (x = 2)

and f Jx := x+ 1; ?>KMd iff f Jx := x+ 1KMd
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The first of these two, M |=f [x := x+1]> ∧rb (x = 2), nicely shows why we need
an updated version of ∧rb and ∨rb . As we already noticed the test φ0 contains a
program (the assignment x := x+1) and therefore the state (valuation) changes.
As we will see, this will change the outcome of the second part of the test. We
need DLA7b and our program extraction function Π here:

M |=f (x := x+ 1) ∧rb (x = 2) iff for f Jx := x+ 1KMc ,M |=f (x := x+ 1) and

M |=c (x = 2)

M |=f (x := x + 1) is defined by DLA8 to be always true. Applying QDL10
on f Jx := x + 1KMc will give us c = f [x 7→ 2]. We can then apply QDL5 on
M |=c (x = 2):

M |=c (x = 2) iff JxKMc = J2KMc

We can easily see (using QDL1) that JxKMc = c(x) = 2 = J2KMc . Therefore, we
have M |=c (x = 2) and thus M |=f [x := x+ 1]> ∧rb (x = 2).

We now need to finish the evaluation of DLA11 by evaluating f Jx := x+1KMd .
This can again be done using QDL10 and gives us d = f [x 7→ 2]. Because the
test φ0 has now succeeded, we can continue to the evaluation of dJπ2K

M
h =

dJy := 1KMh . This will give us h = d[y 7→ 1]. Having already established that
?φ0 succeeds, we also know that ?¬φ will not succeed. Therefore, we are done
with the evaluation of this program π, getting that gJπK

M
h with g(x) = g(y) = 0

is indeed possible with h = g[x 7→ 2, y 7→ 1].

3.3 Re-introducing WHILE

In Section 2.2 I introduced our toy language, which was like Van Eijck’s WHILE
language, but without a WHILE (or: guarded iteration) programming com-
mand. Now that we have seen DLAf in action in our simplified toy language, it
is time to re-introduce the WHILE command. After doing that, we will see that
the re-introduction of WHILE raises some more issues that warrant the second
modification I made to QDL, namely replacing the formula 〈π〉φ with [v := t]>.

3.3.1 The WHILE command

The WHILE command takes the form WHILE B DO C. The complete list of
programming commands in our toy language then is:

C ::= SKIP | ABORT | v := a | C1;C2 | IF B THEN C1 ELSE C2 |
WHILE B DO C

In structural operational semantics, the semantics for the guarded iteration are
as follows. There are two options: if the guard (B) is not satisfied, command C
is not executed. Instead, the command finishes, with as only (possible) change
the change that the evaluation of guard B has made to the state:

(g,B) =⇒ g′

(g,WHILE B DO C) =⇒ g′
JBKg = F

If the guard is satisfied, the rule becomes a little more complicated because
command C gets executed in a state which is possibly changed by guard B.



20 CHAPTER 3. MODIFYING QDL TO DLAF

Like before, we have two cases: one for which C finishes in a single step and
one for which it does not.

(g,B) =⇒ g′ (g′, C) =⇒ g′′

(g,WHILE B DO C) =⇒ (g′′,WHILE B DO C)
JBKg = T

(g,B) =⇒ g′ (g′, C) =⇒ (g′′, C ′)

(g,WHILE B DO C) =⇒ (g′′, C ′; WHILE B DO C)
JBKg = T

3.3.2 WHILE in DLAf

In PDL, and therefore QDL and DLAf, WHILE is expressed as follows:

WHILE φ DO α := (?φ;α)∗; ?¬φ

Thanks to the updated rule for ?φ (DLA11), DLAf is able to handle programs
with WHILE perfectly. To see how this works, consider the following example:

x := 0;

y := 0;

WHILE (x := x+ 1 ∧rb x ≤ 2)

DO y := y + 1

In DLAf, this translates to:

x := 0;

y := 0;

(?([x := x+ 1]> ∧rb x ≤ 2); y := y + 1)∗;

?¬([x := x+ 1]> ∧rb x ≤ 2)

After the first two commands, we have g(x) = g(y) = 0. We now need to
look at how the ∗ operator is evaluated. QDL14 states that gJπ

∗KMh iff g = h
or gJπ;π∗KMh ). This means that π is either executed not at all (in which case
g = h) or at least once. In our case, π = ?([x := x+ 1]> ∧rb x ≤ 2); y := y + 1.

The first option is that π is executed not at all, in which case g = h. However,
under this valuation h there is no possible valuation h′ after evaluation of the
next program command (?¬([x := x+1]> ∧rb x ≤ 2)). In other words, hJ?¬([x :=
x + 1]> ∧rb x ≤ 2)KMh′ is false. Therefore, we have to turn our attention to the
other option given by the ∗ command, which is gJπ;π∗KMh . For the evaluation
of this we first need QDL12, which tells us that there has to be an f such that

gJπK
M
f and f Jπ

∗KMh . In Section 3.2 we have already seen how gJπK
M
f evaluates;

it will succeed and result in a new valuation f = g[x 7→ 1, y 7→ 1].

Now we need to evaluate π∗ again, but this time with a different initial
valuation (namely f). This loop continues until we arrive at a valuation f ′ for
which the final program command (the test ?¬([x := x + 1]> ∧rb x ≤ 2)) will
succeed. In our example, this happens in the second iteration, when we have
f ′ = g[x 7→ 2, y 7→ 2], giving us a resulting valuation h = g[x 7→ 3, y 7→ 2], which
is exactly what we would expect given this WHILE loop.
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3.3.3 Looping behavior and abnormal termination

An interesting problem regarding the WHILE language and QDL is that WHILE
T DO SKIP (looping behavior) and ABORT (abnormal termination) are indis-
tinguishable. In some semantics, such as natural semantics, this is also the case
[11]. In structural operational semantics, however, there is an (infinite) deriva-
tion sequence for WHILE T DO SKIP, whereas there is no derivation sequence
for ABORT.

Using the standard lemma that 〈π1;π2〉φ ↔ 〈π1〉〈π2〉φ (cf. [15, 11]) we can
prove the equivalence of WHILE T DO SKIP and ABORT in QDL. To do so,
we need to ask if 〈(?>; ?>)∗; ?⊥〉φ↔ 〈?⊥〉φ.

Theorem 3.3.1. In QDL, looping behavior and abnormal termination are equiv-
alent: for any φ

〈(?>; ?>)∗; ?⊥〉φ↔ 〈?⊥〉φ

Proof. We will work out the left part first:

〈(?>; ?>)∗; ?⊥〉φ↔ 〈(?>; ?>)∗〉〈?⊥〉φ

So we have 〈(?>; ?>)∗〉ψ with ψ = 〈?⊥〉φ. Truth of the former in a random
model M and for an initial valuation g is defined as follows:

M |=g 〈(?>; ?>)∗〉ψ iff for some h with gJ(?>; ?>)∗KMh ,M |=h ψ

Furthermore we have

gJ(?>; ?>)∗KMh iff g = h or gJ(?>; ?>); (?>; ?>)∗KMh

We have seen in the previous section how such a formula evaluates; after one
iteration we will have gJ?>; ?>KMf , with f = h, as one of the options the ∗

command gives us. Finally we have

gJ?>; ?>KMh = gJ?>KMh

iff g = h and M |=g >

This is always the case, so indeed there is an h such that gJ(?>; ?>)∗KMh (namely
h = g). Therefore, determining the truth of M |=g 〈(?>; ?>)∗〉ψ comes down
to determining the truth of M |=g ψ, which is M |=g 〈?⊥〉φ.

Since that is exactly the right hand side of the equation we started out with,
we indeed have that

〈(?>; ?>)∗; ?⊥〉φ↔ 〈?⊥〉φ

Not being able to distinguish between looping behavior and abnormal ter-
mination seems undesirable. It is because of this that I have decided to drop
the 〈π〉φ formulas and replace it by the weaker, but less problematic formulas
[v := t]>. Looping behaviour can now no longer be proven to be equivalent
to abnormal termination. Furthermore, we avoid problems with formulas that
require infinite evaluations, such as 〈(?>)∗; ?⊥〉φ.

Because looping behavior and abnormal termination can no longer be proven
equal in DLAf, the relational meaning of DLAf-instructions now is an instance
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of the structural operational semantics we defined for our toy language, with the
valuations as ‘states’. Naturally, this is what we want, since it expresses that
DLAf is a fully defined system that has the behavior we would expect given our
toy language.

This modification also underlines the usefulness of the switch to short-circuit
versions of the logical connectives ( ∨rb and its dual ∧rb ). In QDL, the steering
fragment of the program

IF x := x+ 1 AND x == 2 THEN a ELSE b

can be expressed using ?(〈x := x + 1〉(x = 2)). In DLAf such an expression
now no longer is allowed. However, having ∧rb and ∨rb in DLAf allows us to
provide a perhaps even more natural translation of this program, namely ?([x :=
x+1]> ∧rb x = 2). The full evaluation versions of these logical connectives (∧ and
∨) would not do, because the order of the program instructions is important
here. As we will see in Chapter 4, we do not need ∧rb and ∨rb in DLAf, but
the fact they provide natural translations of this kind, together with the fact
that having logical connectives defined is standard in dynamic logic, is reason
enough to keep them.



4
Terminology

In this chapter I will present the terminology I will be using in the remainder
of this thesis. In particular, I will present a more fine-grained breakdown of
the definitions for formulas, instructions and programs. Furthermore, I will
introduce a property of formulas called normal form and use that to prove yet
another property of DLAf regarding complex steering fragments. Next, I will
introduce a subclass of programs called deterministic programs. Finally, I will
introduce a property of deterministic programs called canonical form.

4.1 Formulas, instructions and programs

In this section I will present the more fine-grained breakdown of the definitions
for formulas, instructions and programs.

Definition 2. Formulas can either be primitive or compound formulas. Prim-
itive formulas are written as ϕ and defined as follows:

ϕ ::= > | Rt1 . . . tn | t1 = t2 | [v := t]>

Compound formulas are written as φ and defined similarly, but with negation
and short-circuit disjunction and conjunction as addition:

φ ::= > | Rt1 . . . tn | t1 = t2 | ¬φ | φ1 ∨
rb
φ2 | φ1 ∧rb φ2 | [v := t]>

Definition 3. Instructions can either be single instructions or basic instruc-
tions. Single instructions are written as ρ and defined as follows:

ρ ::= (v := t) | ?ϕ

Basic instructions are written as $ and have a little less restrictive definition
regarding tests:

$ ::= (v := t) | ?φ

This means that single instructions form a subset of basic instructions:

ρ ⊆ $

23
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Definition 4. Programs are written as π and consist of one or more basic
instructions joined by either concatenation (;), union (∪) or repetition (∗):

π ::= $ | π1;π2 | π1 ∪ π2 | π∗

4.2 Normal forms of formulas

In this section I will introduce a property of formulas called normal form and
use that to prove a property of DLAf regarding complex steering fragments. I
will start with the former.

Definition 5. A formula is said to be in its normal form iff all negations (if
any) that occur in the formula are on atomic level, that is if the negations only
have primitive formulas as their argument (i.e. are of the form ¬ϕ).

Proposition 1. Any formula can be rewritten into its normal form such that
its relational meaning is preserved.

Proof. Left-sequential versions of De Morgan’s laws are valid for formulas (we
come back to this point in Chapter 5): given model M and initial valuation g
we prove that

M |=g ¬(φ1 ∧rb φ2) ⇐⇒ M |=g ¬φ1 ∨
rb ¬φ2

For =⇒, first assume that M |=g φ1, thus M 6|=h φ2 for gJΠ
M
g (φ1)KMh , thus

M |=h ¬φ2, and thus M |=g ¬φ1 ∨
rb ¬φ2. If M 6|=g φ1, then M |=g ¬φ1, and

thus also M |=g ¬φ1 ∨
rb ¬φ2.

In order to show ⇐=, first assume that M |=g ¬φ1, thus M 6|=g φ1 ∧rb φ2,
thus M |=g ¬(φ1 ∧rb φ2). If M |=g φ1, then M |=h ¬φ2 for gJΠ

M
g (¬φ1)KMh , so

M 6|=g φ1 ∧rb φ2, and thus M |=g ¬(φ1 ∧rb φ2).
The dual statement can also easily be proved.

The set of side effects caused by the evaluation of a formula does not change
under rewritings of this kind. Using normal forms, we can derive an interesting
property of DLAf:

Proposition 2. Let φ be a formula. The program ?φ can be rewritten to a form
in which only primitive formulas or negations thereof occur in tests, such that
its relational meaning is preserved.

Proof. Let φn be a normal form of φ and assume φn is not a primitive formula
or the negation thereof. Then, φn either is of the form φ1 ∧rb φ2 or φ1 ∨

rb
φ2. For

conjunctions, it is easy to see that the program ?φ can be rewritten as meant
in the proposition:

?(φ1 ∧rb φ2) = ?φ1; ?φ2

We can assume by induction that φ1 and φ2 has been rewritten into a form in
which only primitive formulas and negations occur, too. We now need to prove
that these programs have the same relational meaning, that is given model M
and initial valuation g

gJ?(φ1 ∧rb φ2)KMh iff gJ?φ1; ?φ2K
M
h
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If M 6|=g φ1, then h does not exist in both cases. If, for gJΠ
M
g (φ1)KMf , M 6|=f φ2,

h does not exist in both cases either. Otherwise, on the left hand side, we get
h by applying DLA11:

gJΠ
M
g (φ1 ∧rb φ2)KMh

which by definition of the program extraction function, since M |=g φ1, equals

gJΠ
M
g (φ1); ΠM

f (φ2)KMh

On the right hand side, we get h by first applying QDL12, then applying DLA11
twice and finally applying QDL12 again:

gJ?φ1; ?φ2K
M
h iff ∃f s.th. gJ?φ1K

M
f and f J?φ2K

M
h

iff ∃f s.th. gJΠ
M
g (φ1)KMf and f JΠ

M
f (φ2)KMh

iff gJΠ
M
g (φ1); ΠM

f (φ2)KMh

For disjunctions, the rewritten version is slightly more complex:

?(φ1 ∨
rb
φ2) = ?φ1 ∪ ?¬φ1; ?φ2

We can prove that given model M and initial valuation g

gJ?(φ1 ∨
rb
φ2)KMh iff gJ?φ1 ∪ ?¬φ1; ?φ2K

M
h

in a similar fashion as above. If M |=g φ1, then in both cases h is obtained by

gJΠ
M
g (φ1)KMh

If M 6|=g φ1, then if for gJΠ
M
g (φ1)KMf , M 6|=f φ2, in both cases h does not exist.

If M |=f φ2, then on the left hand side h is obtained via

gJΠ
M
g (φ1 ∨

rb
φ2)KMh =g JΠM

g (φ1); ΠM
f (φ2)KMh

And on the right hand side, h is obtained by

gJ?¬φ1; ?φ2K
M
h iff ∃fs.th.gJ?¬φ1K

M
f and f J?φ2K

M
h

iff ∃fs.th.gJΠ
M
g (φ1)KMf and f JΠ

M
f (φ2)KMh

iff gJΠ
M
g (φ1); ΠM

f (φ2)KMh

On a side note, a similar result can be obtained for QDL. Here the program
?(φ1 ∨ φ2) can be rewritten to

(?φ1; ?φ2) ∪ (?φ1; ?¬φ2) ∪ (?¬φ1; ?φ2)

The differences between the DLAf version of the same rule are there because
QDL uses full evaluation. Therefore, φ2 has to be evaluated even when φ1 is
true, although φ2 does not have to be true anymore.
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4.3 Deterministic programs and canonical forms

Defining side effects for entire programs can be complicated. This is because two
composition operators, namely union and repetition, can be non-deterministic.
We are, however, not interested in (the side effects of) non-deterministic pro-
grams, even though they can be expressed in DLAf.

1 To be exact, we are only
interested in if . . . then . . . else constructions and while constructions, which in
DLAf are expressed as follows:

IF φ THEN π1 ELSE π2 := (?φ;π1) ∪ (?¬φ;π2)

WHILE φ DO π := (?φ;π)∗; ?¬φ

To formally specify this, we introduce deterministic programs, which cf. [14, 11]
are defined as follows:

Definition 6. A deterministic program dπ is a DLAf-program in one of the
following forms:

dπ ::= $ | dπ1; dπ2 | (?φ; dπ1) ∪ (?¬φ; dπ2) | ((?φ; dπ)∗; ?¬φ)

There are two interesting properties of deterministic programs. The first
is regarding programs of the form (?φ;π)∗; ?¬φ. In this case there will only
ever be exactly one situation in which the program gets evaluated.2 After all,
there is exactly one repetition loop for which the test ?φ succeeds, but will fail
the next time it is evaluated. We can formalize this intuition in the following
proposition:

Proposition 3. Let dπ = (?φ; dπ0)∗; ?¬φ be a deterministic program. Let model
M and initial valuation g be given and let h be the valuation such that gJdπK

M
h .

There is a unique n ∈ N0 such that

gJdπK
M
h iff gJ(?φ; dπ0)n; ?¬φKMh

where (dπ1)0; dπ2 = dπ2 and (dπ1)n+1; dπ2 = dπ1; (dπ1)n; dπ2.

Proof. We first prove that there is at least one n ∈ N0 for which the above
equation holds. Assume such an n does not exist. This means that ?¬φ can
never be evaluated, which is a contradiction with our requirement that there is
a valuation h such that gJdπK

M
h .

Next, we have to prove that there is at most one such n. Let gi be the
valuation such that gJ(?φ; dπ0)iKMgi . By writing this out and then applying
DLA11, we know that for i < n, we have M |=gi ?φ. Therefore, for valuation
gi with i < n we cannot evaluate ?¬φ and thus there is no i < n for which the
above equivalence holds.

We know that for i = n, we have M |=gi ?¬φ. This automatically means
that for i > n, the above equivalence will not hold either, since we cannot satisfy
?φ. Thus, we have exactly one n.

1In fact, as we already mentioned in Chapter 2, we can ask ourselves if it is reasonable to
talk about side effects in non-deterministic programs. We have left this question for future
work.

2That is unless we are dealing with an infinite loop, but in that case the program has no
evaluation and we are not interested in those.



4.3. DETERMINISTIC PROGRAMS AND CANONICAL FORMS 27

The second interesting property of a deterministic program is the following:

Definition 7. A deterministic program dπ is said to be in canonical form if
only concatenations occur as composition operators.

This property is going to be very useful, because we can prove that given an
initial valuation g, any program has a unique canonical form that has the same
behavior:

Proposition 4. Let dπ be a deterministic program. Let model M and initial
valuation g be given and let h be the valuation such that gJdπK

M
h . There is a

unique deterministic program dπ′ in canonical form such that

gJdπK
M
h iff gJdπ

′KMh

and dπ′ executes the same basic instructions and the same number of basic
instructions as dπ.

Proof. If dπ = (?φ; dπ1) ∪ (?¬φ; dπ2), then dπ′ depends on the truth of φ:

dπ′ =

{
?φ; dπ′1 if M |=g φ

?¬φ; dπ′2 o.w.

By induction we can assume that dπ′1 and dπ′2 are the canonical forms of dπ1

and dπ2 (if these are not empty), respectively. The truth of gJdπK
M
h iff gJdπ

′KMh
follows directly from QDL13 in this case.

If dπ = (?φ; dπ1)∗; ?¬φ, we need to use n as meant in Proposition 3:

dπ′ = (?φ; dπ′1)n; ?¬φ

Once again we can assume by induction that dπ′1 is the canonical form of dπ1

(once again if dπ1 is not empty). The truth of gJdπK
M
h iff gJdπ

′KMh now follows
directly from Proposition 3.

It is easy to see that in both these cases, dπ′ executes the same basic instruc-
tions as dπ. It is also easy to see that dπ′ is unique: we cannot add instructions
using union or repetition because then dπ′ will no longer be in canonical form
and we cannot add instructions using concatenation because those instructions
will be executed, which violates the requirement that dπ′ only executes the same
basic instructions as dπ. We cannot alter or remove instructions in dπ′ either
because all instructions in dπ′ get executed, so altering or removing one would
also violate said requirement.
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5
The logic of formulas in DLAf

Now that we have DLAf defined and shown how it works, it is time to examine
the logic of formulas a little closer. As we have mentioned before, we are making
use of short-circuit versions of the ∧ and ∨ connectives, i.e. connectives that
prescribe short-circuit evaluation. In [5], different flavours of short-circuit logics
(logics that can be defined by short-circuit evaluation) are identified. In this
chapter we will give a short overview of these and present the short-circuit logic
that underlies the formulas in DLAf, which turns out to be repetition-proof
short-circuit logic (RPSCL).

5.1 Proposition algebra

Short-circuit logic can be defined using proposition algebra, an algebra that has
short-circuit evaluation as its natural semantics. Proposition algebra is intro-
duced by Bergstra and Ponse in [4] and makes use of Hoare’s ternary connective
x / y . z, which is called the conditional [16]. A more common expression for
this conditional is if y then x else z, with x, y and z ranging of propositional
statements (including propositional variables). Throughout this thesis, we will
use atom as a shorthand for propositional variable.

Using a signature which includes this conditional, ΣCP = {>,⊥, / . }, the
following set CP of axioms for proposition algebra can be defined:

x /> . y = x (CP1)

x /⊥ . y = y (CP2)

> / x .⊥ = x (CP3)

x / (y / z . u) . v = (x / y . v) / z . (x / u . v) (CP4)

In the earlier mentioned paper [4], varieties of so-called valuation algebras are
defined that serve the interpretation of a logic over ΣCP by means of short-circuit
evaluation. The evaluation of the conditional t1 / t2 . t3 is then as follows: first
t2 gets evaluated. That yields either T , in which case the final evaluation result
is determined by the evaluation of t1, or F , in which case the same goes for t3.

All varieties mentioned in [4] satisfy the above four axioms. The most dis-
tinguishing variety is called the variety of free reactive valuations and is ax-

29
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iomatized by exactly the four axioms above (further referred to as conditional
propositions (CP)) and nothing more. The associated valuation congruence is
called free valuation congruence and written as =fr. Thus, for each pair of
closed terms1 t, t′ over ΣCP, we have

CP ` t = t′ ⇐⇒ t =fr t
′

Using the conditional, we can define negation (¬), left-sequential conjunction
( ∧rb ) and left-sequential disjunction ( ∨rb ) as follows:

¬x = ⊥ / x .>
x ∧rb y = y / x .⊥
x ∨rb y = > / x . y

The above defined connectives are associative and each other’s dual. In CP,
it is not possible to express the conditional x / y . z using any set of Boolean
connectives, such as ∧rb and ∨rb [4].

By adding axioms to CP, it can be strengthened. The signature and axioms
of one such extension are called memorizing CP. We write CPmem for this
extension that is obtained by adding the axiom CPmem to CP. This axiom
expresses that the first evaluation value of y is memorized:

x / y . (z / u . (v / y . w)) = x / y . (z / u . w) (CPmem)

With u = ⊥ and by replacing y by ¬y we get the contraction law:

(w / y . v) / y . x = w / y . x

A consequence of contraction is the idempotence of ∧rb . Furthermore, CPmem is
the least identifying extension of CP for which the conditional can be expressed
using negation, conjunction and disjunction. To be exact, the following holds
in CPmem:

x / y . z = (y ∧rb x) ∨rb (¬y ∧rb z)
We write =mem (memorizing valuation congruence) for the valuation congruence
axiomatized by CPmem.

Another extension of CP, the most identifying one distinguised in [4], is de-
fined by adding both the contraction law and the axiom below, which expresses
how the order of u and y can be swapped, to CP:

(x / y . z) / u . v = (x / u . v) / y . (z / u . v) (CPstat)

The signature and axioms of this extension, for which we write CPstat, are
called static CP. We write =stat (static valuation congruence) for the valuation
congruence axiomatized by CPstat. A consequence in CPstat is v = v / y . v,
which can be used to derive the commutativity of ∧rb : x ∧rb y = y ∧rb x.

CPstat is the most identifying extension of CP because it is ‘equivalent with’
propositional logic, that is, all tautologies in propositional logic can be proved
in CPstat using the above translations of its common connectives [5].

1Terms that may contain atoms, but not variables.
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5.2 Short-Circuit Logics

In this section we will present the definition of short-circuit logic and its most
basic form, free short-circuit logic (FSCL). The definitions are given using mod-
ule algebra [2]. In module algebra, S � X is the operation that exports the
signature S from module X while declaring other signature elements hidden.
Using this operation, short-circuit logics are defined as follows:

Definition 8. A short-circuit logic is a logic that implies the consequences
of the module expression

SCL = {>,¬, ∧rb } � (CP

+ (¬x = ⊥ / x .>)

+ (x ∧rb y = y / x .⊥))

Thus, the conditional composition is declared to be an auxiliary operator.
In SCL, ⊥ can be used as a shorthand for ¬>. After all, we have that

CP + (¬x = ⊥ / x .>) ` ⊥ = ¬>

With this definition, we can immediately define the most basic short-circuit
logic we distinguish:

Definition 9. FSCL (free short-circuit logic) is the short-circuit logic that
implies no other consequences than those of the module expression SCL.

Using these definitions we can provide equations that are derivable from
FSCL. The question whether a finite axiomatization of FSCL with only sequen-
tial conjunction, negation and > exists, is open, but the following set EqFSCL
of equations for FSCL is proposed in [5]:2

⊥ = ¬> (SCL1)

x ∨rb y = ¬(¬x ∧rb ¬y) (SCL2)

¬¬x = x (SCL3)

> ∧rb x = x (SCL4)

x ∧rb > = x (SCL5)

⊥ ∧rb x = ⊥ (SCL6)

(x ∧rb y) ∧rb z = x ∧rb (y ∧rb z) (SCL7)

(x ∨rb y) ∧rb (z ∧rb ⊥) = (¬x ∨rb (z ∧rb ⊥)) ∧rb (y ∧rb (z ∧rb ⊥)) (SCL8)

(x ∨rb y) ∧rb (z ∨rb >) = (x ∧rb (z ∨rb >)) ∨rb (y ∧rb (z ∨rb >)) (SCL9)

((x ∧rb ⊥) ∨rb y) ∧rb z = (x ∧rb ⊥) ∨rb (y ∧rb z) (SCL10)

Note that equations SCL2 and SCL3 imply a left-sequential version of De Mor-
gan’s laws.

An important equation that is absent is the following:

x ∧rb ⊥ = ⊥
2In [5] it is stated that the authors did not find any equations derivable from FSCL but

not from EqFSCL.
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This is what we would expect, since evaluation of t ∧rb ⊥ (with t a closed term)
can generate a side effect that is absent in the evaluation of ⊥, although we
know that evaluation of t ∧rb ⊥ always yields F .

We now have the most basic short-circuit logic and some of its equations
defined, but of course there also is a “most liberal” short-circuit logic below
propositional logic. This logic is based on memorizing CP and satisfies idempo-
tence of ∧rb (and ∨rb ), but not its commutativity. It is defined as follows:

Definition 10. MSCL (memorizing short-circuit logic) is the short-circuit
logic that implies no other consequences than those of the module expression

{>,¬, ∧rb } � (CPmem

+ (¬x = ⊥ / x .>)

+ (x ∧rb y = y / x .⊥))

For the set of axioms EqMSCL, intuitions and an example, and a complete-
ness proof of MSCL we refer the reader to [5]. Adding the axiom x ∧rb ⊥ = ⊥
to MSCL, or equivalently, the axiom ⊥ / x .⊥ = ⊥ to CPmem, yields so-called
static short-circuit logic (SSCL), which is equivalent with propositional logic
(be it in sequential notation and defined by short-circuit evaluation).

Definition 11. SSCL (static short-circuit logic) is the short-circuit logic
that implies no other consequences than those of the module expression

{>,¬, ∧rb } � (CPmem

+ (⊥ / x .⊥ = ⊥)

+ (¬x = ⊥ / x .>)

+ (x ∧rb y = y / x .⊥))

5.3 Repetition-Proof Short-Circuit Logic

With both the most basic as well as the most liberal short-circuit logic we
distinguish defined, we can present the variant of short-circuit logic that we are
interested in because it underlies the logic of formulas in DLAf: repetition-proof
short-circuit logic (RPSCL). This SCL-variant stems from an axiomatization of
proposition algebra called repetition-proof CP (CPrp) that is in between CP
and CPmem and involves explicit reference to a set A of atoms (propositional
variables).

The axiom system CPrp is defined as the extension of CP with the following
two axiom schemes (for a ∈ A), which imply that any subsequent evaluation
result of an atom a equals the current one:

(x / a . y) / a . z = (x / a . x) / a . z (CPrp1)

x / a . (y / a . z) = x / a . (z / a . z) (CPrp2)

We write Eqrp(A) to denote the set of these axioms schemes in the format of
module algebra. In CPrp the conditional cannot be expressed in terms of ∧rb , ¬
and >: in [4] it is shown that the propositional statement a / b . c (for atoms
a, b, c ∈ A) cannot be expressed modulo repetition-proof valuation congruence,
that is, the valuation congruence axiomatized by CPrp. The definition of RPSCL
then becomes:
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Definition 12. RPSCL (repetition-proof short-circuit logic) is the short-
circuit logic that implies no other consequences than those of the module expres-
sion

{>,¬, ∧rb , a | a ∈ A} � (CP + Eqrp(A)

+ (¬x = ⊥ / x .>)

+ (x ∧rb y = y / x .⊥))

The equations defined by RPSCL include those that are defined by EqFSCL
as well as for a ∈ A:

a ∧rb (a ∨rb x) = a ∧rb (a ∨rb y) (RP1)

a ∨rb (a ∧rb x) = a ∨rb (a ∧rb y) (RP2)

(a ∨rb ¬a) ∧rb x = (¬a ∧rb a) ∨rb x (RP3)

(¬a ∨rb a) ∧rb x = (a ∧rb ¬a) ∨rb x (RP4)

(a ∧rb ¬a) ∧rb x = a ∧rb ¬a (RP5)

(¬a ∧rb a) ∧rb x = ¬a ∧rb a (RP6)

(x ∨rb y) ∧rb (a ∧rb ¬a) = (¬x ∨rb (a ∧rb ¬a)) ∧rb (y ∧rb (a ∧rb ¬a)) (RP7)

(x ∨rb y) ∧rb (¬a ∧rb a) = (¬x ∨rb (¬a ∧rb a)) ∧rb (y ∧rb (¬a ∧rb a)) (RP8)

(x ∨rb y) ∧rb (a ∨rb ¬a) = (x ∧rb (a ∨rb ¬a)) ∨rb (y ∧rb (a ∨rb ¬a)) (RP9)

(x ∨rb y) ∧rb (¬a ∨rb a) = (x ∧rb (¬a ∨rb a)) ∨rb (y ∧rb (¬a ∨rb a)) (RP10)

((a ∧rb ¬a) ∨rb y) ∧rb z = (a ∧rb ¬a) ∨rb (y ∧rb z) (RP11)

((¬a ∧rb a) ∨rb y) ∧rb z = (¬a ∧rb a) ∨rb (y ∧rb z) (RP12)

It is an open question whether the equations SCL1-SCL10 and the equation
schemes RP1-RP12 axiomatize RPSCL, but it will be shown below that RPSCL
is the logic that models equivalence of formulas in DLAf, where

A = {Rt1 . . . tn, t1 = t2, [v := t]>}

For this reason, we add the conditional φ1 /φ2 .φ3 and the constant ⊥ to DLAf

(thus making ∨rb and ¬ definable). In order to decide whether different DLAf

formulas are equivalent, just translate these to CPrp and decide their equivalence
(either by axiomatic reasoning or by checking their repetition-proof valuation
congruence). So, we extend the formulas in DLAf in order to characterize the
logic that models their equivalence. In this extension of DLAf, which we baptize
DLCAf (for Dynamic Logic with the Conditional and Assignments as Formulas),
truth in M relative an initial valuation g for the conditional is defined as follows:

M |=g (φ2 / φ1 . φ3) iff for gJΠ
M
g (φ1)KMh ,

{
M |=h φ2 if M |=g φ1

M |=h φ3 o.w.
(DLCA)

This means that we need an extra equation for the program extraction function
Π too which handles the conditional. For model M , initial valuation g and

gJφ1K
M
h

ΠM
g (φ2 / φ1 . φ3) =

{
ΠM

g (φ1); ΠM
h (φ2) if M |=g φ1

ΠM
g (φ1); ΠM

h (φ3) o.w.
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In the remainder of this section we consider formulas over this signature, thus
formulas over A composed with / . . Below we will prove for all mentioned
axioms that they are valid in DLCAf.

Proposition 5. Let M be a model for DLCAf. The axiom CP1, that is

x /> . y = x (CP1)

is valid in M .

Proof. Let t1, t2 be arbitrary formulas and let g be an initial valuation. Regard-
less of g, we have M |=g > (by QDL3), so by DLCA, we get M |=g (t1 /> . t2)
iff for gJ?>KMh , M |=h t1. Since g = h, we indeed have that M |=g (t1 /> . t2)
iff M |=g t1.

Proposition 6. Let M be a model for DLCAf. The axiom CP2, that is

x /⊥ . y = y (CP2)

is valid in M .

Proof. Let t1, t2 be arbitrary formulas and let g be an initial valuation. ⊥ is a
shorthand for ¬>, so we first need QDL6, which states that M |=g ¬> iff not
M |=g >, which is never the case. So for any initial valuation g, M |=g ⊥ is
false. Thus by DLCA, we get M |=g (t1 /⊥. t2) iff for gJ?>KMh , M |=h t1. Since
g = h, we indeed have that M |=g (t1 /⊥ . t2) iff M |=g t2.

Proposition 7. Let M be a model for DLCAf. The axiom CP3, that is

> / x .⊥ = x (CP3)

is valid in M .

Proof. Let t be an arbitrary formula and let g be an initial valuation. If M |=g t
then by DLCA we get for gJΠ

M
g (t)KMh , M |=h >, which also is true. If M 6|=g t

then by DLCA we obtain M |=h ⊥ (note that also in this case, h is defined),
which also is false. Thus M |=g t iff M |=g > / t .⊥ and hence the axiom CP3
is valid.

Proposition 8. Let M be a model for DLCAf. The axiom CP4, that is

x / (y / z . v) . u = (x / y . u) / z . (x / v . u) (CP4)

is valid in M .

Proof. Let t1, t2, t3, t4, t5 be arbitrary formulas and let g be an initial valuation.
We are going to have to show that

M |=g t1 / (t2 / t3 . t4) . t5 iff M |=g (t1 / t2 . t5) / t3 . (t1 / t4 . t5)

We have to apply DLCA multiple times here. By applying it to the left hand
side we get for gJΠ

M
g (t2 / t3 . t4)KMf

M |=g t1 / (t2 / t3 . t4) . t5 iff

{
M |=f t1 if M |=g (t2 / t3 . t4)

M |=f t5 o.w.
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By applying DLCA again to M |=g (t2 / t3 . t4) we get for gJΠ
M
g (t3)KMf ′

M |=g (t2 / t3 . t4) iff

{
M |=f ′ t2 if M |=g t3

M |=f ′ t4 o.w.

So if M |=g t3 and M |=f ′ t2, we get M |=f t1. If on the other hand M 6|=g t3
but M |=f ′ t4, we also get M |=f t1. In all other situations we get M |=f t5.

Let us now consider the right hand side of the equation. Here we get for

gJΠ
M
g (t3)KMh′ :

M |=g (t1 / t2 . t5) / t3 . (t1 / t4 . t5) iff

{
M |=h′ (t1 / t2 . t5) if M |=g t3

M |=h′ (t1 / t4 . t5) o.w.

Let us first turn our attention to the situation where M |=g t3. We need to
apply DLCA again and get for h′JΠM

h′ (t2)KMh

M |=h′ (t1 / t2 . t5) iff

{
M |=h t1 if M |=h′ t2

M |=h t5 o.w.

In the situation where M 6|=g t3, we get for h′JΠM
h′ (t4)KMh′′

M |=h′ (t1 / t4 . t5) iff

{
M |=h′′ t1 if M |=h′ t4

M |=h′′ t5 o.w.

So on the right hand side, if M |=g t3 and M |=h′ t2, we get M |=h t1. If
M 6|=g t3 but M |=h′ t4, we also get M |=h′′ t1. In the other situations we get
either M |=h t5 or M |=h′′ t5.

To prove that is the same result as on the left-hand side, we need to prove
that f ′ = h′, f = h if M 6|=g t3, and f = h′′ if M |=g t3. The last two statements
seem contradictory, but as we will see f can actually take two different valuations
depending on the truth of t3. The mentioned variations are all determined using
the program extraction function. To recap, we have the following:

gJΠ
M
g (t2 / t3 . t4)KMf

gJΠ
M
g (t3)KMf ′

gJΠ
M
g (t3)KMh′

h′JΠM
h′ (t2)KMh

h′JΠM
h′ (t4)KMh′′

We can immediately see that f ′ = h′. Using the updated definition for the
program extraction function we get that

gJΠ
M
g (t2 / t3 . t4)KMf iff

{
gJΠ

M
g (t3); ΠM

h′ (t2)KMf if M |=g t3

gJΠ
M
g (t3); ΠM

h′ (t4)KMf o.w.

Using the new rule for the conditional, we get that:

gJΠ
M
g (t3); ΠM

h′ (t2)KMf if M |=g t3

gJΠ
M
g (t3); ΠM

h′ (t4)KMf if M 6|=g t3
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To determine if f = h, we need to have M |=g t3 and we need to evaluate:

gJΠ
M
g (t3)KMh′ and h′JΠM

h′ (t2)KMh

By QDL12, we know that is equivalent to

gJΠ
M
g (t3); ΠM

h′ (t2)KMh

So indeed we have that if M |=g t3, then f = h. Using the same argument, we
get that if M 6|=g t3, then

gJΠ
M
g (t3); ΠM

h′ (t4)KMh′′

Therefore, if M 6|=g t3 then f = h′′.

With those four axioms proven, we already know for a fact that the logic of
formulas in DLAf indeed is a short-circuit logic. To prove that it is a repetition-
free short-circuit logic, we need to prove the axiom schemes CPrp1 and CPrp2,
too. Those axiom schemes make use of atoms a ∈ A.

Proposition 9. Let M be a model for DLCAf. The axiom CPrp1, that is

(x / a . y) / a . z = (x / a . x) / a . z (CPrp1)

is valid in M .

Proof. Let t1, t2, t3 be arbitrary formulas and g an initial valuation. M |=g a
can either be true or false. If it is false, both the left hand side and the right
hand side, by DLCA, are determined for gJΠ

M
g (a)KMh by M |=h t3. If it is true,

the question if M |=h a is asked. We have to prove that for every atom a ∈ A,
the reply to this will be the same as the reply to M |=g a (namely, true), that
is:

M |=h a iff M |=g a

Recall that a can be of the forms {Rt′1 . . . t′n, t′1 = t′2, [v := t′]>}. For the first
two atoms we can immediately see our claim is true, since ΠM

g (a) = ?> and
therefore g = h. For [v := t′]> the claim immediately follows from DLA9: it is,
regardless of the valuation, always true.

Proposition 10. Let M be a model for DLCAf. The axiom CPrp2, that is

x / a . (y / a . z) = x / a . (z / a . z) (CPrp2)

is valid in M .

Proof. This is the symmetric variant of CPrp1 and proven similarly.

By proving the validity of these axiom schemes in DLCAf we have proven
that the equations SCL1-SCL10 together with RP1-RP12 are axioms for for-
mulas in DLCAf. CPrp indeed is the most identifying extension of CP which is
valid for formulas. After all, the first more identifying extension we distinguish
is CPcon (contractive CP) [5], from which amongst others the following weak
contraction rule can be derived: for a ∈ A

a ∧rb a = a

Clearly this is not valid for DLAf-formulas such as [x := x+ 1]>.



6
A treatment of side effects

6.1 Introduction

Now that we have defined a system to model program instructions and program
states, we can return to our original problem: that of formally defining side
effects. Like I said in Section 2.1, the basic idea is that a side effect has oc-
curred in the execution of a program if there is a difference between the actual
evaluation and the expected evaluation of a program given an initial valuation.

We can immediately see however, that we cannot build a definition of side
effects based on the actual and expected evaluation of an entire program. Such
a definition will get into trouble when there are multiple side effects, especially
if those cancel each other out or reinforce each other. Consider for example the
following program:

π = ?([x := x+ 1]>); ?([x := x+ 1]>)

If we are only going to look at the entire program, we will detect one side effect
here, that has incremented the value of x by two. However, it appears to be
more acceptable to say that two side effects have occurred, that happen to affect
the same value.

It gets even more interesting if there is a formula in between the two clauses
above and the clauses themself cancel each other out:

π = ?([x := x+ 1]> ∧rb φ ∧rb [x := x −· 1]>)

If we again only look at the entire program, we will detect no side effects (unless
side effects occur in φ). However, because φ might use or modify x as well, it
seems we will have to pay attention to the side effect of the first clause, even
though it will be cancelled out on by the last clause.

So instead of building a definition of side effects by looking only at the
actual and expected evaluation of an entire program, we are going to build it
up starting at the instruction level.

37
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6.2 Side effects in single instructions

As said, we are going to use a bottom-up approach to define side effects, so
we will first define side effects for single instructions, then move up to basic
instructions and end with a full definition of side effects for programs.

The idea is that the side effect of a single instruction is the difference between
the actual and expected evaluation of a single instruction. This difference is
essentially the difference between the resulting valuations after, respectively,
the actual and expected evaluation of the single instruction. The difference
between two valuations is defined as follows:

Definition 13. Given a model M , the difference between valuations g and h
is defined as those variables that have a different assignment in g and h:

(x 7→ k′) ∈ δM (g, h) iff g(x) = k, h(x) = k′ and M 6|= k = k′

This notion of difference is not symmetric.
We already know what the actual evaluation of a single instruction is: for

this we can use DLAf. This leaves us to define the expected evaluation. For
this we need to know for each single instruction how we expect it to evaluate,
that is, what changes we expect it to make to the initial valuation. We have the
following expectations of each single instruction:

• Assignments change the initial valuation by updating the variable as-
signment of the variable under consideration to the (interpretation of the)
new variable assignment.

• Tests do not change the initial valuation: they only yield T or F and
steer the rest of the program accordingly.

We need the following equations for determining the expected evaluation E
of a single instruction:

M |=Eg > always (EV1)

M |=Eg Rt1 . . . tn iff (Jt1K
M
g , . . . , JtnK

M
g ) ∈ RM (EV2)

M |=Eg t1 = t2 iff Jt1K
M
g is the same as Jt2K

M
g (EV3)

M |=Eg [v := t]> always (EV4)

gJv := tKM,E
h iff h = g[v 7→ JtKMg ] (EV5)

gJ?ϕK
M,E
h iff g = h and M |=Eg ϕ (EV6)

Now that we have the actual and the expected evaluation of a single instruc-
tion, we can define its side effects. As said, this is going to be the difference
between the two resulting valuations.

Definition 14. Let ρ be a single instruction. Let model M be given and let g
be an initial valuation. Furthermore, let h be a valuation such that gJρKh and let
h′ be a valuation such that gJρK

E
h′ . The set of side effects of single instruction ρ

given model M and initial valuation g is defined as

SMg (ρ) = δM (h′, h)
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It is important to note that the valuations h and h′ as meant in the above
definition may not exist. We are not interested in those situations, however. If
h and h′ do exist, they are unique. Also note that δM (h′, h) returns the variable
assignment of valuation h if there is a difference with the variable assignment
of valuation h′. Thus, the set of side effects is defined as a set containing
those variables that have a different assignment after the actual and expected
valuation, with as assignments the ones the variables actually get (that is, the
assignments they will have after evaluating the single instruction with the actual
evaluation).

We will illustrate this with two examples. First, consider the single instruc-
tion ρ = (x := 1), evaluated under model M in initial valuation g with g(x) = 0.
We want to know if this causes a side effect, so we need to know the actual eval-
uation and the expected evaluation. To calculate the actual evaluation, we need
to know if gJx := 1KMh and if yes, for which valuation h. The equations for DLAf

immediately give us the answer, in this case via QDL10: h = g[x 7→ J1KMg ]. So
we get h(x) = 1.

Getting the expected evaluation works in a similar fashion, but instead of
DLAf we now use the equations above to evaluate ρ. Since the equation for
evaluating an assignment (EV5) is the same as QDL10, we now get the exact
same expected evaluation as the actual evaluation. Thus we get h′ = g[x 7→
J1KMg ] and therefore h′(x) = 1. We can immediately see that this results in the
set of side effects being empty:

SMg (x := 1) = δM (h′, h) = ∅

This is of course what we would expect: an assignment should not have a side
effect if it does not occur in a steering fragment. Let us now consider an example
where we do expect a side effect: namely if an assignment does occur in a steering
fragment: ρ = ?([x := 1]>). We use the same initial valuation g. First we try to
find the actual evaluation again, which we do by evaluating gJ?([x := 1]>)KMh .
We now need DLA11, which tells us that (in this case) gJ?([x := 1]>)KMh iff
M |=g ([x := 1]>) and gJΠ

M
g ([x := 1]>)KMh = gJx := 1KMh . Both evaluate to

true, the latter with h = g[x 7→ 1].
The expected update once again takes us to the equations above; we need

to determine h′ such that gJ?([x := 1]>)KM,E
h′ . For tests, the demands are fairly

simple: g = h′ and M |=Eg [x := 1]> (see EV6). The latter is by EV4 defined to
be always true. As a result, we get h′(x) = g(x) = 0. Thus we get the following
set of side effects:

SMg (?[x := 1]>) = δM (h′, h)

= {x 7→ 1}

Again, this is exactly what we want: since we expect formulas to only yield true
or false, the change this formula makes to the program state upon evaluation is
a side effect.

6.3 Side effects in basic instructions

With side effects for single instructions defined, we can move up a step to side
effects in basic instructions. The difference between single and basic instructions
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is that in basic instructions, complex steering fragments are allowed. This means
that we are going to have to define how side effects are handled in tests that
contain a disjunction (∨rb ), conjunction (∧rb ) or negation (¬). The idea is that the
set of side effects of the whole formula is the union of the sets of side effects of
its primitive parts. However, we also have to pay attention to the short-circuit
character of ∨rb . Only the primitive formulas that get evaluated can contribute
to the set of side effects.

With this in mind, we can give the definition for side effects in (possibly)
complex steering fragments. Like before, we are only interested in the side
effects if the test actually succeeds. We need to define this for disjunctions,
conjuctions and negations:

Definition 15. Let φ = φ1 ∨
rb
φ2 be a disjunction. Let model M and initial

valuation g be given, with M |=g φ and where φ is in its normal form. Further-
more, let f be the valuation after evaluation of formula φ1, that is, gJ?φ1K

M
f .

The set of side effects SMg (?φ) is defined as:

SMg (?φ) =

{
SMg (?φ1) if M |=g φ1

SMg (?φ1) ∪ SMf (?φ2) o.w.

The case distinction is in place because of the short-circuit character of ∨rb .
For the definition of its dual ∧rb we do not need this case distinction, because since
we are again only interested in the side effects if the (entire) formula succeeds,
all the formulas in the conjunction have to yield true. Therefore, the definition
for conjunction is a bit easier:

Definition 16. Let φ = φ1 ∧rb φ2 be a conjunction. Let model M and initial
valuation g be given, with M |=g φ and where φ is in its normal form. Further-
more, let f be the valuation after evaluation of primitive formula φ1, that is,

gJ?φ1K
M
f . The set of side effects SMg (?φ) is defined as:

SMg (?φ) = SMg (?φ1) ∪ SMf (?φ2)

The recursive definitions for disjunction and conjunction work because even-
tually, a primitive formula will be encountered, for which the side effects are
already defined. Unfortunately, we cannot use a similar construction for nega-
tion. This is because the side effects in a primitive formula are only defined if
that formula yields true upon evaluation, so we cannot simply treat negation as
a transparent operator (that is, it is typically not true that SMg (¬φ) = SMg (φ)).
So we will have to define negation the hard way instead. Because we are using
formulas in normal form in the other definitions, we only have to define negation
for primitive formulas:

Definition 17. Let ¬ϕ be a negation. Let model M be given and let g be an
initial valuation. Furthermore, let h be a valuation such that gJ?¬ϕKh and let
h′ be a valuation such that gJ?¬ϕKEh′ . The set of side effects of basic instruction
?¬ϕ given model M and initial valuation g is defined as

SMg (?¬ϕ) = δM (h′, h)

Now that we have a definition for side effects in (complex) steering fragments,
the extension of our definition of side effects in single instructions to side effects
in basic instructions is trivial:



6.4. SIDE EFFECTS IN PROGRAMS 41

Definition 18. Let $ be a basic instruction. Let model M and initial valuation
g be given and let h be a valuation such that gJ$KMh . The set of side effects
SMg ($) is defined as:

SMg ($) =

{
SMg (ρ) if $ = ρ

SMg (?φ) if $ = ?φ′ and φ is the normal form of φ′

We can illustrate this with a simple, yet interesting example. Consider the
following basic instruction: $ =?([x := x + 1]> ∧rb [x := x −· 1]>) with initial
valuation g such that g(x) = 1. In this situation we have two side effects
that happen to cancel each other out. The resulting valuation after the actual
evaluation of this basic instruction will be the same as the initial valuation g.

First we observe that the formula in this basic instruction is in its normal
form, a trivial observation since no negations occur in it. There are two primitive
formulas in this conjunction, so the set of side effects is:

SMg (?([x := x+ 1]> ∧rb [x := x −· 1]>)) = SMg (?([x := x+ 1]>)) ∪
SMg1 (?([x := x −· 1]>))

Here g1 is determined by gJ?([x := x + 1]>)KMg1 , so we get g1(x) = 2. We have
already seen in the previous section how the parts of the union above evaluate,
so we get:

SMg (?([x := x+ 1]> ∧rb [x := x −· 1]>)) = {x 7→ 2} ∪ {x 7→ 1}
= {x 7→ 2, x 7→ 1}

So with this definition we have avoided the trap of not detecting any side effects
when there are two side effects that cancel each other out. Instead we have two
side effects here, the last of which happens to restore the valuation of x to its
original one.

6.4 Side effects in programs

If we are going to extend our definition to that of side effects in programs, we are
going to have to define how concatenation, union and repetition are handled.

Defining side effects for entire programs is more complicated than defining
side effects for single and basic instructions. This is because two composition
operators, namely union and repetition, can be non-deterministic. As we have
mentioned before, however, we are only interested in (the side effects of) deter-
ministic programs. This leaves us to define how side effects are calculated for
the composition operators of deterministic programs. For concatenation, this is
trivial. We once again require that the entire program can be evaluated with
the given initial valuation. The set of side effects of a program then is the union
of the side effects in its basic instructions that are executed given some initial
valuation:

Definition 19. Let dπ = dπ1; dπ2 be a deterministic program. Let model M
and initial valuation g be given and let h be the valuation such that gJdπK

M
h .
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Furthermore, let f be the valuation such that gJdπ1K
M
f . The set of side effects

SMg (dπ) is defined by:

SMg (dπ) = SMg (dπ1) ∪ SMf (dπ2)

This works in a similar fashion as the definition of side effects in complex
steering fragments. We can return now to our example given in the Introduction
of this chapter: dπ = ?([x := x + 1]>); ?([x := x + 1]>). The above definition
indeed avoids the trap presented there, namely that this program only yields a
single side effect. To see this, consider initial valuation g such that g(x) = 0.
We will then get gJ?([x := x+ 1]>)KMf and therefore f(x) = 1, so the set of side
effects becomes:

SMg (dπ) = SMg (?([x := x+ 1]>)) ∪ SMf (?([x := x+ 1]>))

= {x 7→ 1} ∪ {x 7→ 2}
= {x 7→ 1, x 7→ 2}

Similarly, side effects that cancel each other out, such as in dπ = ?([x := x +
1]>); ?([x := x −· 1]>) will now perfectly be detected, resulting for the same
initial valuation g in a set of side effects SMg (dπ) = {x 7→ 1, x 7→ 0}.

Another interesting observation is that the transformation as defined in
Proposition 2, which eliminates occurences of ∧rb and ∨rb in steering fragments,
not only preserves the relational meaning, but also the side effects of such a
steering fragment. The programs ?([x := x + 1]> ∧rb [x := x −· 1]>) and its
transformed version ?([x := x+1]>); ?([x := x−· 1]>) are an illustration of this:
we can easily see that both have the same set of side effects.

With concatenation defined, we can move on to the next composition op-
erators: union and repetition. For this we can use the property that given an
initial valuation, every (terminating) deterministic program has a unique canon-
ical form that executes the same basic instructions (see Proposition 4 in Chapter
4). This makes the definition of side effects for programs containing a union or
repetition straight-forward:

Definition 20. Let dπ be a deterministic program. Let model M and initial
valuation g be given and let h be the valuation such that gJdπK

M
h . Furthermore,

let dπ′ be the deterministic program in canonical form as meant in Proposition
4. The set of side effects SMg (dπ) is defined by:

SMg (dπ) = SMg (dπ′)

We can illustrate how this works by returning to our running example, dis-
cussed in detail in Section 3.2:

x := 1;

IF (x := x+ 1 ∧rb x = 2)

THEN y := 1

ELSE y := 2
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In DLAf, this translates to the following deterministic program dπ:

x := 1;

(?([x := x+ 1]> ∧rb x = 2); y := 1)

∪
(?¬([x := x+ 1]> ∧rb x = 2); y := 2)

We have already seen that for g(x) = g(y) = 0, there is a valuation h such that

gJdπK
M
h (namely h = g[x 7→ 2, y 7→ 1]). We can break this program down as

follows:

dπ ::= ρ1; dπ1

ρ1 ::= (x := 1)

dπ1 ::= (?φ0; ρ2) ∪ (?¬φ0; ρ3)

ρ2 ::= (y := 1)

ρ3 ::= (y := 2)

φ0 ::= ϕ1 ∧rb ϕ2

ϕ1 ::= [x := x+ 1]>
ϕ2 ::= (x = 2)

We want to know the set of side effects in this program. This is determined as
follows:

SMg (dπ) = SMg (ρ1; dπ1)

= SMg (ρ1) ∪ SMf (dπ1)

where we get f by evaluating gJx := 1KMf . Thus, f = g[x 7→ 1]. We can easily

see that the first set of side effects SMg (ρ1) = ∅. The interesting part is the
second set of side effects, since we now have a deterministic program of the
form dπ1 = (?φ; dπ2) ∪ (?¬φ; dπ3). Here φ = φ0, dπ2 = ρ2 and dπ3 = ρ3.

We now have to ask ourselves what the canonical form of dπ1 given valuation
f is. This is determined by the outcome of the test

?([x := x+ 1]> ∧rb x = 2)

It is easy to see that this yields true. Thus, the canonical form dπ′ of dπ1 is

dπ′ = ?φ0; ρ2

Therefore according to our definition, for f J?φ0K
M
h :

SMf (dπ1) = SMf (dπ′)

= SMf (?φ0; ρ2)

= SMf (?φ0) ∪ SMh (ρ2)

We can once again immediately see that the second set of side effects SMh (ρ2) =
∅. The first set of side effects is determined in a similar fashion as in the example
in the previous section. In the end, it gives us:

SMf (?φ1) = SMf (?([x := x+ 1]> ∧rb (x = 2)))

= SMf (?([x := x+ 1]>) ∪ SMf ′ (?(x = 2)))
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So we again get a union of two sets of side effects, where we get f ′ by evaluating

f J[x := x + 1]>KMf ′ . Thus, f ′ = f [x 7→ 2]. It should be clear by now that the
first set of side effects contains one side effect, namely {x 7→ 2}, whereas the
latter does not contain any side effects. This gives us as final set of side effects:

SMg (dπ) = SMg (ρ1) ∪ ((SMf (?([x := x+ 1]>) ∪ SMf ′ (?(x = 2)))) ∪ SMh (ρ2))

= ∅ ∪ (({x 7→ 2} ∪ ∅) ∪ ∅)
= {x 7→ 2}

This is exactly the side effect we have come to expect from our running example.

We can now move on to an example of side effects in programs containing a
repetition. Recall that repetition is defined as follows:

gJπ
∗KMh iff g = h or gJπ;π∗KMh (QDL14)

So, π either gets executed not at all or at least once. The form of programs we
are interested in is

dπ = (?φ;π)∗; ?¬φ

In this case there will only ever be exactly one situation in which the program
gets evaluated (see Proposition 3 in Chapter 4). Our definition of canonical
forms tells us that given an initial valuation g and n as meant in Proposition 3,
the canonical form dπ′ of dπ is

dπ′ = (πr)n; ?¬φ

Using this we get the following set of side effects of a deterministic program of
the above form:

SMg (dπ) = SMg ((πr)n; ?¬φ)

As an example of this, we can return to a slightly modified version of the example
we gave in Section 3.3.2.

x := 0;

y := 0;

WHILE (x := x+ 1 ∧rb x ≤ 3)

DO y := y + 1

In DLAf, this translates to the following deterministic program dπ given model
M and initial valuation g such that g(x) = g(y) = 0:

dπ = (?([x := x+ 1]> ∧rb (x ≤ 3)); y := y + 1)∗; ?¬([x := x+ 1]> ∧rb (x ≤ 3))

Clearly this is a deterministic program in the form we are interested in and there
is a valuation h such that gJdπK

M
h . In this case we have πr = ?φ; y := y+ 1 with

φ = [x := x + 1]> ∧rb (x ≤ 3). To get the canonical form dπ′ of dπ, we need to
find the iteration n for which ?φ will succeed, but for which the test will not
succeed another time. This will be for n = 3. After all, after three iterations we
will have valuation g3 = g[x 7→ 3, y 7→ 3]. With this valuation, the test ?([x :=
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x+1]> ∧rb (x ≤ 3)) will fail, or to put it formally: M 6|=g3 [x := x+1]> ∧rb (x ≤ 3).
This means that we will get the following set of side effects:

SMg (dπ) = SMg (dπ′)

= SMg ((πr)3; ?¬φ)

= SMg ((πr)3) ∪ SMg3 (?¬φ)

= SMg (πr;πr;πr) ∪ SMg3 (?¬φ)

= {x 7→ 1, x 7→ 2, x 7→ 3} ∪ {x 7→ 4}
= {x 7→ 1, x 7→ 2, x 7→ 3, x 7→ 4}

Is this the result we would expect? The answer is yes. It is clear that for each
time the test is evaluated, a side effect occurs. The test is performed four times:
three times it succeeds (after which the program executes the body of its loop)
and the fourth time it fails, but not after updating the valuation of x. The
program evaluates with as final valuation h = g[x 7→ 4, y 7→ 3].

6.5 Side effects outside steering fragments

The keen observer will have noticed by now that under our current definition,
side effects can only occur in steering fragments. I have been going through
quite some trouble, however, to make my definitions of side effects as general
as possible. Even though in this thesis I am only interested in side effects in
steering fragments, I am fully aware that views can differ on what the main
effect and what the side effect of an instruction is. That may either be a matter
of opinion or a matter of necessity, as in different systems, the same instruction
may have a side effect in one system and not in the other.

The way my definitions of side effects1 are built up, one need only change the
expected evaluation of an instruction in order to change if it is viewed as a side
effect in a certain context. Consider, for example, the sometimes accepted view
that an assignment causes a side effect, no matter where it occurs in a program.
This view is for example expressed by Norrish in [17]. The only change we
would need to make to our system to incorporate that view is a change to the
expected evaluation of the assignment, which would then become:

gJv := tKM,E
h iff g = h

The consequence of this in our current setting would be that the expected
evaluation of every program always has a resulting valuation h that is equal to
the initial valuation g, since only assignments can make changes to a valuation
currently and by the above definition we do not expect any assignment to do
so, wherever it occurs in the program. As a consequence, any change to the
valuation (caused by the actual evaluation) will automatically be a side effect.

It is almost as simple to add new instructions to our setting. I definitely do
not want to claim that the instructions I have defined in DLAf are exhaustive,
so this need may arise. If we were, for instance, to re-introduce the random
assignment v := ?, all we would have to do was to define the actual and expected

1As well as the definitions of classes of side effects presented in Chapter 7.
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evaluation of this. The actual evaluation is already given by Harel in [14] and
Van Eijck in [11]:

gJv := ?KMh iff g ∼v h

If we also would want to allow random assignments in tests, we would have
to add a rule for that as well, similar to the one already in place for normal
assignments:

M |=g [v := ?]> iff gJv := ?KMh

The definition of the expected evaluation is dictated by what we really expect
the random assignment to do. This can be the same as what it actually does,
in which case we have to define the expected evaluation to be the same as the
actual evaluation above:

gJv := ?KM,E
h iff gJv := ?KMh

M |=Eg [v := ?]> iff M |=g [v := ?]>

If we expect random assignments to do something different, all we have to do
is define the expected evaluation accordingly. This expected evaluation can
literally be anything: from simply not updating the valuation at all to always
setting a completely unrelated variable to 42:

gJv := ?KM,E
h iff h = g[the answer to life, the universe and everything 7→ 42]

On a side note, this example poses some interesting questions about ‘negative’
side effects. Under our current definition, setting the above mentioned variable
to 42 registers as a side effect, but in a somewhat strange fashion. After all v := ?
is a single instruction and for gJρK

M
h and gJρK

M,E
h′ , SMg (ρ) = δ(h′, h). There

will actually be two differences between valuations h′ and h here: the actual
evaluation updates variable v, whereas the expected evaluation leaves v alone
but does update the variable the answer to life, the universe and everything.
Both variables will show up in the set of side effects, both with the assignment
the actual evaluation has assigned to them.

This fails to capture what has actually happened here: after all, not only did
an unexpected change to the initial valuation happen (a ‘regular’ side effect),
but an expected change also did not happen (a ‘negative’ side effect). At least
part of the information what should have happened is lost, namely the value the
variable the answer to life, the universe and everything was supposed to get.2

It is an open question if we should even allow these somewhat odd situations
where the actual evaluation does something completely different than we expect,
thereby generating a negative side effect. We leave this question, as well as the
question how we should handle these situations if we do choose to allow them,
for future work.

2Which is quite a shame, considering the trouble it cost to get it.



7
A classification of side effects

7.1 Introduction

In this chapter we will take a closer look at side effects in steering fragments. In
particular, we will give a classification of side effects. This classification gives
us a measure of the impact of a side effect.

As we have already mentioned in our introduction in Chapter 1, Bergstra has
given an informal classification of side effects in [1]. Bergstra makes a distinction
between steering instructions and working instructions. This distinction is based
on a setting called Program Algebra (PGA). In PGA, there is no distinction
between formulas and single instructions other than formulas, which is why the
proposed distinction by Bergstra is meaningful in that setting. Every basic
instruction a in PGA yields a Boolean reply upon execution and can therefore
be made into a positive or negative test instruction +a or −a. Naturally, this
cannot be done in our setting of DLAf, so instead of giving an overview of
Bergstra’s paper, I will just present the major classes of side effects Bergstra
distinguishes and what they come down to in our setting.

Bergstra’s first class of side effects is what he calls ‘trivial side effects’. By
this he means side effects that can only be found in e.g. consequences for the
length of the program or its running time. We are usually not interested in
those kinds of side effects, which is exactly why Bergstra calls them trivial and
why we would say that no side effects occur at all. An instruction that only
returns a meaningful Boolean reply (that is, a Boolean reply that may differ
depending on the valuation the instruction is evaluated in) is an instruction that
only has trivial side effects. Examples of such instructions are the comparision
instructions such as (x = 2) or (x ≤ 2). These instructions can be turned into
meaningful test instructions by prefixing them with a + or − symbol. We will
return to this in our explanation of PGA in Chapter 8. In our terms, these
kinds of instructions can only be formulas, occuring in steering fragments such
as ?(x = 2) or ?(x ≤ 2). To be precise, they can only be formulas that have the
same actual and expected evaluation, and thus no side effects.

The above described situation, where only trivial side effects occur, is one
extreme. The other extreme is when an instruction always yields the same
Boolean reply, regardless of when it is executed. Bergstra says that in that case,
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only ‘trivial Boolean results’ occur and that the instruction should be classified
as a working instruction (that is, a single instruction not being a formula). In
our setting this is also true with one notable exception: that of assignments. As
we know, assignments always return true, so their Boolean result is trivial. Still,
we allow them in formulas, too. If an instruction with trivial Boolean results
occurs outside a formula, its only relevance would be its effect other than the
Boolean reply, in which case you can hardly call that effect a side effect. If it
occurs in a formula, however, the Boolean result — albeit trivial — does have
relevance, so the effect other than the Boolean reply can indeed be called a side
effect. This is exactly what happens in our setting.

What the classification between steering instructions and working instruc-
tions gives us in the end, is a recommendation on how to use a particular kind of
instruction. Instructions such as comparision (x ≤ 2), that only give a Boolean
reply, have no meaning as a working instruction and therefore ideally should only
occur in steering fragments. Other instructions such as assignment (x := 2) can
be both steering instructions as well as working instructions and can thus occur
both inside as well as outside steering fragments. Finally, instructions such as
writing to the screen (write x) do not return a meaningful Boolean reply and
should therefore ideally not occur in steering fragments.

7.2 Marginal side effects

7.2.1 Introduction

Having seen the base class of side effects, we can move on to the next level, that
of marginal side effects. The intuition behind a marginal side effect is fairly
simple: the side effect of a single instruction is marginal if the remainder of
the execution of the program is unaffected by the occurrence of the side effect.
The following program is a typical example of one where a marginal side effect
occurs:

dπ = dπ1; ?([x := x+ 1]>); y := 1

Here dπ1 can be any (deterministic) program. The side effect occurs in the
test. However, since the variable x is no longer used in the remainder of the
program (which only consists of the single instruction y := 1), the remainder of
the program is unaffected by the occurrence of the side effect. Therefore, this
side effect is marginal.

So what if x does occur in the remainder of the program, for example in this
program:

dπ = dπ1; ?([x := x+ 1]>);x := x+ 1

This is a typical example of a program in which the occuring side effect is not
marginal. The reason is that the assignment in the remainder of the program
(x := x + 1) has a different effect on the variable x than when it would have
had if the side effect had not occurred. For instance, for initial valuation g such
that g(x) = 1 (and assuming x does not occur in π1), the assignment maps x
to 3. If the side effect had not occurred, it would have had a different effect on
x (namely, it would have mapped it to 2).

Another typical example of a program in which an occuring side effect is not
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marginal is our running example:

dπ = dπ1; ?([x := x+ 1]> ∧rb (x = 2)); y := 1

Here dπ1 can again be any deterministic program and the side effect occurs in
the same place as in our first example. However, the test is now a complex
test and in the second part of the test, x is used. Suppose the valuation after
evaluation of dπ1 is f such that f(x) = 1, f(y) = 2. The second part of the test
(x = 2) will now give a different reply if a side effect does not occur in the first
part (or if that side effect would have affected a different variable). As a result,
the remainder of the program is affected by the side effect: it will be executed
differently if a side effect occurs.

Perhaps the answer to the question if the side effect is marginal is less clear
when the initial valuation in the previous example would not have been g with
g(x) = 1, but for example with g(x) = 42. It is still the case that the variable x,
that is affected by a side effect, is used again in the remainder of the program,
but now it does not change the outcome of the (complex) test. Is that side effect
still not marginal then? The same question can be posed about the following
example:

dπ = dπ1; ?([x := x+ 1]>);x := 42

Regardless of initial valuation g, at the end of this program (assuming dπ1

terminates), x will always be mapped to 42. So is the side effect in the test
marginal or not? The answer can be found by checking if the remainder of the
program is executed in the same way, or more formally: if the actual update
of the remainder of the program is the same regardless of whether a side effect
has occurred. In both our last examples, the answer to that last question is
yes. After all, in the first example the test x = 2 will fail whether x has been
incremented first or not, and in the second example x will always be mapped
to 42, again regardless of the side effect that incremented x earlier. Therefore,
the side effects in the discussed instructions are marginal.

7.2.2 Marginal side effects in single instructions

Although the intuition of marginal side effects should be clear enough by now,
formally defining it is tricky because we have to define precisely what the re-
mainder of a (deterministic) program dπ given a single instruction ρ and an
initial valuation g is. Before we can define that, we also need to know the his-
tory of that same program given single instruction ρ, which is loosely described
as those (single or basic) instructions that have already been evaluated when ρ
is about to get evaluated.

In what follows we are going to assume that in a certain deterministic pro-
gram dπ a single instruction ρ occurs that is causing a side effect. Furthermore,
we are going to use that given initial valuation g, any deterministic program
has a unique canonical form that has the same behavior (see Proposition 4 in
Chapter 4). Defining the history and remainder of a deterministic program is
straight-forward if that program is in canonical form. Also, we can actually
immediately give a more general definition than what we need here, namely
the history and remainder of a deterministic program given a basic instruction.
This extra generality will come in handy later on.
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Definition 21. Let dπ be a deterministic program in canonical form. Let model
M and initial valuation g be given and let h be the valuation such that gJdπK

M
h .

Let $ be a basic instruction occuring in dπ, that is, dπ is of the form dπ1;$; dπ2,
with dπ1 and dπ2 being possibly empty deterministic programs in canonical form.
The history of program dπ given basic instruction $ is defined as:

HM
g (dπ,$) =

{
?> if dπ1 is empty

dπ1 o.w.

The remainder of program dπ given basic instruction $ is defined as:

RM
g (dπ,$) =

{
?> if dπ2 is empty

dπ2 o.w.

Using Proposition 4 the extension of the definitions of history and remainder
of a program to all deterministic programs (not just the ones in canonical form)
is trivial:

Definition 22. Let dπ be a deterministic program. Let model M and initial
valuation g be given and let h be the valuation such that gJdπK

M
h . Furthermore,

let dπ′ be the deterministic program in canonical form as meant in Proposition
4. The history of program dπ given basic instruction $ is defined as:

HM
g (dπ,$) = HM

g (dπ′, $)

The remainder of program dπ given basic instruction $ is defined as:

RM
g (dπ,$) = RM

g (dπ′, $)

With definitions for the history and the remainder of a program in hand,
we can define marginal side effects. According to our intuition, a side effect
should be marginal if the evaluation of the remainder of the program is the same
regardless of whether the side effect occurred. We can tell if that is the case by
evaluating the remainder of the program with two different valuations: one in
which the single instruction in which the side effect occurs has been evaluated
using the actual evaluation, and one in which is has been evaluated using the
expected evaluation.1 If the only difference between those two valuations is
exactly the side effect that occurred in the single instruction, or if there is
no difference between those two valuations at all, then we can say that the
evaluation of the remainder of the program has been the same. This is formally
defined as follows:

Definition 23. Let dπ be a deterministic program. Let model M and initial
valuation g be given and let hA be the valuation such that gJdπK

M
hA

. Let ρ be a sin-

gle instruction in program dπ causing a side effect, that is, for gJHM
g (dπ, ρ)KMf ,

SMf (ρ) 6= ∅. Let fA be the valuation such that f JρK
M
fA

and let fE be the valuation

such that f JρK
M,E
fE

. The side effect in ρ is marginal iff for fAJRM
g (dπ, ρ)KMhA

∃hE s.th. fE JRM
g (dπ, ρ)KM,E

hE
and δM (hE , hA) = (SMf (ρ) or ∅)

1We now need to restrict ourselves again to single instructions because the expected eval-
uation is (currently) undefined for complex steering fragments.
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So what happens here exactly? To show this, we return to the examples
we have given earlier in this section. First, consider the program dπ = x :=
1; ?([x := x+1]>); y := 1, with initial valuation g such that g(x) = g(y) = 0. We
can observe that dπ is in canonical form. In this program, a side effect occurs
in the single instruction ρ = ?([x := x+ 1]>). So is this side effect marginal or
not? Here we have the following:

HM
g (dπ, ρ) = (x := 1)

RM
g (dπ, ρ) = (y := 1)

f = g[x 7→ 1, y 7→ 0]

fA = f [x 7→ 2, y 7→ 0]

fE = f [x 7→ 1, y 7→ 0]

hA = fA[x 7→ 2, y 7→ 1]

hE = fE [x 7→ 1, y 7→ 1]

As we can see, the valuations f and fE are the same. Using our current definition
of the expected evaluation, this will always be the case, so we could just use
valuation f here. However, as I have said in Section 6.5 of Chapter 6, I want
to keep generality in the definitions of side effects. We might want to change
the definition of the expected evaluation in the future or add new instructions
or connectives that do modify the initial valuation. Therefore, we use valuation
fE , the resulting valuation after evaluating the single instruction ρ with the
expected evaluation.

To determine if the side effects are marginal, we have to ask ourselves if

δM (hE , hA) = SMf (ρ) or ∅

We know how to calculate the set of side effects; it is {x 7→ 2}. In this case,
δM (hE , hA) is {x 7→ 2} too, so the side effect occurring in ρ is marginal, which
is what we want. We can also clearly see in this case that it is no coincidence
that we are testing δM (hE , hA) and not δM (hA, hE): we need the valuation that
is the result of evaluating the single instruction using the actual evaluation in
order to properly compare this with the set of side effects.

We can now take a look at an example in which the side effect should not
be marginal. Consider the program dπ = x := 1; ?([x := x + 1]>);x := x + 1,
with initial valuation g such that g(x) = 0. This program is in canonical form
too and the side effect occurs in the same single instruction ρ. This time we get
the following:

HM
g (dπ, ρ) = (x := 1)

RM
g (dπ, ρ) = (x := x+ 1)

f = g[x 7→ 1]

fA = f [x 7→ 2]

fE = f [x 7→ 1]

hA = fA[x 7→ 3]

hE = fE [x 7→ 1]
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We have the same set of side effects: {x 7→ 2}. However, δM (hE , hA) now is
{x 7→ 3}. Therefore the side effect is not marginal, which is again what we
would expect.

We have given a third example which closely resembles the ones we have
discussed above, namely dπ = x := 1; ?([x := x + 1]>);x := 42. If we take
the same initial valuation g as above, everything except the remainder of the
program given ρ will be the same:

HM
g (dπ, ρ) = (x := 1)

RM
g (dπ, ρ) = (x := 42)

f = g[x 7→ 1]

fA = f [x 7→ 2]

fE = f [x 7→ 1]

hA = fA[x 7→ 42]

hE = fE [x 7→ 42]

With this example we can see why our definition of marginal side effects allows
the difference between hA and hE to be ∅, too. We have seen before that in
situations like these, the side effects should be marginal, and by allowing the
difference to be ∅, that indeed is the case.

7.2.3 Marginal side effects caused by primitive formulas

As we have seen, our current definition of marginal side effects is capable of
determining whether a side effect occurring in a single instruction is marginal
or not. We still have to define marginal side effects for basic instructions. In
particular, we need to have a definition for the situation in which a primitive
formula in a complex test causes a side effect2 and in that same test, the variable
affected by that side effect is used again, such as in the following program:
dπ = dπ1; ?([x := x + 1]> ∧rb (x = 2)); y := 1. In order to define how to
determine if a side effect is marginal or not in these situations, we need to extend
our definitions of the history and remainder of a program such that it not only
works given a single instruction, but also given a primitive formula. Before we
can give that definition, we first need to define the history and remainder of a
compound formula given a primitive formula. We are once again only interested
in those two concepts if the primitive formula ϕ gets evaluated.

To get an idea of what the history and the remainder of a compound formula
given a primitive formula should be, consider the following example:

ϕ = [x := 6]>
φ = ¬ϕ ∨rb (x ≤ 10)

= ¬([x := 6]>) ∨rb (x ≤ 10)

In this example, the history of φ given ϕ and given model M and initial valuation
g is empty. The remainder, however, is not:

Rg(φ, ϕ) = x ≤ 10

2We say that a primitive formula causes a side effect here because a side effect cannot occur
in a primitive formula. It can, however, occur in a single or basic instruction which tests that
formula.
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Notice that this remainder should be empty if ¬ϕ would have been true.
The history of a formula of course is not always empty. To illustrate that,

we will first introduce a notational convention.

Notation. We will write φ(ϕ) to refer to the primitive formula ϕ occurring in
formula φ at a specific position.

As an example of this, compare the formulas φ1(ϕ) = ϕ ∧rb ϕ and φ2(ϕ) =
ϕ ∧rb ϕ. The difference between the formulas φ1(ϕ) and φ2(ϕ) is in the instance
of primitive formula ϕ we are referring to.

Let ϕ = [x := 6]> and φ(ϕ) as in the example above. Now consider the
following example:

ψ(ϕ) = (x = 2 ∧rb φ(ϕ))

Here the history of ψ given ϕ and given model M and initial valuation g such
that g(x) = 2 is not empty:

HM
g (ψ,ϕ) = (x = 2)

Now that we have given an intuition what the history and remainder of a formula
given a primitive formula and an initial valuation are going to be, we can move
on to giving the actual definitions. In what follows we will assume that the φ
in Hf (φ, ϕ) is in normal form and that the specific primitive formula ϕ actually
appears exactly once in formula φ(ϕ) (although other instances of ϕ may occur
in the formula). φ(ϕ) can take the following forms:

ϕ(ϕ), ¬ϕ(ϕ), φ1(ϕ) ∨rb φ2, φ1 ∨
rb
φ2(ϕ), φ1(ϕ) ∧rb φ2, φ1 ∧rb φ2(ϕ)

Here ϕ(ϕ) is the same as ϕ. For each of these forms, we will have to define how
the history and the remainder is calculated.

Definition 24. Let φ be a formula of one of the above forms. Let model M and
initial valuation g be given. Let ϕ be a primitive formula occurring in φ such
that ϕ gets evaluated during the evaluation of φ given initial valuation g. The
history of formula φ given primitive formula ϕ is defined as:

HM
g (ϕ(ϕ), ϕ) = >

HM
g (¬ϕ(ϕ), ϕ) = >

HM
g (φ1(ϕ) ∨rb φ2, ϕ) = HM

g (φ1(ϕ), ϕ)

HM
g (φ1 ∨

rb
φ2(ϕ), ϕ) = φ1 ∨

rb HM
g (φ2(ϕ), ϕ)

HM
g (φ1(ϕ) ∧rb φ2, ϕ) = HM

g (φ1(ϕ), ϕ)

HM
g (φ1 ∧rb φ2(ϕ), ϕ) = φ1 ∧rb HM

g (φ2(ϕ), ϕ)

The remainder of formula φ given primitive formula ϕ is defined as:

RM
g (ϕ(ϕ), ϕ) = >

RM
g (¬ϕ(ϕ), ϕ) = >

RM
g (φ1(ϕ) ∨rb φ2, ϕ) = RM

g (φ1(ϕ), ϕ) ∨rb φ2

RM
g (φ1 ∨

rb
φ2(ϕ), ϕ) = RM

g (φ2(ϕ), ϕ)

RM
g (φ1(ϕ) ∧rb φ2, ϕ) = RM

g (φ1(ϕ), ϕ) ∧rb φ2

RM
g (φ1 ∧rb φ2(ϕ), ϕ) = RM

g (φ2(ϕ), ϕ)
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The reason we are only interested in the history and remainder of a primitive
formula if that formula is actually evaluated, is straight-forward: we use these
definitions to calculate the side effects caused by that primitive formula and
those side effects only exist if the primitive formula is evaluated. As straight-
forward as this is, the restriction is an important one. Because we know that ϕ
gets evaluated (not be be confused with ‘yielding true’), we do not have to take
potentially troublesome formulas into account such as ⊥ ∧rb ϕ.

The above definitions make the history and remainder of a formula given
a primitive formula, partial functions. To see in which situations the history
and remainder are defined and for which they are not, consider the following
formula:

φ = (x = 5 ∧rb [x := x+ 1]>) ∨rb [x := x+ 2]>

Now assume we want to know the history of φ given ϕ = [x := x + 1]>. This
history HM

g (φ(ϕ), ϕ) is only defined if [x := x + 1]> gets evaluated, which in
turn only is the case if we have a initial valuation g such that g(x) = 5. For all
initial valuations g′ such that g(x) 6= 5, the history of φ given ϕ is undefined. If
we would be interested in the history of φ given ϕ′ = [x := x+2]>, the situation
would be reversed: in that case the history HM

g (φ(ϕ′), ϕ′) is only undefined with
initial valuation g such that g(x) = 5.

That the history (and the remainder) is undefined in these cases is not
problematic because as said, we are going to use these definitions to check if the
side effects caused by ϕ are marginal and ϕ can only cause side effects if it gets
evaluated.

Using these definitions, we can move on to define the history and remainder
of a program given a primitive formula:

Definition 25. Let dπ be a deterministic program in canonical form. Let model
M and initial valuation g be given and let h be the valuation such that gJdπK

M
h .

Let ?φ be a test occurring in program dπ, where φ is a formula in normal form.
Finally, let ϕ be a primitive formula occuring in φ such that ϕ gets evaluated
during the evaluation of φ given initial valuation g. The history of program dπ
given primitive formula ϕ is, for gJ?HM

g (dπ, ?φ)KMf , defined as:

HM
g (dπ, ϕ) = HM

g (dπ, ?φ); ?HM
f (φ(ϕ), ϕ)

The remainder of program dπ given primitive formula ϕ is defined as:

RM
g (dπ, ϕ) = ?RM

f (φ(ϕ), ϕ);RM
g (dπ, ?φ)

The final step is to give a definition to determine if a side effect occurring
in a primitive formula is marginal. Given the above, this definition should not
be surprising:

Definition 26. Let dπ be a deterministic program. Let model M and initial
valuation g be given and let hA be the valuation such that gJdπK

M
hA

. Let ϕ be
a primitive formula in program dπ causing one of the side effects of dπ. Let
f be the valuation such that gJHM

g (dπ, ϕ)KMf . Let fA be the valuation such

that f J?ϕK
M
fA

or f J?¬ϕKMfA and let fE be the valuation such that f J?ϕK
M,E
fE

or
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f J?¬ϕKM,E
fE

.3 The side effect caused by ϕ is marginal iff for fAJRM
g (dπ, ϕ)KMhA

∃hE s.th. fE J?RM
g (dπ, ϕ)KM,E

hE
and δM (hE , h) = (SMf (?ϕ) or ∅)

To show how this works, we return to the example given in the beginning of
this section: dπ = x := 1; ?([x := x+1]>∧rb (x = 2)); y := 1, with initial valuation
g such that g(x) = g(y) = 0. Here the primitive formula ϕ = [x := x + 1]>
causes a side effect. We can now use our definition to find out if that side effect
is marginal. For that, we first need the history of dπ given primitive formula ϕ.

To calculate HM
g (dπ, ϕ), we first observe that φ is in normal form. This gives us

a go to use Definition 25. This definition tells us to first calculate valuation f ,
which we get by evaluating gJHM

g (dπ, ?φ)KMf . Here ?φ is a basic instruction, so
we can use Definition 22 to calculate it. We have seen before how that evaluates:

HM
g (dπ, ?φ) = (x := 1)

Thus we get gJx := 1KMf , so f = g[x 7→ 1, y 7→ 0].
All we need to do now to get the history we are looking for, is the history

of formula φ given primitive formula ϕ: HM
f (φ(ϕ), ϕ). We can use Definition

24 here and are in the situation where φ(ϕ) = φ1(ϕ) ∧rb φ2. Here φ1 = ϕ and
φ2 = (x = 2), so as history we get:

HM
f (φ(ϕ), ϕ) = HM

f (φ1(ϕ) ∧rb φ2, ϕ)

= HM
f (φ1(ϕ), ϕ)

= HM
f (ϕ(ϕ)), ϕ)

= >

Thus, the history of program dπ given primitive formula ϕ is:

HM
g (dπ, ϕ) = HM

g (dπ, ?φ); ?HM
f (φ(ϕ), ϕ)

= (x := 1); ?>

With the information above we can also immediately calculate the remainder of
formula φ given primitive formula ϕ:

RM
f (φ(ϕ), ϕ) = RM

f (φ1(ϕ) ∧rb φ2, ϕ)

= RM
f (φ1(ϕ), ϕ) ∧rb φ2

= RM
f (ϕ(ϕ), ϕ) ∧rb φ2

= > ∧rb (x = 2)

Then all we need to determine the remainder of program dπ given primitive
formula ϕ is the remainder of program dπ given basic instruction ?φ. To see
how this evaluates, see the previous section. We can use Definition 22 for this
again and get:

fA = f [x 7→ 2, y 7→ 0]

RM
fA(dπ, ϕ) = (y := 1)

3This distinction is necessary because we can only evaluate a test if its argument yields
true. M |=f ϕ might actually yield false if ϕ is part of a larger formula φ that despite that
yields true, such as φ = ϕ ∨qa φ1 such that M |=fA φ1. Thus, we need either ϕ or ¬ϕ.
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So the remainder of program dπ given primitive formula ϕ is:

RM
g (dπ, ϕ) = ?RM

f (φ(ϕ), ϕ);RM
fA(dπ, ?φ)

= ?(> ∧rb (x = 2)); (y := 1)

Now that we have the history and the remainder of dπ given ϕ, we can finally
determine if the side effect occurring in ϕ is marginal. To quickly recap, we
have:

HM
g (dπ, ϕ) = (x := 1); ?>
RM

g (dπ, ϕ) = ?(> ∧rb (x = 2)); (y := 1)

f = g[x 7→ 1, y 7→ 0]

fA = f [x 7→ 2, y 7→ 0]

fE = f [x 7→ 1, y 7→ 0]

hA = fA[x 7→ 2, y 7→ 1]

hE does not exist

Here we have an example where we do not even have to determine if δM (hE , hA)
is the same as SMf (?ϕ), because there is no valuation hE such that

fE JRM
g (dπ, ϕ)KM,E

hE

This is because for valuation fE the test ?(> ∧rb (x = 2)) will fail. Therefore, the
side effect in ϕ is ‘automatically’ not marginal, which is indeed what we wanted.

7.3 Other classes of side effects

There are two more classes of side effects that I want to discuss. The first is the
class detectible side effects. According to Bergstra, a side effect in an instruction
is detectible if the fact that that side effect has occured can be measured by
means of a steering fragment containing that instruction [1]. This is the most
general class of side effects: in my terms, any difference between the actual and
the expected evaluation of a single instruction is a detectible side effect.

The presence of detectible side effects suggests there are non-detectible side
effects as well. This can indeed be the case. A side effect is undetectible if the
evaluation of a (single) instruction causing a side effect would normally change
the program state, but because of the specific initial valuation, it does not. As
a simple example, consider the single instruction ?([v := 1]>). Under any initial
valuation g this would change the program state and cause a side effect, with
one exception: namely if g(v) = 1. We can formally define this as follows:

Definition 27. Let ρ be a single instruction in model M under initial valuation
g, updating the valuation of a variable v.4 Furthermore, let SMg (ρ) = ∅. ρ
contains an undetectible side effect iff for h such that h(v) 6= g(v):

SMh (ρ) 6= ∅
4In DLAf, this would mean that ρ either is v := t or ?[v := t]>.
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It remains to be seen whether these non-detectible side effects are worth
our attention. After all, not being able to detect side effects suggests that the
presence of the side effects does not make much difference, in any case not to the
further execution of the program. Possible exceptions to this are the execution
speed or the efficiency of the program, especially if there are a lot of undetectible
side effects.

In contrast to non-detectible side effects, marginal side effects can poten-
tially be very useful because they can occur far more often. Like non-detectible
side effects, they are a measure of the impact of a side effect. If a side effect
is marginal, that means that the rest of the program is unaffected by it and
therefore, the side effect is essentially pretty harmless. One could at this point
imagine a claim that a program in which only marginal side effects occur can be
considered a well-written program, whereas a program in which non-marginal
side effects occur is one that should probably be rewritten to avoid unexpected
behavior. We will leave further investigation of this claim for future work, how-
ever.
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8
A case study: Program Algebra

In Chapter 6, I presented the system I will be using for the treatment of side
effects. In this chapter I will provide a case study to see my system in action. For
this, we will use Program Algebra (PGA) [3]. Since PGA is a basic framework
for sequential programming, it provides an ideal case study for our treatment
of side effects. By showing how side effects are determined in the very general
setting of PGA, we are essentially showing how they are dealt with on a host of
different, more specific programming languages.

I will first summarize PGA and explain how we can use it. Next, some
extensions necessary for our purpose will be presented. Finally, I will present
some examples to see in full how my system deals with side effects.

8.1 Program Algebra

8.1.1 Basics of PGA

PGA is built from a set A of basic instructions (not to be confused with the
DLAf-notion by the same name), which are regarded as indivisible units. Basic
instructions always provide a Boolean reply, which may be used for program
control (i.e. in steering fragments). There are two composition constructs: con-
catenation and repetition. If X and Y are programs, then so is their concatena-
tion X;Y and its repetition Xω. PGA has the following primitive instructions:

• Basic instruction Basic instructions are typically notated as a,b,. . . . As
said they generate a Boolean value. Especially important for our purpose
is that their associated behavior may modify a (program) state.

• Termination instruction This instruction, notated as !, terminates the
program.

• Test instruction Test instructions come in two flavours: the positive
test instruction, notated as +a (where a is a basic instruction), and its
negative counterpart, −a. For the positive test instruction, a is evaluated
and if it yields true, all remaining instructions are executed. If it yields
false, the next instruction is skipped and evaluation continues with the
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instruction after that. For the negative test instruction, this is the other
way around.

• Forward jump instruction A jump instruction, notated as #k where
k can be any natural number. This instruction prescribes a jump to k
instructions from the current one. If k = 0, the program jumps to the
same instruction and inaction occurs. If k = 1, the program jumps to
the next instruction (so this is essentially useless). If k = 2, the next
instruction is skipped and the program proceeds with the one after that,
and so on.

If two programs execute identical sequences of instructions, instruction se-
quence congruence holds between them. This can be axiomatized by the follow-
ing four axioms:

(X;Y );Z = X; (Y ;Z) (PGA1)

(Xn)ω = Xω (PGA2)

Xω;Y = Xω (PGA3)

(X;Y )ω = X; (Y ;X)ω (PGA4)

The first canonical form of a PGA program is then defined to be a PGA program
which is in one of the following two forms:

1. X not containing a repetition

2. X;Y ω, with both X and Y not containing a repetition

Any PGA program can be rewritten into a first canonical form using the above
four equations. The next four axiom schemes for PGA deal with the simplifica-
tion of chained jumps:

#n+ 1;u1; . . . ;un; #0 = #0;u1; . . . ;un; #0 (PGA5)

#n+ 1;u1; . . . ;un; #m = #n+m+ 1;u1; . . . ;un; #m (PGA6)

(#n+ k + 1;u1; . . . ;un)ω = (#k;u1; . . . ;un)ω (PGA7)

X = u1; . . . ;un; (v1; . . . ; vm+1)ω →
#n+m+ k + 2;X = #n+ k + 1;X (PGA8)

Programs are considered to be structurally congruent if they can be proven equal
using the axioms PGA1-8.

The second canonical form of a PGA program is defined to be a PGA pro-
gram in first canonical form for which additionally the following holds:

1. There are no chained jumps

2. Counters used for a jump into the repeating part of the expression are as
short as possible

Each PGA expression can be rewritten into a shortest structurally equivalent
second canonical form using the above eight equations [3].
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8.1.2 Behavior extraction

The previous section describes the forms a PGA program can take. In this
section I will explain the behavioral semantics defined in [3]. The process of
determining the behavior of a PGA program given its instructions is called
behavior extraction. The behavioral semantics itself is based on thread algebra,
TA in short.

Like PGA, TA has a set A of basic instructions, which in this setting are
referred to as actions. Furthermore, it has the following two constants and two
composition mechanisms:

• Termination This is notated as S (for Stop) and terminates the behavior.

• Divergent behavior This is notated as D (for Divergence). Divergence
(or inaction) means there no longer is active behavior. For instance, in-
finite jump loops cause divergent behavior since the program only makes
jumps and does not perform any actions.

• Postconditional composition This is notated as P E aDQ and means
that first a is executed; if its reply is true then the behavior proceeds with
P , otherwise it proceeds with Q.

• Action prefix This is notated as a ◦P and is a shorthand for P E aDP :
regardless of the reply of a, the behavior will proceed with P .

As said, behavior extraction determines the behavior of a PGA program
given its instructions. For that, the behavior extraction operator, notated as
| |, is defined. If a program ends without an explicit termination instruction, it
is defined to end in inaction by the following equation:

|X| = |X; (#0)ω| (8.1)

A termination instruction followed by other instructions ends in termination
and nothing else, which is defined by the following equation:

|!;X| = S (8.2)

Behavior extraction is further defined by the following equations dealing with
the composition mechanisms:

|a;X| = a ◦ |X| (8.3)

|+a;u;X| = |u;X|E aD |X| (8.4)

|−a;u;X| = |X|E aD |u;X| (8.5)

The jump instruction requires a set of equations as well. The first equation
defines that a jump instruction which is jumping to itself leads to inaction. The
second and third define how a jump instruction can skip subsequent instructions.

|#0;X| = D (8.6)

|#1;X| = |X| (8.7)

|#k + 2;u;X| = |#k + 1;X| (8.8)
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8.1.3 Extensions of PGA

PGA is a most basic framework [18]. However, there are many extensions that
introduce more ‘advanced’ programming features such as goto’s and backward
jump instructions. Via projections, each of these extensions can be projected to
PGA in such a way that the resulting PGA-program is behaviorally equivalent
to the original program. Examples of such extensions are PGLB, in which PGA
is extended with a backward jump instruction (\#k) and PGLBg, in which
PGLB is further extended with a label catch instruction (Lσ) and an absolute
goto instruction (##Lσ).

Of particular interest for our purpose is the extension of PGA with the unit
instruction operator (PGAu), introduced in [18]. The idea of the unit instruction
operator, notated as u( ), is to wrap a sequence of instructions into a single unit
of length 1. That way, a more flexible style of PGA-programming is possible.
In particular, programs of the form

if a then {

b, c, d

} else {

f, g, h

}

now have a more intuitive translation: +a; u(b; c; d; #4; ); f ; g;h.1 Because,
thanks to the unit instruction operator, the instructions b, c, d and #4 are
viewed as a single instruction, the execution of those is skipped when a yields
false.

8.2 Logical connectives in PGA

8.2.1 Introduction

As mentioned in Section 8.1, in PGA a lot of basic notations for assembly-
like programming languages are defined, especially with its extension with unit
instruction operators (PGAu) [18]. However, one important basic notation is
missing: that of complex tests, of the form if(a and b) then c. As we have
seen, currently there are positive and negative test instructions in PGA, which
can only test the Boolean reply of a single instruction. More complex construc-
tions such as the one in the working example of Section 3.2 are however very
common in programming practice and also appear in research papers such as
[1], where they are referred to as complex steering fragments. This means that
for our purpose, PGA will have to be extended to accommodate for complex
steering fragments. I will do so below.

Atomic steering fragments (that is, steering fragments containing only one
instruction) are already present in PGA in the form of the positive and negative
test instruction (+a and −a respectively). If we were to extend this with com-
plex steering fragments, an obvious notation would be +φ and −φ. The question
now is what forms φ can take and what it means to have such a complex test.

Since the instructions in the steering fragment need to produce a Boolean
reply, the answer to the question above in my opinion should be that a complex

1The jump is necessary to prevent the instructions f , g and h from being executed when
a yields true.
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test can only be meaningful if all the instructions in the complex test may be
used to determine the reply. It is not necessary that all instructions are always
used to determine the reply: for instance when using short-circuit evaluation, in
some situations not all components of a complex test have to be (and therefore
are not) used. However, my claim here is that if a certain instruction is never
necessary to determine the Boolean reply of the whole steering fragment, then
is should not be in the steering fragment.

Currently, PGA has two composition constructs (composition and repeti-
tion). Neither of those define anything, however, about the Boolean value of
multiple instructions. That is, the Boolean value of φ; . . . ;ψ and of φω is un-
defined. The intuitive way to determine the Boolean reply of a sequence of
instructions is via logical connections such as And (∧) and Or (∨). However,
these are not present yet in PGA. This means that I will have to introduce them
in an extension of PGAu, which we baptize PGAul.

Before I do so, however, I need to say something more about the type of
And and Or I will be using. There are multiple flavours available:

• Logical And / Or These versions are notated as ∧ and ∨, respectively.
They use full evaluation and the order of evaluation is undefined.

• Short-circuit Left And / Or These versions are the ones we use in DLAf

(see Chapter 6). They are notated as ∧rb and ∨rb . From here on I will refer
to them as SCLAnd and SCLOr. They use short-circuit evaluation and
are therefore not commutative. The left conjunct or disjunct is evaluated
first. There naturally are right-hand versions as well, but I will not be
using them.

• Logical Left And / Or These versions are a combination of the other
two: they use full evaluation, but the left conjunct or disjunct is evaluated
first. I will notate this as & and |, respectively and refer to them as LLAnd
and LLOr. I will not discuss right-hand versions.

The latter two are interesting for our purpose, because they are very suitable
to demonstrate side effects. However, since we currently only have SCLAnd
and SCLOr at our disposal in DLAf, I will concentrate on those connectives.
Although LLAnd and LLOr can be added to both PGA and DLAf, this would
raise more questions than it answers, for instance with regard to the logic which
would then be behind the system, which is why we leave it for future work.

The above connectives will almost always be used in combination with either
a positive or a negative test. This will be written as +(a ∧rb b) (and similar for
the negative test and the ∨rb connective).

8.2.2 Implementation of SCLAnd and SCLOr

If I am to introduce the mentioned logical connectives in PGAul, I will have to
be able to project this extention into PGA. Since the projection of PGAu to
PGA is already given in [18], it is sufficient to project PGAul to PGAu to show
that the former can be projected to PGA. Below is a proposal of a projection
of the SCLAnd ( ∧rb ) connective from PGAul to PGAu, for a, b ∈ A:

pgaul2pgau(+(a ∧rb b)) = u(+a; u(+b; #2); #2) (8.9)
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To see why this projection works, consider the following example: suppose we
have the sequence +φ; c; d with φ = a ∧rb b. This means that if a and b are
true, c and d will be executed. Otherwise, only d will be executed. In PGAul

this sequence would be +(a ∧rb b); c; d. The projection to PGAu would then be
u(+a;u(+b; #2); #2); c; d. If a is false, the execution skips the unit and executes
the jump instruction, ending up executing d. If a is true, the unit is entered,
starting with the test b. If b is false, the execution again arrives at the same
jump as before, skipping c and executing d. If b is true, a different jump is
executed which makes the program jump to c first and only then moves on to
d, which is exactly the desired behaviour.

The entire projection is wrapped in a unit because, as we will see later, the
SCLAnd and other operators we define here also are to be considered units.
Therefore, a program sequence prior to (or after) the operators discussed here
cannot jump into the execution of that operator. By wrapping the projection
into a unit I ensure that cannot happen after the projection either.

For the SCLOr connective, the projection is a little easier. It looks like this,
again for a, b ∈ A:

pgaul2pgau(+(a ∨rb b)) = u(−a; +b) (8.10)

To see why this projection works, consider the same example as above: +φ; c; d,
but now with φ = a ∨rb b. So, if a and / or b are true, c and d should be executed.
If they are both false, only d should be executed. In PGAul this looks like this:
+(a ∨rb b); c; d. The projection to PGAu then is u(−a; +b); c; d. So, if a is true,
execution skips testing b and moves on directly to c. If a is false, b is tested
first. If b is also false, execution skips c and d is executed. If b is true, c gets
executed first: exactly the desired behaviour.

So far, we have only been considering programs of the form +φ; c; d, that
is, with a positive test. Of course, we also have the negative test instruction.
For a negative test, the projection of SCLAnd resembles that of SCLOr. This
comes as no surprise since SCLAnd and SCLOr are each other’s dual. It looks
like this, again for a, b ∈ A:

pgaul2pgau(−(a ∧rb b)) = u(+a;−b) (8.11)

The projection of ∨rb for a negative test resembles the projection of ∧rb for a
positive test:

pgaul2pgau(−(a ∨rb b)) = u(−a; u(−b; #2); #2) (8.12)

8.2.3 Complex Steering Fragments

The implementations in the previous section work for steering fragments con-
taining a single logical connective (that is, with disjuncts or conjuncts a, b ∈ A).
However, we also need to define what happens for larger complex steering frag-
ments (for instance a ∧rb (b ∨rb c)). In order to accommodate this, we need one
more property for the ∧rb and ∨rb operators in PGA: they have to be treated as
units. If we do this, we can give a recursive definition for the projection, with
as base cases the ones given in the previous sections.

In what follows, the formulas φ1 and φ2 can take the following form:

φ ::= > | a ∈ A | ¬φ | φ ∧rb ψ | φ ∨rb ψ (8.13)
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As we can see, this includes negation. For more on negation, see the next
section. We get the following projections:

pgaul2pgau(+(φ1 ∧rb φ2)) = u(pgaul2pgau(+φ1); u(pgaul2pgau(+φ2); #2); #2)

pgaul2pgau(+(φ1 ∨
rb
φ2)) = u(pgaul2pgau(−φ1); pgaul2pgau(+φ2))

pgaul2pgau(−(φ1 ∧rb φ2)) = u(pgaul2pgau(+φ1); pgaul2pgau(−φ2))

pgaul2pgau(−(φ1 ∨
rb
φ2)) = u(pgaul2pgau(−φ1); u(pgaul2pgau(−φ2); #2); #2)

This works as follows. Consider the example +φ; d; !, with φ = a ∧rb (b ∧rb c).
In PGAul this would be written as:

+(a ∧rb (b ∧rb c)); d; ! (8.14)

We can use our new recursive definition of ∧rb and get:

pgaul2pgau(+(a ∧rb (b ∧rb c)); d; !) = u
(
pgaul2pgau(+a);

u(pgaul2pgau(+(b ∧rb c)); #2);

#2
)
; d; !

The projections left now are base cases of +a and +(b ∧rb c), respectively. Thus,
we get

pgaul2pgau(+(a ∧rb (b ∧rb c)); d; !) = u
(
pgaul2pgau(+a);

u(pgaul2pgau(+(b ∧rb c)); #2);

#2
)
; d; !

= u
(

+ a;

u(u(+b; u(+c; #2); #2); #2);

#2
)
; d; !

An interesting question is whether these projections make ∧rb an associative
operator. To find out, we compare the above with the example +φ; d; ! where
this time φ = (a ∧rb b) ∧rb c. We get:

pgaul2pgau(+((a ∧rb b) ∧rb c); d; !) = u
(
pgaul2pgau(+(a ∧rb b));
u(pgaul2pgau(+c); #2);

#2
)
; d; !

= u
(
u(+a; u(+b; #2); #2);

u(+c; #2);

#2
)
; d; !

We can use behavior extraction to check if these programs are behavioral equiv-
alent. It turns out that both programs indeed have the same behavior:

((d ◦ S E cD S)E bD S)E aD S

Thus, we can conclude that ∧rb is associative in PGAul, as we would expect given
SCL7. We can analyze ∨rb in a similar manner.
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8.2.4 Negation

Now that we have the projections for positive and negative tests defined, we can
turn our attention to one more operator that is common both in programming
practice and in logic: negation. In PGA, negation is absent, so we need to define
it here. Not all instructions or sequences of instructions can be negated: after
all, there is no intuition for the meaning of the negation of a certain behavior.
We can, however, negate basic instructions: by this we mean its Boolean reply
changes value. Sequences of instructions consisting of the operators I have
defined above can be negated as well, which I will write as ¬φ. First, I define
the following standard projection rules:

+(¬φ) = −φ (8.15)

−(¬φ) = +φ (8.16)

¬¬φ = φ (8.17)

Now that we have this, we need to take a look at how negation interacts with
the ∧rb and ∨rb connectives. In particular, we are interested in what happens if
one or both of the instructions in such a connective are negated. For this, the
De Morgan’s laws will come in handy:

¬(φ1 ∧rb φ2) = ¬φ1 ∨
rb ¬φ2 (8.18)

¬(φ1 ∨
rb
φ2) = ¬φ1 ∧rb ¬φ2 (8.19)

With the above equations in combination with the equations 8.15-8.17, we al-
ready have the projections for two possible cases (namely when no instructions
are negated and when both instructions are negated). That leaves us two other
cases for both ∧rb and ∨rb : one in which the first instruction is negated, and one
in which the other is. Below are the projections of these cases:

pgaul2pgau(+(¬φ1 ∧rb φ2)) = pgaul2pgau(−(φ1 ∨
rb ¬φ2))

= u(pgaul2pgau(+φ1); #3; pgaul2pgau(+φ2))

(8.20)

pgaul2pgau(+(φ1 ∧rb ¬φ2)) = pgaul2pgau(−(¬φ1 ∨
rb
φ2))

= u(pgaul2pgau(−φ1); #3; pgaul2pgau(−φ2))

(8.21)

pgaul2pgau(+(¬φ1 ∨
rb
φ2)) = pgaul2pgau(−(φ1 ∧rb ¬φ2))

= u(pgaul2pgau(−φ1); #2; pgaul2pgau(+φ2))

(8.22)

pgaul2pgau(+(φ1 ∨
rb ¬φ2)) = pgaul2pgau(−(¬φ1 ∧rb φ2))

= u(pgaul2pgau(+φ1); #2; pgaul2pgau(−φ2))

(8.23)

For more on the ∧rb and ∨rb connectives and the rules that apply to them, see
the paper by Bergstra and Ponse on short-circuit logic [5] as well as Chapter 5.

8.2.5 Other instructions

In the previous subsections we have seen what the projections of the new logical
connectives in PGAul to PGAu look like. To complete the list of projections,
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we have to define the projections for the ‘regular’ instructions, as well as how
concatenation and repetition are projected. This is trivial, since these ‘regular’
instructions are the same in PGAul and PGAu. We get for a ∈ A and PGAul-
programs X,Y

pgaul2pgau(a) = a

pgaul2pgau(+a) = +a

pgaul2pgau(−a) = −a
pgaul2pgau(!) = !

pgaul2pgau(#k) = #k

pgaul2pgau(X;Y ) = pgaul2pgau(X); pgaul2pgau(Y )

pgaul2pgau(Xω) = (pgaul2pgau(X))ω

pgaul2pgau(u(X)) = u(pgaul2pgau(X))

8.3 Detecting side effects in PGA

In this section I will show how to detect side effects in a PGAul program using
our treatment of side effects. In essence, all we have to do is translate the PGAul

program to an equivalent DLAf-program, which can then be used to determine
the side effects that occur.

To recap, we have the following operators in PGAul that have to be trans-
lated:

• Concatenation (X;Y )

• Repetition (Xω)

• Unit instruction operator (u( ))

• Termination (!)

• Positive and negative tests (+φ,−φ)

• Only in tests: conjunction, disjunction and negation (φ1 ∧rb φ2,φ1 ∨
rb
φ2,¬φ)

There are two notable differences between PGAul and DLAf. The first is that in
PGAul a program unsuccessfully terminates unless explicitly instructed other-
wise by the termination instruction, whereas in DLAf the default is a successful
termination. This is an issue that has to be addressed to properly translate
PGAul to DLAf and the best way to do this, is to add the termination instruc-
tion to DLAf. This illustrates the point I made in Section 6.5 in Chapter 6:
the instructions I defined so far in DLAf are by no means exhaustive and new
instructions may have to be added to them. This can usually be done by simply
defining the actual and expected evaluation of the new instruction.

The nature of the termination instruction requires us to do a little more
than just that. After all, the termination instruction has a control element to
it: just like for instance the test instruction it has an influence on which instruc-
tions are to be evaluated next. To be exact, no instructions are to be evaluated
next when a termination instruction is encountered during evaluation of a pro-
gram. Because of this, we have to slightly modify the concatenation operator
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in DLAf too when we introduce the termination instruction. We baptize the
extension of DLAf with the termination instruction DLTAf (for Dynamic Logic
with Termination and Assignment in Formulas).

The equation for the relational meaning of ! in a given model M and ini-
tial valuation g is straight-forward. Execution simply finishes with the same
resulting valuation as the initial valuation:

gJ!K
M
h iff g = h (DLTA15)

The updated rule for concatenation has to express that when a termination
instruction is encountered, nothing should be evaluated afterwards. We use a
case distinction for this on the first instruction of a concatenation:

gJ$; dπKMh iff

{
g = h if $ = !

∃f s.th. gJ$Kf and f JdπK
M
h o.w.

(DLTA12)

We only define the termination instruction in the setting of deterministic pro-
grams here. This is sufficient because this is the only setting we are currently
interested in. DLTA12 replaces QDL12, but keeps the associative character of
concatenation intact:

gJ(dπ0; dπ1); dπ2K
M
h = gJdπ0; (dπ1; dπ2)KMh

The addition of the termination instruction allows us to easily express PGAul-
programs such as +a; !; b in DLTAf. They would otherwise have caused a prob-
lem because there would have been no easy way to stop the evaluation of the
program from continuing to evaluating b, which it of course is not supposed to
do if a yields true.

The other notable difference between PGAul and DLAf is that in the former,
anything can be used as a basic instruction. That includes what we refer to in
DLAf as primitive formulas such as x ≤ 2 or t1 = t2. In PGA the execution of
an instruction always succeeds, even if the Boolean reply that it generates, is
false. To model this in DLTAf, we have to add the primitive formulas ϕ to the
set of instructions, as follows:

π ::= ϕ | ! | v := t | ?φ | π1;π2 | π1 ∪ π2 | π∗

The relational meaning in M given initial valuation g for these new instructions
is simply that they always succeed without modifying g:

gJϕK
M
h iff g = h

With the termination instruction and the formulas-as-instructions defined,
we can take a first look at the mapping from PGAul to DLTAf. For this we
define a translation function ft : PGAul→ DLTAf. We define this translation
function for PGA programs in first or second canonical form only; this is suf-
ficient because as we have seen, every PGA program can be rewritten to first
and second canonical form.

First, we define the set A of basic instructions in PGA to be equal to the
set of primitive formulas and single instructions, not being tests, in DLAf:

A ::= ϕ | ρ−
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where ρ− denotes the set of single instructions not being tests. In DLAf, this
set only consists of the assignment instruction v := t.

For finite sequences of instructions with length n = 1, a, b ∈ A and k ∈ N0,
and φ a formula as meant in section 8.2.3, ft is defined as follows:

ft(a) = a; ?⊥
ft(+φ) = ?φ; ?⊥
ft(−φ) = ?¬φ; ?⊥
ft(#k) = ?⊥
ft(!) = !

ft(u(a1; . . . ; ak)) = ft(a1; . . . ; ak)

Here we can clearly see what effect it has that PGAul has unsuccessful termina-
tion as its default. We have to explicitly introduce unsuccessful termination in
DLTAf by adding ?⊥ (a test that always fails) at the end of every instruction.
Furthermore, notice the unit instruction operator that here has length n = 1,
but is transparent when it has to be translated and thus becomes a sequence of
instructions with length k that is potentially larger than 1. Finally, notice that
there is no need to translate possibly compound formulas φ. This is because
formulas have the exact same syntax in PGAul and DLTAf.

Next, we can show the definition of ft for finite sequences of instructions
with length n = m+ 1. For a, b1, . . . , bm ∈ A, k ∈ N0 and φ a formula as meant
in section 8.2.3, we have

ft(a; b1; . . . ; bm) = a; ft(b1; . . . ; bm)

ft(+φ; b1; . . . ; bm) =


(?φ; ft(b1)) ∪ (?¬φ; ?⊥) if m=1

(?φ; ft(b1; . . . ; bm)) ∪
(?¬φ; ft(b2; . . . ; bm)) o.w.

ft(−φ; b1; . . . ; bm) =


(?φ; ?⊥) ∪ (?¬φ; ft(b1)) if m=1

(?φ; ft(b2; . . . ; bm)) ∪
(?¬φ; ft(b1; . . . ; bm)) o.w.

ft(#0; b1; . . . ; bm) = ?⊥
ft(#1; b1; . . . ; bm) = ft(b1; . . . ; bm)

ft(#(2+k); b1; . . . ; bm) =

{
ft(bk+2; . . . ; bm) if k + 2 < m

?⊥ o.w.

ft(!; b1; . . . ; bm) = !

ft(u(a1; . . . ; ak); b1; . . . ; bm) = ft(a1; . . . ; ak; b1; . . . ; bm)

With the above translation rules, we can now translate finite PGAul-programs
to their DLTAf-versions. A complete translation would require a translation of
repetition as well. This, however, is quite a complex task. The reason for that
becomes clear when considering examples like these:

(a; b; +c)ω

(+a; +b; +c)ω

(a; +b; #5; c; +d;)ω
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Because of the behavior of +c, we get into trouble here if we attempt to use
the regular translation. The problem is that +c can possibly skip the first
instruction of the next repetition loop, which is behavior that is hard to translate
without explicitly introducing this variant of repetition (ω) in DLAf. The same
problem arises with the jump instruction. At first glance, the best solution
there is to introduce the jump instruction to DLAf as well. In that case the
second canonical form of PGA-programs comes in handy, as it is designed to
manipulate expressions with repetition such that no infinite jumps occur.

Since this case study is meant as a relatively clear example of how to use
DLAf to model side effects in other systems such as PGA, it is beyond our in-
terest here to present these rather complex translations of repetition. Instead,
we restrict ourselves to finite PGAul-programs and leave the relational seman-
tics for DLAf which models side effects, as the basis for future work on PGA
involving repetition.

8.4 A working example

In this section I will present a working example of the translation from finite
PGAul-programs, which we write as PGAfin

ul , to DLTAf. In addition, I will show
that we get sufficiently similar results if we first translate PGAfin

ul to DLTAf

compared to first projecting PGAfin
ul to PGAfin

u and then translating that to
DLTAf. To be exact, we are going to show that the following diagram defines a
program transformation E on finite deterministic programs in DLTAf:

PGAfin
ul

ft //

pgaul2pgau

��

DLTAf

E

��
PGAfin

u ft

// DLTAf

Here E is a reduction function on DLTAf that yields deterministic DLTAf-
programs where occurrences of ∧rb and ∨rb have been eliminated.

For the working example, we return to a variant of our running example.
Consider the PGAfin

ul -program

X = +([x := x+ 1]> ∧rb x = 2); u(w[x = 2]; !);w[x 6= 2]; !

where w[...] suggests a write command. This is a program of the form

+(b ∧rb c); u(d; !); e; !

with b = [x := x+1]>, c = (x = 2), d = w[x = 2] and e = w[x 6= 2]. Thus, we get
the following translation, where we for clarity have underlined the instruction
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that we are going to translate next:

ft(+(b ∧rb c); u(d; !); e; !) =

(?(b ∧rb c); ft(u(d; !); e; !)) ∪ (?¬(b ∧rb c); ft(e; !)) =

(?(b ∧rb c); ft(d; !; e; !)) ∪ (?¬(b ∧rb c); ft(e; !)) =

(?(b ∧rb c); d; ft(!; e; !)) ∪ (?¬(b ∧rb c); ft(e; !)) =

(?(b ∧rb c); d; !) ∪ (?¬(b ∧rb c); ft(e; !)) =

(?(b ∧rb c); d; !) ∪ (?¬(b ∧rb c); e; ft(!)) =

(?(b ∧rb c); d; !) ∪ (?¬(b ∧rb c); e; !)

So there we have it: if we replace the shorthands with their original instructions
or formulas again, we get the following DLTAf-program, which we baptize dπul:

dπul = (?([x := x+ 1]> ∧rb (x = 2));w[x = 2]; !)

∪
(?¬([x := x+ 1]> ∧rb (x = 2));w[x 6= 2]; !)

Clearly, given model M , gJft(X)KMh implies that h = g[x 7→ g(x) + 1]. So,
if g(x) = 1, the instruction w[x = 2] is executed, after which the program
terminates, while for g(x) 6= 1, the instruction w[x 6= 2] is executed after which
the program terminates.

Now let Y = pgaul2pgau(X), so

Y = u
(

+ ([x := x+ 1]>); u(+(x = 2); #2); #2
)
; u(w[x = 2]; !);w[x 6= 2]; !

We compute

ft(Y ) = ft(+([x := x+ 1]>); u(+(x = 2); #2); #2; u(w[x = 2]; !);w[x 6= 2]; !)

= (?([x := x+ 1]>); ft(+(x = 2); #2; #2; u(w[x = 2]; !);w[x 6= 2]; !))
∪
(?¬([x := x+ 1]>); ft(#2; u(w[x = 2]; !);w[x 6= 2]; !))

= (?([x := x+ 1]>); (
(?(x = 2); ft(#2; #2; u(w[x = 2]; !);w[x 6= 2]; !))
∪
(?¬(x = 2); ft(#2; u(w[x = 2]; !);w[x 6= 2]; !))
)

)
∪
(?¬([x := x+ 1]>);w[x 6= 2]; !)

= (?([x := x+ 1]>); (
(?(x = 2);w[x = 2]; !)
∪
(?¬(x = 2);w[x 6= 2]; !)
)

)
∪
(?¬([x := x+ 1]>);w[x 6= 2]; !)
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Note that for each model M and initial valuation g, M 6|=g ¬([x := x+ 1]>), so

gJft(Y )KMh iff gJ?([x := x+ 1]>); (
(?(x = 2);w[x = 2]; !)
∪
(?¬(x = 2);w[x 6= 2]; !)
)KMh

Thus, writing dπu for the rightmost deterministic DLTAf-program, we find

gJft(Y )KMh iff gJdπuK
M
h

We now need to ask ourselves if dπu is ‘sufficiently similar’ to the earlier derived
dπul. Intuitively, we would say that in this working example, this indeed is
the case. After all, [x := x + 1]> always yields true, so the truth of [x :=
x + 1]> ∧rb (x = 2) depends solely on the Boolean reply that x = 2 yields. It
therefore does not matter if we lift ?[x := x + 1]> out of the union, which is
essentially what we have done in the case of dπu.

We can call two programs ‘sufficiently similar’ if they evaluate the same
single instructions, not being tests, or primitive formulas in the same order. We
can formalize that notion with the following proposition:

Proposition 11. Let X be a program in PGAfin
ul , let dπul = ft(X) and let dπu =

ft(pgaul2pgau(X)). Let model M be given and let g be an initial valuation such
that there exists a valuation h such that gJdπulK

M
h . Then

gJdπulK
M
h iff gJdπuK

M
h

and the same single instructions, not being tests, and primitive formulas are
evaluated in the same order during evaluation of dπul and dπu given g.

As said, we do not consider repetition as program constructor in our case
study. Furthermore, our model of side effects is limited to terminating programs,
as opposed to programs that can either end in termination or in divergence. A
proof of this proposition might be found, but is for these reasons perhaps not
very much to the point. In Chapter 9 (Conclusions) we return to this issue.

It is, however, worthwhile to check the proposition for our working example.
Recall that we have the following dπul and dπu:

dπul = (?([x := x+ 1]> ∧rb (x = 2));w[x = 2]; !)

∪
(?¬([x := x+ 1]> ∧rb (x = 2));w[x 6= 2]; !)

dπu = ?([x := x+ 1]>);

(?(x = 2);w[x = 2]; !)

∪
(?¬(x = 2);w[x 6= 2]; !)

It is not hard to check in this case that for any model M and initial valuation
g such that dπul can be evaluated, gJdπulK

M
h iff gJdπuK

M
h . It is also easy to

see that the same single instructions, not being tests, and primitive formulas
are evaluated (in the same order). After all, dπul, first evaluates the primitive



8.4. A WORKING EXAMPLE 73

formulas [x := x + 1]> and x = 2 and uses those to determine the reply of
[x := x + 1]> ∧rb (x = 2). Depending on the reply, it then either evaluates the
single instructions w[x = 2] and !, or w[x 6= 2] and !.

Almost the same goes for dπu. It first evaluates the primitive formula
[x := x + 1]> and depending on the reply (which happens to be always true),
either stops evaluation (which therefore is never the case) or continues with the
evaluation of primitive formula x = 2. Depending on the reply, it like dπul then
either evaluates the single instructions w[x = 2] and !, or w[x 6= 2] and !. So at
least in our working example, Proposition 11 holds.

In a similar way, we can analyze the PGAfin
ul -program

+(¬[x := x+ 1]> ∨rb x = 2); u(w[x = 2]; !);w[x 6= 2]; !

We can compute dπul = ft(X):

ft(X) = ft(+(¬[x := x+ 1]> ∨rb x = 2); u(w[x = 2]; !);w[x 6= 2]; !)

= (?(¬[x := x+ 1]> ∨rb x = 2); ft(u(w[x = 2]; !);w[x 6= 2]; !)
∪
(?¬(¬[x := x+ 1]> ∨rb x = 2); ft(w[x 6= 2]; !))

= (?(¬[x := x+ 1]> ∨rb x = 2); ft(w[x = 2]; !;w[x 6= 2]; !)
∪
(?¬(¬[x := x+ 1]> ∨rb x = 2);w[x 6= 2]; ft(!))

= (?(¬[x := x+ 1]> ∨rb x = 2);w[x = 2]; ft(!;w[x 6= 2]; !)
∪
(?¬(¬[x := x+ 1]> ∨rb x = 2);w[x 6= 2]; !)

= (?(¬[x := x+ 1]> ∨rb x = 2);w[x = 2]; !)
∪
(?¬(¬[x := x+ 1]> ∨rb x = 2);w[x 6= 2]; !)

We once again define Y = pgaul2pgau(X), so

Y = u
(
− ([x := x+ 1]>); #2; +(x = 2)

)
; u(w[x = 2]; !);w[x 6= 2]; !
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We compute

ft(Y ) = ft(−([x := x+ 1]>); #2; +(x = 2); u(w[x = 2]; !);w[x 6= 2]; !)

= (?(¬([x := x+ 1]>)); ft(#2; +(x = 2); u(w[x = 2]; !);w[x 6= 2]; !)
∪
(?¬(¬([x := x+ 1]>)); ft(+(x = 2); u(w[x = 2]; !);w[x 6= 2]; !)

= (?(¬([x := x+ 1]>)); ft(u(w[x = 2]; !);w[x 6= 2]; !)
∪
(?¬(¬[x := x+ 1]>); (

(?(x = 2); ft(w[x = 2]; !;w[x 6= 2]; !))
∪
(?¬(x = 2); ft(w[x 6= 2]; !))
)

= (?(¬([x := x+ 1]>));w[x = 2]; !)
∪
(?¬(¬([x := x+ 1]>)); (

(?(x = 2);w[x = 2]; !)
∪
(?¬(x = 2);w[x 6= 2]; !)
)

We can directly eliminate a situation: ¬([x := x + 1]>) is false for any initial
valuation g. Thus, writing dπu for the second part of the topmost union:

dπu = ?¬(¬([x := x+ 1]>)); (
(?(x = 2);w[x = 2]; !)
∪
(?¬(x = 2);w[x 6= 2]; !)
)

we get given model M for any initial valuation g

gJf(Y )KMh iff gJdπuK
M
h

We can check in similar fashion as before that Proposition 11 holds (for any
initial valuation g). We can conclude that at least for these working examples,
the mentioned proposition is valid. As said, we leave the proof for future work.

This case study started from the abstract approach to attempt decomposi-
tion of complex steering fragments in instruction sequences in PGAfin

ul as ad-
vocated in [5]. We show that we can apply this approach to a rather concrete
instance in imperative programming (namely the set A of basic instructions
given in this chapter) and we obtain some interesting results. In the first place,
it inspired our definition of DLTAf and the analysis and classification of side
effects as discussed in this thesis. Secondly, by the preservation property for-
mulated in Proposition 11, it justifies our proposal for the projection function
pgaul2pgau. It is an interesting result that we are able to show that the pro-
jection pgaul2pgau, which does not have to anything to do with valuations,
preserves the relational semantics (and therefore side effects) of a program via
the diagram at the beginning of this section, which is based on a very natural
translation.
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Conclusions and future work

In this thesis I have given a formal definition of side effects. I have done so
by modifying a system for modelling program instructions and program states,
Quantified Dynamic Logic, to a system called DLAf (Dynamic Logic with As-
signments as Formulas), which in contrast to QDL allows assignments in formu-
las and makes use of short-circuit evaluation. I have shown the underlying logic
in those formulas to be a variant of short-circuit logic called repetition-proof
short-circuit logic.

Using DLAf I have defined the actual and the expected evaluation of a single
instruction. The side effects are then defined to be the difference between the
two. I have given rules for composing those side effects in single instructions,
thus scaling up our definition of side effects to a definition of side effects in
deterministic DLAf-programs. Using this definition I have given a classification
of side effects, introducing as most important class that of marginal side effects.
Finally, I have shown how to use our system for calculating the side effects in a
real system such as PGA.

Our definition gives us an intuitive way to calculate the side effects in a
program. Because of the definition in terms of actual and expected evaluation,
one can easily adapt the system to ones own needs without having to change
the definition of side effects. All one has to do is update the expected evaluation
of a single instruction, or if an entirely new single instruction is added to the
system, define the actual and expected evaluation for it.

In Chapter 5 we have seen how a sound axiomatization of the formulas
in DLAf can be given using the signature {>,⊥, / . }. I have not used
this signature in the first place because I wanted to stick to the conventions
in dynamic logic. It is noteworthy, however, that this alternative and possibly
more elegant signature exists, especially because an axiomatization can be given
for it.

The definition of side effects given here can point the way to a lot more
research. I can see future work being done in the following areas:

• I do not want to claim that the instructions I have defined in DLAf are
exhaustive. Finding out what possible other instructions might have to
be added to DLAf can be an interesting project.

• Another possible subject for future work is the issue of ‘negative’ side
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effects I briefly touched upon in Section 6.5. It is an open question whether
or not we should allow situations in which ‘negative’ side effects occur and
if so, how we should handle them.

• In this thesis, we have mostly been looking at imperative programs. It
should be interesting to see if our definition can be extended to, for exam-
ple, functional programs. Perhaps the work done by Van Eijck in [10], in
which he defines functional programs making use of program states, can
be used for this.

• Another interesting question, which has been raised before in Chapters 2
and 6, is that of side effects in non-deterministic programs. It warrants
further research if it is reasonable to talk about side effects there. One
can imagine that if the set of side effects in all possibilities of a non-
deterministic program are the same, the side effects of the whole can be
defined as exactly that set. What needs to be done if that’s not the case
however, or if we should even want to define side effects of such programs,
are open questions.

• In Chapter 7, the concept of marginal side effects was introduced and the
suggestion was made that this notion can be linked to claims about how
well-written a program is. I have not pursued such claims, but can imagine
further research being done in that area.

• To develop a direct modelling of side effects for the variant of PGA dis-
cussed in Chapter 8, one can introduce valuation functions as program
states and define a relational meaning that separates termination from
deadlock/inaction, say

gJ[XK]h

The idea of this would be to evaluate X as far as possible, which is a
reasonable requirement if X is in second canonical form. In addition, we
could define a termination predicate, e.g. Term(X, g), which states that X
terminates for initial valuation g. Using this we could define a “behavioral
equivalence” on programs X and Y as follows:

∀g,g J[XK]h iff gJ[Y K]h AND Term(X, g) iff Term(Y, g)

Using this, Proposition 11 can probably be proven, especially consider-
ing the in Chapter 4 proven property of DLAf that any program can be
rewritten into a form in which its steering fragments only contain primitive
formulas and their negations.

• Also mentioned in Chapter 8 is the possibility to introduce extra logical
operators, namely Logical Left And (LLAnd) and its dual Logical Left Or
(LLOr). Introducing these in DLAf is fairly straight-forward: one only
needs to define its truth in M :

M |=g φ1 | φ2 iff M |=g φ1 ∨
rb
φ2 (DLA7c)

M |=g φ1 & φ2 iff M |=g φ1 ∧rb φ2 (DLA7d)

as well as update the program extraction function:

ΠM
g (φ1�φ2) = ΠM

g (φ1); ΠM
h (φ2) if gJΠ

M
g (φ1)KMh and � ∈ {|,&}



77

To introduce the same operator in PGAul, projection functions in the same
style as the ones given in Chapter 8 for SCLAnd and SCLOr need to be
defined.

• Another possible matter for further study is whether side effects can be
used in natural language. In the Introduction, we have already seen that
they can occur in the pregnant wife example, where your wife told you
to do the grocery shopping if she did not call you, which she later did,
but to tell you that she was pregnant. Possibly there is a role for side
effects when explaining misunderstandings. There is no doubt that side
effects can be the cause of misunderstandings. The pregnant wife example
illustrates that: you could decide to do grocery shopping to be on the safe
side after her call, claiming her call indicated you might have to shop, only
to run into your wife at the store also shopping (who, of course, didn’t
want to convey the message that you should shop at all).

When we take the Dynamic Epistemic Logic system mentioned in [12], the
knowledge of two communicating agents is captured by an epistemic state,
one for each agent. The agents also have an epistemic state for what they
think is the (relevant) knowledge of the other agent with whom they are
in conversation. A misunderstanding has occurred when an agent updates
his own epistemic state in a different way than the other agents expects
him to. There are a lot of ways in which this can happen, but relevant
for us is that one of those ways is, when a side effect from an utterance
occurs of which one of the agents is not aware.

If one of the agents is aware of the side effect and also of the fact the
other agent might not be aware of it, it may be recommended to point
out this side effect to the other agent. In our example of the pregnant
wife calling, this would mean that you would have to ask your wife on
the phone that the fact she called leaves you in doubt about the grocery
shopping. Naturally, though, we recommend a more enthusiastic response
to the news she is pregnant first.
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