
1

A Data-Oriented Parsing Model for
Lexical-Functional Grammar

Rens Bod and Ronald Kaplan
rens@science.uva.nl, kaplan@parc.xerox.com

Submitted for Publication. Comments are wellcome.

Abstract

Data-Oriented Parsing (DOP) models of natural language propose that human language

processing works with representations of concrete past language experiences rather than

with abstract linguistic rules. These models operate by decomposing the given

representations into fragments and recomposing those pieces to analyze new utterances.

A probability model is used to select from all possible analyses of an utterance the most

likely one. Previous DOP models were based on simple tree representations that neglect

grammatical functions and syntactic features (Tree-DOP). In this paper, we present a new

DOP model based on the more articulated representations of Lexical-Functional

Grammar theory (LFG-DOP). LFG-DOP triggers a new, corpus-based notion of

grammaticality, and an interestingly different class of probability models. An empirical

evaluation of the model shows that larger as well as richer fragments improve

performance. Finally, we go into some of the conceptual implications of our approach.

1  Introduction

During the last few years, a new approach to linguistic analysis has started to emerge. This

approach, which has come to be known as Data-Oriented Parsing or DOP1, embodies the

assumption that human language comprehension and production works with representations of

concrete past language experiences rather than with abstract linguistic rules. The models that

1 For examples of work within this framework, see Bender and Riehemann (2000), Bod (1993, 1998), Bod

and Kaplan (1997, 1998), Bod et al. (2002), Bonnema et al. (1997), Carroll and Weir (2001), Charniak

(1996), Coleman and Pierrehumbert (1997), Collins and Duffy (2001), de Pauw (2000), Goodman (1996),

Kaplan (1996), Neumann (1998), Scha (1990), Scha et al. (1999), Sima'an (1999), Way (1999), among

others.
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instantiate this approach operate by decomposing the given representations into fragments and

recomposing those pieces to analyze (infinitely many) new utterances. A probability model is

used to select from all possible analyses of an utterance the most likely one.

A DOP model can in principle be defined for every theory of linguistic representation or

utterance analysis. Any theory of linguistic representation is usually part of a larger linguistic

theory that also provides for rules, derivational mechanisms, and other specifications by which

the representations for a particular utterance are determined. The rules of the larger theory are

chosen and organized not just in order to make this determination, however. They also carry a

burden of scientific explanation. Thus a rule set is evaluated according to how simple the

individual rules are, how well they express independent linguistic generalizations, and how

freely they interact to produce the set of all possible representations for all possible utterances.

In writing a grammar, a linguist is in effect searching for the smallest, nonredundant,

orthogonal basis for the whole set of utterance-representation assignments. Grammatical

formalisms are intended to aid in this search by limiting the amount of information that a given

rule can make reference to.

The empirical challenge for such a pursuit is that some constructions of natural language

have dependencies (e.g. special meanings or statistical privileges of occurrence) that cannot be

accounted for by the free interaction of smallest independent rules. Idioms and other fixed

constructions are the typically recognized examples, but proponents of Construction Grammar

observe that constructions with unanalyzable properties are also quite prevalent (Fillmore et al.

1988; Goldberg 1995). The rule formalisms of most linguistic theories embody the

smallest/independent bias so strongly that they make it difficult to characterize the special

properties of larger units of language. More than that, since larger constructions are usually

made up of smaller ones, it is conceptually difficult to decide where to draw the boundaries

around a particular set of dependencies.

A DOP model stands in sharp contrast to the usual linguistic approach. A DOP model

that incorporates the utterance representations of a given linguistic theory does not incorporate

the particular grammatical rules and derivational mechanisms of that theory. And most

importantly, it is not at all biased in the direction of smallest/independent specification. A DOP

model does not even require the identification of a specific collection of larger constructions; it

allows for utterance analyses to be created from corpus structures of arbitrary size and

complexity, even from structures that are actually substructures of other ones. A probability

model is used to choose from among the collection of different structures of different sizes

those that make up the most appropriate analysis of a particular utterance.
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Thus, although a DOP model for a given theory of representation will produce utterance

analyses that are compatible with that theory, it does not depend on or contribute to the

discovery of any set of rules or mechanisms of a conventional "explanatory" theory of

language. DOP models based on finite corpora are productive, however, in that they can

provide analyses for infinitely many novel utterances. And a DOP model may be regarded as

offering an alternative view of what native speakers know when they know a language.

Linguistic competence may consist not of a collection of succinctly represented generalizations

that characterize a language; rather, competence may be nothing more than probabilistically

organized memories of prior linguistic experiences.

In accordance with the general DOP architecture outlined by Bod (1995), the first step in

constructing a particular DOP model for a language is to specify settings for the following four

parameters:

•  a formal definition of a well-formed representation for utterance analyses,

•  a set of decomposition operations that divide a given utterance analysis into a set of

fragments,

•  a set of composition operations by which such fragments may be recombined to derive an

analysis of a new utterance, and

•  a probability model that indicates how the probability of a new utterance analysis is

computed on the basis of the probabilities of the fragments that combine to make it up.

The second step is to acquire a corpus each of whose utterances is annotated with a well-formed

and linguistically most appropriate representation. The third step is to generate the fragments for

the given corpus by systematically applying the decomposition operations to each of the corpus

representations. A new utterance analysis can then be derived by applying the composition

operations to a sequence of the resulting fragments. The probability model is used to rank

different analyses of an utterance.

The general DOP architecture thus allows for a wide range of different instantiations. It

postulates a probabilistic, corpus-based approach, but it leaves open how the utterance-analyses

in the corpus are represented, what the substructures of these utterance-analyses are that play a

role in processing new input, and what the details of the probabilistic calculations are. The

original DOP model, called Tree-DOP, uses surface phrase-structure trees as its corpus

representations (Bod 1992, 1993). Tree-DOP is limited, however, in that its representations do

not encode grammatical functions as subject, predicate and object, or agreement features. In this

paper, we investigate what is involved in creating a DOP model for linguistically sophisticated
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representations as proposed by modern linguistic theories. We have chosen the representations

defined by Lexical-Functional Grammar (LFG) theory, since they have been shown to apply to

a wide range of languages and linguistic phenomena (cf. Dalrymple et al. 1995; Bresnan 2001).

Moreover, the recent availability of LFG-annotated corpora provides an actual test domain for

our model.

The rest of this paper is organized as follows. We start with a review of the original

Tree-DOP model, and explain the nature of the DOP hypothesis which was put forward in Bod

(1998) and which states that parse accuracy increases with increasing fragment size. In section

3, we investigate what is involved in extending Tree-DOP to the representations proposed by

LFG theory. The resulting LFG-DOP model triggers a new, corpus-based notion of

grammaticality. In section 4, we briefly explain how existing parsing models can be used to test

LFG-DOP. In section 5, we report on a number of experiments showing, among other things,

that the DOP hypothesis receives further support from LFG-DOP, and that LFG-DOP

outperforms Tree-DOP if evaluated on tree structures. Finally, we will go into some of the

conceptual implications of our results.

2  Review of Tree-DOP

We begin with a review of the original Tree-DOP model, since this model will be the basis for

our DOP model for LFG-representations. The Tree-DOP model was developed by Bod (1992,

1993) although the presentation here is somewhat different from the original. As the name

suggests, the linguistic representations used by the Tree-DOP model are standard phrase

structure trees that characterize the surface constituent structures of utterances. Tree-DOP

admits only trees without nonbranching dominance cycles and thus guarantees that any finite

string has only a finite degree of ambiguity.

The decomposition operations of Tree-DOP produce connected subtrees of an utterance

representation. Tree-DOP has two decomposition operations:

(1)  Root: the Root operation selects any node of a tree to be the root of the new subtree and

erases all nodes except the selected node and the nodes it dominates.

(2)  Frontier: the Frontier operation then chooses a set (possibly empty) of nodes in the new

subtree different from its root and erases all subtrees dominated by the chosen nodes.

For example, suppose we have the tree in figure 1 (we leave out some subcategories to keep the

example simple).
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NP VP

S

NP

Mary

V

likes

John

Figure 1. An example tree for John likes Mary

Then the result of applying the Root operation to the VP-labeled node above is the subtree

VP

NP

Mary

V

likes

Figure 2. A fragment of the tree in figure 1

Applying the Frontier operation to the node sets {NP} and {V, NP} gives the respective

fragments

VP

NPV

likes

VP

NPV

Figure 3. Two other fragments

Note that the decomposition operations exclude fragments such as
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NP VP

S

John NP

Mary

NP

NP VP

S

John

Mary

V

likes

                (a)                             (b)                         (c)

Figure 4. Example of non-valid fragments

Subtree (a) is not produced because Frontier cannot choose a subtree's root node, and the

disconnected structure in (b) is not produced because Frontier erases complete subtrees.

Finally, (c) is excluded because Frontier erases all subtrees dominated by a chosen node. The

fact that Frontier is defined to delete all daughter subtrees has the effect of preserving the

integrity of subcategorization dependencies that are typically encoded as sister relations in

phrase structure representations.

Tree-DOP specifies only one composition operation, a node-substitution operation that

replaces the left-most nonterminal frontier node in a subtree with a fragment whose root
category matches the category of the frontier node. The composition operator is notated by °
and its effect is illustrated in figure 5:

°

NP VP

S

NPV

likes

NP =

NP VP

S

NPV

likes

Mary

Mary

     t1 t2          t3

Figure 5. Illustration of the composition operation
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The resulting tree t3 can be composed with another NP fragment t4 to derive an analysis t5 for

the sentence Mary likes John:

NP VP

S

NPV

likes

Mary

NP

John

=

NP VP

S

NPV

likes

Mary

John

°

     t3  t4          t5

Figure 6. Deriving an analyis for Mary likes John

Thus the sequence of fragments <t1, t2, t4> is a derivation for the analysis t5 under the

composition operator °; this fact can be written as the expression t1 ° t2 ° t4 = t5 with the

convention that ° is left-associative. Notice that the representation t5 can also be derived from

other sequences of fragments that the decomposition operations produce from the tree in figure

1. For example

NP VP

S

John

=

NP VP

S

NPV

likes

Mary

John

NP

Mary

VP

NPV

V

likes

NP° ° ° °

Figure 7. Another derivation for the same analysis for Mary likes John

This particular Tree-DOP derivation corresponds to a context-free derivation in that each of its

fragments is equivalent to a simple context-free rule. Thus there is a considerable amount of

spurious ambiguity in Tree-DOP, in that there are different derivations for a given tree -- not to

be confused with structural ambiguity when there are different trees for a given sentence.
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The fact that there are typically many different derivations for a given representation R is

the major point of departure for the Tree-DOP probability model. If each derivation D has a

probability P(D), then the probability of deriving R is the sum of the individual derivation

probabilities:

 (1) P(R) = ΣD derives R P(D)

A Tree-DOP derivation D = <t1, t2 ... tk> is produced by a stochastic branching process. It

starts by randomly choosing a fragment t1 labeled with the initial category (e.g. S). At each

subsequent step, a next fragment is chosen at random from among the set of competitors for

composition into the current subtree. The chosen fragment is composed with the current subtree

to produce a new one. The process stops when a tree results with no nonterminal leaves. Let

CP(t | CS) denote the probability of choosing a tree t from a competition set CS containing t.

Then the probability of a derivation is the product of the chosen fragments:

 (2) P(<t1, t2 ... tk>) = Π i  CP(ti | CSi)

where the competition probability CP(t | CS) is given by

CP(t | CS) =
Σt' ∈ CS P(t')

P(t)
(3)

Here, P(t) is the fragment probability for t in a given corpus. Let Ti-1 = t1 ° t2 ° ... ° ti-1 be the

subanalysis just before the ith step of the process, let LNC(Ti-1) denote the category of the

leftmost nonterminal frontier node of Ti-1, and let r(t) denote the root category of a fragment t.

Then the competition set at the ith step is

 (4) CSi = { t : r(t) = LNC(Ti-1) }

That is, the competition sets for Tree-DOP are determined by the category of the leftmost

nonterminal of the current subanalysis.2 We observe that at every step in a well-formed

2 This is not the only possible definition of competition set. As Manning and Carpenter (1997) have shown,

the competition sets can be made dependent on the composition operation. Their left-corner language
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derivation it is always the case that LNC(Ti-1) = r(ti). This means that the competition set for

any fragment t depends only on its root node category r(t) and is thus independent of the

derivation it appears in. For Tree-DOP, then, the competition probabilities are simplified to the

formula

CP(t | CS) = CP(t) =
P(t)

Σt' : r( t') = r( t) P(t')
(5)

where the fragment probability P(t) is directly estimated by the relative frequency of t in the

corpus.

The expressions (1)-(5) define the probability of producing a particular representation in

terms of fragment probabilities. We are often interested in the probability distribution for the

representations that are assigned to a particular word string W. This distribution is determined

by a process that samples just from the subset of representations whose yield is W. The

probability of a representation R given that it yields W is defined by the conditional probability

P(R | (6) R  yields W) =   
P(R)  

ΣR' yields W  P(R')

During the past few years, the Tree-DOP model has been extensively evaluated in the context

of natural language disambiguation, using standard domains such as the ATIS corpus (e.g. Bod

1993, 1998; Goodman 1998, 2001; Sima'an 1995) and the Wall Street Journal corpus (e.g.

Sima'an 2000; Bod 2001). Natural language disambiguation is a hot topic in the field of natural

language processing and all state-of-the-art models use nowadays a probabilistic approach to

predict the best parse of a sentence (see Manning & Schütze 1999 for an overview). The

evaluation method employed by these models is the so-called blind testing method (Black et al.

1991). This method randomly divides a corpus of manually disambiguated sentences into a

training set and a test set (usually a 90%/10% division). The analyses from the training set are

used to "train" the model, while the sentences of the test set are used as input when the model is

tested. The degree to which the most probable analyses generated by the model match with the

test set analyses is a measure for the parse accuracy of the model.

By systematically testing the effect of various contraints on the fragments that can be

derived from the training set, Bod (1993, 1998, 1999, 2001) has observed an interesting

model would also apply to Tree-DOP, yielding a different definition for the competition sets. But the

properties of such Tree-DOP models have not been investigated.
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empirical property which is known as the DOP hypothesis. This hypothesis states that the

parse accuracy increases with increasing fragment size. In other words, any restriction on the

fragments from the training set decreases the parse accuracy on the test set. The DOP

hypothesis is now widely accepted and has been corroborated by many others, including

Sima'an (1995, 1999, 2000), Sekine and Grishman (1995), Bonnema et al. (1997), Poutsma

(2000), de Pauw (2000), Chappelier and Rajman (2001), and Collins and Duffy (2001).

Unfortunately, the hypothesis is rather self-evident for Tree-DOP. This is because the corpus

representations used by Tree-DOP do not encode dependencies between subject, predicate and

object, and therefore large tree fragments are usually needed to capture these dependencies.3 All

modern linguistic theories propose more articulated representations in order to characterize such

grammatical dependencies. This raises the question whether the DOP hypothesis can also be

corroborated for sophisticated linguistic representations. It may very well be the case that for

such representations maximal parse accuracy is already achieved by a more restricted set of

fragments, or even by the minimal set of smallest fragments (which would correspond to the

basic grammar rules of the underlying linguistic theory). In this paper we will develop and test

a DOP model for the representations proposed by Lexical-Functional Grammar (LFG) theory.

One of the reasons for using LFG representations is the availability of LFG-annotated corpora,

thus providing an actual test domain for the DOP hypothesis. Moreover, LFG representations

have been shown to apply to a wide range of languages and linguistic phenomena (cf.

Dalrymple et al. 1995; Bresnan 2001).

3  A DOP model based on Lexical-Functional representations: LFG-DOP

We now investigate what is involved in extending the Tree-DOP model to the representations

of Lexical-Functional Grammar theory (Kaplan and Bresnan 1982). We thus define new

settings for the four DOP parameters given in section 1.

3 Some parsing models try to capture these dependencies by associating each constituent label in the

surface tree with its headword (e.g. Collins 1999; Charniak 2000). As a consequence, however, these

models cannot capture dependencies that involve non-headwords of constituents, such as between an

adjective and a preposition in an obvious rule to everybody. Tree-DOP, on the other hand, can easily

capture this dependency by a subtree which has obvious and to as its only lexical items. Bod (1998, 2001)

gives for a more extensive criticism to so-called "head-lexicalized" parsing models.
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Representations

The definition of a well-formed representation for utterance-analyses is directly taken from

LFG theory, that is, every utterance is annotated with a c-structure, an f-structure and a mapping

φ between them. The c-structure is a tree that describes the surface constituent structure of an

utterance; the f-structure is an attribute-value matrix marking such grammatical relations as

subject, predicate and object, as well as providing agreement features and semantic forms; and

φ is a correspondence function that maps nodes of the c-structure into units of the f-structure

(Kaplan & Bresnan 1982; Kaplan 1989). The following figure shows a representation for the

utterance Kim eats. (We leave out some features to keep the example simple.)

S

NP VP

Kim eats

PRED   'Kim'

NUM     SG 
SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 8. An LFG representation for Kim eats

Note that the φ correspondence function gives an explicit characterization of the relation

between the superficial and underlying syntactic properties of an utterance, indicating how

certain parts of the string carry information about particular units of underlying structure. As

such, it will play a crucial role in our definition for the decomposition and composition

operations of LFG-DOP. In figure 8 we see for instance that the NP node maps to the subject f-

structure, and the S and VP nodes map to the outermost f-structure.

It is generally the case that the nodes in a subtree carry information only about the f-

structure units that the subtree's root gives access to. The notion of accessibility is made precise

in the following definition:

An f-structure unit f is φ-accessible from a node n iff either n is φ-linked to f (that is, f = φ(n))

or f is contained within φ(n) (that is, there is a chain of attributes that leads from φ(n) to f).

All the f-structure units in figure 8 are φ-accessible from for instance the S node and the VP

node, but the TENSE and top-level PRED are not φ-accessible from the NP node.
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According to LFG theory, c-structures and f-structures must satisfy certain formal well-

formedness conditions. A c-structure/f-structure pair is a valid LFG representation only if it

satisfies the Nonbranching Dominance, Uniqueness, Coherence and Completeness conditions

(Kaplan & Bresnan 1982). Nonbranching Dominance demands that no c-structure category

appears twice in a nonbranching dominance chain; Uniqueness asserts that there can be at most

one value for any attribute in the f-structure; Coherence prohibits the appearance of grammatical

functions that are not governed by the lexical predicate; and Completeness requires that all the

functions that a predicate governs appear as attributes in the local f-structure. The first three

conditions (Nonbranching Dominance, Uniqueness and Coherence) are monotonic, in the sense

that if they are unsatisfied by a substructure they will also be unsatisfied by any superstructure.

The Completeness condition, on the other hand, is non-monotonic in that larger structures may

satisfy this condition while their substructures do not (see Kaplan & Bresnan 1982). Note that

Completeness and Coherence are the means by which LFG enforces the subcategorization

requirements of particular predicates.

Decomposition operations and Fragments

Many different DOP models are compatible with the system of LFG representations (cf.

Kaplan 1996). In this paper we outline a basic LFG-DOP model which extends the operations

of Tree-DOP to take correspondences and f-structure features into account. The decomposition

operations for this model will produce fragments of the composite LFG representations. These

will consist of connected subtrees whose nodes are in φ-correspondence with sub-units of f-

structures. We extend the Root and Frontier decomposition operations of Tree-DOP so that

they also apply to the nodes of the c-structure while respecting the fundamental principles of c-

structure/f-structure correspondence.

When a node is selected by the Root operation, all nodes outside of that node's subtree

are erased, just as in Tree-DOP. Further, for LFG-DOP, all φ links leaving the erased nodes are

removed and all f-structure units that are not φ-accessible from the remaining nodes are erased.

Root thus maintains the intuitive correlation between nodes and the information in their

corresponding f-structures. For example, if Root selects the NP in figure 8, then the f-structure

corresponding to the S node is erased, giving figure 9 as a possible fragment:
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NP

Kim

PRED   'Kim'

NUM     SG 

Figure 9. A fragment obtained by the Root operation

In addition the Root operation deletes from the remaining f-structure all semantic forms that are

local to f-structures that correspond to erased c-structure nodes, and it thereby also maintains

the fundamental two-way connection between words and meanings. Thus, if Root selects the

VP node so that the NP is erased, the subject semantic form "Kim" is also deleted:

VP

eats

NUM     SG SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 10. Another Root-generated fragment

As with Tree-DOP, the Frontier operation then selects a set of frontier nodes and deletes all

subtrees they dominate. Like Root, it also removes the φ links of the deleted nodes and erases

any semantic form that corresponds to any of those nodes. Frontier does not delete any other f-

structure features. This reflects the fact that all features are φ-accessible from the fragment's

root even when nodes below the frontier are erased. For instance, if the VP in figure 8 is

selected as a frontier node, Frontier erases the predicate "eat(SUBJ)" from the fragment:

S

NP VP

Kim

PRED   'Kim'

NUM     SG 
SUBJ

TENSE      PRES

Figure 11. A fragment obtained by the Frontier operation
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Note that the Root and Frontier operations retain the subject's NUM feature in the VP-rooted

fragment of figure 10, even though the subject NP is not present. This reflects the fact, usually

encoded in particular grammar rules or lexical entries, that verbs of English carry agreement

features for their subjects. On the other hand, the fragment in figure 11 retains the predicate's

TENSE feature, reflecting the possibility that English subjects might also carry information

about their predicate's tense. Subject-tense agreement as encoded in figure 11 is a pattern seen in

some languages (e.g. the split-ergativity pattern of languages like Hindi, Urdu and Georgian)

and thus there is no universal principle by which fragments such as in figure 11 can be ruled

out. But in order to represent directly the possibility that subject-tense agreement is not a

dependency of English, we also allow an S fragment in which the TENSE feature is deleted, as

in figure 12.

S

NP VP

Kim

PRED   'Kim'

NUM     SG 
SUBJ

Figure 12. A fragment obtained by the Discard operation

The fragment in figure 12 is produced by a third decomposition operation, Discard, defined to

construct generalizations of the fragments supplied by Root and Frontier. Discard acts to delete

combinations of attribute-value pairs subject to the following restriction: Discard does not

delete pairs whose values φ-correspond to remaining c-structure nodes.

This condition maintains the essential correspondences of LFG representations: if a c-

structure and an f-structure are paired in one fragment provided by Root and Frontier, then

Discard also pairs that c-structure with all generalizations of that fragment's f-structure. For

convenience, we will sometimes use the term generalized fragment to indicate a fragment

generated by one or more applications of the Discard operation. The fragment in figure 12

results from applying Discard to the TENSE feature in figure 11. Discard also produces

fragments such as figure 13, where the subject's number in figure 10 has been deleted:



15

VP

eats

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 13. Another fragment obtained by the Discard operation

Again, since we have no language-specific knowledge apart from the corpus, we have no basis

for ruling out fragments like figure 13. Indeed, it is quite intuitive to omit the subject's number

in fragments derived from sentences with past-tense verbs or modals. Thus the specification of

Discard reflects the fact that LFG representations, unlike LFG grammars, do not indicate

unambiguously the c-structure source (or sources) of their f-structure feature values.

The composition operation

In LFG-DOP the operation for combining fragments, again indicated by °, is carried out in two

steps. First the c-structures are combined by left-most substitution subject to the category-

matching condition, just as in Tree-DOP. This is followed by the recursive unification of the f-

structures corresponding to the matching nodes. The result retains the φ correspondences of the

fragments being combined. A derivation for an LFG-DOP representation R is a sequence of

fragments the first of which is labeled with S and for which the iterative application of the

composition operation produces R.

We illustrate the two-stage composition operation by means of a simple example. We

therefore assume a corpus containing the representation in figure 8 for the sentence Kim eats

and the representation in figure 14 for the sentence John fell.

S

NP VP

PRED 'John'

NUM    SG 
SUBJ

TENSE      PAST

PRED      'fall(SUBJ)'John fell

Figure 14. A representation for John fell
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Figure 15 shows the effect of the LFG-DOP composition operation using two fragments from

this corpus.  The NP-rooted fragment is substituted for the NP in the first fragment, and the

second f-structure unifies with the first f-structure, resulting into a representation for the new

sentence Kim fell.

S

NP VP

NUM    SG SUBJ

TENSE      PAST

PRED      'fall(SUBJ)'fell

°
=

NP

Kim

PRED   'Kim'

NUM     SG 

S

P VP

PRED 'Kim'

NUM    SG 
SUBJ

ENSE      PAST

PRED      'fall(SUBJ)'Kim fell

Figure 15. Illustration of the LFG-DOP composition operation

This representation satisfies the well-formedness conditions and is therefore valid. Note that in

LFG-DOP, as in the tree-based DOP models, the same representation may be produced by

several distinct derivations involving different fragments.

While the example sentence Kim fell is clearly grammatical, LFG-DOP can also

produce representations for sentences that are intuitively ungrammatical. To show this, we

extend our example corpus with the representation in figure 16 for the sentence People ate.
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S

NP VP

ate

PRED 'people'

NUM    PL 
SUBJ

TENSE      PAST

PRED      'eat(SUBJ)'people

Figure 16. A representation for People ate

Then the following derivation produces a valid representation for the intuitively ungrammatical

sentence People eats (where the second fragment is produced by discarding the number feature

of eats):

S

NP VP

PRED 'people'

NUM    PL 
SUBJ

people

VP

eats

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

° =

S

NP VP

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'people eats

PRED 'people'

NUM    PL 

Figure 17. A valid representation for an intuitively ungrammatical sentence

Thus this representation assigns a plural interpretation to the sentence People eats. Note that

LFG-DOP can also produce a (valid) representation which assigns a singular interpretation to

People eats, if the number feature of people rather than eats is discarded. Finally, LFG-DOP

produces a (valid) representation with an unmarked number value if the number features of
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both people and eats are discarded. (It is left to the probability model which of these

representations is ranked highest.)

This system of fragments and composition thus provides a representational basis for a

robust model of language comprehension in that it assigns at least some representations to

many strings that would generally be regarded as ill-formed. A correlate of this advantage,

however, is the fact it does not offer a direct formal account of metalinguistic judgments of

grammaticality. Nevertheless, we can reconstruct the notion of grammaticality by means of the

following definition:

A sentence is grammatical with respect to a corpus if and only if it has at least one

valid representation with at least one derivation without generalized fragments.

Thus the system is robust in that it assigns three representations (singular, plural, and unmarked

as the subject's number) to the string People eats, based on fragments for which the number

feature of people, eats, or both has been discarded. But unless the corpus contains non-plural

instances of people or non-singular instances of eats, there will be no Discard-free derivation

and the string will be classified as ungrammatical (with respect to the corpus).

Probability models

As in Tree-DOP, an LFG-DOP representation R can typically be derived in many different

ways. Thus, if each derivation D has a probability P(D), then the probability of deriving R is

again the sum of the individual derivation probabilities:

 (7) P(R)  =  ΣD derives R P(D)

An LFG-DOP derivation is also produced by a stochastic process which starts by randomly

choosing a fragment whose c-structure is labeled with the initial category (e.g. S). At each

subsequent step, a next fragment is chosen at random from among the fragments that can be

composed with the current subanalysis. The chosen fragment is composed with the current

subanalysis to produce a new one; the process stops when an analysis results with no non-

terminal leaves. As with Tree-DOP, we call the set of composable fragments at a certain step in

the stochastic process the competition set at that step. Let CP(f | CS) denote the probability of

choosing a fragment f from a competition set CS containing f, then the probability of a

derivation D = <f1, f2 ... fk> is
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 (8) P(<f1, f2 ... fk>)  =  Π i CP(fi | CSi)

where the competition probability CP(f | CS) is expressed in terms of fragment probabilities

P(f):

Σf'∈ CS P(f')

P(f)  

(9) CP(f | CS)  =

Tree-DOP is the special case where there are no conditions of validity other than the ones that

are enforced on-line at each step of the stochastic process by the composition operation. This is

not generally the case and is certainly not the case for the Completeness Condition of LFG

representations: Completeness is a property of a final representation that cannot be evaluated at

any intermediate steps of the process (we will return to this property below). However, we can

define probabilities for the valid representations by sampling only from such representations in

the output of the stochastic process. The probability of sampling a particular valid representation

R is given by

P(R | R is valid)  =  
 P(R)  

ΣR' is valid  P(R')
(10)

This formula assigns probabilities to valid representations whether or not the stochastic process

guarantees validity. The valid representions for a particular word string W are obtained by a

further sampling step and their probabilities are given by:

P(R | R is valid and yields W)  =   
P(R)  

ΣR' is valid and yields W  P(R')
(11)

The formulas (7) through (11) will be part of any LFG-DOP probability model. The models

will differ only in how the competition sets are defined, and this in turn depends on which well-

formedness conditions are enforced on-line during the stochastic branching process and which

are evaluated by the off-line validity sampling process.

One model, which we call M1, is a straightforward extension of Tree-DOP's probability

model. This computes the competition sets only on the basis of the category-matching

condition, leaving all other well-formedness conditions for off-line sampling. Thus for M1 the
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competition sets are defined simply in terms of the categories of a fragment's c-structure root
node. Suppose that Fi-1 = f1 ° f2 ° ... ° fi-1 is the current subanalysis at the beginning of step i in

the process, that LNC(Fi-1) denotes the category of the leftmost nonterminal node of the c-

structure of Fi-1, and that r(f) is interpreted as the root node category of f's c-structure

component. Then the competition set for the ith step is

(12)      CSi = { f : r(f) = LNC(Fi-1) }

Since these competition sets depend only on the category of the leftmost nonterminal of the

current c-structure, the competition sets group together all fragments with the same root

category, independent of any other properties they may have or that a particular derivation may

have. The competition probability for a fragment can be expressed by the formula

CP(f)  =   
P(f)  

Σ  P( f')
(13)

f' : r(f')=r(f)

We see that the choice of a fragment at a particular step in the stochastic process depends only

on the category of its root node; other well-formedness properties of the representation are not

used in making fragment selections. Thus, with this model the stochastic process may produce

many invalid representations; we rely on sampling of valid representations and the conditional

probabilities given by (10) and (11) to take the Uniqueness, Coherence, and Completeness

Conditions into account.

Another possible model (M2) defines the competition sets so that they take a second

condition, Uniqueness, into account in addition to the root node category. For M2 the

competing fragments at a particular step in the stochastic derivation process are those whose c-

structures have the same root node category as LNC(Fi-1) and also whose f-structures are

consistently unifiable with the f-structure of Fi-1. Thus the competition set for the ith step is

 (14)     CSi  =  { f : r(f) = LNC(Fi-1) and f is unifiable with the f-structure of Fi-1}

Although it is still the case that the category-matching condition is independent of the

derivation, the unifiability requirement means that the competition sets vary according to the

representation produced by the sequence of previous steps in the stochastic process. Unifiability

must be determined at each step in the process to produce a new competition set, and the

competition probability remains dependent on the particular step:
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CP(fi | CSi)  =   
P(fi)  

Σ  P(f )f: r( f)=r( fi ) and f is unifiable with Fi-1

(15)

On this model we again rely on sampling and the conditional probabilities (10) and (11) to take

just the Coherence and Completeness Conditions into account.

In model M3 we define the stochastic process to enforce three conditions, Coherence,

Uniqueness and category-matching, so that it only produces representations with well-formed

c-structures that correspond to coherent and consistent f-structures. The competition

probabilities for this model are given by the obvious extension of (15). It is not possible,

however, to construct a model in which the Completeness Condition is enforced during the

derivation process. This is because the satisfiability of the Completeness Condition depends not

only on the results of previous steps of a derivation but also on the following steps (see Kaplan

and Bresnan 1982). This nonmonotonic property means that the appropriate step-wise

competition sets cannot be defined and that this condition can only be enforced at the final stage

of validity sampling.

In each of these three models the category-matching condition is evaluated on-line

during the derivation process while other conditions are either evaluated on-line or off-line by

the after-the-fact sampling process. LFG-DOP is crucially different from the tree-based DOP

models in that at least one validity requirement, the Completeness Condition, must always be

left to the post-derivation process. Note that a number of other models are possible which

enforce other combinations of these three conditions. However, in our experiments in section 5

we will only test model M3, as this model selects only those fragments at each derivation step

that may result in a valid LFG representation, thus reducing the off-line validity checking just to

the Completeness condition.

Note that the computation of the competition probability in the above formulas still

requires a definition for the fragment probability P(f). In Bod and Kaplan (1998), the

probability of a fragment was simply defined as its relative frequency in the bag of all

fragments generated from the corpus, just as in most Tree-DOP models. We will refer to this

fragment estimator as "simple relative frequency" or "simple RF". The simple RF estimator

does not distinguish between Root/Frontier-generated fragments and Discard-generated

fragments, the latter being in fact generalizations over Root/Frontier-generated fragments.

Although Bod and Kaplan (1998) showed with an example that the simple RF estimator

exhibits a preference for the most specific representation containing the fewest feature

generalizations (mainly because specific representations tend to have more derivations than
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generalized representations), they did not perform any empirical evaluation. In this paper, we

will assess their simple RF estimator in section 5.

However, we will also assess an alternative definition of fragment probability which is a

refinement of simple RF. This alternative fragment probability definition does distinguish

between fragments supplied by Root/Frontier and fragments supplied by Discard. We will

treat the first type of fragments as seen events, and the second type of fragments as previously

unseen events. We thus create two separate bags corresponding to two separate distributions: a

bag with fragments generated by Root and Frontier, and a bag with fragments generated by

Discard. We assign probability mass to the fragments of each bag by means of discounting:

the relative frequencies of seen events are discounted and the gained probability mass is

reserved for the bag of unseen events (cf. Ney et al. 1997). We accomplish this by a very

simple estimator: the Turing-Good estimator (Good 1953) which computes the probability

mass of unseen events as n1/N where n1 is the number of singleton events and N is the total

number of seen events. This probability mass is assigned to the bag of Discard-generated

fragments. The remaining mass (1 − n1/N) is assigned to the bag of Root/Frontier-generated

fragments. Thus the total probability mass is redistributed over the seen and unseen fragments.

The probability of each fragment is then computed as its relative frequency in its bag multiplied

by the probability mass assigned to this bag. Let | f | denote the frequency of a fragment f, then

its probability is given by:

| f |

Σf': f' is generated by Root/Frontier | f'|
(1 − n1/N)P(f | f is generated by Root/Frontier)  =(16)

P(f | f is generated by Discard)  = (n1/N)
| f |

Σf': f' is generated by Discard  | f'|
(17)

We will refer to this fragment probability estimator as "discounted relative frequency" or

"discounted RF". Note that the discounted RF estimator assigns less probability mass to

Discard-generated fragments than the simple RF estimator. For each Root/Frontier-generated

fragment there are exponentially many Discard-generated fragments (exponential in the

number of features the fragment contains), which means that the Discard-generated fragments

absorb a vast amount of probability mass under the simple RF estimator. The discounted RF

estimator, on the other hand, assigns a fixed probability mass to the distribution of Discard-

generated fragments and therefore the exponential explosion of these fragments does not affect

the probabilities of Root/Frontier-generated fragments. We want to note that neither of the two
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relative frequency estimators maximizes the likelihood of the training data (cf. Abney 1997).

The application of maximum likelihood or log-linear models to LFG-DOP (Berger et al. 1996;

Riezler et al. 2000) will be explored in the future.4

4  Parsing with LFG-DOP: selecting the most probable analysis

In his PhD-thesis, Cormons (1999: 71-96) describes a parsing algorithm for LFG-DOP which

is based on the Tree-DOP parsing technique described in Bod (1998: 40-50). Cormons first

converts LFG-representations into more compact indexed trees: each node in the c-structure is

assigned an index which refers to the φ-corresponding f-structure unit. For example, the

representation in figure 14 is indexed as

(S.1 (NP.2 John.2)

(VP.1 fell.1))

where

1 --> [ (SUBJ = 2)

(TENSE = PAST)

(PRED = fall(SUBJ)) ]

2 --> [ (PRED = John)

            (NUM = SG) ]

The indexed trees are then fragmented by applying the Tree-DOP decomposition operations

described in section 2. Next, the LFG-DOP decomposition operations Root, Frontier and

Discard are applied to the f-structure units that correspond to the indices in the c-structure

subtrees. Having obtained the set of LFG-DOP fragments in this way, each test sentence is

parsed by a bottom-up chart parser using initially the indexed subtrees only. As shown in Bod

(1993, 1995), standard chart parsing techniques can be used by converting subtrees into rewrite

rules.

4 The reason to do this future research is not to meet some particular requirement of statistical theory but to

determine what kind of estimator is the true one, i.e. the one that the psychological system (whose

interpretation judgments we are trying to account for) is using.
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Thus only the Category-matching condition is enforced during the chart-parsing

process. The Uniqueness and Coherence conditions of the corresponding f-structure units are

enforced during the disambiguation (or chart-decoding) process. Disambiguation is

accomplished by computing a large number of random derivations from the chart and by

selecting the analysis which results most often from these derivations. This technique is known

as "Monte Carlo disambiguation" and has been extensively described in the literature (e.g. Bod

1995, 1998; Chappelier & Rajman 1998, 2000; Goodman 1998; Scha et al. 1999). Sampling a

random derivation from the chart consists of choosing at random one of the fragments from the

set of composable fragments at every labeled chart-entry (where the random choices at each

chart-entry are based on the probabilities of the fragments). The derivations are sampled in a

top-down, leftmost order so as to maintain the LFG-DOP derivation order. Thus the

competition sets of composable fragments are computed on the fly during the Monte Carlo

sampling process by grouping the f-structure units that unify and that are coherent with the

subderivation built so far.

As mentioned in section 3, the Completeness condition can only be checked after the

derivation process. Incomplete derivations are simply removed from the sampling distribution.

After sampling a sufficiently large number of random derivations that satisfy the LFG validity

requirements, the most probable analysis is estimated by the analysis which results most often

from the sampled derivations. As a stop condition on the number of sampled derivations, we

compute with intervals of 100 samples the probability of error; this is the probability that the

analysis which is most frequently generated by the sampled derivations is not equal to the most

probable analysis. We set this error probability to 0.05 in our experiments. An upper bound for

this error probability is given by ∑i≠0 (1 − (√p0 − √pi)2)N, where the different values of i are

indices corresponding to the different analyses, 0 is the index of the most probable analysis, pi

is the probability of analysis i; and N is the number of derivations that was sampled (see Bod

1998: 45-50). This upper bound on the probability of error becomes small if we increase N, but

if there is an i with pi close to p0, we must make N very large to achieve this effect. Moreover,

if there is no unique most probable analysis, the sampling process will of course not converge

on one outcome. In order to rule out the possibility that the sampling process would never stop,

we enforce a maximum sample size of N = 10,000 derivations.

5  Empirical Evaluation of LFG-DOP

For our evaluation of LFG-DOP under model M3 we used the (only) two LFG-annotated

corpora that are currently available: the Verbmobil corpus, which contains appointment

planning dialogues, and the Homecentre corpus, which contains Xerox printer documentation.



25

Both corpora were annotated at Xerox PARC. They contain packed LFG representations

(Maxwell & Kaplan 1991) of the grammatical parses (c-structures and f-structures) of each

sentence, together with an indication which of these parses is the correct one. For our

experiments we only used the correct (i.e. disambiguated) parse of each sentence resulting in

540 Verbmobil parses and 980 Homecentre parses. Each corpus was divided into a 90%

training set and a 10% test set. This division was random except for one constraint: that all the

words in the test set actually occurred in the training set. The sentences from the test set were

parsed and disambiguated by means of the fragments from the training set. Due to memory

limitations, we restricted the maximum depth of the indexed subtrees to 4. Because of the small

size of the corpora we averaged our results on 10 different training/test set splits and used

paired t-testing for evaluating statistical significance between different results.

There is an important question as to what kind of evaluation metric is most appropriate

to compare the parses proposed by LFG-DOP with the correct parses in the test set. The most

straightforward metric is the so-called exact match metric, which is the percentage of proposed

parses that exactly match the correct parses. However, it is often the case that a parse is nearly

correct except for just one or a few consituents. In such cases it may be interesting to also use a

weaker evaluation scheme which evaluates a parse on a constituent basis rather than on a full

match basis. Such an evaluation scheme is known as the PARSEVAL scheme, which is based on

the notions of precision and recall and which is widely used in phrase-structure parsing (see

Black et al. 1991).5 PARSEVAL compares a proposed parse P with the corresponding correct

test set parse T as follows:

Precision = 
 # correct constituents in P

# constituents in P

 # correct constituents in P

# constituents in T 
Recall =  

5 One of the reasons for this popularity is the difficulty of achieving an exact match. A typical sentence

from the Wall Street Journal (WSJ) corpus in the Penn Treebank (Marcus et al. 1994) has thousands of

different possible tree structures, which makes it particularly hard to select the tree which is correct for all

its constituents (see Manning and Schütze 1999). State-of-the-art parsing systems achieve an exact match

score between 30% and 40% on the WSJ, while their precision and recall scores are much higher and lie

roughly between 87% and 91% (see Bod 2001).
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According to the original PARSEVAL scheme for phrase-structure trees, a constituent in P is

"correct" if there exists a constituent in T of the same label that spans the same words. In order

to apply the PARSEVAL scheme to LFG representations we have extended the notion of "correct

constituent" in the following way: a constituent in P is correct if there exists a constituent in T

of the same label that spans the same words and that φ-corresponds to the same f-structure

unit. Note, however, that this evaluation scheme is still quite strong for LFG analyses: while it

allows for the weaker PARSEVAL measure on the c-structure trees, it still demands an exact

match for the φ-corresponding f-structure units. A major aspect of comprehension is the

recovery of the predicate-argument relations expressed in a sentence, and these are encoded as

the semantic forms in LFG f-structures. Thus, as an indicator of the accuracy of predicate-

argument recovery independent of the superficial details of the c-structure (like the PARSEVAL

measures) and of other purely syntactic features in the f-structure, we also defined measures of

semantic precision and semantic recall. Under this semantic scheme, a constituent in P is

correct if there exists a constituent in T of the same label that spans the same words and whose

φ-corresponding f-structure unit has the same semantic forms.

5.1 Comparing the two fragment estimators

In our first experiment we were interested in comparing the performance of the simple relative

frequency (RF) estimator, which treats all fragments probabilistically equally, against the

discounted RF estimator, which distinguishes between generalized and ungeneralized

fragments. Furthermore, we want to study the contribution of generalized fragments to the

parse accuracy. We therefore created for each training set two sets of fragments: one which

contains all fragments (up to depth 4) and one which excludes the generalized fragments as

generated by Discard. The exclusion of these Discard-generated fragments means that all

probability mass goes to the fragments generated by Root and Frontier; in this case the two

estimators are equivalent. The following two tables present the results of our experiments

where +Discard refers to the full set of fragments and −Discard refers to the fragment set

without Discard-generated fragments. We will limit ourselves to evaluating the exact match

metric and the precision and recall metrics; the semantic metrics will be evaluated in section 5.2.
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              Exact Match         Precision   Recall
+Discard  −Discard +Discard  −Discard +Discard  −Discard

Simple RF 1.1%       35.2% 13.8%        76.0% 11.5%       74.9%

35.9%        35.2% 77.5%        76.0% 76.4%       74.9%Discounted RF

Estimator

Table 1. Experimental results on the Verbmobil corpus for fragment-depth ≤ 4

              Exact Match         Precision   Recall
+Discard  −Discard +Discard  −Discard +Discard  −Discard

2.7%       37.9% 17.1%        77.8% 15.5%       77.2%

38.4%        37.9% 80.0%        77.8% 78.6%       77.2%

Simple RF

Discounted RF

Estimator

Table 2. Experimental results on the Homecentre corpus for fragment-depth ≤ 4

The tables show that the simple RF estimator scores extremely badly if all fragments are used:

the exact match is only 1.1% on the Verbmobil corpus and 2.7% on the Homecentre corpus,

whereas the discounted RF estimator scores respectively 35.9% and 38.4% on these corpora.

Also the precision and recall scores obtained with the simple RF estimator are quite low: e.g.

13.8% and 11.5% on the Verbmobil corpus, where the discounted RF estimator obtains 77.5%

and 76.4%. We found that even for the few test sentences that occur literally in the training set,

the simple RF estimator does not always generate the correct analysis, whereas the discounted

RF estimator does. Interestingly, the accuracy of the simple RF estimator is much higher if

Discard-generated fragments are excluded. This suggests that treating generalized fragments

probabilistically in the same way as ungeneralized fragments is harmful. Cormons (1999: 64)

made a mathematical observation which also shows that generalized fragments can get too

much probability mass under the simple RF estimator, leading to biased predictions for the best

parse. Thus, generalized fragments should preferably be viewed as "previously unobserved

fragments" whose probability can be estimated by discounting.
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The tables also show that the inclusion of Discard-generated fragments leads only to a

slight accuracy increase under the discounted RF estimator. According to paired t-testing, only

the differences in precision scores on the Homecentre corpus were statistically significant (p <

0.05). Thus except for one metric on one corpus, Discard-generated fragments do not

significantly contribute to the parse accuracy on these corpora. Of course, these generalized

fragments remain important for parsing sentences that are "ungrammatical with respect to the

corpus", which was the original motivation for including them.

 To put our results in another perspective, we calculated the parse accuracy by randomly

picking a parse from the derivation forest for each test sentence without taking into account the

fragment probabilities. This resulted in an exact match of 0% for both corpora and for all

training/test set splits. Interestingly, the difference between the 0% accuracy and the 1.1%

accuracy obtained with simple RF on the Verbmobil corpus was statistically insignificant

(though the difference was significant for the Homecentre corpus (p < 0.02)). Thus for

Verbmobil sentences, the use of simple RF as a fragment estimator does not perform

significantly better than picking a parse by chance.

5.2 Testing the DOP hypothesis: comparing different fragment sizes

Next, we were interested in testing the DOP hypothesis (see section 2) for LFG representations.

We therefore performed a series of experiments where the fragment set is restricted to

fragments of a certain maximum size. We defined the size of a fragment by its depth, which is

the longest path from root to leaf of the fragment's c-structure component. We used the same

training/test set splits as in the previous experiments and used both ungeneralized and

generalized fragments together with the discounted RF estimator. The following tables show

the results for four different maximum fragment depths, where we also evaluated on semantic

precision (SemPrecision) and semantic recall (SemRecall).

Size Exact Match Precision Recall SemPrecision SemRecall

1 30.6% 74.2% 72.2% 83.3% 80.8%

≤2 34.1% 76.2% 74.5% 86.9% 82.7%

≤3 35.6% 76.8% 75.9% 87.8% 85.3%

≤4 35.9% 77.5% 76.4% 88.1% 86.7%

Table 3. Accuracies on the Verbmobil corpus for different fragment sizes
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Size Exact Match Precision Recall SemPrecision SemRecall

1 31.3% 75.0% 71.5% 84.8% 80.7%

≤2 36.3% 77.1% 74.7% 87.4% 84.5%

≤3 37.8% 77.8% 76.1% 89.0% 86.1%

≤4 38.4% 80.0% 78.6% 90.5% 87.4%

Table 4. Accuracies on the Homecentre  for different fragment sizes

The tables show that there is an increase in accuracy for all metrics if larger fragments are

included. This result is significant in that it extends the plausibility of the DOP hypothesis to the

more sophisticated LFG representations. According to paired t-testing, all differences between

the minimal and maximal accuracies for each metric are statistically significant (all with a

significance level of 0.001 or lower). Note that the semantic precision/recall metrics are

consistently higher than the other precision and recall metrics. This result is obvious since the

semantic metrics only evaluate on the semantic forms, while the other metrics also take into

account the syntactic features in the f-structures.

5.3 Comparing LFG-DOP to Tree-DOP

Finally, we were interested in the impact of functional structures on predicting the correct tree

structures. We therefore removed all f-structure units from the fragments, thus yielding a Tree-

DOP model, and compared the results against the full LFG-DOP model (using the discounted

RF estimator and all fragments up to depth 4). We evaluated the parse accuracy on the tree

structures only, using exact match together with the standard PARSEVAL measures. We used

the same training/test set splits as in the previous experiments. The following tables show the

results.

        Exact Match   Precision   Recall

Tree-DOP     46.6%     88.9% 86.7%

LFG-DOP     50.8%     90.3%         88.4%

Model

Table 5. Tree structure accuracy on the Verbmobil corpus
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        Exact Match   Precision   Recall

Tree-DOP     49.0%     93.4% 92.1%

LFG-DOP     53.2%     95.8%         94.7%

Model

Table 6. Tree structure accuracy on the Homecentre corpus

The results indicate that LFG-DOP's functional structures help to improve the parse accuracy of

tree structures. In other words, LFG-DOP outperforms Tree-DOP if evaluated on tree

structures only. According to paired t-testing all differences in accuracy in table 6 are

statistically significant (with a significance level of 0.01 or lower). Although this result may not

seem very surprising, it is important because most parsing models are still evaluated on tree

structures only (cf. Collins 1999, 2000; Charniak 2000; Manning and Schütze 1999). Since

Tree-DOP obtains very competitive accuracy on the standard Wall Street Journal corpus in the

Penn Treebank (see Bod 2001), LFG-DOP may further improve the parse accuracy if the

functional annotations in the Penn Treebank (Marcus et al. 1994) can be converted into LFG-

style functional structures.

6  Conclusion

We have developed a Data-Oriented Parsing model based on the syntactic representations of

Lexical-Functional Grammar theory: LFG-DOP. We proposed and tested two fragment

estimators, one based on simple relative frequency and one based on discounted relative

frequency. Our experiments showed that the discounted relative frequency estimator

outperforms the simple relative frequency estimator, which suggests that generalized fragments

should be treated as previously unseen fragments. We have also seen that LFG's functional

structures contribute to higher parse accuracy on tree structures, and that the DOP hypothesis,

which states that parse accuracy increases with increasing fragment size, can be corroborated

for LFG representations. We do not know of any other work that has tested the DOP

hypothesis for representations richer than simple tree structures. In Neumann (1998) and

Neumann & Flickinger (1999), DOP models are proposed for Tree-Adjoining Grammar and

Head-driven Phrase Structure Grammar, but no experiments with different fragment sizes are

reported.
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We should keep in mind that our experimental results, albeit statistically significant,

were obtained on relatively small corpora. One of our future goals is to obtain larger LFG-

annotated corpora and to test LFG-DOP on these corpora. Another future goal is to test LFG-

DOP under different probability models, such as log-linear or maximum entropy models

(Abney 1997; Riezler et al. 2000) that maximize that likelihood on the training data. We also

intend to find linguistic constraints on the Discard operation, a direction which is suggested by

Way (1999).

We have proposed a new, corpus-based notion of grammaticality, according to which a

sentence is grammatical if it can be generated without generalized fragments. While LFG-DOP

takes disambiguation and comprehension as the major behaviors it seeks to account for, it can

thus also give an account of grammaticality judgments, which in practice are often taken as the

primary empirical constraints on linguistic theories. LFG-DOP also supports an alternative

view of what native speakers know when they know a language. Linguistic competence may

consist not of a collection of succinctly represented generalizations that characterize a language;

rather, competence may be nothing more than probabilistically organized memories of prior

linguistic experiences. According to this view, the central concern of linguistics would not be

Universal Grammar but defining a Universal Representation for linguistic experiences. The

problem of language acquisition would be the problem of acquiring examples of

representations of linguistic experiences guided by the Universal Representation formalism.

And if there is anything innate in the human language faculty, it would be the Universal

Representation for linguistic experiences together with the capacity to take apart and recombine

these experiences.
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