
Tightening the Compression Hierarchies

MSc Thesis (Afstudeerscriptie)

written by

Navid Talebanfard
(born May, 12th 1987 in Mashhad, Iran)

under the supervision of Prof.dr. Harry Buhrman, and submitted to the
Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
July, 25th 2011 Prof.dr. Dick de Jongh (chair)

Dr. Leen Torenvliet
Prof.dr. Harry Buhrman

Abstract

Fix t, k and n such that k < n ≤ t and let EASYnt,k be the set of all strings
of length n that are generated by programs of size k in at most t steps. It is
not hard to see that for sufficiently large t′ (in fact for t′ > t log t for technical
reasons) we have EASYnt,k ⊆ EASYnt′,k. But can we get a strict inclusion, or
equivalently, is there an string x that is generated by some k-bit program in
t′ steps but cannot be generated in t steps from k-bit programs? If so what
is the smallest t′ for which a strict inclusion holds? Consider “the first (in
lexicographic order) x ∈ {0, 1}n that is not generated in t steps by any program
of size k”. The statement in quotations is already a description of that x and it
takes 2kt log t steps to output x. This shows that EASYnt,k ⊂ EASYn2kt log t,k. But
is this exponential gap really needed? This question that still remains open will
be the central topic of this thesis. We will examine different variants of it and
will demonstrate its connection with deterministic simulations of randomized
computation.

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Algorithms and Turing Machines 7
2.2 Computation under Time Bounds 10
2.3 Non-Uniformity . 14
2.4 Randomized Computation . 15
2.5 Relativization . 18
2.6 Kolmogorov Complexity . 19

3 Hierarchy Theorems 21
3.1 Decidability . 21
3.2 Randomness . 23

4 Future Work 31

1

2

Chapter 1

Introduction

Randomness has been the subject of scrutiny since antiquity, some thinkers tak-
ing it as an inherent property of objects, others viewing the world as governed
by deterministic laws considering randomness as a subjective assessment of a
phenomenon caused by the inability of men to understand the order of events.
Democritus presented the example of two men sending their servants to get wa-
ter and causing them to meet. The servants would see this meeting as random,
as they are unaware of their masters’ plan. Epicurus on the other hand believed
that the world consisted of atoms, which swerve randomly along their paths
independent of our observation.

After the advent of computers, researchers opened new perspectives into this
issue in their attempts to quantify randomness. Consider the following game
taken from [BM84] where Alice flips a coin and Bob wins if he guesses the
outcome correctly. The game is played in the following ways.

1. Bob has to make his guess before the coin is flipped. In this case we do
not expect him to win with more than 50% of chance.

2. Bob can announce his guess while the coin is spinning in the air. His
chance of winning is the same even though he can in principle solve the
equations of motion.

3. Same as the previous one with Bob having a pocket calculator. If he is
fast enough he can solve the equations and hence increase his chance to
say 51%.

4. This time Bob has a super computer and motion sensors that can record
the initial velocity of the coin very quickly. In this case he can win with
very high probability say 90%.

What outcome Bob counts as random depends on what he knows and what
resources he has access to. The more he has the less randomness he finds, up to
a point that in the last case he considers the outcome as almost non-random.

3

4 CHAPTER 1. INTRODUCTION

From this viewpoint what matters is how things look to us and to compuational
devices with different capabilities, and thus the question whether there exists
genuine randomness independent of observation becomes irrelevant.

Now is it true that an object x that looks random to an observer A looks
non-random to a more powerful observer B? If so how much more power is
needed to achieve this? We saw that the more resources Bob had access to, the
less random he found the outcome of the game, and how much more power he
needed depended on the difficulty of solving the equations of motion. Assume
that A and B are computers and their power is bounded by the amount of time
that they can work, in which case B being more powerful than A means that
it can run for longer. We now restate the question: how much more time does
a computer need to see some object as non-random which looked previously
random to it?

To be able to give an acurate answer to this question we should first state
what we mean by “random”. When we fail to find patterns in something we
usually blame this on the thing being random, and the less patterns we spot the
more random we find it. Look at this carpet below. It consists of a few number
of shapes that are repeated in a regular way all over the carpet. It is really hard
to call it random looking.

Figure 1.1: A picture of a carpet

On the other hand it is very unlikely that anyone can find any concise pat-
tern in the following picture from Wolfram’s “A New Kind of Science”. It is
important to make it clear what kind of patterns we are looking for and who
wants to find these patterns. In the above pictures we searched for visual pat-
terns, but only those that could be perceived by human beings. Even among
humans two people need not have the same visual perception, different cultural
backgrounds, education, etc. can effect one’s experience. I think only the con-
noisseurs of postmodern art can find hidden patterns in this painting of Jackson

5

Figure 1.2: A random looking picture made by a simple program

Pollock (Figure 1.3).
Figure 1.2 is the output of a very simple program, and thus a computer that

finds such a program sees the picture as quite regular. Taking computer program
as the main observers of randomness was the core idea of an approach initiated
by Solomonoff, Kolmogorov and Chaitin, who took objects whose smallest ef-
fective description has size at least the size of the object itself as random. An
effective description is a process that transforms a short description of an ob-
ject to the explicit object. These procedures are taken to be Turing machines
and descriptions are programs. Hence if we define the Kolmogorov complexity
of a string x as C(x) = min{|p| : U(p) = x} where U is a universal ma-
chine, then x is random if C(x) ≥ |x|. By introducing time bounds in this
definition we will be able to express our question formally. For a function t
let Ct(x) = min{|p| : U(p) = x in t(|x|) steps}. Now we have the following
question.

Question. Fix any n and consider all n-bit strings for which there is no program
of length at most k < n that generates them in time t(n), i.e., for all such
strings x we have Ct(x) > k. How much more time do we need to get a shorter
description of at least one of those x’s, i.e., what is the smallest1 t′ such that
there exists x of length n with Ct(x) > k and Ct

′
(x) ≤ k.

Considering time bounds moves us immediately into the realm of computa-

1For two functions f and g we say that f is smaller than g if f = o(g).

6 CHAPTER 1. INTRODUCTION

Figure 1.3: No. 32, Jackson Pollock

tional complexity which is the topic of Chapter 2 where we overview some basic
concepts and relevant topics to our main problem. In Chapter 3 we state the
problem formally and consider different variants of it, how it relates to imporant
concepts such as circuit lower bounds and derandomization. Before discussing
our main problem, we will first see two examples of hierarchy phenemenon in
computational complexity. In Chapter 4 we discuss some possible further work
and how additive combinatorics might be useful for this problem.

Chapter 2

Preliminaries

In this chapter we review some basics of computational complexity theory and
Kolmogorov complexity required to study our main problem. For a gentle in-
troduction to the theory of computation and an in-depth treatment of compu-
tational complexity we refer the reader to [AB09] or [Gol08].

2.1 Algorithms and Turing Machines

An algorithm is a set of instructions that if followed a certain goal is achieved.
This includes primitive goals such as lighting a match or more sophisticated ones
such as deciding whether an integer is a prime. For the former wikiHow.com
says:

1. Hold the match firmly at about its middle with your pointer (index) finger
and your thumb.

2. Put the match head at the end of the striker.

3. Firmly pressing the match head to the striker all the while, slide the match
quickly along the striker. Remember, too much pressure will break the
match while not enough will not light the match.

To test if an integer n is a prime we will proceed as follows.

1. Write all numbers from 2 to bn2 c in a row.

2. Choose some uncrossed number in the list. If it divides n then n is not
prime, otherwise cross that number and repeat this step.

3. If all numbers are crossed then n is prime.

7

8 CHAPTER 2. PRELIMINARIES

Even though some take these two procedures fundamentally different1, they
both consist of steps each depending on previous ones, including some easy or
comprehensible course of actions (holding the match for instance), and that it
is guaranteed that if the instructions are followed flawlessly the desired outcome
will be reached.

Hilbert, in his address in the International Congress of Mathematicians in
1900, asked for an algorithm that can decide or compute if a polynomial over
integer coefficients has an integer root. In 1928 he posed a more general problem
known as Entscheidungsproblem (German for “decision problem”) which asked
if mathematics was decidable, i.e., if there is an algorithm which could decide
at least in principle whether any statement is true or not. To give a negative
answer to this, one needs an explicit definition of an algorithm (holding the
match between fingers simply wouldn’t work). By 1936 several definitions were
proposed, most imporant of which are those of Church and Turing. But all the
proposed definitions turned out to be equivalent, in the sense that any algorithm
in any model had an equivalent algorithm in any other model doing the same
thing. This strenghened the thought that if bright minds such as those of
mathematicians came up with the same thing when defining algorithm, maybe
that is what algorithms actually are. This is the content of what is now known
as the Church-Turing thesis.

Church-Turing Thesis. What could be intuitively computed, can be com-
puted in the computation model of Turing (this model shall be defined shortly).

Turing’s model of computation was based on how a human does basic arith-
metic computations where one usually has a piece of paper and a pen at his
disposal and can write new numbers and eliminate old ones following the laws
of arithmetic to get the result. A Turing machine consists of an infinite tape
(sometimes more than one tape) which is a collection of memory cells in linear
order and a head that can point to these memory cells and scan them or write
on them, a set of internal states and symbols, and a control program. Each
step of the computation consists of scanning the memory cell to which the head
is pointing, and taking the action which is instructed by the control program
based on the internal state and the scanned symbol. The actions usually consist
of a movement of the head either to the right or to the left, writing some symbol,
and a change in the internal state. Before we give the formal definition we need
some notations. The length of a string x is denoted by |x|. For two string x and
y, xy represents their concatenation and their pairing is 〈x, y〉 = 1|x|0xy. The
set of binary strings of length n is denoted by {0, 1}n. The set of binary strings
of finite length is {0, 1}∗ = ∪n{0, 1}n. All the sets that we consider in this
thesis are subsets of {0, 1}∗. A way to represent a set is via their characteristic
functions. The characteristic function of A denoted by χA is an infinite binary
string whose nth bit is 1 if and only if the nth binary sequence in lexicographic

1Cleland [Cle93] argues that causality plays a defining role in the first procedure yet this is
not so in the prime testing algorithm. The friction caused by pressing the match causes heat
which in turn causes the match to light. There is no such relationship among the constituents
of prime testing procedure.

2.1. ALGORITHMS AND TURING MACHINES 9

order is a member of A. We can now define Turing machines formally.

Definition 2.1. A Turing machine M is a tuple (Σ, Q, δ, qstart, qreject, qaccept)
where:

• Σ is a finite set of symbols. In this thesis we only consider Σ = {0, 1}.

• Q is the set of internal states with three designated members qstart, qreject
and qaccept such that qreject 6= qaccept.

• The control program or transition function is δ : Q × Σ → Q × Σ ×
{Left,Right}.

The computation of M on x denoted by M(x) starts with having x written
down on the tape and M being in state qstart and it continues by applying δ
step by step. If at some point M reaches qaccept we say that M accepts x and
if it reaches qreject we say that it rejects x. But in both cases we say that the
computation halts, otherwise it does not halt and runs for ever. For a machine
M , L(M) is the set of all strings that M accepts. If for A ⊆ {0, 1}∗ there
exists some Turing machine M such that A = L(M) we say that A is decidable
or computable by M . A striking result (by the time of its discovery) was that
there exist undecidable sets. No matter how sophisticated a Turing machine we
pick, it cannot compute any of those sets. To see this we note that each Turing
machine M can be encoded or represented by a binary string. Then as there are
countably many finite binary strings, there will be only countably many Turing
machines and hence countably many decidable sets. Since there are uncountably
many sets of binary strings, there is some set that is not decidable.

We can similarly define computability of functions. For this we assume that
in M instead of two states of qaccept and qreject, there is one halting state called
qhalt. On input x after M reaches this state, what is left on the tape will be
regarded as the output which is denoted by M(x)2. In this setting we can
model acceptance and rejection of inputs by outputting 1 and 0, respectively.
A function f : {0, 1}∗ → {0, 1}∗ is called partial computable if there is some
machine M such that f(x) = M(x) whenever f(x) is defined. If such f is a
total function we say that it is total computable.

Turing proved that in his model there are universal machines, those that can
simulate all other machines. This was the first theoretical proof of the possibility
of general purpose computers (this came out as a surprise as it was proved long
before digital computers were built). In formal terms a universal Turing ma-
chine is a machine U such that for all M and x we have U(〈M,x〉) = M(x). This
allows us to use arguments of the form: “construct a machine M1 as follows: on
input x run M2(x) and do ...”, which is always part of proofs in computability
theory. Having this in mind and applying a diagonalization method we prove
that the halting set defined by HALT = {〈M,x〉 : M halts on x} is undecid-
able. Assume to get a contradiction that it is decidable and thus there exists

2It will be clear from the context which definition of M(x) we mean (computation of M
on x or the output of M on x).

10 CHAPTER 2. PRELIMINARIES

some Turing machine H such that HALT = L(H). We take another machine
D that on input x runs H(〈x, x〉). If H rejects D accepts, and if H rejects D
falls into a loop and does not halt. If D(D) halts then H(〈D,D〉) accepts, but
then the construction of D implies that D(D) does not halt. If D(D) does not
halt then H(〈D,D〉) rejects and hence by construction D(D) halts. This is a
contradiction and thus HALT is undecidable.

Hilbert triggerred the birth of a whole new theory with his question which
opened a new framework in mathematics and a novel methodology for even other
fields of science. But it does not mean that his question was left unresolved. In
1970 Yuri Matiyasevich finally showed that Hilbert’s desired algorithm does not
exist, or now in computability terminology the set of polynomials over integer
coefficients with integral roots is undecidable.

2.2 Computation under Time Bounds

The definition of decidability does not put any restriction on the computation,
it only requires that the set could “in principle” be decided which means that
the best machine deciding that set might require say one million years to halt,
but as long as we can prove that it halts it is okay. But such a set is at least
in practice undecidable, for it is very unlikely that human kind can witness the
halting of a machine deciding it. To make decidability more down to earth we
bring some efficiency measure into play: time!

We denote by tM (x) the running time of M on input x which is the number of
steps that it takes M to halt on x. We then define tM (n) = maxx∈{0,1}n{tM (x)}.
We can now define our first class of sets decidable under time bounds. For any
t : N→ N, DTIME(t(n)) is the class of sets computable by machines running in
time t(n).

Definition 2.2. Important classes of such are:

1. P =
⋃
c≥1 DTIME(nc + c)

2. SUB-EXP =
⋂
ε>0 DTIME(2n

ε

)

3. E =
⋃
c≥1 DTIME(2cn)

4. EXP =
⋃
c≥1 DTIME(2n

c

)

Here are some examples of problems in these classes.

Graph 2-Colorability. A coloring of a graph is an assignment of colors to the
vertices of a graph, such that no two adjacent vertices have the same colors.
For a graph G the minimum number of colors for which a coloring is possible is
denoted by χ(G). Let 2-COL = {G : χ(G) ≤ 2}. It is easy to see that 2-COL ∈ P:
start with any vertex v, color it with 0. Now take the neighbors of v color them
with 1. Continuing this if at some point we get a vertex that we want to color
with x but it has already been colored with 1−x we reject the graph. Otherwise

2.2. COMPUTATION UNDER TIME BOUNDS 11

we obtain a 2-coloring of G. The running time of this algorithm is bounded by
the number of vertices in G.

Satisfiability. A Boolean formula over variables x1, . . . , xn is an expression
consisting of variables and logical connectives AND (∧), OR (∨) and NOT (¬).
A formula is satisfiable if there exists a valuation of its variables which makes the
formula true. It is well known that each formula has an equivalent conjunctive
normal form (CNF), i.e. a formula of the form

∧
i(
∨
j xij). Define

SAT = {ϕ : ϕ is a CNF and there exists x such that ϕ(x) = 1}.

We have SAT ∈ E since we can try all assignments of its variables and check
whether any of them makes ϕ true.

As in computability theory where one tries to show that some sets are de-
cidable some are not, in computational complexity we would like to prove that
some sets are decidable in time t(n) or undecidable in time t′(n). In the former
case after proving that A ∈ DTIME(t1(n)) for instance, then one wants to get
even smaller time bounds t2(n) = o(t1(n)) with A ∈ DTIME(t2(n)). The latter
case on the other hand has resisted attempts; we are not yet able to prove the
undecidability of specific sets in some time bounds. The most notorious example
is SAT where the question whether SAT ∈ P remains maybe the most famous
problem in computational complexity. We will get back to this later again.

The reader should not despair for we might not be able to prove that specific
sets are not decidable in certain time bounds, but we can show that there exist
such sets. This is reminiscient of proving the existence of undecidable sets in
the last section. This issue will be discussed in the next chapter. However we
will need an important concept which goes as follows. Remember that in the
last section using universal Turing machines we could run machines inside each
other as subroutines. In time bounded computation we can of course do the
same, but we might also need in some situations to run a subroutine machine
for a certain number of steps, say t(n) steps. For this to be possible t(n) should
be in some sense “nice”. Here is an example of how t(n) could be not nice:
take t(n) to be some uncomputable function (which we know exists). There is
no way that we can implement “run this for t(n) steps”, as t(n) does not make
sense to any machine. As time is precious t(n) should also be computable in
short time, otherwise running the subroutine would not make that much sense.
We can summarize this niceness requirement as follows.

Definition 2.3. A function t : N→ N is called time-constructible if there exists
a Turing machine M such that M(n) = t(n) and it is computed in time t(n).

Another issue in running machines inside each other is the time overheads
caused by simulation. Recall that when we defined universal Turing machines
this was of no concern as what we needed was just the correct simulation and
not the amount of time. Fortunately there exits an efficient universal Turing
machine which will form the basis of some of our main concepts and results.

Theorem 2.4. (Hennie-Stearns [HS66]) There exists a universal Turing
machine U such that U(〈M,x〉) = M(x) for every M and x and there exists

12 CHAPTER 2. PRELIMINARIES

a constant c depending on M such that if M halts on x within t steps, then
U(〈M,x〉) halts within ct log t steps.

Let us now get back to SAT as promised. The definition of SAT implies that
if ϕ ∈ SAT then there exists x such that ϕ(x) = 1, and if ϕ 6∈ SAT then for all
x we have ϕ(x) = 0. When ϕ ∈ SAT a satisfying assignment is called a witness.
Note that given any ϕ and any assignment we can compute ϕ(x) in linear time.
Now we can say that the members of SAT have a witness and the correctness
of the witness could be checked efficiently, whereas the non-members of SAT
do not have any witness. This property of SAT is called having an efficiently
verifiable proof system defined as follows.

Definition 2.5. A set L has an efficiently verifiable proof system if there exists
a polynomial p : N→ N and a polynomial time machine A such that

1. Completeness: For every x ∈ L there exists y ∈ {0, 1}p(|x|) with A(x, y) =
1. Such y is a proof or a witness for x ∈ L and thus this condition says
that every x ∈ L has a proof.

2. Soundness: For every x 6∈ L and every y ∈ {0, 1}p(|x|) we have A(x, y) = 0
which means that no x 6∈ L has a proof.

The class of sets having this property is called NP. There is an alternative
way of defining this class as follows. We change the Turing machines so that
they have two transition functions δ1 and δ2. At each step it can choose which
rule to follow. Note that we do not make any assumptions on how this choice
is made, our machine is at ultimate liberty in making its decision. The running
time of such a machine M on an input is the maximum number of steps it takes
before it halts over all sequences of non-deterministic choices. The machine
accepts x if at least one of its computation paths accepts x. We can now define
time-bounded complexity classes in this model.

Definition 2.6. NTIME(t(n)) is the class of sets accepted by a non-deterministic
machine running in time t(n). Furthermore NP =

⋃
c≥1 NTIME(nc + c).

Now let us see why these two definitions are equivalent. Take any set L with
an efficiently verifiable proof system. We can make a machine that on input x
non-deterministically tries to find a witness. If x ∈ L there is some witness by
assumption and our non-deterministic machine can find it. Otherwise all the
computation paths will reject and hence x will be rejected. Conversely, take
L ∈ NP with its second definition. Now a witness for x ∈ L is just an accepting
computation path of a corresponding non-deterministic machine.

It is not hard to see that P ⊆ NP. The reason is simple: any polynomial
time machine M deciding a set L ∈ P is also an efficient proof verifier where the
witnesses are empty. It was mentioned earlier that whether or not SAT ∈ P
is the most famous problem in complexity. But this is not exactly true, in
fact “the” problem is whether or not P = NP and since we already know one
direction, the question is if NP ⊆ P. Let us now see how a solution to SAT ∈? P

2.2. COMPUTATION UNDER TIME BOUNDS 13

is a solution to NP ⊆? P, i.e., SAT ∈ P⇔ NP ⊆ P. Of course if SAT 6∈ P then
NP 6⊆ P as SAT is a member of NP. For the other direction we should prove
that if SAT ∈ P then all members of NP are in P. In fact we can show that
if there is some polynomial time machine deciding SAT, for any set A ∈ NP
the same machine could be slightly modified to decide A in polynomial time.
This means that SAT captures the difficulty of NP. Let us see what it exactly
means.

The history of mathematics is replete with reductions, the process of trans-
forming one problem into another, where a solution to the latter could be con-
verted back into a solution to the original problem. The same theme also exists
in computational complexity. We say that A many-one reduces to B denoted
by A≤P

mB, if there exists a polynomial time computable function f such that
x ∈ A ⇔ f(x) ∈ B. A set B is called C-hard for some class C if for every
A ∈ C we have A≤P

mB. A C-complete set is a C-hard set B ∈ C. Intuitively
a C-complete set captures the hardness of C, once we get an efficient algorithm
for it, we have an algorithm for all other members of C. Here is an example:

Reduction from SAT to 3-SAT: 3-SAT is a subset of SAT where each
conjunct in its members consists only of three variables. Given any CNF formula
ϕ on n variables and m clauses we make a new CNF formula ψ with each clause
having three variables such that ϕ is satisfiable if and only ψ is. The idea is
to substitute each clause C with k > 3 variables with a pair of clauses C1 on
k−1 variables and C2 with three variables and that C is satisfiable if and only if
C1∧C2 is. Repeating this we will get the desired result. Let C = x1∨x2∨. . .∨xk
be a clause in ϕ. Note that some of xi’s might be negated, but this does not effect
our argument. Introduce a new variable y and define C1 = x1 ∨ . . . ∨ xk−2 ∨ y
and C2 = xk−1 ∨ xk ∨ ¬y. It is easy to see that C1 and C2 have the required
properties. For the running time of the procedure note that we should repeat
this for at most all of the clauses, and for each clause it is repeated at most n
times. Thus the running time is O(mn) which is polynomial as desired.

As the reader might now guess SAT is NP-complete which was proved in-
dependently by Levin [Lev73] and Cook [Coo71]. This shows that 3-SAT is
also NP-complete. In fact if A is NP-complete and A≤P

mB for some B ∈ NP
then B is also NP-complete. This follows from transitivity of ≤P

m. Using this
observation hundreds or even thousands of NP-complete problems have been
found.

So far we have seen several classes of sets each capturing a certain computa-
tional property, e.g., P corresponds to efficient decidability and NP specified the
efficient verifiability. We can unite this efficiency requirement and generalize
these two classes as follows.

Definition 2.7. For i ≥ 1, Σp
i is the class of sets L for which there exists a

deterministic poly-time machine M and a polynomial p such that

x ∈ L⇔ Q1w1 ∈ {0, 1}p(|x|)Q2w2 ∈ {0, 1}p(|x|) . . . Qiwi ∈ {0, 1}p(|x|)

such that M(x,w1, . . . , wi) = 1,

14 CHAPTER 2. PRELIMINARIES

x1

∨

∧

∨

∧

¬

x2 x3 x4

output

Figure 2.1: A Boolean circuit computing f(x1, x2, x3, x4) = ((x1 ∨ x2) ∧ x3) ∨
(x3 ∧ ¬x4)).

where Qi denotes ∃ if i is odd and ∀ if it is even. The polynomial hierarchy is
defined as PH = ∪i Σp

i .

A stronger form of NP 6= P conjecture states that PH is indeed a hierarchy
and its layers are distinct sets.

2.3 Non-Uniformity

The machines that we considered so far were designed so that they could deal
with inputs of every length, or they were uniform. In this section we introduce
the notion of non-uniform computation and in particular Boolean circuits. For
each n ∈ N a Boolean circuit is an acyclic digraph with n specified vertices as
inputs and one or more vertices representing the outputs. The other vertices
which are called gates are labeled by Boolean connectives. The number of edges
going out of a vertex is called the fan-out of that vertex. Similarly the number
of edges coming in to a vertex is called the fan-in of that vertex. The gates
labeled with ∧ and ∨ have fan-in 2, and gates with label ¬ have fan-in 1 and
there is no restriction on the fan-out of any vertex. The size of a circuit C is the
number of its gates and is denoted by |C|. The gates apply their corresponding
operations on their inputs and store the result (see figure 2.1).

Definition 2.8. Let s : N → N be a function. We say that a set L is in
SIZE(s(n)) if there exists a sequence of circuits C1, C2, . . . with |Cn| ≤ s(n) such
that for all n and x ∈ {0, 1}n it holds that x ∈ L ⇔ C(x) = 1. Furthermore
P /poly =

⋃
c≥1 SIZE(nc + c).

2.4. RANDOMIZED COMPUTATION 15

A nice and simple construction that simulates the Turing machine states,
head movements and the tape information shows that P ⊆ P /poly. An alterna-
tive definition of non-uniformity is given by the notion of advice functions. Let
C be a class of sets and α : N → N some function. A set L is in C/α if there
exists a sequence of strings a1, a2, . . . with |ai| ≤ α(i) and some L′ ∈ C such
that for all x ∈ {0, 1}∗ it holds that x ∈ L⇔ 〈x, a|x|〉 ∈ L′. It is not hard to see
that P /poly =

⋃
c,d DTIME(nd)/nd + c. We say that a language L has circuit

complexity at least s(n) if L 6∈ SIZE(s′(n)) for all s′ = o(s).
Boolean circuits are more structured than Turing machine and for this reason

people thought that it is probably easier to prove lower bounds for them. In fact
using circuit lower bounds we can seperate uniform classes, e.g., if NP 6⊆ P /poly
then P 6= NP since we know that P ⊆ P /poly. This is a plausible approach since
we believe that NP does not have polynomial sized circuits for the following
reason.

Theorem 2.9. (Karp-Lipton [KL80]) If NP ⊆ P /poly then PH = Σp
2.

But it is not always about complexity classes whose equality remains un-
known. Take EXP for instance, we know that P ⊂ EXP (see Theorem 3.1) and
yet we cannot prove EXP 6⊆ P /poly. We only believe that is very unlikely that
EXP could be simulated by polynomial sized circuits by the following theorem.

Theorem 2.10. (Meyer, see [AB09]) If EXP ⊆ P /poly then EXP = Σp
2.

2.4 Randomized Computation

Sometimes we have to make random choices in real life. This happens usually
when there is no obvious preference over any choice, or when we are in a game-
like situation and we should keep our behavior as unpredictable as possible in
order to win (or not to lose). Consider a simple game of rock-paper-scissors. If
we are known as someone who plays paper most of the time, it is very likely
that we are beaten in the next game by the opponent playing scissors. The most
reliable thing to do is not to leave any trace, to play as patternless as possible,
to play randomly.

We can now imagine algorithms that use some sort of randomness. For
instance if we want to teach someone how to play rock-paper-scissors we use a
phrase of the sort “play randomly”. As in the beginning of the chapter that
we tried to formalize the notion of algorithm, it is desirable to mathematically
represent such algorithms. To model this class of algorithms we can assume that
the machine has an extra tape where it keeps a string of random bits which are
either given from external world or the machine itself has some internal function
which can produce those random bits (where these bits come from does not have
any impacts on our model). The output then depends not only on the input
but also on the random string. Therefore on a single input the machine might
give multiple answers and hence make errors. Based on how the error is made
we can distinguish several classes of randomized computation. Let A be some

16 CHAPTER 2. PRELIMINARIES

set and let M be a randomized algorithm trying to decide A. If M makes errors
on both members and non-members of A we say that it has two-sided error.

Definition 2.11. Let t : N→ N be any function. For any set A ⊆ {0, 1}∗ we say
A ∈ BPTIME(t(n)) if there exists a machine M that receives inputs of the form
(x, r) and runs in time t(|x|) such that Prr∈{0,1}t(|x|) [M(x, r) = A(x)] ≥ 2

3 . The
probabilistic polynomial time class is then defined as BPP =

⋃
c≥1 BPTIME(nc+

c).

If we allow the machine to make error on only the members of a set, we get
a one-sided error.

Definition 2.12. Let t : N → N be any function. RPTIME(t(n)) is the class
of sets A for which there exists a machine M that receives inputs of the form
(x, r) and runs in time t(|x|) such that

1. x ∈ A⇒ Prr∈{0,1}t(|x|) [M(x, r) = 1] ≥ 2
3

2. x 6∈ L⇒ Prr∈{0,1}t(|x|) [M(x, r) = 0] = 1.

Similar to BPP we can define RP =
⋃
c≥1 RPTIME(nc + c).

We can easily reduce the error of probabilistic algorithms by simply repeating
them. For L ∈ RP let M be a machine witnessing this that uses random strings
of length p(n). We modify the algorithm by making a random string r1r2 . . . rk
with |ri| = p(n). We then run M(x, ri) for each i and accept the input if and
only if M(x, ri) accepts for some i. By a simple union bound we can see that
there error is reduced to 2−k. We can follow a similar strategy for BPP sets:
we repeat the algorithm and take a majority vote among the answers. Then by
Chernoff bounds the error reduction follows. Both of these procedures require
k · p(n) random bits but it is desirable to use fewer bits. This is possible for
both BPP and RP. Let Strong RP be a set of RP sets for which there exists
an algorithm usign r(n) random bits with error bounded by 2−r(n)λ for some
λ > 0. We then have the following result.

Theorem 2.13. (Saks, et al. [SSZ95]) RP = Strong RP.

It is not hard to see that randomized computation could be simulated de-
terministically: just take all the possible random choices and take the majority
of the answers. This clearly yields BPP ⊆ EXP. But can we do the simulation
in less time, or going through all the coin flips is the best possible strategy?
Given the ubiquitous applications of randomized algorithms and the fact that
there are problems whose only known efficient algorithms are randomized (e.g.
polynomial identity testing, see [KI04]), one might conjecture that P ⊂ BPP.
But after the seminal work of Nisan and Widgerson [NW94] it is widely believed
that BPP = P. In the remaining of this section we overview the main results in
this field.

By derandomization we mean deterministic simulations of randomized com-
putation, in particular if such a simulation yields BPP = P we call it a full

2.4. RANDOMIZED COMPUTATION 17

derandomization of BPP. The main ingredient of a derandomization procedure
is a pseudorandom generator. These are deterministic functions whose output
can fool a certain class of algorithms, in the sense that they will be regarded as
random. The first kind of pseudorandom generators were studied in the context
of cryptography in several works for instance by Yao [Yao82] who proved that
under the strong assumption of existence of what he called secure pseudoran-
dom generators sub-exponential simulations of BPP is possible. For a detailed
study of these pseudorandom generators we refer the reader to [Gol01].

Definition 2.14. Two sequences of random variables {Xi}i∈N and {Yi}i∈N are
called indistinguishable in polynomial time if there exit a function l : N → N
such that |Xn| = |Yn| = l(n) and for all n and for every randomized polynomial
time algorithm A, every positive polynomial p and sufficiently large n’s we have

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| < 1
p(l(n))

,

where the probability is taken over the distributions of Xi’s and Yi’s and the
random coins of the algorithm.

Definition 2.15. A secure pseudorandom generator (PRG) is a deterministic
polynomial time algorithm G such that

1. there exists a function l : N → N called the stretch function for G with
|G(x)| = l(|x|) for all x ∈ {0, 1}∗,

2. and that {G(Un)}n∈N is indistinguishable in polynomial time from {Ul(n)}n∈N,
where Uk is a k-bit string chosen uniformly at random.

We have now enough tools to state the first conditional derandomization
result:

Theorem 2.16. (Yao [Yao82]) If secure pseudorandom generators exist then
BPP ⊆ SUB-EXP.

Proof. (sketch) It is known that if secure pseudorandom generators exist, they
also exist for arbitrary stretch functions (see [Gol01]). Let A be a BPP algorithm
that uses r(n) random bits on inputs of length n. Fix 0 < ε < 1 and let G be
a pseudorandom generator that streches inputs of length nε to n. On an n bit
input x for all y ∈ {0, 1}r(n)ε we compute A(x, y) and output the majority of
answers. This clearly runs in O(2r(n)ε · poly(n)) and it is not hard to see that it
accepts the same language as A does.

The crucial observation of Nisan and Widgerson was that the PRGs need not
run in polynomial time, since in the derandomization procedure we already need
to check all the seeds which costs us exponential time. Thus they considered
the following kind which they coined quick PRGs.

18 CHAPTER 2. PRELIMINARIES

Definition 2.17. A function G computable in time 2O(n) that maps strings of
length l(n) to strings of length n is called quick PRG if for any circuit C of size
O(n) ∣∣Pr[C(G(Ul(n))) = 1]− Pr[C(Un) = 1]

∣∣ < 1
n
.

The shorter the seed is the better derandomization we get, in particular if
l(n) is logarithmic we get a full derandomization of BPP. Using an elegant
construction, Nisan and Widgerson made PRGs out of functions which cannot
be computed by circuits of certain size on average. This kind of hardness is
defined formally below.

Definition 2.18. A Boolean function f : {0, 1}∗ → {0, 1} is (ε, S)-hard at n if
for any circuit C of size at most S we have∣∣∣∣ Pr

x∈{0,1}n
[C(x) = f(x)]− 1

2

∣∣∣∣ < ε

2
.

The average hardness of f at n denoted by Hf (n) is the largest integer h such
that f is (1

h , h)-hard at n.

Theorem 2.19. If there exists f ∈ E with Hf (n) = 2Ω(n) then there exists a
PRG that stretches strings of length c log n to length n and thus BPP = P.

People then tried to get still weaker assumptions, an example of which is the
following where average-case hardness is substituted by worse-case hardness.

Theorem 2.20. (Impagliazzo-Widgerson [IW97]) If there exists L ∈ E
with circuit complexity 2Ω(n) then BPP = P.

Until this point circuit lower bounds proved to be sufficient for derandom-
ization, there are several results obtaining deranomization result from hardness
assumption (see [AB09]). But these results all assumed specific circuit lower
bounds, for instance 2Ω(n). One asks whether any circuit lower bound implies
some derandomization which turned out to be the case in the following result.

Theorem 2.21. [SU05] For any function s if E 6⊆ SIZE(s) then BPTIME(t) ⊆
DTIME(2O(s−1(tO(1)))), where t is the running time of the probabilistic algorithm.

2.5 Relativization

Oracle machines are Turing machines with access to an oracle that can solve a
certain decision problem. We can model this by adding a read-only tape to the
machine which contains the characteristic sequence of a set O ⊆ {0, 1}∗. The
machine can make queries of the form “is q ∈ O?” and these queries will be
answered in a single step. We can then define complexity classes with respect
to an oracle in a similar way. For instance PO is the class of sets computable
in polynomial time given access to oracle O. The usual complexity classes will
then be special cases of such definitions when the oracle is ∅.

2.6. KOLMOGOROV COMPLEXITY 19

Take some complexity theoretic statement and its proof, for instance P ⊆ NP.
Any poly-time machine M deciding a set L ∈ P could be regarded as a verifier
when the witnesses are empty strings. Notice that we are not making any
assumptions on the oracle to whichM has access and thus we can say, PO ⊆ NPO

for any oracle O. This is an example of a relativizing proof. Many or maybe even
most of the results in complexity indeed relativize, which is probably because
relativizing techniques are natural approaches to algorithmic problems. This
notion could be applied to assess the difficulty of an open problem. For instance
if some statement A is conjectured, and one is able to prove the existence of
an oracle with respect to which A does not hold, a proof for A requires a non-
relativizing technique. A key example of this kind is the following result which
implies that any solution to P versus NP problem should not relativize.

Theorem 2.22. (Baker-Gill-Solovay [BGS75]) There exist oracles A and
B such that PA = NPA and PB 6= NPB.

2.6 Kolmogorov Complexity

For a comprehensive discourse on the contents of this section we refer the reader
to [LV08]. To measure the amount of information in an object, we try to de-
scribe it. The description is considered useful if we can fully reconstruct the
object. Then the smallest description size would be regarded as the quantity
of information in that object. Let F = {f |f : {0, 1}∗ → {0, 1}∗} be a class of
functions. For f ∈ F and all x ∈ {0, 1}∗ let Cf (x) = min{|p| : f(p) = x}. In
this setting f is a description method and p is a description of x under p. We
say that f ∈ F is a minimal element of F if for all g ∈ F there exists some
constant c depending on g such that Cf (x) ≤ Cg(x) + c for all x. It turns out
that if we let F to contain simply all functions, there will not be any minimal
element. But if we take F to be the class of partial computable functions, we
can prove the existence of minimal elements.

Theorem 2.23. (Invariance Theorem) The class of partial computable func-
tions has a minimal element.

Proof. Let ϕ1, ϕ2, . . . be some effective enumeration of partial computable func-
tions. Let U be a universal Turing machine that expects inputs of the form
〈n, p〉, where n encodes the nth Turing machine and p is the literal program to
be run on that machine. Let ϕU be the function computed by U . We show
that CϕU (x) ≤ Cϕi(x) + O(1) for all i and x. Fix some i and for all x let px
be the shortest program such that ϕi(px) = x. Since ϕU is universal we have
ϕU (〈i, px〉) = x. But then 〈i, px〉 is a description of x under ϕU and its length
is 2|i| + 1 + |px|. Since this holds for every x and i was chosen arbitrarily the
result follows.

From here on we simply write C(x) = CϕU (x) for some choice of universal
machine U and by invariance theorem we are guaranteed that the description
size is at most a constant longer than any other description. In case U is

20 CHAPTER 2. PRELIMINARIES

given access to some oracle A, we denote the Kolmogorov complexity of x with
respect to A by CA(x). However, it is important to note that this definition
does not allow any measure on how difficult it is to generate a string from its
shortest description. A fundamental measure of difficulty is the amount of time
needed to compute something. There are strings that are generated by very
short strings but in many steps. Hence we also add the factor of time and for a
partial computable function ψ and a time-constructible function t : N → N we
define Ctψ(x) = min{|p| : ψ(p) = x in at most t(|x|) steps}. Unfortunately we
cannot get the same result as Invariance Theorem since the simulation costs us
time. Yet using efficient universal Turing machines as in Theorem 2.4 we can
get the following result.

Theorem 2.24. (Time-Bounded Invariance Theorem) There exists a uni-
versal parital computable function ϕU such that for every other partial com-
putable function ϕ, there exists a constant c such that Cct log t

ϕU (x) ≤ Ctϕ(x) + c
for all x.

Let ϕU be the universal partial computable function of Theorem 2.24. We
can now define the time-bounded Kolmogorov complexity of x as Ct(x) = min{|p| :
U(p) = x in at most t(|x|) steps}. We can similarly write CA,t(x) when U has
A as an oracle.

Chapter 3

Hierarchy Theorems

We are now ready to study our main problem. Recall from Chapter 1 that
we want to examine the effects of bounded resources (time, in particular) on
the ability to find patterns in objects. We will formulate the problem in the
language of time-bounded Kolmogorov complexity and will present new results
on the problem which are based on the works of Lúıs Antunes, Harry Buhrman,
Lance Fortnow and André Souto. This is the first time that these results appear
in written format.

In Chapter 1 we tried to motivate the problem from a philosophical point
of view. But now that we have the required background we can argue that
this problem is interesting from also a technical point of view. In fact this is a
recurring theme in both theory of computation and computational complexity
to see what we can do given a certain amount of resources. In such an approach
the focus is mostly on decidability, in loose terms we can ask are there sets that
look undecidable to a class of algorithms with certain power but look decidable
to other algorithms with more power? Results of such are known as hierarchy
theorems in computational complexity. To get familiar with this theme, we will
first look at some such results before we get to our main proble

3.1 Decidability

Let t : N → N be some function and consider the class of sets computable in
time DTIME(t(n)). Of course this class does not contain all sets for the simple
reason that there exist undecidable sets. But what about decidable sets? Are
they all contained in DTIME(t(n))? Intuitively we expect that if we are given
more time we can compute more, and as Hartmanis and Stearns proved this is
indeed the case.

Theorem 3.1. (Time Hierarchy Theorem [HS65]) For any time con-
structible functions t and t′ satisfying t(n) log t(n) = o(t′(n)), then DTIME(t(n)) ⊂
DTIME(t′(n)).

21

22 CHAPTER 3. HIERARCHY THEOREMS

Proof. (sketch) We should construct a set L ∈ DTIME(t′) but not in DTIME(t).
Consider algorithm A which on input x runs Mx(x) for t(|x|) steps and outputs
1−Mx(x) (Mx is the Turing machine described by x). Let L be the set decided
by A. We claim that L 6∈ DTIME(t). Assume to get a contradiction that this
is the case and there is a t-time machine Mz deciding L. On input z by the
construction of A we get Mz(z) = 1 −Mz(z) and this is a contradicition. It
remains to prove that L ∈ DTIME(t′(n)). We will not go into the details of this
fact, but we note that we should bound the running time of A which follows
from efficient simulations of Turing machines.

We now address the same question for probabilistic classes, whether we can
compute more having more time. First we argue why we believe that such a
hierarchy exists. We mentioned earlier that it is believed that BPP = P which
implies that for every c there exists d such that BPTIME(nc) ⊆ DTIME(nd).
But by Theorem 3.1 there is some d′ such that DTIME(nd) ⊂ DTIME(nd

′
).

This implies that BPTIME(nc) ⊂ DTIME(nd
′
) ⊆ BPTIME(nd

′
), where the last

inclusion follows from the fact that deterministic computation is special case
of randomized computation with zero error. Proving hierarchy theorems for
probabilistic classes is not as straightforward as for deterministic classes. In
fact it is still an open problem whether BPTIME(nc) ⊂ BPTIME(nd) for c < d.
Standard techniques such as diagonalization do not seem to be applicable here.
Notice that the machines M over which we should diagonalize must have a
certain property, namely for all x ∈ {0, 1}∗ it must hold either Pr[M(x) = 1] >
2
3 or Pr[M(x) = 1] < 1

3 , and of course there exist machines for which this
probability lies between 1

3 and 2
3 and it is not an easy task to decide this.

However, starting with the paper of Barak [Bar02], several results towards
establishing a hierarchy were discovered. To apply a diagonalization method,
Barak introduces a notion of reduction between sets which is slightly different
from the standard reduction. He allows the complexity of reduction to depend
on the complexity of the reduced set. For instance if L reduces to L′ then the
time that this reduction takes is somehow similar to the time that L requires.

Definition 3.2. A set B is called BPTIME-hard if there exists c such that for
all time-constructible functions t : N→ N and and any A ∈ BPTIME(t(n)) there
exists a function computable in t(|x|)c deterministic time such that x ∈ A ⇔
f(x) ∈ B for all x ∈ {0, 1}∗. Furthermore, if B ∈ BPP then it is said to be
BPP-complete.

Theorem 3.3. (Barak [Bar02]) If BPP has a complete set, then there ex-
ists c such that for every time-constructible time bound t : N → N we have
BPTIME(t(n)) ⊂ BPTIME(t(n)c).

Proof. Let L be a BPP-complete set with a probabilistic machine N deciding L
running in time nc. Given that L is BPTIME-hard we know that there exists a
constant d such that for every time-constructible t, every BPTIME(t(n)) set is
reducible to L in t(n)d determinisitc time. Fix some time-constructible function
t and an enumeration M1,M2, . . . of Turing machines and define the following

3.2. RANDOMNESS 23

set
L′ = {x : M t(|x|)d

x (x) 6∈ L},

where My
x is just Mx run for y steps. We now show that

(i) L′ ∈ BPTIME(t(n)bcd) for some constant b

(ii) L′ 6∈ BPTIME(t(n))

To prove the former we give the following algorithm D: on input x we just
output 1−N(M t(|x|)d

x (x)). Since N is a BPP machine deciding L we obtain

1. M t(|x|)d
x (x) 6∈ L⇒ Pr[D(x) = 1] ≥ 2

3

2. M t(|x|)d
x (x) ∈ L⇒ Pr[D(x) = 1] < 1

3 ,

which proves (i). Now assume that L′ ∈ BPTIME(t(n)). Since L is complete
there is a reduction from L′ to L. Let this be witnessed by Mi and hence
x ∈ L′ ⇔M

t(|x|)d
i (x) ∈ L and in particular i ∈ L′ ⇔M

t(|i|)d
i (i) ∈ L, which is a

contradiction by definition of L′ and we are done.

Barak also shows that if NP ⊆ BPP then BPP has a complete problem and
thus has a hierarchy. By a padding argument he concludes that BPTIME(n) 6=
NP. In the same paper Barak follows another strategy to get hierarchy results.
He considers optimal probabilistic algorithms for certain sets, optimal in the
sense that they are slower to only a polynomial factor than any other algorithm
deciding that set. For instance if there is an optimal algorithm running in time
t(n), then there is some constant c such that any other algorithm deciding that
set runs in time at least t(n)

1
c . Using this approach he was able to prove a

hierarchy result when there exists a little bit of non-uniformity.

Theorem 3.4. (Barak [Bar02]) For all constants c ≥ 1 there is some constant
d such that BPTIME(nd)/ log log n 6⊆ BPTIME(nc)/ log n.

Improving the optimal algorithm of Barak, Fortnow and Santhanam were
able to reduce the number of advice bits to 1.

Theorem 3.5. (Fortnow-Santhanam [FS04]) For all constants 1 < c < d
it holds that BPTIME(nc) /1 ⊂ BPTIME(nd) /1.

3.2 Randomness

Let f and t be functions such that f(n) ≤ n ≤ t(n) for all n. Consider the
following class of strings [Har83]:

C[f, t] = {x : Ct(x) ≤ f(|x|)},

the set of strings that are generated by some program of size f(n) in time t(n).
Let t′ be such that t′(n) > t(n) log t(n). It is obvious that C[f, t] ⊆ C[f, t′],

24 CHAPTER 3. HIERARCHY THEOREMS

the same program witnessing Ct(x) ≤ f(|x|) yields Ct
′
(x) ≤ f(|x|). A natural

question is if we can find a smaller description of such strings if we had more
time than t or in other words if this inclusion is strict? The intuition suggests
that it should be the case, since if we are given more time we can find more
patterns and hence we can express the string with fewer bits. By a simple
argument we can prove that if we are given exponentially more time, i.e., if
t′(n) ≥ c2f(n)t(n) log t(n), then the inclusion is strict. This is formally stated
below.

Theorem 3.6. (Longpré [Lon86]) Let f and t be functions computable in
time t with f not bounded by any constant and f(n) < n. There is some
constant c such that C[f, t] ⊂ C[f, c2f t log t].

Proof. For any k consider the following program pk:

1. find the smallest l with f(l) > k
2. output the first x of length l with Ct(x) > f(l).

As f is not bounded by any constant, the first step halts successfully by
finding an appropriate l. For the second step we simply run all the programs of
length at most 2f(l) for t(l) steps and output the lexicographically first x that
was not generated by any of those. Such x exists since f(l) < l1, and hence the
program halts. The running time is clearly c2f(l)t(l) log t(l), where t(l) log t(l) is
incurred by the simulation of programs. For the size of pk notice that it contains
k with some constant size program. So we can assume |pk| = d+ log k for some
constant d. Choosing k large enough we get |pk| ≤ k. For such k the output
of pk is generated by a program of size at most k < f(|x|) in time c2f(|x|)t(|x|)
and as the second step guarantees that Ct(x) > f(|x|) the result follows.

Now the question is whether we can improve the result of Theorem 3.6 in
the sense that we can compress better if we are given only polynomially more
time. We will refer to this problem as the compression hierarchy problem. This
is reminiscient of the Time Hierarchy Theorem where having more time we
can compute more. But things are not as easy with Kolmogorov complexity.
Buhrman and Fortnow considered a similar question and asked for strings that
do not have short descriptions in a certain time, but with a little bit more
time we can give almost optimal descriptions2 of them. Their approach to this
problem was to consider strings of length 2n as the characteristic strings of
sets corresponding to the n-bit members. They showed that the time-bounded
Kolmogorov complexity of such strings is in some sense equivalent to their circuit
complexity, and hence a set whose characteristic sequence is composed of strings
with high Kolmogorov complexity does not have small circuits. The following
theorem is a formalization of this idea.

1Each program of size f(l) can generate at most one string. Therefore the number of
strings x of length l with C(x) ≤ f(l) is at most 2f(l) < 2l. Thus there exists some string of
length l with Kolmogorov complexity at least f(l).

2For a string x of length n a description of size O(log n) could be regarded as optimal,
since we need to specify at least the length of x.

3.2. RANDOMNESS 25

Theorem 3.7. (Buhrman and Fortnow [BF11]) The following statements
are equivalent:

1. There exist constants d, c, d′ and c′ such that for all sufficiently large
n there exists x with |x| = N = 2n satisfying CN

d

(x) ≤ c logN and
CN

d′

(x) ≥ N c′ ,

2. There exists L ∈ E with circuit complexity at least 2Ω(n), i.e., there is some
constant b > 0 such for all sufficiently large n we have s(L=n) ≥ 2bn.

Proof. (1) → (2): Define the following set

L = {x : b(1 + c)nc ≤ |x| < b(1 + c)(n+ 1)c, x = pqr, |p| = bcnc, |r| = n,

U2dn(p)r = 1}.

We first check that L ∈ E. On an input x with |x| = n we cut it into x = pqr
with proper lenghts. Then we run U(p) for 2d|r| steps and output the rth bit.
Hence the running time is O(n) + 2d|r| = 2O(n).

Assume now to get a contradiction that for all b > 0, there are infinitely
many n’s such that s(L=n) < 2bn. For any such n let Cn be a circuit witnessing
this. Take n′ such that b(1 + c)n′c ≤ n < b(1 + c)(n′ + 1)c. Take some x with
|x| = N = 2n

′
with CN

d

(x) ≤ cn′ witnessed by |p| = bcn′c and CN
d′

(x) ≥ N c′ .
The following algorithm outputs x:

for i = 1 to 2n
′

(i represents the ith string of length n′) do
OUTPUT Cn(p0n−n

′−bcn′ci)
end for

This algorithm generates x from at most n′ + 2bn < 2
bc
c+1 (n′+1)+1 < 2

2bc
c+1n

′

bits in time 2n
′

+ 2bn < 2
2bc
c+1n

′
. Thus if we choose b small enough so that

2bc
c+1 < d′ we get a contradiction.

(2) → (1): Let L be a set in E computable in time 2dn by some algorithm
A with circuit complexity 2Ω(n). Therefore there exists a constant b such that
for sufficiently large n, L=n requires circuits of size at least 2bn. For such n’s
let xn be the string of length 2n corresponding to the characteristic sequence
of L confined to the strings of length n. Program pn defined as follows clearly
outputs xn: for i ∈ {0, 1}n, the ith bit of output is A(i). Notice that pn runs in
time 2n×2dn = 2(d+1)n and to represent it we just need a description of n and A
with some constant size program which will not cost us more than O(log n) bits.
This proves that CN

d+1
(xn) ≤ O(logN). Assume for the sake of contradiction

that for all c′ and d′ we have CN
d′

(xn) < N c′ with some program p witnessing
this. Let A(p, i) be the algorithm that runs the program p and outputs the ith
bit of the result. This clearly decides L=n and since any algorithm running in
time t could be converted to a circuit of size t2 deciding the same language, by
hardwiring p we get a circuit for L=n of size 2c

′n + 22d′n. Choosing c′ and d′

small enough this sum will be smaller than 2bn contradicting the assumption
that s(L=n) ≥ 2bn.

26 CHAPTER 3. HIERARCHY THEOREMS

It is not hard to see that the proof of Theorem 3.7 relativizes since the
universal machine U used in the proof could safely be substituted by UO for
any oracle O without any impact on the argument. A result of Wilson [Wil85]
states that there exists an oracle A such that EXPA ⊆ PA /poly and consequently
EA ⊆ PA /poly. But then by Theorem 3.7 there exists a relativized world A
where for all constants d, c, d′ and c′ there are infinitely many n’s such that for
all x with |x| = N = 2n we have either CA,N

d

(x) > c logN or CA,N
d′

(x) < N c′ ,
which means that proving a hierarchy of the form as in statement (1) of Theorem
3.7 requires non-relativizing techniques. Also note that applying Theorem 3.7
and the derandomization result of Impagliazzo and Widgerson (Theorem 2.20)
proving Theorem 3.7 (1) implies the full derandomization of BPP. This is stated
formally as follows.

Corollary 3.8. If there exist constants d, c, d′ and c′ such that for all sufficiently
large n there exists x with |x| = N = 2n satisfying CN

d

(x) ≤ c logN and
CN

d′

(x) ≥ N c′ , then BPP = P.

Let us get back to the compression hierarchy problem. Note that a negative
answer to this problem implies that for all time bounds that are only polyno-
mially far from each other, the respective Kolmogorov complexity of all strings
is (almost) constant. Antunes, et al. took this approach and applying a similar
argument as in Theorem 3.7, proved the following theorem.

Theorem 3.9. (Antunes et al. [ABFS11]) For every f : N→ N with f(n) ≤
n for sufficiently large N = 2n the followings are equivalent:

1. ∃c∀bd∃a such that for all x with |x| = N and

CN
d

(x) ≤ f(N) + b log(N)⇒ CN
c

(x) ≤ f(N) + a log(N).

2. ∃c′∀bd∃a such that

DTIME(2dn)/f(2n) + bn ⊆ DTIME(2c
′n)/f(2n) + an.

Proof. (1) → (2): Set c′ = c + 1. Take any A ∈ DTIME(2dn)/f(2n) + bn and
for any n consider χ=n

A . Let M be the DTIME(2dn) machine deciding A with
the advice sequence α1, α2, . . . such that |ai| ≤ f(2i) + bi. Now consider the
following program:

for i = 1 to 2n do
χi = M(xi, αn)

end for
It is clear it runs in time 2n · 2dn = 2(d+1)n and the output χ is just χ=n

A . This
description contains n, αn and some constant size program corresponding to M
and the for loop. The size of this description is |αn|+log n+C for some constant
C and consequently there is some b′ such that f(2n)+bn+log n+C ≤ f(2n)+b′n.
We just showed that

C |χ
=n
A |

d+1
(χ=n
A) ≤ f(|χ=n

A |) + b′ log(|χ=n
A |).

3.2. RANDOMNESS 27

We can thus apply 1 and get constants a and c such that

C |χ
=n
A |

c

(χ=n
A) ≤ f(|χ=n

A |) + a log(|χ=n
A |).

Let α′n be such a description of χ=n
A . We construct a machine M ′ as follows: on

an n-bit input x which is the ith string in the lexicographic ordering of n-bit
strings, it runs U(αn). If the ith bit of the output is 1 it accepts x, otherwise
it rejects. By assumption U(αn) runs in time 2cn and we need at most 2n

more steps to check the ith bit of the output. So the total running time is
2cn + 2n ≤ 2c+1n = 2c

′n. This shows that A ∈ DTIME(2c
′n)/f(2n) + an.

(2) → (1) For all n let xn with |x| = n be any string such that Cn
d

(x) ≤
f(n)+b log n witnessed by a program pn. Now take a set A whose characteristic
sequence is x1x2x3 . . ., i.e., the contcatenation of all xi’s. We claim that A ∈
DTIME(2dn)/f(2n) + bn. To show this weuse the advice sequence p1, p2, . . . and
a machine M running in time 2dn such that z ∈ A ⇔ M(z, p|z|) = 1. Machine
M works as follows: on input (z, p|z|) with |z| = n it runs U(pn) for 2dn steps
and outputs the zth bit of the result. This clearly satisfies our requirement.
Now by assumption we get A ∈ DTIME(2cn)/f(2n) + an. Let this be witnessed
by a machine M ′ and an advice sequence p′1, p

′
2, We can now generate χ=n

A

from M ′ as follows: we run M ′(x, p′n) and write the output in turn for all x of
length n in lexicographic order. This sequence of outputs is clearly χ=n

A and it
is generated in time 2n × 2cn = 2c

′n. This description requires M ′, n and p′n
and thus its size is bounded by |p′n|+n+O(1) ≤ f(2n) + a′n for some constant
a′. Since xi’s were chosen arbitrarily the result is established.

Similar to Theorem 3.7, all the simulations in the proof of Theorem 3.9
could be done with respect to any oracle and hence Theorem 3.9 relativizes.
The following result says that there exist relativized worlds where the second
statement in Theorem 3.9 holds. This result and the fact that Theorem 3.9
relativizes imply that a proving that the first statement (1) in Theorem 3.9 is
false, requires non-relativizing techniques.

Theorem 3.10. (Antunes et al. [ABFS11]) For every f : N → N with
f(n) ≤ n for all n, there exists A such that ∃c∀bd∃a such that

DTIMEA(2dn)/f(2n) + bn ⊆ DTIMEA(2cn)/f(2n) + an.

Proof. Let g(n) = f(2n)+bn. We construct A in stages by adding new elements
to the already constructed part. Let An denote the part of A that has been
constructed by the end of stage n. Then A = limn→∞An.
Stage 0: At this stage we set A0 = ∅.
Stage n: Assume that A0, . . . , An−1 have been constructed. Let M be any
machine running in time 2dn.

Step 1: For all x ∈ {0, 1}≤n and all y with |y| ≤ g(|x|), consider the computation
of MAn−1(x, y) and let Qn be the set of all queries made on these
computations.

28 CHAPTER 3. HIERARCHY THEOREMS

Step 2: For all y ∈ {0, 1}g(n) we choose a distinct zy with |zy| ≤ g(n) + an
with a to be chosen later such that for all x ∈ {0, 1}n it holds that
〈x, 〈M, zy〉〉 6∈ Qn. We add 〈x, 〈M, zy〉〉 toA if and only ifMAn−1(x, y) =
1 (the fact that 〈x, 〈M, zy〉〉 6∈ Qn guarantees that after adding this ele-
ment to A, the computation of MA(x, y) is the same as MAn−1(x, y)).

Fact 1. Step 2 succeeds by finding 2g(n) many zy’s satisfying

(∗)∀y ∈ {0, 1}g(n)∀x ∈ {0, 1}n〈x, 〈M, zy〉〉 6∈ Qn.

Proof. Consider a 01-matrix in which columns are labeled with strings of length
n and rows are labeled with strings of length g(n) + an. In the (x, z) entry we
write 1 iff 〈x, 〈M, z〉〉 ∈ Qn. We say that a column z is spoiled if for some x
the (x, z) entry is 1. Since each query in Qn can spoil at most one column, the
number of spoiled columns is at most |Qn|. We can bound |Qn| as

|Qn| ≤ 2n+1 · 2g(n) · 2dn

≤ 2(d+2)n+g(n),

which follows from the fact that there are 2n+1 and 2g(n) choices for x and
y, respectively, and for each pair there are at most 2dn queries. Setting a =
d + 3 this means that the number of unspoiled columns is at least 2g(n)+an −
2(d+2)n+g(n) ≥ 2g(n). Now we can choose 2g(n) unspoiled columns and the
strings that correspond to these columns satisfy (*) and we are done.

It follows from the construction that

MA(x, y) = 1⇔ 〈x, 〈M, zy〉〉 ∈ A (3.1)

We now show that this establishes the result: take any L ⊆ DTIMEA(2dn)/g(n)
witnessed by M and advice sequence {αn}n∈N. Now take a new advice sequence
{βn}n∈N such that βn = 〈M, zαn〉. By 3.1 we can just query whether 〈x, β|x|〉
is in A. This takes linear time and as βn’s have the required size, the result
follows.

Theorem 3.10 implies for any function f : N → N there is some oracle
A with respect to which if x is describable in almost f(|x|) bits then for all
polynomial time bounds it has a description of size roughly f(|x|). This means
that if we want to get descriptions with strictly less than f(|x|) bit we need
at least exponential time. This is the opposite of what we wanted to show in
the compression hierarchy problem. Therefore a positive anwer to this problem
requires non-relativizing techniques, a strong evidence that it is indeed a hard
problem.

Note that the oracle made in Theorem 3.10 depends on the function f which
means that it is possible that in any relativized world there is some hierarchy

3.2. RANDOMNESS 29

with polynomial gap for some function f while this is not so for another function
f ′. Now the question is if there exists an oracle that works for every function.

Problem (Buhrman). Does there exist an oracle A such that for all f : N→ N
with f(n) ≤ n for all n it holds that ∃c∀bd∃a such that

DTIMEA(2dn)/f(2n) + bn ⊆ DTIMEA(2cn)/f(2n) + an.

An affirmative answer to this question implies that a proof of the existence
of a function for which a hierarchy with polynomial gap holds would require
non-relativizing techniques. The method of Theorem 3.10 does not seem to be
applicable here. Recall that to each string y we associated a distinct string zy.
If we want to use the same argument here, we will have to find a distinct z for
each function f and each string y. But since there are too many f ’s we cannot
use the counting argument to show that there exist such distinct z’s. We should
thus look for other techniques to construct such an oracle.

30 CHAPTER 3. HIERARCHY THEOREMS

Chapter 4

Future Work

We introduced the time-bounded Kolmogorov complexity and studied the hier-
archy given by this definition. We investigated whether it is possible to prove
hierarchies with polynomial gaps and that it relates to circuit lower bounds and
hence derandomization.

For a possible further attack on the compression hierarchy problem, we now
argue that using results from additive combinatorics (sum-product theorem in
particular) it might be possible to get hierarchy results. As we will explain
below additive combinatorics provides a nice setting for proving the existence of
strings with high time-bounded Kolmogorov complexity that are somehow made
of strings with low time-bounded Kolmogorov complexity. Using this property
we might be able to generate those strings with fewer bits.

Let F be a field and let A be a subset of F. Consider the sets A+A = {a+b :
a, b ∈ A} and A×A = {a× b : a, b ∈ A}. We ask how large could these two sets
be compared to the cardinality of A. Erdős and Szemerédi proved that at least
one of them is large if F = R.

Theorem 4.1. (Erdős, Szemerédi [ES83]) For F = R there exists ε > 0
such that for all A ⊂ F we have max{|A+A|, |A×A|} ≥ |A|1+ε.

We now ask if some similar statement holds for finite fields. Notice that if
|A| ≥ Ω(|F|) or if A is a strict subfield of A the statement is not true. To rule
out these possibilities we assume that A is not large and that Fp = Z/pZ for
some prime p which guarantees that it does not have any strict subfield. We
then have the following theorem.

Theorem 4.2. (Bourgain, Katz and Tao [BKT04]) For F = Fp and every
A ⊂ F with |A| ≤ |F |0.9 we have max{|A+A|, |A×A|} ≥ |A|1+0.001.

This theorem has been used to construct randomness extractors in [BKS+05]
and also in later works. Exctractors could in some sense be considered as close
cousins of procedures that increase Kolmogorov complexity (which is what we
wanted to do). It is interesting to see if one can obtain any strong result in
this respect using Theorem 4.2 or other tools in additive combinatorics. The

31

32 CHAPTER 4. FUTURE WORK

following is the most naive approach. Let n = 2p − 1 be some Mersenne prime
and consider Fn and the set A = C[f, t]=p \ {1p} for some f and t. We will look
at binary strings of length p as member of Fn. By Theorem 4.2 we have either
|A + A| > |A| or |A × A| > |A|. Assume that the former is true. This means
that there are x and y in A such that x+ y 6∈ A. Since |A+A| is large enough
we can also assume that x+ y 6= 1p. Thus for z = x+ y we have Ct(z) > f(p),
but x + y is a description of z of length 2f(p) running in polynomial time in
f . This bound is far from what we wanted to prove, but it is interesting to see
if more subtle applications of the sum-product theorem would give any better
bound.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity : A Mod-
ern Approach. Cambridge University Press, 2009.

[ABFS11] Lúıs Antunes, Harry Buhrman, Lance Fortnow, and André Souto.
personal communication, 2011.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for slightly non-
uniform algorithms. In Jos Rolim and Salil Vadhan, editors, Random-
ization and Approximation Techniques in Computer Science, volume
2483 of Lecture Notes in Computer Science, pages 952–953. Springer
Berlin / Heidelberg, 2002.

[BF11] Harry Buhrman and Lance Fortnow. personal communication, 2011.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of
the P =? NP question. SIAM Journal on Computing, 4(4):431–442,
1975.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi
Wigderson. Simulating independence: new constructions of con-
densers, ramsey graphs, dispersers, and extractors. In Proceedings
of the thirty-seventh annual ACM symposium on Theory of comput-
ing, STOC ’05, pages 1–10, New York, NY, USA, 2005. ACM.

[BKT04] Jean Bourgain, Nets Katz, and Terence Tao. A sum-product estimate
in finite fields, and applications. Geometric And Functional Analysis,
14:27–57, 2004. 10.1007/s00039-004-0451-1.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudorandom bits. SIAM Journal on Comput-
ing, 13(4):850–864, 1984.

[Cle93] Carol E. Cleland. Is the church-turing thesis true? Minds and
Machines, 3:283–312, 1993. 10.1007/BF00976283.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of
computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.
ACM.

33

34 BIBLIOGRAPHY

[ES83] P. Erdős and E. Szemerédi. Studies in Pure Mathematics: To the
Memory of Paul Turán, chapter On Sums and Products of Integers,
pages 213–218. Birkhuser, 1983.

[FS04] L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic
polynomial time. In Foundations of Computer Science, 2004. Pro-
ceedings. 45th Annual IEEE Symposium on, pages 316 – 324, oct.
2004.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspec-
tive. Cambridge University Press, 2008.

[Har83] Juris Hartmanis. Generalized kolmogorov complexity and the struc-
ture of feasible computations. In Proc. 24th IEEE Symp. Foundations
of Computer Science, pages 439–445, 1983.

[HS65] J. Hartmanis and R. E. Stearns. On the computational complexity
of algorithms. Transactions of the American Mathematical Society,
117:pp. 285–306, 1965.

[HS66] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape
turing machines. J. ACM, 13:533–546, October 1966.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires
exponential circuits: derandomizing the XOR lemma. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing poly-
nomial identity tests means proving circuit lower bounds. Computa-
tional Complexity, 13:1–46, 2004. 10.1007/s00037-004-0182-6.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between
nonuniform and uniform complexity classes. In Proceedings of the
twelfth annual ACM symposium on Theory of computing, STOC ’80,
pages 302–309, New York, NY, USA, 1980. ACM.

[Lev73] L. A. Levin. Universal sequential search problems. Probl. Peredachi
Inf., 9:265–266, 1973.

[Lon86] Luc Longpré. Resource Bounded Kolmogorov Complexity, A Link
Between Computational Complexity and Information Theory. PhD
thesis, Cornell University, 1986.

[LV08] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complex-
ity and Its Applications. Springer, 3rd edition, 2008.

BIBLIOGRAPHY 35

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal
of Computer and System Sciences, 49(2):149 – 167, 1994.

[SSZ95] Michael Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit dis-
persers with polylog degree. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, STOC ’95, pages
479–488, New York, NY, USA, 1995. ACM.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all
min-entropies and a new pseudorandom generator. J. ACM, 52:172–
216, March 2005.

[Wil85] Christopher B. Wilson. Relativized circuit complexity. Journal of
Computer and System Sciences, 31(2):169 – 181, 1985.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In IEEE
Symposium on Foundations of Computer Science, 1982.

