
Information and Representation in Computational
Social Choice

MSc Thesis (Afstudeerscriptie)

written by

Ilan Frank
(born November 11, 1981 in Gan-Shmuel, Israel)

under the supervision of Dr Ulle Endriss, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 6, 2011 Prof Dr Krzysztof Apt

Dr Ulle Endriss
Umberto Grandi
Prof Dr Benedikt Löwe
Prof Dr Peter van Emde Boas

Abstract

Voting rules are functions aggregating the preferences of voters regarding a set
of alternatives, and the theoretical properties of these objects are investigated
in voting theory, as well as in computational social choice, where we study their
computational aspects.

The question of how much information such rules actually need in order
to compute their result has been studied from various angles in recent years,
via concepts such as the communication complexity (Conitzer and Sandholm),
compilation complexity (Chevaleyre et al.), and informational size (Sato). We
review these concepts and analyze the relations between them. That will lead
us to a discussion about representation of information: We describe different
representations for different voting rules and construct a hierarchy of those
representations. We then discuss generalized scoring rules (introduced by Xia
and Conitzer), and show how they relate to our previous discussion.

Finally, we build a correspondence between one representation for voting
rules and subgroups of the symmetric group, thus showing a connection between
group theory and informational representations in voting theory. We use that
correspondence to prove a theorem posed by Sato in his paper on informational
size.

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr Ulle Endriss,
for all his help and encouragement, and especially for giving me the freedom to
pursue the directions which I found most fascinating, and which ultimately led
me to this work.

I also thank the other committee members: Dr Krzysztof Apt, Umberto
Grandi, Dr Benedikt Löwe, and Dr Peter van Emde Boas, for all their impor-
tant remarks, corrections and suggestions.

I thank Dr Vincent Conitzer, Dr Jerome Lang, Dr Shin Sato, and Dr Lirong
Xia for clarifying me various details in their work, on which much of this thesis
is based.

I am grateful to Mark Polak, Gabriela Aslı Rino Nesin, and Navid Taleban-
fard for all their useful comments, and to Erik Parmann for \qedhere.

Finally, I want to thank the Huygens Scholarship Programme for supporting
me during my studies in the Netherlands.

Contents

1 Introduction 3
1.1 Voting Theory . 4
1.2 Complexity and Social Choice . 7

1.2.1 Complexity . 7
1.2.2 Voting Rules and Complexity 8

Outline of the Thesis . 9

2 Information and Complexity Measures in Social Choice 11
2.1 Communication Complexity . 12
2.2 Compilation Complexity . 16

3 Informational Size 21
3.1 Informational Size . 21
3.2 Common Upper Bound for Complexity Measures 23
3.3 Communication Complexity vs. Compilation Complexity 27

4 The Problem of Representation 31
4.1 Defining Representations . 31
4.2 Hierarchy of Representations . 37
4.3 Generalized Scoring Rules . 40
4.4 Connecting GSR with Complexity Measures 41

5 Group Correspondence 45
5.1 Basic Definitions . 45
5.2 Paving the Way for the Correspondence 50
5.3 Subgroups and NA-Rules . 51

5.3.1 Subgroups of Index < m 54
5.3.2 Subgroups of Index ≥ m 57

5.4 Using the Correspondence . 60

Conclusions 65
Discussion . 65
Future Work . 66

A List of Common Voting Rules 69

B Proof of Lemma 4.1.6 73

C Upper Bound on ABOVE and STV 77

Bibliography 83

1

Chapter 1

Introduction

Social choice theory in general, and voting theory in particular, are about ag-
gregating preferences of different agents with regard to a set of alternatives.
The objects which take the preferences of the agents and produce the collective
decision are called voting rules, and they are the main objects of inquiry in the
field.

On the formal side of the theory, these objects are usually described as
functions which take as input the preferences of the voters and give as output
the set of winning alternatives. However, when one actually wishes to describe
a specific rule, that description is usually quite “wordy”, giving an algorithm
rather than a detailed function.

These algorithmic descriptions of voting rules are not necessarily bad. In-
deed, in computational social choice, which studies various computational as-
pects of social choice theory, voting rules can be naturally embedded as com-
puter programs. That description, though, has its limitations. There are many
properties of voting rules which we cannot learn from the programs associated
with them – or at least it would require unreasonable computational resources.
These are theoretical questions such as: Are two voting rules identical (which
would require one example to answer negatively, but perhaps going over an infi-
nite number of inputs to answer positively), or on which sets of preferences will
two voting rules coincide?

It seems that such questions cannot be answered based on an algorithmic
description alone, but require some theoretical analysis of the voting rules, or
a mathematical description which is finer than just functions from preferences
to alternatives. One way to go about in this direction is to study the way
different voting rules use information. The information in social choice theory
is the preferences of the agents, and by studying how a voting rule utilizes that
information we might have some better understanding of voting rules.

This thesis focuses on the topic of information in computational social choice,
studying various problems and descriptions which were suggested in this area, in
the hope that such descriptions can bring forth a more detailed representation
of voting rules, which will enrich our understanding of the field.

These ideas have already been studied to some degree in recent years. The
most formal representation suggested so far, generalized scoring rules, will be
described in Chapter 4. Other information-related problems which we will be
dealing with are communication complexity and compilation complexity, seeing
how they characterize rules and what representations they offer. We will also
suggest a direction of inquiry which might lead to an algebraic representation

3

of voting rules.
We begin by describing voting theory in a more detailed way, giving all

the basic formal definitions, and mentioning some of the famous theorems and
approaches in the field. We later describe computational social choice, which
has been a very productive field in recent years. In the end of this chapter we
present an outline of the thesis.

1.1 Voting Theory

In this section we give all the definitions we need from voting theory, and de-
scribe some of the popular approaches in the field. A more general introduction
can be found in Gaertner [9]. We start with the standard basic definitions in
voting theory:

Definition 1.1.1 (Voting framework). We will be speaking of a set of alter-
natives (or candidates) X of size m and a set of n voters (or agents)
N = {1, . . . , n}.

The set of strict linear orders on X is denoted L(X) (or sometimes, when X
is clear, just L). An element V ∈ L(X) is a ballot. V i denotes the ith element
in the order V .

A profile P = 〈V1, . . . , Vn〉 is an n-tuple of ballots, where the ith element is
the ballot submitted by voter i. L(X)n is the set of all profiles for n voters. We
also denote the set of all profiles (for any finite number of voters) by L(X)∗.

A voting rule for m alternatives and n voters is a function Fm,n : L(X)n →
P(X) \ {∅}. The set F(P) is called a winning set, and its elements are the
winning candidates/alternatives.

For a profile P = 〈V1, . . . , Vn〉 and x, y ∈ X, denote x �P,i y if x is preferred
to y in Vi, and denote

N(x, y, P) = |{i : x �P,i y}|

So N(x, y, P) is the number of voters who prefer x to y. In addition, denote for
any 1 ≤ j ≤ m

N(x, j, P) = |{i : V ji = x}|

the number of voters who rank x in the jth place in P .

A list describing all common voting rules that are mentioned in this thesis
can be found in Appendix A. We give an example of a profile under a few of
the voting rules described in the list. Let our candidates be X = {a, b, c, d} and
let n = 3 (4 candidates and 3 voters). Let our profile be:

P =


a > b > c > d

a > b > c > d

b > c > d > a

For such a profile we get that the plurality winner is a (2 out of 3 voters rank
a first), the Borda winner is b (with a Borda score of 7, higher than that of any

4

other candidate), and the veto winners are c and b (both never voted last). We
also get that for any x ∈ {b, c, d} we have N(a, x, P) = 2 > 1 = N(x, a, P),
which makes a also a Condorcet winner, and so the winner in all the Condorcet
consistent rules. Finally, N(a, 1, P) = 2, which is more than half the votes, and
so the Bucklin score of a is 1, which makes it the Bucklin winner.

As was mentioned, voting rules are often described as an algorithm, where m
and n are just parameters, but the rule can be fitted for any number of voters
and alternatives. That is to say, such a rule F is actually a function whose
domain is {L(X)∗ : X is a finite set}. When we are talking about a rule with a
clear mechanism, or when m and n are clear from the context, we will sometimes
omit the subscript.

Another remark is about our terminology. There are various definitions and
terms in the literature regarding voting rules. While in some places those are
defined as they are defined above, in other places a voting rule must elect a
single winner for any profile (that is, it does not allow “ties”, as our definition
does). This type of voting rules is also referred to as “resolute” at times. We will
stick to the definition above, as resolute voting rules often add an asymmetric
component to the system (we can always have a profile which is symmetric
with respect to all candidates, but then choosing a single winner “breaks the
symmetry”). Another reason is that any voting rule F (in our sense) can be
made into a resolute by composing some tie breaking rule on top of F .

A lot of the characterization of voting rules in voting theory is done by
defining axioms and then looking only at the rules satisfying them. We present
some of the more important axioms, some of which we will use extensively in
the thesis. The first axiom – anonymity – simply says that the voting rule is
symmetric with respect to all voters:

Definition 1.1.2 (Anonymity). A voting rule F is anonymous if for every
profile P = 〈V1, . . . , Vn〉 and every σ, a permutation of the set N = {1, . . . , n}
(i.e., a bijection from N to N), we have

F(〈V1, . . . , Vn〉) = F(〈Vσ(1), . . . , Vσ(n)〉)

A rule that is not anonymous, for example, is a rule that always chooses the
alternative ranked first by voter i, for some fixed 1 ≤ i ≤ n. Such a rule is called
“dictatorial” and voter i is called “the dictator”, for obvious reasons.

Another important axiom which is also about symmetry, though symmetry
among alternatives and not voters, is the following:

Definition 1.1.3 (Neutrality). Given a permutation σ of X and a ballot V =
〈x1 > x2 > · · · > xm〉 we define σV = 〈σ(x1) > σ(x2) > · · · > σ(xm)〉, which is
also a ballot. Given a profile P = 〈V1, . . . , Vn〉 we define σP = 〈σV1, . . . , σVn〉.
In addition we define, for a subset A ⊆ X, σ(A) = {σ(x) : x ∈ A}.

We say that a voting rule F is neutral if for every profile P and a permutation
σ of X we have

F(σP) = σ(F(P))

5

Neutrality means that the rule “doesn’t care” about specific candidates. If x
was winning before (given some profile), and we rename x to y (in that profile),
then now y will win.

Neutrality and anonymity create a sort of symmetry in the system, which
is usually desired. Most if not all the common voting rules are both neutral
and anonymous (up to implementation of tie breaking rules). Other important
axioms are monotonicity (there are two versions of monotonicity: weak and
strong; we will only be interested in the weak one) and positive responsiveness:

Definition 1.1.4 (Monotonicity, Responsiveness). For two profiles P1, P2 and
x ∈ X, we say that we get P2 by lifting x in P1, if for any y, z 6= x and 1 ≤ i ≤ n
we have y �P1,i z ⇔ y �P2,i z and x �P1,i y ⇒ x �P2,i y.

A voting rule F is (weakly) monotonic if for any two profiles P1, P2 and a
candidate x ∈ F(P1), if we get P2 by lifting x in P1, then x ∈ F(P2).

A voting rule F satisfies positive responsiveness if for any two profiles P1 6=
P2 and a candidate x ∈ F(P1), if we get P2 by lifting x in P1, then F(P2) = {x}.

Informally, the idea of lifting is that the preferences of the voters in P2 are
the same as P1, except that they might rank x higher. Monotonicity means
that in such a situation, x should not be doing worse than he was under P1.
Positive responsiveness, which is slightly stronger, says x should be doing bet-
ter. Both the axioms are usually desired properties, as they correlate with our
basic intuitions about preference aggregation. Another such property is Pareto
efficiency:

Definition 1.1.5 (Pareto efficiency). A voting rule F is Pareto efficient if for
any profile P , whenever we have candidates x, y ∈ X such that N(x, y, P) = n,
y /∈ F(P).

Pareto efficiency means that when we have a candidate x which all voters
prefer to another candidate y, we have no reason to elect y. The A-rules, N-
rules, M-rules, R-rules, and P-rules stand for the sets of anonymous, neutral,
monotonic, positively-responsive and Pareto efficient voting rules, respectively.
We will also talk about combinations such as NA-rules – neutral and anonymous
voting rules.

As was mentioned before, axioms are often used for characterization of rules.
May’s Theorem, for example, states that the only NAR-rule for the case ofm = 2
(two candidates) is plurality [13]. In Chapter 3 we will see the work of Sato,
where he uses a characterization based on a notion of information.

What we will do in much of this thesis is to try and view voting rules through
the information they utilize in the voters’ preferences, find “nice” representa-
tions for that information, and see how that can assist us in evaluating various
computational properties for those rules (Chapters 2 and 3), describing those
rules in a more formal way (Chapter 4), or characterizing rules (Chapter 5).

6

1.2 Complexity and Social Choice

Computational social choice, an area which has greatly developed in the last
decade or so, studies various computational aspects of social choice theory. In
regard to voting theory, among the topics that are studied we find the compu-
tational complexity of voting rules (how computationally hard it is to compute
the winner according to some voting rule), studying the complexity of manipu-
lating an election (manipulation is a situation where a voter/set of voters can
get a better winning set if they don’t express their true preferences), and – what
will be of special interest to us – coming up with formal descriptions for rules
and studying representations of information for different rules. For a review on
computational social choice, see [2].

1.2.1 Complexity

The scope of this thesis cannot allow for a complete description of complexity
theory, but as we will be dealing with several measures of complexity, we give a
very brief description of some concepts we will use. Notions of complexity stand
for different things in different contexts, but the measures we will encounter will
be one of the following two:

• Computational complexity, which is measured (in an informal and simpli-
fied way) by the number of computation steps a program requires, or the
size of the memory required by the program to perform that computation
(this could also be defined for other computational resources, though time
and space are the most commonly used).

• Data complexity, which is measured by the number of bits required to
store information.

In both cases we will be interested in describing the complexity as a function
f(x), where x is the input parameter of the problem. In addition, one is usually
less interested in the value of the complexity function for specific input param-
eters, but rather in the limit behavior of the function when the size of those
parameters grows towards infinity. The evaluation of the complexity is then
usually divided in two: a search for an upper bound and a separate search for
a lower bound.

Let f(x) be our complexity function, which we are trying to estimate. We say
that h(x) is an upper bound of f , f ∈ O(h(x)), if for large enough x we always
get f(x) ≤ Ch(x) for some constant C. Similarly, we say that h(x) is a lower
bound of f , f ∈ Ω(h(x)), if for large enough x we always get Ch(x) ≤ f(x)
for some positive constant C. We say that f is of the same order as h(x),
f ∈ Θ(h(x)) if for large enough x we always get C1g(x) ≤ f(x) ≤ C2g(x) for
two positive constants C1, C2. For a complete definition of the O-notation, see
[5, Chapter 3].

The parameters in our voting framework are the number of voters and the
number of candidates, so we will take our complexity measures to be functions

7

of the parameters m and n. Estimating the complexity of a function of two
parameters is not simple, and so often one makes simplifying assumptions about
the nature of the parameters and the connections between them (e.g., m � n,
or taking n to be a certain function of m). Those assumptions should also take
into account the problem at hand. In many scenarios, for example, it makes
sense to assume that the number of voters is much greater than the number of
candidates.

This gives us the basic tools for defining measures of complexity, which is
precisely what we will do in Chapter 2.

1.2.2 Voting Rules and Complexity

We give examples of the complexity of some voting rules, to get some perspective
on how difficult it is to compute these functions. When we refer to the com-
plexity of a voting rule in this section, we mean the computational complexity
of finding the winner(s) according to the rule, given some profile. We avoid
giving proofs and simply describe an algorithm for the rule when that is simple,
or mention a result regarding the rule’s complexity when it is computationally
difficult.

To avoid having to introduce too many definitions from complexity theory,
we simply say that a function f(x) takes linear (polynomial, exponential) time if
the number of computation steps required by any computer program1 computing
f(x) is in O(h(x)) where h(x) is a linear (polynomial, exponential) function of
x.2

We now present algorithms for a few voting rules. The algorithms presented
are not necessarily the most efficient, but they are used only to show that the
rule can be computed in linear/polynomial time.

Example 1.2.2.1 (Plurality). Computing the plurality rule takes linear time,
since for any profile P = 〈V1, . . . , Vn〉, FP (P) can be computed by going over
all ballots (n different ballots), and for each ballot Vi adding 1 to the plurality
score of candidate V 1

i . The winners are then taken to be the candidates with
the maximal score.3

Example 1.2.2.2 (STV – see Appendix A). Another rule which can be com-
puted relatively fast is STV. An algorithm for finding the STV winner is the
following: We iterate over all the ballots and compute the plurality score as we
did for plurality. We then check if there is a candidate with more than half the
votes. If not, we find the candidate(s) to be eliminated and keep track of them
in a list. Now we go over the ballots again, like in the first time, only whenever
we encounter an eliminated candidate we look at the following candidate in the

1Usually described as a “deterministic Turing machine”.
2Strictly speaking, we should have said that f(x) takes at most linear time.
3We have made some simplifying assumptions, taking addition as something that is per-

formed in 1 computation step, as well as the access to the data. In practice the complexity
might be higher, up to a factor of log. We use these assumptions also when describing the
following algorithms.

8

ballot. The process repeats itself until there is a winner. We note that it can
repeat at most m times (at every step we eliminate at least one candidate).
The whole computation takes polynomial time (it is in O(m3n) or O(m2n),
depending on the specific implementation).

Example 1.2.2.3 (Copeland – see Appendix A). We present an algorithm for
the Copeland rule, which is a Condorcet consistent rule. First, for every two
candidates x, y we compute N(x, y, P) by going over all the ballots and checking
for ballot Vi if x �P,i y (in which case we increment N(x, y, P) by 1) or y �P,i x
(and then we increment N(y, x, P) by 1). For every pair of candidates this takes
roughly mn steps, and there are m2/2 distinct pairs, so we are in O(m3n). We
then calculate W (x), L(x),W (x) − L(x) for every candidate (O(m3)) and in
total we find that this rule can also be computed in polynomial time.

All the rules presented until now can be computed in polynomial time (or
lower), and so they all belong to the complexity class known as P. Without going
into too many definitions from complexity theory, we can informally say that P
contains problems which can be solved in polynomial time, and it is considered
to be a class of problems which is reasonable to try and compute.

However, not all voting rules are that simple. It was shown, for example,
that the Kemeny rule and Dodgson rule are NP-hard [1]. NP is (again, in
an informal way) the class of problems for which we can verify a solution in
polynomial time, and it is believed that many of those problems cannot be
computed in polynomial time, but require exponential time, which makes the
computation impractical (in the language of complexity theory: intractable).
As far as we are concerned, a problem is NP-hard if it is at least as difficult as
any problem in NP, which means that the Kemeny and Dodgson rules are much
more complex than our previous examples.

Note that although Copeland, Dodgson and Kemeny are all Condorcet con-
sistent, and though both Copeland and Kemeny are WMG rules, as defined in
Appendix A, there are big differences in their complexity. We will get back to
that point in the following chapters. In the rest of the thesis, however, we deal
less with computational complexity as we did in this section, and more with
data complexity as described earlier.

Outline of the Thesis

Chapter 2 introduces us to the basic notions of information that we will be
covering throughout this thesis: communication complexity (developed for the
study of voting rules by Conitzer and Sandholm in [4]) and compilation com-
plexity (first presented by Chevaleyre et al. in [3]). The motivation for these
measures will be explained, as well as the methods for determining upper and
lower bounds for them.

In Chapter 3 we will encounter a new notion: informational size, first de-
veloped by Sato in [14]. We will explore the use of informational size and see

9

how it can be used to link between compilation and communication complex-
ity. We will also compare various results for common voting rules, in terms of
communication complexity, compilation complexity and informational size.

In Chapter 4 we move to a somewhat more abstract discussion about the
representation of profiles for different voting rules, with emphasis on represen-
tations used for compilation complexity. We explore the relations between some
representations, and then we present the generalized scoring rules, developed by
Xia and Conitzer in [19], and see how that notion connects with the complexity
measures we analyzed.

In Chapter 5 we return to informational size to show how it can be used
to give an algebraic representation relating to voting rules. We then use that
representation to prove a lemma posed by Sato in his paper on informational
size [14].

10

Chapter 2

Information and
Complexity Measures in
Social Choice

In this chapter we present two main notions of complexity for voting rules
– communication complexity and compilation complexity – which we will be
working with throughout this thesis. Roughly speaking, compilation complexity
measures the size of the most efficient representation of the preferences expressed
in a profile, given some voting rule, and communication complexity measures
the amount of information sent between voters, when they interact in the most
efficient way, in order to compute the winner.

Though these two concepts are not related a priori, we hope to give some
clues about the underlying connections between them, as well as to their main
differences. Both the complexities are relatively new in the field of computa-
tional social choice, so there are not many papers dealing with them yet, though
it seems they are becoming popular in recent years.

What is the connection between these problems and information? That
question will hopefully become clearer once the problems are described, but
in a general sense, we can say that both problems aim at getting a compact
representation of the preferences of the voters. We stress that there are more
problems which are also somewhat related to information. One example is the
possible winners problem, where given a partial profile you are asked to see
which candidates can still win and which cannot, and there are more examples
to be found, though granted, there is no line dividing between problems which
are about information and problems which are not. In this thesis, however,
we concentrate mostly on the two problems mentioned above, as well as other
notions which we will show are related to them, since, in this author’s opinion,
these problems are the most directly related to questions of representation of
information in voting theory.

In the following chapter we will present another notion – informational size
– and show how that can be used to connect the two complexity measures. We
then give a complete list of results from the literature regarding the complexity
of voting rules.

Another connection between the two concepts will be shown in Chapter 4,
where we present generalized scoring rules, and show how compilation and com-
munication complexities relate to different aspects of those.

11

In each of the sections below we describe the complexity measure, the moti-
vation for defining it, the standard ways in the literature for finding upper and
lower bounds on the complexity of voting rules, and give some examples of the
complexity of common voting rules. We start with communication complexity.

2.1 Communication Complexity

The theory of communication complexity studies processes of distributed com-
putations, where several parties engage in a joint task, each having only part of
the information required to complete the task. Introduced by Yao in 1979 [22],
the standard model of communication complexity includes two or more agents
who are communicating in order to compute the value of some function, where
each agent has only part of the input required by the function. The commu-
nication complexity of the function is the amount of information needed to be
exchanged in the worst case scenario of the most efficient method of communi-
cation (a more formal definition will soon follow). A general overview on this
topic is given by Kushilevitz and Nisan [11].

Conitzer and Sandholm applied ideas from communication complexity in
voting theory [4]. In Conitzer and Sandholm’s scenario, our voters communicate
with each other in order to compute F(P) for P = 〈V1, . . . , Vn〉, where the ith
voter only knows Vi to begin with. The process ends when each of the voters
known enough about the other voters’ preferences in order to compute F(P).
The compilation complexity of a voting rule is then defined in accordance with
the classic definitions of communication complexity theory.

The motivation for this problem, as suggested by Conitzer and Sandholm,
is that we are interested in reducing the communication burden – a burden
that is expressed both by the amount of information the channel is required to
communicate, and by the effort required by the individual voters to transmit
their preferences. Another advantage is that in such a sequential protocol, voters
don’t always need to transmit all of their preferences (in order to calculate the
winner), and so there is a higher degree of privacy.

In order to define the problem formally, we must first define the notion of
a communication protocol. Most of the following definitions and methods are
based on classical concepts in communication complexity theory, and can be
found (in a somewhat more general version) in [11].

Definition 2.1.1 (communication protocol, based on Definition 1.1 in [11]). A
protocol P over domain L(X)n with range P(X) \ {∅} is a binary tree where
each node v is labeled by a function fi,v : L(X) → {0, 1} for some i ∈ N , and
each leaf is labeled with an element A ∈ P(X) \ {∅}.1

The value of the protocol P on the input P = 〈V1, . . . , Vn〉 ∈ L(X)n is the
label of the leaf reached by starting from the root, and walking down the tree,

1We note that while P here denotes a protocol, P(X) denotes the powerset of X. As the
notations usually appear in different forms and contexts, there is little risk of confusion.

12

when at each internal node v, labeled by fi,v, we walk left if fi,v(Vi) = 0 and
right if fi,v(Vi) = 1.

The cost of a protocol P is the height of the tree representing P.
The protocol P computes the voting rule F if for any profile P , the value

of P on P is F(P).

The idea of the definition is that the tree describes the way in which the
voters communicate (recall that before any communication is done, voter i only
has knowledge of Vi): On a node v labeled by fi,v, the ith voter transmits
fi,v(Vi) to all other voters. Then, according to the result fi,v(Vi) we iterate to
one of the two children of v, say u labeled by fj,u, where voter j will transmit
fj,u(Vj) and so on.

We are now ready to define communication complexity:

Definition 2.1.2. Let P(F) be the set of all protocols computing F . The com-
munication complexity of F is min{D : D is the cost of P ∈ P(F)}.

In words, the (deterministic) communication complexity of a rule F is the
number of bits sent in the worst case scenario of the best protocol for F . Conitzer
and Sandholm also defined a notion of nondeterministic communication com-
plexity for voting rules, which we will not discuss here.

Let us inspect some general protocols for voting rules. The preferences of
the voters are denoted, as usual, by the vector 〈V1, . . . , Vn〉 ∈ L(X)n, and V ji is
the jth alternative in the preference order of voter i.

A protocol that will work for any voting rule F is one where the first voter
submits V 1

1 , then V 2
1 , etc., until V1 was submitted entirely. Then the second

voter submits V 1
2 , V

2
2 and so on, till all the voters have submitted their prefer-

ences. At that point, each voter knows the entire profile P , and so can calculate
F(P).

We notice that the order in which the information is transmitted in not
important, as long as it is fixed in advanced. We could just as well have had
voter 1 submitting V m1 , then voter 2 submitting V m2 , sequentially, and when all
voters have submitted their last preference, voter 1 submits V m−1

1 and so on.
What is the cost of this protocol? Since there are m candidates, submitting

the name of one candidate required logm bits. Every voter submits the names
of m candidates, and there are n voters, so in general the protocol requires
mn logm bits, which is to say the cost of the protocol is mn logm.

If follows from this that mn logm is an upper bound for the communication
complexity of any rule. In our O notation, the communication complexity of
any rule is in O(mn logm). We comment that it is actually enough for every
voter to send their top m− 1 preferences, as that uniquely determines the last
remaining preference. The cost of such a protocol will be (m − 1)n logm, but
as we are dealing with bounds, where the limit behavior is what interests us,
we don’t bother with that difference. The following example shows how that
complexity can be greatly reduced for some voting rules.

Example 2.1.3 (Plurality). Take plurality, FP . If we know the top priorities
of all the voters in a profile P , we can calculate FP (P). Take the protocol

13

where voter 1 transmits V 1
1 , then voter 2 submits V 1

2 , and so on, till the last
voter. According to what we said, this is enough to calculate FP (P), so this is
a protocol for FP . We had n voters, each transmitting logm bits for their top
rank. This means that the cost of the protocol is n logm, so the compilation
complexity of plurality is O(n logm), which is significantly less than the general
bound we had before, O(mn logm).

The example above gives us the general method for calculating an upper
bound for the communication complexity of a rule. We simply present an effi-
cient protocol for the rule, and the cost of that protocol constitutes an upper
bound. While this might seem simple in the case of plurality or in the general
case, Conitzer and Sandholm have also given some more sophisticated protocols
for a number of rules, which we will review later.

The method for finding a lower bound, however, is a bit more complicated,
and requires some more definitions.

Definition 2.1.4 (Fooling set). A fooling set for F is a set {P1, . . . , Pk} of
profiles, where Pi = 〈Vi,1, . . . , Vi,n〉, which satisfies:

• There exists x ∈ X such that exactly one of the following two holds:

1. for every 1 ≤ i ≤ k, F(Pi) = {x}.
2. for every 1 ≤ i ≤ k, F(Pi) = {yi} for some yi ∈ X, yi 6= x (the

winner can be different for different profiles).

• For any Pi, Pj in the set there is some vector 〈l1, . . . , ln〉 ∈ {i, j}n such
that, if we are in case 1, we have F(〈Vl1,1, . . . , Vln,n〉) = {z} for some
z ∈ X, z 6= x, and if we are in case 2 we have F(〈Vl1,1, . . . , Vln,n〉) = {x}.

The second requirement simply means that when taking two profiles from
the set, we can always mix their ballots in such a way that will give us a different
winning set.

Standard communication complexity functions take values in {0, 1}, and so
the fooling set method is defined for such functions. To overcome this, Conitzer
and Sandholm adapted the definition for voting rules by having the fooling set to
be not for the rule F(P), but rather a function f(P, x) that checks if x ∈ F(P)
or not.

The following lemma states the connection between a fooling set and the
lower bounds on the communication complexity for voting rules (this is a special
version used by Conitzer and Sandholm for the case of voting rules, where the
general lemma – which can be found, for example, in [7] – is for any function).

Lemma 2.1.5. If there exists a fooling set of size k for a rule F , then the
compilation complexity of F is at least log k.

The idea behind the fooling set technique is that the voters cannot “know
for sure” what is the result of F for their preferences, (at least) until they have

14

determined which of the elements of the fooling set represents their preferences.2

In a slightly more formal way, the properties of the fooling set entail that any
protocol tree computing F has to have at least k different branches, so the
height of the tree is at least log k.

The difference between this version and the general one is that the general
lemma relates to the function used in the definition of the fooling set, which for
us is f(P, x). The general lemma gives us a lower bound on the communication
complexity of f . Since in all the profiles in our fooling set there is a single
winner, we find that to calculate F(P) (to find the single winner) is at least as
complicated as checking if x is a winner or not, so the communication complexity
of f is a lower bound for the communication complexity of F , and so we get the
special lemma.

So the search for lower bounds consists of trying to find a large set of profiles
which answer to the conditions of the fooling set. We give some examples of
upper and lower bounds proved by Conitzer and Sandholm (we don’t give the
proofs, which can be found in [4], but we present the protocol for the upper
bound).

Example 2.1.6 (Plurality with runoff – see Appendix A). The communication
complexity of Plurality with runoff is Θ(n logm), which is the same as that of
the standard plurality rule. The protocol Conitzer and Sandholm give is the
following: Let all voters submit their top candidate, like for plurality (n logm
bits). Now all voters know who are the top two candidates, and they vote on
them, sending 1 if they support the first of the two, 0 if they support the second
(according to some prearranged ordering). The total cost is n logm+ n, which
is O(n logm).

Example 2.1.7 (Borda). Borda is a positional scoring rule, and while those are
considered relatively simple rules, Conitzer and Sandholm showed that Borda
is Ω(mn logm), and since that is the maximal communication complexity for
any rule, we have that it is also Θ(mn logm). Borda is especially interesting
because, as we will see, it has a very different compilation complexity, comparing
to the communication complexity. The same thing can be said for STV, which
is next rule we look at.

Example 2.1.8 (STV). Conitzer and Sandholm showed that the communi-
cation complexity of STV is in O(n(logm)2) and Ω(n logm). We present a
protocol for the rule, and the reader can verify that it is of cost n(logm)2.

Consider the following protocol: Each voter transmits their top candidate
(n logm). At this point all the voters can compute which of the candidates is
removed (if no candidate has a majority). Let xi be the removed candidate.
Now only the voters who ranked xi first transmit their second candidate, and
so on. By calculating the maximal number of voters who have to resend their
new top preference, we get that the total cost is O(n(logm)2).

2The voters’ preferences could be a profile that is not in the fooling set at all, but as it
might be in the fooling set, this gives a lower bound on the communication complexity

15

Example 2.1.9 (Bucklin). One last interesting example is Bucklin (see Ap-
pendix A), whose communication complexity is Θ(mn). A naive protocol for
Bucklin could have all voters transmitting first their top candidate (n logm
bits). Then, if no candidate has a majority, all voters transmit their second
most preferred candidate, and so on. However, the worst case scenario of such
a protocol would have the voters transmitting all their top bm2 c+ 1 candidates,
and the upper bound we get is O(nm logm). Conitzer and Sandholm suggested
a more efficient protocol:

Fix an ordering of the candidates, x1, . . . , xm. Let k be the Bucklin score
of the candidate with the minimal score. We find k in a logarithmic process:
Every voter sends m bits, the ith bit is 1 if xi is in the top m

2 candidates of
that voter, 0 otherwise (w.l.o.g, m = 2l for some l). At this point all the voters
can calculate if k ≤ m

2 of not. If it is smaller, each candidate i sends m
2 bits.

If xi1 , . . . , xim
2

are the top m
2 candidates of that voter (those are known to all

voters), then now the jth bit is 1 if xij is in the top m
4 priorities, 0 otherwise.

On the case where k > m
2 , the voters do the same thing, but this time for the

candidates in the bottom half of their ballots, indicating which of them is in the
third quarter of the ballot. After every such step, the voters can again pinpoint
the location of k better (after the first step we know in which half k is, after
that we know in which quarter it is, and so on). When the process ends, the
voters know both the value of k and who the winning candidate is. The cost is
O(nm).

The complete results will be given in Chapter 3, when we compare them
with compilation complexity. In the next section we review the compilation
complexity of the rules above, which will show us how different these notions
can be.

2.2 Compilation Complexity

Compilation complexity was first introduced by Chevaleyre et al. in 2009 [3], and
an additional paper by Xia and Conitzer with some more results was published
in 2010 [21]. While communication complexity is about efficient communication
of preferences, it can be said that compilation complexity is about efficient
storage of preferences. The idea of compilation complexity is that given some
voting rule F and a profile P , we would like to store P in an efficient manner
with respect to F , that is, to store only the information F actually uses in the
profile.

One motivation that Chevaleyre et al. mention for finding the compilation
complexity is that it has a practical use in elections which are performed on
multiple districts. We could have, for example, a situation where one district
has voted, and we want to submit the results to other districts, which haven’t
voted yet. From studying compilation complexity we can find a condensed form
for the information, which would save us the need of sending all the ballots.

Another motivation, no less important, is that compilation complexity gives

16

some description of the rule which seems to be quite important. This will be
further discussed in Chapter 4.

An example that might clarify the notion of compilation complexity is the
plurality rule. Though P contains the complete preferences of all the voters, we
are only interested in knowing which candidate was ranked first by every voter
(and as we shall see, we can settle for even less: how many voters ranked each
candidate first).

To formalize this, of course, we need to somehow define formally the concept
of “the information used by F”. The idea of Chevaleyre et al. was to assume
that P is a profile representing just part of our voters (a subelectorate), so we
need to keep all the information required such that, given a profile P ′ of the rest
of the population (of an unknown size), we will be able to compute the winner
based on the preferences of the entire population.3 For this we must first define
the union of profiles:

Definition 2.2.1. Take any two profiles:

P1 = 〈V1, . . . , Vn1〉 ∈ L(X)n1 , P2 = 〈U1, . . . , Un2〉 ∈ L(X)n2

We define P1 ∪ P2 ∈ L(X)n1+n2 to be 〈V1, . . . , Vn1 , U1, . . . , Un2〉.

Now we can define the formal notion of a compilation function – the function
which stores the relevant information (in the definition below, the set {0, 1}∗ is
the set of all finite strings over the alphabet 0, 1, and for x ∈ {0, 1}∗ we define
|x| to be the length of the string x):

Definition 2.2.2 (Compilation function). Given a voting rule F , a function
σ : L(X)n → {0, 1}∗ is a compilation function for F if there is a function
ρ : {0, 1}∗×L(X)∗ → P(X)\{∅} such that for any P ∈ L(X)n and P ′ ∈ L(X)∗

we have ρ(σ(P), P ′) = F(P ∪ P ′).
For a compilation function σ we define |σ| = max

P∈L(X)n
(|σ(P)|).

Definition 2.2.3. Given a rule F , let A be the set of all compilation functions
for F . We define the compilation complexity of F as min

σ∈A
(|σ|).

Now, this could also be looked at from another perspective.

Definition 2.2.4 (Profile equivalence). Given F , we define an equivalence re-
lation on L(X)n in the following way: P ∼F P ′ for P, P ′ ∈ L(X)n if for every
Q ∈ L(X)∗ we have F(P ∪Q) = F(P ′ ∪Q).

The number of equivalence classes generated in L(X)n under this relation is
denoted by g(n,m).

It is simple to verify that the relation above is indeed an equivalence rela-
tion. Chevaleyre et al. point out that the problem of finding the compilation

3Xia and Conitzer also inspected some other types of compilation complexity, where we
also know the total size of the population, and also when the size of the subelectorate is
unknown [21], but we will not discuss those complexities here.

17

complexity can be looked at as a one-round communication complexity problem,
where we have two parties: A, representing the subelectorate of n voters whose
preferences are P , and B, the remaining electorate of an unknown size, whose
preference are represented by P ′. In a one-round communication protocol of
this sort, A wants to send one message to B so that B can compute F(P ∪P ′).
The communication complexity is the length of the longest message in the best
protocol computing F . Chevaleyre et al. show, based on a [11], that:

Proposition 2.2.5. The compilation complexity of a voting rule F is dlog g(n,m)e

The proposition means that we just have to be able to describe in which
equivalence class our profile is, which would require log g(n,m) bits.

As for calculating the bounds on the compilation complexity, there are no
special “tricks” used usually. In order to find an upper bound, one usually has
to give an upper bound for g(n,m). While this is relatively simple for some
rules, such as plurality, it can be more complicated for others.

The standard method for giving a lower bound is to find a set of profiles
Y ⊆ L(X)n whose size is simple to calculate, such that no two profiles in Y are
equivalent. That is, for every P, P ′ ∈ Y there is a profile Q ∈ L(X)∗ such that
F(P ∪Q) 6= F(P ′ ∪Q). This set Y is the equivalent of compilation complexity
for a fooling set.

As we did for communication complexity, we bring some examples from [3]
and [21], not giving the proofs, but only explaining the idea of the compilation
function giving the upper bound.

First, we note that the number of equivalence classes is at most the number
of profiles, which is |L(X)n| = m!n, so we get and upper bound of log(m!n) =
n log(m!) ≈ nm logm − nm, where we used Stirling’s approximation for that
last equality. So O(nm logm) is an upper bound for any rule (we note that this
is the same as the maximal communication complexity).

Next, if the rule is anonymous, we see that any two profiles are equivalent
if for any ballot V , the number of people who submitted V is equal on both
profiles. We can enumerate all the possible m! ballots, V1, . . . , Vm!, and to
associate a profile with a vector 〈v1, . . . , vm!〉, where vi is the number of people
who voted Vi in that profile. This is a vector whose entries are non-negative
integers, and their sum is n (the entries have to add up to the number of voters).
The total number of vectors satisfying those constraints is given by the number
of combinations of n elements from a set size n+m!−1, which is

(
n+m!−1

n

)
. We

get that g(m,n) ≤
(
n+m!−1

n

)
, so the compilation complexity of any anonymous

rule has an upper bound of log
(
n+m!−1

n

)
≈ n log(1+ m!

n)+m! log(1+ n
m!) (where

we again used Stirling’s approximation and some algebraic manipulation).
Now we look at the rules whose communication complexity we saw before.

Example 2.2.6 (Plurality). Plurality gives a score to any candidate, which can
be at most n, and it is simple to show that any two profiles are equivalent iff the
score of every candidate is the same on both profiles. This means that we use
a method similar to what we had for anonymous rules: We associate a profile
with a vector 〈v1, . . . , vm〉, where vi is the score of the ith candidate (this can

18

be done for any positional scoring rule). The number of such vectors satisfies
g(m,n) =

(
n+m−1

n

)
(similarly to the anonymous case), and the complexity is in

Θ(n log(1 + m
n) +m log(1 + n

m)).

Example 2.2.7 (Plurality with runoff). We recall that for communication com-
plexity, there was no difference between plurality and plurality with runoff. For
compilation complexity, however, that is not the case. Xia and Conitzer showed
that plurality with runoff is in Θ(m2 log n) [21]. The upper bound is achieved
by taking a compilation function that stores for a profile P (a) the number of
people who voted for each candidate (m log n bits), and (b) for any pair of can-
didates x, y it stores N(x, y, P) (m2 log n bits). As the first element is smaller
than the second, we get that the upper bound is given by O(m2 log n).

Example 2.2.8 (Borda). We recall that Borda had the maximal possible com-
munication complexity: mn logm. For compilation terms, on the other hand,
we know that two profiles are equivalent iff all candidates have the same Borda
score (positional scoring rule), so we identify a profile with 〈v1, . . . , vm〉, vi being
the Borda score of the ith candidate. The score is at most nm, and so we get an
upper bound m log(mn). This is also a lower bound, as shown by Chevaleyre
et al. [3] and Xia and Conitzer [21], so Borda is Θ(m log(mn)).

Example 2.2.9 (STV). For a profile P , subset Z ⊂ X and x ∈ X \ Z, define
ntop(P,Z, x) to be the number of voters in P who prefer x to any other candidate
in X \ Z. Define above(P,Z, x) to be the number of voters in P who prefer
all the candidates in Z to x, and prefer x to any other candidate in X \ Z.
Chevaleyre et al. showed that two profiles P, P ′ are equivalent, with respect
to STV, iff ntop(P,Z, x) = ntop(P ′, Z, x) for any Z ⊂ X,x ∈ X \ Z [3] iff
above(P,Z, x) = above(P ′, Z, x) for any Z ⊂ X,x ∈ X \ Z [12]. This means
that g(m,n) is the number of different ways of defining the above(·, ·, ·) function.
For a fixed candidate x ∈ X, we can get from each such combination a vector
〈v1, . . . , v2m−1〉, vi being above(P,Zi, x), where Zi is the ith subset of X not
containing x (according to some enumeration). The sum of the elements must
add up to n, and so the total number of combinations (for a fixed candidate) is
log
(
n+2m−1−1

n

)
. There are at least as many combinations for all the candidates

as there are for a single candidate, and if we assume those combinations are
independent for all candidates (which is not the case), we get that the number
of combinations is at most

(
n+2m−1−1

n

)m
, so the bounds that Chevaleyre et al.

found were

Ω(n log(1 +
2m−1

n
) + 2m−1 log(1 +

n

2m−1
))

and

O(m
(
n log(1 +

2m−1

n
) + 2m−1 log(1 +

n

2m−1
)
)

)

We can see that even the lower bound gives a high complexity, when com-
paring to the relatively low communication complexity of STV. In Chapter 4
we give a somewhat different description of the above functions, and use it in
Appendix C to derive another upper bound.

19

Example 2.2.10 (Bucklin). Last, for Bucklin, Xia and Conitzer showed it is
enough to have N(x, i, P) for any x and i, in order to calculate Bucklin score for
every candidate, and the winners. This means we can associate a profile with
m vectors, 〈vx1 , . . . , xxm〉 for any x ∈ X, where vxi = N(x, i, P). For each such
vector, the sum of the elements is n, which gives us at most

(
n+m−1

m

)m
different

combinations, and the compilation complexity is in mn log(1 + m
n) +m2 log(1 +

n
m). They also showed that Bucklin is in m2 log(1 + n

m), which gives a relatively
tight bound (when n becomes very large, we have mn log(1 + m

n) ≈ m, and so
the other term is more dominant).

In the next chapter we compare the compilation complexity results with
those of communication complexity, connecting them through the notion of
informational size, and in Chapter 4 we will analyze more deeply some of the
representations we have encountered here, and discuss the connections between
compilation functions of different rules.

20

Chapter 3

Informational Size

Informational size of voting rules was introduced by Sato in 2008 in [14], where
he defined the notion of informational size of a rule and used it to characterize
voting rules axiomatically. The idea of informational size is somewhat similar
to that of compilation complexity, which we saw that we can take to be the
number of equivalence classes of profiles, only this notion is about equivalence
between ballots and not between profiles.

In the first section we define informational size formally, give some examples,
and present Sato’s results. In the second section we show how informational size
can be used as an upper bound for both compilation complexity and communi-
cation complexity, thus linking both using this notion, and in the last section
we present a detailed list of results from the literature for both the complexities
and compare the two along with informational size.

3.1 Informational Size

We start with the basic notion on which informational size is based: ballot
equivalence.

Definition 3.1.1. We say that two ballots V, V ′ are equivalent for voter i, V ∼i
V ′, given a voting rule Fm,n, if for any profile 〈V1, . . . , Vi−1, Vi+1, . . . , Vn〉 ∈
L(X)n−1 of n− 1 voters we have

Fm,n(〈V1, . . . , Vi−1, V, Vi+1, . . . , Vn〉) = Fm,n(〈V1, . . . , Vi−1, V
′, Vi+1, . . . , Vn〉)

This means that V ∼i V ′ with respect to Fm,n, if the voter doesn’t mind if
they submit V or V ′, since the rule identifies the two ballots in some sense. We
give some examples of this equivalence:

Example 3.1.2 (Plurality). We claim that under the plurality rule, two ballots
V,U satisfy V ∼i U for voter i iff V 1 = U1. The “if” part is simple, since, as
we’ve seen before, plurality only cares about the number of times each candidate
gets elected first, so the order of the candidates ranked from 2 to m is not
important.

To see the “only if” direction, take some profile V ′ such that V ′1 6= V 1. Take
n− 1 ballots V1, . . . , Vi−1, Vi+1, . . . , Vn such that V 1

j = V 1 for exactly bn−1
2 c of

them, and V 1
j = V ′1 for all the rest (1 ≤ j ≤ n, j 6= i). We get that V 1 ∈

FP (〈V1, . . . , Vi−1, V, Vi+1, . . . , Vn〉), V 1 /∈ FP (〈V1, . . . , Vi−1, V
′, Vi+1, . . . , Vn〉),

so according to the definition above the two are not equivalent.

21

Example 3.1.3 (Dictatorial rules). Another example is a dictatorial rule. Take
Fm,n which always chooses the alternative ranked first by voter 1. We get that
for voter 1 the equivalence relation V ∼1 V ′ is just like we saw above for
plurality, but for any voter i 6= 1 it holds that V ∼i V ′ for any V, V ′, simply
because it doesn’t matter what they vote.

It is a simple proof to show that ∼i is an equivalence relation, and from
that we get a partition of L(X) into equivalence classes (i.e., a set of non empty
pairwise-disjoint subsets of L(X), whose union is L(X)). This brings us to the
definition of informational size:

Definition 3.1.4 (Informational size). Given a voting rule Fm,n, denote the
set of equivalence classes generated by ∼i by Mi,Fm,n

. We call Mi,Fm,n
the

partition induced by Fm,n with respect to i. We say that the informational
size of Fm,n is

∑
1≤i≤n

|Mi,Fm,n | (whenever Fm,n or i are clear from the context,

we will omit the use of the subscript).
A rule F in a class of rules S is said to operate on minimal infor-

mational requirements in S if there is no other rule in S with a smaller
informational size.

Looking back at the previous examples, we find that the informational size
of plurality, for m alternatives and n voters is mn (for each voter i, |Mi,FP

| =
m, so the total sum is mn). For the a dictatorial rule we get informational
size of m + n − 1: The first voter has m equivalence classes, and every other
voter has only one equivalence class. We will present some more examples
of informational size for additional rules in the last section of this chapter,
compared with compilation complexity and communication complexity.

Sato used the notion to characterize rules axiomatically. Let NA be the set
of neutral and anonymous voting rules, NAM the subset of NA which is also
monotone, and NAMP the subset of NAM which is also Pareto efficient. In his
work, constant rules (i.e., rules that produce the same result for all profiles) are
not taken into account. The main theorems he presented in his paper are:

Theorem 3.1.5 (Theorem 3.1 in [14]). If an NA-voting rule Fm,n operates on
minimal informational requirements in NA,1 then

• Fm,n has informational size mn.

• There exists 1 ≤ r ≤ m such that for any voter i and two ballots V1, V2,
V1 ∼i V2 iff V r1 = V r2 .

Theorem 3.1.6 (Theorem 3.2 in [14]). If an NAM-voting rule Fm,n operates
on minimal informational requirements in NAM, then

• The r from Theorem 3.1.5 is either 1 or m, and
1Due to a small bug in the proof, the theorem actually applies to a slightly smaller set of

rules [16]. See more about this in Chapter 5, where we prove the original theorem with one
exception.

22

• If r = 1 then for any profile P we have Fm,n(P) ⊇ FP (P) (every plurality
winner is a winner in Fm,n), and if r = m then for any profile P we have
Fm,n(P) ⊇ FV (P) (every veto winner is a winner in Fm,n).

Theorem 3.1.7 (Theorem 3.3 in [14]). For every NAMP-voting rule Fm,n
operating on minimal informational requirements in NAMP, the r from Theorem
3.1.5 is 1 and for any profile P we have Fm,n(P) ⊇ FP (P) (every plurality
winner is a winner in Fm,n).

The partitions induced by the voting rules will play a bigger role in Chapter
5, but for now we just focus on the measure itself given by informational size. In
the next section we explain how to relate that to communication and compilation
complexity.

3.2 Common Upper Bound for Complexity Mea-
sures

In this section we define a measure of complexity, based Sato’s informational
size and the partition into equivalence classes, which will constitute an upper
bound for both compilation complexity and communication complexity. Given
Fm,n and preferences of voters V1, . . . , Vn, we notice that in order to compute
Fm,n(〈V1, . . . , Vn〉) we don’t really need to know the ballots submitted by each
voter, but rather it is enough to know for every Vi to which equivalence class of
Mi,Fm,n Vi it belongs. We formalize this claim:

Proposition 3.2.1. Given a voting rule Fm,n, some number 0 ≤ k ≤ n,
and ballots V1, . . . , Vk, V

′
1 , . . . , V

′
k, Uk+1, . . . , Un such that Vi ∼i V ′i for every

1 ≤ i ≤ k, we have:

Fm,n(〈V1, . . . , Vk, Uk+1, . . . , Un〉) = Fm,n(〈V ′1 , . . . , V ′k, Uk+1, . . . , Un〉)

Proof. We prove the claim by induction on k. For k = 0 the proposition comes
down to Fm,n(〈U1, . . . , Un〉) = Fm,n(〈U1, . . . , Un〉), which is clear. We prove the
induction step.

We want to show

Fm,n(〈V1, . . . , Vk+1, Uk+2, . . . , Un〉) = Fm,n(〈V ′1 , . . . , V ′k+1, Uk+2, . . . , Un〉)

where Vi ∼i V ′i for any 1 ≤ i ≤ k + 1. We know that for voter k + 1 is holds
that Vk+1 ∼k+1 V

′
k+1, so

Fm,n(〈V1, . . . , Vk, Vk+1, Uk+2, . . . , Un〉) = Fm,n(〈V1, . . . , Vk, V
′
k+1, Uk+2, . . . , Un〉)

and then we can use the induction hypothesis to get

Fm,n(〈V1, . . . , Vk, V
′
k+1, Uk+2, . . . , Un〉) = Fm,n(〈V ′1 , . . . , V ′k, V ′k+1, Uk+2, . . . , Un〉)

and from that follows the claim.

23

We notice that by taking k = n, the proposition implies that for any two
profiles P, P ′ where the ith ballots are equivalent with respect to voter i, we
have Fm,n(P) = Fm,n(P ′). Informally, the proposition says that as far as the
voting rule is concerned, the voters don’t choose ballots but rather equivalence
classes of ballots. We show how this fact helps us associate informational size
with both compilation complexity and communication complexity.

We start with the compilation complexity:

Proposition 3.2.2. Given a voting rule Fm,n inducing the partitionsMi,Fm,n ,
the compilation complexity of Fm,n is less than or equal to log(

∏
1≤i≤n

|Mi,Fm,n |)

Proof. We know we can identify compilation complexity with g(n,m), the num-
ber of equivalence classes of profiles. We can use Proposition 3.2.1 to get a
bound on the number of equivalence classes of profiles: We take our subelec-
torate in compilation complexity to be the first k ballots, and the rest m − k
ballots are the rest of the population.2

We get that if two profiles P = 〈V1, . . . , Vk〉, P ′ = 〈V ′1 , . . . , V ′k〉 satisfy that
Vi ∼i V ′i , then adding to them the profile Q = 〈Uk+1, . . . , Un〉 will always
give the same result, which is the condition of compilation complexity. We get
that for Fm,n we have g(n,m) ≤

∏
1≤i≤n

|Mi,Fm,n
|. From this we get that the

compilation complexity of Fm,n is less than or equal log(
∏

1≤i≤n
|Mi,Fm,n

|).

Now we consider communication complexity:

Proposition 3.2.3. Given a voting rule Fm,n inducing the partitionsMi,Fm,n ,
the communication complexity of Fm,n is less than or equal to

∑
1≤i≤n

log |Mi,Fm,n
|

Proof. We suggest a protocol for computing Fm,n with cost
∑

1≤i≤n
log |Mi,Fm,n

|.

Also from Proposition 3.2.1, we find that it is enough for every voter to submit
to the other voters the equivalence class of his ballot. In the end of such a
protocol, all voters know what equivalence class was chosen by every voter, and
so they can calculate the result. Since voter i has |Mi,Fm,n | equivalence classes,
to transmit the selected equivalence class will cost him log |Mi,Fm,n |, and so the
total cost of the protocol will be

∑
1≤i≤n

log |Mi,Fm,n
|.

We notice that since log a + log b = log(ab), the two bounds we got are in
fact identical, so

log(
∏

1≤i≤n

|Mi,Fm,n
|) =

∑
1≤i≤n

log |Mi,Fm,n
|

2There is a small technicality here, since compilation complexity is defined for rules that
work on any profile (on domain L(X)∗), while communication complexity and informational
size can be defined for rules of only a finite number of voters. To completely formalize this
difference we have to switch to the subset of rules defined for any number of voters, and to
adapt the definition of informational size so that two ballots are equivalent iff they do not
change the results of any profile for any number of voters. In such a case Proposition 3.2.1
can be extended for any number of ballots U1, . . . , Un′ .

24

is an upper bound for both compilation complexity and communication com-
plexity. In some sense we can also add that this number does represent “in-
formation” better than the simple summation. Consider for example a voter i
for which all ballots are equivalent (as for the non-dictators in the dictatorial
rule). For such a voter we have |Mi,Fm,n

| = 1, and log |Mi,Fm,n
| = 0, which

better describes the fact that there is no information given by the ballot of this
voter. This measurement gives the constant rule, for example, informational
size 0 (whereas the summation gives us m).

The question we would like to ask ourselves next is how tight is our bound?
For communication complexity, we can give some rules whose complexity is

exactly that given by this bound. The maximal possible number of equivalence
classes per voter is m!, and that is when no two ballots are equivalent. Let Fm,n
be a rule for which no two ballots are equivalent (for any voter). When taking
the logarithm, and using Stirling’s approximation, we get:∑
1≤i≤n

log |Mi,Fm,n
| =

∑
1≤i≤n

log(m!) = n log(m!) ≈ nm logm−nm ∈ O(nm logm)

One example for such a rule is Borda. It is easy to see that for a large enough
n, given two different ballots V, V ′, there is a candidate x ∈ X who is ranked
higher in V relative to V ′, and so we can come up with a profile P = 〈V1, . . . , Vn〉
such that x wins with P when we take V1 = V but loses when V1 = V ′.

In addition, we also know that Borda’s communication complexity is nm logm
[3, 21], and so we get that this bound is tight for communication complexity of
some rules.

When we consider compilation complexity, we see that we can make our
calculation a bit more accurate. We present a lemma proved by Sato:

Fact 3.2.4 (Lemma 4.1 in [14]). For any anonymous voting rule F , V ∼i V ′
iff V ∼j V ′ for any 1 ≤ i, j ≤ n.

This means that for any two voters i, j we have Mi,F = Mj,F , i.e., the
partition of L(X) induced by F is identical for all voters. In this case we will
simply talk about “the partition induced by F”, denoted MF .

Given an anonymous voting rule Fm,n, we know there is some integer l such
that l = |Mi,Fm,n

| for any i, so the bound we have is always n log l. But we can
do even better. For such a rule two profiles P = 〈V1, . . . , Vn〉, P ′ = 〈V ′1 , . . . , V ′n〉
are equivalent not just when Vi ∼ V ′i (since ∼i≡∼j , we simply write ∼), but
also whenever there is some permutation σ of {1, . . . , n} such that Vi ∼ V ′σ(i).
It follows that the important question is not which equivalence class was chosen
by each voter, but rather how many voters voted for each equivalence class.
Formally speaking, if P is a profile and M1 is an equivalence class, denote by
n(P,M1) the number of voters who submitted a ballot in M1, and by n(P≤k,M1)
the number of voters among the first k voters who submitted a ballot in M1

(k ≤ n). The following claim is an extension of Proposition 3.2.1 for anonymous
rules.

25

Proposition 3.2.5. Given an anonymous voting rule Fm,n which induces the
partitionMFm,n = {M1, . . . ,Ml}, some number 0 ≤ k ≤ n, and ballots V1, . . . , Vk,
V ′1 , . . . , V

′
k, Uk+1, . . . , Un such that n(P≤k,Mj) = n(P ′≤k,Mj) for every 1 ≤ j ≤ l,

we have:

Fm,n(〈V1, . . . , Vk, Uk+1, . . . , Un〉) = Fm,n(〈V ′1 , . . . , V ′k, Uk+1, . . . , Un〉)

Proof. The idea is to rearrange the ballots of the first k voters so that we
satisfy the conditions of Proposition 3.2.1. Let σ be a permutation on the
voters which fixes k+ 1, . . . , n, and acts on the first k voters by placing first all
the n(P≤k,M1) ballots in V1, . . . , Vk which are in M1, then all the n(P≤k,M2)
ballots in V1, . . . , Vk of M2, and so on. Let ρ be a permutation that does the
same thing for P ′. The reader can verify that Vi ∼ V ′ρ−1σ(i), and so (from
Proposition 3.2.1)

Fm,n(〈V1, . . . , Vk, Uk+1, . . . , Un〉) =

Fm,n(〈V ′ρ−1σ(1), . . . , V
′
ρ−1σ(k), Uk+1, . . . , Un〉) =

Fm,n(〈V ′ρ−1σ(1), . . . , V
′
ρ−1σ(k), Uρ−1σ(k+1), . . . , Uρ−1σ(n)〉) =

Fm,n(〈V ′1 , . . . , V ′k, Uk+1, . . . , Un〉)
where the last equality follows from the anonymity of Fm,n.

Given the proposition, we can give the following bound for compilation com-
plexity, based on the informational size and the partitions of ballots:

Proposition 3.2.6. Let Fm,n be an A-voting rule which induces a partition
into l equivalence classes, then the compilation complexity of Fm,n is less than
or equal to

O(l log(1 +
n

l
) + n log(1 +

l

n
))

Proof. Based on Proposition 3.2.5, we can just count the number of votes in
every equivalence class. Such a vector is an element of the set {〈v1, . . . , vl〉 :
vi ≥ 0,

∑
1≤i≤l

vi = n} (we identify vi with the number of agents who voted for

equivalence class Mi. the number of voters must add up to n).
The size of that set is given by the number of combinations of size l − 1 of

a set of size n + l − 1, which is
(
n+l−1
l−1

)
=
(
n+l−1
n

)
. By taking the logarithm of

this expression, using Stirling’s approximation and manipulating the equations,
neglecting constants and elements of smaller orders, we get:

O(l log(1 + n
l) + n log(1 + l

n))

We know that for the case of plurality l = m, that is, we have m equivalence
classes in the partition induced by the rule. We get that the upper bound given
by informational size is

O(m log(1 +
n

m
) + n log(1 +

m

n
))

26

which is precisely the compilation complexity of plurality, as was shown by
Chevaleyre et al. so this bound is in fact tight for some rules.

In the next section we compare the three different measures of complexity
we have.

3.3 Communication Complexity vs. Compila-
tion Complexity

First, we note that when the informational size is maximal for an anonymous
rule (i.e., no two ballots are equivalent), the number of equivalence classes is
l = m! and the compilation complexity we get from informational size is:

m! log(1 +
n

m!
) + n log(1 +

m!
n

)

which again coincides with the maximal compilation complexity for any anony-
mous rule, as given by Chevaleyre et al. We denote this maximal bound by
MAIS , and we denote by MIS the bound we get from informational size for any
rule (which we saw is approximately nm logm). We denote by MCMPL and
MACMPL the maximal compilation complexity for any rule and for anonymous
rules, respectively, and MCMNC denotes the maximal communication complex-
ity (where anonymity in general does not give a lower upper bound).

Among the different rules we have seen, or for which we have results in
communication or compilation complexity, the only rules with informational
size less than MAIS are plurality, which we mentioned in the previous section,
k-Approval, for which the number of equivalence classes l is

(
m
k

)
(every ballot is

characterized by the k approved candidates, which is choosing a combination of
size k from a set size m) and Bucklin, where the number of equivalence classes
is m!
dm

2 −1e! (the highest possible Bucklin score for the Bucklin winner is bm2 c+ 1,
so all ballots that agree on the first bm2 c+ 1 candidates are equivalent).

The three figures below show the known compilation complexity result (Fig-
ure 3.1) and communication complexity results (Figure 3.2) from the literature,
along with the bound we get from informational size for a number of rules
(Figure 3.3).

Though these diagrams are a bit hard to compare, we point out some facts
that help understand the differences between compilation and communication
complexity.

Though they don’t measure the same things precisely, we know that all max-
imal complexities MCMPL,MIS ,MCMNC are in Θ(mn logm), and that both
MACMPL,MAIS are in Θ(m! log(1 + n

m!) +n log(1 + m!
n)). But besides that, as

we have seen, several rules behave differently under compilation and communi-
cation complexity. Borda has a relatively low compilation complexity but high
communication complexity, while STV behaves exactly the opposite.

Another set of rules worth mentioning is WMG. The characterization of the
set implies that its compilation complexity is bounded from above by m2 log n,

27

which is the number of bits required for storing N(x, y, P) for all x, y. The lower
bound is identical to that, under some assumptions we will not go into [3, 21].

The interesting thing about these rules is that while they are all quite simi-
lar, compilation complexity-wise, some behave very differently when it comes to
communication complexity. This also tells us that there is a major difference in
what is measured by the two complexities. We also recall that in the introduc-
tion we saw that the computational complexity of some of those rules (namely
Kemeny and Copeland) is very different. We go back to the connection with
computational complexity in Chapter 4.

In the next chapter we will try to show how compilation and communica-
tion complexity form two complementary sides of voting rules, each relating to
another aspect of the rule.

Regarding informational size, we see that the bound we get from it is not
“rich” enough to see differences between many rules, and so almost all common
rules are characterized by MAIS . This is, at least in some sense, a result of
informational size giving an upper bound on both compilation and communica-
tion complexity. In the discussion we raise some questions about the quality of
the bound given by informational size, in light of the coarse hierarchy it gives
us.

Condorcet
consistent

WMG
rules

m2 log n
Plurality

with
Runoff

Borda m log(mn)

k-approval
min(m log n,
m log(1 + nk

m) + nk log(1 + m
nk))

Bucklin

m2 log(1+ n
m)+

mn log(1 + m
n)

m2 log(1 + n
m)

mn logmMCMPL

m! log(1 + n
m!) + n log(1 + m!

n)MACMPL

STV
m(2m log(1 + n

2m) + n log(1 + 2m

n))

2m log(1 + n
2m) + n log(1 + 2m

n)

Figure 3.1: Results for compilation complexity (based on [3, 21]). An arrow
coming from the top of an element stands for an upper bound, from the bottom
for a lower bound, and from the middle for both.

28

Borda,
Copeland,

Ranked
Pairs

MCMNC =
mn logm

Cup,
Bucklin,
k-approval

nm

STV
n(logm)2

n logm

Plurality,
Plurality

with
Runoff

n logm

Figure 3.2: Results for communication complexity (based on [4]). An arrow
coming from the top of an element stands for an upper bound, from the bottom
for a lower bound, and from the middle for both.

Borda,
Condorcet
consistent

rules, STV,
Plurality

with
Runoff

MAIS =
m! log(1 + n

m!) + n log(1 + m!
n)

Bucklin
l log(1 + n

l) + n log(1 + l
n)

l = m!
dm

2 −1e!

k-approval l log(1 + n
l) + n log(1 + l

n)
l =

(
m
k

)

mn logmMIS

Figure 3.3: The bound given by informational size for various common rules.
An arrow coming from the middle of an element stands for an upper and lower
bound.

29

Chapter 4

The Problem of
Representation

In the beginning of this thesis, we mentioned that we are interested in a more
“meaningful” representation of voting rules, that will give us more information
about the mechanism of the rules. As we have seen by now, voting rules come
in all shapes and sizes. On the one hand, we can define a “random” rule, Fr,
which assigns for any profile P some non empty AP ⊆ X, which is determined
in an arbitrary way. For such a rule we can never have less than maximal
communication or compilation complexity, as not knowing the exact profile
would prevent us from knowing what the winning set is. On the other hand, a
constant rule, which always chooses the same winning set, represents the other
side of the scale, where we don’t need to store or transfer any information, and
so both the communication and compilation complexity will always be 0.

It is true that by placing axioms on our rules, we can narrow the scale a
bit (for example, we saw how the maximal compilation complexity decreases,
as soon as we restrict ourselves to the set of anonymous rules). However, it
seems like we cannot come up with a unique representation that will be more
meaningful than the functional description of rules we are currently using, while
capturing enough of the rules we want to address (though we challenge this claim
later in the chapter, when we introduce generalized scoring rules).

Another way to go at this might be to study different representations for
different rules, and the relations between those representations themselves. That
is the approach we take in the following two sections. But for this we must be
more clear on what we mean by “meaningful representations”.

4.1 Defining Representations

We start by defining a representation of preferences. The idea is that our most
basic representation is profiles, but given a voting rule, this representation could
become somewhat redundant, in the sense that some profiles are equivalent
under the rule (in the way we saw for compilation complexity). We would like
to consider other structures as representations if they identify equivalent ballots
for various rules. A representation will therefore be a sort of a quotient set of
the profiles under an equivalence relation induced by some voting rule. We will
later see how that gives us a hierarchy of these representations.

31

Definition 4.1.1. Let S = {Sn}n∈N be a family of sets. We call S a represen-
tation of preferences if we have functions fSn : L(X)n → Sn which send each
n voter profile to an element of Sn, and functions gSn : Sn → L(X)n, sending
elements of Sn to n voter profiles, which also satisfy fSn (gSn (s)) = s for any
s ∈ Sn.

Notice the definition implies that gSn is one-to-one and fSn is onto. The
reader might be reminded of the definition of a compilation function. Indeed,
fSn is very similar to a compilation function σ, but instead of defining ρ over
Sn×L(X)∗, we defined the functions gSn which send us back to the profile space.

The similarity between fSn and the compilation function σ can be made even
more clear if we tweak the definition of compilation function a bit. The original
definition was for σ : L(X)n → {0, 1}∗, with a function ρ : {0, 1}∗ × L(X)∗ →
P(X) \ {∅} satisfying ρ(σ(P), Q) = F(P ∪Q).

We can define the compilation function to be not one function, but a family
of functions {σn}n∈N for which there is a function ρ : {0, 1}∗×{0, 1}∗ → P(X)\
{∅} satisfying ρ(σn(P), σn′(Q)) = F(P ∪ Q) for any two profiles P,Q for n, n′

voters. One can verify that Proposition 2.2.5 still holds under this definition,
and so do all the previous results for compilation complexity. Under this view,
the condition ρ(σn(P), σn′(Q)) = F(P ∪ Q) can be interpreted as a form of
commutativity between F acting on the union of profiles and ρ acting on σ-
images of profiles.

Now it is clear that fSn can be identified with σn, where Sn = {σn(P) : P ∈
L(X)n} ⊂ {0, 1}∗, and ρ(a, b) = F(gSn (a) ∪ gSn (b)) for two strings a, b ∈ {0, 1}∗.
We will come back to these ideas when we talk about generalized scoring rules.
In this section, though, we will be less interested in the functions f, g (the
variants of σ, ρ) and more interested in the set S and the relations between
different representations.

We define the connection between a representation and a voting rule.

Definition 4.1.2. A representation S is sufficient for a voting rule F if for
any n voter profile P and n′ voter profile Q we have F(P ∪Q) = F(gSn (fSn (P))∪
Q). A representation S is necessary for F if for any distinct s1, s2 ∈ Sn there
is some n′ voter profile Q such that F(gSn (s1) ∪Q) 6= F(gSn (s2) ∪Q).

In terms of the quotient sets we mentioned earlier, a representation is suffi-
cient if it doesn’t identify two profiles which are not equivalent. A representation
is necessary if it identifies all the profiles which are equivalent (that means it is
really the quotient set of the ∼ relation induced by the rule).

We present a list of various representations of preferences which are found in
the literature, and which we have already seen in one form or another. These sets
are used either by Chevaleyre et al. [3, 12] or by Xia and Conitzer [21], though
they define them only in as much as they need to get the compilation complexity
results, and in some cases the definitions of the sets are a bit different. At this
point we will only define the sets (to some level of accuracy), and later we will
show that they satisfy our requirements.

32

• Profiles (P): The representation we start from is L(X)n, which can be
called trivial in some sense. Though it is sufficient for all voting rules, and
is necessary only for rules which are “informationally bad”, meaning we
cannot condense any information. However, as soon as we know that the
rule at least obeys anonymity – as most common rules do – we can switch
to a (slightly) better representation:

• Anonymous profiles (AP): As we’ve seen when we looked at compilation
complexity, we can see this as the set of all vectors of length m! with
non-negative entries that sum up to n, where the entry vi for some vector
is the number of people who voted Vi (according to a chosen enumeration
of ballots).

• ABOVE: We define the set ABOVE to be all the functions f : X×(P(X)\
{X})→ N satisfying:

I.
∑

1≤i≤m
f(xi, ∅) = n

II. ∀x ∈ X,Z ⊆ X, x ∈ Z ⇒ f(x, Z) = 0

III. ∀Z ⊆ X,Z 6= ∅
∑

1≤i≤m
f(xi, Z) =

∑
xj∈Z

f(xj , Z \ {xj})

For f ∈ ABOVE, x ∈ X and Z ⊂ X, f(x, Z) is to be interpreted as the
number of voters who prefer all the candidates in Z to x, and prefer x
to any other candidate in X \ Z. In light of this, the first requirement
corresponds to having a profile of n voters, the second requirement means
that we have linear orders (x cannot follow x), and the third requirement
is a sort of transfer condition from k tuples to k+1 tuples, for 0 ≤ k < m.
We will show that this set coincides with the different combinations for
above(P,Z, x) mentioned by Chevaleyre et al. [3, 12] in the context of STV
(and is therefore sufficient and necessary for STV) and prove some more
properties about this set.

• Weak semimagic squares (WSM): We define a weak semimagic square
(WSM-square) of order m and sum n as a matrix r of size m×m, whose
entries are all non-negative integers (not necessarily distinct), and the
sum of every row equals the sum of every column equals n. We denote
the entry in the ith row and jth column by r(i, j). We denote the set of
all WSM-squares by WSM.1

We identify r(i, j) with the number of voters who rank the ith candidate
in the jth place. This set is used by Xia and Conitzer [21] for calculating
the compilation complexity of Bucklin.

1We call these squares “weak semimagic” to tell them apart from the standard magic
squares, where one usually also requires that the entries are distinct integers, ranging from

1 to m2 – hence the sum is determined from the order, satisfying n =
m(m2+1)

2
– and in

addition the sum on each of the main diagonals is also required to be equal to n. The ’semi’
means we drop the restriction from the diagonals, and ’weak’ means we allow entries to range
from 0, and have repetitions.

33

• Weighted majority graphs (WMG): This is the set {G(P) : P ∈ L(X)n,
where G(P) is the graph constructed as described in Appendix A, based
on N(x, y, P).

As was described when we compared compilation and communication com-
plexity, WMG is sufficient for many Condorcet consistent rules (though
not all), and it is necessary for some of them. The set is used by both
Chevaleyre et al. [3] and Xia and Conitzer [21].

• Scoring vectors for positional scoring rules (PSR): This actually includes
many different representations, each representation associated with a dif-
ferent scoring vector. We know each positional scoring rule is associated
with a scoring vector 〈v1, . . . , vm〉, so the representation for that rule is
the set of vectors

{〈u1, . . . , um〉 : ∀1 ≤ i ≤ m ui =
∑

1≤j≤m

N(xi, j, P)vj for some P ∈ L(X)n}

Positional scoring rules are widely used in the literature. For simple vec-
tors (like that of plurality) the corresponding set is easy to characterize,
but it is more complicated for other vectors (as in the case of Borda,
for which both Chevaleyre et al. [3] and Xia and Conitzer [21] calculated
compilation complexity bounds).

By no means is this list supposed to be an exhaustive description of all
the sufficient and necessary representations for voting rules. In addition, while
some of those structures are simple to characterize as well as to count (as in the
case of scoring vectors for the Plurality rule), others are more complicated (if
we could count them all, we would have the compilation complexity for many
rules). We can also see that in some cases our representation is profile-dependent
(namely, for WMG and the general PSR representation, where we rely on the
set of profiles in the definition of the representation), and for other cases the
definition is profile independent.

Mapping these representations is based mostly on pragmatic accounts, trying
to balance between wanting to capture as many rules as possible, and having an
interesting representation you can work with. The work here is focused mostly
on the WSM and ABOVE representations.

In the next section we discuss the connections between these representations,
but first we must show that these are all indeed representation. While this might
be trivial for the WMG and PSR, where, as we explain, our set is the image of
the function fSn on the profiles, it is less trivial for ABOVE and WSM.

Proposition 4.1.3. The sets P, AP, WMG, and PSR are all representations
of preferences.

Proof. For the set of profiles P there is nothing to prove (the functions fn, gn
are just the identity function). We define explicitly the functions fAPn and gAPn
for the case of AP, while for WMG and PSR only fSn are explicit and not gSn ,
and we have to use the definition of the set.

34

AP: Fix an ordering of the ballots V1, . . . , Vm!. fAPn (P) = 〈v1, . . . , vm!〉 where
vi is the number of voters in P who voted Vi. gAPn (〈v1, . . . , vm!〉) is a
profile where the first v1 voters vote V1, the next v2 voters vote V2, etc.
Since the sum of the elements in n, we get an n voter profile (and it’s
simple to check that fAPn (gAPn (s)) for any vector s in AP).

WMG Given a profile P , we can generate a majority graph based on N(x, y, P)
for any two candidates x, y ∈ X, which gives us fWMG

n . As we have
defined WMG to be the set of majority graphs which correspond to some
profile, we know that any element of WMG corresponds to at least one
profile. Given an ordering of the profiles, make gWMG

n (s) the first profile
that correlates to s ∈WMG (this is of course a non-constructive definition,
resulting from not having a clear characterization of WMG).

PSR As this category includes different scoring rules, we will have different
fSn functions (based on different scoring vectors 〈v1, . . . , vm〉, though all
are of the form fn(P) = 〈

∑
1≤j≤m

N(x1, j, P)vj , . . . ,
∑

1≤j≤m
N(xm, j, P)vj〉),

and different gn functions as well. For the cases which are simple to
characterize (these are mostly rules similar to plurality, k-approval etc.)
we can give an explicit gn, but for other cases we have to define gn in a
non-constructive way, in the same way we did for WMG.

We now turn to the ABOVE representation, which is slightly more compli-
cated. We will define functions fABOV En which take an n voter profile P and
return a function fP ∈ ABOV E. In accordance with what we said earlier,
we will want fP (x, Z) to be the number of voters in P who prefer all the ele-
ments of Z to x and prefer x to any other element in X \ Z, which is precisely
above(P,Z, x) used by Chevaleyre et al. for STV [3, 12], which we mentioned in
Example 2.2.9.

Our characterization of ABOVE is different from the above function and
somewhat beneficial since it is profile-independent, and in addition it helps in
analyzing various properties of that set. In Appendix C we derive a new upper
bound for STV, based on this representation.

We should show, however, that we can actually get fABOV En (P) = fP =
above(P, ·, ·) for every profile, which amounts to showing that above(P, ·, ·) sat-
isfies the conditions of ABOVE, and that no other function does it.

Proposition 4.1.4. The set ABOVE is a representation of preferences.

Proof. We define fP (x, Z) = above(P,Z, x), based on the notation of Chevaleyre
et al. from Example 2.2.9. We will show that this function satisfies the conditions
of ABOVE, and so we get fABOV En (P) = fP . The first two conditions are
obvious, and the last one is also simple to understand: Given a nonempty
Z ⊂ X and x ∈ X, we need to show that∑

1≤i≤m

fP (xi, Z) =
∑
xj∈Z

fP (xj , Z \ {xj})

35

But this simply translates to∑
1≤i≤m

above(P,Z, xi) =
∑
xj∈Z

above(P,Z \ {xj}, xj)

which holds for any profile (both sides of the equations are just the number of
ballots whose first |Z| candidates are the elements of Z).

Now, let f be a function in ABOVE, we show that there is a profile matching
it (which would mean that f = above(P, ·, ·) for some P). Fix an order on the
candidates, x1, . . . , xm. We construct all the ballots simultaneously, starting
from the top: f(x1, ∅) ballots starting with x1, f(x2, ∅) ballots starting with x2

etc. Condition I on ABOVE guarantees that we have n ballots after this step.
At the k + 1 step we take the first set Z ⊂ X of size k (order on sets induced
from the order on candidates). Let N(Z) be the number of (partial) ballots in
our profile consisting of Z. We know that N(Z) =

∑
xj∈Z

f(xj , Z \{xj}), and from

condition III we get that N(Z) =
∑

1≤i≤m
f(xi, Z), so we just place the candidates

for which f(xi, Z) > 0, according to the order. This means that we can continue
all the tuples of size k to tuples of size k+ 1, and so after m steps we are done.
It is simple to check that fABOV En (P) = f .

Last, we show that WSM is also a representation.

Proposition 4.1.5. The set WSM is a representation of preferences.

While this claim might seem simple (and one direction is indeed simple,
namely finding fWSM

n), the proof that any WSM-square fits to some profile is
surprisingly long, and it is worth mentioning that trying to build a profile from
such a square in a naive greedy way might fail, which is why the proof does it
differently.

Proof. Fix an ordering of the candidates, x1, . . . , xm. We have fWSM
n (P) = r

where r(i, j) = N(xi, j, P) is the number of voters who ranked xi in the jth
place. Since every voter has to rank xi somewhere,

∑
1≤i≤m

r(i, j) = n. Since

every voter has to rank someone in the jth place,
∑

1≤j≤m
r(i, j) = n, so r is a

WSM-square of order m and sum n.
Next, we show that we can come up with a profile, given a WSM-square,

though we don’t give an explicit function gWSM
n . We make use of the following

lemma:

Lemma 4.1.6. Given a WSM-square r of order m and sum n > 0, we can
find a permutation σ of {1, . . . ,m} such that for every 1 ≤ i ≤ m we have
r(i, σ(i)) > 0.

In words, the lemma says that in every WSM-square with a positive sum, we
can find m entries, all of them positive, and no two of them share the same raw
or column. As the proof is (surprisingly) not trivial, and it uses some concepts

36

not directly related to voting theory (flow networks), the proof and the required
definitions are presented in Appendix B. We now show we can come up with a
profile, given the lemma.

Given a WSM-square r of order m and sum n > 0, we will construct a profile
P that corresponds to r in n steps. On every step we take the σ given to us
by the lemma. We add a ballot V to P , where V is the following: 〈xσ−1(1) >
xσ−1(2) > · · · > xσ−1(m)〉. We then subtract 1 from the (i, σ(i)) entry for every
1 ≤ i ≤ m (the lemma guarantees that all these entries are positive, so we can in
fact do that). It is simple to see that what we get, after the reduction, is another
WSM-square of order m, but with sum n− 1. We can repeat this process, and
the lemma guarantees that we finish this after n steps, with a WSM-square of
sum 0.

Verifying that fWSM
n (P) = r is left to the reader.

By better understanding these representations and the relations between
them, we gain more insights into the compilation complexity of the rules utilizing
them, as well as to the rules themselves, and so that is what we try to do next.

4.2 Hierarchy of Representations

We try to give a short analysis of the relations between the representations we
described. We define what it means for one representation to be finer than
another.

Definition 4.2.1. We say that a representation S is finer than a representation
T if there are functions fS,Tn : Sn → Tn satisfying fS,Tn (fSn (P)) = fTn (P) for
any n ∈ N and n voter profile P .

Notice that the definition implies that fS,Tn is onto. It also follows from the
definition that, naturally, the set of profiles P is the finest representation. If
also follows that if A is finer than B and B is finer than C, we get that A is
finer than C, since we can define fA,Cn = fB,Cn ◦ fA,Bn , and we get that for any
n and P :

fA,Cn (fAn (P)) = fB,Cn (fA,Bn (fAn (P))) = fB,Cn (fBn (P)) = fCn (P)

From this, together with some relations we will soon prove, we will get
Diagram 4.1, where an arrow from S to T means that S is finer than T (we
present only arrows between adjacent representations, and not arrows we get by
composition).

We prove the relations in the diagram hold:

Proposition 4.2.2. We have the following relations between the representation
introduced so far:

1. P is finer than AP

2. AP is finer than ABOVE.

37

P

AP

ABOVE

WMG WSM

PSR

Figure 4.1: Hierarchy of representations for common voting rules. An arrow
from A to B means that A is finer than B.

3. ABOVE is finer than WMG.

4. ABOVE is finer than WSM.

5. WSM is finer than PSR.

Proof. As we said, P is always the finest representation, so Claim 1 is trivial.
We prove the other cases. In all cases, our function fA,Bm will simply be fBn ◦
gAn , and so we have to show that for any profile P , fBn (gAn (fAn (P))) = fBn (P).
Alternatively, we can show that whenever two profiles P, P ′ satisfy fAn (P) =
fAn (P ′), we have fBn (P) = fBn (P ′). To see that this is equivalent, denote P ′ =
gAn (fAn (P)). From the definition of representation it follows that fAn (P ′) =
fAn (P), and from this follows the equivalence.

2. It’s simple to see that given a profile P , the order of the ballots has no
affect on above(P,Z, x), and so fABOV En (gAPn (fAPn (P))) = fABOV En (P).

3. We need to show that for P, P ′ such that fABOV En (P) = fABOV En (P ′) we
have N(x, y, P) = N(x, y, P ′). This is the case, because

N(x, y, P) =
∑
Z⊂X,
x∈Z

above(P,Z, y) =
∑
Z⊂X,
x∈Z

above(P ′, Z, y) = N(x, y, P ′)

4. It’s enough to show that for any two profiles P, P ′ such that above(P,Z, xi) =
above(P ′, Z, xi) for all xi, Z, we have N(xi, j, P) = N(xi, j, P ′). But

N(xi, j, P) =
∑
Z⊂X,
|Z|=j−1

above(P,Z, xi) =
∑
Z⊂X,
|Z|=j−1

above(P ′, Z, xi) = N(xi, j, P ′)

so ABOVE is finer than WSM.

38

5. Take a scoring vector 〈v1, . . . , vm〉. We have to show that for any P, P ′ such
that fWSM

n (P) = fWSM
n (P ′) we get the same score for every candidate.

For a candidate xi, the score of xi is:∑
1≤j≤m

N(xi, j, P)vj =
∑

1≤j≤m

N(xi, j, P ′)vj

so we have the claim.

We further mention that we cannot add additional arrows to Figure 4.1
(beyond arrows which we get using composition). For example, WSM is not
finer than WMG. Consider the profiles

P =

{
x1 > x2 > x3 > x4

x3 > x4 > x1 > x2

P ′ =

{
x3 > x2 > x1 > x4

x1 > x4 > x3 > x2

The profiles satisfy fWSM
2 (P) = fWSM

2 (P ′) but fWMG
2 (P) 6= fWMG

2 (P ′). Sim-
ilarly, take:

P =

{
x1 > x2 > x3 > x4

x4 > x3 > x2 > x1

P ′ =

{
x2 > x1 > x4 > x3

x3 > x4 > x1 > x2

These profiles satisfy fWMG
2 (P) = fWMG

2 (P ′) but fWSM
2 (P) 6= fWSM

2 (P ′), so
WMG is not finer than WSM.

We still need to say something about how sufficient and necessary these
representations are, and with respect to which voting rules. Connecting this to
the hierarchy we displayed, we want to find for any rule F the representation
which is sufficient to compute F and it is the least fine representation that does
that (that would be the closest to a necessary representation).

We know that ABOVE is sufficient and necessary for STV, and some new
results by Chevaleyre et al. point out that it might also be sufficient for other
rules [12]. WMG is sufficient for many Condorcet consistent rules, as we saw in
the case of compilation complexity, though it is not necessary for all.

WSM is sufficient for Bucklin, though it is not necessary (a Bucklin winner
has to be found within the first bm2 c+ 1 columns, and so any two squares that
identify on those are equivalent for Bucklin). However, PSR representations
are not fine enough for Bucklin, and we can also think of Bucklin variations for
which that representation is necessary (one where the Bucklin score is computed
not according to where the candidate gets more than half the votes, but rather
when they get all the votes, for example).

PSR are sufficient and necessary for all positional scoring rules.
To conclude this section, we have shown how the information utilized by

voting rules can be put into different structures, and those structure form a
hierarchy of a sort. The study of the representations and the relations between
them can assist in estimating measures such as compilation complexity, which
we can try to get either from counting the elements of the representation (as
we do for ABOVE in Appendix C, to get an upper bound for the compilation
complexity of STV), or from looking at another representation which is close to
it in the hierarchy whose size is known, and using the mapping between the two
representations to estimate the size of the unknown representation (we elaborate

39

on this in the final discussion). Another advantage is that it gives a more formal
way of looking at voting rules, thus seeing similarities and differences between
different rules.

In the next section we present another formalism for voting rules, which has
elements related to both compilation complexity and communication complex-
ity.

4.3 Generalized Scoring Rules

In the previous sections we mentioned how one informative representation for
all voting rules seems unlikely, and so we’ve focused on describing different rep-
resentations and the relations between them. In this section we try to challenge
that claim, by presenting a way of describing voting rules which seems more
informative than the functional form, and yet captures a very large portion of
those rules.

The idea we will be presenting is that of generalized scoring rules (GSR),
developed by Xia and Conitzer [19, 20]. We will present the definitions and the
results Xia and Conitzer had for those rules, and in the following section we will
show how this connects to both compilation and communication complexity.
We start from defining the term:

Definition 4.3.1 (Generalized scoring rules [19, 20]). Let k ∈ N and K =
{1, . . . , k}. Let K = {K1, . . . ,Kq} be a partition of K into q sets. We say that
two vectors a, b ∈ Rk are equivalent, a ∼K b, if for every element Kl of the
partition, l ≤ q, if i, j ∈ Kl then we have ai ≤ aj ⇔ bi ≤ bj.

Let K be a partition of K, we say that a function g : Rk → X is compatible
with K if for any a, b ∈ Rk, a ∼K b⇒ g(a) = g(b).

Let f : L(X) → Rk and g : Rk → X, where g is compatible with a parti-
tion K of K. g and f define the following voting rule: GS(f, g)(V1, . . . , Vn) =
g(
∑
i≤n

f(Vi)). We say that GS(f, g) is of order k and compatible with K.

We will say that GS(f, g) computes F if F(P) = GS(f, g)(P) for any P ,
and we will say in such a case that F is GSR.

Examples of GSR can often be taken from the compilation complexity ex-
amples, when the function f is taken to be fS1 from the previous sections, for
the representation S which is appropriate for the voting rule (we will get back to
this when we connect GSR with compilation and communication complexity),
and one simply has to check that some g is compatible with some partition of
the output of f . Xia and Conitzer showed that all positional scoring rules, STV,
Copeland, maximin, ranked pairs and Bucklin are GSR.

For example, in order to turn Copeland into a GSR, take k = m(m − 1),
and our vectors are of the form 〈v1,2, v1,3, . . . , v1,m, v2,1, v2,3, . . . , vm,m−1〉 (that
is, an entry vi,j for any distinct i, j ≤ m). We take f(V)i,j = 1 if xi is preferred
to xj , 0 otherwise. We get that f(P)i,j = N(xi, xj , P), and we know that we
can compute the Copeland winners from that, so we define g to do that. We

40

can verify that the trivial partition into one set is sufficient here (though there
are better partitions as well).

Xia and Conitzer first characterized, for this set of rules, the probability
with which a random profile can be manipulated by a coalition of voters, as
a function of the number of candidates, voters and manipulators [19]. In their
second paper [20], they gave an axiomatic characterization of voting rules which
can be presented as GSR, which we next define:

Definition 4.3.2. A voting rule F is locally consistent on a set of profiles S
if for any P1, P2 ∈ S such that F(P1) = F(P2) we have F(P1 ∪ P2) = F(P1) =
F(P2).
F is t-consistent if there is a partition of the set of all profiles L(X)∗ into t

sets, {S1, . . . , St}, such that F is locally consistent on each Si.
F has finite local consistency if it is t-consistent for some t ∈ N.

The theorem that Xia and Conitzer proved was not only that rules with
finite local consistency are GSR, but it also tied the degree of consistency of
those rules with the maximal order of the GSR associated with them:

Theorem 4.3.3 (Theorem 1 in [20]). A voting rule F is GSR iff it is anonymous
and finitely locally consistent. In addition, let t be the degree of consistency of
F , then there is a GSR of order at most t(t−1)m(m−1)

4 m! that computes F .

Xia and Conitzer also proved, in the same paper, the degree of consistency
of various rules. It is worth mentioning, though, that the upper bound we get
from the local consistency is, in many of their examples, much higher than the
actual minimal order for the rule.

It seems therefore that GSR can capture a variety of voting rules (though not
all: Dodgson, for example, doesn’t satisfy finite local consistency). But what
can we get from this representation? We try to answer this in the next section,
when we show how GSR connect to the representations we spoke of earlier, and
to communication and compilation complexity.

4.4 Connecting GSR with Complexity Measures

Any GSR is composed of two parts: f : L(X)→ Rk and g : Rk → X. While f is
more about aggregating the information given by the profiles and representing
it in a form appropriate for the rule, g is more about processing that form
and calculating the results. We will show that in some sense, f corresponds
to the compilation function in the compilation complexity problem, while g
gives a protocol for the communication complexity problem. In this section we
investigate the nature of this correspondence. We start with the connection
between GSR and compilation complexity, which is the clearer one.

Unlike compilation complexity, which is defined for any voting rule, GSR cor-
respond to a smaller class of voting rules: namely, as we have seen, anonymous
rules which have the finite local consistency property.

41

However, if we restrict our view to these rules alone, we notice that the
requirements of f in the GSR are quite similar to those of the compilation
function. What do we mean by “quite similar”? We try to give a more formal
meaning:

We want to be able to define a compilation function σ for a voting rule F ,
given functions f and g such that GS(f, g) computes F , and we want to be able
to define the functions f and g for F , given a compilation function σ.

First, given functions f and g, we can construct σ: For P = 〈V1, . . . , Vn〉 ∈
L(X)n, let σ(P) = f(P) =

∑
1≤i≤n

f(Vi). We then define

ρ(σ(P), P ′) = ρ(f(P), P ′) = g(f(P) + f(P ′)) = g(f(P ∪ P ′)) = F(P ∪ P ′)

There is one problem with this construction, and that is the fact that f
generates a vector of real numbers, and g operates on a vector of reals. Compu-
tationally speaking, of course, there is no way of representing all possible reals,
and no way of performing arithmetical operations on them, so σ and ρ cannot
be taken to be exactly the functions we described. We have to “round” the
values in the vector at some point (turning them not necessarily to integers, but
they must be represented by a finite number of digits, so it has to be a rational
number).

This process of approximating real values using rational numbers might be-
come problematic. Take a positional scoring rule with a non-rational vector,
for example 〈π, 2, 1, 0〉. It can be shown that no matter how good our approx-
imation is, we can always find a profile with enough voters where the rounded
values give a result which is different from the one of the rule itself.

In practice, though, we see that all the representations in Section 4.2 use
integer numbers, with the exception of positional scoring rules, which could be
anything (and yet, the popular ones are integers).

On the other direction, we would like to construct f and g given σ. This,
however, is not a simple task. In general, we are not guaranteed that σ satisfies
the requirement of additivity which must hold for f , that is, f(P ∪ P ′) =
f(P) + f(P ′). Indeed, it is not even clear what is the meaning of additivity for
a function that takes values if {0, 1}∗.

If we look at the representations in Section 4.2, which correlate with the
compilation complexity conditions for equivalent profiles, then they all satisfy
the additivity constraint. Take such a representation S, then the elements of S
can be described as a vector of numbers of some length, and the functions fSn
satisfy fSn (P) + fSn′(Q) = fSn+n′(P ∪Q).

However, not every representation is necessarily given is such a comfortable
form of numerical vectors. The theorem of Xia and Conitzer guarantees that for
every anonymous rule with finite local consistency we have such a representation,
but there is no necessity that it is a minimal representation (in the terminology
we used in the beginning of the chapter – necessary representation). At this
point the question of which conditions we need in order to have additivity for a
necessary representation remains open.

42

Another problem in this construction is that even once we have an additive
representation, that is not enough to guarantee the compatibility condition for
g. This question also remains open for now. We will go back to this in the final
discussion.

We now move to comparing g with the communication protocol in the com-
munication complexity problem.

As we have seen in the case of STV, the size of the representation for the com-
pilation complexity can be substantially bigger than the actual computational
complexity or communication complexity required for calculating the winner.
When we inspect this discrepancy via GSR, we understand that g doesn’t have
to go through all the k values in the vector, but can rather look each time at
a specific value / subset of values, from which it can determine which values to
look at next. That is, if f(P) = 〈v1, . . . , vk〉, we can define a function that tells
us what is the next value g is going to inspect, given the previous values.

Formally: Given a profile P and a set of indices Z = {i1, . . . , ik′} ⊆ {1, . . . , k},
denote by f(P)|Z the vector 〈vi1 , . . . , vik′ 〉.

Now define recursively g1 = Z1 = {i1} for some index i1, and

gj+1(f(P)|Zj
) =

{
∅ If f(P)|Zj is enough to calculate g
{ij+1} otherwise, for some ij+1 /∈ Zj

and
Zj+1 = Zj ∪ gj+1(f(P)|Zj)
Of course, there are many ways of defining these series (depending on the

choice if ij+1), so we take a series gj , Zj that stabilizes as least as fast as any
other series.

We now present a communication protocol given f and g. At first, each
voter j calculates f(Vj) = 〈vj1, . . . , v

j
k〉, and then transmits vji1 to all other

voters ({i1} = g1 = Z1). Now all the voters have f(P)|Z1 , and so they can all
calculate g2(f(P)|Z1). Next they transmit the entry in the new index and so
on. At the end of the process it is guaranteed that we have calculated g(f(P)),
and have accessed no more information than that of g. This means that the
number of values accessed by g times the size of entries of the vector for single
ballots times n gives us an upper bound on the communication complexity.2

There is one sense in which this result is not surprising. It is known in
communication complexity theory, that there is a connection between the circuit
complexity of Boolean functions and the communication complexity of relations
based on those functions (for details, see [11, Chapter 10]). The connection
between the g from GSR and the communication complexity is just another
aspect of the connection between computational complexity and communication
complexity. We go back to this in the discussion in the end of the thesis.

To conclude, we showed that under reasonable assumptions on the gener-
alized scoring rules (namely, that f only takes integer or rational values), we
can generate both compilation functions and communication protocols. We also
know that for all the examples of GSR given by Xia and Conitzer, the represen-

2In this protocol we assumed that f gives only rational numbers, as we did for the compi-
lation complexity.

43

tations we presented earlier in the chapter are used by the generalized scoring
rules (by taking f = fS1 for the appropriate representation3).

On the other direction, however, it seems that constructing f and g given a
compilation function (or a communication protocol) is more complicated, which
implies that those complexity measures alone do not give a formalization as
strong as that of GSR.

3Though sometimes f also adds some elements which we get by adding or subtracting
elements in fS

1 (V).

44

Chapter 5

Group Correspondence

In Chapter 4 we saw different representations for voting rules, which were mostly
related to compilation complexity. In this chapter we consider an algebraic
representation which is related to informational size, introduced in Chapter 3.

Remember that the equivalence of ballots, as defined for informational size,
induced partitions of the ballot space. In this chapter we establish a connection
between informational size and group theory, by constructing a one-to-one cor-
respondence between partitions induced by neutral and anonymous voting rules
and subgroups of the symmetric group (a special type of group in group theory,
which will be defined in the next section) satisfying some condition.

We will see how this correspondence can be used to carry results from group
theory (which is a well-studied field) into voting theory, proving a claim posed
by Sato in his paper on informational size [14]. No less important is the outlook
we get from the correspondence on various notions in voting theory, and their
relation with group theory, which is a surprising connection.

We now turn to some basic definitions and facts, mostly from group theory.

5.1 Basic Definitions

Most of this section is devoted to various definitions and facts from group theory
which we will need in the proof of the correspondence. Before we go into the
group-theoretic definitions, though, we recall some concepts related to informa-
tional size.

We saw in Chapter 3 how, given a voting rule Fm,n for m alternatives and n
voters, we get n partitions of the ballot space L(X), which we denotedMi,Fm,n

for 1 ≤ i ≤ n, where Mi,Fm,n
is the partition corresponding to the equivalence

relation ∼i for ballots (for the exact definition, see Chapter 3).
We say that the voting rule Fm,n induces the partitions Mi,Fm,n

, and the
elements of each partition are sometimes referred to as equivalence classes. Our
correspondence will be defined for these different partitions, so they are the
objects which interest us most.

There are two important lemmas proved by Sato in his paper, which we will
be using. One is Fact 3.2.4, which was already mentioned in Chapter 3, which
says that for the case of an anonymous rule (A-rule) we haveMi,Fm,n =Mj,Fm,n

for every two voters i, j. In this case we can omit the subscript i and write simply
MFm,n

, the partition induced by Fm,n.
The second lemma is:

45

Fact 5.1.1 (Lemma 4.2 in [14]). Let σ be a permutation of the elements of X,
the set of alternatives. Denote by σ(l) the result of σ acting on the linear order
l, i.e., if l = x1 > x2 > · · · > xm, then σ(l) = σ(x1) > σ(x2) > · · · > σ(xm),
and for a set of linear orders M , denote σM = {σ(l) : l ∈M}. For any neutral
voting rule (N-voting rule) F , if M ∈Mi,F then σM ∈Mi,F .

Through most of the chapter we will work with neutral and anonymous rules
(NA-rules), and we will also assume our voting rules are non-constant, that is,
for any rule F there are two profiles P, P ′ such that F(P) 6= F(P ′).

We now turn to the definitions and facts we need from group theory. All the
following definitions and facts can be found in basic group theory texts, such
as [17], and though all the definitions we will need appear here, a reader who
wishes to see some more examples and explanations can find them there.

Definition 5.1.2 (Group). A group is a set with an operation: (G, ·), where
G is the set and · : G×G→ G is the operation, such that

• · is associative: a · (b · c) = (a · b) · c

• G has a unit element e, such that for all g ∈ G, g · e = e · g = g

• · is closed under inverse elements: For all g ∈ G there is g−1 ∈ G such
that g · g−1 = g−1 · g = e

The order of a group G is the number of elements in G.

We will usually omit the · notation, and write simply gh instead of g · h.

Definition 5.1.3 (Subgroup). A subgroup H of G, denoted H ≤ G is any
subset of G that is also a group with the restricted operation.

Given H ≤ G, a (left) coset of H in G is any set of the form gH = {g ·h :
h ∈ H} where g ∈ G. The index of H in G is the number of different cosets
of H in G.

A subgroup H ≤ G is said to be proper if H 6= G, denoted H < G. H is
said to be non-trivial if H 6= {e}.

We remark that there is an analogous definition of right cosets. The differ-
ence between left and right cosets is not relevant for our correspondence, as long
as we choose one of the two and stick to it. We will use left cosets, and refer to
them simply as cosets.

Definition 5.1.4 (Normal subgroup). A subgroup N ≤ G is normal if for any
g ∈ G and n ∈ N we have gng−1 ∈ N .

Fact 5.1.5. Given H ≤ G, let G/H = {gH : g ∈ G} denote the set of cosets of
the subgroup. G/H constitutes a partition of G, which we will call “the partition
induced by H”.1

1In group theory, the notation G/H is usually reserved for the cases where H is normal,
where it can be shown that this set constitutes a group. We will only be interested in this set
as a set and not as a group, so we use the notation for any H.

46

Fact 5.1.6. Let H < G. The order of H is a divisor of the order of G.

Definition 5.1.7. Given a subset S of a group G, g−1Sg = {g−1sg : s ∈ S} is
called the conjugate of S by g.

Fact 5.1.8. A conjugate of a subgroup is a subgroup.

Definition 5.1.9 (Group homomorphism). Given two groups, (G, ·) and (H, ∗),
a mapping ϕ : G → H is called a homomorphism if for any g1, g2 ∈ G we
have ϕ(g1 · g2) = ϕ(g1) ∗ ϕ(g2).

Definition 5.1.10 (Kernel). Given groups G,H and a homomorphism ϕ : G→
H, the kernel of ϕ is the set {g ∈ G : ϕ(g) = eH}, where eH is the unit element
of H.

Definition 5.1.11 (The symmetric group). Denote by Perm(X) the set of
all permutations of X. Perm(X), together with the operation of composition
of permutations, constitutes a group. For a set X = {1, . . . ,m} containing m
elements, that group is usually denoted Sm, and is referred to as the symmetric
group of m elements.2 The elements of Sm are usually denoted by σ, ρ etc.

One can identify Sm with permutations on any set X of size m (i.e., with
Perm(X)), through a bijection from {1, . . . ,m} to X. Since we would want
to consider permutation of alternatives, and since taking the bijection into a
formal account incurs a clutter of notation, we will throughout this chapter
assume that the set of alternatives is X = {1, . . . ,m}.

Definition 5.1.12 (Group action). Given a group G and a set X, we define
an action of G on X to be a function · : G×X → X, which satisfies:

• for all g, h ∈ G and x ∈ X we have (gh) · x = g · (h · x).

• e · x = x, for the unit element e ∈ G.

We denote the action by g · x for g ∈ G, x ∈ X, or (more often) just by gx.

The function takes pairs of elements, one from G and one from X, to an
element of X. This can be viewed as a process in which every element of G
“moves the elements of X around”. From the properties of groups and group
action it follows that gx = gy iff g−1gx = g−1gy, which is iff x = y. In other
words, every element of G induces a permutation of the elements of X. We can
therefore treat an action of G on X as a mapping ρ : G → Perm(X), and in
fact, the properties of group actions guarantee that ρ is a group homomorphism.
Here are some examples of group actions which we will use in our correspondence
(verifying that these are indeed actions is mostly left for the reader):

2Usually in the literature the notation for the symmetric group is Sn. As we reserve n for
the number of voters, and m for the alternatives, and since we are interested in actions on the
set of alternatives, we are using Sm instead.

47

1. A trivial example is the symmetric group Sm acting on the set X, where
σx for σ ∈ Sm and x ∈ X just moves x to its image under the permutation
σ.

2. A slightly more complicated example is Sm acting on P(X), the powerset
of X. This is a simple extension of our first example, except that now
every element σ acts on a set of elements A ⊆ X, taking it to the set
B = {σx ∈ X : x ∈ A}.

3. We can define the action of Sm on the set of linear orders L(X), as de-
scribed before, by taking, for any linear order l = 〈l1 > l2 > · · · > lm〉,
σ(l) = 〈σ(l1) > σ(l2) > · · · > σ(lm)〉.
We show that this is an action. Clearly, for any l ∈ L(X), we have e(l) = l,
and for any σ, ρ ∈ Sm we have

σ(ρ(l)) = σ(〈ρ(l1) > · · · > ρ(lm)〉) = 〈σ(ρ(l1)) > · · · > σ(ρ(lm))〉 =

〈(σρ)l1 > · · · > (σρ)lm〉 = (σρ)l

We will use this action in the correspondence we define in the next section.
Whenever notation allows for it, we will drop the parentheses and write
simply σl.

4. By further extending that last action, we can define an action of Sm
on a profile, where the image of σP is the profile composed of all the
images of the ballots in P (keeping my mind that a ballot is just a linear
order), as defined in the previous action, i.e., for P = 〈V1, . . . , Vn〉 we have
σP = 〈σV1, . . . , σVn〉.

5. Another important action we will use is the action of Sm on left cosets (this
can actually be defined for any group G, though we will only deal with
Sm, which also has some more interesting properties with respect to this
action): Let H ≤ Sm be a subgroup, and let Sm/H = {σH : σ ∈ Sm}. We
define the action of Sm on Sm/H as σ(σ′H) = (σσ′)H for every σ ∈ Sm
and σ′H ∈ Sm/H. Thus each element of Sm defines a permutation of the
set of cosets Sm/H.

We mention that though this is the first time we are presenting these actions
formally, in some sense we have already been implementing them. Actions 2 and
4 both appear in the definition of the neutrality axiom.

Fact 5.1.13 (See, for example, in [6], Ex. 1.3.3). Let H < Sm, and Sm acting
on left cosets of H in the way described above. The kernel of the mapping
ρ : Sm → Perm(Sm/H) is the largest normal subgroup of Sm contained in H.

The notion of action brings forth another natural notion: that of orbits.

Definition 5.1.14 (Orbit). Given an action of G on X we say that the orbit
of x ∈ X is the set Gx = {gx ∈ X : g ∈ G}.

48

In simple words, the orbit of x is the set of elements to which x can be
moved by the elements of G. It is a simple fact in group theory that the set
of orbits generated by an action constitutes a partition of X, so we can define
an equivalence relation ∼ on X, where x ∼ y ⇔ Gx = Gy ⇔ x = gy for some
g ∈ G.

Definition 5.1.15 (Stabilizer). Given G acting on X, we call the set stabG(x) =
{g ∈ G : gx = x} the stabilizer of x.

Fact 5.1.16. A conjugate of a stabilizer is a stabilizer.

Fact 5.1.17. Given a group G acting on a set X, stabG(x) is a subgroup of G
for any x ∈ X.

Definition 5.1.18 (Faithful action). An action of G on X is faithful if the
only element g ∈ G satisfying gx = x for all x ∈ X is the unit element e.

Remark: Given a group G acting on X, an element g ∈ G satisfies gx = x
for every x ∈ X iff we have ρ(g) = eX , where ρ : G → Perm(X) is the
homomorphism associated with the action and eX is the identity permutation
on X. In light of this and the last definition we can say that an action of G on
X is faithful iff the kernel of the associated homomorphism ρ : G → Perm(X)
is trivial (i.e., is equal to the unit element of G).

The following definitions relate more specifically to the symmetric group and
to permutations:

Definition 5.1.19 (Cycles). A permutation σ of a set X is called a cycle if
there are x1, . . . , xk ∈ X such that σ(xi) = xi+1 for 1 ≤ i < k, σ(xk) = x1 and
σ fixes all other elements of X. We then use cycle notation to write σ in the
form σ = (x1x2 · · ·xk). A cycle of length two is called a transposition. The
empty cycle () denotes the identity permutation.

Fact 5.1.20. Every permutation can be written down as a product of disjoint
cycles.

Definition 5.1.21. A permutation is even (odd) if it can be written down in
cycle notation as the product of an even (odd) number of transpositions.

Fact 5.1.22. Every permutation is either even or odd (exclusively).

Fact 5.1.23. The set of all even permutations in Sm constitutes a subgroup,
denoted Am and called the alternating group.

Fact 5.1.24. For any m 6= 4, the only proper non-trivial normal subgroup of
Sm is Am. For m = 4 the only proper non-trivial normal subgroups of S4 are
A4 and the normal Klein four-group, which is the subgroup

{(), (12)(34), (13)(24), (14)(23)}

of index 6.

We are now ready to begin constructing the correspondence.

49

5.2 Paving the Way for the Correspondence

We start by building a basic correspondence between permutations and linear
orders, which we will then “lift” into the correspondence we are aiming at,
between partitions induced by NA-voting rules and subgroups of Sm.

Proposition 5.2.1. There is a one-to-one correspondence between linear orders
over m elements and permutations of m elements.

Proof. First we choose a specific linear order l0 ∈ L(X), l0 = 〈1 > 2 > · · · > m〉,
and now we define the correspondence ηl0 : Sm → L(X) in the following way:
Let σ ∈ Sm be some permutation of X, then ηl0(σ) = σ(l0) =, where σ(l0) is
the action on linear orders defined in Example 3 in the previous section. It is
simple to verify that this is a bijection.

This means that we can speak of linear orders as permutations, and sets of
linear orders as sets of permutations (and vice versa). This is of course all with
respect to our choice of l0. Any order can be chosen for the correspondence, but
once one has been chosen, it defines ηl0 , that defines which permutation goes to
which linear order. Specifically, the identity element e of Sm corresponds to l0.

The following lemma is rather technical, and its purpose is basically to show
that the two diagrams presented in Figure 5.1 are commutative, for any permu-
tation σ and for ηl0 , the correspondence function.

P(L(X)) P(Sm)

P(L(X)) P(Sm)

η−1
l0

η−1
l0

σ σ

P(L(X))P(Sm)

P(L(X))P(Sm)

ηl0

ηl0

σσ

Figure 5.1: Commutativity of permutations and ηl0 .

Lemma 5.2.2. Let ηl0 be the correspondence function defined in the proof of
Proposition 5.2.1. The following holds for any σ ∈ Sm:

1. For any S ⊆ Sm we have σ(ηl0 [S]) = ηl0 [σ(S)].

2. For any T ⊆ L(X) we have σ(η−1
l0

[T]) = η−1
l0

[σ(T)]

Proof. We prove the first part, and then we show how the second follows from
that.

1. First we show that for any permutations ρ, σ ∈ Sm it holds that ηl0(σ(ρ)) =
σ(ηl0(ρ)). The LHS gives us ηl0(σ(ρ)) = ηl0(σ ◦ ρ) = σ ◦ ρ(l0) while the
RHS gives σ(ηl0(ρ)) = σ(ρ(l0)). This equality is that required of an action,
and we have seen that it holds when we defined this action.

50

Now, given a set S ⊆ Sm, let l ∈ ηl0 [σ(S)], then l is of the form ηl0(σ(ρ))
for some ρ ∈ S, and since ηl0(σ(ρ)) = σ(ηl0(ρ)) ∈ σ(ηl0 [S]) we get
ηl0 [σ(S)] ⊆ σ(ηl0 [S]).

On the other direction, if l ∈ σ(ηl0 [S]), then l = σ(l′) for some l′ ∈ ηl0 [S],
so there is ρ ∈ S such that ηl0(ρ) = l′. We get l = σ(l′) = σ(ηl0(ρ)) =
ηl0(σ(ρ)) ∈ ηl0 [σ(S)], so we get σ(ηl0 [S]) ⊆ ηl0 [σ(S)], which gives us the
equality.

2. Let T ⊆ L(X). We need to show σ(η−1
l0

[T]) = η−1
l0

[σ(T)]. Since ηl0 is a
bijection, there is a set S ⊆ Sm such that ηl0 [S] = T, η−1

l0
[T] = S. From

the first part we get:

σ(T) = σ(ηl0 [S]) = ηl0 [σ(S)] = ηl0 [σ(η−1
l0

[T])]

By operating with η−1
l0

on both sides (ηl0 is a bijection so the equality is
preserved) we get:

η−1
l0

[σ(T)] = η−1
l0

[ηl0 [σ(η−1
l0

[T])]] = σ(η−1
l0

[T])

We now define the set of all partitions of L(X) induced by neutral and
anonymous voting rules for m alternatives. Let

Bm = {MFm,n
: n ∈ N,Fm,n is some NA-voting rule}

We say that the elements of Bm are partitions induced by voting rules. Recall
that for anonymous voting rules, the partitions are identical for all voters (Fact
3.2.4), so the omission of the subscript i is justified. We also define the following
set of partitions of L(X):

Cm = {M :M is a partition of L(X) s.t. for all M ∈M, σ ∈ Sm σ(M) ∈M}

We say that the elements of Cm are partitions respected by permutations.
From Fact 5.1.1 we know that Bm ⊆ Cm. Our goal in the next section is to

establish a connection between Cm and the subgroups of Sm, and to characterize
the inclusion Bm ⊆ Cm.

5.3 Subgroups and NA-Rules

We start with the following theorem, which is the seminal theorem of the cor-
respondence:

Theorem 5.3.1. There is a mapping ϕ : Cm → {H ≤ Sm} which is one-to-one
and onto, and for any M∈ Cm satisfies M = {ηl0 [C] : C ∈ Sm/ϕ(M)}.

51

In words, the theorem says that for any partition of ballots M ∈ Cm we
can find a subgroup H which induces a partition of permutations (into the set
of cosets Sm/H), so that the image of Sm/H under ηl0 is simply M, and that
correspondence is a bijection. After we have proved this, we will be able to say
that the set Cm is the set of partitions induced by subgroups of Sm (up to ηl0).

Proof. Let M ∈ Cm be some partition of L(X). Let M ∈ M be the (unique)
equivalence class in this partition which contains l0. We show that H := η−1

l0
[M]

is a subgroup of Sm. For this we need to show that H contains the unit element
and is closed under the operations of composition and inversion:

• The unit element e is in H simply since we chose M to be such that
l0 ∈M , and since ηl0(e) = e(l0) = l0, we get that e ∈ H.

• Let σ1, σ2 ∈ H, we need to show that σ1 ◦ σ2 ∈ H. We show that in
general, for any element σ ∈ H we have σH = H. From this it follows
immediately that σ1σ2 ∈ σ1H = H, which is what we want.

Let σ ∈ H. From Lemma 5.2.2 we know that ηl0 [σH] = σ(ηl0 [H]) =
σM ∈M, and we know that e ∈ H and σ(e) = σ, hence ηl0 [σH] ∩ ηl0 [H]
is non empty, and since these are both elements in a partition, they are
either disjoint or identical, and therefore ηl0 [σH] = ηl0 [H], and since ηl0
is a bijection, we get that σH = H.

• We show that H is closed under inversion. Let σ ∈ H. We have shown
that σH = H. We know that e ∈ H, hence there is σ′ ∈ H such that
σσ′ = e, and that can only be for σ′ = σ−1, and so H is closed under
inverse elements.

We can now properly define the mapping ϕ : Cm → {H ≤ Sm}, given by
ϕ(M) = η−1

l0
[M] forM∈ Cm, where M ∈M is the unique element in partition

M which satisfies l0 ∈M .
We verify that M = {ηl0 [C] : C ∈ Sm/ϕ(M)}. Take M ∈ Cm and let

M ∈ M be the equivalence class containing l0. Take M ′ ∈ M. If l ∈ M ′ is
some linear order, then there is a permutation σ ∈ Sm such that σ(l) = l0, and
from that it follows that σM ′ ∩M 6= ∅, and so σM ′ = M . We get that

H = ϕ(M) = η−1
l0

[M] = η−1
l0

[σM ′] = ση−1
l0

[M ′]

(where we used Lemma 5.2.2) and by acting with σ−1 on the left on both sides
we get η−1

l0
[M ′] = σ−1H, so M ′ is the image of a coset of ϕ(M), as we claimed.

We show that ϕ is one to one. Let M,M′ ∈ Cm be two partitions, and say
that ϕ(M) = ϕ(M′). But then we get

M = {ηl0 [C] : C ∈ Sm/ϕ(M)} = {ηl0 [C] : C ∈ Sm/ϕ(M′)} =M′

and so ϕ is injective.
Finally, we show that ϕ is onto. Let H ≤ Sm. We define M = {σ(ηl0 [H]) :

σ ∈ Sm}. Lemma 5.2.2 which states that σ(ηl0 [H]) = ηl0 [σH], combined with

52

Fact 5.1.5, gives us that this is indeed a partition of M, which is respected by
permutations from the definition, and soM∈ Cm. Let M = e(ηl0 [H]) = ηl0 [H],
then ϕ(M) = H, and so ϕ is onto.

We already saw that Bm ⊆ Cm, and now we have established a correspon-
dence between Cm and subgroups of Sm (in fact, we saw that the elements of
Cm are partitions induced by subgroups, up to ηl0). That means that instead
of talking of a partition induced by an NA-voting rule, we can also talk about
the corresponding subgroup, or the corresponding partition induced by the sub-
group. We can do this, even though the first partition is a partition of ballots
and the second one is of permutations, since we saw that these sets are isomor-
phic, and our operations on them commute. Indeed, in the rest of the chapter
we will not always explicitly mention the function ηl0 , even when it is used, in
the hope that the reader can make out the translation from the context.

We remark that while Theorem 5.3.1 implies that for every NA-voting rule
there is a subgroup which induces that partition, we do not yet know if for any
subgroup there is an NA-voting rule which induces the same partition as the
subgroup. The answer to that question, in fact, will be no (in terms of the
sets we defined, Bm (Cm). The next two sections are devoted to charactering
which subgroups induce partitions corresponding to NA-rules, and which do
not. That characterization will give us an exact description of the partitions
that can be induced by voting rules – a description that we will use in the last
section, to prove Sato’s claim.

Before we continue to the characterization, however, we give an example
which explains why not every (partition induced by a) subgroup can correspond
to (a partition induced by) some NA-voting rule.

We take the case m = 4. We show that there is a subgroup of S4 that the
partition it induces cannot be induced by an NA-voting rule. The subgroup we
look at is the alternating group, denoted A4, which consists of all the permuta-
tions of 4 elements which contain an even number of cycles (the subgroup has
index 2, i.e., it has only one coset which is not the subgroup itself). Table 5.1
shows the subgroup and the corresponding orders, along with its other coset
and the orders corresponding to it.

Assume by contraposition that there is such an NA-rule F4,n, which induces
the same partition as A4. That is,MF4,n

has two sets: M1 = ηl0 [A4] and M2 =
ηl0 [S4\A4]. F4,n is not constant,3 and so there is a profile P = 〈V1, . . . , Vn〉 such
that F(P) = Y 6= X. Since A4 is symmetric with respect to all four elements
of X, we can assume w.l.o.g that 1 ∈ Y and 2 /∈ Y .

Take the permutation σ = (12)(34) ∈ A4. We get that σY 6= Y . However,
since σ ∈ A4, we claim that for any ballot Vi, σVi ∼ Vi. If Vi ∈ ηl0 [ρH], where
ρH represents either A4 or its complement, we get that σVi ∈ σ(ηl0 [ρH]) =
ηl0 [σ(ρH)]. If ρH = A4, then since σ ∈ A4, we also get σ(ρH) = A4. If ρH is

3There is a unique partition induced by constant rules: the partition into one equivalence
class (i.e., M = {M} where M = L(X)), and that partition corresponds to the to the partition
induced by Sm itself as a subgroup of Sm, which is not the case here. In addition, we are
considering only proper subgroups/non-constant rules.

53

elements of A4 ηl0 [A4] elements of S4 \A4 ηl0 [S4 \A4]
1 () 1234 (12) 2134
2 (12)(34) 2143 (13) 3214
3 (13)(24) 3412 (14) 4231
4 (14)(23) 4321 (23) 1324
5 (123) 2314 (24) 1432
6 (132) 3124 (34) 1243
7 (134) 3241 (1234) 2341
8 (143) 4213 (1432) 4123
9 (124) 2431 (1243) 2413
10 (142) 4132 (1342) 3142
11 (234) 1342 (1423) 4312
12 (243) 1423 (1324) 3421

Table 5.1: The alternating group A4, a subgroup of S4, induces a partition of
the linear orders on {1, 2, 3, 4} into two equivalence classes (for cycle notation,
see 5.1.19)

the complement, which is all odd permutations, then multiplying by σ, which is
even, will keep us in the same coset of odd permutations. One way or another
we get σVi ∈ ηl0 [ρH], just like Vi. This means that both ballots are in the same
equivalence class, and therefore equivalent, as we have claimed.

We now use Proposition 3.2.1 to get that P ∼ σP , but this is a direct con-
tradiction to neutrality, which requires that for any permutation, and especially
for our σ, we have σF4,n(P) = F4,n(σP), but the RHS should give us Y , since
P ∼ σP , and we saw that the LHS is σY 6= Y , so neutrality is violated, and
there can be no such rule F4,n.

In the next section we show that no subgroups of index less than m can
correspond to the partition of an NA-voting rule (though, as it will follow, there
are very few such groups), and in the following section we will show that all
subgroups of index greater or equal m can correspond to partitions of NA-voting
rule, thus we will have the complete characterization of partitions induced by
NA-voting rules.

5.3.1 Subgroups of Index < m

As was mentioned above, in this section we show that no subgroup H < Sm of
index < m can induce a partition which corresponds to that of an NA-voting
rule. We will first show that for any m ≥ 5 the only proper non-trivial subgroup
of index less than m is Am, the alternating group, which was mentioned before,
and whose example we have encountered in the case m = 4. We will then
generalize the proof for the case A4, to show that Am never corresponds to a
partition induced by an NA-voting rule.

The other cases, where m ≤ 4, will be handled by “brute force”, since these
groups are small, and the general proof does not work for them, whether it is

54

because they have more subgroups of small indices (as in the case of S4) or
because they do not have enough elements, as required by the general proof (as
in the case of S3).

The following lemma could be taken as a theorem of group theory, yet since
some of the principles used to prove it are used in other places in the chapter,
we bring the proof.

Lemma 5.3.1.1. For m ≥ 5, the only proper subgroup H < Sm of index < m
is Am, the alternating group.

Proof. Let H < Sm be a subgroup of index k < m, m ≥ 5. We look at the
action of Sm on left cosets of H, which we described before (σ(σ′H) = (σσ′)H).
Let ρ : Sm → Perm(Sm/H) be the homomorphism associated with the action.
We know that |Sm/H| = k < m, hence ρ is a function from a domain of size m!
to a codomain of size k! < m!. This means, from the pigeonhole principle, that
ρ cannot be one-to-one, so there are two different permutations, σ1, σ2 ∈ Sm
such that σ1(σH) = σ2(σH) for every σ ∈ Sm. We multiply both sides of the
equation by σ−1

1 to the left, and we get: σH = σ−1
1 σ2(σH) for any σ ∈ Sm.

But this means, from the definition, that σ−1
1 σ2 is in the kernel of ρ, and

since σ1 6= σ2, we also get that σ−1
1 σ2 6= e, so the kernel is non-trivial. We use

Fact 5.1.13 to conclude that H contains some non-trivial normal subgroup of
Sm, but according to Fact 5.1.24 that subgroup can only be Am or Sm itself. If
it is Sm, then H is not proper, in contradiction to our assumption, so Am ⊆ H.
This inclusion actually implies Am = H, since the order of a subgroup must be
a divisor of the order of the group (Fact 5.1.6).

We now use this to prove the claim for the correspondence:

Theorem 5.3.1.2. If H < Sm is of index < m, then there is no NA-voting
rule F such that MF = {ηl0 [C] : C ∈ Sm/H}

Proof. We divide the proof into two cases: the case m < 5, where we prove
it based on the known subgroup structure of those small groups, and the case
m ≥ 5, where we present the general proof.

The case m < 5: Since we are only considering cases where we actually have
several different alternatives, we need only consider the cases 2 ≤ m ≤ 4.
For the case m = 2, if H < S2 with index < m, then the index of H is
1, i.e., H = S2, which corresponds to the constant rule, which we are not
considering. We base the proof for the cases m = 3 and m = 4 on facts
which are known about the subgroup structure of S3 and S4.

The case m = 3 is simple, since there are only six possible orders, and
there is only one subgroup of index 2, A3, so any partition into two equiv-
alence classes must correspond to the partition induced by A3, containing
the permutations (), (123), (132). Assume we have some NA-rule F3,n in-
ducing the partition of A3 and S3 \ A3, and a profile P = 〈V1, . . . , Vn〉
such that F3,n(P) = Y 6= {1, 2, 3} (otherwise the rule is constant). We

55

can assume w.l.o.g that 1 ∈ Y, 2 /∈ Y (the subgroup and corresponding
partitions are symmetric with respect to the three elements), but then we
see that the permutation (123)Y 6= Y , and the permutation (123) is in
A3, so like we saw in the case of A4, V ∼ (123)V for any ballot V , and
then we get F3,n((123)P) = F3,n(P) = Y 6= (123)Y = (123)F3,n(P), and
that is in contradiction to neutrality.

For the case m = 4, we have already covered the partition corresponding
to A4 in the example. However there are still three more conjugate sub-
groups of index 3 (8 elements in each subgroup), which are isomorphic to
the Dihedral group (the group of all symmetries of a square), and are re-
ferred to as D8 in S4. Each of these subgroups contains the normal Klein
four-group, which is the additional normal subgroup of S4 that we have
mentioned in Fact 5.1.24. Since, as we saw, the elements of this subgroup
fix all the equivalence classes, we get that the same proof for A4 also works
in this case (the Klein-four group is a subset of A4), and so no NA-rule
corresponds to subgroups of index 3, which concludes the case m = 4.

The case m ≥ 5: From Lemma 5.3.1.1 we know that our H is Am. We show
that Am cannot correspond to a partition induced by an NA-voting rule.
The proof is of the same form as that of A4 in the example, but we prove
it fully here and in a slightly more formal way.

Assume by contraposition that the partition induced byH does correspond
to a partition of some NA-rule Fm,n, then there is some profile P =
〈V1, . . . , Vn〉 such that Fm,n(P) 6= X. Let x ∈ F(P) and y /∈ F(P). We
can take the permutation σ = (xy)(wz) where w, z ∈ X are two distinct
elements, pairwise different from x, y (for anym ≥ 4 we can find such w, z).
This permutation is expressed as a product of two transpositions, and is
therefore an element of Am. Let us see what happens when we act with
σ on the profile P . If a ballot Vi corresponds to a permutation ρ ∈ Am,
then σVi = σηl0(ρ) = ηl0(σρ), and since σρ ∈ Am (multiplying two even
permutations), we get Vi ∼ σVi. If, on the other hand, Vi corresponds
to ρ ∈ Sm \ Am, then σρ also belongs to the complement (multiplying
an even permutation with an odd one), and the resulting ballot is still
equivalent to the original ballot Vi. We found that for each Vi we have
σVi ∼ Vi, which means the entire profile P is equivalent to σP , which in
turn means (Proposition 3.2.1) F(P) = F(σP).

However, from the way we defined σ we know that σ swaps a winning al-
ternative (namely x) with a losing alternative (namely y), so F(P) 6=
σ(F(P)). Combining this with the previous result, we get F(σP) 6=
σ(F(P)), in contradiction to F being neutral, so H has no corresponding
(partition induced by an) NA-voting rule F .

We now proceed to some more “positive” results, with subgroups of index
greater or equal to m.

56

5.3.2 Subgroups of Index ≥ m

Unlike the previous section, where we saw that none of the aforementioned
subgroups correspond to a partition of an NA-voting rule, we will see in this
section that all subgroups H < Sm of index ≥ m correspond to partitions of
voting rules. We do this by taking an arbitrary subgroup H with index ≥ m
and constructing a voting rule that induces the same partition as the H. At
first we construct just a neutral voting rule, where the partition of all the voters
is identical to that of the subgroup, and then we show how we can use that rule
to generate a new rule which is both neutral and anonymous, and induces the
same partition.

While the rules we construct will not necessarily make any “sense”, when
comparing to standard rules in voting theory, we remember that we are looking
at the entire set of non-constant NA-rules. The requirement of “sense” is usually
expressed by additional axiomatic requirements such as monotonicity, Pareto
etc.

We start by first constructing a rule which is just neutral:

Lemma 5.3.2.1. Every subgroup of Sm of index ≥ m corresponds to a partition
induced by some N-voting rule, where all the voters have the same partition.

Proof. We prove this by taking an arbitrary subgroup H ≤ Sm of index k ≥ m,
and constructing a voting rule which induces for all voters a partition of L(X)
which corresponds to the partition given by Sm/H.

Let H ≤ Sm of index k ≥ m, let C1, . . . , Ck be an enumeration of the
cosets of H, and let D1, . . . , Dk be the respective sets of linear orders (that is
Di = ηl0 [Ci]). We define a voting rule Fm,k such that Mi,Fm,k

= {D1, . . . , Dk}
for every voter 1 ≤ i ≤ k.

We need to define Fm,k(P) for any profile P = 〈V1, . . . , Vk〉. By defining the
rule not for every specific ballots V1, . . . , Vk, but rather for arbitrary represen-
tatives of the sets D1, . . . , Dk, we guarantee that the rule “cannot tell between
ballots in the same coset”, and the partition induced by the rule will be at least
as coarse as that of {D1, . . . , Dk}.

Slightly more formal, let V1, . . . , Vk be representatives of the {D1, . . . , Dk},
such that Vi ∈ Di. We define the rule for all and only the profiles composed of
these ballots (possibly with repetitions), and for any profile P = 〈V ′1 , . . . , V ′l 〉
we set Fm,k(P) = Fm,k(〈Vi1 , . . . , Vik〉), where V ′j ∈ Dij . This gives us a well
defined rule Fm,k, and it guarantees that V, V ′ ∈ Di implies V ∼j V ′ for any
1 ≤ i, j ≤ k.

So we just have to define the rule in a way that would make it neutral, and
would guarantee that the partition it induces is as fine as D1, . . . , Dk. We define
the rule in stages, so that the rule we end up with satisfies these requirements.

Let A1 = {P1, . . . , Pk!} be the set of all the profiles that contain all the
ballots V1, . . . , Vk in different orders (there are k! such profiles), and assume
these profiles are enumerated according to some order. Let i1 = 1. We first
define Fm,k(Pi1) = 1. Next, for any σ ∈ Sm we define Fm,k(σPi1) = σ(1). We
note that due to the fact that m ≤ k, from Fact 5.1.13 and from what we have

57

seen in the previous section about the existence of normal subgroups in Sm, we
get that the action is faithful, which means that σ1Pi1 = σ2Pi1 iff σ1 = σ2 (so
this is well defined). By now we have defined Fm,k for a set of size m! of profiles
in A1.

We next define A2 = A1 \ {σPi1 : σ ∈ Sm}. We now take the first pro-
file in A2, say Pi2 , and again we define Fm,k(Pi2) = 1, and for any σ ∈ Sm:
Fm,k(σP) = σ(1). Again this gives us a set of new m! profiles, after which we
define A3 etc. In general, in the j+ 1th stage we define Aj+1 = Aj \ {σPij : σ ∈
Sm}, we choose Pij+1 to be the first profile in Aj+1, we define Fm,k(Pij+1) = 1
and Fm,k(σPij+1) = σ(1) for any σ ∈ Sm. The process is bound to halt after
we exhaust our set of profiles, which will happen after k!

m! steps.4

For any profile P that wasn’t in the original set A1 (we notice that these
are all the profiles where there is at least one repetition of one ballot) we de-
fine Fm,k(P) = X. This defines our rule for all the profiles composed of the
representatives of D1, . . . , Dk, and so for all profiles.

We show that this rule is neutral: Let P = 〈V1, . . . , Vk〉 be a profile, σ a
permutation, we need to show that Fm,k(σP) = σFm,k(P). There are two
possible cases:

• If P /∈ A1, then there are ballots Vj1 , Vj2 in P such that Vj1 , Vj2 ∈ Dl for
some l. For such a profile we have defined Fm,k(P) = X. We can see that
in σP we also have σVj1 , σVj2 ∈ σDl, so we get Fm,k(σP) = X, and so
Fm,k(σP) = X = σX = σFm,k(P).

• If P ∈ A1, then there is some profile Pij (one of the profiles selected during
the definition of Fm,k) and a permutation ρ such that P = ρPij . We then
get

Fm,k(σP) = Fm,k(σ(ρPij)) = Fm,k((σρ)Pij) = (σρ)(1)

And also
σFm,k(P) = σFm,k(ρPij) = σ(ρ1) = (σρ)(1)

Where in both cases we used the definition of the rule as well as the
associativity of action, and again we have neutrality.

We now need to show that the partition induced by Fm,k is as fine as
{D1, . . . , Dk} for all the voters. W.l.o.g we show that for the first voter, given
V ∈ D1, V

′ ∈ D2, there is some profile P = 〈V,U2, . . . , Uk〉, such that Fm,k(P) 6=
Fm,k(〈V ′, U2, . . . , Uk〉). The proof for the other sets of the partition and the
other voters is identical.

We take the profile P = 〈V, V2, . . . , Vk〉, where Vi ∈ Di for 2 ≤ i ≤ k. We
know that P ∈ A1 (up to representatives), since there are no two ballots of the
same equivalence set Di, so Fm,k(P) is a singleton. On the other hand, P ′ =
〈V ′, V2, . . . , Vk〉 is not in A1, since both V ′, V2 are of the same equivalence set
(D2), and so Fm,k(P ′) = X, and so we have Fm,k(P) 6= Fm,k(〈V ′, U2, . . . , Uk〉),
as we required.

4In group-theoretic terms, on every step we define Fm,k for a new orbit.

58

We strengthen the previous result by showing that the rule above can actu-
ally be made to be anonymous. We notice that while from Fact 3.2.4 we know
that for any anonymous rule, the partition of L(X) is identical for all the voters,
the converse does not necessarily hold, i.e., we could have a rule which induces
the same partition of L(X) for all voters, yet it is not anonymous. However,
the correspondence we are constructing is for partitions of NA-rules, and the
rule we built in Lemma 5.3.2.1 is not necessarily anonymous. To overcome this
problem we present the following lemma:

Lemma 5.3.2.2. For every N-voting rule Fm,n, if there is a partition M such
that for every voters i we have Mi,Fm,n

= M, then there exists an NA-voting
rule Fm,2n−1 which also induces the partition M.

Proof. The idea of the proof is to “code” the ith voter using 2i−1 anonymous
voters. Let M = {M1, . . . ,Mk} be the partition induced by Fm,n. We define a
function Φ : L(X)2

n−1 → L(X)n ∪ {∅}, i.e., a function from profiles of 2n − 1
voters to profiles of n voters (or the empty set). The function will work like
this: If for a profile P of 2n − 1 voters we can find a profile P ′ of n voters such
that 2i−1 distinct voters in the big profile voted like the ith voter in the small
profile, then Φ(P) = P ′, otherwise the image is the empty set.

More formally: Given a profile P = 〈V1, . . . , V2n−1〉, if there areMj1 , . . . ,Mjn

∈ {M1, . . . ,Mk} (not necessarily distinct) sets, and a partition of {V1, . . . , V2n−1}
into sets A1, . . . , An, such that for every 1 ≤ i ≤ n, |Ai| = 2i−1 and all the bal-
lots in Ai belong to Mji , then Φ(P) = 〈U1, . . . , Un〉 where Ui ∈Mji . Otherwise
Φ(P) = ∅. We note that this partition of {V1, . . . , V2n−1}, if it exists, is unique
(since we can uniquely determine how many voters voted for a specific equiva-
lence class, and since any number has a unique representation in binary).

We now define the rule: For any P = 〈V1, . . . , V2n−1〉 we define Fm,2n−1(P) =
Fm,n(Φ(P)) if Φ(P) 6= ∅, and when Φ(P) = ∅ we define Fm,2n−1(P) = X.

We need to show that this rule is anonymous, neutral, and induces the
same partition M. Anonymity is immediate from the way the rule is defined.
Regarding neutrality, let σ ∈ Sm be a permutation (acting on both profiles of
2n − 1 voters and n voters), and P a profile. We notice that if Φ(P) = ∅, then
also Φ(σP) = ∅ (as the partition M is respected by permutations), so in such
a case neutrality holds.

If, on the other hand, Φ(P) 6= ∅ for some n voter profile, then also Φ(σP) 6= ∅
(again, M is respected by permutations), it is enough to show that Φ(σP) =
σΦ(P), and then from the neutrality of Fm,n we will get:

Fm,2n−1(σP) = Fm,n(Φ(σP)) = Fm,n(σΦ(P)) = σFm,n(Φ(P)) = σFm,2n−1(P)

And Φ(σP) = σΦ(P) follows again from the fact thatM is respected by permu-
tations, so if Φ(P) = 〈U1, . . . , Un〉 where Ui ∈ Mji , then Φ(σP) = 〈U ′1, . . . , U ′n〉
where Ui ∈ σMji , which is just σΦ(P).

Last, we have to show that MFm,2n−1 = M. From the same arguments
we have seen before, the partition is at least as coarse as M. We show that
voter 1 can tell between the sets M1,M2 (the proof is identical for all voters

59

and sets). Since Fm,n tells the sets apart with respect to any voter, there is
an n voter profile P1 = 〈V1, . . . , Vn〉, V1 ∈ M1 and a ballot V ′1 ∈ M2 such that
Fm,n(P1) 6= Fm,n(P ′1) where P ′1 = 〈V ′1 , V2, . . . , Vn〉. We take the 2n − 1 voter
profile P2 = 〈V1, V2, V2, V3, V3, V3, V3, V4, . . . , Vn〉, where for each Vi there are
2i−1 voters choosing that ballot. We get that Φ(P2) = P1. Now, if voter 1
switches to V ′1 we get a new 2n − 1 voter profile P ′2, for which Φ(P ′2) = P ′1, and
so Fm,2n−1(P2) 6= Fm,2n−1(P ′2).

We now combine our two lemma to get the theorem we wanted for our
correspondence:

Theorem 5.3.2.3. Every subgroup of Sm of index ≥ m corresponds to a par-
tition induced by some NA-voting rule.

Proof. Given H ≤ Sm of index k ≥ m, we take the neutral rule defined in
Lemma 5.3.2.1, Fm,k (where the partition is Sm/H for all voters), and transform
it into an anonymous rule Fm,2k−1, giving us the required result.

5.4 Using the Correspondence

In his paper, Sato [14] shows how when a neutral and anonymous voting rule
is operating on minimal informational requirements, then it must have infor-
mational size mn, and in addition it “fixes” one of the coordinates in ballots,
i.e.:

∃1 ≤ r ≤ m s.t. ∀V1, V2 V1 ∼ V2 ⇔ V r1 = V r2 (5.1)

(Lemma 4.3 in the paper). However, the proof in the paper contains an small
error [15].5

Sato solved this problem by adding an additional restriction on the space
of voting rules: We consider only voting rules that, given a profile where all
the voters submit the same ballot, do not elect the entire set of alternatives
(F(P) 6= X for P = 〈V, V, . . . , V 〉). While this move is indeed enough to prove
this claim [16], the restriction is sufficient but not necessary, as we see in the
following example:

We give an example of an NA-voting rule which operates on minimal infor-
mational requirements, and obeys the conditions of the lemma, though it does
not satisfy the additional restriction. Let F be a rule which is identical to the
plurality rule for any profile P , except where P is composed only of identical
ballots, in which case F(P) = X. This rule is neutral, anonymous and it op-
erates on minimal informational requirements, though it does not satisfy the
restriction (indeed, it was built to violate it).

In the following section we prove the claim without the additional restriction
(for any number of alternatives m except for m = 6, where we show it to be

5In Claim 2 in his proof it is assumed that for any two profiles of n voters, there exists a
permutation σ of X which can be used to get from the one profile to the other. While this is
true for any ballot, it is not always the case for profiles.

60

wrong), by using the correspondence between partitions induced by NA-voting
rules (for m alternatives) and subgroups of Sm.

As we have seen, we can identify the partition of ballots MFm,n
induced

by an NA-rule Fm,n with the partition of Sm induced by a subgroup H < Sm
(Theorem 5.3.1). It follows that the informational size of Fm,n is n|MFm,n

| =
n|Sm/H|, where |Sm/H| is simply the index of H in Sm. That means that if
we know which subgroup corresponds to the partition of the rule, we know the
informational size of the rule, and so claims about informational size can be
translated to claims about the existence of subgroups of a certain index, which
is precisely what we will do.

The critical claim, based on Sato’s paper, is the following:

Theorem 5.4.1. (adapted from [14, Theorem 3.1]) For any neutral and anony-
mous voting rule operating on minimal informational requirements, the following
holds:

1. The rule has informational size nm.

2. In addition, whenever the number of alternatives m satisfies m 6= 6, there
exists 1 ≤ r ≤ m such that any two ballots V1, V2 are equivalent iff V r1 =
V r2 .

The first part of the theorem will follow more or less directly from our
correspondence. For the second part, however, we have to understand what
that claim means in group-theoretic terms. Recall the definition of a stabilizer
from the beginning of the chapter. We claim that part 2 of Theorem 5.4.1 can be
reduced to the requirement that the partition induced by the rule corresponds
to that induced by a stabilizer of some x ∈ X. We formalize this in the following
lemma:

Lemma 5.4.2. Let Fm,n be an NA-rule operating on minimal informational
requirements, m 6= 6. Fm,n satisfies condition 2 of Theorem 5.4.1 iff the parti-
tion induced by Fm,n corresponds to that of stabSm

(x), the stabilizer subgroup
of x ∈ X, where x is the rth element in l0.

Proof. (⇒) Let H be the subgroup corresponding to the partition induced by a
rule satisfying part 2 of the theorem, we need to find an element ofX which
is fixed by H. Take the r from part 2 in the theorem, and take x to be lr0.
Any two ballots V1, V2 are equivalent iff V r1 = V r2 . Specifically, any ballot
V is equivalent to l0 (the order on which we based the correspondence
in 5.2.1) iff V r = lr0 = x. Any such V corresponds to a permutation σ
satisfying σx = x, and since H = {η−1

l0
(V) : V r ∼ lr0} (ηl0 being the

correspondence function from Proposition 5.2.1), we get that H = {σ ∈
Sm : σx = x}, which is exactly stabSm

(x).

(⇐) On the other hand, assume a rule Fm,n satisfies the conditions of 5.4.1,
and its induced partition corresponds to a subgroup stabSm

(x) for some
x ∈ X. Let r be the number such that lr0 = x. We show that two ballots
V1, V2 are equivalent iff V r1 = V r2 .

61

First assume they are equivalent, then they belong in the same coset
σstabSm(x). Every element ρ ∈ σstabSm(x) is of the form σρ′ for some
ρ′ ∈ stabSm

(x), so ρx = σρ′x = σx. Let σ1, σ2 ∈ σstabSm
(x) be the

permutations corresponding to V1, V2 respectively, then σ1x = σx = σ2x,
and so the rth element in both V1, V2 is equivalent to σx, and we have
V r1 = V r2 .

In the other direction, assume V r1 = V r2 , we need to show that the profiles
are equivalent. Let σ1, σ2 be the permutations corresponding to V1, V2. It
is enough to show that σ2 ∈ σ1stabSm

(x). We know that σ1x = σ2x = y
for some y ∈ X, so we need a permutation ρ ∈ stabSm

(x) such that
σ1ρ = σ2. We multiply by σ−1

1 on the left on both sides of the equation,
and we get ρ = σ−1

1 σ2, and we can see that σ−1
1 σ2x = x, since σ2x = y

and σ−1
1 y = x, so ρ ∈ stabSm

(x) like we required, so σ2 ∈ σ1stabSm
(x), V1

is equivalent to V2.

We now proceed to the proof of Theorem 5.4.1.

Proof. We start by proving part 1 in the theorem for every possible m, and then
prove the second part for m 6= 6.

1. Let F be an NA-rule of minimal informational requirements, then we
know from Theorem 5.3.1 that there is some subgroup H < Sm which
corresponds with F , and which induces the same partition (up to ηl0).

As we saw, the informational size of F is nk, where k is the index of
H. However, from Theorem 5.3.1.2 we know that k cannot be less than
m, so the informational size has to be ≥ nm. Since there are rules of
informational size nm (e.g., plurality, veto), it follows that it is really
equal to nm. This proves the first part of the theorem.

2. To complete the claim from the paper we need to show that for any parti-
tionM∈ Bm which divides L(X) into m equivalence classes, there exists
1 ≤ r ≤ m such that any two ballots V1, V2 are equivalent iff V r1 = V r2 .
As we have seen in Lemma 5.4.2, it is enough to require that the partition
induced by Fm,n corresponds to that of stabSm

(x) for some x ∈ X. This
will be a direct result of our correspondence, according to which each par-
tition of an NA-voting rule corresponds to some partition, combined with
a theorem from group theory describing the subgroups of index m in Sm.
The theorem we need is:

Theorem 5.4.3 (Adapted from Theorem 3.2.19 in [17]). If X is the set
{1, . . . ,m}, H < Sm of index m, the following holds:

(a) If m 6= 6, then H is conjugate to stabSm
(1), and it is the stabilizer

of some x ∈ X.

(b) If m = 6, then there are 6 conjugate subgroups of index 6 which are
stabilizers of elements in X, and 6 conjugate subgroups of index 6
which do not stabilize any element.

62

We know that an NA-rule operating on minimal requirements has infor-
mational size nm, so a rule F operating on minimal informational re-
quirements corresponds to H < Sm of index m. From the theorem above
we know that when m 6= 6, every subgroup of index m is of the form
stabSm

(x) for some x ∈ X, and we know from Lemma 5.4.2 that this is
equivalent to part 2 in 5.4.1. This concludes the proof.

Finally, we show that part 2 is indeed false for the case m = 6. This is
also a direct result of our correspondence (this time using Theorem 5.3.2.3),
along with Theorem 5.4.3, which says that for the case m = 6 we actually have
subgroups of index 6 which are not stabilizers of any point.

Indeed, take a subgroup H < S6 of index 6 which does not fix any x ∈ X
(see [10] for a description of such a subgroup). From Theorem 5.3.2.3 there is
an NA-voting rule, F6,63 which induces the same partition as that of H and its
cosets. This voting rule operates on minimal informational requirements, yet it
violates part 2 in Theorem 5.4.1.

63

Conclusions

Let us start by summarizing what we have done in the thesis. Our starting
point was the search for informative representations for voting rules. The way
we chose to search for such representations was by looking at how voting rules
deal with information. For that we presented in Chapters 2 and 3 three dif-
ferent notions from the literature, that are related to this issue: compilation
complexity, communication complexity and informational size. We showed that
informational size constitutes an upper bound for both other measures, though
a comparison between the two complexities showed us that for many rules they
behave quite differently, which meant that we cannot link them directly.

In Chapter 4 we focused more on descriptions related to compilation com-
plexity. We defined a notion of representation of preferences for a voting rule
(which we showed to be linked to compilation functions) and of a sufficient and
necessary representations. We gave examples of several representations which
are sufficient for many common rules, and also necessary for many of those.
We discussed the properties of some of those representations, such as WSM,
where we gave a profile-independent characterization, and used it to compute
an upper bound for STV. Later we saw that we can build hierarchical relations
between the different representations, and so place rules in different nodes along
the hierarchy.

After that we introduced GSR, which give a relatively informative represen-
tation that captures many rules. We showed that they can be seen as composed
of two parts: one which is about the aggregation of information into some repre-
sentation, and one which performs a computation on that representation, where
the first part is related to compilation complexity and the second to communi-
cation complexity.

Finally, in Chapter 5 we used informational size to find an algebraic represen-
tation for partitions induced by voting rules. We showed that all the partitions
induced by neutral and anonymous voting rules are in one-to-one correspon-
dence with the subgroups of the symmetric group (of large enough index). We
used that correspondence to prove a result regarding rules with minimal infor-
mational requirements.

We now discuss our results.

Discussion

We start from our last chapter. Group theory is a very rich field in mathematics,
and so we wonder if the correspondence can give us more results which can be
used in voting theory. The answer to that depends, at least to some level, on the
richness of informational size. The correspondence is based on the partitions of
the ballot space which result from the informational size definitions. In order

65

to have more interesting results, we need to be able to differentiate between
interesting rules.

Unfortunately, it seems that in many cases the definitions of informational
size are not fine-grained enough to characterize many interesting rules. When we
compared compilation and communication complexity, we saw that most rules
have a maximal informational size (this means that the partition they induce
corresponds to the trivial subgroup). It can also be shown, for example, that all
Condorcet consistent rules have maximal informational size, which would place
them in the same group with STV, Borda and other very different rules.

This sounds a bit grim, but it doesn’t mean we cannot get more results
from group theory at least in order to understand the limits of informational
size. Considering that informational size is similar to compilation complexity,
only in the level of the ballots, it is also possible to think of extensions of the
correspondence that would give us more results. We give some suggestions for
future work in this direction in the last section.

As for communication and compilation complexities, we saw that each of
them has its limitations, placing many different rules in the same level. That is
also why our hierarchy, which is basically representations used in compilation
complexity, also relates many different rules to the same representation. So one
of those alone cannot give us our informative representation. Could the two of
them together be the key for that?

We saw that generalized scoring rules can describe many voting rules (though
not all), and that they have elements related to both compilation complexity
and communication complexity. In order to know if the formalism of repre-
sentations we defined can be embedded in GSR, we need to understand under
which conditions a representation satisfies additivity for f and compatibility for
g. These questions don’t seem simple, as they are quite abstract. It might be
that many of the concepts in Chapter 4 can benefit from being treated using
another abstract field such as category theory (many notions we defined there
might be characterized in terms of commutativity, for example). It remains to
be seen if that can help answering any of the questions raised.

Finally, if we take compilation and communication complexity to be two
different halves of the same problem of representation, then we have mostly
dealt with compilation complexity, which can be taken as the “informational
half”. Communication complexity, which is more about computation, was not
formalized to a similar level in this thesis. Coming up with something similar
to the representations hierarchy, only for communication complexity, could help
us in having better formalization in the “computational half” as well.

Future Work

It seems as though our list of questions has only grown. There are many in-
teresting directions to be followed from this work, involving different fields and
intriguing questions. We present those that seem most important:

66

• The limitations of informational size – Just how limited is informational
size? A possible line of investigation, to try and understand those limits,
could be adding simple, reasonable axioms (such as monotonicity) and see
how that restricts our set of partitions/subgroups. It might be possible
to use the correspondence to show that with such axioms there are few
subgroups left for our set of rules. We conjecture that with few natural
axioms, we can narrow the set of subgroups to just the stabilizer groups of
the first k elements in l0 or the last k elements of l0, for some 1 ≤ k ≤ m.

• Lifting the correspondence – A natural question to ask is whether we
can extend our algebraic correspondence for profiles and equivalences of
profiles, using some group-theoretic notion. The natural structure to cor-
respond with profiles is the product group Snm. Though some lemmas can
be carried to this level (for example, if P ∼ P ′ then σP ∼ σP ′ for neutral
rules), it does not seem like we can find an intuitive notion such as a group
to correspond to equivalence of profiles. The main reason for this is that
while the action of permutations on ballots was transitive (that is, for any
two ballots V, V ′ there is a permutation σ such that σV = V ′), that is not
the case for profiles, and so such a correspondence would have to include
more complex notions.

It is worth mentioning, though, that if such a correspondence is found,
it might prove to be more interesting and richer than the correspondence
we constructed here, as it would, for one thing, help in answering many
compilation complexity questions.

• Sharpening the hierarchy of representations – We mentioned that our rep-
resentations are not meant to cover all voting rules. However, there is
still much work that can be done inside the hierarchy. We focused mostly
on ABOVE and WSM, not discussing much about WMG or PSR, but
perhaps those representations can also be given some characterization not
in terms of profiles. In addition, one could also find new representations
which should be part of that hierarchy.

Another way to go is to try and estimate the size of one representation
based on the size of another. For example, a technique that wasn’t at-
tempted here for estimating the size of ABOVE could be to look at the
set AP (anonymous profiles), whose size is known, and see how many ele-
ments of ABOVE correspond uniquely to some element of AP, how many
elements correspond to two anonymous profiles, and so on. This technique
can be used between any two levels, where the size of one is known and
the size of the other is not.

Another thing that can be done is to connect more voting rules to nec-
essary and sufficient representations. That can be done both by defining
necessary and sufficient representations for specific voting rules, but also
by checking if some axioms can limit us to a set of representations (as
anonymity takes us from the set of all representations to the set of AP
and those below it).

67

• Determining the relations between generalized scoring rules and compi-
lation functions – This question, while having some importance in our
ability to formalize rules better under the GSR formulation, is interesting
mostly because it raises purely abstract questions about computations.
For example, how do requirements of additivity (as that for f in GSR)
and compatibility (as for g in GSR) affect our ability to compute different
functions? This is a question we ask in the context of voting rules, but
it can also be asked in a broader context. Can be find a representation
that is not additive, cannot be made into an additive representation, and
whose size is smaller than any additive representation?

Of course, these questions need to be put in more formal terms, but they
seem to be related to interesting topics in the theory of computation.

• Going after the computational half – Finally, much of this thesis was de-
voted for what we called “the informational half” of voting rules. The
“computational half”, which we associated with g for GSR and with com-
munication complexity, received somewhat less attention. It would be
interesting to try and find a more rigorous formalization for that side of
voting rules, so that perhaps the two formalizations can complement each
other, to give a complete formal and informative way of describing voting
rules.

68

Appendix A

List of Common Voting
Rules

Here follows a comprehensive list of all the common voting rules mentioned in
the thesis. Some of the rules might be defined differently is some places, but
those differences are usually related to the use of tie breaking rules, and we will
not be concerned with those. All rules are defined for m candidates and n voters
(arbitrary m,n). For notation, see Definition 1.1.1

Positional Scoring Rules :

A positional scoring rule is any rule based on a scoring vector 〈v1, . . . , vm〉,
vi ∈ R+ ∪ {0}, where we associate the vector with “points” given to the
candidates by the voter. When voter i submits a ballot Vi, they give
the candidate in the jth place vj points. Given a profile P , the score of
a candidate x is

∑
1≤i≤m

N(x, i, P) · vi (where N(x, j, P) is the number of

voters who ranked candidate x in the jth place in P).

Given a profile P and a positional scoring rule F , F(P) is the set of
candidates with a maximal score. All the rules below are positional scoring
rules, associated with different scoring vectors.

Plurality – Denoted FP , plurality is perhaps the most common voting
rule. It is associated with the vector 〈1, 0, . . . , 0〉 (the score of each
candidate is the number of times they were voted first).

Veto – Also called anti-plurality at times, FV is associated with 〈1, . . . , 1, 0〉
(every candidate receives n minus the number of times they were
voted last), so the candidates who were voted last fewest times are
the winners.

Borda – Associated with 〈m− 1,m− 2, . . . , 1, 0〉.
k-Approval – For any 1 ≤ k < m, k-approval is associated with the

vector defined by vi =

{
1 1 ≤ i ≤ l
0 otherwise

69

Condorcet Consistent Rules :

x ∈ X is a Condorcet winner if for every y 6= x we have N(x, y, P) >
N(y, x, P) (most voters prefer x to y). A Condorcet consistent rule is a
rule that alway elects the Condorcet winner as the winning candidate, if
the Condorcet winner exists (that is not always the case). All the rules
below are Condorcet consistent:

Copeland – For each candidate x, let W (x) = {y ∈ X : N(x, y, P) >
N(y, x, P)} and L(x) = {y ∈ X : N(x, y, P) < N(y, x, P)}, the num-
ber of candidates x wins over in pairwise elections and the number of
candidates to which x loses, respectively. The Copeland score of x is
W (x)−L(x), and the winning candidates are those with the highest
Copeland score.

Kemeny – Given a profile P and a linear order of candidates V , the
Kemeny Score of V is: ∑

1≤i<m

N(V i, V i+1, P)

The candidate which is ranked first in the order which maximizes the
Kemeny score wins.

Dodgson – The Dodgson score of a candidate x is the minimal num-
ber of swaps required to make x a Condorcet winner, when a swap
is a change in a single ballot Vi, where we swap the order of two
adjacent candidates in the ballots (that is, Vi V ′i where V ′ji =
V j+1
i , V ′j+1

i = V ji for some 1 ≤ j < m). The candidates with the
lowest Dodgson score win.

Cup – Take a balanced binary tree (balanced here means that the dif-
ference in levels between two leaves is at most 1) with m leaves.
We associate each node with a candidate, starting from the leaves.
First we assign each leaf with a single candidate (any assignment
will do, though it inserts a non-neutral component to the rule).
Now by recursion, for any node whose children are x, y, define the
node to be associated with x if N(x, y, P) > N(y, x, P) and y if
N(x, y, P) < N(y, x, P) (possibly using some tie breaking rule). The
winner is the candidate associated with the root.

Maximin – The maximin score of x in P is min{N(x, y, P) : y 6= x}.
The winner is the candidate with the maximal score.

Ranked Pairs – We construct a linear order in steps. At every step we
choose the two candidates x, y which maximize N(x, y, P), and which
have not been chosen so far (possibly using a tie breaking rule). We
set x > y in our order, unless that contradicts the order we have
constructed until now. In the end of the process we have a linear
order. The candidate ranked first in that order is the winner.

70

Weighted Majority Graphs (WMG) rules :

Given a profile P we can construct a graph G(P) whose nodes are the
candidates, and between two candidates x, y there is a directed edge from
x to y if N(x, y, P) > N(y, x, P) (x is preferred to y by most voters) and
the edge is labeled by N(x, y, P). A rule F is called a WMG rule if for
any two profiles P, P ′ such that G(P) = G(P ′) we have F(P) = F(P ′).

This means that F can be determined entirely by knowing N(x, y, P) for
the different candidates. All the rules introduced as Condorcet consistent,
with the exception of Dodgson, are WMG rules. We also note that WMG
rules are not Condorcet consistent by definition, though they usually sat-
isfy that requirement.

Other Common Rules :

Plurality with Runoff – Under plurality with runoff, we take the two
candidates with the highest plurality score, call them x and y, and
the winner among those is x if N(x, y, P) > N(y, x, P) and y if
N(x, y, P) < N(y, x, P). This rule might require the use of some tie
breaking rule, which will make the rule non-neutral.

STV – Single Transferable Vote – STV – works the following way: If there
is a candidate who was voted first by more than half the voters, that
candidate wins. Otherwise, the candidate with the lowest plurality
score is eliminated (we could either have all the candidates with min-
imal score removed, or one candidate based on the tie breaking rule),
and we look at the profile as a profile of m − 1 candidates, where
all the candidates that were ranked after the eliminated candidate in
some ballot “shift” one place higher in that ballot. We continue with
this process until some candidate is ranked first by more than half
the voters.

Bucklin – The Bucklin score of a candidate x is the minimal k such that∑
1≤i≤k

N(x, i, P) > n
2 (more than half the voters ranked x in the kth

place or higher). The candidates with the lowest Bucklin score win.

71

Appendix B

Proof of Lemma 4.1.6

First we note that while this claim seems immediate, it seems like a standard
greedy algorithm will have problems with it. Consider the following example,
where a greedy algorithm starts on the first row, trying to allocate the first cell
that is positive and whose column was not previously chosen.

For the WSM-square presented below, of order 7 and sum 5, the algo-
rithm will define the pairs (i, σ(i)) for the first 6 rows in the following way:
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), but then on the 7th row, there is no cell to
choose from, and the algorithm is stuck.

1 2 3 4 5 6 7
1 1 1 1 1 0 0 1
2 1 1 1 0 1 0 1
3 1 1 1 0 0 1 1
4 1 0 0 1 1 1 1
5 1 0 0 1 1 1 1
6 0 1 1 1 1 1 0
7 0 1 1 1 1 1 0

The proof below is based on ideas of flow networks from computer science.
It was pointed out by van Emde Boas that this lemma can also be proven in a
simpler way as a result of the Birkhoff-von Neumann Theorem [18]. We bring
this alternative proof in the end of this appendix. For historical reasons, though,
we start by the flow networks proof, for which we must first define some notions.

Definition B.1 (Flow Networks). A flow network is a tuple N = (V,E, c, s, t),
where V is a set of vertices, E a set of directed edges between the vertices (i.e., a
subset of V × V), c, called the capacity function, is a function c : E → R+, and
s, t are two distinguished members of V , called ‘source’ and ‘target’ respectively.

A legal flow in the flow network N is a function f : E → R+ satisfying:

• Capacity constraint: ∀〈u, v〉 ∈ E f(〈u, v〉) ≤ c(〈u, v〉)

• Conservation of matter: ∀v ∈ V, v 6= s, t
∑

〈u,v〉∈E
f(〈u, v〉) =

∑
〈v,u〉∈E

f(〈v, u〉)

Put in words, the first constraint on a legal flow says we cannot have more
flow through an edge than our capacity allows, and the seconds says that for
any vertex which is not the source or the target, the total incoming flow has to
equal the total outgoing flow.

73

Definition B.2 (Cut). A cut in a flow network N is any partition of V into
two disjoint sets S, T such that s ∈ S, t ∈ T .

The capacity of the cut is defined as
∑

〈u,v〉∈E,
u∈S,v∈T

c(〈u, v〉).

Definition B.3 (Flux). For a flow f in a network N we define the flux of the
f : |f | =

∑
〈s,v〉∈E

f(〈s, v〉)−
∑

〈u,s〉∈E
f(〈u, s〉).

We will also be using the following well-known theorem from the theory of
flow networks:

Theorem B.4 (Min-Cut Max-Flow). For every flow network, the flux |f | of an
optimal flow f is equal to the capacity of the minimal cut (i.e., the cut whose
capacity is minimal among all possible cuts).

More detailed definitions, as well as the proof of theorem, can be found in [5,
Chapter 26]. We now proceed to the proof of Lemma 4.1.6.

Proof. We define a flow network based on the WSM-square r, show that the
capacity of the minimal cut on the network is m, and so from the Min-Cut
Max-Flow Theorem we find that there is an optimal flow f of flux m for the
flow network. We then use the flow f to define the required σ for r. We start
by describing the flow network.

The idea behind the network is that we will have m nodes for the rows,
R1, . . . , Rm, called row vertices, and m nodes for the columns, C1, . . . , Cm,
called column vertices. We will connect the row vertex Ri with the column
vertex Cj based on the value of r(i, j). We are interested in sending 1 unit of
flow through each row, and getting it out through some column. The edges
through which it flows will give us the positive elements we need. We give the
formal construction:

We define N = (V,E, c, s, t) to be the following:

V = {s, t}
⋃
{Ri}1≤i≤m

⋃
{Ci}1≤i≤m

E = {(s,Ri) : 1 ≤ i ≤ m}⋃
{(Ri, Cj) : 1 ≤ i, j ≤ m, r(i, j) > 0}⋃
{(Ci, t) : 1 ≤ i ≤ m}

c(u, v) =

{
1 if u = s or v = t

r(i, j) if u = Ri, v = Cj

Figure B.1 illustrates the network created from r.
We show that the minimal cut ofN ism. Any cut (S, T) satisfies s ∈ S, t ∈ T .

If T = {t} then clearly the capacity of the cut is m (there are m column vertices
connected to t with capacity 1 for each), and similarly the capacity is m if
S = {s}.

Now, if T = {t, Ci1 , . . . , Cik} for some k ≤ m – that is to say, it contains
the target and some subset of column vertices – then the capacity is necessarily

74

R1

R2

R3

...

Rm

C1

C2

C3

...

Cm

s t

1
1
1

1

1
1
1

1

r(1, 1)
r(2, 1)

r(3,m)

r(m,m)

r(3, 3)
r(3, 2)

Figure B.1: An illustration of the flow network constructed from a WSM-square
r. The labels on the edges denote the capacity.

≥ m, since there is an incoming capacity of m − k from the column vertices
not in T , and for each Ci the incoming capacity is at least 1 (each column i is
accessibly at least one row j, where r(i, j) > 0, otherwise the sum on that row
would be 0), so each of Ci1 , . . . , Cik adds at least 1 to the capacity, and in total
we get cut capacity of at least m.

The last case we need to consider is when T = {t, Ci1 , . . . , Cik , Rj1 , . . . , Rjk′}.
Again, we have an incoming capacity of m− k from all the column vertices not
in T , and some additional incoming capacity for the column and row vertices
in T . Look at the set S1 of all the row vertices which are connected to column
vertices in T (i.e., all Rjs such r(j, il) > 0 for some l ≤ k). We claim that
|S1| ≥ k.

Assume that is not the case, and look at the sub-square of r containing only
the columns Ci1 , . . . , Cik and the rows in S1. since r(j, il) = 0 for any l ≤ k and
j such that Rj /∈ S1, and since the sum on each of the columns is n, it follows
that the total sum of all the entries of the sub-square is nk. Since we assumed
there are less than k rows, there has to be at least one row whose sum is greater
or equal to dn k

k−1e (there are at most k−1 rows, among which we have to divide
a total sum of nk. The sum on the maximal row, which is minimal when the
total sum is spread evenly on all the rows, equals to the ceiling of the average).
That sum, however, is greater than n, in contradiction to r being a WSM-square
of sum n, and so we get that the number of vertices in S1 is at least k.

Now, for any element in S1

⋂
T , that element contributes 1 into the capacity

of the cut (each row vertex has an incoming capacity of 1), and for any element
in S1 \ (S1

⋂
T), that element contributes at least 1 to the cut capacity, as it

is connected to an element in T with a positive outgoing capacity. So we get
a capacity of at least k from the set S1, and combining this with the capacity
m−k, which we’ve shown before is going into t, we get a cut capacity of at least
m.

We have shown that the minimal cut capacity is m, and so there is an

75

optimal flow f such that |f | = m. we use f to construct the required σ. First
we note that in order to have |f | = m, the flow f(〈s,Ri〉) has to be 1 for all
1 ≤ i ≤ m, and the same for f(〈Ci, t〉). Let A = {(i, j) : f(〈Ri, Cj〉) > 0}. From
conservation of matter, and because of what we just mentioned, each (i, j) ∈ A
satisfies f(〈Rj , Ci〉) = 1, and also for each 1 ≤ i ≤ m there is some (unique)
1 ≤ j ≤ m such that (i, j) ∈ A, and for each 1 ≤ j ≤ m there is some (unique)
1 ≤ i ≤ m such that (i, j) ∈ A. We can now define σ(i) = j where (i, j) ∈ A.

From the previous paragraph it follows that σ is well defined. To finish
the proof we must show that r(i, σ(i)) > 0 for every 1 ≤ i ≤ m. for some
1 ≤ i ≤ m, we know that f(〈Ri, Cσ(i)〉) = 1, hence c(〈Ri, Cσ(i)〉) ≥ 1, and from
the definition of the capacity function it follows that r(i, σ(i)) ≥ 1, as required.

We remark that though the proof uses an existential argument (“there exists
a flow”), there are actually algorithms for finding the optimal flow, and further
yet, for cases where all the capacities are integer numbers – as it is in our case
– they do it in polynomial time (e.g., see the Ford-Fulkerson algorithm), so in
fact we have an effective way of finding σ (and as a result, an effective way of
constructing a profile P which corresponds to r).

We now give the alternative proof using Birkhoff-von Neumann Theorem,
mentioned earlier. For that we must first define:

Definition B.5. A permutation matrix is a square matrix with a single 1 on
every row and column and 0 everywhere else.

In light of this definition, Lemma 4.1.6 claims there is a permutation matrix
whose values are 1 exactly at the same cells where the corresponding WSM-
square r is positive.

Definition B.6. A doubly stochastic matrix is a square matrix with non-negative
real values where the sum on every row or column is 1.

Theorem B.7 (Birkhoff-von Neumann). For every doubly stochastic matrix A
of order m there exist k ∈ N, k permutation matrices π1, . . . , πk of order m, and
k positive real values α1, . . . , αk such that A =

∑
1≤i≤k

αiπi.1

We now give the (much shorter) proof of Lemma 4.1.6, based on the theorem:

Proof. Let r be a WSM-square of order m and sum n, we show that there is a
permutation matrix which takes positive values only in cells where r is positive.
Let r/n denote the matrix we get by dividing every element of r by n. r/n is
not necessarily a WSM-square, since the elements are not necessarily integers,
but it is a doubly stochastic matrix, and therefore has a decomposition into
permutation matrices.

Let π be a permutation matrix in that decomposition, and let σ be the
permutation satisfying πi,σ(i) = 1 for every 1 ≤ i ≤ m. We immediately get
that r/ni,σ(i) > 0 for every i, and also r(i, σ(i)) > 0 for every i, as required.

1More accurately, the theorem says that the set of doubly stochastic matrices is a convex
hull of the permutation matrices of the same order.

76

Appendix C

Upper Bound on ABOVE
and STV

In this appendix we use the definitions given for the ABOVE representation
to calculate an upper bound for |ABOVE| (under certain assumptions), which
is (when taken under the logarithm) also an upper bound for the compilation
complexity of STV, as was shown by Chevaleyre et al. [3].

As we saw in Chapter 2, Chevaleyre et al. gave a lower bound for STV
based on the number of combinations of above(P,Z, x), when their bound was
the number of possible combinations for a fixed candidate. In the terms of the
set ABOVE, we may define an equivalence relation ∼x for x ∈ X, such that
f ∼x g for f, g ∈ ABOVE if f(x, Z) = g(x, Z) for all Z ⊆ X. It is simple to
verify that this is an equivalence relation. The result is a partition of ABOVE
into equivalence classes, and if we denote the equivalence class of f by [f], then
the set characterized by Chevaleyre et al. is {[f] : f ∈ ABOVE}.

For their upper bound, they assumed that these combinations are indepen-
dent for all candidates (worst case scenario), and so the bound was |{[f] : f ∈
ABOVE}|m. We take a somewhat different approach for an upper bound.

The main idea is that while Chevaleyre et al. fix a candidate, we keep the
candidates free and fix instead all the sets of the same size, starting with sets of
size 0 (only the empty set), then sets of size 1 (singletons) and so on. Due to the
definition of ABOVE we get that when moving from sets of size k to the sets of
size k + 1, we only depend on the way we chose the distribution of sets of size
k, while when you look at candidates, you cannot avoid having dependencies
between all the different candidates.

We explain the approach in a slightly more formal way. We describe a tree
structure such that its set of leaves is exactly the set ABOVE. For that we
define the sets Si = {Z ⊆ X : |Z| < i} for 1 ≤ i ≤ m, and for each Si we define
ABOVEi = {f : X × Si → N : f satisfies conditions I,II,III of ABOVE}. We
note that ABOVEm = ABOVE.

Our tree will look like this: On the 0th level of the tree we have the root. On
level one we have ABOVE1, which are exactly the

(
n+m−1

n

)
function which are

different combinations of candidates ranked in the first place in some n voter
profile. Denote the nodes in the first level f1,j for 1 ≤ j ≤

(
n+m−1

n

)
. On the

second level, for each node f1,j in the first level, we define its children to be
{f ∈ ABOVE2 : f |X×S1 = f1,j}, that is, the functions which extend f1,j to
the ranking on candidates in the second place. One can verify that for any

77

f ∈ ABOVE2 there is some (unique) f1,j which is the parent of f , so the entire
second level is ABOVE2. The nodes in the second level are denoted f2,j .

In general, on the k+1 level we define the children of fk,j (a node from level
k) to be {f ∈ ABOVEk+1 : f |X×Sk

= fk,j}, and we get that the k + 1 level
ABOVEk+1. As a result, we get that the leaves of the tree are ABOVEm =
ABOVE.

While it is not simple to count the sets ABOVEk, except for the case k = 1
(otherwise we would get an immediate upper and lower bound for the compila-
tion complexity of STV), we will see that it is simple to count the number of chil-
dren of every node. In light of this, our strategy for calculating the upper bound
is the following: For each node fk,j , the branching factor of that node, BF (fk,j)
is the number of children of that node (i.e., |{f ∈ ABOVEk+1 : f |X×Sk

= fk,j}|).
For every level k we denote BFk = max

j
(BF (fk,j)), the maximal branching

factor of that level. It follows that
∏

1≤k≤m
BFk, the product of the maximal

branching factors, gives us an upper bound on the number of leaves in the tree,
which is the size of ABOVE.

The question remains, how do we find the maximal branching factor at each
level. Let fk,j be a node that satisfies, for any Z ⊂ X, |Z| = k:∑

x∈Z
fk,j(x, Z \ {x}) =

n(
m
k

)
As there are

(
m
k

)
sets of size k in X, that last requirement means that if P is a

profile whose top k ranks correspond to fk,j (we did not define this formally, but
this is a natural extension of the natural correspondence of profiles to ABOVE
functions), then the number of ballots in P whose top k-tuple is composed of
the set Z is equal to the number of k-tuples composed of any other k-sized set
W . In simpler words, P distributes the votes evenly among all k sets. Call such
a node a uniform node.

We claim that the maximal branching factor of the kth level is given by
BF (fk,j), where fk,j is a uniform node. The intuition for this is that often
in combinatorics and probability theory we get the highest number of combi-
nations (in the case of combinatorics) or the highest entropy (for probability
distributions) when we look at a uniform distribution.

We notice that there is a hidden assumption in this calculation, that n is
large enough for us to distribute it evenly among all different subsets of size k
(for any k). Formally this means that n is at least the size of the least common
multiple of {

(
m
k

)
}1≤k≤m.

We prove that claim, up to an assumption regarding the quality of Stirling’s
approximation.

Claim C.0.4. Under the conditions described above, BFk = BF (fk,j), where
fk,j is a uniform node.

Proof. Let fk,j be a uniform node in the kth level. fk,j satisfies
∑
x∈Z

fk,j(x, Z \

{x}) = n

(m
k) for any Z ⊂ X, |Z| = k. We can use this condition, and combine it

78

with condition III of the ABOVE functions to get a constraint on the children
of fk,j : ∑

1≤i≤m

fk+1,i(xi, Z) =
n(
m
k

) ∀Z ⊂ X, |Z| = k

where fk+1,i is a child of fk,j .
Let fk,j′ be any other node in the kth level. We can identify fk,j′ with a

vector of length
(
k
m

)
, 〈v1, . . . , v(m

k)〉, where Z1, . . . , Z(m
k) is an enumeration of all

the sets of k elements, and vi =
∑
x∈Zi

fk,j′(x, Zi \ {x}). It is important to notice

that the sum of the elements in the vector satisfies
∑

1≤i≤(m
k)
vi = n, as we have

proved in the previous section.
We know that every child of fk,j′ must satisfy condition III, which comes to:∑

1≤i≤m

fk+1,i(xi, Z) = vi

In both cases, we know how to calculate the number of children of each node.
The important thing to notice is that f(x, Z) is independent of f(x, Y), as the
only relevant conditions are II and III. Therefore, to calculate the number of
children, we simply calculate the number of ways to expand each k-set Z with
the other m− k candidates, and take the product for all k-sets.

In the case of the uniform node, the number of ways to expand a set Z is
the number of ways to distribute n

(m
k) points among m− k candidates, which is(n

(m
k)

+(m−k)−1

n

(m
k)

)
. The total number of ways to expand the function is therefore

(n

(m
k) + (m− k)− 1

n

(m
k)

)(m
k)

For fk,j′ we get a simpler formula: For any set Zi, the number of ways to
expand Zi is the number of ways to distribute vi points among m−k candidates,
i.e.,

(
vi+(m−k)−1

vi

)
, and the total number of ways of expanding fk,j′ :

∏
1≤i≤(m

k)

(
vi + (m− k)− 1

vi

)

We need to show that the expression for the uniform node is greater or equal
to that of the other node.

∏
1≤i≤(m

k)

(
vi + (m− k)− 1

vi

)
≤
(n

(m
k) + (m− k)− 1

n

(m
k)

)(m
k)
⇔

79

log[
∏

1≤i≤(m
k)

(
vi + (m− k)− 1

vi

)
] ≤ log[

(n

(m
k) + (m− k)− 1

n

(m
k)

)(m
k)

]⇔

∑
1≤i≤(m

k)
log
(
vi + (m− k)− 1

vi

)
≤
(
m

k

)
log
(n

(m
k) + (m− k)− 1

n

(m
k)

)
⇔

∑
1≤i≤(m

k)
log
(
vi+(m−k)−1

vi

)
(
m
k

) ≤ log
(n

(m
k) + (m− k)− 1

n

(m
k)

)
At this point we recall Jensen’s inequality, which states that for any real con-

cave function ϕ, values x1, . . . , xn in its domain and positive weights a1, . . . , an
we have: ∑

aiϕ(xi)∑
ai

≤ ϕ(
∑
aixi∑
ai

)

If we take the index n in Jensen’s inequality to be
(
m
k

)
, and weights ai to be

1, and the values xi to be vi, this inequality becomes:∑
ϕ(vi)(
m
k

) ≤ ϕ(
∑
vi(

m
k

))

We recall that
∑
vi = n, and we define ϕ(l) = log

(
l+(m−k)−1

l

)
, which gives

us ∑
log
(
vi+(m−k)−1

vi

)(
m
k

) ≤ log
(n

(m
k) + (m− k)− 1

n

(m
k)

)
which is exactly the inequality we had. There is one problem with the use

of Jensen’s inequality here: The inequality is defined for real concave functions,
while our function is discrete (only defined for natural numbers), and so the
notion of concaveness does not even apply to it. At this point we use Stirling’s
approximation, which gives:

log(n!) ≈ n log n− n+O(log n)

and by manipulating the formulas, one gets:

log
(
l +m− 1

l

)
≈ m log(

l

m
+ 1) + l log(

m

l
+ 1)

We show that the function ϕ′(l) = m log(l
m + 1) + l log(ml + 1) is concave,

which means that the inequality applies to it.
We know that a function is concave on an interval iff its derivative is mono-

tonically decreasing. We calculate the derivative:

80

dϕ′(l)
dl

= (m− k)
1

l
m−k + 1

1
m− k

+ log(
m− k
l

+ 1) + l
1

m−k
l + 1

(
−(m− k)

l2
) =

m− k
l + (m− k)

+ log(
m− k
l

+ 1) +
l

l + (m− k)
−(m− k)

l
=

log(
m− k
l

+ 1) +
m− k

l + (m− k)
− m− k
l + (m− k)

= log(
m− k
l

+ 1)

which is monotonically decreasing as l grows, so the function is concave. A
“wordy” explanation of why the function is concave: We have log f(x), and in
order for that to be not concave, f(x) has to grow faster than ex, but f is a
binomial coefficient, and it is in fact less than (v + (m− k)− 1)(m−k)−1, which
is of a fixed power.

This gives us, under the assumption that Stirling’s approximation is good
enough to not damage the inequality when we move from the binomial function
to the approximation, that uniform nodes give us the maximal branching factor.

Now we can calculate the upper bound, as the product of the maximal
branching factors. We have already seen in the proof above that the branching

factor for a uniform node is
(n

(m
k)

+(m−k)−1

n

(m
k)

)(m
k)

, so the product gives us:

∏
1≤k≤m

(n

(m
k) + (m− k)− 1

n

(m
k)

)(m
k)

We take the logarithm in order to calculate the compilation complexity, and we
get

log
∏

1≤k≤m

(n

(m
k) + (m− k)− 1

n

(m
k)

)(m
k)

=

∑
1≤k≤m

(
m

k

)
log
(n

(m
k) + (m− k)− 1

n

(m
k)

)
We want to evaluate the behavior of this bound. Denote l = n

(m
k) . We can

present an element in the sum as

n

l
log
(
l + (m− k)− 1

l

)
≈ n log(1 +

m− k
l

) +
n(m− k)

l
log(1 +

l

m− k
)

For k = 0 we get l = n, and this expression becomes

n log(1 +
m

n
) +m log(1 +

n

m
)

81

For the case k = m
2 this expression is harder to evaluate, and the result depends

on the interaction element l. The size of l is also a result of the restrictions
we have placed on n. Namely, that it is at least the least common multiple of{(
m
k

)}
1≤k≤m. Farhi [8] showed that

2m+1

m+ 1
≤ lcm

{(
m

k

)}
1≤k≤m

≤ 3m+1

m+ 1

If n ≈ 2m+1

m+1 we get that the interaction element l is almost constant, and our
expression becomes

2m√
m

logm

Which gives a slight improvement on the bound given by Chevaleyre et al.

82

Bibliography

[1] J. Bartholdi, C. Tovey, and M. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6(3):157–
165, 1989.

[2] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to
computational social choice. In Proc. 33rd Conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM’07. Springer-Verlag,
2007.

[3] Y. Chevaleyre, J. Lang, N. Maudet, , and G. Ravailly-Abadie. Compiling
the votes of a subelectorate. In Proc. 21st International Joint Conference
on Artificial Intelligence, IJCAI’09, 2009.

[4] V. Conitzer and T. Sandholm. Communication complexity of common vot-
ing rules. In Proc. 6th ACM Conference on Electronic Commerce, EC’05,
2005.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, 2001.

[6] J.D. Dixon and B. Mortimer. Permutation Groups. Springer, 1996.

[7] J. Draisma, E. Kushilevitz, and E. Weinreb. Partition arguments in mul-
tiparty communication complexity. CoRR, abs/0909.5684, 2009.

[8] B. Farhi. An identity involving the least common multiple of binomial
coefficients and its application. The American Mathematical Monthly,
116(9):836–839, 2009.

[9] W. Gaertner. A primer in social choice theory. LSE perspectives in eco-
nomic analysis. Oxford University Press, 2009.

[10] G. Janusz and J. Rotman. Outer automorphisms of S6. The American
Mathematical Monthly, 89(6):407–410, 1982.

[11] E. Kushilevitz and N. Nisan. Communiction Complexity. Cambridge Uni-
versity Press, 1997.

[12] J. Lang. personal communication, June 2011.

[13] K. O. May. A set of independent necessary and sufficient conditions for
simple majority decision. Econometrica, 20(4):680–684, 1952.

[14] S. Sato. Informational requirements of social choice rules. Mathematical
Social Sciences, 57(2):188–198, 2009.

83

[15] S. Sato. personal communication, January 2011.

[16] S. Sato. Corrigendum to “informational requirements of social choice
rules” [Math. Social Sci. 57 (2009) 188–198]. Mathematical Social Sciences,
62(1):77, 2011.

[17] M. Suzuki. Group Theory I. Springer, 1982.

[18] P. van Emde Boas. personal communication, September 2011.

[19] L. Xia and V. Conitzer. Generalized scoring rules and the frequency of
coalitional manipulability. In Proc. 9th ACM Conference on Electronic
Commerce, EC’08, 2008.

[20] L. Xia and V. Conitzer. Finite local consistency characterizes generalized
scoring rules. In Proc. 24th International Joint Conference on Artificial
Intelligence, IJCAI’09, 2009.

[21] L. Xia and V. Conitzer. Compilation complexity of common voting rules.
In Proc. 24th AAAI Conference on Artificial Intelligence, AAAI’10, 2010.

[22] A. C. Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proc. 11th ACM Symposium on Theory of
Computing, STOC’79, pages 209–213, New York, NY, USA, 1979. ACM.

84

