
Relation Liftings in Coalgebraic Modal Logic

MSc Thesis (Afstudeerscriptie)

written by

Johannes Marti
(born December 19, 1986 in Basel, Switzerland)

under the supervision of Prof Dr Yde Venema, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 8, 2011 Dr Alexandru Baltag

Prof Dr Dick de Jongh
Raul Andres Leal
Prof Dr Yde Venema

Abstract

In this thesis we study relation liftings in the context of coalgebraic modal logic.
In the first part of the thesis we look for conditions on relation liftings that can
be used to define a notion of bisimilarity between states in coalgebras, such
that two states are bisimilar if and only if they are behaviorally equivalent.
We show that this is the case for relation liftings that are lax extensions and
additionally preserve diagonal relations. In the second part of the thesis we
develop a coalgebraic nabla logic for an arbitrary lax extension. For this logic
we prove that, under additional conditions, bisimulation quantifiers are definable
in the nabla logic. This has a Uniform Interpolation Theorem as consequence.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Sets, Functions and Relations . 3
2.2 Set Functors . 5
2.3 Coalgebras . 10

3 Relation Liftings and Bisimulations 13
3.1 Relation Liftings . 13
3.2 Bisimulations . 14
3.3 Lax Extensions . 18
3.4 Lax Extensions of Finitary Functors 23

4 The Nabla Logic of a Lax Extension 29
4.1 Syntax and Semantics . 29
4.2 Disjunctive Nabla Normal Form 35
4.3 Bisimulation Quantifiers and Uniform Interpolation 39

5 Conclusions and Further Questions 48

1 Introduction

Coalgebras are functions ξ : X → TX from a set of states X to the set TX
given by some endofunctor T in the category of sets. By varying the functor
T one can study many different types of structures in the unified framework of
coalgebras. These include numerous examples from computer science such as
finite automata, infinite data structures or transition systems.

The theory of coalgebras is also important for modal logic since Kripke
frames and Neighborhood frames can be represented as coalgebras. Kripke
frames, that are used as the standard semantics for normal modal logics, are
coalgebras for the covariant powerset functor P. With every state x in a Kripke
frames one associates the set of its successors, which is an subset of the set of
states. Neighborhood frames, that are used in the semantics of classical modal
logic, are coalgebras for the double contravariant powerset functor N = P̆P̆.
A neighborhood frame specifies for every state the set of its neighborhoods. In
between classical modal logic and normal modal logic there is monotone modal
logic. The standard semantics for monotone modal logic is given on monotone
neighborhood frames that are coalgebras for the monotone neighborhood functor
M. This functor is a restriction of N in which one requires that the set of
neighborhoods associated to a state is upwards-closed.

It is not only that the models of modal logic are coalgebras but it has also
turned out that coalgebraic modal logics, which generalize standard modal log-
ics, are an adequate tool to reason about any type of coalgebras. Researchers
working on coalgebraic modal logic develop logics for coalgebras of any func-
tor. There are two main approaches of how this is usually done. The first one
uses so called predicate liftings to define a modal language, similar to standard
modal logic with boxes and diamond, for any functor T . See [18] for an up-to-
date example of how this works. The other approach originates from the work

1

of Moss [13], who started the study of coalgebraic modal logic. Moss uses so
called nabla modalities ∇α for α ∈ TL, where L is the set of all formulas, to
describe properties of coalgebras for the functor T . These nabla modalities are
somewhat unusual because they incorporate the functor T into the syntactic
shape of modal formulas. Despite of their somewhat peculiar syntax, modal
logics using the nabla modalities have very strong normal forms. One can show
under relatively weak restrictions that every formula in the logic with nablas is
equivalent to an formula in which negations and conjunctions occur only on the
propositional non-modal level.

In this thesis we study so called relation liftings in the context of coalgebraic
modal logic. A relation lifting L for a functor T maps every relation R : X → Y
between the sets X and Y to a relation LR : TX → TY between the sets
TX and TY . A relation lifting that figures very prominently in the theory of
coalgebras and coalgebraic modal logic is the Barr extension T of a functor T .
It is defined uniformly for any set functor T and has been used in the theory of
coalgebras and coalgebraic modal logic to:

(i) Define a notion of bisimilarity between states in coalgebras.

(ii) Define a semantics for the nabla modality.

This only works properly for set functors that have the property that they pre-
serve weak pullbacks. Otherwise the Barr extension is not well-behaved. Most
set functors preserve weak pullbacks so this is not a strong restriction. Impor-
tant exceptions, however, are the functors N and M that yield neighborhood
frames as their coalgebras.

It has been observed, see for example [4], that there is a relation lifting, we
call it M̃, for the functor M, that yields an adequate notion of bisimilarity
between states in monotone neighborhood frames and is distinct from the Barr
extensionM ofM. Moreover, Santocanale and Venema use M̃ in [17] to define
a semantics for a well-behaved nabla modality on neighborhood frames. So the
relation lifting M̃ of M fulfills the same roles (i) and (ii) that, as explained
above, the Barr extensions plays for weak pullback preserving functors. This
triggers the question under which conditions a relation lifting can be used for
(i) and (ii).

The major contribution of this thesis is to show that relation liftings which
are lax extensions and satisfy the further condition that they preserve diagonal
relations can be used to fulfill the tasks (i) and (ii). Lax extensions that preserve
diagonals are like functors in the category of relations with the difference that
only one inclusion of the composition of relations is preserved. The relation
lifting M̃ is a lax extension and preserves diagonals. As a negative result we
show in Proposition 3.7 that, in a sense we will make more precise, there is no
relation lifting for N that fulfills task (i). We also give a partial characterization
of the functors that have a lax extension that preserves diagonals. So we prove
in Theorem 3.26 that a finitary functor T has a lax extension that preserves
diagonals iff it has a separating set of monotone predicate lifting. This theorem
establishes a connection between the nabla logic of a lax extension and the
other flavor of coalgebraic modal logic that uses predicate liftings. For the
nabla logic of a lax extension we show that bisimulation quantifiers are definable
in the logic if the lax extension satisfies an additional property, that we call
quasi-functoriality. This generalizes the work done by Santocanale and Venema

2

in [17] for the monotone neighborhood functor M. An consequence from the
definability of bisimulation quantifiers in the logic is that the logic has uniform
interpolation.

The structure of this thesis is as follows. In section 2 we fix the notation
and introduce the basic mathematical concepts that we use later. Section 3.2 is
organized in three parts. In the first two subsections we define what a relation
liftings and a bisimulation for a relation lifting is. In the third, subsection 3.3,
we introduce lax extensions, prove some of their basic properties, and show that
they can be used to define an adequate notion of bisimilarity if they preserve
diagonals. We use the whole subsection 3.4 to prove Theorem 3.26. In section
4 we develop the nabla logic that has a semantics defined with help of a lax
extension L along the lines of how this is done in [17] for M̃. In the first
subsection 4.1 we define the semantics and show that it is adequate with respect
to L-bisimilarity. In subsection 4.2 we show how one can eliminate conjunctions
and negations from nabla formulas. This result we use in subsection 4.3 to show
that bisimulation quantifiers are definable in the nabla logic of a lax extension.

2 Preliminaries

This section contains some of the preliminaries and fixes the notation. We
presuppose that the reader has made contact with very basic concepts from
category theory before. For example we presuppose the notions of a category,
a commutative diagram, an isomorphism, an inverse or a functor between cate-
gories.

In order to see the motivation behind the concepts introduced later and to
understand the examples the reader needs to know some modal logic on Kripke
frames. An extensive introduction into modal logic is given for example in [3].

2.1 Sets, Functions and Relations

We will mainly work in the category Set that has sets as its objects and functions
between sets as arrows. It is assumed that the reader is familiar with the usual
constructions on sets so the following explanations are here to fix notation. We
usually use capital Latin letters X, Y, Z, . . . , U, V, W, . . . for sets and small Latin
letters f, g, . . . for functions between sets. The notation f : X → Y means
denote that f is a function with domain X and codomain Y . The identity
element for a set X is the identity function idX : X → X. The composition
of two functions f : X → Y and g : Y → Z is the usual composition of
functions written as g ◦ f : X → Z. An isomorphism in Set is a bijective
function f : X → Y and its inverse is written as f−1 : Y → X. Given a
function f : X → Y and a set X ′ ⊆ X we define the restriction of f to X ′ as
f �X′ : X ′ → Y, x 7→ f(x). For sets X ′ ⊆ X the inclusion of X ′ into X is the
map ιX′,X : X ′ → X, x 7→ x.

Another category that we will use a lot is the category Rel of relations
between sets. Its arrows from a set X to a set Y are all the relations between
X and Y . We use capital letters R,S, . . . for relations and write R : X → Y to
indicate that R is a relation between X and Y . A relation R : X → Y as an
arrow in the category Rel is not just a set of pairs, that is a subset of X×Y , but
it also contains information abouts its domain and codomain. We write Rgr for

3

the set of pairs that encodes a relation R : X → Y . Note that R : X → Y is an
arrow in the category Rel whereas Rgr ⊆ X × Y is an object in Set or Rel. At
some places, especially once we use relation liftings later, it matters what the
domain and codomain of a relation are. Nevertheless we are often a bit sloppy
with the notation and for example use = and ⊆ between relations that do not
have the same domain or codomain.

The graph of any function f : X → Y is a relation between X and Y for
which we write again f : X → Y . It will be clear from the context in which a
symbol f occurs whether it is meant as the function f : X → Y in Set or as the
relation f : X → Y in Rel.

Identity elements in the category Rel are the diagonal relations ∆X : X → X
with (x, x′) ∈ ∆X iff x = x′. Note that ∆X = idX if we consider idX : X → X
as a relation. The composition of two relations R : X → Y and S : Y → Z is
written as R ;S : X → Z and defined by

R ;S = {(x, z) ∈ X × Z | (x, y) ∈ R and (y, z) ∈ S for a y ∈ Y }.

The composition of relations is written the other way round than the compo-
sition of functions. So we have, using the identification of functions with the
relation of its graph, that g ◦ f = f ; g for functions f : X → Y and g : Y → Z.

For every relation R : X → Y its converse R◦ : Y → X with (y, x) ∈ R◦

iff (x, y) ∈ R is again a relation. The projections of a relation R : X → Y are
denoted by πX : Rgr → X and πY : Rgr → Y . It holds that R = π◦X ;πY . For
any relation R : X → Y we use Re : X]Y → X]Y for the smallest equivalence
relation on the disjoint union X]Y of X and Y that contains all the pairs that
are also in R.

There is an order ⊆ on the relations between X and Y that is defined for
relations R′, R : X → Y such that R′ ⊆ R iff R′gr ⊆ Rgr. Every set R of
relations between X and Y has an infimum

⋂
R : X → Y and supremum⋃

R : X → Y with respect to the order ⊆. They are just the usual intersection
and union of the graphs.

For a relation R : X → Y we define the sets

preimg(R) = {x ∈ X | ∃y ∈ Y.(x, y) ∈ R} ⊆ X,

img(R) = {y ∈ Y | ∃x ∈ X.(x, y) ∈ R} ⊆ Y.

The relation R : X → Y is left-total if preimg(R) = X and right-total if
img(R) = Y . Given sets X ′ ⊆ X and Y ′ ⊆ Y we define the restriction
R�X′×Y ′ : X ′ → Y ′ of the relation R : X → Y as R�X′×Y ′= R ∩ (X ′ × Y ′).

For any set X let ∈X : X → PX be the membership relation between
elements of X and subsets of X.

We are going to use some universal constructions in the category Set.
For every family X of sets we use

∏
X to denote the product of all the sets

in X with projections πX :
∏
X → X for all X ∈ X . The product of two

sets X and Y is denoted by X × Y with projections πX : X × Y → X and
πY : X × Y → Y .

For every family X of sets we use
∐
X to denote the coproduct of all the

sets in X with injections iX : X →
∐
X for all X ∈ X . One can think of the

coproduct of X as the disjoint union
⊎
X of the sets in X . The coproduct of

two sets X and Y is denoted by X +Y = X]Y with injections iX : X → X +Y
and iY : Y → X + Y .

4

Given two functions f : X → Z and g : Y → Z the pullback of f and g is
the set

pb(f, g) = (f ; g◦)gr = {(x, y) ∈ X × Y | f(x) = g(y)}

together with the projections πX : pb(f, g) → X and πY : pb(f, g) → Y . For
these it holds that f ◦πX = g◦πY . The pullback of f and g is determined up-to-
isomorphism by the universal property that for any other set Z ′ and functions
h : Z ′ → X and k : Z ′ → Y that satisfy f ◦ h = g ◦ k there is a unique function
m : Z ′ → pb(f, g) such that h = πX ◦m and k = πY ◦m. This universal property
is depicted in the following diagram:

Z ′
k

%%

m

##

h

��

pb(f, g)
πY

//

πX

��

Y

g

��
X

f
// Z

A weak pullback of two functions f : X → Z and g : Y → Z is any set P
together with morphisms pX : P → X and pY : P → Y that satisfies the same
universal property as the pullback pb(f, g) with functions πX and πY except the
arrow m is not required to be unique. It is possible that two weak pullbacks P
and P ′ of f and g are not isomorphic.

Given two functions f : X → Z and g : Y → Z the pushout of f and
g is the set po(f, g) = (X + Y)/Re, that is the disjoint union of X and Y
modulo the equivalence relation Re, together with the projections pX : X →
po(f, g), x 7→ [iX(x)] and pY : Y → po(f, g), y 7→ [iY (y)]. For these it holds
that pX ◦ f = pY ◦ g. The pushout of f and g is determined up-to-isomorphism
by a universal property that is dual of the universal property of the pullback.
For any other set Z ′ and functions h : X → Z ′ and k : Y → Z ′ that satisfy
h ◦ f = k ◦ g there is a unique function m : po(f, g)→ R′ such that h = m ◦ pX

and k = m ◦ pY . This universal property is depicted in the following diagram:

Z
g //

f

��

Y

pY

��
k

��

X
pX //

h

,,

po(f, g)
m

##
Z ′

2.2 Set Functors

We will work with various set functors, that are functors from Set to Set or to
Setop. The category Setop is like Set as it has sets as objects but an arrow f
from X to Y in Setop is a function f : Y → X from Y to X. A set functor
with codomain Set is called covariant whereas one with codomain Setop is con-
travariant. By default we assume that set functors a covariant and mention it
explicitly if they are not.

5

A natural transformation λ : F ⇒ G from a set functor F to a set functor G
provides a function λX : FX → GX for every set X such that for all functions
f : X → Y the following diagram commutes:

FX
λX //

Ff

��

GX

Gf

��
FY

λY // GY

It is possible that F and G are both contravariant. In that case the arrows at
the left and right sides of the above square are reversed. If each λX : FX → GX
is an isomorphism, that means in Set that it is a bijective function, then λ is
called a natural isomorphism and the functors F and G are said to be naturally
isomorphic. In this case we can define λ−1 : G ⇒ F with (λ−1)X = (λX)−1

which is automatically a natural transformation as well. One can think of two
naturally isomorphic functors F and G as being the same in the sense that
FX is always isomorphic to GX and for every function f : X → Y there
are isomorphisms λX : FX → GY and λY : FY → GY such that Ff =
λ−1

Y ◦Gf ◦ λX .

Example 2.1. (i) The powerset functor P maps a set X to PX, the set of all
its subsets. A function f : X → Y is sent to

Pf : PX → PY,

U 7→ f [U] = {f(x) ∈ Y | x ∈ X}.

(ii) Similarly to the powerset functor the contravariant powerset functor P̆
maps a set X to P̆X = PX. On functions P̆ is the inverse image map, that is
for an f : X → Y

P̆f : P̆Y → P̆X,

V 7→ f−1[V] = {x ∈ X | f(x) ∈ V }.

(iii) The identity functor Id is defined on sets as IdX = X and on functions
as Idf = f .

(iv) For every set C there is a constant functor C that sends a a set X to
CX = C and every morphism to idC .

(v) For any collection of functors Fi for i ∈ I where I is any index set the
product

∏
i∈I Fi− is again a functor that maps a set X to

∏
i∈I FiX. It maps

a function f : X → Y on
∏

i∈I Fif = (Fif)i∈I which is defined as

(Fif)i∈I :
∏
i∈I

FiX →
∏
i∈I

FiY,

(ξi)i∈I 7→ (Fif(ξi))i∈I .

(vi) For any collection of functors Fi for i ∈ I where I is any index set the
coproduct

∐
i∈I Fi− is a functor. It maps a set X on the coproduct

∐
i∈I FiX

and a morphism f : X → Y such that∐
i∈I

Fif :
∐
i∈I

FiX →
∐
i∈I

FiY,

ξ 7→ iFiY ◦ Fif(ξ′). where ξ = iFiX(ξ′)

6

(vii) The composition of two functors F and G is a functor written as F ◦G
or just FG which maps X to F (GX) and f : X → Y to F (Gf) : FGX → FGY .

(viii) The neighborhood functor or double contravariant powerset functor
N = P̆P̆ maps a set X to NX = P̆P̆X and a function f : X → Y to N f =
P̆P̆f : NX → NY or more concretely for all ξ ∈ NX = P̆P̆X

N f(ξ) = {V ⊆ Y | f−1[V] ∈ ξ}.

For any cardinal α there is an α-ary variant Nα of N that maps a set X to
Nα X = P̆((P̆X)α). So we have that the elements of Nα X are sets of α-tuples

of subsets of X.
For a U ∈ ξ ∈ Nα X = (P̆(P̆X)α) we write Uβ for U(β) that is the β-th

component of U . So if α is a finite number, that is α = n ∈ ω, then then we
have that U = (U0, U1, . . . , Un−1) for U ∈ ξ. A function f : X → Y is mapped
by Nα to Nα f : Nα X → Nα Y such that for all ξ ∈ Nα X = P̆((P̆X)α)

Nα f(ξ) = {V ∈ (P̆Y)α | (f−1[Vβ])β∈α ∈ ξ}.

(ix) A restriction of the neighborhood functor N from (viii) is the monotone
neighborhood functor M. It maps a set X to MX ⊆ NX with the additional
requirement that all ξ ∈ MX are upsets. That means that for all U,U ′ ⊆ X
if U ′ ⊆ U and U ′ ∈ ξ then also U ∈ ξ. On functions M is defined in the same
way as N . So we have for f : X → Y that

Mf :MX →MY,

ξ 7→ {V ⊆ Y | f−1[V] ∈ ξ}.

One has to check that this is well defined. So we need that Mf(ξ) is an upset
if ξ is. So consider V ′ ⊆ V ⊆ Y such that V ′ ∈ Mf(ξ). That means that
f−1[V ′] ∈ ξ and so f−1[V] ∈ ξ, hence V ∈ Mf(ξ), because f−1[V ′] ⊆ f−1[V]
and ξ is an upset.

There is also an α-ary version Mα ofM that is defined analogously to Nα
where the monotonicity requirement becomes that if U ′

β ⊆ Uβ for all β ∈ α and
U ′ ∈ ξ then also U ∈ ξ. Similarly to the 1-ary case M1 = M one can check
that Mα f is well defined.

(x) The functor F 3
2 maps a set X to

F 3
2 X = {(x0, x1, x2) ∈ X3 | |{x0, x1, x2}| ≤ 2}

the set of all triples over X that consist of at most two distinct elements. A
function f : X → Y is mapped by F 3

2 as follows

F 3
2 f : F 3

2 X → F 3
2 Y,

(x0, x1, x2) 7→ (f(x0), f(x1), f(x2)).

This functor is important since it is relatively simple and can often be used
to construct counterexamples to seemingly obvious claims, due to its rather
particular properties.

A very important property of set functors for the theory of coalgebras is
weak pullback preservation. A functor T preserves weak pullbacks if it maps
every weak pullback P with projections πX : P → X and πY : P → Y of

7

function f : X → Z and g : Y → Z onto a weak pullback TP with projections
TπX : TP → TX and TπY : TP → TY of Tf : TX → TZ and Tg : TY → TZ.
In diagrams that means that every weak pullback diagram on the left side is
mapped to a weak pullback on the right side:

P
πY //

πX

��

Y

g

��
X

f // Z

TP
TπY //

TπX

��

TY

Tg

��
TX

Tf // TZ

Example 2.2. From the functors introduced in Example 2.1 only F 3
2 , Nα and

its monotone variant Mα do not preserve weak pullbacks. Products, coproducts
and composition of functors preserve weak pullbacks if all of their components
do. A way to find out whether a functor F preserves weak pullbacks is to check
whether its Barr extension F is functorial. This will be explained in Example
3.2 (vii).

A set functor T restricts to finite sets if TX is finite whenever X is. All the
functors mentioned here, expect infinite products, restrict to finite sets.

A set functor T is finitary if it satisfies for all sets X

TX =
⋃
{TιX′,X [TX ′] ⊆ TX | X ′ ⊂ X, X ′ is finite}.

The idea behind this definition is that finitary functors have the property that
in order to describe an element ξ ∈ TX one has to use only a finite amount of
information from the possibly infinite set X. This is important in the context
of modal logic because usually formulas are defined to be finite objects. Finite
functors have the property that every element in TX can be fully specified by
one single finite formula.

Example 2.3. (i) Examples of finitary functors are: the identity functor, the
constant functor C for any possibly infinite set C, finite products of finitary
functors, any coproduct of finitary functors or the F 3

2 functor. The powerset
functor P and neighborhood functors N andM are not finitary.

(ii) Every set functor T has a finitary version Tω that is defined such that it
maps a set X to

TωX =
⋃
{TιX′,X [TX ′] ⊆ TX | X ′ ⊆ X, X ′ is finite}.

A function f : X → Y is mapped by Tω to the function

Tωf : TωX → TωY,

ξ 7→ Tιf [X′],Y ◦ TfX′(ξ′),

where ξ′ ∈ TX ′ is such that ξ = ιX′,X(ξ′) for a finite X ′ ⊆ X and fX′ is
the function fX′ : X ′ → f [X ′], x′ 7→ f(x′). This is well-defined because the
following diagrams commutes for all X ′, X ′′ ⊆ X:

X ′
ιX′,X //

fX′

��

X

f

��

X ′′
ιX′′,Xoo

fX′′

��
f [X ′]

ιf[X′],Y // Y f [X ′′]
ιf[X′′],Yoo

8

It is immediate from the definition that TωX ⊆ TX for all sets X and that a
functor T that is already finitary is identical to Tω. In section 4 we will use Pω

a lot. On can see by instantiating the above definition that this functor maps a
set X to the set of all its finite subsets.

A set functor T is called standard if it preserves inclusions and all its
distinguished points are standard. That T preserves inclusions means that
TιX′,X = ιTX′,TX for all sets X ′ ⊆ X. Note that this in particular implies
that TX ′ ⊆ TX if X ′ ⊆ X. We do not explain the second condition, that
all distinguished points are standard. For a precise definition of distinguished
points consult [1, Chapter III, Definition 4.4] or [8, Appendix A]. All the functors
we are considering do not have any distinguished points that are not standard.

In [1, Chapter III, page 132] it is proved that for every set functor T there is
a standard functor Ts that is naturally isomorphic to it with the only possible
exception of the empty set. If one examines the proof more carefully, one finds
that the functor Ts that is constructed there is actually really isomorphic to T
in the case where T has no distinguished points that are not standard. Since we
are only looking at functors without non-standard distinguished points we can
assume that there is always a standard functor Ts naturally isomorphic to T .

The basic idea behind the construction of Ts in [1] is to associate with any
element ξ ∈ TX the pair (X, ξ). Then we identify pairs by the equivalence
relation

(X, ξ) ∼ (Y, υ) iff TιX,X∪Y (ξ) = TιY,X∪Y (υ).

The functor Ts is defined such that TsX = {[X, ξ] | ξ ∈ TX} where [X, ξ] is the
equivalence class of the pair (X, ξ) under the relation ∼. For the details of this
construction consult [1, Chapter III, pages 132-134]

It is also shown in [1, Chapter III, Proposition 4.6] that standard functors
distribute over finite intersections. That means that for all sets X and Y

T (X ∩ Y) = TX ∩ TY.

For a standard functor T we define for every set X the function

Base : TωX → PωX,

ξ 7→
⋂
{X ′ ⊆ X | ξ ∈ TX ′}.

This is well defined because ξ ∈ TωX which means that there is a finite X ′′ ⊆ X
such that ξ ∈ TX ′′. The definition is useful because for all ξ ∈ TωX we have
that Base(ξ) ∈ PωX is the least set U ∈ PωX such that ξ ∈ TU . To see that
ξ ∈ TBase(ξ) note that since ξ ∈ TX ′′ for a finite X ′′ ⊆ X we can write Base(ξ)
as the intersection of all the finitely many X ′ ⊆ X ′′ such that ξ ∈ TX ′. Now
because T preserves finite intersections and ξ is in all the finitely many TX ′ it
is also in the T of the intersection of those X ′, which is TBase(ξ). It is clear
from the definition of Base(ξ) that if ξ ∈ TBase(ξ) then Base(ξ) must also be
the least set with this property.

Example 2.4. One can check that all the functors we are using except Nα and
Mα are standard.

(i) The neighborhood functor is not standard. To verify this consider any
non-empty set X and an X ′ (X. Now take a ξ ∈ NX ′ such that X ′ ∈ ξ.

9

Clearly we have that ι−1
X′,X [X] = X ′ ∈ ξ. So it follows from the definition of N

on morphisms that X ∈ N ιX′,X(ξ). But X /∈ ξ because ξ ⊆ PX ′ and X ′ (X.
So ξ 6= N ιX,X′(ξ) which shows that N ιX,X′ 6= ιNX,NX′ .

(ii) One can use the same example as in (i) to see that M is not standard.
As we have mentioned above there is a standard functor Ms that is naturally
isomorphic toM.

2.3 Coalgebras

In the remaining parts of this section we define the basic notions from the theory
of coalgebras that we will use later. For a detailed introduction into coalgebras
see for example [16] and for the coalgebraic modal logic [15] or [21].

Fix a covariant set functor T . A T -coalgebra on a set X is a function
ξ : X → TX. The elements of X are called the states of ξ and the function ξ
is called the transition function. A T -coalgebra morphism from a T -coalgebra
ξ : X → TX to a T -coalgebra ζ : Z → TZ is a function f : X → Z that makes
the following diagram commute:

X
f //

ξ

��

Z

ζ

��
TX

Tf // TZ

The T -coalgebras together with the T -coalgebra morphisms are a category where
the identity arrow on one coalgebra ξ : X → TX is just the coalgebra morphism
idX : X → X and the composition of two arrows is the composition of the
underlying set functions.

Consider two states x0 in a T -coalgebra ξ : X → TX and y0 in υ : Y → TY .
The states x0 in ξ and y0 in υ are behaviorally equivalent if there exists a T -
coalgebra ζ and coalgebra morphisms f from ξ to ζ and g from υ to ζ such that
f(x0) = g(y0).

X

ξ

��

f

""EE
EE

EE
EE

E Y

υ

��

g

||yy
yy

yy
yy

y

TX

Tf ""EE
EE

EE
EE

Z

ζ

��

TY

Tg||yy
yy

yy
yy

TZ

Example 2.5. Many different structures from automata theory and modal
logic can be presented as coalgebra for some set functor. The following are
some particularly important examples.

(i) Kripke frames are P-coalgebras. This works because every relation R :
X → X can be presented as a function R[{−}] : X → PX that maps every point
to the set of its R-successors. One can also check that P-coalgebra morphisms
are exactly the bounded morphisms between Kripke frames and that two states
are bisimilar iff they are behaviorally equivalent.

Similarly one can represent Kripke models as coalgebras for the functor
P(P)× P− where P is a set of propositional letters.

10

(ii) Deterministic automata are coalgebras for the functor 2 × (−)C where
C is an alphabet. This functor associates with every state a truth value, that
is an element from the set 2, which indicates whether the state is terminating,
and a function from C into the set of states, which determines which state the
automaton moves into after reading a letter from the alphabet.

(iii) Neighborhood frames that are used as a semantics for classical modal
logics are coalgebras for the neighborhood functor N . Coalgebras for the mono-
tone neighborhood functor M are used in the semantics of monotone modal
logic. For more on coalgebras and monotone modal logic see [4].

A construction that we us later is the coproduct of coalgebras. Given T -
coalgebras ξi : Xi → TXi for every i ∈ I of an arbitrary index set I the
coproduct ξ =

∐
i∈I ξi is defined to be a T -coalgebra ξ : X → TX where

X =
∐

i∈I Xi =
⊎

i∈I Xi with

ξ(x) = TiXi
◦ ξi(x′), where x = iXi(x

′).

Here the iXi : Xi → X are the injections into the coproduct
∐

i∈I Xi in the
category of sets. The injection from ξi into ξ as the coproduct in the category
of T coalgebras is just the underlying set inclusions iX : Xi → X, which can
be shown to be a coalgebra morphisms. One can easily check that ξ has the
universal property of the coproduct in the category of T -coalgebras. In fact this
is just an instantiation of the more general fact that every category of coalgebras
has all colimits and that they are computed as in the category of sets.

A notion form coalgebraic modal logic that we are using later are predicate
liftings. Predicate liftings for a functor T were originally introduced in [14] to
define a modal logic for T -coalgebras that resembles the standard modal logic
with boxes and diamonds on Kripke frames. More about this can be found in
[14] but also the introductory texts [15] and [21].

An n-ary predicate lifting for a functor T is a natural transformation

λ : P̆n ⇒ P̆T.

The transposite λ[of predicate lifting λ for a functor T is the mapping that
is defined at a set X as

λ[
X : TX → Nn X = P̆P̆nX

ξ 7→ {U ∈ (P̆X)n | ξ ∈ λX(U)}.

An n-ary predicate lifting λ : P̆n ⇒ P̆T is monotone if Ui ⊆ U ′
i for all i ∈ n

implies that λ(U) ⊆ λ(U ′) for any U,U ′ ∈ (P̆X)n.

Proposition 2.6. If λ is an n-ary predicate lifting for T then:

(i) Its transposite λ[: T ⇒ Nn is a natural transformation.

(ii) If λ is monotone then the codomain of its transposite can be restricted to
Mn . That means λ[: T ⇒ Mn defined as above is well defined.

Proof. For (i) we need to show that the following diagram commutes for all
f : X → Y :

TX
λ[

X //

Tf

��

Nn X

Nn f

��
TY

λ[
Y // Nn Y

11

Because λ is a predicate lifting that is a natural transformation λ : P̆n ⇒ P̆T
we know that

P̆nX
λX // P̆TX

P̆nY

P̆nf

OO

λY // P̆TY

P̆Tf

OO

commutes. So we need that P̆P̆nf ◦ λ[
X(ξ) = λ[◦ Tf(ξ) for all ξ ∈ TX. The

two sets are the same because we have for all V ∈ P̆nY That

V ∈ P̆P̆nf ◦ λ[
X(ξ) iff V ∈ (P̆nf)−1[λ[

X(ξ)] Definition of P̆
iff P̆nf(V) ∈ λ[

X(ξ) Definition of (P̆nf)−1[−]

iff ξ ∈ λX(P̆nf(V)) Definition of λ[

iff ξ ∈ P̆Tf(λY (V)) λ natural transformation

iff Tf(ξ) ∈ λY (V) Definition of P̆
iff V ∈ λ[

Y (Tf(ξ)). Definition of λ[

For (ii) we need to check for an arbitrary ξ ∈ TX that the set

λ[
X(ξ) = {U ∈ (P̆X)n | ξ ∈ λX(U)} ∈ P̆P̆nX

is upwards-closed if λ is monotone. This is fairly obvious: Take U,U ′ ∈ P̆nX
such that Ui ⊆ U ′

i for all i ∈ n and assume that U ∈ λ[
X(ξ). That means that

ξ ∈ λX(U) ⊆ λX(U ′) where the inclusion holds by the monotonicity of λ. But
ξ ∈ λ(U ′) entails by the definition of λ[that U ′ ∈ λ[

X(ξ).

In order to avoid tiresome compatibility issues when dealing with multiple
monotone predicate liftings of possibly different finite arity it will be handy to
compose them with the natural transformation en : Mn ⇒ Mω defined by

en
X : Mn X → Mω

U 7→ (U0, U1, . . . , Un−1, ∅, ∅, . . .).

It is very straightforward to check that this indeed defines a natural transfor-
mation. With this we are going to write e ◦ λ[: T ⇒ Mω for en ◦ λ[where
λ : P̆n ⇒ P̆T is an n-ary natural transformation.

Next we define what a separating set of predicate liftings is. Intuitively a
set of natural transformations for a functor T is separating if it is expressive
enough to recognize every difference between elements in TX for any set X.

A family F of functions from X to Y is jointly injective if for any x, x′ ∈ X
we have that f(x) = f(x′) for all f ∈ F implies that x = x′. A set Λ of
predicate liftings for a functor T is separating if the set of functions {e ◦ λ :
TX → Mω X}λ∈Λ is jointly injective for every set X. That means that for all
ξ, ξ′ ∈ TX if e ◦ λ(ξ) = e ◦ λ(ξ′) for all λ ∈ Λ or equivalently, because e is
injective, if λ(ξ) = λ(ξ′) for all λ ∈ Λ then ξ = ξ′.

12

3 Relation Liftings and Bisimulations

In this section we use relation liftings for a functor T to define a very general
notion of bisimulation for T coalgebras. It turns out that relation liftings that
are lax extensions of T are particularly well-behaved. We discuss them in greater
detail in the third and forth part of this section.

3.1 Relation Liftings

Definition 3.1 (Relation Lifting). A relation lifting L for a set functor T is
a collection of relations LR for every relation R, such that LR : TX → TY if
R : X → Y . We require relation liftings to preserve converses, this means that
L(R◦) = (LR)◦ for all relations R.

The restriction that L preserves converses is not essential because all the
notions we are considering are symmetrical. Note that in the above definition
it matters what the domain and codomain of a relation are. It is possible to
have a relation lifting that sends two relations, that have the same graph but
different domain or codomain, to two different relations.

Example 3.2. (i) The Egli-Milner lifting P is a relation lifting for the covariant
powerset functor P that is defined such that PR : PX → PY for any R : X → Y
and (U, V) ∈ PR iff

• for all u ∈ U there is a v ∈ V such that (u, v) ∈ R (forth condition), and

• for all v ∈ V there is a u ∈ U such that (u, v) ∈ R (back condition).

A more concise way to write this is PR =
−→
PR ∩

←−
PR where we use the abbre-

viations
−→
PR = {(U, V) ∈ PX × PY | ∀u ∈ U.∃v ∈ V.(u, v) ∈ R},
←−
PR = {(U, V) ∈ PX × PY | ∀v ∈ V.∃u ∈ U.(u, v) ∈ R},

(ii) For the constant functor C of a fixed set C define a relation lifting C
such that for any R : X → Y

CR : C → C,

CR = ∆C .

(iii) Let I be an arbitrary index set. If for all i ∈ I Ti is a functor with
relation lifting Li then

∏
i∈I Li− defined on an R : X → Y as

∏
i∈I LiR :∏

i∈I TiX →
∏

i∈I TiY with

(ξ, υ) ∈
∏
i∈I

LiR iff (ξi, υi) ∈ LiR for all i ∈ I

is a relation lifting for the functor
∏

i∈I Ti−.
(iv) Let I be an arbitrary index set. If for all i ∈ I Ti is a functor with

relation lifting Li then
∐

i∈I Li− defined on an R : X → Y as
∐

i∈I LiR :∐
i∈I TiX →

∐
i∈I TiY with

(ξ, υ) ∈
∐
i∈I

LiR iff (ξ, υ) ∈ LiR for some i ∈ I

13

is a relation lifting for the functor
∐

i∈I Ti−.
(v) If T is a functor with relation lifting L and T ′ is a functor with relation

lifting L′ then L′ ◦L = L′L− defined on a R : X → Y as L′LR : T ′TX → T ′TY
is a relation lifting for T ′ ◦ T .

(vi) Recall the notation
−→
PR and

←−
PR from item (i). We can define a relation

lifting M̃ for the monotone neighborhood functor M on a relation R : X → Y
as

M̃R :MX →MY

M̃R =
−→
P
←−
PR ∩

←−
P
−→
PR.

One can also define the α-ary version of M̃ that maps an R : X → Y on

M̃α R : Mα X → Mα Y

M̃α R = {(ξ, υ) | ∀U ∈ ξ.∃V ∈ υ.∀β ∈ α.(Uβ , Vβ) ∈
←−
PR} ∩

{(ξ, υ) | ∀V ∈ υ.∃U ∈ ξ.∀β ∈ α.(Uβ , Vβ) ∈
−→
PR}.

Similar to M̃ there is also a relation lifting M̃s for Ms, the standardized
version of M. To define it, let i : Ms ⇒ M be the natural isomorphism that
witnesses thatM andMs are isomorphic. Now define M̃sR = iX ;M̃R ; i◦Y for
any relation R : X → Y .

(vii) Items (i) and (ii) are instances of a relation lifting that is definable for
arbitrary functors T . The Barr extension T of a functor T is a relation lifting
for T that defined on a relation R : X → Y with projections πX : R → X and
πY : R→ Y such that

TR = {(TπX(ρ), TπY (ρ)) | ρ ∈ TRgr}.

(viii) Another relation lifting that is definable for an arbitrary functor T

is the lifting T̂ , the introduction of which is attributed to Alexander Kurz in
[5]. To see how it is defined consider a relation R : X → Y with projections
πX : Rgr → X and πY : Rgr → Y . Let po(πX , πY) be the pushout of πX and
πY with projections pX : X → po(πX , πY) and pY : Y → po(πX , πY). With
these define

T̂R : TX → TY,

T̂R = {(ξ, υ) ∈ TX × TY | TpX(ξ) = TpY (υ)}.

3.2 Bisimulations

An important use of relation liftings is to yield a notion of bisimilarity.

Definition 3.3 (Bisimilarity). Let L be a relation lifting for the functor T and
ξ : X → TX and υ : Y → TY be two T -coalgebras. An L-bisimulation between
ξ and υ is a relation R : X → Y such that (ξ(x), υ(y)) ∈ LR for all (x, y) ∈ R.
An L-bisimulation between ξ and ξ is also called an L-bisimulation on ξ. An
L-bisimulation equivalence is a bisimulation on a single coalgebra that is also
an equivalence relation.

A state x of ξ is L-bisimilar to a state y of υ if there is an R : X → Y that
is an L-bisimulation between ξ and υ with (x, y) ∈ R. We also write -L for

14

the notion of L-bisimilarity between two fixed coalgebras that are given by the
context.

Remark 3.4. One can check that a relation R : X → Y is an L-bisimulation
between coalgebra ξ : X → TX and υ : Y → TY iff it satisfies the inequality

R ⊆ ξ ;LR ; υ◦.

A motivation to define a notion of L-bisimulation is to get a simpler charac-
terization of behavioral equivalence. Often it is easier to check whether there is
a bisimulation between two states than to find two coalgebra morphisms into a
third coalgebra that identify the states. Of course this only works for relation
liftings for which the notion of bisimilarity is the same as behavioral equivalence.

Definition 3.5. A relation lifting L for a functor T characterizes behavioral
equivalence if for any states x0 in a T -coalgebra ξ : X → TX and y0 in a
T -coalgebra Y → TY it holds that x0 -L y0 iff x0 and y0 are behaviorally
equivalent.

Example 3.6. (i) The Egli-Milner lifting P for the powerset functor P charac-
terizes behavioral equivalence and P-bisimulations are exactly the usual bisim-
ulations between Kripke frames.

(ii) The Barr extension T for a functor T from Example 3.2 (vii) characterizes
behavioral equivalence if T preserves weak pullbacks. This is a well-known fact
and a consequence of the more general Proposition 3.15 that we are proving
later.

There is also another definition of relations that are T -bisimulations that
does not make use of the notion of a relation lifting. One can check that a
relation R : X → Y with projections πX : R → X and ΠY : R → Y is a
T -bisimulation between coalgebra ξ : X → TX and υ : Y → TY iff there is a
map ρ : R→ TR such that the following diagram commutes:

X

ξ

��

Rgr
πXoo

ρ

��

πY // Y

υ

��
TX TRgr

TπXoo TπY // TY

(iii) One can construct a counterexample that shows that the Barr extension
F 3

2 of the functor F 3
2 does not characterizes behavioral equivalence. This entails

that F 3
2 does not preserve weak pullbacks.

(iv) The relation lifting T̂ characterizes behavioral equivalence for all the
functors we discuss except the neighborhood functor N . As for the Barr exten-
sion P there is an alternative definition of a T̂ -bisimulation. Let R : X → Y
be any relation with projections πX : Rgr → X and πY : Rgr → Y and let
Z = po(πX , πY) be the pushout of πX and πY with projections pX : X → Z

and pY : Y → Z. Then one can verify that R is a T̂ -bisimulation iff there is a

15

function ζ : Z → TZ such that the following diagram commutes:

Rgr

πX

||xxxxxxxx
πY

""EEEEEEEE

X
pX //

ξ

��

Z

ζ

��

Y
pYoo

υ

��
TX

TpX // TZ TY
TpYoo

(v) The relation lifting M̃ for the monotone neighborhood functorM charac-
terizes behavioral equivalence. For a detailed discussion of the different relation
liftings for M check [4, Section 4]. There one can also find an example that
shows that the Barr extensionM does not characterize behavioral equivalence,
which entails that M does not preserve weak pullbacks.

(vi) There is no relation lifting for the neighborhood functor N that charac-
terizes behavioral equivalence. This is shown by the counterexample in Propo-
sition 3.7 below. The argument there only shows that there is no relation lifting
that characterizes behavioral equivalence between two distinct N -coalgebras. It
is proved in [6] that on one single N -coalgebra the relation liftings N and N̂
characterize behavioral equivalence.

Proposition 3.7. There is no relation lifting for the neighborhood functor N
that characterizes behavioral equivalence.

Proof. For the proof we need the fact that for any two functions f : X → Z
and g : Y → Z we have that N f({∅}) 6= N g(∅). This holds because otherwise
we would get by unfolding the definition of N on functions that

∅ ∈ {W ⊆ Z | f−1[W] ∈ {∅}} f−1[∅] = ∅
= N f({∅}) definition of N
= N g(∅) assumption

= {W ⊆ Z | g−1[W] ∈ ∅} definition of N
= ∅. V /∈ ∅ for all V

This is clearly impossible.
Now assume for a contradiction that there is a relation lifting L such that

L characterizes behavioral equivalence of states in N coalgebras. Consider the
following example of a behavioral equivalence between coalgebras ξ : X → NX
where X = {x1, x2, x3} with x1 7→ {{x2}}, x2, x3 7→ {∅}, υ : Y → NY where
Y = {y1} with y1 7→ ∅ and ζ : Z → NZ with Z = {z1, z2} with z1 7→ ∅, z2 7→
{∅}. For these coalgebras the functions f : X → Z, x1 7→ z1, x2, x3 7→ z2 and
g : Y → Z, y1 7→ z1 are coalgebra morphisms from ξ to ζ and from υ to ζ.
One can easily check this by verifying that N f ◦ ξ = ζ ◦ f and N g ◦ υ = ζ ◦ g.
Because f(x1) = g(y1) this shows that x1 and y1 are behaviorally equivalent.

16

The situation is depicted in the following figure:

∅

{{x2}} x1oo f // z1

OO

y1 //goo ∅

{∅} x2oo f // z2

��
x3

bbFFFFFFFFF

f

88

{∅}

It follows from the assumption that L characterizes behavioral equivalence
that there is an L-bisimulation R : X → Y such that (x1, y1) ∈ R. Moreover we
can show that (x2, y1), (x3, y1) /∈ R. We do this for (x2, y1) since the argument
for (x3, y1) is similar. So suppose (x2, y1) ∈ R. This means that x2 and y1

are L-bisimilar. Hence because L characterizes behavioral equivalence there are
coalgebra morphisms h from ξ to ζ and l from υ to ζ such that h(x2) = l(y1).
Because h and l are coalgebra morphisms we get that

Nh({∅}) = Nh ◦ ξ(x2) = ζ ◦ h(x2) = ζ ◦ l(y1) = N l ◦ υ(y1) = N l(∅).

But we showed that this can not be the case. So it follows that R = {(x1, y1)}
and because R is an L-bisimulation that ({{x2}}, ∅) = (ξ(x1), υ(y1)) ∈ LR.

Next we modify the example a little by replacing ξ with the coalgebra ξ′ :
X → NX, x1 7→ {{x2}}, x2 7→ {∅}, x3 7→ ∅. We still have that (ξ′(x1), υ(y1)) =
({{x2}}, ∅) ∈ LR which entails that R = {(x1, y1)} is an L-bisimulation between
x1 in ξ′ and y1 in υ. Because L characterizes behavioral equivalence it follows
that there is a coalgebra ζ : Z → NZ and there are coalgebra morphisms h
from ξ to ζ and k from υ to ζ such that h(x1) = k(y1). Because h and k are
coalgebra morphism this implies that

Nh({{x2}}) = Nh ◦ ξ(x1) = ζ ◦ h(x1) = ζ ◦ k(y1) = Nk ◦ υ(y1) = Nk(∅).

By writing out the definition of N one can see that this means

h−1[C] ∈ {{x2}} iff k−1[C] ∈ ∅ for all C ⊆ Z.

Because the right hand side is never true it follows that h−1[C] 6= {x2} for all
C ⊆ Z. In the special case C = {h(x2)} this becomes h−1[{h(x2)}] 6= {x2}.
Certainly x2 ∈ h−1[{h(x2)}] so it follows that also x1 ∈ h−1[{h(x2)}] or x3 ∈
h−1[{h(x2)}]. Thus h(x2) = h(x1) or h(x2) = h(x3). Using that h and k are
coalgebra morphisms we can calculate in the former case that

Nh({∅}) = Nh ◦ ξ′(x2) = ζ ◦ h(x2) = ζ ◦ h(x1) = ζ ◦ k(y1) = Nk ◦ υ(y1)
= Nk(∅)

and in the latter case that

Nh({∅}) = Nh ◦ ξ′(x2) = ζ ◦ h(x2) = ζ ◦ h(x3) = Nh ◦ ξ′(x3) = Nk(∅).

Hence Nh({∅}) = Nk(∅), which, as argued above, can not hold.

17

The next Proposition describes the construction of bisimulation quotients
for a wide class of relation liftings.

Proposition 3.8 (Bisimulation Quotient). Let L be a relation lifting for a
functor T satisfying the condition that

L(p ; p◦) ⊆ Tp ; (Tp)◦ for all surjective p : X → Y (1)

and let the relation E : X → X be an L-bisimulation equivalence on a coalgebra
ξ : X → TX. Then there is a transition function δ : X/E → T (X/E) such that
the projection p : Z → Z/E is a coalgebra morphism from ξ to δ.

Proof. The projection is defined as

p : X → X/E,

x 7→ [x]

where [x] is the equivalence class of x ∈ X under the equivalence relation E.
This map is clearly surjective and we have that E = p ; p◦.

We intend to define the transition function δ on X/E as

δ : X/E → T (X/E),
[x] 7→ Tp ◦ ξ(x).

With this definition of δ it holds that δ ◦ p = Tp ◦ ξ which means that p is a
coalgebra morphism from ξ to δ as required. But we have to show that δ is
well defined. To prove this we need that Tp ◦ ξ(x) = Tp ◦ ξ(x′) for arbitrary
x, x′ ∈ X with (x, x′) ∈ E. Because E is an L-bisimulation it follows that
(ξ(x), ξ(x′)) ∈ LE and moreover

LE = L(p ; p◦) E = p ; p◦

⊆ Tp ; (Tp)◦. (1)

So we get (ξ(x), ξ(x′)) ∈ Tp ; (Tp)◦ which entails Tp ◦ ξ(x) = Tp ◦ ξ(x′).

3.3 Lax Extensions

In this part introduce lax extensions. These are relation liftings satisfying cer-
tain conditions that make them well-behaved. We prove some general properties
of lax extensions and show that they characterize behavioral equivalence. For
some additional discussion of lax extensions we refer to [19]. Lax extension have
also been studied under the name ‘monotone relator’ in [20, Section 2.1] and
very recently in [12, Definition 6], where they are just called ‘relators’. In [20]
it is additionally required that composition of relation is preserved, that means
= instead of ⊆ in our condition (L2) of Definition 3.9, but it is noted in [20]
that the ⊇-inclusion can be omitted for most of the proofs. Both [20] and [12]
use a different set of conditions in their definitions, but it can be checked that
they are equivalent to our Definition 3.9.

Definition 3.9. A relation lifting L for a functor T is a lax extension of T if it
satisfies the following conditions for all relations R,R′ : X → Z and S : Z → Y ,
and functions f : X → Z:

18

(L1) R′ ⊆ R implies LR′ ⊆ LR,

(L2) LR ;LS ⊆ L(R ;S),

(L3) Tf ⊆ Lf .

We say that a lax extension L preserves diagonals if it additionally satisfies:

(L4) L∆X ⊆ ∆TX .

We require only the inclusion of (L4) for a lax extension to preserve diagonals.
This is justified because condition (L4) implies together with condition (L3) that
L∆X = ∆TX . The proof of this is in the following Proposition which states some
basic properties of lax extensions.

Proposition 3.10. If L is a lax extension of T then for all functions f : X → Z,
g : Y → Z and relations R : X → Z, S : Z → Y :

(i) ∆TX ⊆ L∆X ,

(ii) Tf ;LS = L(f ;S) and LR ; (Tg)◦ = L(R ; g◦),

and if L preserves diagonals then

(iii) L∆X = ∆TX and Lf = Tf .

(iv) Tf ; (Tg)◦ = L(f ; g◦),

Proof. For (i) recall that we identify a function with the relation of its graph.
So we have that ∆X = idX and we can calculate

∆TX = idTX = T idX T functor
⊆ LidX = L∆X . (L3)

The⊆-inclusion of Tf ;LS = L(f ;S) in (ii) holds because Tf ;LS ⊆ Lf ;LS ⊆
L(f ;S) where the first inclusion is condition (L3) and the second inclusion is
(L2). For the ⊇-inclusion consider

L(f ;S) ⊆ Tf ; (Tf)◦ ;L(f ;S) ∆TX ⊆ Tf ; (Tf)◦

⊆ Tf ; (Lf)◦ ;L(f ;S) (L3)
⊆ Tf ;Lf◦ ;L(f ;S) preservation of converses
⊆ Tf ;L(f◦ ; f ;S) (L2)
⊆ Tf ;LS. f◦ ; f ⊆ ∆Y and (L1)

For LR ; (Tg)◦ = L(R ; g◦) we can use the same argument and the fact that L
preserves converses.

For (iv) and (iii) first notice that if L preserves diagonals then L∆X = ∆TX

because of (L4) and (i).
The equation Tf = Lf from (iii) holds because of

Lf = L(f ;∆X)
= Tf ;L∆X (ii)
= Tf. L∆X = ∆TX

19

The claim (iv) holds because

Tf ; (Tg)◦ = Tf ;L∆X ; (Tg)◦ ∆TX = L∆X

= L(f ;∆X ; g◦) (ii) twice
= L(f ; g◦).

Example 3.11. (i) It is easy to see that the Barr extension T of a functor T
satisfies (L1). We can also show that Tf = Tf for all function f : X → Y .
This means that T satisfies (L3) and (L4). For a proof consider the follow-
ing commutative diagram and note that the projection πX : fgr → X is an
isomorphism.

Tfgr

TπX

��

TπY

##FFFFFFFF

TX
Tf

// TY

Condition (L2) for Barr extensions is more difficult. One can show that that
TR ;TS = T (R ;S) for all relations R : X → Z and S : Z → Y iff T preserves
weak pullbacks. See for example [10, Fact 3.6] for a proof of this claim. The
⊆-inclusion of this proof really uses that T preserves weak pullbacks and we do
not have an example of a functor T that does not preserve weak pullbacks for
which T still satisfies (L2).

Also note that the condition TR ;TS = T (R ;S) for all relations R : X → Z
and S : Z → Y is very strong. Together with Tf = Tf for all function
f : X → Y it means that T is a functor from Rel to Rel that extends T . Such
an extension of a functor T is unique if it exists because for every relation
R : X → Y with projections πX : Rgr → X and πY : Rgr → Y we have that

TR = T (π◦X ;πY) R = π◦X ;πY

= Tπ◦X ;TπY TR ;TS = T (R ;S)

= T (π◦X) ;TπY . T f = Tf

(ii) The relation lifting M̃ as defined in Example 3.2 (vi) for the monotone
neighborhood functor M is a lax extension that preserves diagonals. It is easy
to check the conditions (L1) and (L2). To check (L3) we show that (ξ,Mf(ξ)) ∈
M̃f for all functions f : X → Y and ξ ∈ MX. First pick any U ∈ ξ. Then
we clearly have that (U, f [U]) ∈

←−
P f which shows (ξ,Mf(ξ)) ∈

−→
P
←−
P f . Now

take any V ∈ Mf(ξ). That means that f−1[V] ∈ ξ and for this we have
(f−1[V], V) ∈

−→
P f , and hence (ξ,Mf(ξ)) ∈

←−
P
−→
P f . To check condition (L4) we

prove that ξ ⊆ ξ′ for any (ξ, ξ′) ∈ M̃∆X . A similar argument shows ξ ⊇ ξ′ and
hence (ξ, ξ′) ∈ ∆MX . So take any U ∈ ξ. It follows that there is a U ′ ∈ ξ′ such
that (U,U ′) ∈

←−
P∆X . This means that U ⊇ U ′ and because ξ′ is an upset we

get that U ∈ ξ′.
One can also check that M̃s is a lax extension forMs and preserves diago-

nals. One can verify this fact directly but it is also a consequence of Proposition
3.18 that we prove later and the fact that, already using the terminology from

20

Definition 3.17, the relation lifting M̃s = M̃{i} is the initial lift of M̃ along {i}
where i :Ms →M is the natural isomorphism betweenMs andM.

(iii) The product of lax extensions as defined in Example 3.2 (iii) is a lax
extension. It preserves diagonals if all of its factors preserve diagonals.

(iv) The coproduct of lax extensions as defined in Example 3.2 (iv) is a lax
extension. It preserves diagonals if all of its summands preserve diagonals.

(v) The compositions of two lax extensions as defined in Example 3.2 (v)
is a lax extension. It preserves diagonals if the two composed lax extensions
preserve diagonals.

(vi) The F 3
2 functor has a lax extension L3

2 that preserves diagonals. L3
2 is

defined componentwise. That means for a relation R : X → Y we have that

L3
2R : F 3

2 X → F 3
2 Y,

L3
2R = {((x0, x1, x2), (y0, y1, y2)) | (x0, y0), (x1, y1), (x2, y2) ∈ R}.

It is straightforwards to verify that L3
2 satisfies conditions (L1), (L2), (L3) and

(L4).

The next proposition shows that for a lax extension for a standard functor
it does not really matter what the domain and codomain of a relation are.

Proposition 3.12. For any lax extension L of a standard functor T we have
that for all relations R : X → Y and sets X ′ ⊆ X and Y ′ ⊆ Y

L(R�X′×Y ′) = (LR)�TX×TY .

Proof. We can rewrite the restriction as R�X′×Y ′= ιX′,X ;R ; ι◦Y ′,Y where ιX′,X :
X ′ → X and ιY ′,Y : Y ′ → Y are inclusions. Then it follows for a lax extension
L of a standard functor T that

L(R�X′×Y ′) = L(ιX′,X ;R ; ι◦Y ′,Y)

= TιX′,X ;LR ; (TιY ′,Y)◦ Proposition 3.10 (ii)
= ιTX′,TX ;LR ; ι◦TY ′TY T standard
= (LR)�TX′×TY ′ .

The conditions (L1), (L2) and (L3) of a lax extension L directly entail useful
properties of L-bisimulations. The condition (L1) ensures that the union of L-
bisimulations is again an L-bisimulation, (L2) yields that the composition of
L-bisimulations is an L-bisimulation and because of (L3) coalgebra morphisms
are L-bisimulations. This facts are summarized in the following Proposition.

Proposition 3.13. For a lax extension L of T and T -coalgebras ξ : X → TX,
υ : Y → TY and ζ : Z → TZ it holds that

(i) The graph of every coalgebra morphism f from ξ to υ is an L-bisimulation
between ξ and υ.

(ii) If R : X → Z respectively S : Z → Y are L-bisimulations between ξ and
ζ respectively ζ and υ then R ;S : X → Y is an L-bisimulation between ξ
and υ.

21

(iii) Every arbitrary union of L-bisimulations between ξ and υ is again an L-
bisimulation between ξ and υ.

Proof. For claim (i) we have to show that (ξ(x), υ(y)) ∈ Lf for arbitrary (x, y) ∈
f . Since f is a function (x, y) ∈ f means just y = f(x). Applying υ on both
sides yields υ(y) = υ ◦ f(x) = Tf ◦ ξ(x) where the latter equality holds because
f is a coalgebra morphism. It follows that (ξ(x), υ(y)) ∈ Tf ⊆ Lf by (L3).

For claim (ii) we show (ξ(x), υ(y)) ∈ L(R ;S) for any (x, y) ∈ R ;S. From
the choice of x and y we get a z ∈ Z such that (x, z) ∈ R and (z, y) ∈ S.
Because R and S are L-bisimulations it follows that (ξ(x), ζ(z)) ∈ LR and
(ζ(z), υ(y)) ∈ LS. Hence (ξ(x), υ(y)) ∈ LR ;LS ⊆ L(R ;S) where the inclusion
is condition (L2) from the definitions of lax extensions.

For claim (iii) let R be a set of L-bisimulations between ξ and υ. Now pick
an arbitrary (x, y) ∈

⋃
R. We need to show that (ξ(x), υ(y)) ∈ L(

⋃
R). From

(x, y) ∈
⋃
R it follows that there is an R ∈ R such that (x, y) ∈ R. Because R is

an L-bisimulation we get that (ξ(x), υ(y)) ∈ LR ⊆ L(
⋃
R) where the inclusions

holds by the monotonicity (L1) of lax extensions and the fact that R ⊆
⋃
R.

Corollary 3.14. Let L be a lax extension for T and ξ : X → TX and υ : Y →
TY be two T -coalgebras. The relation of L-bisimilarity -L : X → Y between
two coalgebras is an L-bisimulation between ξ and υ. Moreover the relation of
L-bisimilarity -L : X → X on one single coalgebra ξ is an equivalence relation.

Proof. The relation -L : X → Y can in the following way be written as a union
of L-bisimulations between ξ and υ:

-L =
⋃
{R : X → Y | R is an L-bisimulation between ξ and υ}.

Hence it follows by Proposition 3.13 (iii) that -L is an L-bisimulation between
ξ and υ.

To check that L-bisimilarity -L : X → X on one single coalgebra ξ is an
equivalence relation we need that it is reflexive, symmetric and transitive. For
reflexivity observe that the graph of the coalgebra morphism idX from ξ to ξ is
an L bisimulation by claim (i) of Proposition 3.13. Symmetry follows from the
assumption that all relation liftings we consider preserve converses. Transitivity
follows by claim (ii) of Proposition 3.13.

We can now prove that lax extensions that preserve diagonals characterize
behavioral equivalence.

Proposition 3.15. If L is a lax extension for T that preserves diagonals then
a state x0 in a T -coalgebra ξ : X → TX and a state y0 in a T -coalgebra
υ : Y → TY are behaviorally equivalent iff they are L-bisimilar.

Proof. For the direction from left to right assume that x0 and y0 are behaviorally
equivalent. That means that there are T -coalgebra ζ : Z → TZ and coalgebra
morphisms f from ξ to ζ and g from υ to ζ such that f(x0) = g(y0). To
see that x0 and y0 are L-bisimilar observe that by Proposition 3.13 (i) (ii) the
relation f ; g◦ : X → Y is an L-bisimulation between ξ and υ because it is
the composition of graphs from morphisms. This implies that x0 and y0 are
L-bisimilar because (x0, y0) ∈ f ; g◦.

22

For the other direction we show that given any L-bisimulation R : X → Y
between ξ and υ and (x, y) ∈ R then there is a coalgebra ζ : Z → TZ and
coalgebra morphisms f from ξ to ζ and g from υ to ζ such that f(x) = g(y).

Consider first the coproduct ξ + υ : X + Y → T (X + Y) of ξ and υ with
iX : X → X + Y and iY : Y → X + Y as injections. Next define the relation
R′ : (X + Y) → (X + Y) with R′ = i◦X ;R ; iY . By Proposition 3.13 we know
that the graphs of the coalgebra morphisms iX and iY are L-bisimulations and
that the composition of L-bisimulations is an L-bisimulation. Therefore R′ is
an L-bisimulation on ξ + υ and witnesses the bisimilarity of iX(x) and iY (y).

Now let -L : (X + Y)→ (X + Y) be L-bisimilarity on ξ + υ. By Corollary
3.14 -L is an L-bisimulation equivalence on ξ +υ. Because L is a lax extension
we have by Proposition 3.10 (iv) that L(p ; p◦) ⊆ Tp ; (Tp)◦ for all surjective
p : X → Y and so can apply Proposition 3.8 to a ζ : Z → TZ where Z =
(X + Y)/-L that is the bisimulation quotient of ξ + υ by the relation -L such
that the projection p : (X + Y)→ Z is a coalgebra morphism from ξ + υ to ζ.

Let f = p ◦ iX : X → Z and g = p ◦ iY . Clearly f is a coalgebra morphism
from ξ to ζ and g is one from υ to ζ. Moreover they identify x and y because

f(x) = p ◦ iX(x) = [iX(x)] = [iY (y)] iX(x) -L iY (y)
= p ◦ iY (y) = g(y).

Remark 3.16. From Proposition 3.15 and Proposition 3.7 it follows that there
is no lax extension that preserves diagonals for the neighborhood functor N .

3.4 Lax Extensions of Finitary Functors

The goal of this subsection is to prove Theorem 3.26 which says that a finitary
functor has a lax extension that preserves diagonals iff it has a separating set of
monotone predicate liftings. For the right to left direction we use the following
construction from [19].

Definition 3.17. Let L be a relation lifting for a set functor T , and a set
Λ = {λ : T ′ → T}λ∈Λ of natural transformations from an other set functor T ′

to T . Then we can define a relation lifting LΛ for T called the initial lift of L
along Λ as

LΛR =
⋂
λ∈Λ

(λX ;LR ;λ◦Y) , for all sets X, Y and R : X → Y.

Another way to write the above definition of LΛR : T ′X → T ′Y is

LΛR = {(ξ, υ) ∈ T ′X × T ′Y | (λX(ξ), λY (υ)) ∈ LR for all λ ∈ Λ}.

The good thing about the initial lift construction is that it preserves lax
extensions.

Proposition 3.18. Let Λ = {λ : T ′ ⇒ T}λ∈Λ be a set of natural transforma-
tions from a set functor T ′ to a set functor T and let L be a relation lifting for
T . Then LΛ is a lax extension for T ′ if L is a lax extension for T . Moreover
if {λX : T ′X → TX}λ∈Λ is jointly injective at every set X and L preserves
diagonals then LΛ preserves diagonals.

23

Proof. We need to show that the conditions of the definition of a lax extension
are preserved along initial lifts. For (L1) take two relations R,R′ : X → Y with
R′ ⊆ R. From the assumption that L satisfies (L1) we get LR′ ⊆ LR. Because
composition and joins of relations clearly preserve order we can calculate

LΛR′ =
⋂
λ∈Λ

(λX ;LR′ ;λ◦Y) ⊆
⋂
λ∈Λ

(λX ;LR ;λ◦Y) = LΛR.

For condition (L2) of the definition of lax extensions assume that LR ;LS ⊆
L(R ;S). Then consider

LΛR ;LΛS =
⋂
λ∈Λ

(λX ;LR ;λ◦Y) ;
⋂
λ∈Λ

(λY ;LS ;λ◦Z)

⊆
⋂
λ∈Λ

(λX ;LR ;λ◦Y ;λY ;LS ;λ◦X) basic set theory

⊆
⋂
λ∈Λ

(λX ;LR ;LS ;λ◦X) λ◦Y ;λY ⊆ ∆TY

⊆
⋂
λ∈Λ

(λX ;L(R ;S) ;λ◦X) assumption

= LΛ(R ;S).

For preservation of condition (L3) assume that Tf ⊆ Lf for a function
f : X → Y . We show that then T ′f ⊆ LΛf . Because the λ ∈ Λ are natural
transformations we have that T ′f ;λY = λX ;Tf . Composing with λ◦Y from
right yields T ′f ⊆ λX ;Tf ;λ◦Y because ∆T ′Y ⊆ λY ;λ◦Y . From the assumption
it follows that T ′f ⊆ λX ;Lf ;λ◦Y for all λ ∈ Λ. Hence

T ′f ⊆
⋂
λ∈Λ

(λX ;LR ;λ◦Y) = LΛf.

In order to prove that LΛ preserves diagonals, if L does and {λX : T ′X →
TX}λ∈Λ is jointly injective at every set X, we show that (L4) is preserved from
L to LΛ. For this we first show that if {λX : T ′X → TX}λ∈Λ is jointly injective
at every set X then ⋂

λ∈Λ

(λX ;λ◦X) = ∆T ′X . (2)

For the ⊆-inclusion take ξ, ξ′ ∈ T ′X with (ξ, ξ′) ∈
⋂

λ∈Λ (λX ;λ◦X). That means
that λX(ξ) = λX(ξ′) for every λ ∈ Λ. Because the predicate liftings in Λ
are jointly injective this implies that ξ = ξ′ and hence (ξ, ξ′) ∈ ∆TX . The
⊇-inclusion follows from the general fact that f ; f◦ ⊇ ∆TX for any function f .

Now assume L∆X ⊆ ∆TX . It follows that LΛ∆X ⊆ ∆T ′X because

LΛ∆X =
⋂
λ∈Λ

(λX ;L∆X ;λ◦X) definition

⊆
⋂
λ∈Λ

(λX ;∆TX ;λ◦X) assumption

=
⋂
λ∈Λ

(λX ;λ◦X) ∆TX neutral element

= ∆T ′X . (2)

24

For the direction from left to right from Theorem 3.26 we are going to
define the so called Moss liftings. It is shown in [11] that if we consider the
Barr extension of a weak pullback preserving functor then the Moss liftings are
monotone predicate liftings. Here we check that the argument also works for
lax extensions.

The first ingredient that is needed to define the Moss liftings is the following
natural transformation.

Definition 3.19. Given a lax extension L of a functor T we define for every
set X the map

λL
X : T P̆X → P̆TX,

Ξ 7→ {ξ ∈ TX | (ξ,Ξ) ∈ L∈X},

Proposition 3.20. For a lax extension L the mapping λL : T P̆ ⇒ P̆T is a
natural transformation.

Proof. We have to verify that the following diagram commutes for any function
f : X → Y :

T P̆X
λL

X // P̆TX

T P̆Y

T P̆f

OO

λL
Y // P̆TY

P̆Tf

OO (3)

First observe that
L∈X ; (T P̆f)◦ = Tf ;L∈Y . (4)

This is shown by the calculation

L∈X ; (T P̆f)◦ = L
(
∈X ; (P̆f)◦

)
Proposition 3.10 (ii)

= L(f ;∈Y) (∗)
= Tf ;L∈Y . Proposition 3.10 (ii)

Here (∗) follows from the equality ∈X ; (P̆f)◦ = f ;∈Y , which holds because by
the definition of P̆ we have that x ∈X P̆f(V) = f−1[Y] iff f(x) ∈Y V for all
x ∈ X and V ⊆ Y .

In order to check the commutativity of (3) take an Υ ∈ T P̆Y . We need that
P̆Tf ◦λL

Y (Υ) = λL
X ◦T P̆f(Υ). This holds because for any ξ ∈ TX we have that

ξ ∈ λL
X ◦ T P̆f(Υ) iff (ξ, T P̆f(Υ)) ∈ L∈X definition of λL

iff (ξ,Υ) ∈ L∈X ; (T P̆f)◦ basic set theory
iff (ξ,Υ) ∈ Tf ;L∈Y (4)
iff (Tf(ξ),Υ) ∈ L∈Y basic set theory

iff Tf(ξ) ∈ λL
Y (Υ) definition of λL

iff ξ ∈ (Tf)−1[λL
Y (Υ)] = P̆Tf ◦ λL

Y (Υ). definition of P̆

The second mathematical object we need to define the Moss liftings is a
finitary presentation of the functor T .

25

Definition 3.21. A finitary presentation (Σ, E) of a functor T is a functor Σ
of the form

ΣX =
∐
n∈ω

Σn ×Xn

together with a surjective natural transformation E : Σ⇒ T .

One can show, as we do in Example 3.22 (ii), that every finitary functor has
a finitary presentation. A finitary presentation of T allows us to capture all the
information in the sets TX for a possibly very complex functor T by means of a
relatively simple polynomial functor Σ. This is, because for every ξ ∈ TX there
is at least one (r, u) ∈ Σn ×Xn for an n ∈ ω for which ξ = EX(r, u) and that
behaves in a similar way as ξ, since E is a natural transformation.

Example 3.22. (i) The standard presentation of the finitary powerset functor
Pω is defined as Σ =

∐
n∈ω(−)n and

EX :
∐
n∈ω

Xn → PωX,

U 7→ {Ui ∈ X | i ∈ n}. where U ∈ Xn for an n ∈ ω

It is obvious that EX is surjective for every set X and one can easily verify that
E is a natural transformation.

(ii) The next example shows that every finitary functor has a finitary pre-
sentation. The canonical presentation of a finitary functor T is defined such
that Σn = Tn for every cardinal n ∈ ω and E is defined at a set X as

EX :
∐
n∈ω

Tn×Xn → TX,

(ν, U) 7→ TU(ν). where ν ∈ Tn and U ∈ Xn for an n ∈ ω

In this definition we take U ∈ Xn to be a map U : n → X. To show that
this is indeed a finitary presentation of T we have to check that E is a natural
transformation and surjective for every set X.

For the naturality of E take any function f : X → Y and any element
(ν, U) ∈ Tn×Xn for any n ∈ ω. Then we calculate

Tf ◦ EX(ν, U) = Tf ◦ TU(ν) definition of E

= T (f ◦ U)(ν) T functor
= EY (ν, f ◦ U) definition of E

= EY ◦ Σf(ν, U). definition of Σ on functions

To see that EX is surjective pick any ξ ∈ TX. Because T is finitary that
means that there is a finite X ′ ⊆ω X and a ξ′ ∈ TX ′ such that ξ = TιX′,X(ξ′).
Because X ′ is finite there is an n ∈ ω with a bijection b : X ′ → n. Now we claim
that (Tb(ξ′), ιX′,X ◦ b−1) ∈ Tn×Xn is mapped by EX to ξ. This is proved by
the calculation

EX(Tb(ξ′), ιX′,X ◦ b−1) = T (ιX′,X ◦ b−1)(Tb(ξ′)) definition of E

= T (ιX′,X ◦ b−1 ◦ b)(ξ′) T functor

= TιX′,X(ξ′) b−1 ◦ b = idX′

= ξ. T ιX′,X(ξ′) = ξ

26

The next Lemma shows how a lax extension for T interacts with a finitary
presentation of T . This Lemma is similar to one direction of [11, Lemma 6.3]
where this result is proved for the Barr extension. One can use the lax extension
L3

2 of F 3
2 to construct an example which shows that the back direction of [11,

Lemma 6.3] does not hold for lax extensions in general.

Lemma 3.23. Let (Σ, E) be a presentation of a finitary functor T , let L be
a lax extension for T and let R : X → Y be any relation. Then for all n ∈
ω, r ∈ Σn, u ∈ Xn and v ∈ Y n we have that if uiRvi for all i ∈ n then
(EX(r, u), EY (r, v)) ∈ LR.

Proof. Let πY : R → X and πY : R → Y be the projections of R. For these
it holds that R = π◦X ;πY . Because (ui, vi) ∈ R for all i ∈ n we have that
ρ = (r, ((u0, v0), (u1, v1), . . . , (un−1, vn−1))) ∈ ΣRgr. With the definition of Σ
on morphisms it holds that ΣπX(ρ) = (r, u) and ΣπY (ρ) = (r, v). The following
two diagrams commute because E : Σ⇒ T is a natural transformation

ΣRgr
ERgr //

ΣπX

��

TRgr

TπX

��
ΣX

EX // TX

ΣRgr
ERgr //

ΣπY

��

TRgr

TπY

��
ΣY

EY // TY

We can use this to get that EX(r, u) = EX(ΣπX(ρ)) = TπX(ER(ρ)) and
EY (r, v) = EY (ΣπY (ρ)) = TπY (ER(ρ)). It is entailed by this identities that
(EX(r, u), ER(ρ)) ∈ (TπX)◦ and that (ER(ρ), EY (r, v)) ∈ TπY . So we obtain

(EX(r, u), EY (r, v)) ∈ (TπX)◦ ; (TπY) ⊆ Lπ◦X ;LπY (L3)
⊆ L(π◦X ;πY) = LR. (L2)

Definition 3.24. Given a finitary functor T and a lax extension L for T take
any finitary presentation (Σ, E) of T according to Definition 3.21 and let λL

be the natural transformation of Definition 3.19. For every r ∈ Σn of any
n ∈ ω the Moss lifting of r is an n-ary predicate lifting for T that is defined as
µp : P̆n ⇒ P̆T, µr = λL ◦EP̆(r,−). This definition yields the following diagram
for every set X:

(P̆X)n
EP̆X(r,−) //

µp
X ((PPPPPPPPPPPP T P̆X

λL
X

��
P̆TX

Proposition 3.25. The Moss liftings of a functor T with finitary presentation
(Σ, E) and lax extension L are monotone.

Proof. Take any Moss lifting µr = λL ◦EP̆(p,−) : P̆n ⇒ P̆T of a r ∈ Σn for an
n ∈ ω. Now assume we have U,U ′ ∈ (P̆X)n for any set X such that Ui ⊆ U ′

i for
all i < n. To prove that µr is monotone we need to show that µr

X(U) ⊆ µr
X(U ′).

So pick any ξ ∈ µr
X(U) = λL

X ◦ EP̆X(r, U). By the definition of λL this
means that (ξ, EP̆X(r, U)) ∈ L∈X . Moreover we get from the assumption that

27

Ui ⊆ U ′
i for all i ∈ n with Lemma 3.23 that (EP̆X(r, U), EP̆X(r, U ′)) ∈ L(⊆).

Putting this together yields

(ξ, EP̆X(r, U ′)) ∈ L∈X ;L(⊆) ⊆ L(∈X ; (⊆)) (L2)
⊆ L∈X . (L1)

For the last inequality we need that ∈X ; (⊆) ⊆ ∈X which is immediate from
the definition of subsets. So we have that (ξ, EP̆X(r, U ′)) ∈ L∈X and hence by
the definition of λL that ξ ∈ λL

X ◦ EP̆X(r, U ′) = µr
X(U ′).

Theorem 3.26. Let T be a finitary functor. Then T has a lax extension that
preserves diagonals iff there is a separating set of monotone predicate liftings
with finite arity for T .

Proof. We first show the direction from right to left. So assume we have a
separating set Λ of monotone predicate liftings with finite arity for T . By
Proposition 2.6 (ii) the monotonicity of λ ∈ Λ entails that we can consider
λ[: T → Nn to have codomain Mn . That Λ is separating, means that the set of
functions {eX ◦λ[

X : TX ⇒ Mω X}λ∈Λ, where e : Mn ⇒ Mω is the embedding
as defined in section 2.3, is jointly injective at every set X. Therefore we can
apply Proposition 3.18 for the set Γ = {e ◦ λ[: T ⇒ Mω }λ∈Λ and get that the
initial lift (M̃ω)Γ of M̃ω along Γ as defined in Definition 3.17 is a lax extension
for T that preserves diagonals.

For the other direction we assume that T has a lax extension L. Because
T is finitary it has a finitary presentation (Σ, E) as demonstrated in Example
3.22 (ii). With this we can consider the set of all the Moss liftings as defined in
Definition 3.24:

M = {µr = λL ◦ E(r,−) | r ∈ Σn, n ∈ ω}.

By Proposition 3.25 we know that the Moss liftings are monotone. So it only
remains to show that the set M is separating. To do this take ξ, ξ′ ∈ TX for
an arbitrary set X such that (µr)[

X(ξ) = (µr)[
X(ξ′) for all r ∈ Σn of all n ∈ ω.

We have to show that ξ = ξ′. By the definition of the transposite of a natural
transformation it follows that for all n ∈ ω and r ∈ Σn

{U ∈ (P̆X)n | ξ ∈ µr
X(U)} = {U ∈ (P̆X)n | ξ′ ∈ µr

X(U)}.

This is equivalent to

ξ ∈ µr
X(U) iff ξ′ ∈ µr

X(U), for all U ∈ (P̆X)n.

Unfolding the definitions of µr = λL ◦EP̆(r,−) and λL(Ξ) = {ξ ∈ TX | (ξ,Ξ) ∈
L∈X} yields that for all n ∈ ω, r ∈ Σn and U ∈ (P̆X)n

(ξ, EP̆X(r, U)) ∈ L∈X iff (ξ′, EP̆X(r, U)) ∈ L∈X .

Because EP̆X is surjective, and the variables n, r and U quantify over the

whole domain of EP̆X :
∐

n∈ω

(
Σn × (P̆X)n

)
→ T P̆X, it follows that for all

Ξ ∈ TPX
(ξ,Ξ) ∈ L∈X iff (ξ′,Ξ) ∈ L∈X . (5)

28

In order to use (5) consider the map

sX : X → PX,

x 7→ {x}.

Because of (L3) we have that (ξ, TsX(ξ)) ∈ TsX ⊆ LsX . Moreover we clearly
have that sX ⊆ ∈X and because of (L1) it follows that (ξ, TsX(ξ)) ∈ L∈X .
With (5) we get that (ξ′, (TµX)ξ) ∈ L∈X . Then we compute

(ξ, ξ′) ∈ LsX ;L(3X) ⊆ L(sX ; (3X)) (L2)
= L(∆X) sX ;3X= ∆X

= ∆TX . Proposition 3.10 (iii)

From this it follows that ξ = ξ′.

4 The Nabla Logic of a Lax Extension

In this section we study the nabla logic LT for a fixed lax extension L of a fixed
standard functor T . The assumption that T is standard is needed to get a well-
behaved syntax. As we observed in section 2.2 on page 9 this is not an essential
restriction because every set functor is almost isomorphic to a standard functor.
We also fix an arbitrary set P of propositional letters.

4.1 Syntax and Semantics

In this subsection we define the syntax and semantics of the nabla logic for the
lax extension L and prove that it is adequate and expressive with respect to
L-bisimilarity. This shows that the logic is strong enough to describe properties
of states in coalgebras up to L-bisimilarity.

In order to give a semantics for the language LT on T -coalgebras we also
have to give an interpretation for the propositional letters. This is done by
adding a valuation to T -coalgebras yielding T -models.

Definition 4.1. A T -model X = (X, ξ, VX) is a T -coalgebra ξ : X → TX
together with a valuation VX that is a function VX : P→ PX.

For a C ⊆ P define the functor TC = (T−) × PC and the relation lifting
LC = L−×PC for the functor TC as in Example 3.2 (iii). Here PC is a constant
functor and PC the Barr extension of the constant functor. So we have that
((c, ξ), (c′, ξ′)) ∈ LCR iff c = c′ and (ξ, ξ′) ∈ LR.

There is an one-to-one correspondence between T -models and TP-coalgebras.
A T -model X = (X, ξ, VX) corresponds to the TP-coalgebra

X̂ : X → TPX = TX × PP,

x 7→ (ξ(x), {p ∈ P | x ∈ VX(p)}).

In the other direction there is for every TP-coalgebra σ : X → TPX a T -model
X = (X, ξ, VX) defined as ξ = πTX ◦ σ : X → TX and VX : P → PX, p 7→ {x ∈
X | p ∈ πPP ◦ σ(x)} where πTX : PTX ×PP→ TX and πPP : TX ×PP→ PP
are the projections.

29

A morphism f from a T -model X to a T -model Y is defined to be a TP-
coalgebra morphism from X̂ to Ŷ.

For C ′ ⊆ C ⊆ P we can define the natural transformation rC,C′
: TC ⇒ TC′

at a set X as

rC,C′

X : TCX → TC′X,

(α, c) 7→ (α, c ∩ C ′).

The projection of a T -model X = (X, ξ, VX) to a C ⊆ P is the TC-coalgebra
rP,C
X ◦ X̂ : X → TCX.

An LC-bisimulation between a T -model X and a T -model Y is defined to
be an LC-bisimulation between the TC-coalgebras rP,C

X ◦ X̂ : X → TCX and
rP,C
Y ◦ Ŷ : Y → TCY .

Because T -models are just TC-coalgebras and bisimulations between them
are the usual LC-bisimulations between them we can take the product of T -
models and use the constructions of Proposition 3.13 on LC-bisimulations be-
tween T -models.

It follows directly from the definitions that a relation R : X → Y is a LC-
bisimulation between T -models X = (X, ξ, VX) and Y = (Y, υ, VY) iff R is an
L-bisimulation between the T -coalgebras ξ : X → TX and υ : Y → TY and R
preserves the truth of all propositional letters in C, that is for all (x, y) ∈ R we
have that

x ∈ VX(p) iff y ∈ VY(p), for all p ∈ C.

With this it is easy to see that for any C ′ ⊆ C if a relation R is an LC-
bisimulation between X and Y then it is also an LC′ -bisimulation between X
and Y.

Next we define the syntax of the language LT (C) for a C ⊆ P.

Definition 4.2. For any C ⊆ P define the language LT (C) by the grammar

a ::= p | ¬a |
∧

A |
∨

A | ∇α

where p ∈ C, A ∈ PωLT and α ∈ TωLT .
We use LT as an abbreviation for LT (P).
Set > =

∧
∅ and ⊥ =

∨
∅.

Later we use the maps ¬ : LT → LT , a 7→ ¬a and ∧ : PωLT → LT , A 7→
∧

A.

Observe that for C ′ ⊆ C ⊆ P we have that LT (C ′) ⊆ LT (C). This can be
proved by induction on the complexity of formulas in LT (C ′).

We use arbitrary finitary conjunctions and disjunctions instead of the usual
binary ones. This approach yields an equivalent logic but it facilitates the
notation.

The recursive definition of the formulas in LT (C) allows us to define func-
tions or relations for formulas by recursion and prove properties about them by
induction on their complexity. In the case of ∇α with α ∈ TωLT (C) this means
that if we want to make a definition for ∇α we can assume that we already
have a definition for all the formulas in the set Base(α) and if we want to prove
something by induction for ∇α we can assume that the claim already holds
for all formulas in Base(α). Recall from section 2.2 page 9 that Base(α) is the
smallest set U such that α ∈ TU . An example of a recursive definition is the
following.

30

Definition 4.3. The modal rank rank(a) ∈ ω of a formula a ∈ LT is defined
recursively by

rank(p) = 0, p ∈ P

rank(¬a) = rank(a), a ∈ LT

rank(
∧

A) = max{rank(a) | a ∈ A}, A ∈ PωLT

rank(
∨

A) = max{rank(a) | a ∈ A}, A ∈ PωLT

rank(∇α) = 1 + max{rank(a) | a ∈ Base(α)}. α ∈ TωLT

The next definition fixes the satisfaction conditions of formulas in LT on
T -models.

Definition 4.4. Using the fixed lax extension L for the functor T we can
define the semantics of L for the language LT (P) on T -models. For a T -model
X = (X, ξ, VX) define the satisfaction relation X : X → LT (P) by recursion as

x X p if x ∈ VX(p) p ∈ P

x X ¬a if not x X a, a ∈ LT

x X
∧

A if x X a for all a ∈ A, A ∈ PωLT

x X
∨

A if x X a for some a ∈ A, A ∈ PωLT

x X ∇α if (ξ(x), α) ∈ LX. α ∈ TωLT

Remark 4.5. Strictly speaking are the recursive clauses in Definition 4.4 not
stated in a correct recursive way. For conjunction and disjunction we can only
assume that X�X×Base(A) = X�X×A is already defined. That is not an issue
because the conditions x X a for all (some) a ∈ A and x X �X×A a for
all (some) a ∈ A are equivalent. In the recursive clause for the nabla we can
only presuppose that X�X×Base(α) is already defined. So the actual recursive
definition is that x X ∇α iff (ξ(x), α) ∈ L(X�X×Base(α)) and we need a little
argument why this is equal to the clause given above. Because T is assumed
to be standard we have that α ∈ TBase(α) and can use Proposition 3.12 to
get that (ξ(x), α) ∈ L(X �X×Base(α)) = (LX) �TX×TBase(α) is equivalent to
(ξ(x), α) ∈ LX.

Example 4.6. With the Egli-Milner lifting P of the P functor one can define
the logic ΛP for Kripke frames. A modal formula ∇α is in this case of the shape
∇{a0, a1, . . . , an−1} where A = {a0, a1, . . . , an−1} is a finite set of formulas. The
satisfaction condition for nabla becomes x ∇{a0, a1, . . . , an−1} iff for every
successor x′ of x there is a formula ai such that x′ ai and for every formula
ai ∈ {a0, a1, . . . , an−1} there is a successor x′ of x such that x′ ai. One can
show that ∇A is equivalent to the formula �

∨
A ∧

∧
♦A in standard modal

logic. Conversely ♦a is equivalent to∇{a,>} and �a is equivalent to∇∅∨∇{a}.

Remark 4.7. There is another way to define the semantics of LT that uses
only the natural transformation λL from Definition 3.19. See for example [15]
how this works in detail. The trick is to consider LT to be an initial object
in suitable category of algebras. Then one can apply the P̆ functor to any

31

coalgebra and compose with the natural transformation λL to get an algebra
corresponding to the original coalgebra. The unique arrow from LT into the
algebra corresponding coalgebra gives an semantics that one can show to be
equivalent to the one defined here. It is also noteworthy that in this approach the
fact that λL is a natural transformation immediately entails that the semantics
is adequate for behavioral equivalence.

Definition 4.8. Define the relation of logical consequence |= : LT → LT by

a |= a′ iff x X a implies x X a′ for all states x in any T -model X.

The relation of logical equivalence ≡ : LT → LT is defined as

a ≡ a′ iff x X a iff x X a′ for all states x in any T -model X.

Remark 4.9. There are translations between the nabla modalities of the lax
extension L and the modalities associated to the Moss liftings that are defined
as in Definition 3.24 for the lax extension L and any finitary presentation (Σ, E)
of Tω. Here we give a very short sketch of how this works. For a much more
detailed treatment consider [11]. For any α ∈ TωL let (r, A) ∈ Σn ×Ln be such
that EL(r, A) = α. This always exists because E is surjective. Now let �r be
the n-ary modality of the Moss lifting µr. That means that the formula �rA
where A = (A0, A1, . . . , An−1) has the following satisfaction condition at any
state x0 in some T -model X = (X, ξ, Vξ)

x0 X �rA iff ξ(x0) ∈ µr
X(JA0K, JA1K, . . . , JAn−1K),

where J−K gives the extension of a formula that is

J−K : L → PX,

a 7→ {x ∈ X | x X a}.

We can show that x0 X �rA is equivalent to x0 X ∇α. For this consider

x0 X �rA

iff ξ(x0) ∈ µr
X(JA0K, JA1K, . . . , JAn−1K) semantics of �r

iff ξ(x0) ∈ λL
X ◦ EP̆X(r, (JA0K, JA1K, . . . , JAn−1K)) Definition 3.24

iff (ξ(x0), EP̆X(r, (JA0K, JA1K, . . . , JAn−1K))) ∈ L(∈X) Definition 3.19
iff (ξ(x0), (TωJ−K)(EL(r, A))) ∈ L(∈X) E natural
iff (ξ(x0), (TωJ−K)(α)) ∈ L(∈X) EL(r, A) = α

iff (ξ(x0), (T J−K)(α)) ∈ L(∈X) α ∈ TωL ⊆ TL
iff (ξ(x0), α) ∈ L(∈X) ; (T J−K)◦ set theory
iff (ξ(x0), α) ∈ L(∈X ; J−K◦) Proposition 3.10 (ii)
iff (ξ(x0), α ∈ LX ∈X ; J−K◦ = X

iff x0 X ∇α. semantics of ∇

Next we show that the nabla logic of a lax extension is adequate with respect
to LC-bisimulation. That means that every two bisimilar states satisfy the same
formulas.

32

Definition 4.10. Two states x0 in a T -model X = (X, ξ, VX) and y0 in a T -
model Y = (Y, υ, VY) are modally equivalent for formulas in LT (C) iff

x0 X a iff y0 Y a, for all a ∈ LT (C).

We write x0 °C y0 if x0 and y0 are modally equivalent for formulas in LT (C).

Proposition 4.11 (Adequacy). Given a state x0 in a T -model X = (X, ξ, VX)
and a state y0 in a T -model Y = (Y, υ, VY) if x0 and y0 are LC-bisimilar then
x0 °C y0.

Proof. Let R be an LC-bisimulation between X and Y with (x0, y0) ∈ R and let
Φ ⊆ LT be the set of formulas on which bisimilar points agree, that is

Φ := {a ∈ LT (C) | x X a iff y Y a, for all (x, y) ∈ R}.

With this definition of Φ it is obvious that

R ;Y�Y×Φ ⊆ X�X×Φ,

and in the other direction

R◦ ;X�X×Φ ⊆ Y�Y×Φ. (6)

We are now going to prove that Φ = LT (C). This entails that for all (x, y) ∈ R
that x satisfies the same formulas of the language LT (C) in X as y does in Y.
So in particular x0 and y0 satisfy the same formulas because (x0, y0) ∈ R.

We show with induction on the complexity of a formula a ∈ LT (C) that
a ∈ Φ. The base case a = p ∈ C ⊆ P follows directly from the semantics
of propositional letters and the fact that R is an LC-bisimulation between the
T -models X and Y. The Boolean cases are as usual. So let us focus on the case
where a = ∇α for some α ∈ TωLT . The induction hypothesis is that α ∈ TωΦ.
We have to show that x X ∇α iff y Y ∇α for all (x, y) ∈ R.

So assume that x X ∇α. By the definition of the satisfaction relation that
means (ξ(x), α) ∈ LX and because α ∈ TωΦ ⊆ TΦ in particular that (ξ(x), α) ∈
(LX)�TX×TΦ= L(X�X×Φ) where the last equality holds by Proposition 3.12.
Because R is an L-bisimulation we have that (υ(y), ξ(x)) ∈ LR◦, and so we get

(υ(y), α) ∈ LR◦ ;L(X�X×Φ) ⊆ L(R◦ ;X�X×Φ) (L2)
⊆ L(Y�Y×Φ) (6) and (L1)
= (LY)�TY×TΦ Proposition 3.12
⊆ LY.

This shows that y Y ∇α. The other direction from y Y ∇α to x X ∇α is
proved analogously.

There is a partial converse of Proposition 4.11. If two states in Tω-models
satisfy the same formulas then they are bisimilar. This is shown by the next
Proposition. The proof is similar to the one given in [2, Theorem 4.3] for the Barr
extension. An intuitive explanation why this only works for finitary functors is
that every formula of LT , since it is a finite object, can only capture a finite
amount of information. A counterexample in the case of the P-functor is given
in [3, Section 2.2, Example 2.23].

33

Proposition 4.12 (Expressivity). Given a state x0 in a Tω-model X = (X, ξ, VX)
and a state y0 in a Tω-model Y = (Y, υ, VY) then x0 and y0 are LC-bisimilar if
x0 °C y0.

Proof. We first reduce the problem to the LC-bisimilarity of two modally equiv-
alent states in one single Tω-model Z = (Z, ζ, VZ). For this let Z = X + Y be
the coproduct of X and Y with injections iX : X → Z and iY : Y → Z. The in-
jections are T -model morphisms and hence by Proposition 3.13 (i) their graphs
are LP-bisimulations. By Proposition 4.11 we know that LP-bisimulations pre-
serve truth and so we have that iX(x0) and iY (y0) satisfy the same formulas
of the language LT (C) in Z because by assumption x0 and y0 satisfy the same
formulas of the language LT (C) as states of X and Y. In the proof we construct
an LC-bisimulation ° : Z → Z on Z that connects any two states that satisfy
the same formulas of LT (C). So we will have that iX(x0) ° iY (y0) and hence
by Proposition 3.13 (ii) the relation iX ;° ; i◦Y : X → Y is an LC-bisimulation
between ξ and υ with (x0, y0) ∈ iX ;° ; i◦Y .

In the following we consider the relation °: Z → Z to be modal equivalence
for formulas in LT (C) between states of Z. So we have z ° z′ iff z °C z′ for
z, z′ ∈ Z. By assumption we have x0 ° y0 so it only remains to show that ° is
an LC-bisimulation. For this we have to check for arbitrarily chosen (z0, z1) ∈°
that (ζ(z0), ζ(z1)) ∈ L° and that

z0 ∈ VZ(p) iff z1 ∈ VZ(p), for all p ∈ C.

The latter holds because for all p ∈ C ⊆ LT (C) we have by assumption that
z0 Z p iff z1 Z p. So it remains to be proved that (ζ(z0), ζ(z1)) ∈ L°.

Consider the set S of successors of z0 and z1, that is

S = Base(ζ(z0)) ∪ Base(ζ(z1)).

This set exists and is finite because ζ(z0), ζ(z1) ∈ TωZ. Because T is standard
we have that ζ(z0) ∈ TBase(ζ(z0)) ⊆ TS and similarly ζ(z1) ∈ TS.

Note that for all states z, z′ ∈ Z with z ° z′ there is a formula dz′

z ∈ LT such
that z Z dz′

z but z′ 6Z dz′

z . We can use this to define a function f : S → LT

that maps every state z ∈ S to a formula f(z) that is true at z and false at all
other states of S. This is done as follows:

f : S → LT ,

z 7→
∧
{dz′

z | z′ ∈ S, z ° z′}.

The conjunction f(z) is finite for all z ∈ S because S is finite. For this definition
of f we claim that

Z�S×LT
; f◦ =°�S×S . (7)

For the ⊆-inclusion we argue by contraposition. Assume z′ ° z for z, z′ ∈ S.
Then z′ 6Z f(z) because z′ 6Z dz′

z and f(z) =
∧
{dz′

z | z′ ∈ S, z ° z′}.
For the ⊇-inclusion take z, z′ ∈ S with z′ ° z. Because z Z dz′′

z for all
z′′ ∈ S with z ° z′′ we have that z Z f(z) since f(z) is the conjunction∧
{dz′′

z | z′′ ∈ S, z ° z′′}. It follows that z′ Z f(z) because z′ ° z.

34

Because ζ(z1) ∈ TS we can calculate

(ζ(z1), ζ(z1)) ∈ ∆TS ⊆ T∆S Proposition 3.10 (i)
⊆ L(°�S×S) ∆S ⊆°�S×S and (L1)
= L(X�S×LT

; f◦) (7)
= L(X�S×LT

) ; (Tf)◦. Proposition 3.10 (ii)

This yields an α ∈ TLT with (ζ(z1), α) ∈ L(Z�S×LT
) and (α, ζ(z1)) ∈ (Tf)◦.

From the latter it follows that α = (Tf)(ζ(z1)) = (Tωf)(ζ(z1) because ζ(z1) ∈
TωZ. So we get that α ∈ TωLT hence it follows that ∇α ∈ LT and z1 Z ∇α
because (ζ(z1), α) ∈ L(Z�S×LT

) = (LZ)�TS×TLT
⊆ LZ by Proposition 3.12.

It follows that z0 Z ∇α because by assumption z0 ° z1. Therefore
(ζ(z0), α) ∈ LZ. Because ζ(z0) ∈ TS this gives (ζ(z0), α) ∈ (LZ)�TS×TLT

and by Proposition 3.12 (ζ(z0), α) ∈ L(Z�S×LT
). This yields what we want to

show because

(ζ(z0), ζ(z1)) ∈ L(Z�S×LT
) ; (Tf)◦ = L(Z�D×LT

; f◦) Proposition 3.10 (ii)
= L(°�S×S) (7)
= (L°)�TS×TS Proposition 3.12
⊆ L°.

4.2 Disjunctive Nabla Normal Form

The goal of this subsection is to prove Theorem 4.18 which states that every
formula in LT is equivalent to a formula in which negation and conjunction occur
only over propositional letters. We say that such formulas are in disjunctive
nabla normal form.

Definition 4.13. A formula a ∈ LT is a literal if it is either a propositional
letter or the negation of a propositional letter, that is a = p or a = ¬p for some
p ∈ C. The set of formulas in disjunctive nabla normal form Ld

T (C) ⊆ LT (C)
is generated by the grammar:

a ::=
∧

Π |
∨

A |
∧

Π ∧∇α,

where Π is a finite set of literals, A ∈ PωLd
T (C) and α ∈ TωLd

T (C).

The two main ingredients in the proof of Theorem 4.18 are Proposition 4.14
which says how we can distribute negations over nablas and Proposition 4.17
which shows how we can put conjunctions into nablas.

Proposition 4.14 shows that we can define the Boolean dual of nabla as a
disjunction of nablas. This shows how we can push negations inside nablas and
thereby decrease the modal rank at which negations occur in a formula. This
result first appeared in [7] for nablas defined for a Barr extension of a weak
pullback preserving functor.

Proposition 4.14. If T restricts to finite sets then we have for all α ∈ TωLT (C)

¬∇(T¬)(α) ≡
∨
{∇T∧(Ω) | Ω ∈ TωPωBase(α), (α, Ω) /∈ L(/∈Base(α))}.

35

Proof. Note that the disjunction on the right hand side is finite and therefore
it is a well defined formula in the language LT (C). To see this observe that
Base(α) and hence PωBase(α) is finite. Because T , and hence Tω, is assumed
to restrict to finite sets this entails that there are only finitely many choices for
an Ω ∈ TωPωBase(α).

For the direction from left to right assume we have a state x0 in a T -model
X = (X, ξ, VX) such that x0 X ¬∇(T¬)(α). That means that (ξ(x0), (T¬)(α)) /∈
LX and with Proposition 3.10 (ii) that (ξ(x0), α) /∈ LX ; (T¬)◦ = L(X ;¬◦).
We want to find an Ω ∈ TωPωBase(α) such that x0 X ∇T∧(Ω) and (α, Ω) /∈
L(/∈Base(α)). For this consider the function

f : X → PωBase(α),
x 7→ {a ∈ Base(α) | x X a}.

Set Ω = Tf(ξ(x0)) ∈ TPωBase(α) = TωPωBase(α). We have to check that
(α, Tf(ξ(x0))) /∈ L(/∈Base(α)) and x0 X ∇T∧(Tf(ξ(x0))).

To verify that (α, Tf(ξ(x0))) /∈ L(/∈Base(α)) we need that

f ; 63Base(α) ⊆ X ; (¬�Base(α))◦. (8)

This inequality means that if a formula a ∈ Base(α) is not in f(x) for a state
x then the negation of a is true at x. This holds because if a /∈ f(x) for an
a ∈ Base(α) then we must have x 6X a by the definition of f and hence x X ¬a.

Now assume for a contradiction that (α, Tf(ξ(x0))) ∈ L(/∈Base(α)). This
entails that (α, ξ(x0)) ∈ L(/∈Base(α)) ; (Tf)◦. Then we can compute

(ξ(x0), α) ∈ Tf ;L(63Base(α)) = L(f ; 63Base(α)) Proposition 3.10 (ii)
⊆ L(X ; (¬�Base(α))◦) (8) and (L1)
= L((X ;¬◦)�X×Base(α)) set theory
= (L(X ;¬◦))�TX×TBase(α) Proposition 3.12
⊆ L(X ;¬◦).

But this is a contradiction to (ξ(x0), α) /∈ L(X ;¬◦).
The other thing we have to check is that x0 X ∇T∧(Tf(ξ(x0))). For this

first observe that
∆X ⊆ X ; (∧�Base(α))◦ ; f◦. (9)

This holds because the conjunction of formulas that are true at one state is
again true at this state. Now consider

(ξ(x0), ξ(x0)) ∈ ∆TX ⊆ L∆X Proposition 3.10 (i)
⊆ L(X ; (∧�Base(α))◦ ; f◦) (9) and (L1)

= LX ;
(
T∧�Base(α)

)◦ ; (Tf)◦. Proposition 3.10 (ii)

So it follows that (ξ(x0), T (∧ �Base(α))(Tf(ξ(x0)))) ∈ LX. This means that
(ξ(x0), T∧(Ω)) ∈ LX because T (∧�Base(α))(Tf(ξ(x0))) = T (∧�Base(α))(Ω) =
T∧(Ω). Hence x0 X ∇T∧(Ω).

For the other direction assume that there is an Ω ∈ TωPωBase(α) with
(α, Ω) /∈ L(/∈Base(α)) such that x0 X ∇T∧(Ω) for an x0 in a T -model X =

36

(X, ξ, VX). We have to show that x0 X ¬∇(T¬)(α). Assume for a contra-
diction that x0 X ∇(T¬)(α) which means that (ξ(x0), (T¬)(α)) ∈ LX and
equivalently (ξ(x0), α) ∈ LX ; (T¬)◦. By Proposition 3.10 (ii) we can reformu-
late this as (α, ξ(x0)) ∈ T¬ ;LX

◦ = L(¬ ;X
◦).

From the assumption that x0 X ∇T∧(Ω) we get that (ξ(x0), T∧(Ω)) ∈ LX
and so by Proposition 3.10 (ii) that (ξ(x0),Ω) ∈ L(X ;∧◦). Together with
(α, ξ(x0)) ∈ L(¬ ;X

◦) it follows by (L1) that (α, Ω) ∈ L(¬ ;X
◦) ;L(X ;∧◦) ⊆

L(¬ ;X
◦ ;X ;∧◦). Define Γ = (¬ ;X

◦ ;X ;∧◦). So (α, Ω) ∈ LΓ.
Now observe that

Γ�Base(α)×PωBase(α) = (¬ ;X
◦ ;X ;∧◦)�Base(α)×PωBase(α) ⊆ /∈Base(α). (10)

This holds because a formula whose negation is true at a state can not be a
conjunct of a conjunction that is true at that state. Moreover we have that
α ∈ TBase(α) and Ω ∈ TPωBase(α). Hence by Proposition 3.12 (α, Ω) ∈
(L∆) �TBase(α)×TPωBase(α)= L(Γ �Base(α)×PωBase(α)). But by (10) and (L1) we
have that L(Γ�Base(α)×PωBase(α)) ⊆ L(/∈Base(α)). So (α, Ω) ∈ L(/∈Base(α)) which is
a contradiction to the assumption that (α, Ω) /∈ L(/∈Base(α)).

Next we want to show how we can get rid of conjunctions over nablas and
replace them with disjunctions of nablas. For this we first need to prove the
following easy Proposition that states that the nabla logic is in a sense monotone.

Proposition 4.15. It holds for all α, α′ ∈ TωLT that

(α, α′) ∈ L|= implies ∇α |= ∇α′.

Proof. Assume that (α, α′) ∈ L|= and take any state x0 in a T -coalgebra ξ :
X → TX such that x0 X ∇α. We have to show that x0 X ∇α′. By the
semantics of the nabla x0 X ∇ means that (ξ(x0), α) ∈ LX.

By (L2) it follows that (ξ(x0), α′) ∈ LX ;L|= ⊆ L(X ; |=). Now it is easy
to see that X ; |= ⊆ X by the definition of |=. So we get with (L1) that
(ξ(x0), α′) ∈ LX which means that x0 X ∇α′.

Definition 4.16. For a set of formulas A ⊆ LT let Conj(A) ∈ PLT be the set
of all finite conjunctions of formulas in A that is

Conj : PLT → PLT ,

A 7→ {
∧

F ∈ LT | F ∈ PωA}.

Proposition 4.17. Assume that T preserves finite sets, take any A ∈ PωTLT

and set S =
⋃

(PωBase)(A). Then it holds that∧
α∈A

∇α ≡
∨
{∇β | β ∈ TConj(S) with (β, α) ∈ L|= for all α ∈ A}.

Proof. First note that the right hand side is a formula, because the disjunction
is finite. This holds because T is assumed to restrict to finite sets and there are
only finitely many conjunctions over the finite set S =

⋃
(PωBase)(A).

For the direction from left to right assume we are given a state x0 in a T -
model X = (X, ξ, VX) with x0 X ∇α for all α ∈ A. In order to witness the

37

right hand side we have to find a β ∈ TConj(S) with (β, α) ∈ L|= for all α ∈ A
such that x0 X ∇β. For this consider the map

f : X → Conj(S),

x 7→
∧
{a ∈ S | x X a}.

The map f is well defined because S is finite. Moreover we claim that

f◦ ;X�X×S ⊆ |=�Conj(S)×S . (11)

The inequality (11) is equivalent to the claim that f(x) |= a for all states x ∈ X
and a ∈ S such that x X a. This holds because f(x) =

∧
{a ∈ S | x X a},

Whence a ∈ S is one of the conjuncts of the conjunction f(x) if we assume that
x X a. Clearly we then have f(x) |= a because a conjunction entails all its
conjuncts.

Set β = Tf(ξ(x0)) ∈ TConj(S). Since Conj(S) ⊆ LT is a finite set and T is
standard it follows that β ∈ TConj(S) ⊆ TωLT .

To verify (β, α) ∈ L|= for all α ∈ A we use that (β, ξ(x0)) ∈ (Tf)◦ by
definition of β and (ξ(x0), α) ∈ LX because x0 X ∇α. So we can compute

(β, α) ∈ (Tf)◦ ; (LX)�TX×TS = (Tf)◦ ;L(X�X×S) Proposition 3.12
⊆ Lf◦ ;L(X�X×S) (L3)
⊆ L(f◦ ;X�X×S) (L2)
⊆ L(|=�Conj(S)×S) (11) and (L1)
= (L|=)�TConj(S)×TS Proposition 3.12
⊆ L|=.

It remains to show that x0 X ∇β. For this observe that from the definition
of f we get that f◦ ⊆ X�X×Conj(S). So we calculate

(ξ(x0), β) ∈ (Tf)◦ ⊆ Lf◦ (L3)
⊆ L(X�X×Conj(S)) f◦ ⊆ X�X×Conj(S) and (L1)
= (LX)�TX×TConj(S) Proposition 3.12
⊆ LX.

By the semantics of ∇ this means that x0 X ∇β.
For the direction from right to left assume that we have a state x0 in a

T -coalgebra ξ : X → TX such that x0 X ∇β for a β ∈ TConj(S) such that
(β, α) ∈ L|= for all α ∈ A. By Proposition 4.15 it follows that x0 X ∇α for all
α ∈ A which gives the left hand side.

Theorem 4.18. For every formula a ∈ LT (C) there is a formula ad ∈ Ld
T (C)

that is in disjunctive nabla normal form such that

a ≡ ad.

Proof. This is proved by an induction on the modal rank of the formula a. For
formulas with rank(a) = 0, that do not contain any nablas ad is just the usual
disjunctive normal form of a as a formula of propositional logic.

38

In the induction step we first rewrite a in a disjunctive normal form such that
it is a disjunction of conjunctions of literals and possibly negated nablas. That
this is possible is a basic fact about propositional logic. With Proposition 4.14
we can then get rid of the negated nablas by replacing them with conjunctions
of nablas. Now the formula is a disjunction of conjunctions of literals and
nablas. Then we use Proposition 4.17 to replace conjunctions of nablas with
disjunctions of nablas. So the formula is now a disjunction of conjunctions that
contain any number of literals and at most one disjunction of nablas. Using the
distributivity of ∧ over ∨ we get the whole formula into a form such that it is
a disjunction of conjunctions of literals and at most one nabla. Since none of
the transformations of Propositions 4.14 and 4.17 increases the modal rank of
the formula we have that all the direct subformulas of the nablas occurring in
the formula are of smaller modal rank. So we can use the induction hypothesis
to replace all the subformulas that are directly under nablas with equivalent
formulas in disjunctive nabla normal form. After this the whole formula is in
disjunctive nabla normal form and we are done.

4.3 Bisimulation Quantifiers and Uniform Interpolation

The goal of this part is to prove uniform interpolation for LT . In order to do this
we introduce the notion of a bisimulation quantifier and show that bisimulation
quantifiers are definable in the language LT . Our proofs follows the proof in
[17] which shows a similar result in the case of M-models. We generalize their
result to arbitrary standard functors that restrict to finite sets and have a lax
extension that satisfies the following extra condition.

Definition 4.19. A relation lifting L of T is quasi-functorial if it satisfies the
following condition for all relations R : X → Z and S : Z → Y :

LR ;LS = L(R ;S) ∩ (preimg(LR)× img(LS)). (12)

Recall from the definition of preimg(LR) ⊆ TX that ξ ∈ preimg(LR) iff
there is a ζR ∈ TZ such that (ξ, ζR) ∈ LR. Similarly υ ∈ img(LS) ⊆ TY iff
there is a ζS ∈ TZ such that (ζS , υ) ∈ L. So the ⊆-inclusion of (12) holds for
any lax extension because of (L2). The ⊇-inclusion is the actual substantial
requirement. It is equivalent to condition that for all (ξ, υ) ∈ L(R ;S) if there is
a ζR ∈ TZ such that (ξ, ζR) ∈ LR and there is a ζS ∈ TZ such that (ζS , υ) ∈ LS
then there is a ζ ∈ TZ such that (ξ, ζ) ∈ LR and (ζ, υ) ∈ LS.

Example 4.20. (i) Recall from Example 3.11 (i) that the Barr extension T
for a functor T that preserves weak pullbacks is functorial. Hence it satisfies
TR ;TS = T (R ;S) for all relation R and S. Clearly this implies that T is also
quasi-functorial.

(ii) We can prove that the lax extension M̃ ofM as defined in Example 3.2
(vi) is quasi-functorial. This implies that the lax extension M̃s of Ms is also
quasi-functorial. To see this recall that M̃s was defined on a relation R : X → Y
as M̃sR = iX ;M̃R ; i◦Y for any relation R : X → Y where i : Ms ⇒ M is a
natural isomorphism.

For the proof that M is quasi-functorial take any two relations R : X → Z
and S : Z → Y . We have to show that for all (ζ, υ) ∈ M̃(R ;S) if there are

39

ζR, ζS ∈ MZ with (ξ, ζR) ∈ M̃R and (ζS , υ) ∈ M̃S then there is a ζ ∈ MZ

with (ξ, ζ) ∈ M̃R and (ζ, υ) ∈ M̃S.
From the assumptions (ξ, ζR) ∈ M̃R ⊆

−→
P
←−
PR and (ξ, υ) ∈ M̃(R ;S) ⊆

−→
P
←−
P (R ;S) we get that for every U ∈ ξ there are elements WU ∈ ζR and VU ∈ υ

such that (U,WU) ∈
←−
PR and (U, VU) ∈

←−
P (R ;S). Similarly by (ζS , υ) ∈ M̃S ⊆

←−
P
−→
PR and (ξ, υ) ∈ M̃(R ;S) ⊆

←−
P
−→
P (R ;S) we get for every V ∈ υ elements

WV ∈ ζS and UV ∈ ξ such that (WV , V) ∈
−→
PR and (UV , V) ∈

−→
P (R ;S).

From (U, VU) ∈
←−
P (R ;S) it follows that for every v ∈ VU there is a uv ∈ U

such that (uv, v) ∈ R ;S. Hence there is a wv ∈ Y such that (uv, wv) ∈ R and
(wv, v) ∈ S. With this define for every U ∈ ξ

W ′
U = WU ∪ {wv ∈ V | v ∈ VU}.

For this definition we can show that (U,W ′
U) ∈

←−
PR. For, take any w ∈ W ′

U .
Then it is either in WU or from {wv ∈ V | v ∈ VU}. In the former case the
claim follows from (U,WU) ∈

←−
PR. In the latter case we have by the definition

of wv that there is a uv ∈ U such that (uv, wv) ∈ R. Moreover we have that
(W ′

U , VU) ∈
←−
P S because for any v ∈ VU there is the element wv ∈ W ′

U with
(wv, v) ∈ S.

A symmetric argument shows that for every V ∈ υ we can find a W ′
V ∈ ζS

with the properties (W ′
V , V) ∈

−→
P S and (UV ,W ′

V) ∈
−→
PR.

Set

ζ = {W ⊆ Z |W ⊇W ′
U for a U ∈ ξ or W ⊇W ′

V for a V ∈ υ}.

From the definition its clear that ζ is upwards-closed and so we have that ζ ∈
MY . It remains to show that (ξ, ζ) ∈ M̃R and (ζ, υ) ∈ M̃S. We only do the
former since the latter is analogous.

For (ξ, ζ) ∈
−→
P
←−
PR note that for any U ∈ ξ there is the set W ′

U ∈ ζ with
(U,W ′

U) ∈
←−
PR.

For (ξ, ζ) ∈
←−
P
−→
PR pick any W ∈ ζ. By the definition of ζ it follows that

either W ⊇W ′
U for a U ∈ ξ or W ⊇W ′

V for a V ∈ υ. In the former case consider
WU ∈ ζR. From the assumption (ξ, ζR) ∈ M̃R ⊆

←−
P
−→
PR we obtain a U ′ ∈ ξ

with (U ′,WU) ∈
−→
PR. Because WU ⊆W ′

U ⊆W this entails that (U ′,W) ∈
−→
PR

as required. In the other case where W ⊇ W ′
V for a V ∈ υ we have from the

above that (UV ,W ′
V) ∈

−→
PR for the set UV ∈ ξ. Because W ′

V ⊆ W it follows
that (UV ,W) ∈

−→
PR.

(iii) One can show that quasi-functoriality of relation liftings is preserved
under taking products or coproducts of quasi-functorial relation liftings.

(iv) The lax extension L2
3 for the functor F 3

2 is not quasi-functorial. This is
a consequence of Example 4.26 and Theorem 4.25 but it can also be shown by
a direct counterexample.

We define the bisimulation quantifier as a syntactical transformation on for-
mulas in LT .

40

Definition 4.21. By recursion on the complexity of formulas in disjunctive
nabla normal form we define for all p ∈ P the map

ep : Ld
T → LT ,∧
Π 7→

{
⊥, if {p,¬p} ⊆ Π,∧

(Π \ {p,¬p}) , otherwise,∨
A 7→

∨
Pωep(A),∧

Π ∧∇α 7→

{
⊥, if ∇α ≡ ⊥,

ep(
∧

Π) ∧∇Tωep(α), otherwise,

where A ∈ PωLd
T , Π is a set of literals and α ∈ TωLd

T .
If T restricts to finite sets we can use Theorem 4.18 to extend this Definition

to the set of all formulas as follows

∃p : LT (C ∪ {p})→ LT (C),

a 7→ ep(ad).

We will often write ∃p.a for the formula ∃p(a). The operator ∃p. is called
bisimulation quantifier.

The recursive clauses in the definition of ep just distribute to the subformulas.
So we have for example for A = {a0, a1, . . . , an−1} ∈ PωLT that

ep(
∨

A) =
∨
Pωep(A) =

∨
{ep(a0), ep(a1), . . . , ep(an−1)}.

Similarly we have that the formula ∇Tωep(α) is just the formula ∇α with ep

applied to all of the immediate subformulas.

Remark 4.22. The function ∃p removes all occurrences of the propositional
letter p from its argument. This means that it restrict to an mapping ∃p :
LT (C)→ LT (C \ {p}) for any set of propositional letters C ⊆ P.

The formula ∃p is called bisimulation quantifier because the formula ∃p.a is
intended to have special satisfaction conditions that uses the following notion
of up-to-p-bisimulations.

Definition 4.23. A relation R : X → Y is an up-to-p LP-bisimulation between
T -models X = (X, ξ, VX) and Y = (Y, υ, VY) if it is an LP\{p}-bisimulation
between X and Y. Call two states x in X and y in Y up-to-p LP-bisimilar if
there is an up-to-p LP-bisimulation R between X and Y with (x, y) ∈ R. We
write x -p y if x and y are up-to-p LP-bisimilar.

For any T -model X = (X, ξ, VX) we define the relation ∃p
X : X → LT by

x0 ∃p
X a iff there is a state y0 in some T -model Y = (Y, υ, VY)

such that x0 -p y0 and y0 υ a.

It is our goal to show in Theorem 4.25 that ∃p.a has the following satisfaction
conditions at state x0 of a T -model X = (X, ξ, VX):

x0 X ∃p.a iff x0 ∃p
X a.

For this we first prove the following Lemma.

41

Lemma 4.24. For any T -model X = (X, ξ, VX) there is a T -model Y = (Y, υ, VY)
and a left-total up-to-p LP-bisimulation R : X → Y between X and Y such that

∃p
X = R ;Y . (13)

Proof. Fix the T -model X = (X, ξ, VX). We have to construct a T -model Y =
(υ, VY) that has the required properties. Consider the pairs (x, a) ∈ ∃p

X . For
any such pair there is a state yx,a in a T -model Yx,a = (Yx,a, υx,a, VYx,a) such
that yx,a Yx,a a and there is an up-to-p LP-bisimulation Rx,a : X → Yx,a

between X and Yx,a such that (x, yx,a) ∈ Rx,a.
Define Y = (υ : Y → TY, VY) =

∐
(x,a)∈∃p

X
Yx,a to be the coproduct of the

coalgebras υx,a for every (x, a) ∈ ∃p
X , with injections iYx,a : Yx,a → Y . Because

the injections iYx,a are coalgebra morphisms the relations of their graphs are
by Proposition 3.10 (iii) LP-bisimulations between Yx,a and Y. By Proposition
4.11 it follows that they preserve truth and so we have for iYx,a(yx,a) ∈ Y as a
state of υ with iYx,a(yx,a) Y a.

The relation R : X → Y is defined by

R =
⋃

(x,a)∈∃p
X

(
Rx,a ; iYx,a

)
.

The relations Rx,a ; iYx,a are up-to-p LP-bisimulations for all (x, a) ∈ ∃p
X be-

cause they are a composition of two up-to-p LP bisimulations which is by Propo-
sition 3.13 (ii) also an up-to-p LP-bisimulation. By Proposition 3.13 (iii) we
know that an arbitrary union of up-to-p LP-bisimulations is again an up-to-p
LP-bisimulation. Hence R is an up-to-p LP-bisimulation.

The relation R is left total because for all x ∈ X we have that (x,>) ∈ ∃p
X

and hence that (x, iYx,>(yx,>)) ∈ Rx,> ; iYx,> ⊆ R.
It remains to check that these definitions satisfy (13). For the ⊆-inclusion,

take any (x, a) ∈ ∃p
X . Then (x, a) ∈ R ;Y follows because (x, iYx,a(yx,a)) ∈

Rx,a ; iYx,a ⊆ R and iYx,a(yx,a) Y a. For the ⊇-inclusion take any (x, a) ∈
R ;Y. So there is a y ∈ Y such that (x, y) ∈ R and y Y a. Since R is an
up-to-p LP-bisimulations it follows by the definition of ∃p

X that (x, a) ∈ ∃p
X .

Theorem 4.25. Assume that T restricts to finite sets and L is quasi-functorial.
Then it holds for the function ∃p : LT → LT , as defined in Definition 4.21, that
for any state x0 in a T -model X = (X, ξ, VX) and any formula a ∈ LT

x0 X ∃p.a iff there is a state y0 in some T -model Y = (Y, υ, VY)
such that x0 -p y0 and y0 Y a.

Proof. Because ∃p = ep((−)d) and we know from Theorem 4.18 that (−)d pre-
serves truth it is enough to show that for all a ∈ Ld

T

x0 X ep(a) iff x0 ∃p
X a. (14)

This is done by induction on the complexity of a ∈ Ld
T .

We omit the case where a =
∧

Π. It is similar to the case a =
∧

Π∧∇α that
we prove below but much easier because it only involves propositional letters..

For the case a =
∨

A where A ∈ PωLd
T first recall that ep(

∨
A) =

∨
Pωep(A).

For the left to right direction assume that x0 X
∨
Pωep(A). So there is an a ∈ A

42

such that x0 X ep(a). By the induction hypothesis this means that there is a
state y0 in a T -model Y = (Y, υ, VY) such that x0 -p y0 and y0 Y a. Hence
also y0 Y

∨
A and because x0 -p y0 it follows that x0 ∃p

X
∨

B.
For the other direction assume that there is a state y0 in a T -model Y =

(Y, υ, VY) such that x0 -p y0 and y0 υ

∨
A. So y0 Y a for an a ∈ A. Since

x0 -p y0 it follows that x0 ∃p
X b and by induction hypothesis that x0 X

ep(b). By the satisfaction conditions of the disjunction we conclude that x0 X∨
Pωep(A).
The last case is where a =

∧
Π∧∇α for a set Π of literals and an α ∈ TωLT .

If p,¬p ∈ Π or ∇α ≡ ⊥, then it is not the case that x0 ∃p
X a and the claim

follows immediately from the definition of ep(
∧

Π ∧ ∇α). So assume that not
p,¬p ∈ Π and that ∇α is satisfiable. The induction hypothesis is that (14)
holds for all formulas a ∈ Base(α). This can be expressed as

X ; (ep�Base(α))◦ = ∃p
X �X×Base(α) . (15)

We first do the easier direction from right to left. So assume that there
is state y0 in a T -model Y = (Y, υ, VY) with y0 Y

∧
Π ∧ ∇α and there is

an up-to-p LP-bisimulation R : X → Y between X and Y with (x0, y0) ∈ R.
From the definition of ∃p

X : X × LT it follows that R ;υ ⊆ ∃p
X . Because

the up-to-p LP-bisimulation R is in particular an L-bisimulation it holds that
(ξ(x0), υ(y0)) ∈ LR. Because of y0 υ ∇α it we have that (υ(y0), α) ∈ Lυ.
Putting this together we get (ξ(x0), α) ∈ LR ;Lυ and we can calculate

(ξ(x0), α) ∈ (LR ;Lυ)�TX×TBase(α) α ∈ TBase(α)
⊆ (L(R ;υ))�TX×TBase(α) (L2)

⊆
(
L∃p

X

)
�TX×TBase(α) R ;υ ⊆ ∃p

X and (L1)

= L
(
∃p

X �X×Base(α)

)
Proposition 3.12

= L
(
X ; (ep�Base(α))◦

)
(15)

= (LX ; (ep)◦)�TX×TBase(α) Proposition 3.12
⊆ (LX ; (ep)◦)
= LX ; (Tep)◦. Proposition 3.10 (ii)

This entails that (ξ(x0), T ep(α)) ∈ LX. Hence x0 X ∇Tep(α).
Because R is an up-to-p LP-bisimulation that connects x0 and y0 it follows

that x0 makes the same propositional letters true as y0, with the possible ex-
ception of p. Hence y0 Y

∧
Π entails that x0 X

∧
(Π \ {p,¬p}). It follows

that x0 X
∧

(Π \ {p,¬p}) ∧∇Tωep(α) which is what we need to show because
ep(

∧
Π ∧∇α) =

∧
(Π \ {p,¬p}) ∧∇Tωep(α).

For the left to right direction assume that x0 X ep(
∧

Π ∧ ∇α). By the
definition of ep this means that x0 X

∧
(Π \ {p,¬p}) and that x0 X ∇Tep(α).

From the latter it follows that (ξ(x0), T ep�Base(α) (α)) ∈ LX since Tep(α) =

43

T (ep�Base(α))(α). So we get

(ξ(x0), α) ∈ LX ; (Tep�Base(α))◦ = L
(
X ; (ep�Base(α))◦

)
Proposition 3.10 (ii)

= L
(
∃p

X �X×Base(α)

)
(15)

=
(
L∃p

X

)
�TX×TBase(α) Proposition 3.12

⊆ L∃p
X .

We have to show that x0 ∃p
X ∇α. To get this we need a witnessing state

y0 in a T -model Y = (Y, υ, VY) such that y0 Y
∧

Π ∧ ∇α, and an up-to-p
LP-bisimulation R : X → Y between X and Y with (x0, y0) ∈ R.

A first approximation is given by Lemma 4.24 from which we get a T -model
Y′′ = (Y ′′, υ′′, VY′′) and a right-total up-to-p LP-bisimulation R′′ : X → Y ′′

between X and Y′′ such that

∃p
X = R′′ ;Y′′ . (16)

We already know that (ξ(x0), α) ∈ L∃p
X = L(R′′ ;Y′′). The plan is to use the

quasi-functoriality of L to get a υ0 ∈ T (Y ′′) such that (ξT (x0), υ0) ∈ LY ′′ and
(υ0, α) ∈ Lυ′′ . This υ0 will then function as the unfolding of a witnessing state
y0.

Because ∇α is satisfiable there is a state z0 in a T -model Z = (Z, ζ, VZ) such
that z0 Z ∇α. Let Y′ = Y′′ + Z with Y′ = (Y ′, υ′, VY′) be the coproduct of Y′′
and Z with injections iY ′′ and iZ . The injections are coalgebra morphisms and
so they preserves truth by Proposition 3.13 (i) and Proposition 4.11. That gives
us that Y′′ = iY ′′ ;Y′ . Now define the relation R′ : X → Y ′, R′ = R′′ ; iY ′′

which by Proposition 3.13 (ii) is an up-to-p LP-bisimulation between X and Y′
which is, as one easily verifies, also left-total and satisfies

∃p
X = R′′ ;Y′′ = R′ ;Y′ .

Because iZ preserves truth we get that iZ(z0) Y′ ∇α. Hence (υ′(iZ(z0)), α) ∈
LY′ and so α ∈ img(Y′).

Since R′ is left-total there is a function f : X → Y ′ with f ⊆ R′. Using f
we get that (ξ(x0), T f(ξ(x0))) ∈ Tf ⊆ Lf ⊆ LR by (L3) and (L1). It follows
that ξ(x0) ∈ preimg(LR′).

Now we have that (ξ(x0), α) ∈ L(∃p
X = R′ ;Y′), ξ(x0) ∈ preimg(LR′) and

α ∈ img(Y′). So it follows from the quasi-functoriality of L that there exists a
υ0 ∈ TY ′ with (ξ(x0), υ0) ∈ LR′ and (υ0, α) ∈ LY′ . This we can use to define
the coalgebra Y = (Y, υ, VY) on Y = {y0} ∪ Y ′ for a y0 /∈ Y ′, with transition
function

υ : Y → TY,

y 7→

{
υ0, if y = y0

υ′(y), if y ∈ Y ′,

The transition function υ is well defined for y ∈ Y ′ because TY ′ ⊆ TY since
T is standard. The valuation VY is defined such that VY(q) = VY′(q) ∪ {y0}
for all p ∈ P \ {p} with x0 ∈ VX(q) and VY(q) = VY′(q) for all q ∈ P \ {p}

44

with x0 /∈ VX(q). For the proposition letter p we set VY(p) = VY′(q) ∪ {y0} if
p ∈ Π and VY(p) = VY′(p) otherwise. The relation R : X → Y is defined by
R = R′ ; ιY ′,Y ∪ {(x0, y0)}.

For this we now first show that the inclusion ιY ′,Y : Y ′ → Y is an LP-
bisimulation. It is clear from the definition of the valuation VY that ιY ′,Y pre-
serves all propositional letters. To see that it is an L-bisimulation consider

ιY ′,Y ⊆ υ′ ; ιTY ′,TY ; υ◦ Definition of υ

= υ′ ;TPιY ′,Y ; υ◦ T standard
⊆ υ′ ;LιY ′,Y ; υ◦. (L3)

By Remark 3.4 it follows that ιY ′,Y is an L-bisimulation between υ′ and υ.
Because ιY ′,Y is an LP-bisimulation between Y′ and Y it preserves truth

by Proposition 4.11. So we have that ι◦Y ′,Y ;Y′ ⊆ Y. We also have that
(υ0, υ0) ∈ ι◦TY ′,TY = T (ι◦Y ′,Y) ⊆ Lι◦Y ′,Y because T is standard and by (L3).
Moreover we already know that (υ0, α) ∈ LY′ . Hence we get

(υ0, α) ∈ Lι◦Y ′,Y ;LY′ ⊆ L(ι◦Y ′,Y ;Y′) (L2)

⊆ LY ι◦Y ′,Y ;Y′ ⊆ Y and (L1)

It follows that (υ(y0), α) ∈ Lυ, and therefore y0 Y ∇α, because υ(y0) = υ0.
The definition of the valuation VY entails, together with the fact that x0 X∧

(Π \ {p,¬p}), that y0 Y
∧

Π. It follows that y0 Y
∧

Π ∧∇α.
The last thing we have to prove is that R = R′ ; ιY ′,Y ∪ {(x0, y0)} is an

up-to-p LP-bisimulation between X and Y. The relation R preserves the truth
of propositional letters, except for p, because as we already observed R′ and
ιY ′,Y do and the valuation VY was defined such that y0 makes up-to-p the same
propositional letters true as x0. So it remains to check that the relation R is an
L-bisimulation between X and Y. For this we show that (ξ(x), υ(y)) ∈ LR for
an arbitrary (x, y) ∈ R. We first do the case where (x, y) ∈ R′ ; ιY ′,Y . We have
by Proposition 3.13 (ii) that the composition R′ ; ιY ′,Y is an L-bisimulation and
so (ξ(x), υ(y)) ∈ L(R′ ; ιY ′,Y) because (x, y) ∈ R′ ; ιY ′,Y . Since R′ ; ιY ′,Y ⊆ R
it follows by (L1) that (ξ(x), υ(y)) ∈ LR. In the other case we have that
(x, y) = (x0, y0) and have to show that (ξ(x0), υ(y0)) ∈ LR. For this we use
that (ξ(x0), υ0) ∈ LR′ and that (υ0, υ(y0)) ∈ TιY,Y ′ , since T is standard and
υ(y0) = υ0. So we can compute

(ξ(x0), υ(y0)) ∈ LR′ ;TιY,Y ′ ⊆ LR′ ;LιY,Y ′ (L3)
⊆ L(R′ ; ιY,Y ′) (L2)
⊆ LR. R′ ; ιY,Y ′ ⊆ R and (L1)

Example 4.26. Consider the functor F 3
2 from Example 2.1 (x) and its lax

extension L3
2 from Example 3.11 (vi). We can show that bisimulation quantifiers

are not definable in the language LF 3
2

if the semantics of the nabla is given
by L3

2. We show this by proving that there is no formula in LF 3
2

that has
x0 ∃p

X ∇(p,¬p,¬p) as its satisfaction condition at a state x0 of a F 3
2 -model X.

For this purpose we first prove the claim that for any state x0 in a F 3
2 -model

X = (X, ξ, VX) with ξ(x0) = (x1, x2, x3):

x0 ∃p
X ∇(p,¬p,¬p) iff x2 -p x3. (17)

45

Assume first that x0 ∃p
X ∇(p,¬p,¬p). This means that there is a state y0 in

a F 3
2 -model Y = (Y, υ, VY) and there is an up-to-p L3

2P-bisimulation R : X → Y
between X and Y such that y0 Y ∇(p,¬p,¬p). Let υ(y0) = (y1, y2, y3). We
know that y1 6= y2 and y1 6= y3 because y1 υ p whereas y2 υ ¬p and y3 υ ¬p
by the semantics of the nabla. Because (y1, y2, y3) can contain at most two
distinct elements it follows that y2 = y3. Because R is an L3

2-bisimulation
between ξ and υ with (x0, y0) ∈ R we have that (x2, y2), (x3, y3) ∈ R since L3

2 is
defined componentwise. This entails (x2, x3) ∈ R ;R◦ which shows that x2 and
x3 are up-to-p L3

2P-bisimilar because by Proposition 3.13 (ii) the composition
R ;R◦ is an up-to-p L3

2P-bisimulation.
For the other direction of (17) assume that x2 -p x3. Now we want to

construct a witnessing F 3
2 -model Y = (Y, υ, VY) for the left hand side. The

idea is to first identify the points x2 and x3 and then make this identified point
distinct from x1. This enables us to make p true at the point corresponding to
x1 and false at the point corresponding to x2 and x3.

It follows from Corollary 3.14 that the bisimilarity relation -p: X × X

is an L3
2P\{p}-bisimulation equivalence on the TP-coalgebra X̂ : X → F 3

2 PX
corresponding to X. From Proposition 3.8 we get the bisimulation quotient
ζ ′′ : Z ′′ → F 3

2 P\{p}Z
′′, where Z ′′ = X/-p, such that the projection p : X → Z ′′

is a F 3
2 P\{p}-coalgebra morphism from r

P,P\{p}
X ◦ X̂ to ζ ′′. Because x2 -p x3 it

holds that p(x2) = p(x3).
Next consider the coproduct ζ ′ = ζ ′′ + ζ ′′ : Z ′ → F 3

2 P\{p}Z
′ where Z ′ =

Z ′′ + Z ′′ with injections i0, i1 : Z ′′ → Z ′. Intuitively ζ ′ consists of two copies
of ζ ′′ where the first copy is accessed by i0 and the second by i1. So for every
equivalence class z ∈ Z ′′ = X/-p there are two identical copies i0(z) and
i1(z) of it in ζ ′. We can then define the relation R′ = p ; (i0 ∪ i1) : X → Z ′

that connects any point in x with the two copies of its equivalence class in ζ ′.
Because of Proposition 3.13 it we have that R′ = p ; (i0 ∪ i1) : X → Z ′ is an
up-to-p L3

2P-bisimulation between r
P,P\{p}
X ◦ X̂ and ζ ′. By assuming that the

propositional letter p is false at every state we can take the F 3
2 P\{p}-coalgebra

ζ ′ to be a F 3
2 P-coalgebra Ŷ′ : Y ′ → F 3

2 PY ′ where Y ′ = Z ′. So there is an
F 3

2 -model Y′ = (Y ′, υ′, VY′) corresponding to Ŷ. For Y′ we have that R′ is an
up-to-p L3

2P-bisimulation between the F 3
2 -models X and Y′.

In Y′ there is the state i0 ◦ p(x1) that is bisimilar to x1 and distinct from
the point i1 ◦ p(x2) = i1 ◦ p(x3) that is bisimilar to x2 and to x3. That is the
situation we were aiming for and we use it to define the F 3

2 -model Y = (Y, υ, VY)
on the set Y = Y ′ ∪ {y0} for a y0 /∈ Y ′ with transition function

υ : Y → F 3
2 Y,

y 7→

{
(i0 ◦ p(x1), i1 ◦ p(x2), i1 ◦ p(x3)), if y = y0

υ′(y). if y ∈ Y ′

The valuation VY : P → PY is defined such that VY(p) = {i0 ◦ p(x1)} and
VY(q) = VY′(q) for q ∈ P \ {p}.

Because p holds only at the state i0 ◦ p(x1) and i0 ◦ p(x1) 6= i1 ◦ p(x2) =
i1 ◦ p(x3) it follows that y0 υ ∇(p,¬p,¬p). One can also check that R =
R′ ∪ {(x0, y0)} : X → Y is an up-to-p L3

2P-bisimulation between X and Y.
Together this yields that x0 ∃p

ξ ∇(p,¬p,¬p) and finishes the proof of (17).

46

From the equivalence (17) it follows that a formula b ∈ LF 3
2
, that has

x0 ∃p
X ∇(p,¬p,¬p) as its satisfaction conditions at a state x0, characterizes

the property that the successors x2 and x3 of x0 are up-to-p LP-bisimilar. This
is interesting because bisimilarity is a property that depends on arbitrarily re-
mote successors of a state. But every formula b ∈ LF 3

2
has a finite modal rank

and can only characterize properties of successors that are at most n steps away.
Hence it is not possible that there is such an b ∈ LF 3

2
.

To make this argument more precise assume for a contradiction that there
is a formula b ∈ LF 3

2
such that x X b is equivalent to x ∃p

X ∇(p,¬p,¬p) at
every state x in any F 3

2 -model X. Let n be the modal rank of b. Now consider
two F 3

2 -models X = (X, ξ, VX) and Y = (Y, υ, VY). The model X is defined on a
set X = {x} such that

ξ(x) = (∅, (x, x, x)),

and VX(q) = ∅ for all q ∈ P. The F 3
2 -model Y = (Y, υ, VY) has the set Y =

{y, y′} ∪ {yi | i = 0, . . . , n − 1} with n + 2 distinct elements as its states, its
transition function υ : Y → F 3

2 Y is defined such that

υ(y) = (y, y, yn−1),
υ(yi+1) = (yi, yi, yi),

υ(y0) = (y′, y′, y′),
υ(y′) = (y′, y′, y′),

and its valuation is such that VY(r) = {y′} for an r ∈ P \ {p} and VY(q) = ∅ for
all q ∈ P \ {r}. For these models it is easy to show by induction on d < n that
x X a iff y Y a and x X a iff yd Y a for all a ∈ LF 3

2
of rank at most d. It

follows that x X a iff y Y a for every a ∈ LF 3
2

with rank at most n. Hence
x X b iff y Y b. But x ∃p

X ∇(p,¬p,¬p) and not y ∃p
Y ∇(p,¬p,¬p) since we

clearly have that x -p x whereas not y -p yn−1 because yn−1 has a successor
where r is true but y does not.

An application of bisimulation quantifiers is the following interpolation re-
sult.

Corollary 4.27 (Uniform Interpolation). Assume that T restricts to finite sets
and that L is quasi-functorial. For any finite sets of propositional letters Ca ⊆ P
and D ⊆ Ca and any formula a ∈ LT (Ca) there is a formula aD ∈ LT (D) such
that for all Cb ⊆ P with Ca ∩ Cb ⊆ D and formulas b ∈ LT (Cb) we have that

a |= b iff aD |= b.

Proof. Let {p0, p1, . . . , pn−1} = Ca \D. Then set

aD = ∃p0.∃p1. . . .∃pn−1.a.

With Remark 4.22 we have that aD ∈ LT (Ca ∩D) ⊆ LT (D).
To check that a |= b iff aD |= b assume first that a |= b. To prove that aD |= b

we have to show x0 X b for an arbitrary state x0 in a T -model X = (X, ξ, VX)
with x0 X aD. By the semantics of the bisimulation quantifiers we get states
yi in T -models Yi for i = 1, 2, . . . , n such that x0 -p0 y1, y1 -p1 y2, . . . ,
yn−1 -pn−1 yn and yn Yn a. From the latter fact it follows that yn Yn b

47

since we assume that a |= b. Because every of the witnessing up-to-pi LP-
bisimulations for i = 0, 1, . . . , n− 1 is also an LP\{p0,p1,...,pn−1}-bisimulation we
can apply Proposition 3.13 (ii) to obtain that x0 and yn are LP\{p0,p1,...,pn−1}-
bisimilar. It follows from the assumptions that Cb ⊆ P \ {p0, p1, . . . , pn−1}. So
we can use Proposition 4.11 to get x0 X b.

For the other direction we show that a |= aD. Then a |= b follows by
transitivity from aD |= b. So take any state x0 in a T -model X = (X, ξ, VX)
with x0 X a. Then clearly x0 X aD because x0 is up-to-p LP-bisimilar to
itself for any p ∈ P, since ∆X is an LP-bisimulation.

5 Conclusions and Further Questions

In this thesis we proved that lax extensions which preserve diagonals give rise
to a notion of bisimulations that is adequate for behavioral equivalence and we
demonstrated that lax extension can be used to define a well behaved semantics
for the nabla modality. For these reasons it is interesting to study lax extension
that preserve diagonals in the context of coalgebraic modal logic. Another indi-
cation of the importance of lax extensions that preserve diagonals is that, of all
the functors we consider, only the neighborhood functor N does not posses a lax
extension that preserves diagonals and for this functor we showed in Proposition
3.7 that there is no relation lifting that characterizes behavioral equivalence.

An interesting goal for further research would be to characterize the functors
which have a lax extension that preserves diagonals. Our Theorem 3.26 is a first
step into this direction but it only applies to finitary functors and the condition
it gives, that the functor has a separating set of monotone predicate liftings, is
not more fundamental than what it is supposed to characterize. Furthermore
one could try to find a canonical way to obtain a lax extension that preserves
diagonals for the functors that posses one, similar to the Barr extension of weak
pullback preserving functors. For this it might be helpful to note that for all our
examples of functors which have a lax extension that preserves diagonals, the
relation lifting T̂ from Example 3.2 (viii) also characterizes behavioral equiva-
lence, though it is not necessarily a lax extension itself. A more general question
one could work on is to find characterizing criteria of functors that have a re-
lation lifting that characterizes behavioral equivalence. It might turn out that
every functor with a relation lifting that characterizes behavioral equivalence
also has a lax extension that preserves diagonals.

Another starting point for future work is our Theorem 4.25, which states
that bisimulation quantifiers are definable in the nabla logic of a quasi-functorial
lax extension. For example one could investigate the the property that a lax
extension is quasi-functorial more carefully. Which property of the functor M
brings about that M has a quasi-functorial lax extension and hence definable
bisimulation quantifiers? It would also be interesting to see whether bisimulation
quantifiers are still definable in the nabla logic of a quasi-functorial lax extension
if one adds modal fixpoint operators to the logic.

48

Acknowledgments

Foremost, I thank Yde Venema for his active supervision of this thesis project.
I am especially grateful for his patience with me giving wrong proofs and for
his encouragement and support when something did not work as expected.

My sincere thanks also go to the MoL-room people: Gabriela Aslı Rino
Nesin, Paula Henk, Marta Sznajder, Peter Fritz and Erik Parmann, for sup-
port on a daily basis, for substantial discussions and for providing the social
environment, with all ups and downs, during the time this thesis was written.

References

[1] Jǐŕı Adámek and Věra Trnková. Automata and Algebras in Categories.
Kluwer Academic Publishers, Norwell, MA, USA, 1990.

[2] Alexandru Baltag. A logic for coalgebraic simulation. Electronic Notes in
Theoretical Computer Science, 33:42–60, 2000.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge:
Cambridge University Press, 2001.

[4] Helle Hvid Hansen and Clemens Kupke. A coalgebraic perspective on
monotone modal logic. Electronic Notes in Theoretical Computer Science,
106:121–143, December 2004.

[5] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Bisimulation for
neighbourhood structures. In Proceedings of the 2nd International Con-
ference on Algebra and Coalgebra in Computer Science, CALCO’07, pages
279–293, Berlin, Heidelberg, 2007. Springer-Verlag.

[6] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Neighbourhood struc-
tures: Bisimilarity and basic model theory. Logical Methods in Computer
Science, 5(2), 2009.

[7] Christian Kissig and Yde Venema. Complementation of coalgebra au-
tomata. In Proceedings of the 3rd international conference on Algebra and
coalgebra in computer science, CALCO’09, pages 81–96, Berlin, Heidelberg,
2009. Springer-Verlag.

[8] Clemens Kupke. Finitary Coalgebraic Logic. PhD thesis, Universiteit van
Amsterdam, 2006.

[9] Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness of the
finitary Moss logic. In Carlos Areces and Rob Goldblatt, editors, Advances
in Modal Logic, 2008.

[10] Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness for the
coalgebraic cover modality, to appear, see [9] for an earlier version.

[11] Alexander Kurz and Raul Andres Leal. Equational coalgebraic logic. Elec-
tronic Notes in Theoretical Computer Science, pages 333–356, 2009.

49

[12] Paul Blain Levy. Similarity quotients as final coalgebras. In FOSSACS,
pages 27–41, 2011.

[13] Lawrence S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic,
96, 1999.

[14] Dirk Pattinson. Coalgebraic modal logic: Soundness, completeness and
decidability of local consequence. Theoretical Computer Science, 309(1–
3):177–193, 2003.

[15] Dirk Pattinson. An introduction to the theory of coalgebras, 2003. Lecture
Notes, Second North American Summer School on Logic, Language and
Information.

[16] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3 – 80, 2000.

[17] Luigi Santocanale and Yde Venema. Uniform interpolation for monotone
modal logic. In Lev Beklemishev, Valentin Goranko, and Valentin Sheht-
man, editors, Advances in Modal Logic, Volume 8, pages 350–370. College
Publications, 2010.

[18] Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and be-
yond. Theoretical Computer Science, 390(2-3):230 – 247, 2008. Foundations
of Software Science and Computational Structures.

[19] Christoph Schubert and Gavin J. Seal. Extensions in the theory of lax
algebras. Theories and Applications of Categories, 21(7):118–151, 2008.

[20] Albert Thijs. Simulation and Fixpoint Semantics. PhD thesis, University
of Groningen, 1996.

[21] Yde Venema. Algebras and coalgebras. In Patrick Blackburn, Johan van
Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of
Studies in Logic and Practical Reasoning, pages 331 – 426. Elsevier, 2007.

50

