Relation Liftings in Coalgebraic Modal Logic

MSc Thesis (Afstudeerscriptie)

written by

Johannes Marti
(born December 19, 1986 in Basel, Switzerland)

under the supervision of Prof Dr Yde Venema, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 8, 2011 Dr Alexandru Baltag

Prof Dr Dick de Jongh

Raul Andres Leal

Prof Dr Yde Venema

nza
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Abstract

In this thesis we study relation liftings in the context of coalgebraic modal logic.
In the first part of the thesis we look for conditions on relation liftings that can
be used to define a notion of bisimilarity between states in coalgebras, such
that two states are bisimilar if and only if they are behaviorally equivalent.
We show that this is the case for relation liftings that are lax extensions and
additionally preserve diagonal relations. In the second part of the thesis we
develop a coalgebraic nabla logic for an arbitrary lax extension. For this logic
we prove that, under additional conditions, bisimulation quantifiers are definable
in the nabla logic. This has a Uniform Interpolation Theorem as consequence.

Contents

1 Introduction 1
2 Preliminaries 3
2.1 Sets, Functions and Relations 3
2.2 SetFunctors. 5
2.3 Coalgebras 10
3 Relation Liftings and Bisimulations 13
3.1 Relation Liftings 0. 13
3.2 Bisimulations L oo 14
3.3 Lax Extensions 18
3.4 Lax Extensions of Finitary Functors 23
4 The Nabla Logic of a Lax Extension 29
4.1 Syntax and Semantics L 29
4.2 Disjunctive Nabla Normal Form 35
4.3 Bisimulation Quantifiers and Uniform Interpolation 39
5 Conclusions and Further Questions 48

1 Introduction

Coalgebras are functions ¢ : X — TX from a set of states X to the set TX
given by some endofunctor 7' in the category of sets. By varying the functor
T one can study many different types of structures in the unified framework of
coalgebras. These include numerous examples from computer science such as
finite automata, infinite data structures or transition systems.

The theory of coalgebras is also important for modal logic since Kripke
frames and Neighborhood frames can be represented as coalgebras. Kripke
frames, that are used as the standard semantics for normal modal logics, are
coalgebras for the covariant powerset functor P. With every state x in a Kripke
frames one associates the set of its successors, which is an subset of the set of
states. Neighborhood frames, that are used in the semantics of classical modal
logic, are coalgebras for the double contravariant powerset functor NV = PP.
A neighborhood frame specifies for every state the set of its neighborhoods. In
between classical modal logic and normal modal logic there is monotone modal
logic. The standard semantics for monotone modal logic is given on monotone
neighborhood frames that are coalgebras for the monotone neighborhood functor
M. This functor is a restriction of N in which one requires that the set of
neighborhoods associated to a state is upwards-closed.

It is not only that the models of modal logic are coalgebras but it has also
turned out that coalgebraic modal logics, which generalize standard modal log-
ics, are an adequate tool to reason about any type of coalgebras. Researchers
working on coalgebraic modal logic develop logics for coalgebras of any func-
tor. There are two main approaches of how this is usually done. The first one
uses so called predicate liftings to define a modal language, similar to standard
modal logic with boxes and diamond, for any functor 7. See [18] for an up-to-
date example of how this works. The other approach originates from the work

of Moss [13], who started the study of coalgebraic modal logic. Moss uses so
called nabla modalities Va for o € TL, where L is the set of all formulas, to
describe properties of coalgebras for the functor 7. These nabla modalities are
somewhat unusual because they incorporate the functor 7' into the syntactic
shape of modal formulas. Despite of their somewhat peculiar syntax, modal
logics using the nabla modalities have very strong normal forms. One can show
under relatively weak restrictions that every formula in the logic with nablas is
equivalent to an formula in which negations and conjunctions occur only on the
propositional non-modal level.

In this thesis we study so called relation liftings in the context of coalgebraic
modal logic. A relation lifting L for a functor 7" maps every relation R : X + Y
between the sets X and Y to a relation LR : TX -+ TY between the sets
TX and TY. A relation lifting that figures very prominently in the theory of
coalgebras and coalgebraic modal logic is the Barr extension T of a functor T.
It is defined uniformly for any set functor 7" and has been used in the theory of
coalgebras and coalgebraic modal logic to:

(i) Define a notion of bisimilarity between states in coalgebras.
(ii) Define a semantics for the nabla modality.

This only works properly for set functors that have the property that they pre-
serve weak pullbacks. Otherwise the Barr extension is not well-behaved. Most
set functors preserve weak pullbacks so this is not a strong restriction. Impor-
tant exceptions, however, are the functors N' and M that yield neighborhood
frames as their coalgebras.

It has been observed, see for example [4], that there is a relation lifting, we

call it MV, for the functor M, that yields an adequate notion of bisimilarity
between states in monotone neighborhood frames and is distinct from the Barr
extension M of M. Moreover, Santocanale and Venema use M in [17] to define
a semantics for a well-behaved nabla modality on neighborhood frames. So the
relation lifting M of M fulfills the same roles (i) and (ii) that, as explained
above, the Barr extensions plays for weak pullback preserving functors. This
triggers the question under which conditions a relation lifting can be used for
(i) and (ii).

The major contribution of this thesis is to show that relation liftings which
are lax extensions and satisfy the further condition that they preserve diagonal
relations can be used to fulfill the tasks (i) and (ii). Lax extensions that preserve
diagonals are like functors in the category of relations with the difference that
only one inclusion of the composition of relations is preserved. The relation
lifting M is a lax extension and preserves diagonals. As a negative result we
show in Proposition 3.7 that, in a sense we will make more precise, there is no
relation lifting for A that fulfills task (i). We also give a partial characterization
of the functors that have a lax extension that preserves diagonals. So we prove
in Theorem 3.26 that a finitary functor T has a lax extension that preserves
diagonals iff it has a separating set of monotone predicate lifting. This theorem
establishes a connection between the nabla logic of a lax extension and the
other flavor of coalgebraic modal logic that uses predicate liftings. For the
nabla logic of a lax extension we show that bisimulation quantifiers are definable
in the logic if the lax extension satisfies an additional property, that we call
quasi-functoriality. This generalizes the work done by Santocanale and Venema

in [17] for the monotone neighborhood functor M. An consequence from the
definability of bisimulation quantifiers in the logic is that the logic has uniform
interpolation.

The structure of this thesis is as follows. In section 2 we fix the notation
and introduce the basic mathematical concepts that we use later. Section 3.2 is
organized in three parts. In the first two subsections we define what a relation
liftings and a bisimulation for a relation lifting is. In the third, subsection 3.3,
we introduce lax extensions, prove some of their basic properties, and show that
they can be used to define an adequate notion of bisimilarity if they preserve
diagonals. We use the whole subsection 3.4 to prove Theorem 3.26. In section
4 we develop the nabla logic that has a semantics defined with help of a lax
extension L along the lines of how this is done in [17] for M. In the first
subsection 4.1 we define the semantics and show that it is adequate with respect
to L-bisimilarity. In subsection 4.2 we show how one can eliminate conjunctions
and negations from nabla formulas. This result we use in subsection 4.3 to show
that bisimulation quantifiers are definable in the nabla logic of a lax extension.

2 Preliminaries

This section contains some of the preliminaries and fixes the notation. We
presuppose that the reader has made contact with very basic concepts from
category theory before. For example we presuppose the notions of a category,
a commutative diagram, an isomorphism, an inverse or a functor between cate-
gories.

In order to see the motivation behind the concepts introduced later and to
understand the examples the reader needs to know some modal logic on Kripke
frames. An extensive introduction into modal logic is given for example in [3].

2.1 Sets, Functions and Relations

We will mainly work in the category Set that has sets as its objects and functions
between sets as arrows. It is assumed that the reader is familiar with the usual
constructions on sets so the following explanations are here to fix notation. We
usually use capital Latin letters X, Y, Z,..., U, V,W,... for sets and small Latin
letters f,g,... for functions between sets. The notation f : X — Y means
denote that f is a function with domain X and codomain Y. The identity
element for a set X is the identity function idx : X — X. The composition
of two functions f : X — Y and g : Y — Z is the usual composition of
functions written as go f : X — Z. An isomorphism in Set is a bijective
function f : X — Y and its inverse is written as f~' : ¥ — X. Given a
function f : X — Y and a set X’ C X we define the restriction of f to X’ as
flx: X' =Y,z — f(z). For sets X’ C X the inclusion of X’ into X is the
map tx/ x : X' — X,z — x.

Another category that we will use a lot is the category Rel of relations
between sets. Its arrows from a set X to a set Y are all the relations between
X and Y. We use capital letters R, S, ... for relations and write R : X -+ Y to
indicate that R is a relation between X and Y. A relation R: X -+ Y as an
arrow in the category Rel is not just a set of pairs, that is a subset of X x Y, but
it also contains information abouts its domain and codomain. We write RY" for

the set of pairs that encodes a relation R: X -+ Y. Note that R: X + Y is an
arrow in the category Rel whereas R9" C X x Y is an object in Set or Rel. At
some places, especially once we use relation liftings later, it matters what the
domain and codomain of a relation are. Nevertheless we are often a bit sloppy
with the notation and for example use = and C between relations that do not
have the same domain or codomain.

The graph of any function f : X — Y is a relation between X and Y for
which we write again f : X -+ Y. It will be clear from the context in which a
symbol f occurs whether it is meant as the function f : X — Y in Set or as the
relation f: X - Y in Rel.

Identity elements in the category Rel are the diagonal relations Ax : X + X
with (z,2’) € Ax iff x = 2/. Note that Ax = idx if we consider idx : X + X
as a relation. The composition of two relations R: X - Y and S:Y + Z is
written as R;S : X + Z and defined by

R;S={(z,2)e X xZ|(z,y) € Rand (y,z) € SforayeY}.

The composition of relations is written the other way round than the compo-
sition of functions. So we have, using the identification of functions with the
relation of its graph, that go f = f; g for functions f: X - Y andg:Y — Z.

For every relation R : X -+ Y its converse R° : Y - X with (y,z) € R°
iff (z,y) € R is again a relation. The projections of a relation R : X + Y are
denoted by 7x : R — X and 7y : R9" — Y. It holds that R = 7% ;my. For
any relation R: X - Y we use R : XWY + XWY for the smallest equivalence
relation on the disjoint union X WY of X and Y that contains all the pairs that
are also in R.

There is an order C on the relations between X and Y that is defined for
relations R',R : X - Y such that R' C R iff R'9" C R9". Every set R of
relations between X and Y has an infimum (R : X + Y and supremum
UR : X - Y with respect to the order C. They are just the usual intersection
and union of the graphs.

For a relation R : X + Y we define the sets

preimg(R) = {z € X | Jy € Y.(z,y) € R}
img(R)={yeY |3z e X.(z,y) €

The relation R : X -+ Y is left-total if preimg(R) = X and right-total if
img(R) = Y. Given sets X’ C X and Y’ C Y we define the restriction
Rl x/xy: X' + Y of the relation R: X -+ Y as Rl x/xy'= RN (X' xY’).

For any set X let €x : X -+ PX be the membership relation between
elements of X and subsets of X.

We are going to use some universal constructions in the category Set.

For every family X of sets we use [[X to denote the product of all the sets
in X with projections 7x : [[X — X for all X € X. The product of two
sets X and Y is denoted by X x Y with projections 7x : X xY — X and
Ty : X XY =Y.

For every family X of sets we use [[X to denote the coproduct of all the
sets in X' with injections ix : X — [J& for all X € X. One can think of the
coproduct of X' as the disjoint union [+ X’ of the sets in X. The coproduct of
two sets X and Y is denoted by X +Y = X WY with injections ix : X — X +Y
andiy : Y - X +Y.

Given two functions f: X — Z and g : Y — Z the pullback of f and g is
the set

pb(f,9) = (f39°)7" ={(z,y) € X xY | f(x) = g(y)}

together with the projections 7x : pb(f,g9) — X and 7y : pb(f,g) — Y. For
these it holds that forx = gomy. The pullback of f and g is determined up-to-
isomorphism by the universal property that for any other set Z’ and functions
h:Z — X and k: Z' — Y that satisfy foh = gok there is a unique function
m : Z' — pb(f,g) such that h = wx om and k = my om. This universal property
is depicted in the following diagram:

X—7

A weak pullback of two functions f : X — Z and g : Y — Z is any set P
together with morphisms px : P — X and py : P — Y that satisfies the same
universal property as the pullback pb(f, g) with functions 7x and 7y except the
arrow m is not required to be unique. It is possible that two weak pullbacks P
and P’ of f and g are not isomorphic.

Given two functions f : X — Z and g : Y — Z the pushout of f and
g is the set po(f,g) = (X 4+ Y)/R®, that is the disjoint union of X and Y
modulo the equivalence relation R®, together with the projections px : X —
po(f,g9),x — [ix(z)] and py : Y — po(f,g),y — [iy(y)]. For these it holds
that px o f = py og. The pushout of f and g is determined up-to-isomorphism
by a universal property that is dual of the universal property of the pullback.
For any other set Z’ and functions h : X — Z’ and k : Y — Z’ that satisfy
ho f = kog there is a unique function m : po(f,g) — R’ such that h = mopx
and k = m o py. This universal property is depicted in the following diagram:

z—2 sy

2.2 Set Functors

We will work with various set functors, that are functors from Set to Set or to
Set®”. The category Set® is like Set as it has sets as objects but an arrow f
from X to Y in Set’” is a function f : Y — X from Y to X. A set functor
with codomain Set is called covariant whereas one with codomain Set°” is con-
travariant. By default we assume that set functors a covariant and mention it
explicitly if they are not.

A natural transformation A : F' = G from a set functor F' to a set functor G
provides a function Ax : FX — GX for every set X such that for all functions
f: X =Y the following diagram commutes:

Ax
FX—GX

lpf k icf

FY > QY

It is possible that F' and G are both contravariant. In that case the arrows at
the left and right sides of the above square are reversed. If each Ax : FX — GX
is an isomorphism, that means in Set that it is a bijective function, then A is
called a natural isomorphism and the functors F' and G are said to be naturally
isomorphic. In this case we can define A : G = F with (A\"!)x = (A\x)™!
which is automatically a natural transformation as well. One can think of two
naturally isomorphic functors F' and G as being the same in the sense that
FX is always isomorphic to GX and for every function f : X — Y there
are isomorphisms Ax : F X — GY and Ay : FY — GY such that Ff =
)\;1 oGfolx.

Example 2.1. (i) The powerset functor P maps a set X to PX, the set of all
its subsets. A function f: X — Y is sent to
Pf:PX — PY,
U flU) = {f(@) € Y | @ € X}.

(ii) Similarly to the powerset functor the contravariant powerset functor P
maps a set X to PX = PX. On functions P is the inverse image map, that is
foran f: X =Y

Pf:PY — PX,
Vis flV]={zeX | flx) eV}

(iii) The identity functor Id is defined on sets as I[dX = X and on functions
as ldf = f.

(iv) For every set C there is a constant functor C' that sends a a set X to
CX = C and every morphism to id¢.

(v) For any collection of functors F; for ¢ € I where I is any index set the

product [],.; F;— is again a functor that maps a set X to [[,.; F;X. It maps
a function f : X — Y on [[,c; Fif = (Fif)icr which is defined as
(Fif)ier : HFiX - [FY,
i€l iel
(&)ier — (Fif(&))ier-

(vi) For any collection of functors F; for i € I where I is any index set the
coproduct]_[Z.GI F;— is a functor. It maps a set X on the coproduct [[,.; F; X
and a morphism f: X — Y such that

il il il
Eipy o Fif(€). where £ = i, x(¢')

icl

(vii) The composition of two functors F' and G is a functor written as F oG
or just FG which maps X to F(GX)and f: X — Y to F(Gf) : FGX — FGY.

(vili) The neighborhood functor or double contravariant powerset functor
N = PP maps a set X to NX = PPX and a function [:X =Y toNf=
PPf:NX — NY or more concretely for all £ € NX = PPX

NfE={vey|f Ve

For any cardinal « there is an a-ary variant N of A that maps a set X to
AN X = P((PX)*). So we have that the elements of *A/ X are sets of a-tuples
of subsets of X.

Fora U € £ € N X = (P(PX)®) we write Us for U(S) that is the 5-th
component of U. So if « is a finite number, that is « = n € w, then then we
have that U = (U, Uy, ..., U,—1) for U € €. A function f: X — Y is mapped
by “N to N f : “N' X — ®NY such that for all £ € N X = P((PX)?)

NIE) ={V € (PY)* | (f ' [Vs])pea €).

(ix) A restriction of the neighborhood functor N from (viii) is the monotone
neighborhood functor M. It maps a set X to MX C N X with the additional
requirement that all £ € MX are upsets. That means that for all U,U’ C X
if U/ CU and U’ € € then also U € £. On functions M is defined in the same
way as N. So we have for f: X — Y that

Mf: MX — MY,
(- {VaY | fiV]eg)

One has to check that this is well defined. So we need that M f(£) is an upset
if £ is. So consider V! C V C Y such that V' € Mf(£). That means that
F7HV'] € € and so f7HV] € &, hence V € Mf(E), because f~1[V'] C f~1[V]
and £ is an upset.

There is also an a-ary version “M of M that is defined analogously to N
where the monotonicity requirement becomes that if U, é C Ug for all 8 € a and
U’ € € then also U € &. Similarly to the 1-ary case 'M = M one can check
that “M f is well defined.

(x) The functor F maps a set X to

F3X = {(wo, 1, 72) € X® | [{wo, x1, 22} < 2}

the set of all triples over X that consist of at most two distinct elements. A
function f : X — Y is mapped by F3 as follows

F3f:F3X — FJY,
(20, 21, 22) = (f(w0), f(21), f(22)).
This functor is important since it is relatively simple and can often be used

to construct counterexamples to seemingly obvious claims, due to its rather
particular properties.

A very important property of set functors for the theory of coalgebras is
weak pullback preservation. A functor T preserves weak pullbacks if it maps
every weak pullback P with projections 7x : P — X and my : P — Y of

function f: X — Z and g : Y — Z onto a weak pullback T'P with projections
Trx : TP —->TXand Trny : TP —-TY of Tf :TX - TZand Tg:TY — TZ.
In diagrams that means that every weak pullback diagram on the left side is
mapped to a weak pullback on the right side:

TY Try
P——Y TP ——TY
\LT"X \LQ lTﬂ'X ng

f Tf
X—Z TX —=TZ7

Example 2.2. From the functors introduced in Example 2.1 only F3, A and
its monotone variant *M do not preserve weak pullbacks. Products, coproducts
and composition of functors preserve weak pullbacks if all of their components
do. A way to find out whether a functor F' preserves weak pullbacks is to check
whether its Barr extension F is functorial. This will be explained in Example
3.2 (vii).

A set functor T restricts to finite sets if T X is finite whenever X is. All the
functors mentioned here, expect infinite products, restrict to finite sets.
A set functor T is finitary if it satisfies for all sets X

TX = | J{Tux x[TX'] CTX | X' C X, X" is finite}.

The idea behind this definition is that finitary functors have the property that
in order to describe an element & € T'X one has to use only a finite amount of
information from the possibly infinite set X. This is important in the context
of modal logic because usually formulas are defined to be finite objects. Finite
functors have the property that every element in T X can be fully specified by
one single finite formula.

Example 2.3. (i) Examples of finitary functors are: the identity functor, the
constant functor C' for any possibly infinite set C, finite products of finitary
functors, any coproduct of finitary functors or the F§ functor. The powerset
functor P and neighborhood functors A/ and M are not finitary.

(ii) Every set functor T has a finitary version T, that is defined such that it
maps a set X to

T,X = | J{Tex x[TX') CTX | X' C X, X' is finite}.
A function f: X — Y is mapped by T, to the function
T.f:T,X —1,Y,
= Tupxny o Tfx(£),

where ¢’ € TX' is such that £ = tx/ x (&) for a finite X’ C X and fx/ is
the function fx: : X' — f[X'],2’ — f(2’). This is well-defined because the
following diagrams commutes for all X', X" C X:

X/ LX’,X X LX”,X X//
lfx’ lf lfx”
f[XI} LEIXY Yy LEIXLY f[X”]

It is immediate from the definition that T,,X C T'X for all sets X and that a
functor T that is already finitary is identical to T,,. In section 4 we will use P,
a lot. On can see by instantiating the above definition that this functor maps a
set X to the set of all its finite subsets.

A set functor T is called standard if it preserves inclusions and all its
distinguished points are standard. That T preserves inclusions means that
Tux/ x = trx rx for all sets X’ C X. Note that this in particular implies
that TX’ C TX if X’ C X. We do not explain the second condition, that
all distinguished points are standard. For a precise definition of distinguished
points consult [1, Chapter III, Definition 4.4] or [8, Appendix A]. All the functors
we are considering do not have any distinguished points that are not standard.

In [1, Chapter III, page 132] it is proved that for every set functor T there is
a standard functor T that is naturally isomorphic to it with the only possible
exception of the empty set. If one examines the proof more carefully, one finds
that the functor Ty that is constructed there is actually really isomorphic to T'
in the case where T" has no distinguished points that are not standard. Since we
are only looking at functors without non-standard distinguished points we can
assume that there is always a standard functor T naturally isomorphic to 7.

The basic idea behind the construction of T in [1] is to associate with any
element & € TX the pair (X,¢). Then we identify pairs by the equivalence
relation

(X,8) ~ (Y,v) if Tux xuy(§) =Ty, xuy (v).

The functor T is defined such that T, X = {[X,£] | £ € TX} where [X,] is the
equivalence class of the pair (X, &) under the relation ~. For the details of this
construction consult [1, Chapter III, pages 132-134]

It is also shown in [1, Chapter III, Proposition 4.6] that standard functors
distribute over finite intersections. That means that for all sets X and Y

T(XNY)=TXNTY.
For a standard functor T we define for every set X the function

Base: T, X — P,X,
Em (X' S X | ¢eTX').

This is well defined because £ € T,,X which means that there is a finite X" C X
such that £ € TX"”. The definition is useful because for all £ € T,,X we have
that Base(§) € P, X is the least set U € P,X such that £ € TU. To see that
& € T'Base(&) note that since £ € TX" for a finite X" C X we can write Base(&)
as the intersection of all the finitely many X’ C X" such that £ € TX’. Now
because T preserves finite intersections and £ is in all the finitely many T X" it
is also in the T of the intersection of those X', which is TBase(¢). It is clear
from the definition of Base(&) that if £ € TBase(£) then Base(§) must also be
the least set with this property.

Example 2.4. One can check that all the functors we are using except *A/ and
*M are standard.

(i) The neighborhood functor is not standard. To verify this consider any
non-empty set X and an X’ C X. Now take a £ € N X’ such that X’ € ¢&.

Clearly we have that ¢ty [X] = X' € €. So it follows from the definition of A/
on morphisms that X € NLX/’X(S) But X ¢ & because £ C PX' and X' C X.
So & # Nux, x/(§) which shows that Niux x/ # inx avx-

(ii) One can use the same example as in (i) to see that M is not standard.
As we have mentioned above there is a standard functor M, that is naturally
isomorphic to M.

2.3 Coalgebras

In the remaining parts of this section we define the basic notions from the theory
of coalgebras that we will use later. For a detailed introduction into coalgebras
see for example [16] and for the coalgebraic modal logic [15] or [21].

Fix a covariant set functor 7. A T'-coalgebra on a set X is a function
£: X — TX. The elements of X are called the states of £ and the function &
is called the transition function. A T-coalgebra morphism from a T-coalgebra
£: X - TX toaT-coalgebra ¢ : Z — TZ is a function f: X — Z that makes
the following diagram commute:

Tf
TX —TZ7

The T-coalgebras together with the T-coalgebra morphisms are a category where
the identity arrow on one coalgebra £ : X — T X is just the coalgebra morphism
idy : X — X and the composition of two arrows is the composition of the
underlying set functions.

Consider two states xg in a T-coalgebra £ : X - TX and yginv:Y — TY.
The states xp in & and yg in v are behaviorally equivalent if there exists a T-
coalgebra ¢ and coalgebra morphisms f from £ to ¢ and ¢ from v to such that

f(zo) = g(yo)-
X Y
SN
TX z TY
P

TZ

Example 2.5. Many different structures from automata theory and modal
logic can be presented as coalgebra for some set functor. The following are
some particularly important examples.

(i) Kripke frames are P-coalgebras. This works because every relation R :
X -+ X can be presented as a function R[{—}] : X — PX that maps every point
to the set of its R-successors. One can also check that P-coalgebra morphisms
are exactly the bounded morphisms between Kripke frames and that two states
are bisimilar iff they are behaviorally equivalent.

Similarly one can represent Kripke models as coalgebras for the functor
P(P) x P— where P is a set of propositional letters.

10

(ii) Deterministic automata are coalgebras for the functor 2 x (—)¢ where
C is an alphabet. This functor associates with every state a truth value, that
is an element from the set 2, which indicates whether the state is terminating,
and a function from C into the set of states, which determines which state the
automaton moves into after reading a letter from the alphabet.

(iii) Neighborhood frames that are used as a semantics for classical modal
logics are coalgebras for the neighborhood functor . Coalgebras for the mono-
tone neighborhood functor M are used in the semantics of monotone modal
logic. For more on coalgebras and monotone modal logic see [4].

A construction that we us later is the coproduct of coalgebras. Given T-
coalgebras & : X; — TX; for every i € I of an arbitrary index set I the
coproduct § = [[;c;& is defined to be a T-coalgebra & : X — TX where
X = HiEI Xz = Lﬂie] X’L Wlth

&(z) = Tix, o&(z'), where x =ix, (2).

Here the ix, : X; — X are the injections into the coproduct J[,.; X; in the
category of sets. The injection from &; into £ as the coproduct in the category
of T coalgebras is just the underlying set inclusions ix : X; — X, which can
be shown to be a coalgebra morphisms. One can easily check that £ has the
universal property of the coproduct in the category of T-coalgebras. In fact this
is just an instantiation of the more general fact that every category of coalgebras
has all colimits and that they are computed as in the category of sets.

A notion form coalgebraic modal logic that we are using later are predicate
liftings. Predicate liftings for a functor 7" were originally introduced in [14] to
define a modal logic for T-coalgebras that resembles the standard modal logic
with boxes and diamonds on Kripke frames. More about this can be found in
[14] but also the introductory texts [15] and [21].

An n-ary predicate lifting for a functor T is a natural transformation

AP = PT.

The transposite A’ of predicate lifting A for a functor T is the mapping that

is defined at a set X as
Ny i TX — "N X =PP"X
¢ {U e (PX)" | € € Ax(U)}.

An n-ary predicate lifting A : Pm = PT is monotone if U; C Ul forallien
implies that A(U) C A(U’) for any U, U’ € (PX)".
Proposition 2.6. If \ is an n-ary predicate lifting for T then:

(i) Its transposite N’ : T = "N is a natural transformation.

(ii) If \ is monotone then the codomain of its transposite can be restricted to
"M. That means N’ : T = "M defined as above is well defined.

Proof. For (i) we need to show that the following diagram commutes for all
fX->Y:

N

TX —2> "N X

le l"/\ff
)\b

TY —="NY

11

Because A is a predicate lifting that is a natural transformation A : Pr = PT
we know that

M Ax o

PrX —=PTX
T

M Ay o

PYY —=PTY

commutes. So we need that PP™f o A5 (&) = X’ o Tf(€) for all £ € TX. The
two sets are the same because we have for all V € P*Y That

VePP foNi(e) iff Ve (Pmf) Nk (E)] Definition of 7
it PUf(V) e Ny (€) Definition of (P"f)~1[—]
iff € e Ax (P f(V)) Definition of A’
iff ¢€ePTf Ay (V)) A natural transformation

Definition of P
Definition of A\’

i TF(E) € Ay (V)

iff Ve N (Tf(€)).

For (ii) we need to check for an arbitrary £ € TX that the set
N (€) ={U € (PX)" | £ € Ax(U)} € PP"X

is upwards-closed if A is monotone. This is fairly obvious: Take U,U’ € PrX
such that U; C U/ for all i € n and assume that U € A% (£). That means that
€& € Ax(U) C Ax(U’") where the inclusion holds by the monotonicity of A\. But
¢ € M(U') entails by the definition of \” that U’ € X% (€). O

In order to avoid tiresome compatibility issues when dealing with multiple
monotone predicate liftings of possibly different finite arity it will be handy to
compose them with the natural transformation e” : "M = “ M defined by

ey : "MX — “M
U'_>(U07U1a"'7Un—17®a®a"')'

It is very straightforward to check that this indeed defines a natural transfor-
mation. With this we are going to write e o A> : T' = “M for " o \> where
\:P" = PT is an n-ary natural transformation.

Next we define what a separating set of predicate liftings is. Intuitively a
set of natural transformations for a functor T is separating if it is expressive
enough to recognize every difference between elements in T'X for any set X.

A family F of functions from X to Y is jointly injective if for any z,z’ € X
we have that f(z) = f(2') for all f € F implies that z = 2’. A set A of
predicate liftings for a functor T is separating if the set of functions {e o A :
TX — “MX}en is jointly injective for every set X. That means that for all
& eTX if eoA(§) = eo A(¢) for all A € A or equivalently, because e is
injective, if A(§) = A(¢’) for all A € A then £ =¢'.

12

3 Relation Liftings and Bisimulations

In this section we use relation liftings for a functor T' to define a very general
notion of bisimulation for T" coalgebras. It turns out that relation liftings that
are lax extensions of T" are particularly well-behaved. We discuss them in greater
detail in the third and forth part of this section.

3.1 Relation Liftings

Definition 3.1 (Relation Lifting). A relation lifting L for a set functor T is
a collection of relations LR for every relation R, such that LR : TX - TY if
R: X -+ Y. We require relation liftings to preserve converses, this means that
L(R°) = (LR)° for all relations R.

The restriction that L preserves converses is not essential because all the
notions we are considering are symmetrical. Note that in the above definition
it matters what the domain and codomain of a relation are. It is possible to
have a relation lifting that sends two relations, that have the same graph but
different domain or codomain, to two different relations.

Example 3.2. (i) The Egli-Milner lifting P ’ is a relation lifting for the covariant
powerset functor P that is defined such that PR : PX + PY forany R: X + Y
and (U, V) € PR iff

e for all u € U there is a v € V such that (u,v) € R (forth condition), and
e for all v € V there is a u € U such that (u,v) € R (back condition).

— — —
A more concise way to write this is PR = P RN P R where we use the abbre-
viations

PR={(U,V)ePX xPY |Vuec U3 e V.(u,v) € R},
PR={(U,V) € PX x PY | Vv € V.3u € U.(u,v) € R},

(ii) For the constant functor C of a fixed set C define a relation lifting C
such that for any R: X + Y

CR:C + C,

CR=Ac.

(iii) Let I be an arbitrary index set. If for all ¢ € I T; is a functor with
relation lifting L; then [[,.; Li— defined on an R : X + Y as [[,.; LiR :
[Ler TiX + [lig; TiY with

v)e[[LiR iff (&,v:) € LiRforallic I
i€l
is a relation lifting for the functor [[, ., T;—
(iv) Let I be an arbitrary index set. If for all ¢ € I T; is a functor with
relation lifting L; then [[;.; Li— defined on an R : X + Y as [[;.; LiR :
[ie; TiX + i, TY with

(& v) e HLZR iff (§,v) € L;R for some i € I
i€l

13

is a relation lifting for the functor [[, ., Ti—

(v) If T is a functor with relation lifting L and 7" is a functor with relation
lifting L' then L'oL = L'L— definedona R: X + Y as L'LR: T'TX + T'TY
is a relation lifting for 77 o T..

(vi) Recall the notation PR and PR from item (i). We can define a relation
lifting M for the monotone neighborhood functor M on a relation R: X -+ Y
as

MR : MX + MY
— —— ——
MR=PPRNPPR.
One can also define the a-ary version of M that maps an R: X + Y on
MR : “MX + “MY
SMR = {(£&v) | VU € £3V € vYB € a.(Us, V) € PR} N
{(&,0) | YV € 03U € €8 € a.(Us, Vs) € PRY.

Similar to M there is also a relation lifting va for M, the standardized
version of M. To define it, let i : M, = M be the natural isomorphism that
witnesses that M and M are isomorphic. Now define M R = ix ; MR ;i for
any relation R: X + Y.

(vii) Items (i) and (ii) are instances of a relation lifting that is definable for
arbitrary functors T. The Barr extension T of a functor T is a relation lifting
for T that defined on a relation R : X + Y with projections 7x : R — X and
my : R — Y such that

TR ={(Trx(p), Try(p)) | p € TR”"}.

(viii) Another relation lifting that is definable for an arbitrary functor T
is the lifting T , the introduction of which is attributed to Alexander Kurz in
[5]. To see how it is defined consider a relation R : X - Y with projections
mx : R9" — X and 7y : R9" — Y. Let po(mwx,my) be the pushout of mx and
my with projections px : X — po(mx,7y) and py : Y — po(nx,ny). With
these define

TR:TX + TY,
TR={(&,v) € TX x TY | Tpx(€) = Tpy (v)}.

3.2 Bisimulations
An important use of relation liftings is to yield a notion of bisimilarity.

Definition 3.3 (Bisimilarity). Let L be a relation lifting for the functor 7" and
£: X —>TX andv:Y — TY be two T-coalgebras. An L-bisimulation between
¢ and v is a relation R : X - Y such that (¢(z),v(y)) € LR for all (z,y) € R.
An L-bisimulation between & and £ is also called an L-bisimulation on . An
L-bisimulation equivalence is a bisimulation on a single coalgebra that is also
an equivalence relation.

A state z of £ is L-bisimilar to a state y of v if there is an R : X + Y that
is an L-bisimulation between & and v with (z,y) € R. We also write <, for

14

the notion of L-bisimilarity between two fixed coalgebras that are given by the
context.

Remark 3.4. One can check that a relation R : X -+ Y is an L-bisimulation
between coalgebra £ : X — TX and v : Y — TY iff it satisfies the inequality

RCE&;LR;VC.

A motivation to define a notion of L-bisimulation is to get a simpler charac-
terization of behavioral equivalence. Often it is easier to check whether there is
a bisimulation between two states than to find two coalgebra morphisms into a
third coalgebra that identify the states. Of course this only works for relation
liftings for which the notion of bisimilarity is the same as behavioral equivalence.

Definition 3.5. A relation lifting L for a functor T' characterizes behavioral
equivalence if for any states xg in a T-coalgebra & : X — TX and yp in a
T-coalgebra Y — TY it holds that zg <1 yo iff ¢ and yo are behaviorally
equivalent.

Example 3.6. (i) The Egli-Milner lifting P for the powerset functor P charac-
terizes behavioral equivalence and P-bisimulations are exactly the usual bisim-
ulations between Kripke frames.

(ii) The Barr extension T for a functor T from Example 3.2 (vii) characterizes
behavioral equivalence if T' preserves weak pullbacks. This is a well-known fact
and a consequence of the more general Proposition 3.15 that we are proving
later.

There is also another definition of relations that are T-bisimulations that
does not make use of the notion of a relation lifting. One can check that a
relation R : X -+ Y with projections 7x : R — X and IIy : R — Y is a
T-bisimulation between coalgebra £ : X — TX and v : Y — TY iff there is a
map p: R — TR such that the following diagram commutes:

X Yy

X R %
koo
s v T
TX <X pRrer I 1y

(iii) One can construct a counterexample that shows that the Barr extension
F3 of the functor F3 does not characterizes behavioral equivalence. This entails
that F does not preserve weak pullbacks.

(iv) The relation lifting 7' characterizes behavioral equivalence for all the
functors we discuss except the neighborhood functor M. As for the Barr exten-
sion P there is an alternative definition of a T-bisimulation. Let R : X - Y
be any relation with projections 7x : R9" — X and ny : R9" — Y and let
Z = po(rx,my) be the pushout of mx and 7y with projections px : X — Z
and py : Y — Z. Then one can verify that R is a T-bisimulation iff there is a

15

function ¢ : Z — T'Z such that the following diagram commutes:

RI"
2N
X px 7 py y
[e)
Tpx PY

Y
Tx Py Iy

(v) The relation lifting M for the monotone neighborhood functor M charac-
terizes behavioral equivalence. For a detailed discussion of the different relation
liftings for M check [4, Section 4]. There one can also find an example that
shows that the Barr extension M does not characterize behavioral equivalence,
which entails that M does not preserve weak pullbacks.

(vi) There is no relation lifting for the neighborhood functor N that charac-
terizes behavioral equivalence. This is shown by the counterexample in Propo-
sition 3.7 below. The argument there only shows that there is no relation lifting
that characterizes behavioral equivalence between two distinct N -coalgebras. It
is proved in [6] that on one single A/-coalgebra the relation liftings ' and N
characterize behavioral equivalence.

Proposition 3.7. There is no relation lifting for the neighborhood functor N
that characterizes behavioral equivalence.

Proof. For the proof we need the fact that for any two functions f : X — Z
and g : Y — Z we have that N f({0}) # Ng(®). This holds because otherwise
we would get by unfolding the definition of A/ on functions that

be{wcz|fwle{0}} fHo =0
= Nf({0}) definition of N
= Ng(0) assumption
={WcCZ|g W e} definition of A
= 0. V ¢ forall V

This is clearly impossible.

Now assume for a contradiction that there is a relation lifting L such that
L characterizes behavioral equivalence of states in A coalgebras. Consider the
following example of a behavioral equivalence between coalgebras £ : X — N X
where X = {1, x2, 23} with x1 — {{z2}}, 22,23 — {0}, v : Y — NY where
Y ={y} withy; — 0 and ¢ : Z — NZ with Z = {21, 22} with 21 — 0,25 —
{0}. For these coalgebras the functions f : X — Z, 21 — 21,22,23 — 2 and
g:Y — Z yi — z are coalgebra morphisms from £ to ¢ and from v to (.
One can easily check this by verifying that N f o = (o f and Ngov = C(og.
Because f(x1) = g(y1) this shows that 1 and y; are behaviorally equivalent.

16

The situation is depicted in the following figure:

|

e} =—arlmmcn Ly s
{0} =—— @ A > 2
D
0}

It follows from the assumption that L characterizes behavioral equivalence
that there is an L-bisimulation R : X —+ Y such that (z1,y1) € R. Moreover we
can show that (x2,y1), (x3,y1) ¢ R. We do this for (z2,y1) since the argument
for (z3,y1) is similar. So suppose (z2,y1) € R. This means that zo and y;
are L-bisimilar. Hence because L characterizes behavioral equivalence there are
coalgebra morphisms h from £ to ¢ and [from v to ¢ such that h(zs) = I(y1).
Because h and [are coalgebra morphisms we get that

NRh({0}) = Nho&(zz) = (o h(zz) = Col(yr) = Nlov(y) = Ni(D).

But we showed that this can not be the case. So it follows that R = {(x1,91)}
and because R is an L-bisimulation that ({{z2}},0) = (£(z1),v(y1)) € LR.

Next we modify the example a little by replacing & with the coalgebra &’ :
X - NX,z1 — {{z2}}, 22 — {0}, 23 — (. We still have that (¢/(z1),v(y1)) =
({{z2}},0) € LR which entails that R = {(x1,y1)} is an L-bisimulation between
21 in & and y; in v. Because L characterizes behavioral equivalence it follows
that there is a coalgebra ¢ : Z — N Z and there are coalgebra morphisms h
from £ to ¢ and k from v to ¢ such that h(x1) = k(y1). Because h and k are
coalgebra morphism this implies that

Nh({{z2}}) = Nhog(x1) = Coh(w1) = Cok(yr) = Nk o v(yr) = Nk(0).
By writing out the definition of N one can see that this means
Ol e {{zz}} iff kTYC) e forall C C Z.

Because the right hand side is never true it follows that h=1[C] # {z2} for all
C C Z. In the special case C = {h(x3)} this becomes h™![{h(x2)}] # {x2}.
Certainly x5 € h=[{h(z2)}] so it follows that also x1 € h=1[{h(z2)}] or x3 €
h=1[{h(z2)}]. Thus h(x) = h(z1) or h(zz) = h(x3). Using that h and k are
coalgebra morphisms we can calculate in the former case that

Nh({0}) = Nho(22) = (oh(zz) = Coh(x1) = Cok(yr) = Nkov(y)
= NEk(0)

and in the latter case that
Nh({0}) = Nho¢'(x2) = Coh(x2) = Coh(zs) = Nhof'(xs) = Nk(D).
Hence Nh({0}) = N'k(0), which, as argued above, can not hold. O

17

The next Proposition describes the construction of bisimulation quotients
for a wide class of relation liftings.

Proposition 3.8 (Bisimulation Quotient). Let L be a relation lifting for a
functor T satisfying the condition that

L(p;p°) CTp;(Tp)° for all surjectivep: X —Y (1)

and let the relation E : X -+ X be an L-bisimulation equivalence on a coalgebra
&: X — TX. Then there is a transition function 6 : X/E — T(X/E) such that
the projection p : Z — Z/E is a coalgebra morphism from & to 4.

Proof. The projection is defined as

p: X — X/E,

z i [z]

where [z] is the equivalence class of € X under the equivalence relation E.
This map is clearly surjective and we have that E = p;p°.
We intend to define the transition function § on X/FE as

§: X/E — T(X/E),
[#] = Tpo&(x).

With this definition of § it holds that é o p = T'p o & which means that p is a
coalgebra morphism from £ to § as required. But we have to show that § is
well defined. To prove this we need that Tp o {(x) = T'p o {(a’) for arbitrary
z,2’ € X with (z,2") € E. Because F is an L-bisimulation it follows that
(&(x),£(2")) € LE and moreover

LE = L(p;p°) E=p;p°
CTp;(Tp)°. (1)

So we get (£(x),&(x")) € Tp; (Tp)° which entails Tpo &(x) = Tpo&(a'). O

3.3 Lax Extensions

In this part introduce lax extensions. These are relation liftings satisfying cer-
tain conditions that make them well-behaved. We prove some general properties
of lax extensions and show that they characterize behavioral equivalence. For
some additional discussion of lax extensions we refer to [19]. Lax extension have
also been studied under the name ‘monotone relator’ in [20, Section 2.1] and
very recently in [12, Definition 6], where they are just called ‘relators’. In [20]
it is additionally required that composition of relation is preserved, that means
= instead of C in our condition (L2) of Definition 3.9, but it is noted in [20]
that the D-inclusion can be omitted for most of the proofs. Both [20] and [12]
use a different set of conditions in their definitions, but it can be checked that
they are equivalent to our Definition 3.9.

Definition 3.9. A relation lifting L for a functor T is a lax extension of T if it
satisfies the following conditions for all relations R, R’ : X + Zand S: Z + Y,
and functions f: X — Z:

18

(L1) R’ C R implies LR’ C LR,

(L2) LR;LS C L(R;S),

(L3) Tf C Lf.

We say that a lax extension L preserves diagonals if it additionally satisfies:
(L4) LAx C Arx.

We require only the inclusion of (L4) for a lax extension to preserve diagonals.
This is justified because condition (L4) implies together with condition (L3) that
LA x = Arx. The proof of this is in the following Proposition which states some
basic properties of lax extensions.

Proposition 3.10. If L is a lax extension of T then for all functions f : X — Z,
g:Y — Z and relations R: X + Z,5:7Z + Y:

(i) Arx C LAx,

(it) Tf; LS = L(f;5) and LR;(Tg)° = L(R;¢°),
and if L preserves diagonals then

(iii) LAx = Apx and Lf = Tf.

(iv) Tf;(Tg)° = L(f:9°),

Proof. For (i) recall that we identify a function with the relation of its graph.
So we have that Ax = idx and we can calculate

ATX = idTX = TidX T functor
C Lidx = LAx. (L3)

The C-inclusion of T'f ; LS = L(f;.S) in (ii) holds because T'f ; LS C Lf; LS C
L(f;S) where the first inclusion is condition (L3) and the second inclusion is
(L2). For the D-inclusion consider

L(f;8) STf5(TF)°; L(f35) Arx CTf;(Tf)°
CTf: (L) L3 5) (L3)
CTf;Lf°;L(f;S) preservation of converses
CTf;L(f75159) (L2)
CTf;LS. F°.f C Ay and (L1)

For LR;(Tg)° = L(R;g°) we can use the same argument and the fact that L
preserves Converses.

For (iv) and (iii) first notice that if L preserves diagonals then LAx = Arx
because of (L4) and (i).

The equation T'f = Lf from (iii) holds because of

Lf=L(f;Ax)
=Tf;LAx (i)
=Tf. LAy = Arx

19

The claim (iv) holds because

Tf;(Tg)° =Tf;LAx;(Tg)° Arx = LAx
=L(f;Ax;9°) (ii) twice
= L(f;9°).

O

Example 3.11. (i) It is easy to see that the Barr extension T of a functor T
satisfies (L1). We can also show that Tf = Tf for all function f : X — Y.
This means that T satisfies (L3) and (L4). For a proof consider the follow-
ing commutative diagram and note that the projection 7y : f9" — X is an
isomorphism.

TfIr
Tﬂxl Try
TX Tf> TY

Condition (L2) for Barr extensions is more difficult. One can show that that
TR;TS =T(R;S) for all relations R: X + Z and S : Z -+ Y iff T preserves
weak pullbacks. See for example [10, Fact 3.6] for a proof of this claim. The
C-inclusion of this proof really uses that T" preserves weak pullbacks and we do
not have an example of a functor T' that does not preserve weak pullbacks for
which T still satisfies (L2).

Also note that the condition TR;T'S = T(R;S) for all relations R: X -+ Z
and S : Z -+ Y is very strong. Together with Tf = Tf for all function
f:X — Y it means that T is a functor from Rel to Rel that extends 7. Such
an extension of a functor T is unique if it exists because for every relation
R: X + Y with projections nx : R9" — X and my : R9” — Y we have that

TR=T(r%;my) R=r1%;my
=Tr%; Ty TR;TS=T(R;S)
=T(r%);Try. Tf=Tf

(ii) The relation lifting M as defined in Example 3.2 (vi) for the monotone
neighborhood functor M is a lax extension that preserves diagonals. It is easy
to check the conditions (L1) and (L2). To check (L.3) we show that (£, M f(£)) €
va for all functions f : X —+ Yind £ € MX. First pick any U_§_§ Then
we clearly have that (U, f[U]) € P f which shows (§, Mf(§)) € PP f. Now
take any V. € Mf(£). That means that f~1[V] € & and for this we have
(fv],v) e 3]‘, and hence (§, M f(§)) € (737_3]" To check condition (L4) we
prove that £ C ¢’ for any (£,&') € MAx. A similar argument shows & D ¢ and
hence (£,£) € Apx. So take any U € €. Tt follows that there is a U’ € & such
that (U,U’) € (’EAX. This means that U D U’ and because £’ is an upset we
get that U € ¢'. -

One can also check that My is a lax extension for My and preserves diago-
nals. One can verify this fact directly but it is also a consequence of Proposition
3.18 that we prove later and the fact that, already using the terminology from

20

Definition 3.17, the relation lifting M, = M} is the initial lift of M along {i}
where i : My — M is the natural isomorphism between M, and M.

(iii) The product of lax extensions as defined in Example 3.2 (iii) is a lax
extension. It preserves diagonals if all of its factors preserve diagonals.

(iv) The coproduct of lax extensions as defined in Example 3.2 (iv) is a lax
extension. It preserves diagonals if all of its summands preserve diagonals.

(v) The compositions of two lax extensions as defined in Example 3.2 (v)
is a lax extension. It preserves diagonals if the two composed lax extensions
preserve diagonals.

(vi) The F3 functor has a lax extension L3 that preserves diagonals. L3 is
defined componentwise. That means for a relation R : X + Y we have that

LiR: F3X + F3Y,
LgR = {((£C07£L'1,$2), (y07y17y2)) | (x07y0)7 (95171/1)1 (x27y2) € R}

It is straightforwards to verify that L3 satisfies conditions (L1), (L2), (L3) and
(L4).

The next proposition shows that for a lax extension for a standard functor
it does not really matter what the domain and codomain of a relation are.

Proposition 3.12. For any lax extension L of a standard functor T we have
that for all relations R: X + Y and sets X' C X andY' CY

L(Rlx'xy’) = (LR)lrxxTY -

Proof. We can rewrite the restriction as R| x/xy'= tx’ x ; R; Lff,’y where 1x/ x :
X' — X and vy y : Y’ — Y are inclusions. Then it follows for a lax extension
L of a standard functor T that

L(RIx/xy') = L(tx' x s Rity y)
=Tux/ x;LR; Tty y)° Proposition 3.10 (ii)
=urx'vx ;LR tryipy T standard
= (LR)|rx'xTY" -

O

The conditions (L1), (L2) and (L3) of a lax extension L directly entail useful
properties of L-bisimulations. The condition (L1) ensures that the union of L-
bisimulations is again an L-bisimulation, (L2) yields that the composition of
L-bisimulations is an L-bisimulation and because of (L3) coalgebra morphisms
are L-bisimulations. This facts are summarized in the following Proposition.

Proposition 3.13. For a lax extension L of T and T-coalgebras & : X — TX,
v:Y =TY and (: Z — TZ it holds that

(i) The graph of every coalgebra morphism f from & to v is an L-bisimulation
between £ and v.

(ii) If R : X - Z respectively S : Z - Y are L-bisimulations between £ and
¢ respectively and v then R;S : X -+ Y is an L-bisimulation between &
and v.

21

(iii) Every arbitrary union of L-bisimulations between £ and v is again an L-
bisimulation between & and v.

Proof. For claim (i) we have to show that ({(x),v(y)) € Lf for arbitrary (z,y) €
f. Since f is a function (z,y) € f means just y = f(z). Applying v on both
sides yields v(y) = vo f(x) = T f o £(x) where the latter equality holds because
f is a coalgebra morphism. It follows that (£(x),v(y)) € Tf C Lf by (L3).

For claim (ii) we show ({(z),v(y)) € L(R;S) for any (z,y) € R;S. From
the choice of z and y we get a z € Z such that (z,z) € R and (z,y) € S.
Because R and S are L-bisimulations it follows that (£(z),((z)) € LR and
(¢(2),v(y)) € LS. Hence (&(z),v(y)) € LR; LS C L(R;S) where the inclusion
is condition (L2) from the definitions of lax extensions.

For claim (iii) let R be a set of L-bisimulations between ¢ and v. Now pick
an arbitrary (x,y) € [JR. We need to show that ({(x),v(y)) € L(JR). From
(z,y) € UR it follows that there is an R € R such that (z,y) € R. Because R is
an L-bisimulation we get that ({(x),v(y)) € LR C L({JR) where the inclusions
holds by the monotonicity (L1) of lax extensions and the fact that R C JR. O

Corollary 3.14. Let L be a lax extension for T and £ : X - TX andv:Y —
TY be two T-coalgebras. The relation of L-bisimilarity <1 : X -+ Y between
two coalgebras is an L-bisimulation between & and v. Moreover the relation of
L-bistmilarity 21, : X + X on one single coalgebra & is an equivalence relation.

Proof. The relation £, : X + Y can in the following way be written as a union
of L-bisimulations between & and v:

e = U{R : X + Y | Ris an L-bisimulation between £ and v}.

Hence it follows by Proposition 3.13 (iii) that <, is an L-bisimulation between
& and v.

To check that L-bisimilarity £ : X -+ X on one single coalgebra £ is an
equivalence relation we need that it is reflexive, symmetric and transitive. For
reflexivity observe that the graph of the coalgebra morphism idx from £ to £ is
an L bisimulation by claim (i) of Proposition 3.13. Symmetry follows from the
assumption that all relation liftings we consider preserve converses. Transitivity
follows by claim (ii) of Proposition 3.13. O

We can now prove that lax extensions that preserve diagonals characterize
behavioral equivalence.

Proposition 3.15. If L is a lax extension for T that preserves diagonals then
a state xo in a T-coalgebra & : X — TX and a state yo in a T-coalgebra
v:Y — TY are behaviorally equivalent iff they are L-bisimilar.

Proof. For the direction from left to right assume that xy and yq are behaviorally
equivalent. That means that there are T-coalgebra (: Z — T'Z and coalgebra
morphisms f from £ to ¢ and ¢ from v to ¢ such that f(xzg) = g(yo). To
see that g and yo are L-bisimilar observe that by Proposition 3.13 (i) (ii) the
relation f;¢g° : X + Y is an L-bisimulation between ¢ and v because it is
the composition of graphs from morphisms. This implies that x¢ and yg are
L-bisimilar because (zg,yo) € f;9°.

22

For the other direction we show that given any L-bisimulation R : X -+ Y
between ¢ and v and (z,y) € R then there is a coalgebra (: Z — T'Z and
coalgebra morphisms f from £ to ¢ and g from v to ¢ such that f(z) = g(y).

Consider first the coproduct £ +v : X +Y — T(X +Y) of £ and v with
ix : X > X+Yandiy :Y — X +Y as injections. Next define the relation
R :(X+Y)+ (X+Y) with R = i%;R;iy. By Proposition 3.13 we know
that the graphs of the coalgebra morphisms ix and iy are L-bisimulations and
that the composition of L-bisimulations is an L-bisimulation. Therefore R’ is
an L-bisimulation on £ + v and witnesses the bisimilarity of ix (x) and iy (y).

Now let 27 : (X +Y) + (X +Y) be L-bisimilarity on £ + v. By Corollary
3.14 £ is an L-bisimulation equivalence on £ +v. Because L is a lax extension
we have by Proposition 3.10 (iv) that L(p;p°) C Tp;(Tp)° for all surjective
p: X — Y and so can apply Proposition 3.8 to a (: 7 — TZ where Z =
(X +Y)/= that is the bisimulation quotient of £ + v by the relation £, such
that the projection p : (X +Y) — Z is a coalgebra morphism from £ + v to .

Let f=poix : X — Z and g = poiy. Clearly f is a coalgebra morphism
from £ to ¢ and g is one from v to (. Moreover they identify x and y because

f(@) =poix(z) = [ix(2)] = [iv(y)] ix(z) e iy(y)
=poiy(y) =g(y)
O

Remark 3.16. From Proposition 3.15 and Proposition 3.7 it follows that there
is no lax extension that preserves diagonals for the neighborhood functor N.

3.4 Lax Extensions of Finitary Functors

The goal of this subsection is to prove Theorem 3.26 which says that a finitary
functor has a lax extension that preserves diagonals iff it has a separating set of
monotone predicate liftings. For the right to left direction we use the following
construction from [19].

Definition 3.17. Let L be a relation lifting for a set functor T, and a set
A ={\:T" — T}rca of natural transformations from an other set functor 7"
to T. Then we can define a relation lifting L* for T called the initial lift of L
along A as

I R = ﬂ()\X;LR;X{/), for all sets X, Y and R: X -+ Y.
AEA

Another way to write the above definition of LAR : T'X + T'Y is
LAR={(£,0) e T'X x T'Y | (A\x(€),\y(v)) € LR for all A € A}.

The good thing about the initial lift construction is that it preserves lax
extensions.

Proposition 3.18. Let A = {\ : T" = T}ca be a set of natural transforma-
tions from a set functor T’ to a set functor T and let L be a relation lifting for
T. Then L» is a lax extension for T' if L is a lax extension for T. Moreover
if {\x : T'X — TX}xea is jointly injective at every set X and L preserves
diagonals then L™ preserves diagonals.

23

Proof. We need to show that the conditions of the definition of a lax extension
are preserved along initial lifts. For (L1) take two relations R, R’ : X -+ Y with
R’ C R. From the assumption that L satisfies (L1) we get LR’ C LR. Because
composition and joins of relations clearly preserve order we can calculate

LAR' = () (AxLR':Ay) € [) (Ax s LR;AY) = LR,
AEA A€A
For condition (L2) of the definition of lax extensions assume that LR; LS C
L(R;S). Then consider

LAR;IAS = () (Ax s LR;AS) 5[] O i LS5A%)

PYN A€A

- ﬂ (Ax;LR; Ay 5 Ay LS 0%) basic set theory
AEA

C () (Ax;LR;LS;X%) AV Ay € Ary
AEA

- ﬂ (Ax; L(R;S);0\%) assumption
AEA

= L*(R;9).

For preservation of condition (L3) assume that Tf C Lf for a function
f:X — Y. We show that then T7'f C L*f. Because the A\ € A are natural
transformations we have that T'f;A\y = Ax;Tf. Composing with A}, from
right yields T"f C Ax ;T f; Ay because Ay C Ay ;A5 From the assumption
it follows that T"f C Ax ; Lf; Ay for all A € A. Hence

T'fC () (AxsLR;AY) = LM
AEA

In order to prove that L* preserves diagonals, if L does and {\x : T'X —
TX }ren is jointly injective at every set X, we show that (L4) is preserved from
L to L. For this we first show that if {\x : 7"X — T X }xcx is jointly injective
at every set X then

[(Ax:X%) = Arix. 2)
AEA
For the C-inclusion take §,&" € T'X with (£,&') € (Nyep (Ax ;A%). That means
that Ax (&) = Ax(¢') for every A € A. Because the predicate liftings in A
are jointly injective this implies that £ = ¢ and hence (&,¢') € Arx. The
D-inclusion follows from the general fact that f; f° O Arx for any function f.
Now assume LAy C Apx. It follows that LA*Ax C Aq x because

LMy = ﬂ (Ax; LAx ;%) definition
AEA

C m Ax;Arx;A%) assumption
AEA

= ﬂ (Ax;\%) Arx neutral element
AEA

=Aprx. (2)

24

For the direction from left to right from Theorem 3.26 we are going to
define the so called Moss liftings. It is shown in [11] that if we consider the
Barr extension of a weak pullback preserving functor then the Moss liftings are
monotone predicate liftings. Here we check that the argument also works for
lax extensions.

The first ingredient that is needed to define the Moss liftings is the following
natural transformation.

Definition 3.19. Given a lax extension L of a functor T we define for every
set X the map

My TPX — PTX,
E={eTX|(§E) € Lex}),

Proposition 3.20. For a laz extension L the mapping A" : TP = PT is a
natural transformation.

Proof. We have to verify that the following diagram commutes for any function
fX->Y:
)\L

TPX — > PTX 3)
TP fT TﬁT f
LAY
TPY — = PIY
First observe that 5
Lex;(TPf)°=Tf;Ley. (4)
This is shown by the calculation
Lex; (TPf)° =1L (GX ; (75f)°> Proposition 3.10 (ii)
=L(f:€y) (%)
=Tf;Ley. Proposition 3.10 (ii)

Here (x) follows from the equality € ; (77 f)° = f; €y, which holds because by
the definition of P we have that = €x Pf(V) = f~1[Y] iff f(z) €y V for all
zeXand VCY.

In order to check the commutativity of (3) take an T € TPY. We need that
PTfo M) =2%o T75f(T). This holds because for any £ € T X we have that

ce s oTPf(T) iff (&, TPf(Y)) e Lex definition of *
iff (£,7) e Lex; (TPf)° basic set theory
ift (&7Y)eTf;Ley (4)
ift (Tf(),T) e Ley basic set theory
iff TF(€) e () definition of ¥

iff € e (T HAE(T)) = PTfoAL(T). definition of P
O

The second mathematical object we need to define the Moss liftings is a
finitary presentation of the functor 7.

25

Definition 3.21. A finitary presentation (X, F) of a functor T is a functor X
of the form
X = H Yo x X"
new

together with a surjective natural transformation £ : ¥ = T.

One can show, as we do in Example 3.22 (ii), that every finitary functor has
a finitary presentation. A finitary presentation of T" allows us to capture all the
information in the sets T'X for a possibly very complex functor 7' by means of a
relatively simple polynomial functor . This is, because for every £ € T X there
is at least one (r,u) € X,, x X™ for an n € w for which £ = Ex(r,u) and that
behaves in a similar way as &, since FE is a natural transformation.

Example 3.22. (i) The standard presentation of the finitary powerset functor

Py, is defined as ¥ =[], .., (—)" and
Ex: [[X" - P.X,
new
U—{U;,eX|ien}. where U € X" for an n € w

It is obvious that E'x is surjective for every set X and one can easily verify that
E is a natural transformation.

(ii) The next example shows that every finitary functor has a finitary pre-
sentation. The canonical presentation of a finitary functor T is defined such
that ¥,, = Tn for every cardinal n € w and F is defined at a set X as

Ex : HTnxX"—>TX,
new

(v,U)—TU(v). whereveTnandU € X" forann €w

In this definition we take U € X™ to be a map U : n — X. To show that
this is indeed a finitary presentation of 7" we have to check that F is a natural
transformation and surjective for every set X.

For the naturality of E take any function f : X — Y and any element
(v,U) € Tn x X™ for any n € w. Then we calculate

TfoEx(w,U)=TfoTU(v) definition of F
=T(foU)(v) T functor
=Ey(v,foU) definition of
=By oXf(v,U). definition of ¥ on functions

To see that Ex is surjective pick any £ € TX. Because T is finitary that
means that there is a finite X’ C,, X and a £’ € TX' such that £ = Tux x(&').
Because X’ is finite there is an n € w with a bijection b : X’ — n. Now we claim
that (TH(¢'),1x/ x ob™') € Tn x X™ is mapped by Ex to &. This is proved by
the calculation

Ex(Tbh(&),ix x ob™) =T(tx x o b~ 1) (Th(¢)) definition of E

=T(x xob tob)(¢) T functor
:TLX/7)((§/) b_lob: idX/
=& Tixr x(§) =¢

26

The next Lemma shows how a lax extension for T' interacts with a finitary
presentation of 7. This Lemma is similar to one direction of [11, Lemma 6.3]
where this result is proved for the Barr extension. One can use the lax extension
L3 of F3 to construct an example which shows that the back direction of [11,
Lemma 6.3] does not hold for lax extensions in general.

Lemma 3.23. Let (X, E) be a presentation of a finitary functor T, let L be
a lax extension for T and let R : X - Y be any relation. Then for all n €
w, T € Xy, u € X" and v € Y™ we have that if u;Rv; for all i € n then
(Ex(r,u), By (r,v)) € LR.

Proof. Let my : R — X and 7y : R — Y be the projections of R. For these
it holds that R = 7% ;my. Because (u;,v;) € R for all ¢ € n we have that
p = (r,((uo,v0), (u1,v1), ..., (Un—1,95-1))) € LRI". With the definition of ¥
on morphisms it holds that X7 x (p) = (r,u) and X7y (p) = (r,v). The following
two diagrams commute because F : 3 = T is a natural transformation

S Ror 22 T Ror SRor 22 Ror
iZﬂ'X iTTFX lzﬂ'y lTT{'Y
EX EY
X X Ty) L

We can use this to get that Ex(r,u) = Ex(EZnx(p)) = Tnx(Er(p)) and
Ey(r,v) = Ey(Zmy(p)) = Try(Egr(p)). It is entailed by this identities that
(Ex(r,u), Er(p)) € (T'nx)° and that (Er(p), Ey(r,v)) € Tmy. So we obtain

(Ex(r,u), By (r,v)) € (Tnx)%;(Tny) C L7 ; Loy (L3)
C L(n% ;7my) = LR. (L2)

Definition 3.24. Given a finitary functor T" and a lax extension L for T take
any finitary presentation (3, E) of T according to Definition 3.21 and let \”
be the natural transformation of Definition 3.19. For every r € ¥, of any
n € w the Moss lifting of r is an n-ary predicate lifting for T" that is defined as
pP Pt = PT,u" = Ao E(r,—). This definition yields the following diagram
for every set X:

3 Bax(r)
(PX)" —— TPX
75 l)\i

X
PTX

Proposition 3.25. The Moss liftings of a functor T with finitary presentation
(X, E) and laz extension L are monotone.

Proof. Take any Moss lifting 1" = XX o Ex(p, —) : P = PT ofar e X, for an
n € w. Now assume we have U, U’ € (PX)" for any set X such that U; C U! for
all i < n. To prove that " is monotone we need to show that p'% (U) C u’ (U’).

So pick any ¢ € p(U) = A% o By (r,U). By the definition of A" this
means that (§, B3 (r,U)) € Lex. Moreover we get from the assumption that

27

U; C Uj for all i € n with Lemma 3.23 that (E;(r,U), Ez(r,U’)) € L(C).
Putting this together yields

(& Epx(r,U") € Lex; L(C) C L(€x;(9)) (L2)
C Lex. (L1)

For the last inequality we need that €x;(C) C €x which is immediate from
the definition of subsets. So we have that (§, Ej3(r,U’)) € L€x and hence by
the definition of AL that & € Ak o B (r,U’) = p’ (U'). O

Theorem 3.26. Let T be a finitary functor. Then T has a lax extension that
preserves diagonals iff there is a separating set of monotone predicate liftings
with finite arity for T.

Proof. We first show the direction from right to left. So assume we have a
separating set A of monotone predicate liftings with finite arity for T. By
Proposition 2.6 (ii) the monotonicity of A € A entails that we can consider
N : T — "N to have codomain "M. That A is separating, means that the set of
functions {ex o Ny : TX = “M X }rcn, where e : "M = “M is the embedding
as defined in section 2.3, is jointly injective at every set X. Therefore we can
apply Proposition 3.18 for the set T' = {e 0 A\’ : T' = “ M} ca and get that the
initial lift (“’7\71)F of “M along T" as defined in Definition 3.17 is a lax extension
for T that preserves diagonals.

For the other direction we assume that 7" has a lax extension L. Because
T is finitary it has a finitary presentation (X, F) as demonstrated in Example
3.22 (ii). With this we can consider the set of all the Moss liftings as defined in
Definition 3.24:

M={u" = oE(r -)|re,,ncw}

By Proposition 3.25 we know that the Moss liftings are monotone. So it only
remains to show that the set M is separating. To do this take £,& € TX for
an arbitrary set X such that (u")% (&) = (u")%(¢') for all r € ¥, of all n € w.
We have to show that £ = ¢’. By the definition of the transposite of a natural
transformation it follows that for all n € w and r € X,

{U e (PX)" | ek (U)} ={U € (PX)" | ' € uk (U)}.
This is equivalent to
Eeui(U) iff € epi(U), forall U e (PX)™.

Unfolding the definitions of " = Ao Ex(r,—) and A(2) = {€ € TX | (£,8) €
Lex} yields that for all n € w, r € ¥, and U € (PX)"

(§,Epy(r,U)) € Lex iff (¢, Exy(r,U)) € Lex.

Because Ejy is surjective, and the variables n, r and U quantify over the
whole domain of Ex . :] (En X (’ﬁX)") — TPX, it follows that for all

2eTPX

new

(¢£,2) e Lex iff (¢,2) € Ley. (5)

28

In order to use (5) consider the map
sx : X = PX,
x— {x}.

Because of (L3) we have that (§,Tsx(§)) € Tsx C Lsx. Moreover we clearly
have that sx C €x and because of (L1) it follows that (£, Tsx(€)) € Lex.
With (5) we get that (¢, (Tux)€) € L€x. Then we compute

(&¢) € Lsx; L(3x) € L(sx; (3x)) (L2)
= L(Ax) sx;9x=Ax
=Arx. Proposition 3.10 (iii)
From this it follows that & = ¢£’. O

4 The Nabla Logic of a Lax Extension

In this section we study the nabla logic L7 for a fixed lax extension L of a fixed
standard functor T'. The assumption that T is standard is needed to get a well-
behaved syntax. As we observed in section 2.2 on page 9 this is not an essential
restriction because every set functor is almost isomorphic to a standard functor.
We also fix an arbitrary set P of propositional letters.

4.1 Syntax and Semantics

In this subsection we define the syntax and semantics of the nabla logic for the
lax extension L and prove that it is adequate and expressive with respect to
L-bisimilarity. This shows that the logic is strong enough to describe properties
of states in coalgebras up to L-bisimilarity.

In order to give a semantics for the language L7 on T-coalgebras we also
have to give an interpretation for the propositional letters. This is done by
adding a valuation to T-coalgebras yielding T-models.

Definition 4.1. A T-model X = (X,&,Vx) is a T-coalgebra £ : X — TX
together with a valuation Vx that is a function Vx : P — PX.

For a C C P define the functor T¢ = (T'—) x PC and the relation lifting
Lc = L—xPC for the functor T¢ as in Example 3.2 (iii). Here PC is a constant
functor and PC the Barr extension of the constant functor. So we have that
((¢,8),(c, &) € LcR iff c = and (£,¢') € LR.

There is an one-to-one correspondence between T-models and Tp-coalgebras.
A T-model X = (X, &, Vx) corresponds to the Tp-coalgebra

X:X 5 TpX =TX x PP,
z— (§(z),{peP|zeVx(p)}).
In the other direction there is for every Tp-coalgebra o : X — TpX a T-model
X =(X,&Vx) defined as { =nmrx o0 : X = TX and Vx : P - PX p— {z €

X |p€mppoo(x)} where nrx : PTX X PP — TX and wpp : TX x PP — PP
are the projections.

29

A morphism f from a T-model X to a T-model Y is defined to be a Tp-
coalgebra morphism from X to Y.

For C' C C C P we can define the natural transformation rc.c’ . Tc = T
at a set X as

T’)C(’C, TeX - T X,
(a,¢) = (a,enC’).

The projection of a T-model X = (X, &, Vx) to a C' C P is the T¢-coalgebra
Y eX: X - TeX.

An Lc-bisimulation between a T-model X and a T-model Y is defined to
be an Lg-bisimulation between the T-coalgebras r)P(’C oX: X — TcX and
r;’c oY:Y — TcY.

Because T-models are just T-coalgebras and bisimulations between them
are the usual Lo-bisimulations between them we can take the product of T-
models and use the constructions of Proposition 3.13 on Lg-bisimulations be-
tween T-models.

It follows directly from the definitions that a relation R : X + Y is a L¢-
bisimulation between T-models X = (X, £, Vx) and Y = (Y, v, Vy) iff R is an
L-bisimulation between the T-coalgebras £ : X — TX andv:Y — TY and R
preserves the truth of all propositional letters in C, that is for all (x,y) € R we
have that

x € Vx(p) it ye V(p), for all p € C.

With this it is easy to see that for any ¢/ C C if a relation R is an L¢-
bisimulation between X and Y then it is also an L¢/-bisimulation between X
and Y.

Next we define the syntax of the language L1 (C') for a C C P.

Definition 4.2. For any C C P define the language L£1(C) by the grammar

a:::p|—|a|/\A|\/A|Va

where p e C, A€ P,Lr and o € T, L.
We use L7 as an abbreviation for Lr(P).
Set T=A0and L =\0.

Later we use the maps = : Lr — Lr,a+— —aand A : P, Ly — L, A— A\ A

Observe that for C’ C C' C P we have that L7(C’) C L7(C). This can be
proved by induction on the complexity of formulas in L7 (C").

We use arbitrary finitary conjunctions and disjunctions instead of the usual
binary ones. This approach yields an equivalent logic but it facilitates the
notation.

The recursive definition of the formulas in L7(C) allows us to define func-
tions or relations for formulas by recursion and prove properties about them by
induction on their complexity. In the case of Va with a € T,,L7(C) this means
that if we want to make a definition for Va we can assume that we already
have a definition for all the formulas in the set Base(a) and if we want to prove
something by induction for Va we can assume that the claim already holds
for all formulas in Base(a). Recall from section 2.2 page 9 that Base(a) is the
smallest set U such that o € TU. An example of a recursive definition is the
following.

30

Definition 4.3. The modal rank rank(a) € w of a formula a € Lr is defined
recursively by

rank(p) = peP
rank(—a) = rank(), ac Ly
rank(/\ A) = max{rank(a) | a € A}, AeP,Lr
rank(\/ A) = max{rank(a) | a € A}, AeP,Lr
rank(Va) = 1 + max{rank(a) | a € Base(a)}. aeT,Lr

The next definition fixes the satisfaction conditions of formulas in L1 on
T-models.

Definition 4.4. Using the fixed lax extension L for the functor 7" we can
define the semantics of L for the language L1 (P) on T-models. For a T-model
X = (X, ¢, Vx) define the satisfaction relation IFx : X - L1 (P) by recursion as

zlkxp if x € Vx(p) peP
zlkx —ma if not zlkx a, a € Lrp
zlhx \A if 2lxaforalla€ A, AeP,Lr
xll—x\/A if zlFx a for some a € A, AeP,Ly
xlkx Va if (&(x),a) € LiFx. oa €T, Lr

Remark 4.5. Strictly speaking are the recursive clauses in Definition 4.4 not
stated in a correct recursive way. For conjunction and disjunction we can only
assume that IFx[xxBase(a) = IFx[xxa is already defined. That is not an issue
because the conditions = IFx a for all (some) a € A and = lFx[xxa a for
all (some) a € A are equivalent. In the recursive clause for the nabla we can
only presuppose that IFx[x xBase(a) is already defined. So the actual recursive
definition is that = IFx Vo iff (§(2), @) € L(IFx[x xBase(a)) and we need a little
argument why this is equal to the clause given above. Because T is assumed
to be standard we have that o € TBase(a) and can use Proposition 3.12 to
get that (£(z),) € L(IFx [xxBase(a)) = (LFx) [7x xTBase(a) is equivalent to
(&(z),a) € LiFx.

Example 4.6. With the Egli-Milner lifting P of the P functor one can define
the logic Ap for Kripke frames. A modal formula Ve is in this case of the shape
V{ag,a1,...,a,—1} where A = {ap,ai,...,a,_1}is a finite set of formulas. The
satisfaction condition for nabla becomes = I+ V{ag,a1,...,a,—1} iff for every
successor x' of x there is a formula a; such that 2’ IF a; and for every formula
a; € {ag,a1,...,a,—1} there is a successor z’ of = such that =’ I a;. One can
show that VA is equivalent to the formula OV A A A OA in standard modal
logic. Conversely Qa is equivalent to V{a, T} and Oa is equivalent to VOV V{a}.

Remark 4.7. There is another way to define the semantics of L that uses
only the natural transformation AL from Definition 3.19. See for example [15]
how this works in detail. The trick is to consider L7 to be an initial object
in suitable category of algebras. Then one can apply the P functor to any

31

coalgebra and compose with the natural transformation A* to get an algebra
corresponding to the original coalgebra. The unique arrow from L7 into the
algebra corresponding coalgebra gives an semantics that one can show to be
equivalent to the one defined here. It is also noteworthy that in this approach the
fact that A" is a natural transformation immediately entails that the semantics
is adequate for behavioral equivalence.

Definition 4.8. Define the relation of logical consequence |=: L7 + L1 by
ald iff xlkx aimplies z IFx of for all states x in any T-model X.
The relation of logical equivalence = : L + L is defined as
a=d iff zlkxaiff zlFx d for all states = in any T-model X.

Remark 4.9. There are translations between the nabla modalities of the lax
extension L and the modalities associated to the Moss liftings that are defined
as in Definition 3.24 for the lax extension L and any finitary presentation (X, F)
of T,,. Here we give a very short sketch of how this works. For a much more
detailed treatment consider [11]. For any o € T,,L let (r, A) € ¥,, x L™ be such
that E.-(r, A) = «. This always exists because E is surjective. Now let (0" be
the n-ary modality of the Moss lifting u”. That means that the formula (0" A
where A = (Ap, A1, ..., A,_1) has the following satisfaction condition at any
state x¢ in some T-model X = (X, ¢, V)

zo Ibx O7A it §(z0) € pix ([Ao], [Adls - - [An—a]),
where [—] gives the extension of a formula that is

[-1:£—PX,
a—{reX|xlxal.

We can show that zq IFx (0" A is equivalent to zq IFx V. For this consider

xo lFx O"A
iff &(zo) € px ([Ao], [A1], ..., [An-1]) semantics of (1"
iff &(w0) €)\ﬁc o Exy (r, ([Ao], [A1], - -, [An-1])) Definition 3.24
iff (£(zo), Epx (1, ([Ao], [A1], ..., [An-1]))) € L(€x) Definition 3.19
it (&(wo), (T [-D(Ec(r,A))) € L(€X) E natural
it (§(zo), (Tw[-])(a)) € L(ex) Ep(r,A) =a
it (&(zo), (T[-])(@)) € L(Ex) a€T,LCTL
iff (&(xo0),a) € L(ex); (T[-])° set theory
iff (&(x0),a) € L(ex; [-]°) Proposition 3.10 (ii)
it (§(zo), v € LlFx ex;[-]° =IFx
iff o IFx Vau semantics of V

Next we show that the nabla logic of a lax extension is adequate with respect
to Lo-bisimulation. That means that every two bisimilar states satisfy the same
formulas.

32

Definition 4.10. Two states zo in a T-model X = (X, ¢, Vx) and yo in a T-
model Y = (Y, v, Vi) are modally equivalent for formulas in L7(C) iff

xolbx a iff yolbya, forall ae€ Lp(C).
We write x¢ «r¢ yp if ¢ and yo are modally equivalent for formulas in L1(C).

Proposition 4.11 (Adequacy). Given a state xo in a T-model X = (X, &, Vx)
and a state yo in a T-model Y = (Y,v,Vy) if xo and yo are Lo-bisimilar then
To “rc Yo-

Proof. Let R be an Lo-bisimulation between X and Y with (z9,yo) € R and let
® C L1 be the set of formulas on which bisimilar points agree, that is

¢ :={aecLyp(C)|zlxaiff ylFya, for all (z,y) € R}.
With this definition of ® it is obvious that

RilFylyxo ClFxIxxo,

and in the other direction
R®;lFxlxxa ClFylyxe. (6)

We are now going to prove that ® = Lr(C). This entails that for all (z,y) € R
that x satisfies the same formulas of the language L7 (C) in X as y does in Y.
So in particular zo and yo satisfy the same formulas because (zg,y0) € R.

We show with induction on the complexity of a formula a € L7(C) that
a € ®. The base case a = p € C' C P follows directly from the semantics
of propositional letters and the fact that R is an Lg-bisimulation between the
T-models X and Y. The Boolean cases are as usual. So let us focus on the case
where a = Va for some a € T,,L7. The induction hypothesis is that a € T,,P.
We have to show that z IFx Ve iff y IFy Vo for all (z,y) € R.

So assume that x IFx Va. By the definition of the satisfaction relation that
means (§(x), a) € LiFx and because o € T,,® C T'® in particular that ({(x), o) €
(LIFx)Irx xro= L(IFx|xx®) where the last equality holds by Proposition 3.12.
Because R is an L-bisimulation we have that (v(y),&(x)) € LR°, and so we get

(U(y),a) € LR° ;L(H—sdquﬁ C L(RO ; ”_X[XX‘P) (LQ)
C L(lkyly <o) (6) and (L1)
= (LIFy) 7y xTo Proposition 3.12
C Llty.

This shows that y IFy Va. The other direction from y IFy Va to z IFx Va is
proved analogously. O

There is a partial converse of Proposition 4.11. If two states in T,-models
satisfy the same formulas then they are bisimilar. This is shown by the next
Proposition. The proof is similar to the one given in [2, Theorem 4.3] for the Barr
extension. An intuitive explanation why this only works for finitary functors is
that every formula of L, since it is a finite object, can only capture a finite
amount of information. A counterexample in the case of the P-functor is given
in [3, Section 2.2, Example 2.23].

33

Proposition 4.12 (Expressivity). Given a state g in aT,,-model X = (X, &, Vx)
and a state yo in a T,,-model Y = (Y,v, Vy) then zo and yo are Lo-bisimilar if
To “rCc Yo-

Proof. We first reduce the problem to the Lo-bisimilarity of two modally equiv-
alent states in one single T,,-model Z = (Z,(, V7). For this let Z = X+ Y be
the coproduct of X and Y with injections ix : X — Z and iy : Y — Z. The in-
jections are T-model morphisms and hence by Proposition 3.13 (i) their graphs
are Lp-bisimulations. By Proposition 4.11 we know that Lp-bisimulations pre-
serve truth and so we have that ix(z¢) and iy (yo) satisfy the same formulas
of the language L1(C) in Z because by assumption zy and yo satisfy the same
formulas of the language L1(C) as states of X and Y. In the proof we construct
an Lg-bisimulation «» : Z -» Z on Z that connects any two states that satisfy
the same formulas of L7 (C'). So we will have that ix (xg) < iy (yo) and hence
by Proposition 3.13 (ii) the relation ix ;«»;i}, : X + Y is an Lo-bisimulation
between £ and v with (z9,y0) € ix ;<> ;5.

In the following we consider the relation «»: Z + Z to be modal equivalence
for formulas in L7(C) between states of Z. So we have z «» 2’ iff z «»¢ 2/ for
2,2 € Z. By assumption we have xg «r yg so it only remains to show that < is
an Lo-bisimulation. For this we have to check for arbitrarily chosen (zg, 21) € «»
that (¢(20),¢(#1)) € L+~ and that

20 € Vg(p) iff 2z € Vz(p), forallpeC.

The latter holds because for all p € C C L1(C) we have by assumption that
2o IFz p iff 21 IFz p. So it remains to be proved that (¢(z9),((z1)) € L4=.
Consider the set S of successors of zg and z1, that is

S = Base({(zp)) U Base(((z1)).

This set exists and is finite because ((2¢),((21) € T,,Z. Because T is standard
we have that ((z9) € TBase(¢(20)) C T'S and similarly ((z1) € T'S.

Note that for all states z, 2/ € Z with z « 2’ there is a formula d? € Ly such
that z Ik djl but 2’ Ifz djl. We can use this to define a function f : S — Lp
that maps every state z € S to a formula f(z) that is true at z and false at all
other states of S. This is done as follows:

f:S—>£T,
z»—>/\{d§/ | 2/ €S,z 2}

The conjunction f(z) is finite for all z € S because S is finite. For this definition
of f we claim that

Fzlsxcr s fO = «rlsxs- (7)
For the C-inclusion we argue by contraposition. Assume 2’ « z for 2,2’ € S.
Then 2’ ¥z f(z) because 2’ Ifz dZ and f(z) = N{dZ | 2/ € S,z « 2}
For the D-inclusion take 2,2’ € S with 2/ « 2. Because z Iry dzu for all

2" € S with 2z « 2” we have that z Iz f(2) since f(z) is the conjunction
N{dZ | 2" €S,z « 2"}, Tt follows that 2’ IFz f(z) because 2’ «» z.

34

Because ((z1) € T'S we can calculate

(C(21),¢(z1)) € Ars CTAg Proposition 3.10 (i)
C L(«sxs) Ag C «r[gxg and (L1)
= L(lbxlsxce s f°) (7)
= L(lrxlsxcy); (Tf)°. Proposition 3.10 (ii)

This yields an o € TLy with (((z1),) € L(Fzlsxc,) and (a,((21)) € (T'f)°.
From the latter it follows that o = (T'f)(¢(21)) = (T, f)(¢(21) because ((z1) €
T,Z. So we get that a € T,,L1 hence it follows that Va € L and 2 IFz Va
because (C(Zl),Oé) S L(“_Z[SXL:T) = (L||—2)rTS><TLTg LlFz by Proposition 3.12.

It follows that 2y IFz Va because by assumption zy «r z;. Therefore
(((z0),) € LlFz. Because ((z9) € T'S this gives (((20),) € (LlFz) [TsxTeyr
and by Proposition 3.12 ({(z0),«) € L(lFz[sx). This yields what we want to
show because

(C(20),¢(z1)) € L(Fzlsxcr); (Tf)° = L(kzlpxer ; f°) Proposition 3.10 (ii)
= L(«r[sxs) (7)
= (Le)I1sxTs Proposition 3.12
C L«
O

4.2 Disjunctive Nabla Normal Form

The goal of this subsection is to prove Theorem 4.18 which states that every
formula in L7 is equivalent to a formula in which negation and conjunction occur
only over propositional letters. We say that such formulas are in disjunctive
nabla normal form.

Definition 4.13. A formula a € L is a literal if it is either a propositional
letter or the negation of a propositional letter, that is a = p or a = —p for some
p € C. The set of formulas in disjunctive nabla normal form L%-(C) C L1 (C)
is generated by the grammar:

a :::/\H | \/A | /\H/\Voz,
where II is a finite set of literals, A € P,L%(C) and a € T,,£3.(C).

The two main ingredients in the proof of Theorem 4.18 are Proposition 4.14
which says how we can distribute negations over nablas and Proposition 4.17
which shows how we can put conjunctions into nablas.

Proposition 4.14 shows that we can define the Boolean dual of nabla as a
disjunction of nablas. This shows how we can push negations inside nablas and
thereby decrease the modal rank at which negations occur in a formula. This
result first appeared in [7] for nablas defined for a Barr extension of a weak
pullback preserving functor.

Proposition 4.14. IfT restricts to finite sets then we have for all « € T, Ly (C')

—V(T-)(a) = \/{VTA9Q) | Q € T, P,Base(a), (0, 92) ¢ L(EBase(a)) }-

35

Proof. Note that the disjunction on the right hand side is finite and therefore
it is a well defined formula in the language L1 (C). To see this observe that
Base(a) and hence P,Base(«) is finite. Because T', and hence T, is assumed
to restrict to finite sets this entails that there are only finitely many choices for
an Q € T,,P,Base(a).

For the direction from left to right assume we have a state xy in a T-model
X = (X, &, Vx) such that zg IFx =V (T—)(«). That means that (£(xq), (T-)(a)) ¢
LiFx and with Proposition 3.10 (ii) that ({(xg),«) ¢ LiFx; (T—)° = L(lkx ; =°).
We want to find an Q € T,,P,Base(«) such that xg IFx VI'A(Q) and (o, Q) ¢
L(¢#Base(a))- For this consider the function

f:X — P,Base(a),
x +— {a € Base(a) | z IFx a}.

Set Q@ = Tf(&(x0)) € TP,Base(a) = T, P,Base(a). We have to check that

(Oé,Tf(f({EO))) ¢ L(%Base(a)) and o IFx VT/\(Tf(f(xo)))
To verify that (o, T'f(£(20))) & L(#gase(a)) We need that

VE %Base(a) Clrx; (_‘rBase(a))o' (8)

This inequality means that if a formula a € Base(a) is not in f(z) for a state
x then the negation of a is true at x. This holds because if a ¢ f(z) for an
a € Base(a) then we must have z Iffx a by the definition of f and hence z IFx —a.

Now assume for a contradiction that (o, Tf(£(w0))) € L(¢#Base(ar))- This
entails that (o, {(z0)) € L(£Base(a)); (T'f)°. Then we can compute

(£(xo),) € T'f ; L(ZBase(a)) = L(f ; ZBase(a)) Proposition 3.10 (ii)
C L(lFx 5 (—lBase(a))) (8) and (L1)
= L((IFx 5 =) x xBase(a)) set theory
= (L(IFx; =) 7 x x TBase() Proposition 3.12

C L(lFx;—°).

But this is a contradiction to (§(xo), @) ¢ L(lFx;—°).
The other thing we have to check is that zo IFx VTA(Tf(£(z0))). For this
first observe that

Ax Clkx; (/\{Base(a))o) fo' (9)

This holds because the conjunction of formulas that are true at one state is
again true at this state. Now consider

(&(o),&(x0)) € ATX C LAy Proposition 3.10 (i)
c L(H_X ; (rBase(a))o ; fo) (9) and (Ll)
= LlFx; (T/\ Base(a)) Proposition 3.10 (ii)

So it follows that (£(2o), T'(A [Base(a))(T'f(€(20)))) € LlFx. This means that

(€(20), TA(2)) € LlFx because T(A lgase(a)) (Tf(§(20))) = T(A lBase(a)) () =
TA(S2). Hence zg IFx VT'A(S2).

For the other direction assume that there is an Q € T,P,Base(a) with
(,9Q) ¢ L(#gase(a)) such that zg IFx VIT'A(Q2) for an z¢ in a T-model X =

36

(X,&,Vx). We have to show that zg IFx =V(T=)(a). Assume for a contra-
diction that zg IFx V(T—)(«) which means that ({(xg), (T—)(e)) € LiFx and
equivalently (£(zo),a) € LiFx ; (T'-)°. By Proposition 3.10 (ii) we can reformu-
late this as (a, &(zg)) € T—; Libx® = L(—;1Fx°).

From the assumption that zq IFx VT'A(Q) we get that ({(x0), TA(Q)) € LiFx
and so by Proposition 3.10 (ii) that (£(z0),€2) € L(lFx;A°). Together with
(o, &(xg)) € L(—;1Fx°) it follows by (L1) that («,Q) € L(—;IFx°); L(lkx; A°) C
L(=;IFx%;lkx ; A°). Define T’ = (=;1kx° 5 1kx ; A°). So (o, Q) € LT.

Now observe that

PFBase(a)XPuBase(oz) = (ﬁ ; ”_Xo ilkx; /\O) FBase(a)X’PuBase(a) c ¢Base(a)' (10)

This holds because a formula whose negation is true at a state can not be a
conjunct of a conjunction that is true at that state. Moreover we have that
a € TBase(a) and Q € TP,Base(a). Hence by Proposition 3.12 («,Q) €
(LA) FTBase(oc)xTPuBase(a): L(F rBase(oc)XPuBase(a))- But by (10) and (Ll) we
have that L(FrBase(a)XPuBase(a)) - L(%Base(a))- So (Oé, Q) € L(éBase(a)) which is
a contradiction to the assumption that (a, Q) ¢ L(Zgase(a))- O

Next we want to show how we can get rid of conjunctions over nablas and
replace them with disjunctions of nablas. For this we first need to prove the
following easy Proposition that states that the nabla logic is in a sense monotone.

Proposition 4.15. It holds for all a, o/ € T, Lt that
(a, ') € LE= implies Va |= Va!.

Proof. Assume that (a,a’) € LE and take any state g in a T-coalgebra & :
X — TX such that zg IFx Va. We have to show that xg IFx Va'. By the
semantics of the nabla x IFx V means that (£(z¢), o) € LiFx.

By (L2) it follows that (£(xq),a’) € Likx; LE C L(lbx ;). Now it is easy
to see that IFx;j C Ikx by the definition of . So we get with (L1) that
(&(xp), @’) € LiFx which means that zg IFx Va/. O

Definition 4.16. For a set of formulas A C Lr let Conj(A) € PLr be the set
of all finite conjunctions of formulas in A that is

Conj: PLyr — PLr,
A {/\F €Ly | FeP,A}.

Proposition 4.17. Assume that T preserves finite sets, take any A € P,TLr
and set S = |J(P,Base)(A). Then it holds that

/\ Va = \/{Vﬁ | B € TConj(S) with (B,a) € LE= for all . € A}.

a€cA

Proof. First note that the right hand side is a formula, because the disjunction
is finite. This holds because T is assumed to restrict to finite sets and there are
only finitely many conjunctions over the finite set S = | J(P,,Base)(A).

For the direction from left to right assume we are given a state xy in a T-
model X = (X, ¢, Vx) with o IFx Va for all & € A. In order to witness the

37

right hand side we have to find a § € T'Conj(S) with (5,a) € Li=for all « € A
such that xq IFx V3. For this consider the map

f: X — Conj(9),
xH/\{aES\IIFXa}.

The map f is well defined because S is finite. Moreover we claim that

f2ilkxIxxs € FElconj(s)xs- (11)

The inequality (11) is equivalent to the claim that f(z) | a for all states z € X
and a € S such that = IFx a. This holds because f(z) = A{a € S | z IFx a},
Whence a € S is one of the conjuncts of the conjunction f(z) if we assume that
z IFx a. Clearly we then have f(x) = a because a conjunction entails all its
conjuncts.

Set B =T f(&(xo)) € TConj(S). Since Conj(S) C Lr is a finite set and T is
standard it follows that 8 € T'Conj(S) C T,,Lr.

To verify (8,a) € LE for all @ € A we use that (8,&(zo)) € (T'f)° by
definition of 8 and (£(xg),«) € LlFx because zg IFx Va. So we can compute

(B,a) € (Tf); (L) lrxxrs = (Tf)°; L(Fxlxxs) Proposition 3.12

C Lf°; Lkxlxxs) (L3)
C L(f°;lxlxxs) (L2)
€ L(Flconj(s)xs) (11) and (L1)
= (L) TConj(s)xTs Proposition 3.12
CLE.

It remains to show that xq IFx V3. For this observe that from the definition
of f we get that f© C IFx[x xconj(s)- S0 we calculate

(&(x0),8) € (Tf)° C Lf° (L3)
C L(IFx] x x Conj(s)) J° ClFxlx xconj(s) and (L1)
= (LIFx)I7x xTConj(8) Proposition 3.12
C Ll

By the semantics of V this means that zq IFx V3.

For the direction from right to left assume that we have a state x(y in a
T-coalgebra £ : X — TX such that z¢ IFx V3 for a 8 € T'Conj(S) such that
(6, a) € L= for all a € A. By Proposition 4.15 it follows that x IFx Va for all
a € A which gives the left hand side. O

Theorem 4.18. For every formula a € L1(C) there is a formula a® € £3.(C)
that is in disjunctive nabla normal form such that

aEad.

Proof. This is proved by an induction on the modal rank of the formula a. For
formulas with rank(a) = 0, that do not contain any nablas a? is just the usual
disjunctive normal form of a as a formula of propositional logic.

38

In the induction step we first rewrite a in a disjunctive normal form such that
it is a disjunction of conjunctions of literals and possibly negated nablas. That
this is possible is a basic fact about propositional logic. With Proposition 4.14
we can then get rid of the negated nablas by replacing them with conjunctions
of nablas. Now the formula is a disjunction of conjunctions of literals and
nablas. Then we use Proposition 4.17 to replace conjunctions of nablas with
disjunctions of nablas. So the formula is now a disjunction of conjunctions that
contain any number of literals and at most one disjunction of nablas. Using the
distributivity of A over V we get the whole formula into a form such that it is
a disjunction of conjunctions of literals and at most one nabla. Since none of
the transformations of Propositions 4.14 and 4.17 increases the modal rank of
the formula we have that all the direct subformulas of the nablas occurring in
the formula are of smaller modal rank. So we can use the induction hypothesis
to replace all the subformulas that are directly under nablas with equivalent
formulas in disjunctive nabla normal form. After this the whole formula is in
disjunctive nabla normal form and we are done. O

4.3 Bisimulation Quantifiers and Uniform Interpolation

The goal of this part is to prove uniform interpolation for L. In order to do this
we introduce the notion of a bisimulation quantifier and show that bisimulation
quantifiers are definable in the language L. Our proofs follows the proof in
[17] which shows a similar result in the case of M-models. We generalize their
result to arbitrary standard functors that restrict to finite sets and have a lax
extension that satisfies the following extra condition.

Definition 4.19. A relation lifting L of T is quasi-functorial if it satisfies the
following condition for all relations R: X -+ Z and S : Z -+ Y:

LR;LS = L(R;S) N (preimg(LR) x img(LS)). (12)

Recall from the definition of preimg(LR) C TX that & € preimg(LR) iff
there is a (g € TZ such that (§,{g) € LR. Similarly v € img(LS) C TY iff
there is a (s € T'Z such that ((s,v) € L. So the C-inclusion of (12) holds for
any lax extension because of (L2). The D-inclusion is the actual substantial
requirement. It is equivalent to condition that for all (§,v) € L(R; S) if there is
a (g € TZ such that (§,(r) € LR and there is a (¢ € T'Z such that (¢s,v) € LS
then there is a ¢ € TZ such that (£,{) € LR and (¢,v) € LS.

Example 4.20. (i) Recall from Example 3.11 (i) that the Barr extension T
for a functor T' that preserves weak pullbacks is functorial. Hence it satisfies
TR;TS =T(R;S) for all relation R and S. Clearly this implies that T is also
quasi-functorial. .

(ii) We can prove that the lax extension M of M as defined in Example 3.2
(vi) is quasi-functorial. This implies that the lax extension M, of M, is also
quasi-functorial. To see this recall that /T/IJS was defined on a relation R : X + Y
as MsR = ix ; MR ;i for any relation R : X + Y where i : My = M is a
natural isomorphism.

For the proof that M is quasi-functorial take any two relations R: X + Z
and S : Z + Y. We have to show that for all ((,v) € M(R;S) if there are

39

Cr,Cs € MZ with (&,(r) € MR and (Cs,v) € MS then there is a (€ MZ
with (£,¢) € MR and (¢,v) € MS.

From the assumptions (§,(r) € MR C PPR and (&) € MV(R;S) C
5)(73(1%; S) we get that for every U € £ there are elements Wy € (g and Viy € v
such that (U, Wy) € PR and (U, Vi) € P(R; S). Similarly by (Cs,v) € MS C
PPR and (&,v) € M(R;S) C %?(R;S) we get for every V € v elements
Wy € Cs and Uy € € such that (W, V) € PR and (Uy,V) € P(R;S).

From (U, V) € %(R;S) it follows that for every v € Vi there is a u, € U

such that (u,,v) € R;S. Hence there is a w, € Y such that (u,,w,) € R and
(wy,v) € S. With this define for every U € &

W/, =Wy Ufw, €V |veVy}

For this definition we can show that (U, WY,) € PR. For, take any w € W{,.
Then it is either in Wy or from {w, € V | v € Vy}. In the former case the
claim follows from (U, Wy) € PR. In the latter case we have by the definition
of w, that there is a u,, € U such that (u,,w,) € R. Moreover we have that
(W, Vu) € P S because for any v € Vi there is the element w, € W, with
(wy,v) € S.

A symmetric argument shows that for every V € v we can find a WY, € (g
with the properties (W/,, V) € PS and (Uy, W},) € PR.

Set

(={WCZ|WOW/,foraUe&or W DWW foraV € v}

From the definition its clear that ¢ is upwards-closed and so we have that ¢ €
MY . Tt remains to show that (£,¢) € MR and ({,v) € MS. We only do the
former since the latter is analogous.

For (&,¢) € P PR note that for any U € & there is the set W[, € ¢ with
(U,W},) € PR.

For (£,¢) € PPR pick any W € (. By the definition of ¢ it follows that
either W D W{, foraU € £ or W D WY, for a V € v. In the former case consider
Wy € (gr. From the assumption (§,(r) € MR C PPR we obtain a U’ € &
with (U, Wy) € 7_3>R. Because Wiy C W[, C W this entails that (U', W) € ﬁR
as required. In the other case where W D WY, for a V' € v we have from the
above that (Uy,WY{,) € PR for the set Uy € €. Because W{, C W it follows
that (Uy, W) € PR.

(iii) One can show that quasi-functoriality of relation liftings is preserved
under taking products or coproducts of quasi-functorial relation liftings.

(iv) The lax extension L3 for the functor F3 is not quasi-functorial. This is
a consequence of Example 4.26 and Theorem 4.25 but it can also be shown by
a direct counterexample.

We define the bisimulation quantifier as a syntactical transformation on for-
mulas in Lr.

40

Definition 4.21. By recursion on the complexity of formulas in disjunctive
nabla normal form we define for all p € P the map

e LS — Lr,
/\H — Jﬂ lf {p7 _‘p} g H)
AN\ A{p,—p}), otherwise,
\/A — \/'Pwep(A),
/\H/\Va+—> , 1fVa§L,
e?(ANII) A VT, eP(a), otherwise,

where A € P,LS, I is a set of literals and a € T, LS.
If T restricts to finite sets we can use Theorem 4.18 to extend this Definition
to the set of all formulas as follows

Ip: Lr(CU{p}) — Lr(C),
a— eP(ad).

We will often write Jp.a for the formula Ip(a). The operator Jp. is called
bisimulation quantifier.

The recursive clauses in the definition of e? just distribute to the subformulas.
So we have for example for A = {ag,a1,...,a,_1} € P,Lr that

ep(\/ A) = \/Pwep(A) = \/{ep(ao), eP(ay),...,eP(an—1)}.

Similarly we have that the formula VT,eP(a) is just the formula Va with e?
applied to all of the immediate subformulas.

Remark 4.22. The function dp removes all occurrences of the propositional
letter p from its argument. This means that it restrict to an mapping dp :
Lr(C) — Lp(C\ {p}) for any set of propositional letters C' C P.

The formula dp is called bisimulation quantifier because the formula Ip.a is
intended to have special satisfaction conditions that uses the following notion
of up-to-p-bisimulations.

Definition 4.23. A relation R : X - Y is an up-to-p Lp-bisimulation between
T-models X = (X,§,Vx) and Y = (Y,v,Vy) if it is an Lp\ p3-bisimulation
between X and Y. Call two states z in X and y in Y up-to-p Lp-bisimilar if
there is an up-to-p Lp-bisimulation R between X and Y with (z,y) € R. We
write x £, y if x and y are up-to-p Lp-bisimilar.

For any T-model X = (X, &, Vx) we define the relation \F?f : X + L1 by

T Il—ip a iff there is a state yo in some T-model Y = (Y, v, Vy)

such that zg £, yo and yo Ik, a.

It is our goal to show in Theorem 4.25 that Ip.a has the following satisfaction
conditions at state zg of a T-model X = (X, &, Vx):

2o IFx Ip.a iff g Il-ggp a.

For this we first prove the following Lemma.

41

Lemma 4.24. For any T-model X = (X, &, Vx) there is a T-model Y = (Y, v, Vy)
and a left-total up-to-p Lp-bisimulation R : X + Y between X and Y such that

" = R;lFy . (13)

Proof. Fix the T-model X = (X, ¢, Vx). We have to construct a T-model Y =
(v, Vy) that has the required properties. Consider the pairs (z,a) € Il-ggp . For
any such pair there is a state y, o in a T-model Yy o = (Yo a, Vz.a, Vym) such
that y;q IFy,, @ and there is an up-to-p Lp-bisimulation R, , : X - Y,
between X and Y, , such that (2,y;4) € Ryq-

Define Y= (v:Y - TY,Vy) = H(zya)e‘@p Ys,q to be the coproduct of the

coalgebras vy, 4 for every (z,a) € H—?g’, with injections iy, , : Y; o — Y. Because
the injections iy, , are coalgebra morphisms the relations of their graphs are
by Proposition 3.10 (iii) Lp-bisimulations between Y, , and Y. By Proposition
4.11 it follows that they preserve truth and so we have for iy, (yz.q) € Y as a
state of v with iy, , (¥z,q) IFy a. '

The relation R : X + Y is defined by

R = U (Rx,a;in‘a) .

3
(z,a)€lFg?

The relations R, ,;iy,, are up-to-p Lp-bisimulations for all (z,a) € Il-ggp be-
cause they are a composition of two up-to-p Lp bisimulations which is by Propo-
sition 3.13 (ii) also an up-to-p Lp-bisimulation. By Proposition 3.13 (iii) we
know that an arbitrary union of up-to-p Lp-bisimulations is again an up-to-p
Lp-bisimulation. Hence R is an up-to-p Lp-bisimulation.

The relation R is left total because for all x € X we have that (z,T) € Il—ip
and hence that (z,iy, + (Y2,7)) € Re, 73y, + € R.

It remains to check that these definitions satisfy (13). For the C-inclusion,
take any (x,a) € IF3”. Then (z,a) € R;lFy follows because (z,1v, , (Ya,a)) €
Ryaiiy,, € R and iy, ,(Yee) IFy a. For the D-inclusion take any (z,a) €
R;lFy. So there is a y € Y such that (z,y) € R and y IFy a. Since R is an
up-to-p Lp-bisimulations it follows by the definition of II—%’ that (x,a) € H—?{’ . O

Theorem 4.25. Assume that T restricts to finite sets and L is quasi-functorial.
Then it holds for the function 3p : L — L, as defined in Definition 4.21, that
for any state o in a T-model X = (X, &, Vx) and any formula a € L

xo lbx 3p.a iff there is a state yo in some T-model Y = (Y, v, Vy)
such that xg <, yo and yo IFy a.

Proof. Because 3p = eP((—)4) and we know from Theorem 4.18 that (—)4 pre-
serves truth it is enough to show that for all a € LS.

o IFx €P(a) iff xo IF5P a. (14)

This is done by induction on the complexity of a € £9..
We omit the case where a = A II. It is similar to the case a = A IIAVa that
we prove below but much easier because it only involves propositional letters..

For the case a = \/ A where A € P, L3 first recall that eP(\/ A) = \/ P,eP(A).
For the left to right direction assume that x IFx \/ P,eP(A). So thereisana € A

42

such that z(IFx eP(a). By the induction hypothesis this means that there is a
state yo in a T-model Y = (Y, v, Vy) such that ¢ <, yo and yo IFy a. Hence
also yo IFy \V/ A and because xy), yo it follows that x Il—ip \/ B.

For the other direction assume that there is a state gy in a T-model Y =
(Y, v, Vy) such that xo <, yo and yo IF, V A. So yo IFy a for an a € A. Since
o 2, Yo it follows that z H—ip b and by induction hypothesis that xzy IFx
eP(b). By the satisfaction conditions of the disjunction we conclude that zq IFx
\/ PoeP(A).

The last case is where a = AIIAVa for a set IT of literals and an « € T, L.
If p,=p € Il or Va = 1, then it is not the case that zg IFip a and the claim
follows immediately from the definition of e?(AIl A Va). So assume that not
p,—p € II and that Va is satisfiable. The induction hypothesis is that (14)
holds for all formulas a € Base(a). This can be expressed as

IFx (ep rBase(oz))o = ”_§3§p rXXBase(a) . (15)

We first do the easier direction from right to left. So assume that there
is state yo in a T-model Y = (Y, v, Vy) with yo IFy AIL A Va and there is
an up-to-p Lp-bisimulation R : X + Y between X and Y with (z9,y0) € R.
From the definition of H—ip : X x Lr it follows that R;IF, C H—?f. Because
the up-to-p Lp-bisimulation R is in particular an L-bisimulation it holds that
(&(xo0),v(yo)) € LR. Because of yy Ik, Va it we have that (v(yo),) € LlF,.
Putting this together we get (¢(x¢),a) € LR; LI, and we can calculate

(€(wo), @) € (LR; LiFy) 7 x xTBase(a) o € TBase(q)
c ((R I)) T X xTBase(a) (L2)
< () T X x TBase(a) R;lk, CIFPand (L1)
=L (IF [Xxgase(a)) Proposition 3.12
=L (“_X) ([Base(a))) (15)

= (LlFx; (€7)°) 7 x x TBase() Proposition 3.12
= (LH_X) (ep))
= LlFx; (TeP)°. Proposition 3.10 (ii)

This entails that ({(xo), TeP(«)) € LiFx. Hence xg IFx VTeP(a).

Because R is an up-to-p Lp-bisimulation that connects zg and yq it follows
that xyp makes the same propositional letters true as yg, with the possible ex-
ception of p. Hence yo IFy AII entails that zo IFx A (II\ {p, —p}). It follows
that xg IFx A (IT\ {p, 7p}) A VT, eP(«) which is what we need to show because
e (NIAVa) = A\ {p, ~p}) A VI,eP(a).

For the left to right direction assume that z IFx e?(AII A Va). By the
definition of e? this means that zq IFx A (IT'\ {p, —p}) and that zq IFx VTeP ().
From the latter it follows that ({(z0), T€ [gase(a) (@) € LlFx since TeP(a) =

43

T(eprBase(a))(Oé). So we get

(&(20), @) € LiFx; (TP [Base(a))” = L (II—X : (ep[Base(a))O) Proposition 3.10 (ii)
= L (K I x B (15)
= (LII—?f) [T X x TBase(a) Proposition 3.12
C L.

We have to show that z(Ikip Va. To get this we need a witnessing state
Yo in a T-model Y = (Y, v, Vy) such that yo IFy AILI A Ve, and an up-to-p
Lp-bisimulation R : X + Y between X and Y with (z9,y0) € R.

A first approximation is given by Lemma 4.24 from which we get a T-model
Y’ = (Y, 0", Vy») and a right-total up-to-p Lp-bisimulation R” : X —+ Y
between X and Y” such that

IF3P = R"; Iy (16)

We already know that (£(xo),a) € L\F?f = L(R";IFyr). The plan is to use the
quasi-functoriality of L to get a vg € T(Y") such that (7(x0),v0) € LY and
(vo, @) € Lk, This vy will then function as the unfolding of a witnessing state
Yo-

Because Ve is satisfiable there is a state z in a T-model Z = (Z, {, V) such
that zo IFz Va. Let Y = Y"” + Z with Y/ = (Y’,v’, Vi) be the coproduct of Y
and Z with injections iy~ and iz. The injections are coalgebra morphisms and
so they preserves truth by Proposition 3.13 (i) and Proposition 4.11. That gives
us that IFy» = 4y Iy, Now define the relation R’ : X + Y/, R' = R" ;iyn
which by Proposition 3.13 (ii) is an up-to-p Lp-bisimulation between X and Y’
which is, as one easily verifies, also left-total and satisfies

IFP = R";IFyn = R';IFyr.

Because iy preserves truth we get that iz (20) lFys Va. Hence (v'(iz(20)),a) €
LiFy: and so a € img(IFy/).

Since R’ is left-total there is a function f : X — Y’ with f C R’. Using f
we get that (§(z0),Tf(&(x0))) € Tf C Lf C LR by (L3) and (L1). It follows
that &(zg) € preimg(LR).

Now we have that (£(z0),a) € L(IF3” = R';lFy/), &(xzo) € preimg(LR') and
a € img(lFy). So it follows from the quasi-functoriality of L that there exists a
vo € TY' with (£(zg),v0) € LR’ and (vg, «) € LlFy:,. This we can use to define
the coalgebra Y = (Y,v,Vy) on Y = {yo} UY’ for a yo ¢ Y’, with transition
function

v:Y > TY,

Vo, if y=yo
Yy .
V'(y), ifyeY’,

The transition function v is well defined for y € Y’ because TY' C TY since

T is standard. The valuation Vy is defined such that Vy(q) = Vi (q) U {yo}
for all p € P\ {p} with 2o € Vx(q) and Vy(q) = Vi (q) for all ¢ € P\ {p}

44

with z¢ ¢ Vx(q). For the proposition letter p we set Vy(p) = Vi (¢) U {yo} if
p € IT and Vy(p) = Vi (p) otherwise. The relation R : X -+ Y is defined by
R=R;uyy U{(zo,y0)}

For this we now first show that the inclusion ¢y y : Y’ - Y is an Lp-
bisimulation. It is clear from the definition of the valuation Vy that ¢y~ y pre-
serves all propositional letters. To see that it is an L-bisimulation consider

tyry CUsueryr ry 0° Definition of v
=" ;Tptyry ;v° T standard
Q ’U/ ; LLY’,Y ;Uo. (L3)

By Remark 3.4 it follows that ¢y~ y is an L-bisimulation between v and v.

Because vy y is an Lp-bisimulation between Y’ and Y it preserves truth
by Proposition 4.11. So we have that 3,y ;lFy: € IFy. We also have that
(vo,v0) € tryrry = T(5y) € LiS y because T is standard and by (L3).
Moreover we already know that (v,) € LiFy,. Hence we get

(vo,) € Ly y 5 Libyr € L(tyr y 5 lyr) (L2)
C Lliky tyry;IFyr Clky and (L1)

It follows that (v(yo),) € LIk, and therefore yo IFy Ve, because v(yo) = vo.
The definition of the valuation V4 entails, together with the fact that xq IFx
A I\ {p, —p}), that yo Iy AL It follows that yo IFy AL A Vau

The last thing we have to prove is that R = R';tyry U {(z0,%0)} is an
up-to-p Lp-bisimulation between X and Y. The relation R preserves the truth
of propositional letters, except for p, because as we already observed R’ and
tyy do and the valuation Vy was defined such that yo makes up-to-p the same
propositional letters true as xg. So it remains to check that the relation R is an
L-bisimulation between X and Y. For this we show that (£(x),v(y)) € LR for
an arbitrary (z,y) € R. We first do the case where (z,y) € R’ ;tysy. We have
by Proposition 3.13 (ii) that the composition R’ ; vy y is an L-bisimulation and
so (&(x),v(y)) € L(R ;1yry) because (z,y) € R ;tyry. Since R ;iyy C R
it follows by (L1) that (£(z),v(y)) € LR. In the other case we have that
(z,y) = (x0,y0) and have to show that ({(xo),v(yo)) € LR. For this we use
that ({(x0),v0) € LR’ and that (vg,v(yo)) € Try,ys, since T is standard and
v(yo) = vo. So we can compute

(&(w0),v(yo)) € LR';Tryyr € LR'; Luyy: (L3)
CL(R ;uyy) (L2)
g LR. RI ylyy! g R and (L].)

O

Example 4.26. Consider the functor F3 from Example 2.1 (x) and its lax
extension L3 from Example 3.11 (vi). We can show that bisimulation quantifiers
are not definable in the language Lps if the semantics of the nabla is given

by L3. We show this by proving that there is no formula in £F23 that has

Zo IFip V(p, —p, —p) as its satisfaction condition at a state zo of a Fj-model X.
For this purpose we first prove the claim that for any state xo in a F3-model
X= (X7€7 VX) with é-(.’lfo) = (x17$2a $3):

Zo H—ip V(p,—p,—p) iff z9e, s (17)

45

Assume first that xg Il—ip V(p, —p, —p). This means that there is a state yo in
a F3-model Y = (Y,v, Vi) and there is an up-to-p L3p-bisimulation R: X + Y
between X and Y such that yg IFy V(p, —p, —p). Let v(yo) = (y1,92,y3). We
know that y; # yo and y; # y3 because y; Ik, p whereas y, Ik, =p and y3 I, —p
by the semantics of the nabla. Because (y1,¥y2,ys3) can contain at most two
distinct elements it follows that y» = y3. Because R is an L3-bisimulation
between ¢ and v with (zg,%0) € R we have that (z2,y2), (3,y3) € R since L3 is
defined componentwise. This entails (22, 23) € R; R° which shows that 25 and
z3 are up-to-p L3p-bisimilar because by Proposition 3.13 (ii) the composition
R; R° is an up-to-p L3p-bisimulation.

For the other direction of (17) assume that s <, x3. Now we want to
construct a witnessing Fy-model Y = (Y,v,Vy) for the left hand side. The
idea is to first identify the points s and x3 and then make this identified point
distinct from x;. This enables us to make p true at the point corresponding to
x1 and false at the point corresponding to z2 and x3.

It follows from Corollary 3.14 that the bisimilarity relation <,: X x X
is an L%P\ {py-Pisimulation equivalence on the Tp-coalgebra X: X o F3.X
corresponding to X. From Proposition 3.8 we get the bisimulation quotient
" zZ" — FSP\{p}Z”, where Z"” = X/<,, such that the projection p: X — Z”

is a FS’P\{p}—coalgebra morphism from r)P(’P\{p} oX to ¢". Because zy 2, 3 it
holds that p(z2) = p(z3).

Next consider the coproduct ¢’ = ¢ 4+ ¢" : Z' — ng\{p}z’ where Z' =
7" + Z" with injections 49,11 : Z” — Z’'. Intuitively ¢’ consists of two copies
of ¢"" where the first copy is accessed by iy and the second by i;. So for every
equivalence class z € Z” = X/<, there are two identical copies iy(z) and
i1(z) of it in ¢’. We can then define the relation R’ = p;(igUi1) : X + Z’
that connects any point in z with the two copies of its equivalence class in (’.
Because of Proposition 3.13 it we have that R' = p;(icUi1) : X - Z' is an
up-to-p L3p-bisimulation between r)P(’P\{p Vo X and ¢’. By assuming that the
propositional letter p is false at every state we can take the F23P\ {p}—coalgebra
¢’ to be a F3p-coalgebra Yy - F3,Y" where Y/ = Z'. So there is an
Fj-model Y' = (Y',v, Vi) corresponding to Y. For Y’ we have that R’ is an
up-to-p Ljp-bisimulation between the Fj-models X and Y.

In Y’ there is the state ig o p(z1) that is bisimilar to 27 and distinct from
the point i1 o p(x2) = i1 o p(x3) that is bisimilar to 25 and to x3. That is the
situation we were aiming for and we use it to define the F3-model Y = (Y, v, Vy)
on the set Y =Y’ U {yo} for a yo ¢ Y’ with transition function

v:Y — FJY,

_, JGoop(@i),ivop(x2),irop(zs)), ify=yo
v'(y). ifyeyY’

The valuation Vg : P — PY is defined such that Vy(p) = {ip o p(z1)} and

Vir(q) = Var(q) for g € P\ {p}.

Because p holds only at the state ig o p(x1) and ip o p(z1) # i1 o p(as) =
i1 o p(x3) it follows that yo Ik, V(p,—p,—p). One can also check that R =
R U {(xo,y0)} : X - Y is an up-to-p L3p-bisimulation between X and Y.

Together this yields that xg IF?’ V(p, —p,—p) and finishes the proof of (17).

46

From the equivalence (17) it follows that a formula b € Lps, that has

T H—?g’ V(p,—p,—p) as its satisfaction conditions at a state xg, characterizes
the property that the successors x5 and x3 of xy are up-to-p Lp-bisimilar. This
is interesting because bisimilarity is a property that depends on arbitrarily re-
mote successors of a state. But every formula b € Lps has a finite modal rank
and can only characterize properties of successors that are at most n steps away.
Hence it is not possible that there is such an b € L.

To make this argument more precise assume for a contradiction that there
is a formula b € £F23 such that z IFx b is equivalent to z Il—ip V(p,—p,—p) at
every state x in any Fj-model X. Let n be the modal rank of b. Now consider
two F3-models X = (X, &, Vx) and Y = (Y, v, Vy). The model X is defined on a

set X = {x} such that
f(l‘) = (Q)a (m,x,x)),

and Vx(q) = 0 for all ¢ € P. The Fj-model Y = (Y, v, Vy) has the set Y =
{v,y} U{y; | i =0,...,n — 1} with n + 2 distinct elements as its states, its
transition function v : Y — F3Y is defined such that

U(y) = (yayayn—l)a
V(Yiv1) = (Yi, Yis Yi)s
v(yo) = (v, v, y),

v(y) =Y.y,

and its valuation is such that Vy(r) = {y'} for an r € P\ {p} and Vy(q) = 0 for
all ¢ € P\ {r}. For these models it is easy to show by induction on d < n that
zlFx a iff y IFy a and x IFx a iff y4 IFy a for all a € ﬁFg of rank at most d. It
follows that x I-x a iff y IFy a for every a € Lz with rank at most n. Hence
xlkx biff y Iky b. But o H—ip V(p, —p, —p) and not y H—%}p V(p, —p, —p) since we
clearly have that x £, whereas not y £, y,,—1 because y,_1 has a successor
where r is true but y does not.

An application of bisimulation quantifiers is the following interpolation re-
sult.

Corollary 4.27 (Uniform Interpolation). Assume that T restricts to finite sets
and that L is quasi-functorial. For any finite sets of propositional letters Cy C P
and D C C, and any formula a € L1(Cy,) there is a formula ap € L1 (D) such
that for all Cy C P with C, N Cy C D and formulas b € L1(Cy) we have that

alEb iff ap EDb.
Proof. Let {po,p1,...,pn—1} = Cy \ D. Then set
ap = Ipo.Ip1. ... Ipn_1.a.

With Remark 4.22 we have that ap € L7(C, N D) C Lr(D).

To check that a = b iff ap = b assume first that a |= b. To prove that ap = b
we have to show zg IFx b for an arbitrary state xg in a T-model X = (X, £, V)
with xg IFx ap. By the semantics of the bisimulation quantifiers we get states
y; in T-models Y; for ¢ = 1,2,...,n such that xo 2, y1, 1 =p, Y2, ..,
Yn—1 2p, , Yn and y, lFy, a. From the latter fact it follows that vy, IFy, b

47

since we assume that a = b. Because every of the witnessing up-to-p; Lp-
bisimulations for ¢« = 0,1,...,n — 1 is also an Lp\{py,p,,...,p,,_, }-Pisimulation we
can apply Proposition 3.13 (ii) to obtain that xo and y, are Lp\{py,py,....pn_1}-
bisimilar. It follows from the assumptions that C, C P\ {po,p1,--.,Pn-1}- So
we can use Proposition 4.11 to get x¢ IFx b.

For the other direction we show that a = ap. Then a | b follows by
transitivity from ap = b. So take any state zp in a T-model X = (X, &, Vk)
with zg IFx a. Then clearly xg IFx ap because xg is up-to-p Lp-bisimilar to
itself for any p € P, since Ax is an Lp-bisimulation. O

5 Conclusions and Further Questions

In this thesis we proved that lax extensions which preserve diagonals give rise
to a notion of bisimulations that is adequate for behavioral equivalence and we
demonstrated that lax extension can be used to define a well behaved semantics
for the nabla modality. For these reasons it is interesting to study lax extension
that preserve diagonals in the context of coalgebraic modal logic. Another indi-
cation of the importance of lax extensions that preserve diagonals is that, of all
the functors we consider, only the neighborhood functor N does not posses a lax
extension that preserves diagonals and for this functor we showed in Proposition
3.7 that there is no relation lifting that characterizes behavioral equivalence.

An interesting goal for further research would be to characterize the functors
which have a lax extension that preserves diagonals. Our Theorem 3.26 is a first
step into this direction but it only applies to finitary functors and the condition
it gives, that the functor has a separating set of monotone predicate liftings, is
not more fundamental than what it is supposed to characterize. Furthermore
one could try to find a canonical way to obtain a lax extension that preserves
diagonals for the functors that posses one, similar to the Barr extension of weak
pullback preserving functors. For this it might be helpful to note that for all our
examples of functors which have a lax extension that preserves diagonals, the
relation lifting T from Example 3.2 (viii) also characterizes behavioral equiva-
lence, though it is not necessarily a lax extension itself. A more general question
one could work on is to find characterizing criteria of functors that have a re-
lation lifting that characterizes behavioral equivalence. It might turn out that
every functor with a relation lifting that characterizes behavioral equivalence
also has a lax extension that preserves diagonals.

Another starting point for future work is our Theorem 4.25, which states
that bisimulation quantifiers are definable in the nabla logic of a quasi-functorial
lax extension. For example one could investigate the the property that a lax
extension is quasi-functorial more carefully. Which property of the functor M
brings about that M has a quasi-functorial lax extension and hence definable
bisimulation quantifiers? It would also be interesting to see whether bisimulation
quantifiers are still definable in the nabla logic of a quasi-functorial lax extension
if one adds modal fixpoint operators to the logic.

48

Acknowledgments

Foremost, I thank Yde Venema for his active supervision of this thesis project.
I am especially grateful for his patience with me giving wrong proofs and for
his encouragement and support when something did not work as expected.

My sincere thanks also go to the MoL-room people: Gabriela Asli Rino

Nesin, Paula Henk, Marta Sznajder, Peter Fritz and Erik Parmann, for sup-
port on a daily basis, for substantial discussions and for providing the social
environment, with all ups and downs, during the time this thesis was written.

References

[1]

2]

Jit{ Addmek and Véra Trnkova. Automata and Algebras in Categories.
Kluwer Academic Publishers, Norwell, MA, USA, 1990.

Alexandru Baltag. A logic for coalgebraic simulation. Flectronic Notes in
Theoretical Computer Science, 33:42—-60, 2000.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge:
Cambridge University Press, 2001.

Helle Hvid Hansen and Clemens Kupke. A coalgebraic perspective on
monotone modal logic. Electronic Notes in Theoretical Computer Science,
106:121-143, December 2004.

Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Bisimulation for
neighbourhood structures. In Proceedings of the 2nd International Con-
ference on Algebra and Coalgebra in Computer Science, CALCO’07, pages
279-293, Berlin, Heidelberg, 2007. Springer-Verlag.

Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Neighbourhood struc-
tures: Bisimilarity and basic model theory. Logical Methods in Computer
Science, 5(2), 2009.

Christian Kissig and Yde Venema. Complementation of coalgebra au-
tomata. In Proceedings of the 3rd international conference on Algebra and
coalgebra in computer science, CALCQO’09, pages 81-96, Berlin, Heidelberg,
2009. Springer-Verlag.

Clemens Kupke. Finitary Coalgebraic Logic. PhD thesis, Universiteit van
Amsterdam, 2006.

Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness of the
finitary Moss logic. In Carlos Areces and Rob Goldblatt, editors, Advances
in Modal Logic, 2008.

Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness for the
coalgebraic cover modality, to appear, see [9] for an earlier version.

Alexander Kurz and Raul Andres Leal. Equational coalgebraic logic. Elec-
tronic Notes in Theoretical Computer Science, pages 333-356, 2009.

49

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

Paul Blain Levy. Similarity quotients as final coalgebras. In FOSSACS,
pages 27-41, 2011.

Lawrence S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic,
96, 1999.

Dirk Pattinson. Coalgebraic modal logic: Soundness, completeness and
decidability of local consequence. Theoretical Computer Science, 309(1-
3):177-193, 2003.

Dirk Pattinson. An introduction to the theory of coalgebras, 2003. Lecture
Notes, Second North American Summer School on Logic, Language and
Information.

J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3 — 80, 2000.

Luigi Santocanale and Yde Venema. Uniform interpolation for monotone
modal logic. In Lev Beklemishev, Valentin Goranko, and Valentin Sheht-
man, editors, Advances in Modal Logic, Volume 8, pages 350-370. College
Publications, 2010.

Lutz Schroder. Expressivity of coalgebraic modal logic: The limits and be-
yond. Theoretical Computer Science, 390(2-3):230 — 247, 2008. Foundations
of Software Science and Computational Structures.

Christoph Schubert and Gavin J. Seal. Extensions in the theory of lax
algebras. Theories and Applications of Categories, 21(7):118-151, 2008.

Albert Thijs. Simulation and Fizpoint Semantics. PhD thesis, University
of Groningen, 1996.

Yde Venema. Algebras and coalgebras. In Patrick Blackburn, Johan van
Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of
Studies in Logic and Practical Reasoning, pages 331 — 426. Elsevier, 2007.

50

