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Abstract

The study of partial algebras is the part of universal algebra which deals with
structures whose operations are not defined everywhere. A natural question to
ask if faced with a partial algebra is whether or not it can be completed, i.e.
embedded into a total algebra. If furthermore we take partial algebras modelling
a certain theory T , the question of finding a completion also modelling T may
be very hard, depending on the strength of T .

In this thesis we investigate a special case of the difficult problem stated
above. In particular, we show that partial algebras which model an orthogonal
term rewriting system and which satisfy a certain condition on head-normal
forms can be completed. Our result generalizes a previous result by Inge Bethke,
Jan Willem Klop and Roel de Vrijer presented in [BKdV96]. In the process,
we will prove an abstract confluence theorem which is independent from our
particular choice of term rewriting system and therefore can be taken separately.

Our proof is preceded by a section on completions of partial algebras, de-
scribing the construction of the one-point completion and free completion of a
given partial algebra, and showing the relations between these completions in
category-theoretic terms.
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Introduction

In most of mainstream mathematics, there is not much attention given to par-
tiality. One usually investigates structures that are closed under the operations
defined on them, or equivalently one restricts functions or operators to the sets
which are closed under them. However, as George Grätzer states in Universal
Algebra [Grä79], the study of partial algebras is useful when discussing the be-
havior and properties of operations on subsets of algebras which are not closed
under them. In practice, there are many areas where the use of partial structures
is necessary or beneficial in order to understand the nature of the thing.

Much of the motivation for being able to handle partiality comes from com-
puter science. In programming languages, functions are often defined for certain
types, i.e. for a certain kind of input. However, a program may not be defined
on every input, especially in borderline cases. For example, the program taking
a list and returning the head of the list would have ‘list’ or ‘array’ as input type
but would not be defined on the empty list.

Another example would be the study of natural language semantics. Kracht
[Kra06] cites Dresner [Dre02] as saying that an algebraic approach to language
acquisition is more plausible than a model-theoretic one. By language acqui-
sition we mean here the process of learning the meaning of syntactic objects.
The model-theoretic approach would be one in which the learner has, prior to
learning the meaning of a word, many possible models of the world correspond-
ing to the possibilities for the meaning, which she progressively eliminates as
she gains more information. This is the approach behind dynamic epistemic
logic where one maintains accessibility only to worlds compatible with one’s
epistemic state. The algebraic approach would be to see the meaning function
as a partial function which gets progressively extended. So in the former ap-
proach, minimal knowledge would correspond to the most complicated structure
(all models fitting the acquired knowledge), whereas seeing meaning as a partial
function where a value is not (yet) assigned for certain arguments is arguably a
more parsimonious and natural approach. Dresner [Dre02] defends this view for
other reasons, namely that a holistic view of meaning (the view that meaning
of expressions derive from their usage in connection to other expressions and
the meaning of these expressions) is indefensible without partiality, as in order
to learn a language we would need to already know the meaning of most of the
expressions of the language.

If we have a partial natural language semantics, one natural question to ask
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is if one can extend it; for example if our meaning function is defined only on
sentences one might ask if we can extend it to words. One may want to extend it
in a certain way, say such that the resulting meaning function is compositional.
A meaning function would be compositional on a partial algebra if and only if
the equivalence relation it defines (synonymy) is a closed congruence on it (see
[Hod01][Kra06]).

This brings us to the main subject of this thesis: how to complete partial
structures and whether one can always do so. To complete a partial structure
is to extend it to a total structure. For example, if we see a partial order
as a partial binary function on the square of the domain, which of the two
arguments returns the smallest, then the completion of a partial order is a total
order. However, if our partial algebra is a model of a theory, we may want
to ask the question of whether there is a completion which is a model of the
same theory. While completing a model may be easy when the theory is weak,
it may get more complicated the stronger the theory gets. It may even be
impossible. As an example, consider the natural numbers 〈N,+N,−N, 0N〉. The
ordinary interpretation of minus in this structure is a partial operation. We can
complete this partial structure to Z with the usual interpretations. However, if
we now add the < ordering to the signature and interpret it as the usual order,
and if in our theory T we have the sentence “there is no element smaller than
zero”, we cannot complete the structure to a model of T .

We have said above that the main use of the study of partial algebras is to
examine the behavior of operators on subsets of algebras when these subsets
are not closed under these operators. However, we see now that not all partial
models are necessarily such a restriction of a total model. In other words, the
behavior of the partial operators on the structures may be so incompatible with
one another or so chaotic that it is impossible to complete them in a satisfactory
way. In Chapter 1 we will see how totalization or completion of partial algebras
behave with respect to preserving the partial operations’ values on subuniverses,
and with respect to preserving congruence relations. We will see special kinds
of completions such as the one-element completion and the free completion and
how they can be seen as opposites in a category-theoretic view.

The main part of the thesis is Chapter 2. There, we will briefly describe a pa-
per by I. Bethke, R. de Vrijer and J.W. Klop [BKdV96] which gives a condition
under which a partial combinatory algebra has a completion. This condition is
called having unique head normal forms. To this end, a term rewriting system is
defined which provides the structure necessary to complete the partial combina-
tory algebra. In this thesis, we aim to generalize that result and show that the
completion has little to do with the particular case of combinatory algebras and
more to do with the underlying term rewriting system. We thus reformulate the
condition on unique head normal forms, and show that a partial algebra with
this condition modelling an orthogonal term rewriting system can be completed
to a total algebra also modelling the term rewriting system.

To conclude, we will show that [BKdV96] is indeed a special case of our
result, and mention its application to other combinatory systems, such as the
completion of a partial model of the CLI calculus.
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Chapter 1

Completing partial algebras

Universal algebra is one of the areas that has most developed the study of
partiality, together with category theory, and universal algebra is therefore the
area we will be working in.

In this chapter we will study the completions of partial algebras of certain
types, and the relations between these completions.

1.1 Definitions

Universal algebra can be thought of as a special case of model theory in which
one only studies purely functional or algebraic signatures. A signature, hence-
forth denoted F , is a set of function or operation symbols. Each symbol is
assigned an arity, a natural number denoting the number of arguments it takes
when interpreted. Symbols in F will be called f , g and so forth. A universal
algebra A over the signature F will then be a set A together with an interpre-
tation of each symbol in F . Below are the precise definitions of total algebras
and partial algebras.

Definition 1. Let A be a set, f an n-ary operation on A. f is called total if
it is a function An→A whose domain is An. It is partial if its domain is a
subset of An. If an n-tuple ~a is in the domain of f , we will say that f(~a) exists
and write f(~a)↓; otherwise we write f(~a) ↑. In expressions such as f(~a) = b,
f(~a) 6= b and f(~a) ∈ A it will implicitly be assumed that f(~a)↓.

Definition 2. An algebra is a tuple A = 〈A, {fA}f∈F 〉 where A is a set and F
a set of function symbols, called the signature of A. To each function symbol
f ∈ F we assign a natural number which we call its arity and denote Ω(f). Now,
to each f ∈ F we assign an Ω(f)-ary function on A, denoted fA : AΩ(f)→A
and called the interpretation of f in A. We say that A is a partial algebra
if fA is a partial function for all f ∈ F . If furthermore fA is a total function
for all f ∈ F we say that A is total.

For a total algebra, it is easy to define what a homomorphism is:
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Definition 3. A total algebra homomorphism from A = 〈A, {fA}f∈F 〉 to
B = 〈B, {fB}f∈F 〉 is a total function φ : A→B such that for all f ∈ F , for all
~a ∈ AΩ(f),

fB(φ(~a)) = φ(fA(~a))

where by φ(~a) we mean (φ(a1), . . . , φ(aΩ(f))).

However, the issue is not that simple when dealing with partial algebras, as
applications to certain arguments on both sides may not be defined [Grä79].

There is in fact more than one way to define homomorphisms. For example,
one can define:

Definition 4. A closed partial algebra homomorphism from
A = 〈A, {fA}f∈F 〉 to B = 〈B, {fB}f∈F 〉 is a total function φ : A→B such that
for all f ∈ F , for all ~a ∈ AΩ(f),

1. fB(φ(~a))↓ ⇐⇒ fA(~a)↓ and

2. If both exist, then fB(φ(~a)) = φ(fA(~a)).

Note that a total algebra homomorphism is a closed partial algebra homo-
morphism. However, one of our main aims is to investigate completions of
(strictly) partial algebras, meaning embeddings of partial algebras into total
ones. The above definition will certainly not do for this purpose as totality of
the target algebra would immediately imply totality of the source algebra. So
we need a weaker notion of homomorphism, which tolerates partiality and where
the implication in condition 1 goes only in one direction.

Definition 5. A weak partial algebra homomorphism between
A = 〈A, {fA}f∈F 〉 and B = 〈B, {fB}f∈F 〉 is a total function φ : A→B such
that for all f ∈ F , for all ~a ∈ AΩ(f),

1. fA(~a)↓ ⇒ fB(φ(~a))↓ and

2. If both exist, then fB(φ(~a)) = φ(fA(~a)).

Contrary to ordinary conventions, in this thesis if an algebra is not specified
to be total it will assumed to be partial, i.e. the word “algebra” will, unless
specified otherwise, mean “partial algebra” and “homomorphism” will mean
“weak homomorphism”. This will cause no confusion since for total algebras
weak and closed homomorphisms coincide. Note that an algebra homomorphism
as we define it here is only between algebras over the same signature F . Now
we can define the notion of a completion or totalization of a partial algebra.

Definition 6. Let A = 〈A, {fA}f∈F 〉 be a partial algebra. B = 〈B, {fB}f∈F 〉
is a completion of A if

1. B is a total algebra and

2. There exists an injective weak homomorphism φ : A→B, i.e. an embedding
of A into B.
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Just as there is more than one possible way to define a homomorphism, there
is more than one way to define a subalgebra of a given algebra1. The following
are those which correspond to weak and closed homomorphisms:

Definition 7. Let A = 〈A, {fA}f∈F 〉 and B = 〈B, {fB}f∈F 〉 be algebras such
that A ⊆ B. Then A is a weak subalgebra of B if the inclusion is a weak
homomorphism, and it is a closed subalgebra of B if the inclusion is a closed
homomorphism.

But there is also a concept in between the two:

Definition 8. A = 〈A, {fA}f∈F 〉 and B = 〈B, {fB}f∈F 〉 be algebras such that
A ⊆ B. Then A is a relative subalgebra of B if for any f ∈ F , for any
~a ∈ AΩ(f)

1. A is a weak subalgebra of B and

2. If fB(~a) ∈ A, then fA(~a) = fB(~a).

One may think of these three types of subalgebra as follows: if A is a weak
subalgebra of B, functions interpreted on B may take any value they like for
arguments in A, as long as they agree with the interpretations in A wherever
these are defined. If it is a closed subalgebra, interpretations of functions in
B may not take values (anywhere) for arguments in A unless the function is
defined in A. Lastly, if A is a relative subalgebra, interpretations of functions in
B may take a value for arguments in A even when the function is not defined
in A, but in this case the value must be outside of A. A closed subalgebra
is a relative subalgebra, and a relative subalgebra is a weak subalgebra, and
moreover these inclusions are strict [Grä79, page 81].

Now that we have these basic definitions concerning partial algebras, we can
go on to look at some special cases of completions: the one-point completion
and free completion of an algebra.

1.2 The One-element Completion and the Free
Completion

Given no restriction on which properties to preserve, there are many ways to
complete a given algebra A. One way to do this is to construct the one-point
or one-element completion A∗ as in [Kra06]. This algebra is defined as follows:
let A∗ = A ∪ {∗} be the underlying set and for any f ∈ F , ~a ∈ (A∗)Ω(f), define
the interpretations as

fA
∗
(~a) =

{
fA(~a) if ~a ∈ AΩ(f) and fA(~a)↓
∗ otherwise

1We will see in a bit that there is more than one way to define a congruence as well.
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In short, one adds to A an element corresponding to “undefined” and postulates
that any function given an undefined argument is undefined. This is clearly a
total algebra and the inclusion map is clearly a weak partial algebra homomor-
phism. If A is already total, define A∗ to be simply A.

Instead of adjoining a single point, one can go to the other extreme: adding
one distinct point for every undefined application of a function. This is called
the absolutely free completion of the partial algebra A and is denoted F(A). We
will need to define terms for what will follow.

Definition 9. The set of terms Ter(F, V ) over a signature F and an arbitrary
set of variables V is defined recursively as follows:

i. Elements of V are terms.

ii. Nullary elements of F are terms.

iii. If t1, . . . , tk are terms and f ∈ F is of arity k, then f(t1, . . . , tk) is a term.

iv. Nothing else is a term.

Note that terms as defined above are just sequences of symbols, and as such
are uniquely expressible: if f(t1, . . . , tk) = g(s1, . . . , sk) for terms ti, si, f, g ∈ F ,
then f = g and ti = si for all 1 ≤ i ≤ k.

For a term t, we write t = t(x1, . . . , xn) to indicate that t has arity at most
n (in the next chapter, we may want to write t = t(x1, . . . , xn) even though all
the variables are not actually involved in t). If A is an algebra with underlying
set A and signature F , we can extend the notion of interpretation in A from
function symbols in F to terms, in the obvious way2:

(f(t1, . . . , tk))A = fA(tA1 , . . . , t
A
k )

The subterms of t = f(t1, . . . , tk) are t together with all the subterms of
t1, . . . , tk. If s is a subterm of t we write s ≤ t. Strict inequality of course
symbolizes the strict subterm relation.

It is easy to imagine how F(A) would be constructed inductively, first adding
new elements as the values of functions with arguments in A which are unde-
fined in A, then adding more elements as the values of functions that have the
previously defined elements as arguments, and so forth. The construction de-
scribed by Grätzer in [Grä79] follows this intuition. However, there is a slightly
more elegant approach briefly mentioned without proof in the introductory part
of Isidore Fleischer’s “On extending congruences from partial algebras” [Fle],
which we expand and prove explicitly here. It involves constructing the free
completion as a subdirect product of an adequately chosen set of completions.
The idea is as follows: let A be a partial algebra over a signature F , and look

2We can either see the underlying set A as the set of variables or add them to the signature
F as nullary function symbols: Ter(F,A) = Ter(F ∪ A, ∅). In any case, for a1, . . . , an ∈ A,
(t(a1, . . . , an))A = tA(a1, . . . , an). If t is a term over A and tA↓, then by definition sA↓ for
any subterm s of t.
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at all total algebras over the same signature completing A. We know that there
is at least one, as the one-point completion can always be constructed. Un-
fortunately, these completions may be too numerous to form a set. However,
we do not need all of them and we can restrict the number of completions to
a set-sized collection. To achieve this, we look only at those completions B
of A such that B is generated by the image of A, i.e. such that for every
b ∈ B there is an n-ary term t and a1, . . . , an ∈ A such that tB(a1, . . . , an) = b.
This restriction puts an upper bound on the cardinality of the completion B, a
bound that depends on the cardinality of A and on the signature F . Some of
these completions may be isomorphic to one another, but we take a represen-
tative from each isomorphism class, using the axiom of global choice. Because
the number of possible completions is bounded, the representatives form a set,
which we will denote {Bi : i ∈ I}. We now take the direct product

∏
i∈I Bi.

This is also a total algebra over the signature F , with underlying set
∏
i∈I Bi

and with interpretations defined component-wise:

f
∏
i∈I Bi((a1i)i∈I , . . . , (ani)i∈I) = (fBi(a1i, . . . , ani))i∈I

Since for every i ∈ I we by definition have an embedding φi : A → Bi, we can
define an embedding φ : A →

∏
i∈I Bi by φ(a) = (φi(a))i∈I . Finally, call F(A)

the closed subalgebra of
∏
i∈I Bi generated by φ[A].

We should now show that this indeed corresponds to our usual idea of the
free completion of an algebra A. The usual definition is the category-theoretical
one below, here stated only for completions of partial algebras.

Definition 10. B is the free completion of A if it is a completion of A such
that

i. A generates B, and

ii. For any total algebra C, any homomorphism ψ : A → C extends uniquely
to a homomorphism ψ̂ : B→ C.

It is easy to see that the free completion of a given partial algebra is unique
up to isomorphism if it exists [Grä79]. Technically, we will show that F(A) is
the free completion of φ(A), which since φ is 1-1 can be seen as a partial algebra
isomorphic to A3.

Theorem 11. F(A) is, up to isomorphism, the free completion of A.

Proof. For simplicity, we identify φ(A) with A.
First, from construction F(A) is a total algebra, since any closed subalge-

bra of a total algebra is total, and
∏
i∈I Bi is total. Also by construction, A

generates F(A).

3The underlying set will be φ[A], and the interpretations defined as

fφ(A)(a1, . . . , an) = fA(φ−1(a1), . . . , φ−1(an))
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Let C be a total algebra and let ψ : A → C be a homomorphism. We want
to find a unique extension ψ̂ : F(A)→C of ψ. First we define a completion B
of A such that the image of A generates B, and a map ζ : B→C extending ψ.
We want to define B as the smallest total subalgebra of C containing the image
ψ[A]. So let {Cj}j∈J be all total subalgebras of C containing ψ[A]. This family
is nonempty; we know that at the very least C is there. Now define B to be the
algebra with underlying set B :=

⋂
j∈J Cj , and with interpretations

fB(b1, . . . , bn) = b ⇐⇒ fCj (b1, . . . , bn) = b for all j ∈ J

for all b1, . . . , bn, b ∈ B. This is a total algebra: for any i, j ∈ J ,

fCi(b1, . . . , bn) = fC(b1, . . . , bn) = fCj (b1, . . . , bn)

as they are subalgebras, and fCj (b1, . . . , bn) ∈ Cj for all j, as the algebras are
all total. Our map ζ is just the inclusion.

Now that we have this completion B generated by the image of A, we know
that it is isomorphic to a certain Bi in our set of representatives I via an
isomorphism which we shall call α. Now we can define φ̂ := ζ ◦ α ◦ πi where
πi : F(A)→Bi is the ith projection of the product. We have the diagram

Bi

α'
��
B w�

ζ

**

A ' φ(A)
ψ

%%

? _oo � � // F(A)

ψ̂

��

πi

jj

C

ψ̂ is a homomorphism because it is a composition of homomorphisms, and F(A)
is generated by A. To see that it is the unique such homomorphism extending
ψ, note that any other such homomorphism χ would agree with ψ̂ on A. For
any element b in F(A), there are ai, . . . , an ∈ A such that b = tF(A)(a1, . . . , an).
But then

ψ̂(b) = tC(ψ̂(a1), . . . , ψ̂(an)) = tC(χ(a1), . . . , χ(an)) = χ(b)

We have now seen two opposing ways to complete an algebra. In the follow-
ing sections we will further investigate the role that these completions play in
the lattice of completions of a given partial algebra.

1.3 Completing an algebra preserving subuni-
verses

In the previous section we saw how to construct two completions of a partial
algebra. The fact that these two completions are somehow opposed to one
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another is illustrated by the fact that they are the initial and final objects of a
certain category. Let A be a partial algebra and let C be the category whose
objects are completions B of A such that

i. A generates B,

ii. A is a relative subalgebra of B, and

iii. B \A is closed under unary polynomials4 over B,

and the morphisms of C are homomorphisms preserving A pointwise.

Definition 12. Let C be a category. We say that C ∈ ob(C) is an initial
object if for each A ∈ ob(C) there is a unique morphism C→A. We say that
C ∈ ob(C) is an terminal object if for each A ∈ ob(C) there is a unique
morphism A→C.

It is an elementary result that when they exist, initial and terminal objects
are unique up to isomorphism.

Theorem 13. A∗ is terminal in C.

Proof. First see that A∗ is indeed an object of C. A generates A∗ because if ∗
cannot be reached by application of functions from f then A was already total
in the first place and in that case A = A∗. Since we assign a value outside of
A to any function application undefined in A, A is a relative subalgebra of A∗.
Lastly, {∗} is by definition closed under unary polynomials.
Let B ∈ ob(C). We want to find a unique homomorphism from B to A∗. We
claim that this homomorphism is

φ(b) =

{
b if b ∈ A
∗ otherwise

We first show that it is a morphism, then prove uniqueness. φ restricted to
A is the identity, so it does preserve the subuniverse A.
Let f ∈ F and ~b ∈ BΩ(f). We want to show that

φ(fB(~b)) = fA
∗
(φ(~b))

We prove this case by case.

Case 1: ~b ∈ AΩ(f) and fA(~b)↓.
In this case, φ(~b) = ~b. Also, fA(~b) ∈ A by definition so that φ(fA(~b)) = fA(~b).

Lastly, fA
∗
(~b) = fA(~b) = fB(~b) since both A∗ and B are completions of A (in

fact it is enough that A is a weak subalgebra of both). So

φ(fB(~b)) = φ(fA(~b)) = fA(~b) = fA
∗
(~b) = fA

∗
(φ(~b)).

4If A = 〈A,F 〉 is an algebra, a polynomial over A is an element of Ter(F ∪A, V ), where we
have added to the signature F the elements of A as constants, i.e. nullary function symbols.
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Case 2: ~b ∈ AΩ(f) and fA(~b) ↑.
Since ~b ∈ AΩ(f), φ(~b) = ~b. Also, since A is a relative subalgebra of B, fB(~b)

cannot be in A because otherwise fA(~b) would exist (and they would be equal).

So fB(~b) ∈ B \A, therefore φ(fB(~b)) = ∗ = fA
∗
(~b) = fA

∗
(φ(~b)).

Case 3: ~b /∈ AΩ(f).
Say that ~b = (b1, . . . , bΩ(f)). If ~b /∈ AΩ(f) then there is at least one bi such that

bi ∈ B \A. This means that fA
∗
(φ(~b)) = ∗. It remains to show that φ(fB(~b)) =

∗, so to show that fB(~b) /∈ A. If bi ∈ B\A, let p(x) = f(b1, . . . , bi−1, x, bi+1, . . . , bn).

Since B \ A is closed under unary polynomials, fB(~b) = pB(bi) ∈ B \ A. So

φ(fB(~b)) = ∗ = fA
∗
(φ(~b)) and we have proved that φ is a morphism.

We will now prove uniqueness. Let ψ : B→A∗ be another homomorphism which
is the identity on A. For any b ∈ B, we will show that φ(b) = ψ(b). First note
that this holds for any b ∈ A, because φ�A = idA = ψ�A. So let b ∈ B \ A.
Since B is generated by A, there is a term t over F and a tuple ~a of A such
that tB(~a) = b. Note that it is easy to show by induction that for any term t
and morphism φ : B→A∗, φ ◦ tB = tA

∗ ◦ φ. So now

ψ(b) = ψ(tB(~a))

= tA
∗
(ψ(~a)) because ψ is an algebra homomorphism

= tA
∗
(~a) because ψ is identity on A

= tA
∗
(φ(~a)) because φ is identity on A

= φ(tB(~a)) because φ is an algebra homomorphism

= φ(b).

A remark is in order here: we haven’t used the totality of B at all in the
above proof. So in reality A∗ is a terminal object in an even larger category,
that of possibly partial algebras containing A, with the rest of the properties of
objects and morphisms being the same. Also note that we needed the fact that
A generates B only to prove uniqueness of the homomorphism φ. This gives us

Corollary 14. Any algebra containing A as a weak subalgebra maps homomor-
phically into A∗ preserving A pointwise.

Let us call the underlying set of F(A), Ā. We will now prove that F(A) is
an initial object in C, but first we need a lemma.

Lemma 15. If f ∈ F be of arity n and (b1, . . . , bn) ∈ Ān \An. Then
fF(A)(b1, . . . , bn) /∈ A.

Proof. Without loss of generality assume that b1 /∈ A and b2, . . . , bn ∈ A.
Since F(A) is generated by A, there is g ∈ F and a1, . . . , am in A such that
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gF(A)(a1, . . . , am) = b1. Note that gA(a1, . . . , am) ↑, because since A is a weak
subalgebra of F(A), b1 would in that case be in A. But now define a term h
such that h(x1, . . . , xm, y2, . . . , yn) = f(g(x1, . . . , xm), y2, . . . , yn). Though its
arguments are all in A, hA(a1, . . . , am, b2, . . . , bn) cannot be defined; otherwise
gA(a1, . . . , am) would also be defined. Since

hF(A)(a1, . . . , am, b2, . . . , bn) = fF(A)(b1, . . . , b2)

it is enough to show that hF(A)(a1, . . . , am, b2, . . . , bn) /∈ A.
We can assume that A∗ is in the product

∏
i∈I Bi, so there is a homomor-

phism β : F(A)→A∗ preserving A pointwise (namely the projection). But then

β(hF(A)(a1, . . . , am, b2, . . . , bn)) = hA
∗
(β(a1), . . . , β(am), β(b2), . . . , β(bn))

= hA
∗
(a1, . . . , am, b2, . . . , bn)

If hF(A)(a1, . . . , am, b2, . . . , bn) ∈ A, then also hA
∗
(a1, . . . , am, b2, . . . , bn), a

contradiction.

Theorem 16. F(A) is initial in C.

Proof. F(A) is a completion of A and is generated by A by definition 10. Now
we want to show that Ā \ A is closed under unary polynomials over F(A). Let
b ∈ Ā \A and let p(X) be a unary polynomial. We show by induction on p that
pF(A)(b) ∈ Ā\A. First assume p(X) = X, i.e. p is the identity. Then pF(A)(b) /∈
A trivially. Now for the induction step: say p(X) = f(p1(X), . . . , pn(X)) where
f is n-ary and pi are either unary or nullary polynomials. However, at least
one, say pi, is unary, as p is unary. By the induction hypothesis we know that

p
F(A)
i (b) ∈ Ā \ A. But then pF(A)(b) is a new element outside of A, by Lemma

15. So we have proven that F(A) ∈ ob(C).
Now let B ∈ ob(C). By definition 10 we know that the homomorphism A→B

(B being a completion of A) extends uniquely to a homomorphism φ : F(A)→B.
This homomorphism is unique as an extension, but also as a morphism of C, as
we required that our morphisms preserve A pointwise. So we are done.

Note that we needed both the fact that A was a relative subalgebra of the
algebras of our category, and that B \ A was closed under unary polynomials,
in order to have a category where the free completion was initial and the one-
element completion terminal (keeping the other conditions on the category).
If A were not a relative subalgebra of an object B in our category, we could
have a tuple ~a from A and f ∈ F such that fA(~a) ↑, but fB(~a) ∈ A. But
then if we had a homomorphism from B to A∗ preserving A, we would get that
fA
∗
(~a) ∈ A, whence fA

∗
(~a)↓ because A is a relative subalgebra of A∗. This is a

contradiction, so there can be no such morphism. The case where B \ A is not
closed under unary polynomials is slightly more involved. Say that we had a
unary polynomial over B sending an element outside A to an element in A. In
particular, assume there was an n-ary term t and a tuple ~b ∈ Bn \An such that
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tB(~b) ∈ A. We know that there is a surjective homomorphism π : F(A)→B,
namely the projection. This homomorphism preserves A by definition; in other
words, it is a morphism of our category. Because of surjectivity, there is a tuple
~c ∈ Ān such that π(~c) = ~b, and since π preserves A, it cannot be the case that
~c ∈ An. However, we also know, since π is a morphism, that

π(tF(A)(~c)) = tB(π(~c)) = tB(~b) ∈ A

Since, as we have already seen, Ā \ A is closed under unary polynomials,
tF(A)(~c) /∈ A. But this is not possible. To see this, note that if F(A) is an
initial object (and A∗ terminal), there is a unique morphism π∗ : F(A)→A∗

preserving A. So the diagram

F(A)

π
!!

π∗ // A∗

B

α

>>

commutes, where α is a homomorphism preserving A. Therefore if π sends an
element outside of A into A, as we have assumed, then so does π∗. Call this
element d. Since F(A) is generated by A, there is a term s and a tuple ~a from
A such that sF(A)(~a) = d. Since A is a relative subalgebra, sA(~a) ↑. Using the
definition of a homomorphism, and preservation of A, we have

sA
∗
(~a) = sA

∗
(π∗(~a)) = π∗(sF(A)(~a)) = π∗(d) ∈ A

Finally, since A is a relative subalgebra of A∗, the statement above means that
sA(~a)↓, a contradiction. To sum up, conditions (ii) and (iii) on our category
are a natural requirement if we are to have condition (i), universe-preserving
morphisms, and initial and terminal objects F(A) and A∗ respectively.

1.4 Completing partial algebras with congruences

In this section, we will see how congruences behave with respect to the free com-
pletion and the one-element completion. We will see whether congruences can
be extended to these completions (stated otherwise: for any congruence relation
θ on the partial algebra, is there a congruence relation θ′ of the completion such
that θ is just θ′ restricted to the domain of the partial algebra we started with?).
We will also look at the question of extending congruences to certain types of
extensions of algebras.
First, the definitions:

Definition 17. Let A be a partial algebra over a signature F . We call a binary
relation θ on A a congruence relation on A if

i. θ is an equivalence relation on A.
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ii. For each f ∈ F of arity n, for any n-tuples ~a = (a1, . . . , an), ~b =
(b1, . . . , bn) in An

(∀i (ai, bi) ∈ θ) ∧ (fA(~a)↓) ∧ (fA(~b)↓)⇒ (fA(~a) ≡ fA(~b)(mod θ))

Definition 18. A congruence relation θ on A is called closed if for each f ∈ F
of arity n, for any n-tuples ~a = (a1, . . . , an), ~b = (b1, . . . , bn) in An

(∀i (ai, bi) ∈ θ) ∧ (fA(~a)↓)⇒ (fA(~b)↓) ∧ (fA(~a) ≡ fA(~b)(mod θ))

We denote by Con(A) the set of all congruences on A, by ClCon(A) the
set of all closed congruences on A and if θ ∈ Con(A) then for each a ∈ A,
[a]θ := {b ∈ A : (a, b) ∈ θ} is the equivalence class of a under θ.

Lemma 19. If φ : A −→ B is a partial algebra homomorphism then the kernel
of φ, Ker(φ) := {(a, b) ∈ A2 : φ(a) = φ(b)}, is a congruence of A. If φ is a
closed homomorphism, then Ker(φ) is a closed congruence.

Proof. Straightforward.

We can ask the question of whether, for a given partial algebra A with
congruences, it is possible to find completions and congruences on them which
extend the original congruences.
It would be expected that if θ were a congruence on A, we could extend that
congruence to A∗ by adding {(∗, ∗)} to θ. However, this is not true if θ is not
closed. To see this, let θ∗ = θ ∪ {(∗, ∗)} and let a1, . . . , an and b1, . . . , bn be
elements of A∗ such that (ai, bi) ∈ θ∗ for all 1 ≤ i ≤ n. Let f ∈ F be of arity n.
Because A∗ is total, we already know that fA

∗
(a1, . . . , an)↓ and fA

∗
(b1, . . . , bn)↓.

If ai ∈ A for all i, then also bi ∈ A for all i and so in fact (ai, bi) ∈ θ for all
i. However, it may be that fA(a1, . . . , an)↓ but fA(b1, . . . , bn) ↑. In this case
fA
∗
(a1, . . . , an) ∈ A but fA

∗
(b1, . . . , bn) = ∗, by which it is impossible that the

pair of these two terms be in θ∗. It is obvious by the above that we need a
closed congruence on A in order for this to work:

Proposition 20. Let A be a partial algebra. θ ∈ ClCon(A) if and only if
θ∗ := θ ∪ {(∗, ∗)} ∈ Cong(A∗).

Proof. (⇒): Let a1, . . . , an and b1, . . . , bn be elements of A∗ such that (ai, bi) ∈
θ∗ for all 1 ≤ i ≤ n. Let f ∈ F be of arity n. Because A∗ is total, we already
know that fA

∗
(a1, . . . , an)↓ and fA

∗
(b1, . . . , bn)↓.

If ai ∈ A for all i, then also bi ∈ A for all i and so in fact (ai, bi) ∈ θ for all i.
Since θ is a closed congruence, either both of fA(a1, . . . , an) and fA(b1, . . . , bn)
exist or neither does. In the first case

(fA
∗
(a1, . . . , an), fA

∗
(b1, . . . , bn)) = (fA(a1, . . . , an), fA(b1, . . . , bn)) ∈ θ ⊆ θ∗

because θ is a congruence. In the other case, both terms evaluate to ∗ in A∗, so
the pair is in θ∗ anyway.
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So assume there is at least one 1 ≤ i ≤ n such that ai = ∗. Then by definition
of θ∗, bi = ∗ as well. But then

(fA
∗
(a1, . . . , an), fA

∗
(b1, . . . , bn)) = (∗, ∗) ∈ θ∗.

(⇐): It is straightforward to see that the restriction of a congruence to the
universe of a weak subalgebra is a congruence on the weak subalgebra. In this
particular case, if ~a = (a1, . . . , an), ~b = (b1, . . . , bn) are such that for all i,
(ai, bi) ∈ θ ⊆ θ∗, fA(~a)↓ and fA(~a)↓, then

(fA(~a), fA(~b)) = (fA
∗
(~a), fA

∗
(~b)) ∈ θ∗ ∪A2 = θ

So theta is a congruence on A. If θ is not closed, then there are f ∈ F ,
a1, . . . , an, b1, . . . , bn ∈ A such that (ai, bi) ∈ θ for all i, and fA(~a)↓ but fA(~b) ↑.
We prove that with these tuples (fA

∗
(~a), fA

∗
(~b)) /∈ θ∗, making it impossible for

θ∗ to be a congruence. If fA(~b) ↑, then (fA
∗
(~a), fA

∗
(~b)) is of the form (c, ∗) for

some c ∈ A. But there is no pair of this form in θ∗.

How about the free algebra? Does every congruence on A extend to the free
algebra F(A)? It turns out that we do not need the congruence to be closed in
this case. This has been proven in [Grä79, Theorem 1.15], but Isidore Fleischer
gives a sketch of the following simpler proof in [Fle]. We first need to define, for
a congruence θ on A, the quotient algebra A/θ.

Definition 21. Let A be a partial algebra over F and θ a congruence on it.
We define the quotient algebra A/θ = 〈A/θ, F 〉 as follows: for each f ∈ F of
arity n, for any b, b1, . . . bn ∈ A/θ,

fA/θ([b1]θ, . . . , [b1]θ) = [fA(a1, . . . , an)]θ

if there are a1, . . . , an such that ai ∈ [bi]θ for all i and fA(a1, . . . , an)↓. Other-
wise, fA/θ([b1]θ, . . . , [b1]θ) is undefined.

Theorem 22. For any partial algebra A and any θ ∈ Con(A), there is a θ̂ ∈
Cong(F(A)) such that θ̂�A = θ.

Proof. Let B be any total algebra into which A/θ embeds. We know there
is at least one such algebra, namely (A/θ)∗. Call the embedding f . We also
have the canonical map ηθ from A to A/θ sending a to its equivalence class
[a]θ, so we have a map f ◦ ηθ from A to B which is a composition of the two;
it is a homomorphism because the composition of two homomorphisms yields
a homomorphism. By our definition of the free completion, there is then a
homomorphism f̂ : F(A) → B extending f ◦ ηθ. In other words, we have the
diagram

A/θ
f // B

A

ηθ

OO

f◦ηθ

<<

i
// F(A)

f̂

OO
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Since f̂ is a homomorphism, Ker(f̂) is a congruence by Lemma 19.

To see that it extends θ, let a, b ∈ A. Then

f̂(a) = f̂(a) ⇐⇒ f ◦ ηθ(a) = f ◦ ηθ(b)
⇐⇒ f([a]θ) = f([a]θ)

⇐⇒ [a]θ = [b]θ because f is 1-1

⇐⇒ (a, b) ∈ θ

As we saw in the last section, A is a relative subalgebra of both A∗ and
F(A) and the complements of A in their respective underlying sets are closed
under unary polynomials. Are these conditions on completions of A sufficient
for congruence extendibility? We know that non-closed congruences need not
be extendible, but we do have the following theorem, again from [Fle, Theorem
S.C.]:

Theorem 23. Let A be a relative subalgebra of the (possibly partial) algebra
B, and let B \ A be closed under unary polynomials. If θ ∈ ClCon(A), then θ
extends to a congruence on B, i.e. there is θ′ ∈ Cong(B) such that θ′∩A2 = θ.

Proof. We first prove that if θ extends to a congruence on a containing algebra
C, then it also extends to a congruence on any containing algebra B containing
A as a relative subalgebra and which maps homomorphically into C preserving
A pointwise. By Corollary 14 we know that any such B will map in this way
to A∗. Since we know that any closed congruence extends to the one-element
completion, our theorem will be proven.

Say that θ ∈ ClCon(A), and θ′′ ∈ Cong(C) such that θ′′�A = θ. Let B be an
algebra containing A as a relative subalgebra, and γ : B→C be a homomorphism
such that γ�A = idA. For every b, d ∈ B, define the congruence relation

(b, d) ∈ θ′ ⇐⇒ (γ(b), γ(d)) ∈ θ′′

To see that this is a congruence, notice that θ′ = Ker(ηθ′′ ◦ γ) where ηθ′′ is the
canonical map from C to C/θ′′. Since both ηθ′′ and γ are homomorphisms, so
is their composition, and therefore by Lemma 19 θ′ is a congruence. Since γ is
the identity on A, θ′ restricted to A is just the same as θ′′ restricted to A: it is
equal to θ. So θ′ does indeed extend θ.

This proof is also an alternative to the proof of Theorem 22 for closed con-
gruences, as A is a relative subalgebra of F(A).

We have defined an extension of a congruence in a certain way, but we could
wish to strengthen that definition. For example, we could require that for θ′ to
extend θ on an algebra B containing A, [a]θ = [a]θ′ for any a ∈ A. As it stands,
we have only the left to right inclusion: θ′ may very well relate elements outside
of A to elements of A. With this stronger definition we exclude such a possibility.
Call this sort of extension super-extension. Grätzer [Grä79, Theorem 2.16]
proves that superextendibility to total algebras characterizes closed congruences:
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Theorem 24. Let A be a partial algebra, θ ∈ Con(A). Then θ is closed if and
only if there is a total algebra B containing A as a relative subalgebra and such
that θ superextends to a congruence on B.
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Chapter 2

Completing algebras with
TRSs and HNFs

Let A be a partial algebra over a signature F , and let T be an equational theory
over the same signature.

Suppose that A is a partial algebra model of this equational theory T , defined
as

sA↓ ∧ tA↓ → sA = tA

for any s and t such that T ` s ≈ t. Our aim is to find a total algebra into
which A embeds, and which will also be a model of the same theory. A plausible
methodology is as follows: take the free completion F(A) of A. Define on it the
congruence θT induced by the theory T , so which will identify instances of
T -convertible terms. More formally, if we call the underlying set of the free
completion Ā as before, we define θT to be the smallest congruence relation
containing all pairs (sF(A)(a1, . . . , an), tF(A)(a1, . . . , an)) where s ≈ t ∈ T , s and
t are n-ary terms over F and a1, . . . , an ∈ Ā. Take the quotient algebra F(A)/θT .
This is a total algebra by definition, and if the canonical map φ : A→F(A)/θT
is an embedding, then F(A)/θT will be a completion of A, and it will model T .

So we are looking for conditions under which φ is an embedding. However,
this is a difficult problem, and in general undecidable. For example, take T to be
the theory of groups and G a model of it, seen as an algebra over the signature
containing the group operations, the unit element and the generators of G. Then
knowing when [g]θT = [g′]θT implies g = g′ for any given g, g′ ∈ G basically
amounts to deciding when two terms over the group generators represent the
same element of G. This problem is known as the word problem for groups and
is undecidable. So in this thesis we tackle a simpler problem, where T has a
nice proof theory. For us, this will be the situation where T is an orthogonal
term rewriting system. We will show that under a certain condition (which we
will call HNF) the constants of A are normal forms, which will force φ to be an
embedding.

We want A to embed into the quotient of the free algebra, so the idea is to add
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to T the information contained in A and require our completion to be a model
of both. Formally, we add to T a new term rewriting system T1 comprising the
rules

q(~a) −→ qA(~a)

if qA(~a)↓, where q ∈ F is an n-ary function symbol and ~a is an n-tuple from
A. If this new term rewriting system were to be confluent, and the constants
from A were normal forms, then we would have proven that φ is an embedding,
and we would be done. Unfortunately, this is not necessarily the case. For
example, we could have an instance of a left-hand side T -rule with a subterm
which evaluates to an element of A. Then we would have both a T -reduction
t→s and a T1-reduction t→r from our left-hand side t, whose results may not
agree. In the worse case, s and r could be distinct normal forms of T ∪ T1,
and we would not have confluence of this composite system. So we have to
artificially add to T ∪ T1 rules which would prevent this situation.

The above is a sketch of the general idea behind our result, which proves
the completability of a certain type of algebras modelling an orthogonal term
rewriting system and satisfying the HNF condition. We will not go into more
detail here as the definitions have not been given yet. In what follows we will
start by giving some basic definitions, briefly describe the result which we will
generalize, and then present this new result.

2.1 Term Rewriting Systems

Term rewriting systems play a fairly large role in theoretical computer science,
as an abstraction of the process of computation. A term rewriting system con-
sists of a set of terms and a set of rules for transforming one term into another;
they embody the concept of term simplification and therefore normal forms.
Combinatory logic and lambda calculus had a big hand in the development of
their theory [BKdV03], as confluence, termination and normal forms are essen-
tial to these theories, and term rewriting systems provide an easy way to study
these. The theory of term rewriting systems (henceforth denoted TRSs) also
plays a big role in the investigation of the word problem of algebraic structures.
The word problem consists in determining whether two terms denote the same
element of the underlying set (for example, in an abelian group, ab and ba denote
the same element). The word problem is easy to solve if one has normal forms:
to see whether two terms refer to the same element, simply check whether their
normal forms are the same.

Therefore, there is a strong link between universal algebra and term rewriting
systems. Our present endeavor is a part of this link, and was based on a paper
by I. Bethke, J.W. Klop and R. de Vrijer [BKdV96] linking universal algebra,
combinatory logic and term rewriting systems. Before describing the content of
this paper, let us give some definitions.

In what follows, signatures are defined in the same way as in Chapter 1. We
first give the basic definitions of TRSs in order to provide some background for
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the subsequent description of [BKdV96]. More detailed definitions will follow
in section 2.3.1.

Definition 25. A term rewriting system consists of a set of terms Ter(F, V )
over a countably infinite set of variables V , together with a set of rewrite rules
{l→r : l, r ∈ Ter(F, V )} such that

i. l /∈ V

ii. every variable occurring in r occurs in l as well.

The rules in question, in general denoted by the Greek letter ρ, are in reality
rule schemata, where the variables may be replaced by terms. These replace-
ments are called substitutions:

Definition 26. A substitution is a map σ : Ter(F, V )→Ter(F, V ) such that
for any term t = f(t1, . . . , tk) ∈ Ter(F, V ),

σ(f(t1, . . . , tk)) = f(σ(t1), . . . , σ(tk))

This maps is completely determined by its action on variables, so we can
consider it a map from V to Ter(F, V ). We will write tσ for σ(t). Now, in term
rewriting systems we can rewrite terms to other terms in any context, using
substitution instances of rules. Formally:

Definition 27. Let Ter(F,X) be the set of terms over a set X, and let � be a
nullary function symbol. A context over F and X is a term in Ter(F∪{�}, X).

A context can be thought of as a term with holes in it, with the placement
of the holes represented by �. We will use the following notation: if C ∈
Ter(F ∪ {�}, X), then C[t1, . . . , tn] means that we have replaced the n holes
in C with t1, . . . , tn, in that order. If C is a one hole context (there is only one
occurrence of � in it) then we will write C[], if it is a two hole context we will
write C[, ] and so forth. Now, the fact that we can rewrite in any context can
be expressed formally as:

Definition 28. A rewrite step according to the reduction rule ρ : l→r is the
replacement

C[lσ] −→ C[rσ]

for some context C[] and substitution σ.

If T is a term rewriting system, we will write s→T t if s→t is a rewrite step
according to a reduction rule in T . The transitive reflexive closure of the relation
→T will be denoted �T . A dotted arrow will signify that there exists such an
arrow.

Definition 29. A TRS T = 〈Ter(F, V ), {ρi}i∈I〉 is said to be confluent if
�T ·�T ⊆ �T ·�T , or equivalently if for any terms M , N , K ∈ Ter(F, V )
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such that M�TN and M�TK there is a term L ∈ Ter(F, V ) and rewrite steps
according to rules in T such that N�TL and K�TL:

M
T
�� ��

T
����

K

T����

N

T �� ��
L

The above is sometimes called the Church-Rosser property. Lastly, if we
have two term rewriting systems it may be that these two commute:

Definition 30. If T1 = 〈Ter(F, V ), {ρi}i∈I〉 and T2 = 〈Ter(F, V ), {ρ′j}j∈J〉 are
two TRSs whose rewrite relations are →1 and →2 respectively, then T1 and T2

are said to commute if �1 ·�2 ⊆�2 ·�1.

This is enough background for the brief summary of [BKdV96], which we
will henceforth refer to as BKV, in the next section.

2.2 Partial combinatory algebras and head-normal
forms

The paper Completing Partial Combinatory Algebras with Unique Head-Normal
Forms [BKdV96] deals with the completion of partial combinatory algebras.
These partial combinatory algebras are a special kind of algebra modelling com-
binatory logic (and of course Lambda calculus) and its S and K operators. We
will slightly modify the notation of the paper in order to make the subsequent
transition to our new result smoother.

Definition 31. A partial combinatory algebra is an algebra A over the
signature F = {s, k, ·}. s, k and · have arities 0, 0 and 2 respectively. The
interpretations of these function symbols are such that

i. For any a, a′ ∈ A, kA ·A a ·A a′ = a,

ii. For any a, a′ ∈ A, sA ·A a ·A a′↓,

iii. For any a, a′, a′′ ∈ A,

(a ·A a′) ·A (a ·A a′′)↓ ⇒ sA ·A a ·A a′ ·A a′′ = (a ·A a′) ·A (a ·A a′′)

Otherwise sA ·A a ·A a′ ·A a′′ is not defined.

iv. sA↓, kA↓ and sA 6= kA.

In the above, unparenthesized expressions associate to the left, and · is writ-
ten infix as it symbolizes the application operation of the combinatory algebra;
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often we will omit it altogether. So (saa′)A = sA ·A a ·A a′. Lastly, condition iii.
can be shortened to (saa′a′′)A ' (aa′′(aa′))A, where ' is Kleene equality1.

Not all partial combinatory algebras are completable. A nice example taken
from I. Bethke’s On the Existence of Extensional Partial Combinatory Algebras
[Bet87] will be presented in the next section.

It is then proven that the following two conditions are sufficient for a partial
combinatory algebra to be completable:

1. No two elements from two distinct sets among {sA}, {kA},{(ka)A : a ∈
A},{(sa)A : a ∈ A} and {(saa′)A : a, a′ ∈ A} are equal. The five different
forms, before evaluation in A, are called head-normal forms.

2. (Barendregt’s Axiom) For any a, a′, b, b′ ∈ A, if (saa′)A = (sbb′)A then
a = b and a′ = b′.

If a partial combinatory algebra has these two properties we will say that it has
unique head-normal forms.
The proof of completability involves the construction of two TRSs that will
guide us in the completion of the algebra. The first, T1(A), consists of terms
from Ter(F ∪A, ∅) and rules

{(a · a′)→(aa′)A : (aa′)A↓, a, a′ ∈ A}

The second, T2(A), is a TRS over the terms Ter(F ∪ A, V ), V a countably
infinite set of variables, with the rules

• k · x · y→x,

• (ka)A · x→a,

• s · x · y · z→(x · z) · (y · z),

• (sa)A · y · z→(a · z) · (y · z), and

• (saa′)A · z→(a · z) · (a′ · z).

for any x, y, z ∈ V and a, a′ ∈ A.
It is then shown that given the condition on head-normal forms and Baren-

dregt’s Axiom, both these term rewriting systems are confluent, and that they
commute. The following theorem, traditionally called the Hindley-Rosen Lemma,
gives us the confluence of the TRS consisting of the union of T1(A) and T2(A),
which we will call T (A).

Theorem 32. If R1 and R2 are two relations on a set X such that each is
confluent and R1 and R2 commute with each other, the relation R1 ∪ R2 is
confluent.

1The general definition is: for any terms s and t, s ' t if (sA↓ ∨ tA↓)→(sA = tA)
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We now take the reflexive symmetric transitive closure of the rewrite relation
of T (A), making it an equivalence relation, and denote it ∼. This is called the
convertibility relation of T (A). We construct the quotient algebra Γ(A), with
underlying set Ter(F ∪A, ∅)/ ∼. The interpretations are defined as

fΓ(A)([t1], . . . , [tn]) = [f(t1, . . . , tn)]

for any n-ary function symbol in f ∈ F ∪A and terms ti ∈ Ter(F ∪A, ∅). It is
then straightforward using the confluence of T (A) and the fact that constants
of A are normal forms to prove that Γ(A) is total and that our original partial
combinatory algebra embeds in it.

2.2.1 An Example

We present the promised example of a partial combinatory algebra which cannot
be completed. Say that a partial combinatory algebra is extensional if for all
a, b ∈ A,

(∀c ∈ A((ac)A ' (bc)A))⇒ a = b

Proposition 33. A strictly partial extensional combinatory algebra cannot be
completed, i.e. if A is a strictly partial extensional combinatory algebra, it does
not embed into a total extensional combinatory algebra.

Proof. First, note that in every partial combinatory algebra A there is an ele-
ment ⊥A such that for all a ∈ A, (⊥Aa)A ↑. This element can be defined as
(s(ka)(ka′))A for a, a′ ∈ A such that (aa′)A ↑. Since A is strictly partial there
are always such a and a′ (application is the only operation that can be partial).
(s(ka)(ka′))A always exists, because we know that (ka)A↓ for all a, and (sab)A↓
for all a, b ∈ A. Since A is extensional, ⊥A = (s(ka)(ka′))A is unique.

Assume for a contradiction that A embeds into a total extensional partial
combinatory algebra B, via an injective homomorphism φ. Note that the fact
that φ is a homomorphism forces φ(kA) = kB and φ(sA) = sB.

Set b := k(kk) and b′ := k(ks). Assume that (sb⊥Aa)A↓ for some a ∈
A. Then by definition (ba(⊥Aa))A also exists, wherefore (⊥Aa)A↓. But this
contradicts the definition of ⊥A. So (sb⊥Aa)A ↑ for all a ∈ A, and the same
thing holds for (sb′⊥Aa)A. By extensionality, (sb⊥A)A = (sb′⊥A)A. Since φ is a
homomorphism, we obtain (φ(sA)φ(b)φ(⊥A))B = (φ(sA)φ(b′)φ(⊥A))B One can
apply to kB on both sides to get

(s(k(kk))φ(⊥A)k)B = (s(k(ks))φ(⊥A)k)B

Simplifying on both sides (since B is total, we have no problem with unde-
fined terms) using the rules from Definition 31, we obtain kB = sB. In other
words, φ(kA) = φ(sA). Since φ is injective, kA = sA and we have obtained our
contradiction.
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2.3 Completing models of TRSs with HNF

2.3.1 Definitions

We will first need a few more definitions. We will define redexes, patterns,
pattern overlap and nesting.

Definition 34. Let ρ : l→r be a rule in a TRS T and σ a substitution. Then
lσ is a redex of ρσ (or of T ) and rσ is a contractum of ρσ. An instance of
lσ in a term t is called a redex occurrence.

The word “redex” comes from “reducible expression”. Many of our proofs
will involve the notion of the pattern of a redex.

Definition 35. If ρ : l→r is a reduction rule, the pattern of ρ is lε where
ε : V→Ter(F ∪ {�}, V ) is the substitution which replaces all variables by the
nullary symbol �. It is also the pattern of any substitution instance or redex
occurrence s = lσ of l.

Now, given two redex occurrences (possibly redexes according to different
rules), there are different positions these can take relative to one another. They
may be disjoint, or one may be a subterm of the other. However, we must make
a distinction between whether one is a subterm of the other in some essential
way or not. For example, it may be that t is a subterm of s = lσ, but only in
the sense that xσ = E[t] for some variable x involved in l and context E[]. In
this case we say that t is nested in s. The more pernicious sort of subterm
involves pattern overlap:

Definition 36. We say that two redex occurrences in a term overlap if their
patterns share at least one function symbol occurrence. Note that in this case
the head symbol of one must occur in the other [BKdV03, Section 2.1.1]. The
pattern overlap between a redex occurrence and itself does not count, unless the
redex occurrence is a redex according to two different rewrite rules. This notion
can be generalized to rewrite rules: two rules ρ1 and ρ2 overlap if in a term
t there is a ρ1-redex s1 and a ρ2-redex s2 such that the patterns of s1 and s2

overlap.

We call this kind of subterm relation pernicious because this is the kind of
relation that can make or break the confluence of a term rewriting system, or
the commutativity of two systems. The reason for this is that if ρ2-redex s2

is merely nested in ρ1-redex s1, one may effectuate a ρ1-reduction even after a
ρ2-reduction has been made; the pattern of s1 will not have been changed and
the only thing to modify will be the substitution involved in the ρ1-reduction. If
the patterns overlap, however, the reduction of s2 will modify s1 to such extent
that it will not be a ρ1-redex any longer. For more on this subject see the
Critical Pair Lemma in [BKdV03, Section 2.7.2].

We only need to define a few more general properties of TRSs.

Definition 37. A TRS T is called non-ambiguous if none of the patterns of
its reduction rules overlap.
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Definition 38. A TRS T is called left-linear if for each of its rewrite rules,
the left-hand side is such that each variable involved occurs only once.

Definition 39. A TRS T is called orthogonal if it is non-ambiguous and
left-linear.

We have the following theorem, which we will state here without proof. For
a proof, see [BKdV03, Theorem 4.3.4].

Theorem 40. Orthogonal TRSs are confluent.

We can now start presenting our result. Our aim is to prove a general result
concerning partial algebras and term rewriting systems: given a partial algebra
A modelling a TRS T , can we construct a completion of this algebra which is
still a model of T? If so, how is this to be done? And what do we mean by
“modelling”?

We have already given the definition of a partial algebra and of a term
rewriting system, but it is still not clear in what sense the former should be
considered to model the latter. Intuitively, we want the interpretation of two
terms to be the same in the algebra A if the two terms rewrite to each other in
T .

Definition 41. Let T = 〈Ter(F, V ), {ρi}i∈I〉 be a term rewriting system. We
say that A = 〈A, {fA}f∈F 〉 is a model of T if for any rule

l(x1, . . . , xn) −→ r(x1, . . . , xn)

in T and any a1, . . . , an ∈ A,

lA(a1, . . . , an)↓ ⇒ rA(a1, . . . , an) = lA(a1, . . . , an)

Note that because of the way we defined a TRS, all of the ai need not be used in
r, but those which are should also be used in l.

We aim to show that partial algebras which model orthogonal term rewriting
systems and which satisfy the following HNF condition on partial algebras can
be completed to total algebras modelling the same term rewriting system.

HNF. Say s(x1, . . . , xn) and t(y1, . . . , ym) are proper subterms of the left-hand
side of a T -rule (not necessarily the same rule for both), such that the variables
displayed are those that are actually used. Then for any tuples ~a = (a1, . . . , an) ∈
An, ~b = (b1, . . . , bm) ∈ Am,

sA(~a) = tA(~b)⇒ s = t ∧ ~a = ~b

Similarly to the approach used in BKV [BKdV96], we will define two new
term rewriting systems T1(A) and T2(A). Unlike the result in BKV, these will
not 2both be confluent on their own, but the union of the two systems will be

2B.
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shown to be confluent under the conditions stated above. We will then use this
confluence to construct a completion of A.

Our aim is basically to synchronize our term rewriting system and our al-
gebra: we will incorporate into the TRS the information contained in A (A has
much more information contained in it than what is encoded in T , as is usually
the case with a model of a theory), and then create new rules which will pro-
vide a scaffolding for our completion: in principle, these should be rules which
incorporate the newly added information from A into the rules of T . Our two
new term rewriting systems will be defined as follows:

• The TRS T1(A) consists of the set Ter(F ∪A, V ) together with the rules

f(a1, . . . , an) −→ a

whenever fA(a1, . . . , an) = a, for every f ∈ F .

• The TRS T2(A) is defined over the set Ter(F ∪ A, V ). Its set of rules is
the union of the rules of T and new rules defined inductively as described
below. Let

ρ : l(~x1, . . . , ~xn, ~y) −→ r(~x1, . . . , ~xn, ~y)

be a T -rule, where ~x1, . . . , ~xn, ~y are tuples in V . Suppose that there is l′′

such that
l(~x1, . . . , ~xn, ~y) = l′′(q1(~x1), . . . , qn(~xn), ~y)

for proper subterms q1, . . . , qn and such that there are ~a1, . . . ,~an, b1, . . . bn
in A satisfying

qAi (~ai) = bi

for all i. Then we add to T the rule

l′′(b1, . . . , bn, ~y) −→ r(~a1, . . . ,~an, ~y)

First note that because of the requirement that qis have to be proper sub-
terms, we will never end up with a T2(A)-rule whose left-hand side is just a
constant.

Remark 42. In the definition of T2(A)-rules, call the substitution which re-
places ~xi by ~ai for all i, σ. Also, call l′′(b1, . . . , bn, ~y) l′ and r(~a1, . . . ,~an, ~y) r′

for simplicity. Then lσ�l′ and rσ = r′.

To sum up, the TRS T1(A) thus incorporates the information from A: we
can now syntactically replace terms with their evaluations, or interpretations,
in A. However, T1(A) added to T is not sufficient for confluence: for example,
we may have a T -rule l→r, but also a subterm of l evaluating to a constant in
A for certain arguments. It would then be possible to have rewrite steps

t(~a, ~x) = t′′(q(~a), ~x)

T

ww 1 ((
s(~a, ~x) t′′(qA(~a), ~x)
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where s(~a, ~x) and t′′(qA(~a), ~x) do not have a common reduct under T ∪ T1(A).
This is the motivation behind our definition of T2(A)-rules: they allow us to
add a rewrite step from t′′(qA(~a), ~x) to s(~a, ~x). So the TRS T2(A) allows for
the replacements made via T1(A): where there previously was a substitution
instance of a rule where certain subterms could be evaluated in A, we have
added a new rule with the corresponding evaluation replacing the subterm.
This will allow us further on to prove the commutativity of T1(A) and T2(A).

Before we go any further, however, it will be useful to take a closer look at
the construction of T2(A) and to define the concept of an “original” counterpart
in T to any rule in T2(A).

2.3.2 Lifting a T2(A)-rule to a T -rule

From the description of T2(A) rules, we see that a rule l→r in T and a sub-
stitution σ give rise to a multitude of new rules l′→r′ such that lσ�1l

′ and
rσ = r′ (which new rule is produced depends on the choice of subterms qi(~ai, ~bi)
to evaluate). Looking at it the other way, by definition any rule in T2(A)\T is a
descendant of a rule in T via a substitution in exactly this fashion. If l′→r′ is a
descendant of l→r, we call l→r an original of l′→r′ in T , and we call the pair
consisting of the rule and substitution, as well as the process of finding such a
pair, a lift or lifting. We will now see that a lift is in fact unique.

Proposition 43. For any rule l′→r′ in T2(A) there is a rule l→r ∈ T and a
substitution σ such that lσ�1l

′ and rσ = r′. In sum, we have the diagram

lσ

1����

T

##
l′

2
// rσ = s′

Furthermore, this original rule and substitution are unique (up to renaming of
variables).

Proof. The first part of the theorem is obvious by the definiton of T2(A)-rules.
If l′→r′ is already in T , just take σ to be the empty substitution. So we must
prove uniqueness.

Let l1→r1 and l2→r2 be rules in T and let σ, τ be substitutions such that
lσ1�1l

′�1l
τ
2 and rσ1 = r′ = rτ2 . We want to show that l1 = l2, r1 = r2 and

σ = τ , up to renaming of variables. By definition a T -rule does not contain
any occurrences of constants from A. So any constants from A occurring in l′

must neccessarily have been brought about by T1(A)-reductions of substitution
instances of subterms of l1 and l2. Say that the constants occurring in l′ are
b1, . . . , bn and say that the substitution instances of subterms they come from
are qi(~ai) in lσ1 and pi(~ci) in lτ2 for all i (we will call such terms expansions: if
tA(~a) = b for a term t and ~a, b in A, then t(~a) is an expansion of b). Thus for
all i, there are proper subterms qi(~xi) of l1 and pi(~yi) of l2 and there are tuples
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~ai, ~bi such that
qAi (~ai) = bi = pAi (~ci)

But then by our HNF condition, pi = qi and ~ai = ~bi. Now note that l1 is just l′

with qi(~xi) in the place of bi, and similarly l2 is just l′ with pi(~yi) in the same
place. So by the above l1 is just l2 with ~xi in place of ~yi. But since T -rules are
left-linear, one can rename the variables to get the same term. So l1 = l2 up to
renaming of variables.

Lastly, σ is the substitution which replaces ~xi with ~ai for all i, and τ replaces
each ~yi bu ~ci. Since ~ai = ~ci, if we rename all ~yis to ~xis, σ and τ are the same.
So our proposition is proven.

It is worth emphasizing the fact that any expansion involved in a lift will by
definition be a substitution instance of a proper subterm of the left-hand side
of the T -rule concerned.

However, we will normally be working with substitution instances of T2(A)-
rules, not the rules themselves. This complicates matters a bit, but not too
much; if τ is a substitution instance of a T2(A)-rule l′→r′, then it works on
variables which are also in the original rule l→r of l′→r′; i.e. the variables
which have not been modified by the substitution σ involved in the lift. Since
T -rules are left-linear, we can define the substitution σ ◦ τ , and we get the
diagram

lτ◦σ

1����
T

%%
l
′τ

2
// rτ◦σ = r

′τ

So for any substitution instance l′
τ→r′τ of a T2(A)-rule we still have a unique

T -rule l→r and a unique substitution σ ◦ τ such that the above diagram holds.
We will want to distinguish, however, between occurrences of constants which
come from the subtitution τ , and those which are actually part of the rule l′→r′.
The second kind will be the ones whose expansions are used in the lifting; we
will call these occurrences of constants essential for the lift.

2.3.3 Confluence of T1(A) and commutativity of the two
systems

First, let us show that T1(A) is by itself confluent. In fact, we will show a
stronger theorem, namely that T1(A) has the diamond property. It is easy to
show by an induction argument that the diamond property implies confluence.
We will from now on call the rewrite relations of T1(A) and T2(A) →1 and →2

respectively.

Theorem 44. T1(A) has the diamond property, i.e. ←1 · →1 ⊆ →1 · ←1.

Proof. Let M , K and N be such that K←1M→1N , and let t1, t2 be the redex
occurrences involved in each. T1(A)-rules are of the form f(~a)→a for f ∈ F ,
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~a, a in A. Therefore the redexes t1 and t2 are either identical or disjoint. If they
are identical the assertion is trivial. So let us assume they are disjoint. Then
there is a context C[] such that M = C[t1, t2]. Hence we have the following
diagram:

M = C[t1, t2]
1

��
1

��
N = C[t1, t

A
2 ]

1��

K = C[tA1 , t2]

1 ��
C[tA1 , t

A
2 ]

Therefore the system T1(A) has the diamond property.

Corollary 45. T1(A) is confluent.

Now we will prove that T1(A) and T2(A) commute. But we first need a
couple of auxiliary lemmas.

Lemma 46. If M , N and K are terms such that M→1K and M→2N , we have
a term L such that N�1L and either L = K or K→2L:

M
2

��
1

��
N

1����

K

2 or = ��
L

Proof. Let t1 be the redex occurrence concerned in M→1K and t2 the redex
occurrence concerned in M→2N . We will prove this lemma case by case, de-
pending on the relative positions of t1 and t2 in M . Say that t1→s1 is a seesub-
stitution instance of the rule ρ1 : l1→r1 ∈ T1(A) via substitution σ, and that
t2→s2 is a substitution instance of ρ2 : l2→r2 ∈ T2(A) via substitution τ .

Case 1: t1 and t2 are disjoint.
In this case we can write M as C[t1, t2] for some context C[]. But then it is
obvious that

M = C[t1, t2]
2

��
1

��
N = C[t1, s2]

1��

K = C[s1, t2]

2 ��
L = C[s1, s2]

Case 2: t2 ≤ t1.
Because of the shape of T1(A)-rules, and because it is never the case that a
constant is the left-hand side of a T2(A)-rule, the only possible scenario is that
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t1 = t2. We know that tA1 ↓ because the T1(A)-transition is t1→s1 = tA1 . So
tA2 ↓ as well. But since A � T , sA2 = tA2 . So there is a T1(A)-rule s2→sA2 , and
sA2 = tA2 = tA1 = s1. In sum, we have the diagram

M = C[t1] = C[t2]

2

((

1

uu
K = C[tA1 ] = C[s1] N = C[s2]

1oo

Case 3.1: t1 < t2 and t1 is nested in t2.
As the left-hand side of a T2(A) rule, we know that l2 is of the form l2(~a, x1, . . . , xm)
for some tuples ~a of A, ~x = (x1, . . . , xm) of V . If t1 is nested in lτ2 = t2, then
there is an xi in ~x such that xτi = E[t1] for some context E[]. Since r2 is of the
form r2(~c, x1, . . . , xm), we can complete our diamond as below. We will again
ignore the outer context and assume M = t2.

M = t2 = l2(~a, xτ1 , . . . , E[t1], . . . , xτm)
2 //

1

��

N = s2 = r2(~c, xτ1 , . . . , E[t1], . . . , xτm)

1
����

K = l2(~a, xτ1 , . . . , E[s1], . . . , xτm)
2

// L = r2(~c, xτ1 , . . . , E[s1], . . . , xτm)

Case 3.2: t1 < t2, and t1 and t2 have overlapping patterns.
This case emerges directly from the definition of T2(A). We can this time write
t2 = Dτ [t1], inverting the roles of t1 and t2 in the previous case. So t1 is a
proper subterm of t2 which evaluates to an element of A, namely s1. Then by
the inductive definition of T2(A), there is a new T2(A)-rule Dτ [s1]→s2. So

M = t2 = Dτ [t1]

2

((

1

vv
K = Dτ [s1]

2
// N = s2 = L

Lemma 47. If M , N and K are terms such that M�1K and M→2N , then
there is a term L such that N�1L and either K = L or K→2L

M
2

��
1
����

N

1����

K

2 or = ��
L

Proof. By induction on length(M�1K) =: m. Lemma 46 gives us the base
case directly. For the induction step, we assume that the lemma holds for m
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and show it holds for m + 1. So assume length(M�2K) = m + 1. Let K ′ be
the term such that M�1K

′→1K and length(M�1K
′) = m. By the induction

hypothesis, there is a term L′ such that K ′ = L′ or K ′→2L
′ and N�1L

′. Using
Lemma 46 one more time gives us the term L as in the diagram below:

M
2

��
1
����

N

1����

K ′

2 or =

��1��
L′

1����

K

2 or = �� ��
L

Now the proof of our theorem is almost trivial.

Theorem 48. If M , N and K are terms such that M�1K and M�2N , then
there is a term L such that N�1L and K�2L:

M
2
�� ��

1
����

N

1����

K

2 �� ��
L

where length(K�2L) ≤ length(M�2N).

Proof. Let length(M�2N) =: m. We prove the theorem by induction on m.
The base case is given by Lemma 47. Now we assume the theorem holds for m
and show that it holds for m+ 1. Let N ′ be the term such that M�2N

′→2N
and length(M�1N

′) = m. By the induction hypothesis we have a term L′

such that N ′�1L
′, K�2L

′ and length(K�2L
′) ≤ m. Now by Lemma 47, we

get the term L such that L′ = L or L′→2L, N�1L and length(K�2L) =
length(K�2L

′) + length(L′�2L) ≤ m+ 1. So we are done, with the diagram

M
2
�� ��1����
N ′

1����
2

��
N

1����

K
2
�� ��
L′

2 or = ��
L
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2.3.4 T2(A) pseudoconfluence

We saw in subsection 2.3.2 that we can lift a T2(A)-rule to a T -rule. But now
how about a chain of two T2(A)-rules? Or a chain of n T2(A)-rules, for that
matter? We will show that this can also be done.

However, we first need some terminology and notation which will allow us
to talk about occurrences of subterms in terms rather than the subterms them-
selves. Occurrences of constants will from now on be denoted in bold font, and
distinguished from each other by an overbar: for a term s, s, s̄, . . . , s̄(i) (where
s̄(i) is s with i many bars over it and s̄(0) means s as expected) are occurrences
of the term s. We will also need to deepen our notation for expansions. Given
any chain of T1(A)-reductions M�1N , for every occurrence s of a term s in
N there is a corresponding subterm of M . We call this term the expansion of
s in M and denote it sM . It is possible that sM is just an instance of s (we
will abuse notation and write sM = s): in this case we say that sM is a trivial
expansion.

Lemma 49. �1 · →T ⊆ →T ·�1. In fact, for any T -rule ρ, then �1 · →ρ ⊆
→ρ ·�1.

Proof. Let M�1N→ρK. Let ρ be the rule

l(x1, . . . , xn)→r(x1, . . . , xn)

Then there is a ρ-redex in N , i.e. there is a substitution σ such that N =
C[l(xσ1 , . . . , x

σ
n)] for some context C[]. Now since M�1N is a T1(A)-reduction,

there exist in M the expansions of certain constants occurring in N . If these
constants all occur outside of l(xσ1 , . . . , x

σ
n), then there is no problem and we

can first do the T -reduction, then do the T1(A)-reductions necessary in C[].
So assume that certain of the constants occur in l(xσ1 , . . . , x

σ
n). Say wlog that a

occurs in xσj for some 1 ≤ j ≤ n, and that its expansion is aM . We can then write
xσj = Dσ[a] for some context D[]. But then we can define a new substitution θ

acting just like σ except that xθj = Dσ[(a)M]. This means that xθj�1x
σ
j . Note

that we can define a single substitution θ to have the corresponding effect on all
xσj s containing constants, because T is left-linear, so no two xjs are the same.
So now, we have

C ′[l(xθ1, . . . , x
θ
n)]→ρC

′[r(xθ1, . . . , x
θ
n)]�1C[r(xσ1 , . . . , x

σ
n)]

where C ′[] is C[] with the expansions of the rest of the constants, so that
C ′[]�1C[]. Therefore we have the diagram

N = C[l(xσ1 , . . . , x
σ
k)]

T
,,

M = C ′[l(xθ1, . . . , x
θ
n)]

1 22 22

T
,,

K = C[r(xσ1 , . . . , x
σ
k)]

C ′[r(xθ1, . . . , x
θ
n)]

1 22 22
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Corollary 50. �1 ·�T ⊆�T ·�1.

Definition 51. M�1N is called uniform if for all constants a and all occur-
rences a, ā, . . . , ā(k) of a in N , there is a term t such that t�1(ā(i))M for all
0 ≤ i ≤ k. We will denote this term by t(a,M).

In this definition, we have imposed that the expansions of all constant oc-
currences have a common T1(A)-ancestor. Quite satisfyingly, the same property
for terms follows from this definition (for any term s, sM is defined in the same
way as for a constant).

Lemma 52. If M�1N is uniform, then for all subterms s of N and for all oc-
currences s, s̄, . . . , s̄(k) of s in N , there is a term t(s,M) such that t(s,M)�1(̄s(i))M
for all 0 ≤ i ≤ k.

Proof. Say s = s(a1, . . . , an, ~x) for a1, . . . , an ∈ A, ~x a tuple in V . Then for
any occurrence s in N , s = s(a1, . . . ,an, ~x) for some occurrences of a1, . . . , an.
Therefore sM = s((a1)M , . . . , (an)M , ~x). Because of uniformity, for all 1 ≤ j ≤
n, for all occurrences āj

(i) of aj , there is a term t(aj ,M) such that t(aj ,M)�1(āj
(i))M.

But then
s(t(a1,M), . . . , t(an,M), ~x)�1sM

so we can call this left-hand side term t(s,M).

Lemma 53. Let M�1N be uniform. Let K→ρN be a rewrite step correspond-
ing to a T -rule ρ. Then there are terms K ′ and M ′ such that K ′�1K, K ′→ρM

′,
and M ′�1M . In other words, we have the diagram

K ′
ρ //

1

����

M ′

1
����
M

1

����
K

ρ // N

Proof. K→N is a reduction step corresponding to a T -rule, so it is of the form
C[l(xσ1 , . . . , x

σ
n)]→C[r(xσ1 , . . . , x

σ
n)] for some context C[] and substitution σ.

We can make occurrences of each variable in r explicit by writing

r = D[x1, x̄1, . . . , x̄1
(i), . . . ,xn, x̄n, . . . , x̄n

(j)]

for some variable-free context D[] (without loss of generality, up to reordering
of the variables). Say that xσi = si for some term si, for all i. Then

N = C[D[s1, . . . , s̄1
(i), . . . , sn, . . . , s̄n

(j)]]
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Since M�1N , there is another context C ′[] satisfying C ′[]�1C[], such that

M = C ′[D[(s1)M, . . . , (s̄1
(i))M, . . . , (sn)M, . . . , (s̄n

(j))M]]

Now we define the term K ′ as follows: find all constants a occurring in
N . Define K ′ as K with all occurrences of such constants a expanded to
t(a,M). This generalizes to terms: if xσi = s = s(a1, . . . , am, ~x) and xi is ac-
tually used in r, then every occurrence of s = xσi in lσ is replaced in K ′ by
s(t(a1,M), . . . , t(an,M), ~x) = t(s,M). We can call this new substitution τ (we don’t
care what τ does on xi’s which are not actually used in r). This warrants the
expression of K ′ as C ′′[lθ] where C ′′[] is C ′[] with all occurrences of constants a
appearing in N and C ′[] expanded to t(a,M).

We can now apply the rule ρ to get M ′ := C ′′[rθ]. Note that with our
previous conventions, we can write

M ′ = C ′′[D[t(s1,M), . . . , t(s1,M), . . . , t(sn,M), . . . , t(sn,M)]]

But this obviously T1(A)-reduces to M , and we are done!

K ′ = C ′′[lθ]
ρ //

1

����

M ′ = C ′′[rθ]

1
����
M

1

����
K = C[lσ]

ρ // N = C[rσ]

Note that as a consequence of this proof, K ′�1K is also uniform. To see this,
let a be an arbitrary constant in K. K ′�K only expands constants occurring
in N , so if a does not occur in N then we have no problem. If on the other hand
a occurs in N , then by construction a, ā, . . . , ā(i) are all replaced by the same
term t(a,M), so we are done. We will call a transition which has this property
totally uniform.

Definition 54. We call a uniform transition M�1N totally uniform if for
any constant a, for any two occurrences ā(i), ā(j) in N ,

(ā(i))M = (ā(i))M

It is easy to see that this induces the same property on terms.

Lemma 55. Let M�1K and N�1K be such that for any constant a, any one-
step (nontrivial) expansion of an occurrence of a which one encounters along
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K�1M and K�1N can yield only one term3. Then there is a term L such
that L�1M and L�1K and

i. length(L�1M) = length(N�1K) and length(L�1N) = length(M�1K)

ii. L�1M and L�1K are also such that for any constant a, any one-step
(nontrivial) expansion of an occurrence of a can yield only one term.

Proof. For each constant a, denote the unique term to which it can be ex-
panded in a one-step expansion as qa. Set n := length(N�1K) and m :=
length(M�1K). We prove the lemma by double induction on n and m. If
either n or m is 0, then the proof is trivial.

First assume that n = m = 1. We have M→1K←1N , and we can distinguish
two cases. The first is if M→K and N→K expand distinct constants, or two
occurrences of the same constant. Then K = C[a, b], for some context C[] and
where b is possibly another occurrence of a (the notation for occurrences is not
necessary here since the two-hole context makes it clear that they are distinct
occurrences). Then we have the diagram

L = C[qa, qb]
1

��
1

��
N = C[a, qb]

1��

M = C[qa, b]

1 ��
K = C[a, b]

And it is easy to see that (i.) and (ii.) hold. The second case is if both expand
the same occurrence of a constant. But in this case we know by assumption
that M = N , and we are done.

Now we fix m = 1 and do the induction step for n: if n 6= 1 there is a term
N ′ such that N→1N

′�1K and length(N ′�K) = n − 1. Then by induction
there is a term M ′ such that M ′�1M has length n − 1, M ′→1N

′, and these
transitions satisfy (ii.). But then we can use the base case again to get a term
L such that L→1M

′, L→1N and (ii.) is again satisfied. Then it is easy to see
that L�1M and L�1M satisfy (i.) and (ii.).

L
1

��
1

��
N

1��

M ′

1

��
1
����

N ′

1����

M

1 ��
K

3Meaning that if s→1a and t→1a, s, t 6= a, then s = t.
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The induction step for m is similar: let M ′ be such that M→1M
′ and

M ′�1K has length m − 1. Then by induction there is a term N ′ as in the
diagram below, satisfying (i.) and (ii.). By the previous step, we get a term
L such that L�1M and L→1N

′. Then length(L�M) = length(N ′�M ′) =
length(N�K), and length(L�N) = length(L�N ′) + length(N ′�N) = 1 +
(m− 1) = m. So (i.) is satisfied, and since (ii.) is a property which is preserved
under composition of T1(A)-reductions, we are done.

L
1

��1

����
N ′

1

����

1

�� ��
N

1

����

M

1 ��
M ′

1

�� ��
K

We shall now prove that we can lift not only one T2(A)-transition to a T -
transition, but a whole series of T2(A) transitions to a series of T -transitions.

Theorem 56. If T and A satisfy the HNF condition, then we have the diagram

Q
T // //

1
����

O

1
����

M
2
// // K

where Q�1M is uniform.

Proof. We will prove the theorem by induction on length(M�K) =: n.

Base Case We know that M→2K has a lifting, call it L→TK. The fact that
L�1M is uniform is guaranteed by the HNF condition: since we are dealing
with a lift, any two nontrivial expansions aL and āL of two occurrences of a
constant a ∈ A are proper subterms of the T -left-hand side concerned (because
these occurrences have to be essential in order to be expanded in the lift), and
so by the HNF condition aL = āL. So take Q = L and O = K.

Induction Step Let N be the term such that M→2N and N�2K, and the
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latter transition has length n. By induction, we have the following diagram:

L

T

!!
1
����

N ′

1
����

T // // K ′

1
����

M
2
// N

2
// // K

where N ′�1N is uniform and L→TN is a lifting of M→2N .

Now by Lemma 53, we have terms L′, N ′′ as in the diagram below, then a
term K ′′ by Corollary 50.

L′

1
����

T // N ′′

1
����

T // // K ′′

1
����

L

T

!!
1
����

N ′

1
����

T // // K ′

1
����

M
2
// N

2
// // K

We will now show that that L′�1M is uniform. Let a be any constant,
a, ā, . . . , ā(k) its occurrences in M . We want to show that (ā(i))L′ have a com-
mon expansion for all i. Note that by definition (ā(i))L′ = ((ā(i))L)L′ . Suppose
that no occurrences of a are expanded in L. Then we are done by uniformity of
L′�L. So assume at least one occurrence is expanded. Since L�1M is a lift,
this means that that occurrence of a was essential: its expansion overlaps with
the left-hand side of the T -rule concerned in L→TN . So for any ā(i), (ā(i))L is
an occurrence of either a or qa. Furthermore, L′�L is totally uniform, so we
also know that all occurrences of a in L have the same expansion in L′ (call
it aL′), and all occurrences of qa likewise (call it (qa)L′). Now all we need to
show is that aL′ and (qa)L′ have a common T1(A)-expansion. But notice that
aL′�1a, and (qa)L′�1qa�1a, and by construction all constants nontrivially ex-
panded in L′�1L are essential for some lift! So we can apply Lemma 55 and
deduce that aL′ and (qa)L have a common T1(A)-expansion.

So L′�M is uniform and we have proven that any chain of T2(A)-transitions
can be lifted to a chain of T -transitions.

Theorem 57. T2(A) is pseudoconfluent, i.e. �2 ·�2 ⊆�2�1 ·�1�2.

Proof. Assume that there are terms M , N and K such that M�2N and
M�2K. We want to find a term P such that N�2�1P and K�2�1P . We
first give the diagram which solves this problem; we will then describe how the
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various terms mentioned in it are obtained.

Q

T

�� ��

T

����

1

�� ��

1







R2
1oooo

T

����

L2

T

�� ��

1

����

O2
1

����

L1

1 �� ��
T

����

M

2

�� ��

2

����
K

2

����

P

U2

1
____

O1

1 �� ��
N

2 �� ��
U1

1

?? ??

R1

T

�� ��

1
// //

S

1

TTTT

1

JJ JJ

By Theorem 56, there are terms L1 and O1, L2 and O2 such that L1�TO1 is
a lifting of M�2N , and similarly L2�TO2 is a lifting of M�2K. By construc-
tion, we know that any expansions made from M to L1 or L2 are of constants
which have an occurrence that is essential in a lift. Therefore, by the HNF
condition there is only one choice for the one-step expansion of any such con-
stant. So we can deduce using Lemma 55 that L1 and L2 have a common
T1(A)-expansion Q.

Now by Corollary 50, we have terms R1 and R2 as in the diagram. But this
means that Q�TR1 and Q�TR2, and since T is confluent, R1 and R2 have a
common T -reduct, which we will call S.

But now we have that R1�1N and R1�TS. Since T1(A) and T2(A) com-
mute, and since T is included in T2(A), we have a term U1 such that S�1U1

and N�2U1. On the other side we can use the same reasoning to get U2 as
in the diagram. Lastly, since T1(A) is confluent, we get our term P such that
U1�1P and U2�1P , and pseudoconfluence of T2(A) is proven!
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2.3.5 Abstract Confluence

We now need to show that the confluence of T1(A), the commutativity of T1(A)
and T2(A), and the pseudoconfluence of T2(A) together yield the confluence of
the joint system T1(A)∪ T2(A). This proof does not use the properties of these
TRSs, so we will state the following theorems for general TRSs T1 and T2.

Let T1 and T2 be two term rewriting systems over the same set of terms.
We denote by →1 and →2 the respective transitive reflexive closures of the
rewriting relations. Note that this differs from the previous sections where the
reflexive transitive closures we denoted by a double-headed arrow. →1,2 denotes
the transitive reflexive closure of the rewriting relation of T1∪T2. Our aim here
is to show the following:

Theorem 58. If we have the properties:

1. T1 is confluent, i.e. ←1 · →1 ⊆ →1 · ←1,

2. T1 and T2 commute, i.e. ←1 · →2 ⊆ →2 · ←1,

3. T2 is pseudoconfluent, i.e. ←2 · →2 ⊆ →2→1 · ←1←2,

then T1 ∪ T2 is confluent, i.e. ←1,2 · →1,2 ⊆ →1,2 · ←1,2.

To prove this theorem, we will need some intermediary results. But first, a
bit of terminology should be introduced.

Let Σ be the set of all finite sequences over {1, 2}, and define over Σ the
smallest equivalence relation ≡ such that for all a1, . . . , am ∈ {1, 2},

a1 . . . an11an+1 . . . am ≡ a1 . . . an1an+1 . . . am and

a1 . . . an22an+1 . . . am ≡ a1 . . . an2an+1 . . . am

Now, let σ ∈ Σ. Define σ1 to be σ with a 1 stuck on the end, and σ2 similarly.
Note that if σ ends with i ∈ {1, 2} then σi ≡ σ.

The purpose of this definition is to be able to speak about the patterns of
→1,2-transitions without reference to the length of stretches of transitions with
the same label. A 1 in the pattern σ, for example, symbolizes a stretch of
T1-transitions, i.e. a transition of the type →1. The fact that one can hold
a1 . . . an11an+1 . . . am and a1 . . . an1an+1 . . . am to be equivalent is a reflection
of the fact that →1 is transitive. One can translate any transition a→1,2b into
a sequence in Σ according to the pattern governing it. In fact, we can translate
it into a sequence with no repeated 1’s or 2’s, by taking maximal stretches of
T1- and T2-transitions at a time. We call this the pattern of a→1,2b and denote
the length of the pattern by |a→1,2b|. It is easy to see that the pattern of a
transition σ ∈ Σ, is the unique shortest element of its equivalence class. For any
σ ∈ Σ, |σ| is defined to be the length of the pattern of σ.
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Lemma 59. Assume that conditions 1, 2 and 3 of the theorem hold. Then for
any terms a, b, c such that a→1,2b and a→1c there is a term d such that c→1,2d
and b→1d. So we have the diagram:

a
1,2

��

1

��
b

1��

c

1,2 ��
d

Moreover, if the transition a→1,2b has pattern σ, so does c→1,2d.

Proof. We prove the lemma by induction on |σ|. For the base case, say that
|σ| = 1 (if it is zero, the statement is trivial). Then either σ ≡ 1 or σ ≡ 2. In
fact, σ = 1 or σ = 2, since σ is the pattern of a transition, so by definition the
shortest element in its equivalence class. In the first case we use confluence (1)
and in the second we use commutativity (2); the statement is satisfied.

For the induction step, assume that |σ| = n and that the statement holds for
patterns of length n − 1. Assume that σ ends with symbol i, where i ∈ {1, 2}.
Define σ0 such that σ0i = σ and call e the ending point of σ0.

a
σ0

��

1
��

e
i
��1�� b

1��

c

σ0 ��
f

i �� d

Then by induction, we have a term f as depicted, where c→1,2f has pattern
σ0. Depending on whether i is 1 or 2, we have a term d as in the above diagram
by either confluence of T1 or commutativity of T1 and T2 respectively. Now
c→1,2d has pattern σ0i = σ and we have proved the lemma.

We will now prove our theorem. In fact, we will prove a slightly stronger
version, namely

Theorem 60. Assume that the conditions 1, 2 and 3 of the theorem hold. Let
x, y and z be terms such that y←σx→τz, where we use this notation to signify
that σ is the pattern of x→1,2y and τ is the pattern of x→1,2z. Then there is
a term w such that y→τ ′w←σ′z and σ′ is either σ or σ1, and τ ′ is either τ or
τ1.

Proof. We prove the lemma by induction on |σ| + |τ |. For the base case, let
|σ| = |τ | = 1 (the case where one of the patterns is empty is trivial). Assume
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σ = 1. Say τ = i where i ∈ {1, 2}. Then we have

x
i
��

1
��

z

1��
y

i ��
w

by Lemma 59, in which case τ = i = τ ′ no matter what, and σ = 1 = σ′.
On the other hand, if σ = 2, we get

x

2

��

2

��
z

2��·
1��

y

2 �� ·
1 ��w

by pseudoconfluence, in which case τ ′ = τ1 and σ′ = σ1.

Now for the induction step. We may assume without loss of generality that
|σ| > 1. We assume the induction hypothesis for n < |σ| + |τ | and show for
|σ|+ |τ |. We take a case-by-case approach.

Case 1: σ ends in 1.
We have the following diagram, to be explained in the text below it:

x

τ

��

σ0

��

z

σ′0��

s
i

��
1
��

·
τ0

��

1
��

t

1��

y

i ��
y1

τ0
��
w

Define σ0 such that σ01 = σ. Note that by definition of the pattern of a transi-
tion we know that 1s and 2s alternate, hence σ0 ends in 2. We have |σ0| < |σ|
so that |σ0|+ |τ | < |σ|+ |τ |. Therefore we can use the induction hypothesis to
get a term t and transitions σ′0 and iτ0, where σ′0 = (σ0 or σ01) and iτ0 = (τ or
τ1). Note that it could very well be the case that τ0 is empty, in which case we
would have y1 = w in the diagram above.

Now by confluence or commutativity (depending on whether i is 1 or 2), we
have a term y1 as in our diagram. We then use Lemma 59 to get the term w:

41



this lemma guarantees that the pattern from y1 to w is exactly τ0.
In sum, we have:

σ′ := σ′01 = (σ01 or σ011) ≡ σ01 = σ and

τ ′ = iτ0 = (τ or τ1)

Since σ and σ′ are both patterns of transitions, they are both the shortest ele-
ments of their equivalence class. And since they are equivalent, they are equal.
So the induction hypotesis is satisfied.

Case 2: σ ends in 2.
We then have the diagram

x
τ

��

σ0

��
z

σ′0��

s

τ ′′ ��

2
��

t

y

Again, we know that σ0 ends with a 1. We get by induction the term t and
patterns σ′0 and τ ′′ such that τ ′′ = (τ or τ1) and σ′0 = (σ0 or σ01). But now we
again have to split into two cases.

Case 2.1: τ ′′ starts with a 1.
Then we have a term r such that s→1r is the first step of the pattern τ ′′ (so
it is a maximal stretch of T1-transitions). But then by commutativity we have
a term y1 completing the diamond formed by s, r and y (see diagram below).
Call the pattern from r to t τ0, so that 1τ0 = τ ′′, and by assumption τ0 starts
with a 2 (if it is nonempty - again, it could be the case that it is empty, but this
does not change the proof).

It is easy to see that |τ0| ≤ |τ |. Since |σ| > 1, we have that |τ0|+1 < |τ |+ |σ|.
So we can use the induction hypothesis on r, t and y1 to get the term w as in
the diagram below. Note that the pattern from t to w may be either 2 or 21 -
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in the diagram we depict only the worst case scenario 21.

x

τ

��

σ0

��

z

σ′0��

s
1
��

2
��

r
τ0

��

2
��

t
21
��

y

1 ��
y1

τ ′0 ��
w

Also note that if τ0 is empty then so is τ ′0, so we can assume the worst and say
that by the induction hypothesis we have τ ′0 = (τ0 or τ01) where the second
possibility is simply nonexistent if τ0 is empty. Now for the summing up:

τ ′ := 1τ ′0 = (1τ0 or 1τ01) = (τ ′′ or τ ′′1)

= (τ or τ1 or τ11) ≡ (τ or τ1).

σ′ := (σ′02 or σ′021)

= (σ02 or σ012 or σ021 or σ0121)

≡ (σ02 or σ021) because σ0 ends with 1

= (σ or σ1).

Again, equivalence simplifies to equality since we are talking about patterns
of transitions.

Case 2.2 τ ′′ starts with a 2.
If τ ′′ = 2, then τ = 2 and we get the diagram

x

τ=2

��

σ0

��
z

σ′0��

s

τ ′′=2

��

2

��
r

2��·
1��

y

2 �� ·
1 ��w

So τ ′ = 21 = τ1 and

σ′ := σ′021 = σ021 or σ0121

≡ σ021 because σ0 ends with 1

= σ1
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So we can assume now that τ ′′ starts with a 21. Then there are terms r
and r1 such that s→2r→1r1. Using only our assumptions 1, 2 and 3 we can
complete our diamonds to get terms y1 and y2 as depicted in the diagram below.

x

τ

��

σ0

��

z

σ′0��

s
2

��
2

�� r
1

��
2

��
r1

τ0

��

2��

·
21
��

·
1

��
1

��
·

τ1

��
1��

t1

1��

y

2 ��

1 ��y1

1 ��
y2

τ1
��
w

Define τ0 such that τ ′′ = 21τ0. Again, τ0 is either empty or starts with a 2.
In any case, clearly |τ0| < |τ |, so we can use the induction hypothesis to get a
term t1 and a pattern τ1 as in the diagram. Note that if τ0 is empty then we
can take τ1 to be empty as well, so as in the last case we generalize to the worst
possible scenario and say that τ1 = (τ0 or τ01). Lastly, we use Lemma 59 to get
the term w, noting that the pattern from y2 to w is exactly τ1. So to sum up
we have:

τ ′ := 211τ1 ≡ 21τ1 = (21τ0 or 21τ01) = (τ ′′ or τ ′′1)

= (τ or τ1 or τ11)

≡ (τ or τ1) and

σ′ := (σ′021 or σ′0211)

≡ σ′021 = (σ021 or σ0121)

≡ σ021 because σ0 ends in 1

= σ1

Once again equivalence reduces to equality. This concludes the proof of our
theorem.

Corollary 61. Under conditions 1,2 and 3, T1 ∪ T2 is confluent.

2.3.6 Completion

Now that we know that the system T1(A)∪T2(A) is confluent, we can complete
our partial algebra A. We proceed exactly as in BKV, whose proof we will re-
capitulate here.
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Let us denote by ∼ the convertibility relation generated by T1(A)∪T2(A), i.e.
the transitive symmetric reflexive closure of the union �1,2 of the two rewrite
relations. This is an equivalence relation, whose equivalence classes we will
denote by [t]. We now define an algebra Γ(A), whose underlying set is Ter(F ∪
A, ∅)/ ∼, i.e. the ground terms of Ter(F ∪A, V ) modulo ∼. Interpretations are
again defined as

fΓ(A)([t1], . . . , [tn]) = [f(t1, . . . , tn)]

for any n-ary function symbol in F ∪ A and terms ti ∈ Ter(F ∪ A, ∅). We will
now go on to prove that Γ(A) is a completion of A modeling T .

Theorem 62. i. Γ(A) models T

ii. The canonical map γ : A→Ter(F ∪ A, ∅) sending a ∈ A to [a] is an
embedding of A into Γ(A).

Proof. (i.) Let l(x1, . . . , xn)→r(x1, . . . , xn) be a rule in T , and let [t1], . . . , [tn]
be any elements of Ter(F ∪A, ∅)/ ∼. Then l(t1, . . . , tn)→T r(t1, . . . , tn). There-
fore [l(t1, . . . , tn)] = [r(t1, . . . , tn)], and we get

lΓ(A)([t1], . . . , [tn]) = [l(t1, . . . , tn)] = [r(t1, . . . , tn)] = rΓ(A)([t1], . . . , [tn])

(ii.) First we show that γ is injective. Let a and b be two constants in A such
that [a] = [b]. Then there are t1, . . . , tk ∈ Ter(F ∪ A, V ) such that a = t1,
tk = b, and for any 1 ≤ i ≤ k − 1, either ti�1,2ti+1 or ti+1�1,2ti. By a simple
induction on k, it is easy to prove using the confluence of �1,2 that a and b
have a common �1,2-reduct (for a proof, see [BKdV03] Proposition 1.1.10 page
11). However, a and b are already normal forms; a T1(A)-rule cannot further
reduce a constant, and by definition a constant cannot be the left-hand side of
a T2(A)-rule. Hence a = b and we have proved injectivity.

Lastly, we show that γ is a weak homomorphism. Let f ∈ F ∪ A be n-ary,
and let a1, . . . an ∈ A be such that fA(a1, . . . , an)↓. Then there is a T1(A)-rule
f(a1, . . . , an)→fA(a1, . . . , an). As a result,

fΓ(A)(γ(~a)) = fΓ(A)([a1], . . . , [an])

= [f(a1, . . . , an)]

= [fA(a1, . . . , an)]

= γ(fA(~a))

So we have constructed a completion of A!
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Discussion and Conclusion

Let us verify that the result concerning partial combinatory algebras [BKdV96]
does indeed fit our result. In the case of partial combinatory algebras, our
original TRS T would be the system consisting of the two rules

k · x · y→x
s · x · y · z→(x · z) · (y · z)

If A is a partial combinatory algebra, then it definitely models the term rewriting
system, according to our definition of modelling. The TRS T is certainly left-
linear, and it is non-ambiguous. Furthermore, the fact that A and T satisfy HNF
is guaranteed by the conditions on unique head-normal forms and Barendregt’s
Axiom: any proper subterm of the left-hand side of a T -rule must be of one
of the forms, k · a, k, s · a · b, s · a or s (recall that the terms associate to the
left by default). But in BKV the first condition on unique head-normal forms
guarantees that no such terms of two different forms ever evaluate to the same
element of A, and Barendregt’s Axiom prevents two different terms of the same
form from ever evaluating to the same element: Barendregt’s Axiom implies
that if (sa)A = (sb)A then a = b, and it is already true that if (ka)A = (kb)A

then a = b. So we have indeed constructed a generalization of BKV.
It becomes apparent that the result in BKV is independent from the par-

ticular properties of s or k; in particular one could have chosen another set
of combinators. A case in point would be the λI -calculus, which contrary to
the λK-calculus, which is the one used in BKV, does not allow for lambda-
abstraction over variables not occurring freely in the term that is abstracted
over. In particular, λxy.x is not a valid term. So the corresponding CLI cal-
culus lacks the K combinator. It instead has three more combinators I, B,
and C, where Ix = x, Bxyz = x(yz) and Cxyz = xzy. So any partial algebra
modelling the TRS T

Ix −→ x

Bxyz −→ x(yz)

Cxyz −→ xzy

Sxyz −→ xz(yz)

and satisfying the HNF condition will be completable.
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This concludes our discussion of our result and its applications.
To sum up, in this thesis we started by giving some general results con-

cerning partial algebras and their completions, with some attention given to
completions preserving congruence relations. We then presented a generaliza-
tion of a previous result by I. Bethke, J.W. Klop and R. de Vrijer concerning
the completion of partial combinatory algebras.

Together with being strongly based on this last paper, our result ties in
nicely with the previous chapter, as the convertibility relation generated by the
rewrite relation of our term rewriting systems is a congruence relation (since
rewriting is not context-sensitive), so the whole construction can be seen as a
quotient of the free algebra over A. So we have in fact made the construction
promised in our introduction to the second chapter.

In the future, it may be interesting to investigate what the consequences
would be of taking a different notion of modelling of a term rewriting system
by a partial algebra. Here we have postulated that if l→r is a rule,

lA↓ ⇒ rA = lA

but we could have chosen
rA↓ ⇒ lA = rA

or
lA↓ ∧ rA↓ ⇒ rA = lA

and so forth. We have used this definition in few but crucial places (see the com-
mutativity of T1(A) and T2(A)), and it may be interesting to see the significance
of such a modification.
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