
Discontinuous Data-Oriented Parsing
through Mild Context-Sensitivity

MSc Thesis (Afstudeerscriptie)

written by

Andreas van Cranenburgh

(born September st,  in Amsterdam, The Netherlands)

under the supervision of Prof. dr. ir. Remko Scha, and submitted to
the Board of Examiners in partial fulfillment of the requirements for

the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

November ,  Prof. dr. ir. Remko Scha
Prof. dr. Benedikt Löwe
Prof. dr. Rens Bod
Dr. Khalil Sima’an
Dr. Willem Zuidema

Es gibt eine und nur eine vollständige Analyse
des Satzes. — Wittgenstein (TLP .)

There is one and only one complete analysis
of the sentence. (my translation)

[. . .]
Die Sprache verkleidet den Gedanken. Und zwar
so, daß man nach der äußeren Form des Kleides,
nicht auf die Form des bekleideten Gedankens
schließen kann; weil die äußere Form des Klei-
des nach ganz anderen Zwecken gebildet ist
als danach, die Form des Körpers erkennen zu
lassen.
Die stillschweigenden Abmachungen zum Ver-
ständnis der Umgangssprache sind enorm kom-
pliziert. — Wittgenstein (TLP .)

Language veils thought. And in such a man-
ner that by the form of the cloak one cannot
tell the form of the thought which has been
cloaked; because the outer form of the cloak
was designed with entirely different purposes
than revealing the form of the body.
The implict conventions for understanding
common language are enormously compli-
cated. (my translation)

Abstract

It has long been argued that incorporating a notion of discontinuity in
phrase-structure is desirable, given phenomena such as topicalization and extra-
position, and particular features of languages such as cross-serial dependencies
in Dutch and the German Mittelfeld. Up until recently this was mainly a theo-
retical topic, but advances in parsing technology have made treebank parsing
with discontinuous constituents possible, with favorable results.

We improve on this by applying Data-Oriented Parsing (dop) to a mildly
context-sensitive grammar formalism which allows for discontinuous trees.
Decisions during parsing are conditioned on all possible fragments, resulting
in improved performance. Despite the fact that both dop and discontinuity
present formidable challenges in terms of computational complexity, the model
is reasonably efficient. Our results emulate and surpass the state of the art in
discontinuous parsing.

Acknowledgments: I am grateful to Wolfgang Maier for correspondence
and making the code of his parser rparse available, which was an invaluable
resource. Federico Sangati offered advice and, at a crucial moment, convinced
me the results might be good enough for a paper. Sandra Kübler provided the
Tepacoc corpus. Tikitu de Jager prompted me to take typography seriously.
Mark Dufour improved his compiler specifically to optimize my parser. Henk
Zeevat persuaded me to pursue the master of logic. Rens Bod introduced me to
discontinuous constituents in one of his lectures. Finally, I am most grateful for
the continuous moral support from my supervisor.

i

Contents

 Introduction 
 Discontinuity 

. Linguistic motivation 
. Corpora 
. Previous work 

 Linear Context-Free Rewriting Systems 
. The grammar formalism 
. Grammar extraction 
. Parsing 
. Binarization 

 Data-Oriented Parsing 
. The probabilistic framework 
. Estimators 
. Discontinuous fragments 
. Goodman’s reduction of dop 
. Double-dop 

 Disco-dop 
. Simplicity Likelihood dop 
. Finding the k-best derivations 
. Coarse-to-fine plcfrs parsing 
. Even coarser-to-fine parsing: from pcfg to plcfrs 

 Implementation 
. Python 
. Cython 
. Data structures 
. Code overview 

 Evaluation 
. Metrics 
. Results 

 Remaining challenges 
 Conclusion 

ii

List of Figures

 Discontinuity does not imply non-projectivity 
 A sentence with topicalization from Negra 
 Distribution of trees w.r.t. discontinuous constituents per tree 
 A containment hierarchy of grammar formalisms 
 A tree with crossing branches from the Tiger corpus 
 Grammar rules extracted from the tree in figure  
 Gildea’s () production and its binarizations 
 Head-outward binarization 
 A right-factored head-driven binarization of the tree in figure  
 Fragments of “Daisy loved Gatsby” 
 A dop derivation 
 The relation between depth and weight in various estimators 
 Discontinuous fragments of “is Gatsby rich?” 
 A discontinuous dop derivation of the tree in figure  
 Goodman’s reduction as pairwise Cartesian product 
 k-best coarse-to-fine inference 
 Transformations for a context-free coarse grammar 
 An illustration of the representation 
 Type annotations and incrementing a variable in Cython 
 F-score as a function of the number of words 
 Efficiency as a function of the number of words 

List of Tables

 Constituent gap degrees in Tiger/Negra 
 The effect of binarization strategies on parsing efficiency 
 A comparison of parse selection methods for dop 
 Number of sentences and rules 
 Results for discontinuous parsing on two different corpora 
 Tree-distance evaluation 
 Results on the Tepacoc test set 

List of Algorithms

 Procedure for extracting lcfrs rules from a treebank 
 An agenda-based chart-parser for lcfrs 
 Finding optimal binarizations 
 Verifying compatiblity of two bit vectors according to a rule 

iii

List of Acronyms

np Noun Phrase

pp Prepositional Phrase

ap Adjective Phrase

vp Verb Phrase

pos Part-of-Speech

wsj Wall Street Journal

cfg Context-Free Grammar

pcfg Probabilistic Context-Free Grammar

hg Head Grammar

lfg Lexical-Functional Grammar

fug Functional Unification Grammar

dpsg Discontinuous Phrase-Structure Grammar

rcg Range Concatenation Grammar

srcg Simple Range Concatenation Grammar

lmg Literal Movement Grammar

tag Tree-Adjoining Grammar

ccg Combinatory Categorial Grammar

mcfg Multiple Context-Free Grammar

mg Minimalist Grammar

lcfrs Linear Context-Free Rewriting Systems

plcfrs Probabilistic Linear Context-Free Rewriting Systems

cky Cocke-Kasami-Younger

dop Data-Oriented Parsing

tsg Tree-Substitution Grammar

ptsg Probabilistic Tree-Substitution Grammar

mpd Most Probable Derivation

mpp Most Probable Parse

sl-dop Simplicity Likelihood dop

ewe Equal Weights Estimate

ex Exact Match

lp Labeled Precision

lr Labeled Recall

iv

Chapter 

Introduction

In which we introduce the problem of parsing as the challenge of coping
with structural ambiguity.

The study of language is broadly divided into two fields: philology & lin-
guistics. Philology (love of words) treats texts in their historical and
aesthetic dimensions. Linguistics aims to study language in a disinter-

ested and abstract manner. One aim of the latter is to come up with a grammar
grammarfor a language, or even a ‘meta-grammar’ encompassing all possible languages.

In modern linguistics a grammar is a clear and precise specification of what
constitutes a sentence of the language (and consequently, what does not). There
is a tradition of formulating formal rules of grammar going back to Pān. ini’s
work on Sanskrit, more than two thousand years ago. It is, however, a difficult
and tedious task, because “all grammars leak” (Sapir, , p. )—i.e., they
accept ungrammatical sentences, or they reject certain grammatical sentences
(typically both).

With the advent of the computing age, it has become possible to put intricate
grammars and theories to the test—provided that they be specified in sufficient
detail—and this has vindicated Sapir’s sentiment. Statistics was then introduced
into the picture, encouraged by its success in speech recognition. The reason for
employing statistics is not just the difficulty of demarcating what is and what
is not grammatical, but especially the discovery that finding the right analysis
for a grammatical sentence involves discriminating between a huge number of
possible analyses—a phenomenon called structural ambiguity ambiguity. To a human,
most of these analyses are not apparent, but a formal grammar by itself has
no way of pinning down the right one. Although the introduction of statistics
was seen as a compromise to the formal (abstract) nature of linguistics by some
(such as Chomskians), statistics is not not merely a means to an end motivated
from an engineering perspective. Its use can be motivated by a cognitive agenda,
as a key part of the answer to the problem of ambiguity. In a nutshell, the whole
field of statistical parsing revolves around coping with ambiguity.

A hand-written grammar can be enriched with statistics from a corpus of
sentences manually annotated with structures, from which the occurrence fre-
quency of grammatical rules can be inferred. Such probabilistic grammars
proved to be much more effective than those relying on manually specified dis-
ambiguation criteria. The next step was to abandon manually written grammars
altogether, and infer the grammar directly from the structures in the corpus;
this is known as treebank parsing treebank parsing.

The structures that are produced by such a parser are not intended for
particular applications; they are theoretical objects specifying in detail the form



of an isolated sentence without treating its content. While they can be employed
as a source of information in a speech recognition or machine translation system,
it turns out that getting this to work well is rather tricky, most likely due to data
sparseness; thus the state of the art in those fields still relies largely on shallow
training data.

Informally, the structure of a sentence indicates ‘who does what to whom,
and how, why’ More specifically, the structure of a sentence relates words
to other words or parts of the sentence until all words or parts have some
relation to each other. A collection of such structures, referred to as a corpus
or treebanktreebank , encodes information such as that ‘the unicorn’ and ‘the unicorn
over there’ behave similarly; e.g., they can both combine with a verb to form a
sentence.

A concrete instance of such structures are phrase-structure treesphrase-structure trees , which
group words into labeled constituents. A constituent is defined as a unit
which can be substituted for other instances of its kind while maintaining
grammaticality. A phrase-structure tree is then made up of constituents which
are in turn part of higher-level constituents, until the whole sentence belongs to
a single constituent. It is usually assumed that every non-root node has a single
parent, and that every node dominates a sequence of adjacent nodes or words
in the sentence. It has been noted, however, that both constraints appear to be
violated in commonly occurring linguistic phenomena.

The first constraint is arguably violated in complex co-ordinations such
as ‘Mary sees and John recognizes Jane,’ in which ‘Jane’ is the object of two
distinct propositions. Instead of duplicating ‘Jane,’ it would be more elegant
to let words appear in multiple constituents of a sentence. This topic is not
treated in this work, so unique parents will be assumed hereafter. The second
constraint is also violated in many cases, which gives rise to the phenomenon
of discontinuitydiscontinuity , which will be discussed at some length in the next section.
Both constraints have been upheld for reasons of computational and theoretical
complexity. But as formalisms, theories and computers developed, treebank
parsing with grammars that produce richer structures has come within reach.
This forms the point of departure for the present thesis. The aim of this thesis
is as follows:

• We will develop a treebank parser with the specific purpose of taking
discontinuity into account.

• Specifically, we will extend the Data-Oriented Parsing model to handle
discontinuous phrase structures.

• We will evaluate this model on two German corpora which directly encode
discontinuity in their annotations.

 There exists an alternative representation of sentence structure, namely dependency structures,
which encode (labeled) relations between words. However, the present work focuses exclusively on
phrase-structure trees.
 Note, however, that range concatenation grammar, which will be introduced in section ., allows

for parsing structures with multiple parents in polynomial time, so there is not a strong argument
for avoiding them on computational grounds.



Analytical Index

Being a Sketch of the Main Argument

 Introduction 
In which we introduce the problem of parsing as the challenge of
coping with structural ambiguity.

 Discontinuity 
Discontinuity is a pervasive phenomenon in language, which suggests
that it should be part of theoretical and computational accounts of
language. Corpora are presented in which discontinuity is a central
feature of the annotation scheme.

 Linear Context-Free Rewriting Systems 
A mildly context-sensitive formalism is able to recognize and parse
discontinuity effectively and efficiently. Rules can be read off directly
from a treebank and assigned probabilities based on relative frequen-
cies. A chart-parser is presented and methods of binarization are
investigated.

 Data-Oriented Parsing 
We turn to data-oriented parsing for a conceptually simple and general
account of the interpretation of new utterances given a corpus of previ-
ous utterances. Methods for extending existing dop implementations
with discontinuity are presented.

 Disco-dop 
A synthesis of lcfrs and dop realizes the goal of discontinuous data-
oriented parsing. To approximate the most probable parse, we employ
a general method for k-best derivation enumeration. A new method for
parsing dop efficiently using coarse-to-fine techniques is introduced.

 Implementation 
A high-level prototype can be incrementally adapted with low-level
optimizations. This is achieved by starting from an implementation
in a high-level, dynamic language, and adding type annotations to
performance-critical parts, without sacrificing integration with the
rest of the code.

 Evaluation 
We now review evaluation metrics for parser performance and present
our results, which improve on previous work.

 Remaining challenges 
The current work has limitations: it fails to model grammatical func-
tions, morphology, and word-order variation.

 Conclusion 
To recapitulate, discontinuity and data-oriented parsing can be com-
bined fruitfully, but much remains to be done.



Chapter 

Discontinuity

Discontinuity is a pervasive phenomenon in language, which suggests
that it should be part of theoretical and computational accounts of lan-
guage. Corpora are presented in which discontinuity is a central feature
of the annotation scheme.

Discontinuity refers to a “want of continuity [...] or disunion of parts”
(Webster’s Revised Unabridged Dictionary, ). In the case of con-
stituency trees it refers to the possibility of discontinuous constituents,

which have one or more gaps. The gaps have to be filled by the words of other
constituents, such that the constituent containing the whole sentence is by
definition continuous, since no words are left to interrupt it.

. Linguistic motivation

There are two motivations for discontinuous constituency. The first is a
particular phenomenon displayed by some languages which is outside
the class of context-free languages. The second is that certain represen-

tations might be desirable on theoretical grounds. The strength of the former
lies in its independence of linguistic theory, although it relies on this single
phenomenon. In contrast, the latter has lots of supporting examples which
are arguably more elegantly expressed with discontinuity, while not strictly
necessary to produce a grammar which recognizes and produces precisely the
strings in the language.

This section deals with discontinuous constituency, but some of these phe-
nomena apply to dependency structures as well, where the stronger notion of
non-projectivitynon-projectivity is employed. A dependency structure is projective iff the head
and all nodes it dominates are a contiguous sequence of words. This notion is
stronger because not every discontinuous constituent is non-projective when
converted to a dependency structure (cf. figure ), while every non-projective
dependency structure is necessarily discontinuous as a constituent structure
(trivial).

A well-known phenomenon which is beyond the power of context-free gram-
mars is called cross-serial dependenciescross-serial dependencies . It has been attested in two languages,
namely Dutch (Bresnan et al., ) and Swiss-German (Shieber, ). Before
we move on to cross-serial dependencies, consider the following clauses in
English and German:

 ‘iff’ stands for ‘if and only if.’
 These examples are adapted from Kolb et al. ().



that Charles lets Mary help Peter teach Hans to swim

daß der Karl die Maria dem Peter den Hans schwimmen lehren helfen lässt

The lines indicate dependencies between verbs and their objects; other
dependencies are left out, for simplicity’s sake. English shows a flat structure
where each verb and its argument is directly adjacent, while German shows a
nested, palindromic structure. Both of these structures are easily formalized in
a context-free grammar using recursive rules.

In Dutch and Swiss-German, the equivalent clauses display cross-serial
dependencies:

dat Karel Marie Peter Hans laat helpen leren zwemmen

daß de Karl d’Maria em Peter de Hans laat hälfe lärne schwümmen

These structures cannot be produced by a context-free grammar, if it is to
support an arbitrary number of such crossed dependencies. More strongly,
Shieber shows that regardless of particular constituent structures, it is not even
possible to devise a context-free grammar which accepts exactly the strings of
Swiss-German. This is because Swiss-German requires case markings on all
nps, in contrast to Dutch. Without formally treating the cross-serial dependen-
cies, i.e., by generating each verb together with its complement, a cfg would
invariably generate sentences with incorrect case markings.

These sentences may seem contrived, but findings from psycholinguistics
report that cross-serial dependencies are actually easier to process than nested
dependencies (Bach et al., ; Vogel et al., ). This suggests that the unre-
stricted recursion of context-free grammars has no cognitive plausibility, while
in cognitive processing certain operations can be employed that are beyond
context-free, such as detection of duplication. All of this appears to happen
in linear time, on average, while most statistical parsers, especially ones with
strong stochastic models, require at least cubic time in theory and in practice.
Vogel et al. suggest a meta-grammatical approach in which a context-free back-

S

VP

is Daisy happy ? is Daisy happy ?

Figure : Discontinuity does not imply non-projectivity: a discontinuous con-
stituency structure with a projective dependency structure.



bone is filtered to accept or generate only correct cross-serial dependencies. In
essence the approach is for certain rules to expect a duplication, or at least a
duplication of a certain feature such as case. The filter is triggered by a special
feature on the non-terminals in the cfg rules. In the case of the Swiss-German
sentence, the first half is parsed with plain cfg rules, which triggers filtering
through features in the vp rules; each of the vps will expect an np with a certain
case marking in the rest of the sentence.

S

VP

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

Figure : A sentence with topicalization from the Negra corpus.
Translation: As for the insurance, one can save it.

A different class of phenomena deals with constructions that can be readily
produced by a context-free grammar, but arguably require richer represen-
tations to be treated elegantly. The main example of this is extrapositionextraposition .
Extraposition describes a situation where part of a constituent seems to have
moved from where it would be expected. A concrete example of this is the case
of topicalizationtopicalization , in which a new topic is introduced by giving it prominence,
expressed by moving a constituent to a salient position such as the start of the
sentence. Figure  shows an example.

Another case is constituted by extraposed relative clausesextraposed relative clauses . An np such as ‘a
man’ can be modified by a relative clause such as in ‘a man who was pred’; in
principle these are adjacent, to make the relation clear. However, for pragmatic
reasons it might be desirable to express the relation of the subject to the verb
first:

A man entered the room who was seeking a unicorn

Arguably in this case “A man [...] who was seeking a unicorn” should still
be a constituent, because it constitutes a semantic unit—the argument to the
verb ‘enter’ is not just any man, but the one who was seeking a unicorn.

Further examples are given in Bunt () and Dowty (), showing that
not only nps but also vps and aps can be discontinuous, and that discontinuities
do not just wrap around other constituents, but readily cross each other, even
without cross-serial dependencies:

 I say ‘seems’ because in this thesis I assume that discontinuous phenomena are to be described by
appropriate representations instead of rich operations on arbitrarily limited representations, such
as in the transformational approach.



Some guy was hired that Sue knew to fix the plumbing

If the syntactic representation explicitly encodes discontinuities introduced
by extraposition and other forms of ‘movement,’ then it becomes possible to
express argument structure argument structuredirectly in the syntactic annotation. This was one
of the motivations for the designers of the Negra corpus (Skut et al., )
to allow discontinuous constituents. By relaxing the adjacency constraints of
traditional phrase-structure trees, it becomes possible to employ constituency
to express relationships between heads and all of their arguments and adjuncts,
instead of arbitrarily attaching them to the nearest possible constituent to satisfy
some mathematical stipulation. This means that even if one is not convinced
about the reality of discontinuities or movement, there is still a very compelling
argument that these representations are better suited for semantic purposes.

. Corpora

Most corpora are annotated with traditional (context-free) phrase-struc-
ture trees or projective (non-crossing) dependencies. Two German
corpora, Negra (Skut et al., ) and Tiger (Brants et al., ) en-

code discontinuities directly in their representations. A tree is represented as
an arborescence arborescence, viz. a directed acyclic graph such that there is exactly one
path from its root vertex u to any non-root vertex v. Additionally, there is a
total order on its terminals (contrast this with phrase-structure trees, which
rely on a partial order among sibling nodes). See figure  for an example of a
tree encoded with discontinuities.

The annotation of both corpora is similar, although Tiger provides some
additional information in secondary edges, morphological tags and lemmas.
The tree structures in these corpora are flatter (less hierarchical) than those
of the Wall Street Journal (wsj) corpus. Because of the discontinuous repre-
sentations it is possible to employ immediate dominance to express argument
structure directly, allowing a tight fit between syntax and semantics. Edge labels
encode grammatical functions, including distinctions between complements
and adjuncts. A conspicuous difference with the wsj annotation is that there are
no finite vps—the main verb and its object are placed directly under the s node.
Similarly there is no np node in pps, presumably because it can be inferred.
Unary phrasal projections that can be inferred are omitted as well, such that for
example a single noun will not get an np node. These annotation decisions are
supported with the argument that they eliminate “redundancies" and improve
the ergonomics of corpus annotation. This argument strikes me as strange, as

 There exists a different strategy of encoding discontinuities: the use of special nodel labels such
as traces, a method which works with a context-free backbone (Maier and Søgaard, ), and
employed in corpora such as the Penn treebank (Marcus et al., ), and Tüba-D/Z (Telljohann
et al., ). While this approach can in principle encode exactly the same information, it is
arguably more ad-hoc.
 Secondary edges are used to indicate coordination information not expressible as normal grammati-

cal functions through edges. An example of this is non-constituent coordination when for example
a subject np may be shared by multiple verbs.
 The wsj corpus is part of the Penn treebank (Marcus et al., ) and is the most common benchmark

in statistical parsing.



this aspect of the annotation can be automated, and the redundancies can be
linguistically relevant. As a constituent is often defined in terms of what it can
substitute for, it would appear especially relevant for a statistical parser that an
np occurring as subject could also appear in a pp.

Figure  shows a graph of the number of discontinuities per tree in the
Negra and Tiger corpora. While the majority of trees has no discontinuities at
all, approximately thirty percent are annotated with one or more discontinuities
per tree. Alternatively the degree of the discontinuities can be compared, which
is defined as the maximum number of discontinuities in a single constituent; see
table . From these figures it can be concluded that discontinuity forms a non-
negligible component of the data, and that the discontinuity is not limited to
singular gaps. These statistics are based on the original trees from the treebank;
later on it will turn out that when binarized (see section .), the number of
discontinuities increases. This is because in longer constituents it is possible
that there are latent discontinuities which are resolved if all non-terminals are
combined at once, but surface when the constituent is built up in multiple steps.













          

Tr
ee

s

Constituents with gaps

Tiger
Negra

Figure : Distribution of trees in the Negra and Tiger corpora with respect
to the number of constituents with gaps per tree. The y-axis has a
logarithmic scale.



Negra Tiger

c =  , (.%) , (.%)
c =  , (.%) , (.%)
c =   (.%) , (.%)
c =   (.%)  (.%)

Table : The constituent gap degrees of Tiger/Negra trees, as reported by Maier
and Søgaard (). The constituent gap degree of a tree is the maxi-
mum number of gaps in a constituent.



. Previous work

Early work on discontinuity (Yngve, ; Harman, ) extended the
representation of phrase structures with the notion of wrappingwrapping a con-
stituent around the next constituent. The idea of wrapping has been

further elaborated in the form of Head Grammar (Pollard, ), which allows
a single gap per constituent to bridge an arbitrary number of constituents;
the resulting parser is shown to have a complexity of O(n6); compare this to
context-free grammar which can be parsed in O(n3) time. Formalisms and
parsers that allow for arbitrary discontinuity have been reported as well (John-
son, ; van Noord, ). The first probabilistic discontinuous parser evalu-
ated on a large treebank is reported by Plaehn (), who uses a discontinuous
phrase-structure grammar (dpsg; Bunt, ). A serious problem with these
latter formalisms is that they have exponential time complexity.

Fortunately a compromise is possible, which allows arbitrary discontinuity
with polynomial time complexity. The crucial difference is that the exponential
time grammar formalisms provide a way for derivations to share an unbounded
amount of information among its nodes. In the case of dpsg this is because
each discontinuous production is constrained to skip particular non-terminals
in its gaps, so a production depends on a non-terminal which is not being
rewritten, making the formalism context-sensitive. If, however, the derivation
trees themselves are context-free, then we can obtain non-context-free parse
trees in polynomial time (Vijay-Shanker et al., ).

It is instructive to distinguish three orthogonal senses in which a formalism
can transcend the different aspects associated with context-free grammars:

. the form of productions
. independence assumptions of the probabilistic model
. objects being rewritten and structure of the resulting derivations

In the strongest sense a formalism can have productions which violate
context-freeness in a formal sense. Instead of the original, narrow definition
of context-free from the Chomsky-Schützenberger hierarchy (Chomsky and
Schützenberger, ), Vijay-Shanker et al. () suggest more general crite-
ria to capture the efficiency that comes with context-free rewriting operations.
When (a) a formalism’s derivation trees can be described by a context-free
grammar, and when (b) only a bounded amount of structure can be added
or removed by applying productions, recognition will have polynomial time
complexity. Examples of formalisms that violate these criteria are dpsg, lfg
and fug (Lexical Functional Grammar and Functional Unification Grammar,
respectively; Trautwein, ). The weakest sense is when parsing decisions are
weighted using non-local statistical dependencies, while the string language
remains unchanged; an example of this is Data-Oriented Parsing (dop, cf. chap-
ter ). In between these is the possibility of a formalism that produces richer
representations, while its productions remain context-free in a more general
sense. This is achieved by adhering to conditions (a) and (b). Such a formalism
will be introduced in the next section, while in a later section it will be be
combined with non-local statistical dependencies as well.



Chapter 

Linear Context-Free Rewriting Systems

A mildly context-sensitive formalism is able to recognize and parse
discontinuity effectively and efficiently. Rules can be read off directly
from a treebank and assigned probabilities based on relative frequencies.
A chart-parser is presented and methods of binarization are investigated.

The (somewhat informal) notion of mild context-sensitivity mild context-sensitivitywas introduced
by Joshi () to capture precisely the amount of generative capacity needed to
describe natural languages—as opposed to employing richer frameworks which
require ad-hoc constraints to be tractable. Mildly context-sensitive languages
are characterized by the following properties:

. limited crossed dependencies
. constant growth
. polynomial time parsing

For a formal description of these properties, refer to e.g., Groenink (a).
A diverse set of formalisms with these properties has since developed. However,
while their structures and operations differ wildly, it has been observed that
they share two common properties (Vijay-Shanker et al., ; Weir, ):

Linear: only a bounded amount of structure can be added or removed by
applying productions, i.e., operations are size preserving

Context-free: choices during a derivation are independent of the context in
the derivation (where context is anything which is not being rewritten)

Furthermore, it does not matter whether the formalism rewrites strings,
tuples, or trees. This led to the introduction of Linear Context-Free Rewrit-
ing Systems (lcfrs), which subsumes all formalisms with these properties.
Groenink (a) states that “[t]he class of mildly context-sensitive languages
seems to be most adequately approached by lcfrs.” For expository purposes,
we will first look at a more powerful formalism.

. The grammar formalism

Range Concatenation Grammar (rcg; Boullier, ) is a grammar for-
malism which aims to cover a wide range of linguistic phenomena while
still being efficiently parsable. Rcg started out as a variant of simple

Literal Movement Grammar (lmg; Groenink, , b), which has equiva-
lent generative power. A derivation in rcg is presented as a deduction where



non-terminals are treated as predicates holding over ranges of terminals in
the input. When all predicates have arity one the formalism is equivalent to
a context-free grammar (cfg), but predicates with higher arity can be used to
describe an arbitrary number of discontinuities.

As an example, consider the sentence pair “Gatsby is rich” and “is Gatsby
rich?”. The former will be generated by a typical np-vp rule, but in a cfg, the
latter is usually described by flattening (eliminating) the vp:

S→ VB NP ADJ

In an rcg it can be generated as follows:

S(xyz)→NP(y) VP(x, z)

VP(x, z)→VB(x) ADJ(z)

The variables x, y, z denote rangesranges , which consist of one or more consecutive
terminals. Each non-terminal in a rule is a predicate that covers one or more
ranges. The left-hand side of the rule defines a yield functionyield function specifying how
the ranges on the right-hand side compose to form the non-terminal on the
left-hand side. The yield function combines the ranges into a new, potentially
discontinuous, constituent. Consecutive ranges may be concatenated to form a
new range, while non-consecutive ranges must remain discontinuous, resulting
in a discontinuous production. Concatenation is expressed on the left-hand side
by a sequence of variables not separated by commas. The number of arguments
to a predicate will be referred to as its fan-outfan-out (in other contexts referred to
as arity). Note that the order of non-terminals on the right-hand side is not
significant, as everything is determined by the order of the ranges.

A complete grammar for the declarative and polar question can be expressed
as a simple recognizer in Prolog:

s(ABC) :- np(B), vp(A,C), append([A, B, C], ABC).
s(AB) :- np(A), vp(B), append([A, B], AB).
vp(AB) :- v(A), adj(B), append([A, B], AB).
vp(A,C) :- v(A), adj(C).
np(A) :- n(A).
v([is]).
n([gatsby]).
adj([rich]).

Since ABC is an arbitrary identifier, we have to append the variables manually.
The recognizer can distinguish grammatical and ungrammatical sentences:

-? s([gatsby,is,rich]), s([is,gatsby,rich]).
Yes
-? s([rich,gatsby,is]).
No

 It is also possible to encode an rcg in Datalog, a restricted subset of Prolog with efficient bottom-up
query evaluation. Datalog does not admit compound structures (such as lists), so rules must be
rewritten to employ ranges instead. The interested reader is referred to Kanazawa ().



Simple Range Concatenation Grammar (srcg) is a restricted subset of rcg
where each variable must occur at most once on either side (linear linear), and each
variable on the right-hand side must occur on the left-hand side (non-erasing non-erasing).
Together, these two restrictions make for a mildly context-sensitive formalism,
which further improves the time complexity, although at the cost of reduced
expressiveness. Furthermore, an ordered orderedgrammar is one where the ranges
(equivalently, variables) on each non-terminal on the right-hand side are ordered
according to the order in which they appear on the left-hand side. This has the
effect that no ‘word-order switch rule’ can be introduced (i.e., one that converts
the order of adjuncts & complements to some canonical order), but it greatly
increases efficiency.

The formalism Linear Context-Free Rewriting Systems is equivalent to Sim-
ple Range Concatenation Grammar. This formalism is known to subsume a
wide variety of mildly context-sensitive formalisms such as tree-adjoining gram-
mar (tag), combinatory categorial grammar (ccg), minimalist grammar (mg)
and multiple context-free grammar (mcfg), in terms of weak generative equiva-
lence (Vijay-Shanker and Weir, ; Kallmeyer, ). Even a synchronous
context-free grammar can be encoded as an lcfrs, by having one gap in each
rule, where the first yield is the source sentence and the second is the target
sentence:

S(xy, pq)→ NP(x, p) VP(y, q)

Additionally, it is possible to parse dependency structures (projective or not)
with an lcfrs (Gómez-Rodríguez et al., ; Kuhlmann and Satta, ). Maier
and Kallmeyer () present the first results for grammar-based non-projective
dependency parsing.

More strongly, srcg is a syntactic variant of lcfrs (Kallmeyer, ), but
arguably the notation of the former is more readable. The notation for lcfrs
specifies the production and the composition function separately, which ob-
scures the relation between the non-terminals and their associated variables.
See section . for an example. On the other hand, rcg and srcg operate on
ranges of the sentence, i.e., intervals, while an lcfrs is more general because it
can operate on any kind of structure, in our case on tuples of strings. In the rest
of this thesis I will employ the srcg notation for grammar rules while working
with the lcfrs formalism.

Formally, an lcfrs is a tuple G = 〈N,T, V, P, S〉. N is a finite set of non-
terminals; every non-terminal symbol has a unique fan-out characterized by
a function dim : N → N. T and V are disjoint finite sets of terminals and
variables. S is the distinguished start symbol with dim(S) = 1. P is a finite set
of rewrite rules of the form:

A(α1, . . . αdim(A))→B1(X1
1 , . . . , X

1
dim(B1)

)

. . . Bm(Xm
1 , . . . , X

m
dim(Bm))

for m ≥ 0, where A, B1, . . . , Bm ∈ N , each Xi
j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤

dim(Aj) and αi ∈ (T ∪ V)∗ for 1 ≤ i ≤ dim(Ai).

Weak generative equivalence characterizes the strings a grammar produces; contrast with strong
generative equivalence, which considers trees as well.



CFG
TAG
CCG
LIG

LCFRS
MCFG
MG (context-sensitive

languages)(mildly context-
sensitive
languages)

Figure : A containment hierarchy of grammar formalisms. Note that while
lcfrs, mcfg & mg define an infinite hierarchy of languages, it is not
known whether they fully exhaust the class of mildly context-sensitive
languages.

A rule can be instantiatedinstantiated when its variables can be bound to spans such
that for each component αi of the lhs, the concatenation of its terminals and
bound variables forms a contiguous span in the input, while the endpoints of
each span are non-contiguous.

The parsing complexity of Range Concatenation Grammars is exactly that
of ptime (polynomial time on a deterministic Turing machine). How this relates
to context-sensitive grammars of the Chomsky-Schützenberger hierarchy is
unknown—although membership in a context-sensitive grammar is known to be
pspace-complete, it is not known whether an rcg forms a subset of the context-
sensitive languages—i.e., the range concatenation languages could include
languages outside the class of context-sensitive languages.

The problem of fixed grammar recognition with a Linear Context-Free
Rewriting System is in logcfllogcfl  (Kanazawa, ). The parsing complexity
for a given grammar is dependent on the maximum fan-out of the grammar,
where the fan-out of a grammar is defined as the maximum number of gaps
(discontinuities) in the lhs non-terminal of a rule. If ϕ is the fan-out after
binarization, and |w| the number of words, the asymptotic complexity of fixed
grammar recognition is O(|w|3ϕ) (Gómez-Rodríguez et al., ). A tighter
bound for fixed grammar recognition is given by Gildea (). Define the
parsing complexityparsing complexity of a rule as the sum of the fan-outs in the rule (lhs and
rhs). Let p be the maximum parsing complexity in the grammar rules; the
parsing complexity of the grammar is then O(|w|p). Note that in both of these
characterizations, the grammar constant |G| has been left out, because it does
not dominate asymptotically. In practice, however, it is a very important factor.

Note that binarization can increase the fan-out (cf. section .). If the fan-out
is , we get a context-free grammar, and hence cubic time, while higher fan-outs
define a natural progression of complexities beyond context-free. See figure 
for a diagram showing the containment hierarchy of complexities of the various
formalisms.

 logcfl is the class of problems that can be rewritten in logarithmic space as membership in a
context-free language. It is a class of problems which can be efficiently parallelized.



. Grammar extraction

Rules can be read off from (discontinuous) phrase-structure trees in a
straightforward manner, similarly to a cfg. The process is slightly
more involved, because the yields and their composition functions have

to be sorted out. It is spelled out in algorithm , which follows Maier and
Søgaard (). Figure  shows the rules extracted from the tree in figure .

ROOT

S

VP

NP

PP AP NP VZ

ADV VVFIN APPR PIAT NN PTKNEG ADJA NN ART NN PTKZU VVINF $.

Vielmehr scheinen auf allen Seiten nicht unerhebliche Eigeninteressen das Handeln zu bestimmen .

Figure : A tree with crossing branches from the Tiger corpus. In this case the
subject np is surrounded by the children of the vp.

To obtain the equivalent of a treebank pcfg for an lcfrs, we can trivially
collect the relative frequencies of each production. This maximum likelihood
estimate produces a proper probability distribution because just as for a pcfg,
there is an isomorphism (one-to-one correspondence) between constituents and
productions. And since it is known that relative frequencies form a maximum
likelihood estimate for a pcfg, this must also hold for a plcfrs.

: for all trees t ∈ T
: for all nodes n ∈ t
: if lexical?(n)
: add pos(word)→ ε to R, given a tag ‘pos’ and terminal ‘word’
: else

: k ← number of children of n
: for i = 1 to k
: yield← set of indices of terminals that ni dominates
: args← {x | x ∈ yield ∧ x− 1 6∈ yield}
: right-argsi ← args
: Bi ← 〈 label of ni, |args| 〉
: left-args← sorted concatenation of right-args
: replace indices in left-args and right-args with new variables
: A← 〈 label of n, |left-args| 〉
: add to R: A(left-args)→ B1(right-args1) . . . Bk(right-argsk)

Algorithm : The procedure for extracting lcfrs rules from a treebank. Discon-
tinuous yields are identified by abstracting over terminals and
examining ranges of indices instead.



ROOT(x0x1) → S(x0) $.(x1) ADV(Vielmehr) → ε

S(x0x1x2x3x4) → ADV(x0) NP(x3) VP(x2, x4) VVFIN(x1) VVFIN(scheinen) → ε

NP(x0x1) → AP(x0) NN(x1) APPR(auf) → ε

AP(x0x1) → PTKNEG(x0) ADJA(x1) PIAT(allen) → ε

VP(x0, x1x2) → PP(x0) NP(x1) VZ(x2) NN(Seiten) → ε

PP(x0x1x2) → APPR(x0) NN(x2) PIAT(x1) PTKNEG(nicht) → ε

NP(x0x1) → ART(x0) NN(x1) ADJA(unerhebliche) → ε

VZ(x0x1) → PTKZU(x0) VVINF(x1) NN(Eigeninteressen) → ε

ART(das) → ε

NN(Handeln) → ε

PTKZU(zu) → ε

VVINF(bestimmen) → ε

$.(.) → ε

Figure : Grammar rules as extracted from the tree in figure . Note that the vp

is marked as having fan-out .

. Parsing

Parsing is made difficult by the fact that there is no canonical order in
which the search space can be systematically and optimally explored.
A typical cky parser traverses this space using three nested for-loops,

enumerating all possible start, end, and split indices over the input string,
straightforwardly going from left to right. This is not possible for an lcfrs,
because discontinuous constituents skip an arbitrary number of non-terminals.
Since the formalism allows an arbitrary number of discontinuities, enumerating
all spans exhaustively runs into combinatorial problems.

Instead an explicit agenda is used. Following the framework of deductive
parsingdeductive parsing (Shieber et al., ; Nederhof, ), propositions are taken from
the agenda and all possible deductions are put on the agenda, until the goal-
proposition, the top node covering the whole input string, is reached or the
agenda is empty. The propositions consist of instantiated grammar rules, which
are rules in which the variables have been bound to tuples of strings in the
input string.

We will employ an extended version of the agenda-based chart-parser for
lcfrs by Kallmeyer and Maier (). The algorithm is Knuth’s generalization
of Dijkstra’s shortest path algorithm to the case of hypergraphs, where the
shortest path is the Viterbi derivation and the hypergraph is the chart defining
possible derivations. As with cky, this parser requires that rules are binarized;
for efficiency, we also restrict the parser to ordered rules. The search space of
a pcfg can be explored systematically from left to right with constituents of
increasing size; this is what makes typical cky parsers efficient. Unfortunately
this approach does not translate to lcfrs because discontinuous constituents

 The Cocke-Kasami-Younger algorithm (Younger, ) is a bottom-up tabular parsing algorithm
that relies on productions being in binary form. Although the original formulation is specifically
about context-free languages and requires the grammar to be in the more restricted Chomsky
Normal Form (cnf), this cnf conversion is not strictly necessary and in fact detrimental to parsing
efficiency as it may produce an exponential increase in grammar size (Lange, ).



: initialize agenda A with pos tags
: while A 6= ∅
: 〈I, x〉 ← item with lowest score on agenda
: add 〈I, x〉 to C and F
: for all 〈I ′, y〉 deduced from {〈I, J〉, 〈J, I〉, 〈I〉 | J ∈ C}
: if I ′ 6∈ A ∪ C
: enqueue 〈I ′, y〉 in A
: else if I ′ ∈ A ∧ y < score for I ′ in A
: add I ′ with old score to F
: update weight of I ′ in A to y
: else

: add 〈I ′, y〉 to F

Algorithm : An agenda-based chart-parser for lcfrs.

can cover any subsequence of the input. For this reason an explicit agenda has
to be used, ordered by inside probability; alternatively the agenda can employ
figures of merit or A* heuristics to order the agenda, but this is not explored in
this work.

The pseudo-code for the parser is given in algorithm . An item itemI is defined
by a label (e.g., np) and one or more spans, which can be represented as a
bit vector to allow efficient set operations (e.g.,  to denote the first and
last word in a sentence of four words). Items are associated with weights and
backpointers to other items to form edges edgeswhich make up complete derivations,
but when determining whether an item is already on the agenda or in the chart,
only the label and the spans are considered. The data structures A and C are
the agenda and the chart of Viterbi items, as in Kallmeyer and Maier (). An
additional data structure, F , keeps track of all edges encountered, including
suboptimal ones. This structure implicitly defines a parse forest, from which
derivations can be sampled or extracted in descending order of probability.
Another important difference is that the algorithm does not terminate upon
reaching the first goal node, but only when the agenda has been completely
exhausted.

The algorithm is deceptively simple. Most of the work is in producing all
items that can be deduced from a given item and an item in the chart. This
involves iterating over all grammar rules with matching labels, and verifying
whether the yields are compatible according to the rule. This can be optimized
by representing yields as bit vectors and first verifying that the two yields do
not overlap. The next step is verifying that each variable in the rule corresponds
to a component of one of the yields of the rhs non-terminals, and that these
components are adjacent if and only if they are concatenated in the rule. Rules
that can be instantiated are given a score that is the sum of the weights of their
rhs (assuming log probabilities).

The parser just presented relies on having rules in binarized form, because
when an item is taken from the agenda it needs to derive all possible new items
from it. If the grammar rules were not binarized and have the maximum rank n
(i.e., the maximum number of non-terminals on a right-hand side is n), then ob-
taining the set of new items involves evaluating the Cartesian products from  to
n items against all rules. Explicitly enumerating this Cartesian product is clearly



not feasible, so a parser for unbinarized grammars would have to work with
incomplete edges. This has been done, using thread automata (Villemonte de la
Clergerie, ), and in the form of an incremental Earley parser (Kallmeyer
and Maier, ). However, it appears that it entails a prohibitive amount of
bookkeeping in the context of treebank parsing.

When rules are binarized, the current item taken from the agenda only
has to be paired with all possible items in the chart for a given rule (unary
productions can be allowed as well, without further ado). For efficiency the
Viterbi chart is implemented as a mapping from labels to spans with scores. An
outer loop treats all rules compatible with the item from the agenda according
to its label. An inner loop evaluates all items from the chart matching the
rule under consideration, again indexed on the label, this time prescribed by
the rule. The final step is then to see whether the spans of the two items
combine in the manner prescribed by the yield function of the rule. This is
implemented as a loop iterating over the spans and the yield function until
either an incompatibility is found, or the end of the spans is reached, indicating
success.

This strategy is much less efficient than a cky parser for a cfg, because there
the only items compatible with an item under consideration are the ones whose
span is directly adjacent, which translates to a simple array look up. For an
lcfrs an arbitrary number of spans have to match in just the way prescribed,
such that a brute force search for compatible spans is necessary, aside from
optimizing for matching labels.

If discontinuity is suitably limited (preferably to singular gaps), it is feasible
to use a geometric data structure to represent chart items as n-dimensional
points (Waxmonsky and Melamed, ); candidate items can then be retrieved
using a range query. However, such a data structure quickly becomes unwieldy
with higher dimensions or when the chart is densely packed. This strategy is
therefore not pursued in this work.

. Binarization

The binarization of lcfrs grammars is a considerable topic in itself, first
because it has a large influence on parsing complexity, and second
because the freedom of reordering the right-hand side results in O(n!)

binarization strategies.
Binarization has an influence on the parsing complexity because certain

binarizations will increase the fan-out (introduce discontinuities). Another
reason, which also holds for a cfg, is that the order of binarization affects the
number of useless edges that will be produced (edges not part of a complete
derivation). For example an adverb can be part of many kinds of constituents,
because it can modify verbs, adjectives and other adverbs. It would therefore
not be a good idea to binarize productions with adverbs such that the initial
trigger for a rule is the presence of an adverb, because this could trigger a
needless search for a vp which could have been avoided if the verb had been the
trigger. To counter this, binarizations can be made with respect to the head of
a constituent, which is the linguistically most important part of a constituent.
The first reason, however, affects not just the size of the grammar (the grammar
constant) or the resulting chart, but the asymptotic complexity, which could be



a more serious problem.
Consider a production X(pqrs) → A(p, r) B(q) C(s). This is a continuous

production (fan-out ), but one of its non-terminals on the right-hand side has
one gap. If we were to apply a right binarization, the non-terminals B and C
would be combined first, but the variables q and s are not consecutive, so this
binarization introduces a discontinuity in the resulting grammar. If we apply a
left binarization, however, the non-terminals A and B will be combined, whose
variables concatenate to pqr, after which C can be introduced, maintaining the
continuity of the original production. For this reason it is interesting to see
whether we can minimize the number of discontinuities introduced through
binarization.

Gildea () gives an algorithm to find the minimal binarization of a rule
in terms of a given function, which has exponential running time. Parsing
complexity can then by minimized by using a function that returns a tuple
of the number of the number of variables in a production and the fan-out of
the left-hand side; the former minimizes the parsing complexity and the latter
breaks ties in a way that minimizes the fan-out. The algorithm proceeds by
taking the lowest scoring item from the agenda (a priority queue) and combining
it with another, resulting in a new production with an artificial label, until a
production covering the whole right-hand side is found. The ordering of the
agenda guarantees that the minimal binarization is found first.

: for all children c of t
: workingset← workingset ∪ {c}
: enqueue c in A
: while A 6= ∅
: p← minimum from A
: if p 6∈ workingset
: continue

: else if nonterms(p) = children of t
: return p
: for all p1 ∈ workingset such that

nonterms(p) ∩ nonterms(p1) = ∅
: p2 ← newprod(p, p1)
: if ¬∃p3 ∈ workingset such that

nonterms(p2) = nonterms(p3) ∧ score(p3) < score(p2)
: workingset ← {p2} ∪ {p3 | p3 ∈ workingset ∧

nonterms(p2) 6= nonterms(p3)}
: enqueue p2 in A

Algorithm : Finding the optimal binarization of a constituent t according to a
given scoring function.

See algorithm  for a specification. The function ‘newprod’ takes two non-
terminals and returns a new production with an artificial label, covering the
union of their yields. The score for a production is the maximum of the scores
for the productions leading up to a production and of the production itself.

The algorithm is an adaptation of Gildea (). First, when an item is
popped from the agenda, it confirms whether the item is still in the working
set (it might have been superseded meanwhile; an alternative would be to



remove inferior items from the agenda immediately, but that is a more expensive
operation). Second, when producing new candidate productions, only items
without overlap should be evaluated. Lastly, when evaluating a new production,
it should be added not just when it is better than a previous item covering the
same non-terminals, but also when no such item had been found thus far.

Gildea () further gives a production which demonstrates that minimiz-
ing fan-out and parsing complexity can be mutually exclusive. Gildea presents
a production with an optimal binarization according to parsing complexity
that differs from the binarization with minimal fan-out. The fan-out is simply
the number of spans on the left-hand side (gaps plus one), while the parsing
complexity is defined as the total number of variables in the rule (the sum of
the fan-outs of the left and right-hand side). There is a binarization with an
optimal parsing complexity of  and a fan-out of , versus a binarization with
parsing complexity of  and fan-out of . The production in question is as
follows in lcfrs notation:

A→ g(B1, B2,B3, B4)

g(〈x1,1, x1,2〉, 〈x2,1, x2,2, x2,3〉, 〈x3,1, x3,2, x3,3, x3,4, x3,5〉, 〈x4,1, x4,2, x4,3〉)
= 〈x4,1x3,1, x2,1, x4,2x1,1x2,2x4,3x3,2x2,3x3,3x2,3x3,3, x1,2x3,4, x3,5〉

Converted to srcg notation, this reads:

A(x0x1,x2, x3x4x5x6x7x8x9, x10x11, x12)

→ B4(x0, x3, x6)B1(x4, x10)B2(x2, x5, x8)B3(x1, x7, x9, x11, x12)

If we optimize first for complexity and then for fan-out, we get these pro-
ductions (with complexity and fan-out listed in the first two columns):

  A(x0x1, x2, x3x4x5x6, x7, x8)
→ B4(x0, x3, x5)AB1,B2,B3(x1, x2, x4, x6, x7, x8)

  AB1,B2,B3(x0, x1, x2x3, x4, x5x6, x7)
→ AB2,B3(x0, x1, x3, x4, x6, x7)B1(x2, x5)

  AB2,B3(x0, x1, x2, x3x4x5, x6, x7)
→ B3(x0, x3, x5, x6, x7)B2(x1, x2, x4)

If we optimize first for fan-out and then for complexity, we get these pro-
ductions:

  A(x0x1, x2, x3x4x5x6, x7x8, x9)
→ AB1,B2,B4(x0, x2, x3, x5, x7)B3(x1, x4, x6, x8, x9)

  AB1,B2,B4(x0, x1, x2x3x4, x5, x6)
→ AB1,B4(x0, x2, x4, x6)B2(x1, x3, x5)

  AB1,B4(x0, x1x2, x3, x4)→ B4(x0, x1, x3)B1(x2, x4)

See figure  for the production and its minimal binarizations rendered as
tree structures.

These results on optimal parsing complexity are not the whole story, however.
There is another motivation for binarization: a treebank grammar contains
many unique n-ary productions, and therefore it is likely that it lacks many
unseen productions. Breaking them up into re-usable binary productions is a
reasonable way to smooth them (Sima’an, ).



A

B

B

B

B

            

A

B

B

B

B

AB,B,B

AB,B

            

A

AB,B,B

AB,B

B

B

B

B

            

Figure : From top to bottom: the production from Gildea () for which
minimal complexity and fan-out are exclusive; an optimal binarization
that minimizes complexity, which must sacrifice minimal fan-out; an
optimal binarization that minimizes fan-out, which must sacrifice
minimal complexity.



The artificial labels introduced by the optimal binarization are unique such
that they are only applicable when the particular set of non-terminals on the
right-hand side of the original production is present. When instead labels
are introduced with a limited amount of horizontal contexthorizontal context —for example the
previous sibling—two binarized productions can be combined to recognize a
new sequence of non-terminals (Klein and Manning, a). On the one hand
binarizations can be restricted by markovization in the vertical direction by
adding parent annotationparent annotation . A setting of v= corresponds to a default binarization
equivalent to the original grammar, while v= adds a grandparent as well;
conversely v= gives a grammar that is less restrictive than the original. On
the other hand we can smooth in the horizontal direction instead of using the
default h=∞. With a pcfg on Negra, the best results are obtained with v=,
h= (Rafferty and Manning, ).

Additionally, when information about lexical headslexical heads is present in the corpus
this can be exploited by making sure the head will be parsed first (Collins, ).
Negra and Tiger contain annotations marking certain pre-terminals as head,
but it is useful to ensure that all constituents contain exactly one head. This
has been realized by the use of heuristic rules based on those employed by the
Stanford parser (Klein and Manning, b).

Unfortunately, incorporating this information in a search for an optimal
parsing strategy results in an np-hard problem (Crescenzi et al., ). A
simpler approach is to employ a simple head-driven strategy without regard
for efficiency, following Maier and Kallmeyer (). The right-hand side is
ordered by linear precedence of its yields, after which everything after the head
is reversed and moved to the front, so that the head will be the final element.
This effectively produces a head-outward binarization. The result is that
when parsing bottom-up, the head is covered first (incomplete constituents
are restricted to ones covering a head). To increase coverage, the first and last
element of the right-hand side are binarized to unary productions; this allows
stringing together parts of constituents not only when they match somewhere
in the middle, but at the boundaries as well. Figure  illustrates the binarization
for a single constituent, while figure  shows the result of binarization on a full
tree.

Note that binarization is sometimes presented as a grammar transformation,
but considering it as a transformation on trees has important advantages. For
one, parent annotation becomes trivial: one simply adds parents to each label in
the trees, after which rules are read off. With grammar rules one would have to
keep track of the contexts in which a rule was used, and introduce a new copy
of the rule for each distinct parent. Another reason is probabilities. When bina-
rizing trees, no special attention has to be given to probabilities or frequencies;
reading of a pcfg or plcfrs automatically gives the right frequencies, also for
artificial nodes introduced by the binarization procedure. This distinction has
direct ramifications. In the work of Kallmeyer and Maier (), binarization
operates on a grammar, and as a consequence of the requirement in lcfrs that
every non-terminal has a unique fanout, a continuous and discontinuous np are

 An np-hard problem is a problem that is at least as hard as any problem solvable in non-
deterministic polynomial (np) time. In practice, this means it is not efficiently solvable, irrespective
of computing hardware, when the problem size is sufficiently large.

 Reversing the part after the head is equivalent with switching the direction of binarization from
right to left in a cfg.



labeled differently, even before binarization. The result is that their markoviza-
tion is more strict: a discontinuous np below an S node will introduce the
artificial node SNP_, which selects a discontinuous np specifically. Furthermore,
this means that these fan-out markers are introduced twice: before and after
binarization. In our system the trees from the treebank are binarized directly
without adding such fan-out markers; only after binarization the grammar is
read off and such markers are added at which point they are strictly necessary.

To evaluate the actual effects on efficiency, different binarizations need to be
compared empirically on real data. To this end, a grammar was read off from
sentences of up to  words in the first  sentences of the Tiger treebank,
and the next  sentences of up to  words were parsed using this plcfrs,
using the different binarization schemes. First with a right branching, left-
to-right binarization, and second with the minimal binarization according to
parsing complexity and fan-out. The last two binarizations are head-driven and
markovized—the first straightforwardly from left-to-right, the latter optimized
for minimal parsing complexity. With markovization we are forced to add a
level of parent annotation to tame the increase in productivity caused by h=.

Table  shows the results. Despite the optimal binarizations being expo-
nential and np-hard, they can be computed relatively quickly on this data set.
There is no improvement on fan-out or parsing complexity, so no asymptotic
improvement in parsing. On the other hand, the values of fan-out and parsing
complexity only reflect the worst-case production in the grammars, so the op-
timal binarizations might still have improved the average case for them. It is
strange that the optimal non-markovized binarization is slower than the right
branching binarization, while it has better accuracy. This has to be due to the
fact that they introduce different kinds of artificial nodes. Despite that, the
optimal head-driven binarization does give a considerable speedup with respect
to the non-optimal head-driven binarization, but this is also paid for in terms
of accuracy, so it could be a side-effect of the lower number of labels, instead of
optimality with respect to parsing complexity.

I have also been able to apply optimal binarization to all of the  word
sentences of Negra. This took just . seconds, and it did not result in a
lower fan-out with respect to the default right-factored binarization, while the
parsing complexity was  compared to  for a right-factored binarization. As
an optimization, continuous constituents were detected and given a default
right-factored binarization instead. The fact that only a modest improvement in
parsing complexity could be gained on a sizable amount of real-world data does
suggest that the preoccupation with binarization and its effects on complexity
is unwarranted. When it is not very difficult to obtain empirical results, as
in this case, it should be de rigueur to consider these data instead of relying
completely on formal proofs of complexity, which can be highly misleading.
This is because complexity proofs consider the general case, which may not
coincide with the ‘interesting’ case: constant factors can be either too low or
too high for the optimistic or pessimistic conclusions to apply. Despite this,
formal proofs tend to be perceived as ‘the final word’; empirical evaluations are

 A constituent is continuous iff it has a fan-out of  and in addition its children have a fan-out of .
 End-to-end testing with treebank parsing results is rather involved, of course, but the algorithm for

reading off lcfrs rules (Maier and Søgaard, ) is very simple and would have demonstrated that
the increase in fan-out is modest. Specifically, the observed increase in fan-out is linear.



necessary to correct such perceptions.

right optimal
branching optimal head-driven head-driven

markovization v=, h=∞ v=, h=∞ v=, h= v=, h=
fan-out    
complexity    
labels    
clauses    
time to binarize . s . s . s . s
time to parse . s . s . s . s
coverage .% .% .% .%
f score .% .% .% .%

Table : The effect of binarization strategies on parsing efficiency, with sen-
tences of up to  words. For an explanation of the f scores refer to
section ..

X

A B C D E F

X

XA

XA,B

XB,F

XF,E

XE,D

XD,C

A B C D E F

Figure : A head-outward binarization with h= v=markovization; C is the
head node.



ROOT

S

SNP

SVP

SADV

SVVFIN

NP

AP

VP

VPPP

PP

PPNN

PPPIAT

PPAPPR NP VZ

VPNP

VPVZ

ADV VVFIN APPR PIAT NN PTKNEG ADJA NN ART NN PTKZU VVINF $.

Vielmehr scheinen auf allen Seiten nicht unerhebliche Eigeninteressen das Handeln zu bestimmen .

Figure : A right-factored head-driven binarization of the tree in figure , with
markovization of v=, h=. Before binarization, the children are re-
ordered so that the head is the last non-terminal. After binarization,
the children of each node are sorted according to the index of their
first terminal, for aesthetic purposes.



Chapter 

Data-Oriented Parsing

We turn to data-oriented parsing for a conceptually simple and general
account of the interpretation of new utterances given a corpus of previous
utterances. Methods for extending existing dop implementations with
discontinuity are presented.

Most generative work in statistical parsing is based on Probabilistic Con-
text-Free Grammars (pcfg) and extensions thereof. A pcfg consists of
the minimal decomposition of the training data, viz., the individual

productions, together with their relative frequencies. This provides a simple,
efficient and reasonably accurate model, given simple refinements to overcome
the strong independence assumptions made by the pcfg model. These assump-
tions can be broken down as follows (taken from Manning and Schütze, ,
ch. ):

Place invariance: The probability of a subtree does not depend on where in
the string the words it dominates are [...]

Context-free: The probability of a subtree does not depend on words not
dominated by the subtree. [...]

Ancestor-free: The probability of a subtree does not depend on nodes in the
derivation outside the subtree. [...]

Examples of refinements to weaken these assumptions are including parent
categories in the labels and introducing linguistic distinctions not present in
the original annotation (Klein and Manning, a). Higher accuracy can be
obtained with further refinements, be they manual or automatic, as well as
different estimation methods. Examples are latent annotations (Matsuzaki
et al., ), discriminative re-ranking (Collins and Koo, ), and Dirichlet
processes (Liang et al., ). This leads to models with impressive accuracy
and efficiency, but the focus is on cranking up the score in any way possible,
which leads to complicated procedures for something which is conceptually
very simple: what parts does a sentence have and how do they relate to each
other. It is by no means obvious that such methods could ever be given a
linguistic or cognitive interpretation. Furthermore, it appears to me that these
sophisticated machine learning applications serve to extract the most out of
the limited amount of available data, while I think that actual language users
face the opposite situation: an abundance of data which would preferably
be processed with simple methods—in particular data would be processed
extensively rather than intensively.

Data-Oriented Parsing (dop, Scha ) addresses such concerns by de-
parting from the assumption that humans process a sentence by preferring



structures based on previously heard fragments. Two kinds of preferences can
be distinguished:

A memory bias: “[T]he number of constructions that is used to re-construct the
sentence in order to recognize it must be as small as possible.” (Scha, ).

A probabilistic bias: “More frequent constructions are to be preferred above
less frequent ones.” (Scha, ).

The definition of a dop model can be broken down into four parts:

Fragments: what are the units on which the model operates?
Operations: what operations can be performed to combine or alter fragments?
Estimation: how will the probability of performing operations on particular

fragments be determined?
Disambiguation: how will the most appropriate parse tree be selected among

candidates?

This work contributes a new definition of the first part, and combines it
with existing answers to the other parts.

. The probabilistic framework

The first instantiation of dop is dop (Bod, ), which is a Probabilistic
Tree-Substitution Grammar (ptsg). A tree-substitution grammar can
be seen as a context-free grammar which rewrites trees instead of strings.

It is defined by a set of elementary trees and a substitution operation which
combines these trees until they form a derivation of a complete sentence.

A derivation derivationis defined as a sequence of elementary trees combined through
left-most substitution. Left-most substitution substitutionis defined for any two trees t1 and
t2, such that t1 has a frontier node labeled X and root(t2) = X; the result of
t1 ◦ t2 is a new tree where t2 is substituted for the first frontier node labeled
X in t1. The probability of a derivation is the product of the weights of its
elementary trees.

In general, a tree-substitution grammar is not equivalent to a context-free
grammar. However, in the case of dop, the set of elementary trees is such that
their generative powers are in fact identical. Specifically, all fragments are built
up out of cfg rules, and all cfg rules are themselves fragments of depth , so
the generative power must coincide.

Although the generative power of the underlying grammar is identical to a
context-free grammar, probabilities are estimated not just on the basis of the
frequencies of cfg rules, but by considering all connected fragments of the
trees in the training data. More specifically, a fragment fragmentof a tree is a tree of
depth ≥ 1, such that every node has a corresponding node in the original tree,
and has either no children, or the same children as in the original tree. When
a node in a fragment has zero children, it is called a frontier node frontier node. Frontier
nodes are the substitution sites of fragments, and correspond to open slots in

 Sometimes the name Stochastic Tree Substitution Grammar (stsg) is used, but ‘probabilistic’ avoids
confusion with synchronous grammars.

 Technically, a dop model is not trained, because its probabilities are directly derived from data. I
will maintain the terminology of training and testing to distinguish the part of the data which the
parser has at its disposal and the strictly separated part which the model is evaluated on.



constructions. Figure  shows the bag of fragments extracted from a sentence;
figure  shows a dop derivation with these fragments.

S

VP

NP VB NP

Daisy loved Gatsby

S

VP

NP VB NP

loved Gatsby

S

VP

NP VB NP

Daisy Gatsby

S

VP

NP VB NP

Daisy loved

S

VP

NP VB NP

Gatsby

S

VP

NP VB NP

Daisy

S

VP

NP VB NP

loved

S

VP

NP VB NP

S

NP VP

Daisy

S

NP VP

VP

VB NP

loved Gatsby

VP

VB NP

loved

VP

VB NP

Gatsby

NP

Daisy

VB

loved

NP

Gatsby

Figure : The fragments as extracted from “Daisy loved Gatsby.”

S

NP VP

VB NP

loves

NP

Daisy

NP

Gatsby

S

NP VP

VB NP

Daisy loves Gatsby

Figure : A dop derivation. Note that “Daisy” becomes the subject, because
fragments are combined with left-most substitution.

Since these fragments can cover an arbitrary number of terminals & non-
terminals, the independence assumptions made in parsing are much weaker,
and much more information from the training data is exploited during parsing.
It is tempting to conclude that dop models all possible statistical dependen-
cies, because dop uses all fragments. This is not true, however, for several
reasons. For one, there could be more general definitions of what constitutes a
fragment; e.g., relaxing the assumption that a ‘fragment’ must be a connected
subset. Furthermore, certain statistical regularities cannot be captured using
frequencies of fragments, such as Markov processes or phenomena that violate
the place-invariance assumption. Lastly, and most importantly, while dop is
strong on modeling structural relations, it is not sensitive to lexical dependen-
cies (Sima’an, ). The dopmodel does weaken both the context-free and
the ancestor-free assumptions made by pcfg models, through its probabilities
of larger fragments. Additionally, there can be multiple sequences of fragments
which cover the sentence, because there will be overlap. This so-called spurious
ambiguity should be exploited because it allows a more fine-grained comparison
of possible analyses for a sentence.

This suggests two fundamental methods of disambiguation based on fre-
quencies: the most probable derivation (mpd), and the most probable parse
(mpp). The former maximizes the probability of an individual derivation (one
sequence of fragments leading to a complete analysis). The latter maximizes the



sum of derivations leading to the same analysis, i.e., we choose t to maximize

P (t) =
∑

d∈D(t)

∏
f∈d

p(f)

where D(t) is the set of possible derivations of t. Bod () cites a score of
% when using the mpd, and % with the mpp. Unfortunately, this step of
calculating not just the mpd but the mpp is often neglected in dop-inspired
tree-substitution grammars (O’Donnell et al., ; Cohn et al., ; Post and
Gildea, ), in pursuit of a more economical or efficient model. I believe
that this kind of parsimony has unfortunate theoretical consequences (aside
from the obvious decrease in accuracy), given the results on the importance of
frequency in grammaticalization and the formation of idioms (Bybee, ).
Since it appears that arbitrary units can partake in this process, all fragments
& frequencies must be available. This leaves the door open to topics such
as language change & acquisition, instead of modeling a parsimonious but
synchronic snapshot provided by the sample that is the training corpus.

It has been shown that the problem of finding the most probable parse
is np-hard (Sima’an, ). Consider that there is an exponential number of
fragments for each tree, hence a potentially exponential number of derivations,
and it follows that the exact best parse cannot be identified in polynomial time,
in the general case. However, this is not a problem in practice, as there are
methods to approximate the best parse effectively, using any number of random
or best derivations.

There is also a non-probabilistic method of disambiguation, the shortest
derivation shortest derivation(Bod, ). The objective is to minimize the length of the derivation.
In order to break ties of multiple shortest derivations, some additional criterion
is necessary. An example of this is the most probable shortest derivation (mpsd),
which breaks ties by looking at derivation probabilities.

. Estimators

In dop the probability of a fragment f from the set of all fragments F being
substituted for a frontier node with label root(f) in a derivation is given
by its relative frequency:

freq(f)∑
f ′∈F ′ freq(f ′)

where F ′ = { f ′ ∈ F | root(f ′) = root(f) }

Johnson () has shown that this estimator is biased and inconsistent. The bias
of an estimator is the difference between the estimator’s expected value and
the true value of the parameter being estimated. For a dop estimator, a sample
consists of a sequence of parse trees (a training corpus) sampled from the true
distribution; the parameter being estimated is a distribution over parse trees.
A dop estimator is biased biasediff there is a distribution such that the estimator’s
expected probability distribution given all training corpora of a certain size
has a non-zero difference with the true distribution. Bias can be a good thing:
it allows the estimator to make systematic generalizations not licensed by the
data, e.g., a preference for re-use. It has been shown that an unbiased dop

 The expected value of an estimator is the average estimate given all possible samples.



estimator is worthless: it must assign a weight of zero to any parse tree not part
of the training corpus (Prescher et al., ). Still, the kind of bias is crucial.
An issue with dop is that it has a bias for larger trees Bonnema et al. ().
There are many more large trees than small trees; analogously, a large tree has
many more fragments than a small tree. This is reflected in dop’s probabilities
since these directly reflect frequencies. However, it is rather easy to remedy this
particular deficiency by scaling the probabilities appropriately, as suggested
by Bonnema et al. () and Goodman (). Goodman’s strategy, the equal
weights estimateequal weights estimate (ewe, cf. section .), is employed by Bod () and yields
good results.

A more serious challenge is inconsistency. An estimator is consistentconsistent iff
the predictions of the estimator get arbitrarily close to the real distribution
as the amount of training data grows to infinity. Note that this property only
guarantees convergence in the limit; an estimator can be consistent without
performing well on real-world corpora, and vice versa. A reason for dop’s
inconsistency is the fact that, by design, it reserves probability mass for all
fragments, even those for which productivity has not been attested. For example,
in the Wall Street Journal, the contraction ‘won’t’ is annotated as two words,
but ‘wo’ does not combine with any other word, so the true distribution simply
assigns a probability of zero for any fragment containing ‘wo’ but not ‘n’t’, while
dop will always reserve probability mass for such combinations which may
never materialize (Zuidema, ).

Observe why bias and consistency are orthogonal: bias is a property of all
the estimates taken together (does the mean of the estimates equal the true
distribution?), whereas consistency is a property of a sequence of estimators
(will it progress towards and reach the true distribution?). If we take as an
example throwing darts at a dartboard while aiming for the bulls-eye, then
hitting a circular pattern around the bulls-eye is unbiased, no matter the error,
while consistency refers to approaching the bulls-eye after practice.

The statistical oddities of dop have instigated a search for more reasonable
dop estimators. Back-off dop (Sima’an and Buratto, ) estimates probabilities
of larger fragments by backing off to smaller fragments, similar to Katz smooth-
ing for Markov models. However, Backoff-dop starts with dop probabilities, so
it inherits dop’s inconsistency problems.

dop* (Zollmann, ; Zollmann and Sima’an, ) splits the training data
in a held-out corpus and an extraction corpus. Fragments are taken from the
extraction corpus, while probabilities are estimated based upon the shortest
derivations of trees from the held-out corpus, which results in a consistent
estimator. While this results in a considerably smaller number of fragments
(fragments not part of any shortest derivation can be given a probability of zero),
this efficiency is conditional on having sufficient coverage of the held-out corpus
with respect to the extraction corpus. Without such coverage, a smoothing
factor will introduce non-zero probabilities for all fragments, just as with
dop (ch. .; Zollmann, ). Note that the kind of conservative estimation
of dop* is different from the parsimonious (Bayesian) models criticized earlier.
Because dop* is just an estimator, the original fragments and frequencies can be
retained for an online model which is continually or periodically re-estimated.
One could surmise that in language acquisition & usage, conservative estimation
is precisely what separates active from inactive constructions.

The estimator dopα (Nguyen, ) provides a different property, rank



w
ei

gh
t

depth

DOP

w
ei

gh
t

depth

Bonnema

w
ei

gh
t

depth

EWE

w
ei

gh
t

depth

GWE

Figure : A sketch of the relation between depth and weight in various esti-
mators, showing the contribution of fragments after the type fre-
quencies of nodes have been factored out. ‘Bonnema’ refers to the
estimator introduced in Bonnema et al. (). The Gaussian Weights
Estimate proposed here is shown with µ = 4 and σ = 8.

consistency rank consistency, such that for every two fragments in the training data, the more
frequent one will also be assigned a higher probability. Contrary to Back-off
dop, probabilities of fragments are built starting from the smallest fragments.
While rank consistency does not imply consistency, the former is arguably more
desirable than the latter. This is because rank consistency is stronger in the
sense that it affects the estimates for all corpus sizes, while consistency only
guarantees eventual convergence.

However, Zuidema () argues convincingly that bias and consistency are
simply not useful criteria for judging ptsg estimators: the problem of estimating
fragment weights from corpora is underdetermined. We can also consider the
frequencies of trees produced by a ptsg compared to the expected frequencies of
trees in the true distribution. In this case it is possible to achieve consistency, as
dop* does, but only with an estimator that, in the limit, assigns all its weight to
full parse trees. Different criteria such as speed of convergence (Zollmann, )
or robustness in the face of noise might yield more immediate benefits.

I also wonder whether basing an estimator on the shortest derivation (ex-
plicitly or implicitly) is the optimal choice. A ‘medium’ length derivation could
increase re-use of fragments—‘basic-level constructions basic-level constructions’ which are neither too
specific (sparse) nor too general (not informative). While the ewe removes
all bias regarding fragment size, we could also shift the bias. We can scale
weights with a Gaussian, where µ defines the preferred (basic-level) depth, and
σ determines the strength of this preference—i.e., a ‘Gaussian weights estimate Gaussian weights estimate’
(gwe). Stock phrases and idioms can still be parsed as one big chunk, but they
have to be exceptionally frequent before they trump derivations with the more
common, medium-sized fragments. Figure  sketches the relation between
depth and weight in various estimators.

Despite their desirable theoretical properties, these estimators have not
been applied to large treebanks, because the computational techniques for dop
parsing of large corpora with a fragment-based parser were not available at the
time. On the contrary, it is an inconsistent estimator (ewe) which has attained
state-of-the-art performance for generative models on the wsj (Bod, ). The
non-trivial estimators just discussed were all evaluated on the Dutch ovis cor-
pus, with utterances collected from a public-transport information system. Its
sentences follow common patterns, and have only . words on average (Zoll-
mann, ). This is in stark contrast to newspaper corpora such as wsj or



Tiger, with five times as many sentences, which are at least three times longer
on average, and covering a much more diverse domain. It is likely that on such
corpora the results for these estimators would be very different, for better or for
worse. An empirical evaluation of these more sophisticated estimators on large
corpora remains an important goal.

S

VP2

VB NP ADJ

is Gatsby rich

S

VP2

VB NP ADJ

is rich

S

VP2

VB NP ADJ

Gatsby rich

S

VP2

VB NP ADJ

is Gatsby

S

VP2

VB NP ADJ

rich

S

VP2

VB NP ADJ

Gatsby

S

VP2

VB NP ADJ

is

S

VP2

VB NP ADJ

S

VP2

NP

Gatsby

S

VP2

NP

VP2

VB ADJ

is rich

VP2

VB ADJ

rich

VP2

VB ADJ

is

VP2

VB ADJ

NP

Gatsby

VB

is

ADJ

rich

Figure : Discontinuous fragments as extracted from “is Gatsby rich?”

. Discontinuous fragments

A dopmodel includes frequencies for non-contiguous fragments. A frag-
ment is non-contiguous when it has a frontier node that is surrounded
by terminals. As such it is possible for dop to model arbitrary con-

structions such as from np to np, even when this construction does not consist
of a single cfg production. However, this non-contiguity is only a property of
the fragment as a whole, and has to be resolved to attain a full parse tree.

A discontinuous fragment contains at least one constituent whose termi-
nals will still be non-contiguous after all frontier nodes have been substituted.
As such, the discontinuity is part of the annotation, whereas non-contiguous
fragments only exist in a statistical sense as co-occurrences in surface forms. Dis-
continuity reflects a richer representation that is independent of dop’s inherent
strengths of modeling non-local dependencies.

The discontinuous tree structures in the Negra and Tiger annotations, com-
bined with the definition of fragments as connected subsets of nodes from
dop, suggest a natural generalization to discontinuous fragments. Note that,
just as with dop, either all or none of a node’s children are present; this is no
different for discontinuous nodes. However, a discontinuous frontier node does
specify explicitly where its components end up in the yield of the tree; in a
dop fragment this is implicitly specified through the order of nodes. Figure 
shows the fragments extracted from a sentence with discontinuity. Refer to
figure  for an example of a discontinuous derivation.

. Goodman’s reduction of dop

Goodman (; ) offers a reduction of dop to a pcfg where the
number of rules is linear in the size of the training corpus. This allows
polynomial time parsing, because the exponential number of fragments



S

VP2

VMFIN PIS

kann man

VP2

NP VVINF

sparen

NP

ART NN

Die Versicherung

S

VP

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen

Figure : A discontinuous dop derivation of the tree in figure .

is implicitly represented in the reduction. Note that it does not solve the
problem of efficient disambiguation. Finding the most probable parse is still
np-hard and must be approximated.

Each node in the training data with label A gets a unique address, Aj . The
probabilities reflect the number of subtrees headed by a node. Given a node Aj

with childrenBk and Cl, the number of subtrees is given by aj = (bk +1)(cl +1),
which counts the subtrees ofBk andCl and the possibility of them being frontier
nodes. The total number of subtrees for A, including its occurrences in other
trees in the training data, is given by a =

∑
j aj . The normalization factor ā

is the frequency of non-terminals of type A in the training data. Using these
frequencies, the reduction for a given node in the training data is as follows:

Aj(~α)→ B(~αB) C(~αC) (1/aj) A(~α)→ B(~αB) C(~αC) (1/(aā))
Aj(~α)→ Bk(~αB) C(~αC) (bk/aj) A(~α)→ Bk(~αB) C(~αC) (bk/(aā))
Aj(~α)→ B(~αB) Cl(~αC) (cl/aj) A(~α)→ B(~αB) Cl(~αC) (cl/(aā))
Aj(~α)→ Bk(~αB) Cl(~αC) (bkcl/aj) A(~α)→ Bk(~αB) Cl(~αC) (bkcl/(aā))

Where ~α refers to the arguments of the lhs non-terminal. Each addressed
non-terminal represents an internal node of a fragment, while the unaddressed
nodes represent both the root and the frontier nodes of fragments. The latter
allow a switch from one fragment to another during parsing, viz. they simulate
substitution sites of dop fragments.

The use of the normalization factor is called the Equal Weights Estimate;
this formulation follows Bod (). Goodman () first suggested this
normalization but his formula appears to contain a mistake, having aj in the
denominator of the last four rules instead of a. The normalization is intended to
counter the bias for large subtrees in dop—when all fragments are considered,
the majority will consist of large fragments, which results in the majority of
probability mass being assigned to rare, large fragments.

The difference with the pcfg reduction and this plcfrs version is that a rule
is not just defined by a set of non-terminals and their ordering, but also by a
yield function specifying how the spans on the right-hand side compose the
span(s) on the left-hand side. This does not affect the reduction because the
discontinuities are only expressed in the yield of the tree, whereas the same
subtrees can be (implicitly) enumerated by traversing the tree.

Figure  shows a concrete example of the reduction, using the trees on
which figure  and figure  are based. The eight productions per node of the
reduction can be considered as the pairwise Cartesian product of the original
production and the one with addressed nodes. In other words, the productions
A → B C and A1 → B2 C3 give rise to the eight productions given above by
evaluating {A,A1}× {B,B2}× {C,C3} and interpreting the resulting tuples as



S ()

VP ()

NP () VB () NP ()

Daisy loved Gatsby

S ()

VP@ ()

NP@ () VB@ () NP@ ()

Daisy loved Gatsby

1/20 S(x0x1) → NP(x0) VP(x1)
4/20 S(x0x1) → NP(x0) VP@(x1)
1/20 S(x0x1) → NP@(x0) VP(x1)
4/20 S(x0x1) → NP@(x0) VP@(x1)
1/4 VP(x0x1) → VB(x0) NP(x1)
1/4 VP(x0x1) → VB(x0) NP@(x1)
1/4 VP(x0x1) → VB@(x0) NP(x1)
1/4 VP(x0x1) → VB@(x0) NP@(x1)
1/4 VP@(x0x1) → VB(x0) NP(x1)
1/4 VP@(x0x1) → VB(x0) NP@(x1)
1/4 VP@(x0x1) → VB@(x0) NP(x1)
1/4 VP@(x0x1) → VB@(x0) NP@(x1)
1/3 NP(Daisy) → ε
1/1 NP@(Daisy) → ε
1/2 VB(loved) → ε
1/1 VB@(loved) → ε
2/3 NP(Gatsby) → ε
1/1 NP@(Gatsby) → ε

S ()

VP2 ()

VB () NP () ADJ ()

is Gatsby rich

S ()

VP2@ ()

VB@ () NP@ () ADJ@ ()

is Gatsby rich

1/20 S(x0x2x1) → VP2(x0, x2) NP(x2)
1/20 S(x0x2x1) → VP2(x0, x2) NP@(x2)
4/20 S(x0x2x1) → VP2@6(x0, x2) NP(x2)
4/20 S(x0x2x1) → VP2@6(x0, x2) NP@(x2)
1/4 VP2(x0, x1) → VB(x0) ADJ(x1)
1/4 VP2(x0, x1) → VB(x0) ADJ@(x1)
1/4 VP2(x0, x1) → VB@(x0) ADJ(x1)
1/4 VP2(x0, x1) → VB@(x0) ADJ@(x1)
1/4 VP2@6(x0, x1) → VB(x0) ADJ(x1)
1/4 VP2@6(x0, x1) → VB(x0) ADJ@(x1)
1/4 VP2@6(x0, x1) → VB@(x0) ADJ(x1)
1/4 VP2@6(x0, x1) → VB@(x0) ADJ@(x1)
1/1 ADJ(rich) → ε
1/1 ADJ@(rich) → ε
1/1 NP@(Gatsby) → ε
1/2 VB(is) → ε
1/1 VB@(is) → ε

Figure : The pairwise Cartesian product of the original and the addressed
tree gives the productions in the reduction.

productions. To get the reduction of a complete tree, this operation is applied
to all productions of both trees in parallel. The probabilities are derived from
the number of subtrees, shown in brackets after the node labels. In this case
with only one tree, applying the normalization has no effect (i.e., ā = 1 for all ā).
Productions without addressed nodes, i.e., the original productions, will recur,
and their probabilities must be summed. In our case productions are considered
equivalent when both the non-terminals and their arguments match.

Intuitively, the reduction can be seen as state-splitting in the limitstate-splitting in the limit . A state-
split partitions a non-terminal into two or more new non-terminals to cover
more specific and fine-grained contexts. Taken to the extreme, we can keep
splitting non-terminals until each resulting non-terminal refers to one specific
occurrence of that non-terminal in a single sentence, which greatly increases
the amount of hierarchical information that can be extracted and exploited
from the training corpus. This is exactly what happens in Goodman’s reduction.
Compared to other automatic state-splitting approaches such as latent variable
grammars, this approach has the advantage of being conceptually much simpler.

The clear advantage of this reduction is that it makes it possible to parse
dop using existing, off-the-shelf tools. This comes at a price, however. The
dop model in this reduction is reduced to a mere probabilistic ‘upgrade’ over
a pcfg or plcfrs. This is because the actual fragments of dop are only repre-
sented implicitly in the reduction. The parser is not actually working with
fragments, it just ends up with homomorphic derivations and probabilities,
which yield equivalent parse trees after addresses are stripped away and proba-
bilities summed.



. Double-dop

Double-dop (Sangati and Zuidema, ) is a new instantiation of dop
which represents fragments explicitly. The number of fragments is
exponential, so this requires a method of pruning the full set of frag-

ments. Previous approaches sampled fragments at random, or introduced
restrictions such as the number of frontier or terminal nodes, or the depth
of fragments (Sima’an, ; Bod, ). A downside of all these methods is
that they are rather arbitrary. There is no linguistic or cognitive reason why
fragments should be restricted to such criteria. To put it succinctly, the problem
is that these criteria are not data-oriented.

In Double-dop the number of fragments is made manageable by extracting
only the largest fragments that occur at least twice in the training corpus.
This has obvious advantages over random sampling, because the majority of
fragments are made of large subtrees occurring only once, while fragments
occurring multiple times are all more or less productive. It also has advantages
over Goodman’s reduction, because the probability model is explicitly defined
over fragments, and each step of a derivation is available.

To apply Double-dop to discontinuous trees, we need only generalize the pro-
cedure for extracting fragments (Sangati et al., ) to trees that are described
by lcfrs rules. Where normally the extraction traverses trees by comparing
each non-terminal label to ones in other trees, here we must compare the yield
function as well.

For two given nodes in trees t1 and t2 to match, it suffices that they have the
same label (and, consequently, the same fan-out). If, additionally they should
become an internal node of a fragment, their children need to match as well. In
this case the lcfrs productions need to be equivalent. After a collection of
matching nodes has been obtained, the fragments can be collected by looking
for connected subsets of nodes.

A working proof-of-concept implementation of discontinuous Double-dop
has been made, but no large scale experiments have been performed as this
demands careful optimization. An explicit fragment grammar like Double-dop
is a prerequisite to implementing non-trivial estimators, so further developing
discontinuous Double-dop is a worthwhile endeavor.

 Formally this implies that their rules should be unifiable, but with the given algorithm for rule
extraction, variables can be numbered deterministically, so that no unification is necessary.



Chapter 

Disco-dop

A synthesis of lcfrs and dop realizes the goal of discontinuous data-
oriented parsing. To approximate the most probable parse, we employ
a general method for k-best derivation enumeration. A new method for
parsing dop efficiently using coarse-to-fine techniques is introduced.

We can now formulate a synthesis between lcfrs and dop, to achieve discon-
tinuous data-oriented parsing, or Disco-dop. For practical reasons we will work
with Goodman’s reduction, albeit reluctantly. Since optimal binarization did
not offer a clear advantage, we will disregard this aspect during binarization.
We will use information on heads of constituents and binarize constituents
head-outward; binarized constituents will be markovized to increase coverage
of unseen productions.

However, before this model can be implemented, a number of technical
issues need to be worked out. We first present the method of disambiguation
that will be adopted. Next we discuss how to obtain a list of derivations so
that the most probable parse can be approximated. This still leaves us with
tractability issues, due to the large number of rules and non-terminal symbols
in the dop reduction. To address this, we present a novel method to prune the
search space of the dop grammar.

. Simplicity Likelihood dop

Most dop models rely only on probabilities to identify the best analy-
sis. This corresponds to the bias for frequently occurring fragments,
but the original formulation of dop included a preference for shorter

derivations as well. Simplicity Likelihood dop (Bod, ) realizes this by select-
ing the n most probable parses, approximated with a k-best list of derivations,
and choosing the parse tree with the shortest derivation among these n parse
trees (ties are resolved with probabilities again). This method gives better re-
sults than either method on its own. The probabilistic component makes use of
the equal weights estimate (ewe).

Using Goodman’s reduction the length of a derivation can be read off by
counting the number of nodes and subtracting the number of addressed nodes,
which reflect interior nodes of fragments, leaving only the unaddressed nodes
which are the substitution sites of fragments. While approximating the most
probable parse trees, the minimum derivation length for each parse tree can
be tracked, so that the best parse tree can be extracted by sorting on both the
probabilities and the minimal derivation lengths.



derivations f% ex % cpu time (s)

plcfrs  . . .
mpp dop , . . .
mpp ewe , . . .
sl-dop n = 7 , . . .

Table : A comparison of parse selection methods for dop. The methods were
tested on  sentences of  words, with a grammar based on  word
sentences in the first  sentences of Tiger. For an explanation of the
f and ex scores refer to section ..

To select a suitable value for the parameter n, we could try a variety of
values, bisecting until we find the best score. Bod () reports 12 ≤ n ≤ 14 to
be the optimal values for the wsj. On the one hand it is of course important to
know the behavior of the model for different values of this parameter, but on
the other hand it is crucial that the parameter has been chosen independently
(i.e., without any knowledge) of the test set. To satisfy this restriction we
could use a held-out part of the corpus (a development set), and determine
the optimal value of the parameter given our grammar on the development set
before touching the test set.

Instead of taking this route with methodological pitfalls, I have opted early
on to settle for a fixed value for n, namely . This was based on the observation
that with a training corpus of  sentences, most of the time there were
less than  parse trees, especially with longer sentences. This means that the
probabilistic bias would actually play no role if we were to consider up to 
parse trees. On the other hand n should not be too low, because this gives less
opportunity for simpler derivations to surface. See table  for a performance
breakdown of the different methods compared to sl-dop with n = 7. The gain of
sl-dop is very small in this comparison, but it is reasonable to expect it to grow
with a larger training corpus, which offers more potential for short derivations.

. Finding the k-best derivations

In order to approximate the most probable parse, the probabilities of a suit-
ably large number of equivalent derivations need to be combined. In early
dop instantiations this was done by taking a random sample of derivations

(Monte Carlo parsing), but this relies on sampling the dop fragments, while
these are not explicitly represented in Goodman’s reduction. An alternative,
employed in this work, is to use the k-best derivations, i.e., the top k items from
the list of all derivations sorted in descending order of probability.

Extracting the -best derivation from the chart as produced by the parser
described previously is trivial: start at the root node and follow the backpointers,
each time picking the edge with the best inside score. But what about the second
best? It has to be a derivation where at least one edge is suboptimal, such that
the difference in score compared to the best derivation is minimized. We

 Although there is a commonly used split of training, testing and development sets for Negra, this is
not used by Kallmeyer and Maier (), whose experiments I set out to replicate. Therefore using
a proper development set was not an option.



could enumerate derivations systematically by recursively taking the Cartesian
product of edges and the children to which they point; but while the space of
edges as traversed by the parser is quadratic (in a binarized grammar), the space
of derivations (complete and partial) is exponential (i.e., intractable in general).

An algorithm for efficiently computing k-best lists given an exhaustive chart
is given by Huang and Chiang (). They cast the problem as enumerating
hypergraph traversalshypergraph traversals . A k-best list is an enumeration of paths from the root
node to terminals in a hypergraph, in descending order of probability. The
hypergraph is simply the chart, the vertices are chart items (non-terminals and
spans), and hyperedges are directed and (positively) weighted links between a
chart item and one or more other items.

Their algorithm initializes a priority queue of edges for each chart item

and lazily builds up derivations by taking a minimal number of items from
these queues and incorporating the best one in the next derivation, until k
derivations have been produced. So to find the second best derivation, the
second best edges for all of the edges in the best derivation are explored and
enqueued, after which it is guaranteed that the second best derivation is at the
top of the queue. The insight which makes this efficient is that derivations do
not have to be represented explicitly, but can be formed from ranked edges.
A ranked edgeranked edge not only has backpointers to chart items, but also specifies a
derivation by including a rank for them, pointing to an item in the k-best list
for that chart item. For example, given an np with an np and a pp as children, a
derivation with backpointers could be np-(,), meaning that its children are
the nd best and rd best derivations, respectively. Note that this is different
from the nd and rd best edges for that label and span, which could be trivially
obtained by sorting the list of edges; instead, the ranked edge in turn points to
other ranked edges.

Although the algorithm itself is very efficient and performs only the work
that is absolutely necessary to make sure it arrives at the k-best items, the
requirement of an exhaustive chart with Viterbi probabilities is problematic
with large grammars and long sentences. In a large grammar, there may be
plenty of derivations which are far from the k-best derivations in terms of
probability, which ideally should not have to be explored. Long sentences

 Caveat lector: the published version of this paper contains mistakes; be sure to refer to the corrected
version. Even so, I have found it necessary to further adapt their algorithm to fully rule out the
possibility of generating duplicate derivations. I have replaced the part where the algorithm checks
whether a new derivation is not yet in the queue of candidates by a check whether a derivation was
ever seen before, because otherwise a situation could arise where a derivation has already left the
queue and is enqueued once more.

 Another caveat: the priority queue should resolve ties in priorities (probabilities) by falling back
to insertion order, something which a typical heap-based priority queue does not keep track of,
because heap sort is not a stable sort. This can be remedied by adding a monotonically increasing
sequence number to each item as it is enqueued.

 As noted by Huang and Chiang, an early optimization is to only add the k-best edges to this
priority queue. This can be done optimally by employing Quicksort k-best selection, a variant of
the Quicksort algorithm. In contrast to typical k-best selection methods, this algorithm returns its
results in the original, unsorted order. Indeed, a commonly used k-best selection method actually
inserts all elements into a heap and extracts k items, which is especially wasteful if the same items
are then immediately added to a priority queue which duplicates the sorting effort.

 Lazy computation is a technical term which implies that computations are deferred until it is sure
that they are needed to obtain the next result.

 Viterbi probabilities are the optimal (highest) probabilities to reach a certain non-terminal with a
certain subset of terminals.



further exacerbate the situation because they afford a much higher number of
possible analyses.

A better algorithm exists which incorporates the search for k-best derivations
in the parsing algorithm given a heuristic: ka* (Pauls and Klein, ). With a
suitable heuristic, the parser can construct the requested number of derivations
long before all edges have been explored. A ka* parser for plcfrs has not
been implemented yet. It is unclear whether it would work well without a
consistent heuristic which is admissible and monotone, a property which is
assumed by Pauls and Klein (). Monotonicity guarantees that the Viterbi
parse will be found first. Generalizing the (consistent) a* heuristics of Klein
and Manning (b) to lcfrs has proven to be infeasible (Kallmeyer and
Maier, ). Therefore in this thesis we will employ the algorithm of Huang
and Chiang ().

. Coarse-to-fine plcfrs parsing

The grammars produced by Goodman’s reduction are still rather large—
Sangati and Zuidema () cite a figure of . million rules for the
commonly used training section of the Wallstreet Journal corpus (section

–). Therefore it is crucial to tame the search space somehow.
Bansal and Klein () use the technique of coarse-to-fine parsing (Char-

niak et al., ) to prune parsing with the Goodman reduction. Given a
grammar, one or more coarser levels are used, each defined as a projection of
the previous level. The simplest coarse grammar projects all non-terminals to
a single label, say X, except for the pre-terminals and the distinguished root
label. Alternatively, a treebank pcfg can also be seen as a coarse grammar for a
pcfg reduction of dop, where all the addressed nodes project to their original
labels.

Sentences are first parsed with the coarsest grammar, and using information
from the resulting chart, items in the fine grammar can be blocked. At the
very least items not contributing to a complete derivation will be eliminated
(e.g., a derivation which fails to cover all of the terminals in the sentence).
Additionally, the chart can be used to compute outside scores which can be
used as estimates of the outside scores in the fine grammar; items whose score
does not pass a threshold will then be pruned. However, these outside scores
are computed with the inside-outside algorithm, which typically relies on
enumerating bracketings. This is of course not possible for discontinuous
constituents, as there are exponentially many.

The present work employs a middle road where items not occurring in the
k-best derivations of the coarse grammar are blocked when parsing with the
fine grammar; see figure . I have used k = 50 for all reported experiments.
This method can be seen as an indirect implementation of a re-ranker, because
the fine grammar will only consider derivations composed of the items in the
derivations found by the coarse grammar.

This strategy appears to work rather well, such that the exhaustive phase
using the coarse grammar is the bottleneck. For short sentences (≤ 15 words)

 Although it could well be the case that other derivations than the -best can be composed of the
items in those derivations.



parsing with the dop model takes less than a second. For longer sentences
the coarse grammar requires much more time than the fine grammar, which
suggests that parsing is slowed down by a large amount of improbable deriva-
tions, and not for example frequent ties between high probability chart items.
This is supported by the observation of Levy () that most of the observed
complexity of lcfrs is caused by the high number of possible discontinuous
items that can be derived. When parsing for the mpp with dop as in table ,
turning coarse-to-fine off results in a parsing time of  seconds, such that the
speedup is roughly threefold. This factor will increase for larger grammars and
longer sentences, which allow for more ambiguity. There is also an accuracy
gain of almost  percent with coarse-to-fine in this case, but this may well be
fortuitous. A similar finding is reported by Bansal and Klein ().

coarse
derivations

coarse
items

fine stage
white list

()

()

()

()

NP[]

NP[]

VP[]

VP[]

ART[]

NN[]

NP[]
NP@[]
NP@[]
[...]

NP[]
NP@[]
NP@[]
[...]

VP[]
VP@[]
VP@[]
[...]

VP[]
VP@[]
VP@[]
[...]

ART[]
ART@[]
ART@[]
[...]

NN[]
NN@[]
NN@[]
[...]

Figure : k-best coarse-to-fine inference. On the left are the k-best derivations
from the coarse chart. In the middle the chart items (category and
spans) occurring in those derivations. On the right is the result of
projecting these items to the categories in the fine grammar. This
will form the white list when parsing with the fine grammar.



. Even coarser-to-fine parsing: from pcfg to plcfrs

The coarse-to-fine approach just sketched helps a great deal, but as will be
shown in section ., the coarse stage presents a bottleneck which makes parsing
long sentences impossible.

Instead of only making the categories coarser, we can also resort to a coarser
formalism. Following Barthélemy et al. (), we can extract a grammar that
defines a superset of the language we want to parse, but with a fan-out of .
Concretely, a context-free grammar can be read off from discontinuous trees
that have been transformed to context-free trees by the procedure introduced
by Boyd (). Each discontinuous node is split into a set of new nodes,
one for each component; for example a node np2 will be split into two nodes
labeled np* and np* (like Barthélemy et al., we can mark components with an
index to reduce overgeneration). Because Boyd’s transformation is reversible,
derivations from this grammar can be converted back to discontinuous trees,
and can guide parsing with an lcfrs. The latter approach will be referred
to as cfg-ctf. So far I have only implemented pcfg ⇒ Disco-dop, but more
elaborate multi-level schemes such as pcfg⇒ plcfrs⇒ Disco-dop, as well as
the previously mentioned collapsing of categories by Charniak et al. (),
could conceivably increase both efficiency and accuracy, since extra levels of
coarse pcfg grammars can be readily optimized with off-the-shelf tools.

However, markovized binarization presents an issue. It may me tempting to
split the discontinuous nodes before binarization, because binarization might
introduce spurious discontinuity, but this conflicts with markovization. The
new constituents that can be covered by binarized productions depend on
the number and order of non-terminals in productions, but these will differ
when discontinuous nodes have been split into a set of new nodes—to obtain a
context-free production, these new nodes have to be re-ordered.

Therefore we should binarize twice. The first time is before splitting dis-
continuous nodes, and this is where we introduce markovization. This same
binarization will be used for the fine grammar as well, which ensures the models
make the same kind of generalizations. The second binarization is after split-
ting nodes, this time with Chomsky normal form (modulo unary productions).
Figure  illustrates this approach.

Parsing with this approach proceeds as follows. First, the sentence is parsed
using the split-pcfg; using the resulting chart the k-best derivations are ex-
tracted. From these derivations, the second level of binarization is undone, after
which the split labels are merged back into discontinuous nodes. From these
k-best discontinuous derivations the chart items for the white list are read off.
Using this white list parsing with the fine grammar can be pruned.



S

B

A X C Y D E

     

S

SA

SB

B

SC

SD

SE

A X C Y D E

     

S

SA

SB

B* SE* B* SE*

SD* SD*

SC

A X C Y D E

     

S

SA

SB

B* SB : SE*,B*, SE*

SE* SB : B*,SE*

SD* B* SE*

SC SD*

A X C Y D E

     

Figure : Transformations for a context-free coarse grammar. From left to right:
the original constituent, markovized with h=1 v=1, discontinuities
resolved, normal form (second binarization).



Chapter 

Implementation

A high-level prototype can be incrementally adapted with low-level
optimizations. This is achieved by starting from an implementation
in a high-level, dynamic language, and adding type annotations to
performance-critical parts, without sacrificing integration with the rest
of the code.

Matters of implementation are usually not reported in computational
linguistics, or at best in a cursory fashion. Implementation is, like
methodology, considered a boring aspect. If at all possible, off-the-

shelf components are employed. I believe, however, that in order to gain a deep
understanding of algorithms and the problems they solve, one has to implement
them. Especially in the case of discontinuous constituency parsing, the right
implementation is crucial to getting things off the ground at all, because of the
challenge in terms of efficiency.

. Python

Implementation
 started with the tools provided by the Natural Language

Toolkit (nltk; Bird et al., ), which is a comprehensive Python library
written with didactic purposes in mind. Python is a high-level, dynamic

language which is very suitable for prototyping, and appreciated for its simple
syntax that, in the best case, reads like pseudo-code. At first, unification ap-
peared to be a natural way to instantiate rules. Nltk provides feature structure
objects which can contain variables and strings, as in the following example:

rule = FeatStruct("[[VP_2, [?X], [?Y]], [PROAV, ?X], [VVPP, ?Y]]")

The next step was to devise a representation for discontinuous parse trees.
The Tree object of nltk provides an implementation of traditional phrase-
structure trees, where the order of leaves is implicitly specified through the
order of non-terminals. Initially it seemed a good idea to create a subclass of
Tree, but a far simpler idea suggested itself: separate the representations of the
sentence and its tree structure. The leaves on the tree can refer to positions
in the sentence with integer indices, which means all of the methods on tree
structures, such as binarization, post-order traversal, and enumeration of leaves,
could be re-used. This separation neatly fits the conceptual picture of the

 The source code of the parser and all other components is publicly available from http://github.
com/andreasvc/disco-dop



http://github.com/andreasvc/disco-dop
http://github.com/andreasvc/disco-dop

S

VP2

VP2

PROAV VMFIN VVPP VAINF

Darüber muss nachgedacht werden

S

VP2

VP2

PROAV VMFINVVPP VAINF

  

["Darüber", "muss", "nachgedacht","werden"]

Figure : An illustration of the representation. Shown on the left is the original
discontinuous tree from the Negra corpus. On the right is a version
in which the phrase structure has been decoupled from its surface
form.

trees in the Negra format—horizontally there is a total order on terminals,
while vertically every non-root node has exactly one parent. This allows for
the representation shown in figure . Internally, this is represented in two
separate objects (note that indexing is zero-based):

tree = Tree("(S (VP_2 (VP_2 (PROAV 0) (VVPP 2)) (VAINF 3)) (VMFIN 1))")
sent = ["Darüber", "muss", "nachgedacht", "werden"]

A working prototype, based on the pseudo-code given in Kallmeyer and
Maier () coupled with the idea of rules as feature structures was ready in
a few hours, in about  lines of code. Using a manually derived Goodman
reduction, there was an immediate proof of concept for discontinuous dop

parsing.
However, due to the didactic focus of nltk, unification turned out to be a

very slow operation. Even when rewritten to use only the built-in data structures
of Python (sets, tuples, lists, dictionaries), the parser was much too slow.

At this point most people would conclude that Python is somehow an
inherently slow language and not suited for the task. There has historically
been little attention given to the speed of the main Python implementation
(called CPython, because it is written in C). The general sentiment is that
the currently popular dynamic languages (such as Python, Ruby, Perl) are
inherently unsuited for efficient implementation. This is because of far-reaching
dynamicity; for example a function call may end up executing arbitrary code,
through late binding (whereas in a static language, a function such as printf
is de-referenced at compile time, and is executed immediately). These and
other dynamic features, are part of the language design—not just particular
implementations of them.

However, a great deal of code does not exploit these dynamic features, or
only to a limited extent. This makes it possible to take a program written in such
a dynamic language, but treat it as a statically typed program, enabling compile-
time optimizations. One method for doing this is Just-In-Time compilation.
This means that while the program is running, the code is analyzed in search
for performance-critical parts, which can then be optimized using potentially



costly methods. The PyPy project (e.g., Bolz et al., ) is a good example of
this. The advantage is that unmodified Python code can be accommodated—the
project already supports the complete Python language. The downside is that
everything has to run in PyPy’s specialized virtual machine, and there is no
good way to interface with native C code—which is actually one of CPython’s
strong points.

Another approach is taken by ShedSkin (Dufour, ), which translates
a restricted subset of Python to static C++ code. To achieve this it performs
a whole program analysis with the Cartesian Product Algorithm in order to
infer the most specific types that can be assigned to variables and arguments of
functions. All of the supported Python built-ins and modules are replaced with
C++ equivalents.

Both of these projects are theoretically very appealing, but their approach
did not suit the needs of the parser under discussion. PyPy did not seem to
offer significant speedup, and with its virtual machine magic there seemed to
be little transparency and control over performance. ShedSkin was tricky to get
off the ground at all: if the program is not written in a very particular style, i.e.,
implicitly typed, ShedSkin’s attempt at translation simply will not terminate. It
did work in the end with a tweaked version of the parser, but there is a lack of
transparency—getting things to work well requires tweaking and guesswork.
Both projects are challenged with respect to integration with other code; PyPy
lacks proper support for C code, while ShedSkin does not support arbitrary
Python code.

. Cython

Fortunately, Python is a very active area of research, so a third option
presented itself: Cython (Behnel et al., ). The idea of Cython is also
to translate Python code, this time to C, but the difference is that static

typing is completely optional and added manually through type annotations type annotations.
With a few exceptions, Cython can translate most Python code completely to
C code. This will typically not improve performance, however. It does mean
that there is now a bridge between the dynamic Python semantics, and the
static close-to-the-metal semantics of C. The basic idea of optimized Cython
code is to add strategically placed type annotations. Figure  compares the
translation to C of plain Python and a type-annotated version of incrementing a
variable (some error-checking boilerplate has been elided from the part without
type annotations). This demonstrates the overhead that is involved with Python
code.

The next step is to analyze the code to identify ‘hot spots’ which should be
optimized. This is typically done through profiling—measuring how long each
function call takes, and how often it is called. Cython also provides another
source of information: it can create an annotated source file, showing for each
line of Python code the resulting C code. As a heuristic of candidates for
optimization, lines which involve more Python calls are marked with darker
shades of yellow. This is only a heuristic, however, because replacing Python’s
heavily optimized dictionary with some other implementation is probably not
going to give an improvement, although it will remove all the yellow lines
caused by dictionary operations. Other simple changes will give significant



/* "test.pyx":1 a = 0 */
if (PyObject_SetAttr(__pyx_m, __pyx_n_s__a, __pyx_int_0) < 0) {

__pyx_filename = __pyx_f[0]; __pyx_lineno = 1;
__pyx_clineno = __LINE__; goto __pyx_L1_error; }

/* "test.pyx":2 a += 2 */
__pyx_t_1 = __Pyx_GetName(__pyx_m, __pyx_n_s__a);
__Pyx_GOTREF(__pyx_t_1);
__pyx_t_2 = PyNumber_InPlaceAdd(__pyx_t_1, __pyx_int_2);
__Pyx_GOTREF(__pyx_t_2);
__Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
if (PyObject_SetAttr(__pyx_m, __pyx_n_s__a, __pyx_t_2) < 0) {

__pyx_filename = __pyx_f[0]; __pyx_lineno = 2;
__pyx_clineno = __LINE__; goto __pyx_L1_error; }

__Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;

/* "test.pyx":3 cdef int b = 0 */
__pyx_v_4test_b = 0;
/* "test.pyx":4 b += 2 */
__pyx_v_4test_b = (__pyx_v_4test_b + 2);

Figure : The effect of type annotations on incrementing a variable in Cython.

speedups, for example replacing the Python function max() with a C function
that only operates on primitive data types; this is because in C comparisons
are compiled to dedicated cpu instructions, while Python allows any object to
define its own comparison operators, and resolves this at run-time.

If the code is primarily numerical, then adding some primitive type decla-
rations can provide a sufficient speedup. But arguably Python’s strength is in
more high-level and abstract code. General purpose optimization also involves
complex data structures such as lists, dictionaries, and user-defined classes.
Properly optimizing data structures requires parametrized polymorphism, i.e.,
being able to specify that l is of type list whose elements will be of type t. Such
a feature is not available yet in Cython, but if we sacrifice type safety, we can
have the same performance gain using type casts. Whenever we take an element
from a list or a dictionary, we cast it to the right type:

rule = <Rule>rules[i]

When rule is declared to be of type Rule, this cast avoids a type check to see
whether the assignment is valid. On the other hand, if some other kind of object
made its way into rules, the first operation on rule will result in undefined
behavior, such as reading an illegal memory location, which will abruptly halt
the program. Usually this can be ruled out, though. When some line of code is
executed, say, a million times per sentence, the benefits can be worthwhile.

So far the improvements only avoid calling the Python libraries and hence
provide little in the way of drastic improvements. The biggest improvement
came from replacing container data structures, in our case rules, chart items
and edges, with so-called extension typesextension types (also known as cdef classes, after
their keywords). Extension types appear in Python code as if they were normal



objects, but internally they are completely implemented in C. In the case of
Cython this means that on the one hand an object can inter-operate with plain
Python code, while on the other hand being handled efficiently in Cython code
because of static type annotations. Conceptually, an extension type can be
thought of as a C struct—that is, a complex data type where the type of each
element is known at compile time—augmented with glue code to interface
with plain Python code when needed. Like other classes, an extension type can
contain methods as well. Take the example of getting the inside probability
from an edge:

prob = edge.inside

If edge is a normal Python object this would involve a dictionary lookup of
the key ’inside’ in the edge object; if this Python object would be accessed from
Cython code where prob is a C variable of double precision, the Python float
object would also have to be converted to C format (unboxed). If, on the other
hand, edge is of type Edge, implemented as a cdef class, then this statement
translates to a direct lookup using pointer arithmetic, i.e., edge->inside in
C parlance. This is because the structure of an Edge object is fully known at
compile time, such that getting the value of the member inside is as simple as
adding an offset to the memory location of the edge object.

As a case study, we will now look at the most performance-critical part of
the parser: verifying whether two chart items can be combined according to
a grammar rule. The rule specifies two non-terminal labels, and all matching
candidates can be easily found with a lookup table. And since each non-terminal
label is required to have a unique fan-out, their yields will always have the
number of components prescribed by the rule. Checking whether their yields
actually follow the pattern prescribed by the rule is a more involved process.
The yield of a chart item is represented with a bit vector. For example the
number 0b110010 specifies a constituent covering the second, fifth, and sixth
word in a six word sentence (indices are read from right to left, because the
leftmost bit is the most significant bit). With this representation, it is already
trivial to check whether the two chart items overlap—given two bit vectors,
their bitwise and should be zero. This still leaves some other cases to check for.
Assume a rule where the second non-terminal is to be wrapped around the first,
resulting in a continuous yield:

S(xyz)→ NP(y) VP(x, z)

These are some example cases:

>>> concat(rule, 0b001100, 0b100011)
False # last two components not contiguous
>>> concat(rule, 0b11001100, 0b00110011)
False # unexpected second component in first vector
>>> concat(rule, 0b001100, 0b110011)
True # success; new yield will be 0b111111

Clearly, to verify compatibility we have to check each component (i.e., con-
tiguous sequences of bits), of each bit vector. A naive strategy is to simply check



each bit of both vectors, giving an O(n) algorithm, where n is the length of
the sentence. Fortunately, we can do much better, by exploiting well-known
methods on bit vectors. Specifically, we can jump right to the boundaries of
each component by asking for the next set or unset bit of a bit vector. By shifting
the vector we can get the next set or unset bit from a specific position.

The code is given in algorithm ; the algorithm is from Maier’s rparse.

What is special about this implementation is that it translates to % native
C code. The operations on bit vectors, testbit, nextset, nextunset, are imple-
mented with built-in functions of the C compiler (which exploit specialized cpu

instructions when available). A rule is composed of non-terminal labels lhs,
rhs1, and rhs2 (not used here), and two arrays args and lengths. The former,
args contains a bit vector for each component of the left-hand side. With the
previously mentioned rule this would be just xyz. Since rules are binary and
ordered, we can represent variables originating from the left corner of the rule
(rhs1) with a 0, and the right corner variables with a 1. The first occurrence of a
0 refers to the first variable of the corresponding non-terminal, and similarly
for the other variables and for the right corner variables. So the arguments xyz
from the example rule would come out as the value 0b010 in args[0]. The only
thing that’s missing is to know where it stops, because in a bit vector represented
as an integer, there is of course an infinity of zeroes after the most significant set
bit. The second array, lengths, takes care of this, by simply giving the number
of variables for each argument position, i.e., lengths[0] equals .

This is all very neat, but what is the advantage, the reader may now wonder?
Most parsers, e.g., bitpar (Schmid, ) and Mark Johnson’s cky, are simply
implemented in static languages from the start, to avoid these performance
issues. In the past the most commonly used languages were C and C++. Nowa-
days Java is getting more popular—rparse, Double-dop, the Stanford parser,
and the Berkeley parser were all written in Java, for example. C is closest to the
machine, and one little mistake in memory handling will lead to inscrutable
error messages. C++ adds abstraction to this, but resolves all abstraction at
compile time so that it does not affect the performance of the final program.
Unfortunately this leads to very cryptic error messages, because the underly-
ing mechanism is a templating (macro) language, such that the source of an
error can be hard to track down. Java is not as ‘close to the metal,’ (e.g., it
provides garbage collection so that no memory management is needed) but is
able to provide good performance through its highly optimized virtual machine
(which uses a tracing jit like PyPy). These languages do solve performance
issues adequately, but, arguably, at the cost of increased development time and
unnecessary complexity. They require that the whole program be written in a
verbose, error-prone, statically-typed style. Of course, static typing also prevents
errors by detecting type errors at compile time, but it does so by forcing the
user to ‘draw within the lines,’ rather than supporting free expression of ideas.
Unless the typing system is truly baroque (i.e., Turing-complete), static typing
can only give a modest lower bound on program correctness.

With Cython, one can rapidly complete a prototype, and optimize only its
performance-critical parts. Corpus pre-processing, reading off grammar rules,
evaluation—these have little to gain from optimization, but implementing them
in a different language and interfacing with text files is also an error-prone

 Cf. http://www.wolfgang-maier.net/rparse



http://www.wolfgang-maier.net/rparse

cdef bint concat(Rule rule, unsigned long lvec, unsigned long rvec):
if lvec & rvec: return False
cdef int lpos = nextset(lvec, 0)
cdef int rpos = nextset(rvec, 0)
cdef unsigned int n, x
cdef unsigned short m
this algorithm was adapted from rparse, FastYFComposer.
for x in range(rule.args.length):

m = rule._lengths[x] - 1
for n in range(m + 1):

if testbitint(rule._args[x], n):
check if there are any bits left, and
if any bits on the right should have gone before
ones on this side
if rpos == -1 or (lpos != -1 and lpos <= rpos):

return False
jump to next gap
rpos = nextunset(rvec, rpos)
if lpos != -1 and lpos < rpos:

return False
there should be a gap if and only if
this is the last element of this argument
if n == m:

if testbit(lvec, rpos):
return False

elif not testbit(lvec, rpos):
return False

jump to next argument
rpos = nextset(rvec, rpos)

else:
[...]

success if we’ve reached the end of both left and right vector
return lpos == rpos == -1

Algorithm : The function that verifies whether two bit vectors can be combined
according to a rule. The elided part is analogical to the first part,
except that left and right are swapped.



process. With Cython one can implement a Rule object, for example, that can
be instantiated from plain Python code, while type annotations allow direct
access to its underlying C array from the Cython-optimized parser.

. Data structures

The right algorithms are the first pre-requisite of an efficient program.
The second is choosing the right data structures. There are three impor-
tant data structures in the parser: the agenda, the Viterbi chart, & the

full chart. The agenda uses a heap-based priority queue with the decrease-key
operation, whose operations have logarithmic time complexity; additionally the
agenda maintains a dictionary so that the probabilities of items can be looked
up. The two charts are also dictionaries. The grammar is a minor data structure
in terms of efficiency because it is read-only. It is implemented with lookup
tables indexed on the label of the first and second part of the right-hand side.

The decrease-key operation can be implemented in logarithmic time (Cor-
men et al., ), by locating the item and sifting it up until it reaches the right
place in the heap. There is a much simpler algorithm, though. In the Python
documentation it is suggested to remove and change the priority of items by
marking the original one as invalid. By maintaining a mapping of keys and
values in the heap, the old item can be efficiently located, and marked invalid by
assigning it a sentinel value. When popping items from the heap, items marked
as invalid are simply ignored. This simplifies the algorithms, and appears to
work efficiently as well. Marking items as invalid has minimal computational
overhead, at the expense of memory efficiency. However, the number of items
in the agenda, valid or invalid, is bounded by the number of items which have
to be stored in the full chart anyway, so memory is of no concern. Compared to
a complex priority queue such as the Fibonacci heap, this implementation has
unremarkable asymptotic performance, but the advantage is that it does not
have prohibitive constant factors or amortized costs.

Python dictionaries are implemented as open addressing hash tables, which
have constant amortized time complexity. However, the performance of hash
tables is strongly dependent on the choice of hash function. The objects which
are used as keys in the charts and the agenda are chart items, defined by a label
and bit vector. Initially a generic hash function was used, which is equal to
Python’s internal hash function for tuple objects:

#item._hash = hash((label, vec))
item._hash = (1000003UL * ((1000003UL * 0x345678UL)

^ label)) ^ (vec & ((1 << 15) - 1) + (vec >> 15))

The suffix UL indicates an unsigned long value, ˆ is the bitwise exclusive
or, and a << b shifts a to the left by adding b zero bits to its right; >> is the

 The terminology ‘to sift up’ in the context of heaps refers to performing rotations on a heap until
the heap property is restored.

 Python documentation, ... Priority Queue Implementation Notes, cf. http://docs.python.org/
library/heapq.html



http://docs.python.org/library/heapq.html
http://docs.python.org/library/heapq.html

corresponding right shift. This formula pseudo-randomly shuffles the bits in
label and vec.

Maier’s rparse uses a famous hash function due to Daniel J. Bernstein:

def DJBHash(key):
hash = 5381
for i in key:

hash = ((hash << 5) + hash) + ord(i)
return hash

The variable key is a sequence of items to be hashed, and the function ord
gives an ordinal (bitwise) representation of its argument. This hash function is
widely used, but like the previous function, there is no theoretical justification
for why it should lead to good results. Pseudo-random number generators
(of which hash functions are an instance) are only studied stochastically, not
deterministically. It is possible to analyze the collision rate of a hash function
under a given distribution of data with statistical techniques. However, it is not
possible to say what makes a good hash function; or for instance what the effect
of certain constants will be. Why prime numbers are good candidates for such
constants is probably a deep mathematical question, but for all we know it is
just superstition to insist on them.

Generic hash functions are designed to summarize an arbitrary amount of
information into a hash value. The size of this hash value typically reflects
the word size of the machine, which is  bits on modern machines. In
our case, however, there is a much better solution than shuffling bits around.
Recall that the bit vector represents the presence of a word in a constituent as a
single bit. The category of a non-terminal is represented by an integer, derived
from a mapping of the labels in the grammar to the natural numbers. We can
optimize for the common case where sentences have much less than  words,
and assume that the category of an item can fit in the rest of the  bits.This
gives us a hash function which, in most cases, exactly represents the original
information:

item._hash = label ^ (vec << 31UL) ^ (vec >> 31UL)

This function gave a significant performance improvement. One particular
sentence was processed in  seconds with the first hash function, and in only
 seconds with the last hash function. The reason for this is probably locality
of reference. Python’s dictionary implementation is designed to approximate
the behavior of an array in case of densely packed hash values. Since the bit
vector is shifted to the left, the least significant bits are taken by the category.
The consequence is that, with high probability, all possible categories for one

 Caveat lector: when doing right bit shifts, use unsigned values to ensure a logical shift instead of
an arithmetical shift. An arithmetical shift will extend the sign bit which only makes sense for
numerical data in two’s complement format. Regrettably, The Python language does not include a
logical right shift operator, but in Cython its use can be forced by declaring (or casting) values to be
unsigned.

 I have not been able to locate the original source for this algorithm, but cf. http://www.cse.yorku.
ca/~oz/hash.html and http://www.partow.net/programming/hashfunctions/index.html. These
links are also the source of the observations in the following paragraph.

 In computer architecture, the word size refers to the number of bits that a cpu operates on. Many
operations on word sized data execute in a single cycle, and memory addresses are word sized.



http://www.cse.yorku.ca/~oz/hash.html
http://www.cse.yorku.ca/~oz/hash.html
http://www.partow.net/programming/hashfunctions/index.html

particular span now form a contiguous part of the array implementing the
hash table. while with the generic hash functions they would be randomly
distributed, by design.

Note that this discussion tacitly assumed that there will be no sentences
longer than  words, as this is not feasible with the current algorithms and
techniques anyway. However, it is not difficult to replace the word sized integers
with generic bit vectors represented in an array of integers. It will come with
some performance penalty because operations like equality, intersection (bitwise
and) and union (bitwise or) will require more than a single cpu cycle and
memory access. However, the idea of optimizing for the common case of shorter
sentences will still hold.

. Code overview

Python code:

grammar reads off plcfrs or Goodman reduction from trees
treetransforms markovized & optimal binarization methods, splitting discon-

tinuous nodes
negra corpus reader for the Negra format; also assigns heads using head rules
eval parseval evaluation
gen experiment in plcfrs generation
runexp script to run an experiment based on parameters such as the corpus,

number of training sentences, and length restrictions
tikzdtree semi-automatic discontinuous tree drawing

Cython code:

plcfrs the parser
kbest enumerate the k-best derivations
coarsetofine produces a list of items which should not be pruned
disambiguation various dop disambiguation methods based on a list of deriva-

tions
agenda a heap-based priority queue
bit operations on bit vectors such as ‘find next set bit after position x’
containers defines objects such as chart items, edges & grammar rules
fragmentseeker experimental implementation of Sangati et al. ()
estimates experimental implementation of the sxlr context-summary esti-

mates described in Kallmeyer and Maier ()

Together these modules make for , source lines of code (sloc).

 The actual results will depend on the implementation of the hash table, specifically how it deals
with collisions and resizing—before the hash table reaches the high watermark, collisions will occur,
spreading items randomly.

 This figure was generated using David A. Wheeler’s ‘SLOCCount’.



Chapter 

Evaluation

We now review evaluation metrics for parser performance and present
our results, which improve on previous work.

One of the defining features of computational linguistics is the way work
in the field is evaluated against common benchmarks. This practice has
downsides—the competitive nature can cause one to lose sight of the

original goal, which is not to attain the best scores on a particular newspaper,
but to parse well. On the other hand it has also brought the field together and
fostered progress.

. Metrics

Judging the quality of a parser can be automated by defining a metric for
a sequence of parses relative to the so-called gold standard gold standardtrees from
the treebank. The most objective and stringent metric is the exact match

exact matchcriterion which is the number of parses which completely match their corre-
sponding gold trees. The downside is that it is coarse-grained; i.e., it does not
discriminate between almost-correct and not-even-close parses. Inconsistency
or spurious ambiguity in the annotations will cause the score to plummet.

A different strategy is taken by the Parseval Parsevalmeasures (Black et al., ),
which is the most commonly used evaluation for phrase-structure trees. It
compares individual constituents of the parse trees to the annotated trees from
the treebank. Specifically, a constituent is considered as a labeled bracketing

labeled bracketingthat defines which terminals the constituent dominates. However, it is not
enough to simply consider the percentage of correct constituents. This is
because the parser might well produce a different number of constituents than
the annotators of the gold corpus. This mean that evaluation could be based
on the ratio of correct constituents to either the constituents in the parses
or those in the gold corpus. But in either case it is trivial to maximize the
score. In the former case (called precision precision), the parser can aim to produce the
smallest number of constituents, which minimizes the number of potential
mistakes. Conversely, in the latter case (called recall recall) the parser can maximize
the number of constituents to catch more of the gold constituents. To counter
this, the average of the precision and recall can be used, but this still affords the
possibility of artificially raising the score at the expense of either precision or
recall (just as scoring  out of  on a midterm and  out of  on the final does
not make a passing grade in most courses). A solution is the f-score f-score(technically,
the f measure), which is the harmonic mean of the precision and recall. The
harmonic mean is more strongly affected by (gravitates to) the lowest score.



A constituent for a sentence is considered correct if a constituent with the
same label and covering the same terminals exists in the tree in the treebank.
This means that to evaluate a set of parses, we read off the set of constituents
in the parses and in the corresponding trees in the treebank, of which the
intersection represent the correct constituents. Precision, recall and f-score are
then calculated as follows, given sets P and G with the constituents from the
parser and the treebank, respectively:

precision =
|P ∩G|
|P |

recall =
|P ∩G|
|G|

f-score =
2

precision−1 + recall−1

For continuous phrase-structure trees, a constituent is defined by a category and
the indices of the beginning and end of its yield, e.g., 〈NP, 〈2, 5〉〉. To generalize
this to discontinuous trees, we can straightforwardly consider the yield as a
subset of indices, for example 〈NP, {2, 3, 5, 6}〉.

Note that comparing individual constituents in this way conveniently fol-
lows the independence assumptions made by context-free grammars (and to a
lesser extent dop). As such, the scores reflect the quality of individual parsing
decisions, but not how appropriate these decisions are in combination.

It has been observed that the Parseval measures have a bias for larger trees;
i.e., the score for trees annotated with more constituents will necessarily be
higher when the number of mistakes is constant (e.g., 9/10 >

4/5). This can
also be expressed as the node-to-terminal ratio in the annotation. An impor-
tant consequence is that this makes comparisons of scores between different
treebanks problematic (Rehbein and van Genabith, ). A score of % is
state-of-the-art for Negra, while on wsj it is just above the pcfg baseline. It
should not be concluded from this that parsing German or Negra specifically is
harder than English or the wsj.

Another issue with Parseval is that when a constituent is attached to the
wrong part of the tree in the parser output, there will be multiple constituents
missing that part of their yield, such that a single attachment error is actually
treated as a series of errors. One could reasonably conclude that attachment
errors are in fact punished too severely.

A particular issue with the generalization to discontinuous trees of Parseval
is that discontinuous constituents are harder to get right for the parser. With
the commonly used method to transform the Negra and Tiger treebanks to
continuous constituency trees, all components except the one with the head are
re-attached to higher nodes in the tree, until no discontinuity remains. This
transformation throws away the information that these components are related,
so the task of parsing is made easier. Conversely, when the parser not only has
to produce discontinuous constituents, but is also evaluated on them, a single
missing terminal in one component makes the whole constituent incorrect,
because a discontinuous constituent is evaluated as a single unit.

 Note that the f-score is usually defined with a different but equivalent formula: 2pr
p+r

. This formula,
however, obscures the reason for the name ‘harmonic mean’ which is due to the use of reciprocals.



Alternative metrics have been suggested. The leaf-ancestor metric leaf-ancestor metric(Samp-
son, ) looks at the path of each terminal to the root node, and scores these
paths by computing the Levenshtein distance against the tree from the gold
corpus.

The idea of using the Levenshtein distance is interesting because it judges
the parse tree according to the minimal cost to transform it to the gold tree.
However, the choice to evaluate on paths to the root node is still somewhat
arbitrary: why single out yet another aspect of the tree structure? There ex-
ists a generalization of the string edit distance to trees, giving the tree edit
distance tree edit distance(Zhang and Shasha, ). This has been adapted to the case of evalu-
ating parse trees (Emms, ). The concept of tree edit distance as a metric
appears to me to be the most neutral and objective, aside from the exact match
criterion, because it does not focus on a single aspect of parse trees. How-
ever, the weights and specific operations of the edit distance still have to be
defined and justified—it is not obvious that the current definition of operations
on individual nodes with unit costs is optimal. Emms defines two similarity
metrics, Dice and Jaccard (Dice coincides with the F1-measure in the case of
comparing two sets). We will use the macro-averaged versions of these; i.e., as
with Parseval, the average is computed over all trees lumped together, rather
than the average of scores for each individual tree. Given the set of gold nodesG
and nodes produced by the parser P , the tree-distance consists of the minimal
sets D, I, S, andM containing nodes that are deleted, inserted, swapped, or
matched with the gold trees, respectively. The tree-distance metric is then
computed as follows:

dice = 1− |D|+ |I|+ |S|
|G|+ |P |

jaccard = 1− |D|+ |I|+ |S|
|D|+ |I|+ |S|+ |M|

However, this still assumes that it is reasonable for a parser to reproduce
the full parse tree of the gold corpus in all its detail. An alternative is to look
only at a pre-defined set of relations in a sentence. This approach is taken in
dependency evaluation dependency evaluation(Lin, ). Using a transformation of constituency
trees to dependency structures, parse trees can be evaluated against the usual
metrics for dependency structures (labeled and unlabeled attachment scores).

Yet another evaluation strategy is to parse only difficult constructions. This
avoids ‘noise’ caused by annotation schemes and characteristics of different
languages, and avoids inflating the score with easy sentences. The Tepacoc Tepacoc

test set is one such approach (Kübler et al., , ). Previous work on the
German treebanks appeared to indicate that the Tüba-D/Z treebank, with its
wsj-inspired hierarchical annotation, resulted in better accuracies. With the
Tepacoc test set, however, it is shown that Tiger and Tüba-D/Z are comparable
in performance when evaluated against the linguistically most interesting &
complex constructions of Tepacoc as selected from the two treebanks.

Despite these alternatives, this work still employs the Parseval measures,
because it is important to be able to compare results with previous work, and
because it is a well-established metric. Future work should address the problem

 The Levenshtein distance is one form of an edit distance. It reflects the minimal cost required
to transform one string into another, where deletions, insertions and substitutions of individual
characters have pre-defined costs.

 Tepacoc stands for Testing Parsers on Complex Constructions.



of evaluating discontinuous constituents specifically (as opposed to generalizing
metrics intended for continuous constituents), since it comes with its own set of
issues.

. Results

Results are for models based on splits of % training data and %
test data. Following previous work, the parser is presented with part
of speech (pos) tags from the test corpus (gold tags). The dop model,

however, exploits its knowledge of lexical dependencies by using subtrees with
terminals, as long as the pre-terminals match the given gold tags. In a pre-
processing step, function labels are discarded and all punctuation is lowered to
the best matching constituent, following Kallmeyer and Maier (). Heads
are marked using the head finding rules for the Negra corpus used by the Stan-
ford parser. The markovization setting is v= (i.e., no parent annotation), and
h ∈ {1, 2,∞}, dictated by efficiency concerns. Lower values for h give better
performance because they allow more flat structures to be covered through
re-combinations of parts of different constituents. However, this also greatly in-
creases the number of possible edges which have to be explored. For this reason
the value of h had to be increased for parsing longer sentences, at the cost of
decreased performance and coverage. Table  lists the size of the training & test
corpora and their grammars for the respective length restrictions. Unparsed
sentences are assigned a baseline parse with all tags directly under the root
node. All scores were obtained with Maier’s publicly available implementation,
rparse.

The model performs consistently better than previous results on discontinu-
ous parsing; see table  for the results, including comparisons to previous work,
and figure  for a graph plotting the number of words against f-score. Figure 
plots the time required to parse sentences of different lengths with v= h=,
showing a strikingly steep curve, which makes clear why parsing sentences
longer than  words was not feasible with these settings. The coarse-to-fine
inference appears to work rather well, apparently displaying a linear observed
time complexity on the dop grammar; unfortunately exhaustive parsing with
the coarse grammar forms a bottleneck. The total time to parse was ,  and
 hours for , , and  words respectively, using about gb of memory.

Table  shows results with tree-distance evaluation, comparing dop against
our baseline plcfrs results. Although Maier () also reports results with
tree-distance evaluation, his results were obtained by leaving out unparsed
sentences. This makes the results incomparable across parsers. A parser that
gets only a single sentence right and leaves the rest unparsed would get a perfect
score, under this methodology. Assigning a default tree, as we do, is necessary
to obtain a fair evaluation.

Note also that the baseline plcfrs results improve on those of Kallmeyer

 This is necessary because punctuation is not part of the trees in the Negra annotation, and is instead
attached directly to the root node, which would imply spurious discontinuities if the punctuation is
part of the grammar. Another solution would be to ignore punctuation altogether, which has some
linguistic plausibility and would reduce data sparsity.

 Note that Kallmeyer and Maier () apply the length restriction before the - split, but the
difference is not more than  sentences.

 Cf. http://www.wolfgang-maier.net/rparse



http://www.wolfgang-maier.net/rparse

and Maier—except for the result up to  words, but it is not clear whether
they also restricted the training corpus to  words as I did. I hypothesize this
striking difference is caused by any or all of the following reasons:

. The version of rparse used in Maier (); Kallmeyer and Maier ()
did not correctly perform the decrease-key operation;

. the detrimental effect of context-summary estimates (i.e., not finding the
Viterbi derivation);

. their binarized grammars include two levels of fan-out markers (cf. sec-
tion .);

. other, more incidental differences in binarization, particularly markoviza-
tion.

Furthermore, table  also contains results with the cfg-ctf method. These
are the first results of lcfrs or discontinuous constituency parsing for sentences
up to  words. Since the cfg-ctf method allows the use of the most optimal
Markovization setting (h=), the results are quite good.

Table  shows results on part of the Tepacoc test set. The categories are
extraposed relative clauses (erc), forward conjunction reduction (fcr), noun pp

attachment (ppn), verb pp attachment (ppv), coordination of unlike constructions
(cuc) and subject gap with finite/fronted verbs (sgf). While the plcfrs results
mostly improve on those of Maier (), the results for dop are not impressive.
Kübler et al. use the first , sentences in Tiger as training set (because
their goal is to compare Tiger against Tüba-D/Z). Maier () apparently uses
% of Tiger sentences up to  words (, sentences) in his evaluation
on Tepacoc. I have opted to stick to the set-up of Kübler et al., using the first
, sentences for training, without length restrictions. With v=, h=∞
binarization, it took  days to parse these  sentences. It is likely that the
combination of complex constructions with h=∞markovization is especially
unfortunate, as these constructions may require rare productions that could
have been composed of others with markovization.

words train test
plcfrs

rules
Disco-dop

rules fan-out
parsing

complexity

≤       
≤       
≤       

words train dev pcfg Disco-dop fan-out p.c.

≤       /   / 

Table : Number of sentences and rules for the grammars extracted from the
Negra corpus. The number of rules and fan-outs are for binarized
grammars.

 This shortcoming has since been addressed (Maier, personal communication).
 Turning off the length restriction for the training corpus turned out to be a costly decision.



NEGRA words lp lr f ex

Plaehn (): dpsg ≤  . . . .
Kallmeyer and Maier (): plcfrs ≤  - - . -
This work: Disco-dop, v=1 h=1 ≤  . . . .
Kallmeyer and Maier (): plcfrs ≤  . . . -
This work: Disco-dop, v=1 h=2 ≤  . . . .
Maier (): plcfrs ≤  . . . .
This work: Disco-dop, v=1 h=∞ ≤  . . . .

TIGER words lp lr f ex

This work: plcfrs ≤  . . . .
This work: Disco-dop ≤  . . . .
This work: plcfrs ≤  . . . .
This work: Disco-dop ≤  . . . .

Table : Results for discontinuous parsing on two different corpora.

NEGRA words Dice Jaccard f ex

plcfrs, v=1 h=1 ≤  . . . .
Disco-dop, v=1 h=1 ≤  . . . .
plcfrs, v=1 h=2 ≤  . . . .
Disco-dop, v=1 h=2 ≤  . . . .
plcfrs, v=1 h=∞ ≤  . . . .
Disco-dop, v=1 h=∞ ≤  . . . .
Split-pcfg,† v=1 h=1 ≤  . . . .
Disco-dop,† cfg-ctf, v=1 h=1 ≤  . . . .

Table : Tree-distance evaluation. The dop results were obtained with ewe.
† This result was obtained on the development set according to the
common training-test split introduced in Dubey and Keller ().

plcfrs Disco-dop
Category ≤ 30 f1 ex f1 ex

ERC  of  . . . 
FCR  of  . . . .
PPN  of  . . . 
PPV  of  . . . .
CUC  of  .  . 
SGF  of  . . . .

total  of  . . . .

Table : Results on the TePaCoC test set. These results were obtained with v=
h=∞ binarization.

























      






















F
-s

co
re

(%
)

Maximum number of words

Tiger Disco-dop
Negra Disco-dop

Tiger plcfrs
Negra plcfrs

Figure : F-score as a function of the number of words

.M

.M

.M

.M

   
















E
d

ge
s

cp
u

ti
m

e
(s

)

Number of words

coarse; cpu time
coarse; edges

fine (pruned); cpu time
fine (pruned); edges

Figure : Efficiency as a function of the number of words in the coarse (plcfrs)
and the fine stage (Disco-dop). The data are from parsing  Negra
sentences, hand-picked to illustrate the worst case.



Chapter 

Remaining challenges

The current work has limitations: it fails to model grammatical functions,
morphology, and word-order variation.

For reasons of efficiency the work in this thesis is limited to a mildly
context-sensitive formalism. This provides a strong improvement in
terms of the representations that are produced by the parser, because

these representations can directly express argument structure. On the other
hand there are two ways in which generalizations are blocked in this formalism.
The first is that every non-terminal has a fixed fan-out; categories that occur
with different fan-outs in the corpus must be split up, e.g., np2 and np3 are
distinct to the formalism, both in terms of rules and probabilities, while in
the corpus they have the same category. The second limitation is that the
order of components of each non-terminal in each particular rule is fixed—the
rule represents the precise configuration of its original constituent. There are
two reasons to work with these limitations: parsing efficiency and to keep the
process of reading off rules straightforward, viz., to maintain an isomorphism
between treebank and grammar rules.

However, this problem could be alleviated if we could separate the prob-
abilistic model from the formalism. Levy (, ch. .) suggests a factoriza-
tion of probabilities into components for immediate dominance and linear
precedence, following ideas from generalized phrase-structure grammar (gpsg).
Immediate dominance expresses constraints (or in this case, probabilities) on
the parent-child relationship, while linear precedence expresses the possible
orderings of terminals in the sentence, which potentially introduces disconti-
nuity. Levy suggests conditioning the probabilities for linear precedence on
the sizes of other constituents, because this makes it possible to model distance
sensitivity; e.g., long distance discontinuities can receive lower probabilities.
Unfortunately this means that probabilities can only be assigned to completed
constituents (i.e., when gaps are filled), such that all manner of optimizations
based on local probabilities are ruled out, and without that we would be forced
to enumerate an exponential space of derivations. Levy admits that “this may
seem an ill-formed idea” at first glance; I tentatively conclude that it is—at least
for (generative) parsing. It is a perfectly sensible idea for generation, where a
particular constituency tree can be assumed to have been fixed independently
from its surface realization.

Another problem with the approach is that there is no longer a straight-
forward way to read off the rules from the treebank. It is straightforward to
estimate the immediate dominance probabilities, by turning the right-hand side
of each rule into a multiset and ignoring the yield functions. The estimation



of linear precedence is difficult because it must assume an implicit, canoni-
cal tree of which the tree in the treebank is a permutation. Concretely, given
a vp with fan-out , we can either assume its second half was moved to the
right, or conversely that the first half was moved to the left, with respect to
the canonical tree. It is conceivable that, given a simple model of canonical
structures, perhaps based on all trees without discontinuities in the treebank,
probabilities for certain types of movement can be estimated. Without distance
sensitivity, it would not affect the complexity of parsing while it may increase
its stochastic power, because categories that only differ in fan-out can share
probability mass. Once the approach is in place it can be extended to dop by
factoring the probability of each fragment into immediate dominance and linear
precedence, and redistributing the probability mass for immediate dominance
among all fragments with a certain dominance structure.

However, there is a limit to what can be done with linear context-free
rewriting systems (and consequently, mildly context-sensitive formalisms). It
turns out that scrambling, a form of word-order freedom, cannot be expressed
in an lcfrs (Becker et al., ). Boullier () shows that in a full Range
Concatenation Grammar, scrambling can be expressed and parsed efficiently.
Compared to the grammars in this work, the yield functions in the given
grammar are not ordered, not linear, and the grammar includes negative clauses
(these implement the concept of negation-as-failure from logic programming).
Boullier even shows that scrambling can be parsed in quadratic time. However,
the given grammar is carefully crafted, including auxiliary predicates to match
only ranges of length one. Inducing a scrambling grammar from a treebank is a
different matter, let alone maintaining quadratic time complexity.

An issue with the current system is that the markovization is rather ad-hoc.
Markovization of an optimal head-driven binarization (Crescenzi et al., ) is
an even more ill-formed idea, because it covers non-terminals in an arbitrary
order, such that whetherX follows Y no longer has any meaning in the resulting
statistics. The idea of including a certain amount of local context in node labels
conflicts with the non-local nature of discontinuous nodes. A much more elegant
alternative would be to apply a tree-insertion grammar. Such a grammar has
been implemented for dop (Hoogweg, ). Concretely, this model extends
dop with an insertion operation. The model has two kinds of fragments. Initial
fragments contain heads whose arguments can be added through substitution.
Auxiliary fragments contain adjuncts (roughly, optional items) which can be
inserted into derivations; e.g., new adjectives can be added to an np fragment.
In other words, instead of incorporating ad-hoc generalizations through non-
terminal labels, adjunction is a first-class citizen of the model, and can be
modeled probabilistically. Hoogweg had to induce the set of base fragments
and those which can be added as adjunctions heuristically, but the Tiger corpus
includes edge labels which indicate whether something is a complement or an
adjunction.

Aside from these technical issues, many linguistic features have been glossed
over in this work to limit its scope. Assigning part-of-speech tags to words is
normally part of the parsing task and integrated with the probabilistic model,
while in this work the correct tags from the corpus are given to the parser.
Existing approaches can be employed to address this. Known words can be
parsed directly by the grammar, and unknown words receive all possible tags
for open class words, where their probability is based on the frequency of words



occurring once (in the spirit of the Good-Turing smoothing method). Instead
of choosing one tag per word before starting to parse, each possible tag will be
treated as any other constituent, i.e., as an element competing to be part of the
globally optimal derivation.

A proper parser and evaluation should work with grammatical functions
as well, however simply adding functions to phrasal labels introduces spar-
sity issues (Rafferty and Manning, ). Parsing languages with less strict
word-order implies that morphology provides important information about
constituents that have been moved or extraposed. Movement and extraposition
could also be modeled statistically, which can reduce data sparsity.

One answer to this is Relational-Realizational parsing (Tsarfaty, ). Al-
though the model is formally represented in a pcfg, it integrates grammatical
functions, morphology and word order in a generative, probabilistic model.
This is achieved by parsing in two stages. The first stage is relational, where
a clause projects a number of grammatical functions to its words. The second
is realizational, which realizes word order and morphological markings in a
surface form. The model improves on a plain pcfg, for parsing Modern Hebrew.
What is most interesting, however, is that it integrates several important linguis-
tic phenomena in a single, statistical model. This opens the door to the prospect
of parsing a variety of typologically diverse languages with success to match
that for English. Extending this model to discontinuous representations and to
a data-oriented model is an interesting topic for future research.



Chapter 

Conclusion

To recapitulate, discontinuity and data-oriented parsing can be combined
fruitfully, but much remains to be done.

A data-oriented model of discontinuous phrase structure has been pre-
sented which outperforms all previously published results. This has
been achieved by combining a variety of techniques. To wit, a linear

context-free rewriting system as the symbolic grammar, data-oriented parsing
as the probabilistic framework, a general method for enumerating k-best deriva-
tions from a chart, and a coarse-to-fine optimization to tame the computational
complexity of dop.

It turns out that using a grammar formalism with a parsing complexity
that is well beyond cubic is not an impediment for making a dop model with
considerably better performance. Most technical issues with discontinuous dop
parsing have been addressed in this thesis—the next step will be to introduce
linguistic improvements.

∞



Bibliography

Bach, Emmon, Colin Brown, and William Marslen-wilson (). Crossed
and nested dependencies in German and Dutch: A psycholinguistic study.
Language and Cognitive Processes, ():–.

Bansal, Mohit and Dan Klein (). Simple, accurate parsing with an all-
fragments grammar. In Proc. of ACL, pages –.

Barthélemy, François, Pierre Boullier, Philippe Deschamp, and Éric de la Clerg-
erie (). Guided parsing of range concatenation languages. In Proc. of
ACL, pages –.

Becker, Tilman, Owen Rambow, and Michael Niv (). The derivational
generative power of formal systems or scrambling is beyond LCFRS. Technical
Report IRCS--, Institute for research in cognitive science. Available from:
ftp://ftp.cis.upenn.edu/pub/ircs/tr/92-38.ps.Z.

Behnel, Stefan, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre
Seljebotn, and Kurt Smith (). Cython: The best of both worlds. Computing
in Science and Engineering, :–.

Bird, Steven, Ewan Klein, and Edward Loper (). Natural Language Processing
with Python. O’Reilly Media.

Black, Ezra, John Lafferty, and Salim Roukos (). Development and evalua-
tion of a broad-coverage probabilistic grammar of English-language computer
manuals. In Proc. of ACL, pages –.

Bod, Rens (). A computational model of language performance: Data-
oriented parsing. In Proceedings COLING, pages –.

(). The problem of computing the most probable tree in data-
oriented parsing and stochastic tree grammars. In Proceedings of EACL, pages
–. Available from: http://aclweb.org/anthology/E/E95/E95-1015.
pdf.

(). Parsing with the shortest derivation. In Proceedings of COLING,
pages –.

(). What is the minimal set of fragments that achieves maximal
parse accuracy? In Proc. of ACL, pages –.

(). An efficient implementation of a new DOP model. In Proceedings
of EACL, volume , pages –. Available from: http://www.ldc.upenn.edu/
acl/E/E03/E03-1005.pdf.



ftp://ftp.cis.upenn.edu/pub/ircs/tr/92-38.ps.Z
http://aclweb.org/anthology/E/E95/E95-1015.pdf
http://aclweb.org/anthology/E/E95/E95-1015.pdf
http://www.ldc.upenn.edu/acl/E/E03/E03-1005.pdf
http://www.ldc.upenn.edu/acl/E/E03/E03-1005.pdf

Bolz, Carl F., Antonio Cuni, Maciej Fijalkowski, and Armin Rigo (). Tracing
the meta-level: PyPy’s tracing JIT compiler. In Proceedings of the th workshop
on the Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, pages –. ACM.

Bonnema, Remko, Paul Buying, and Remko Scha (). A new probabil-
ity model for data oriented parsing. In Proceedings of the th Amsterdam
Colloquium, pages –.

Boullier, Pierre (). Proposal for a natural language processing syntac-
tic backbone. Technical Report RR-, inria-Rocquencourt, Le Chesnay,
France. Available from: http://www.inria.fr/RRRT/RR-3342.html.

(). Chinese numbers, mix, scrambling, and range concatenation
grammars. In Proceedings of EACL, pages –.

Boyd, Adriane (). Discontinuity revisited: An improved conversion to
context-free representations. In Proceedings of the Linguistic Annotation Work-
shop, pages –.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith (). The Tiger treebank. In Proceedings of the workshop on treebanks
and linguistic theories, pages –.

Bresnan, Joan, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen ().
Cross-serial dependencies in Dutch. Linguistic Inquiry, ():–.

Bunt, Harry (). Formal tools for describing and processing discontinuous
constituency structure. In Bunt, Harry C. and Arthur van Horck, editors,
Discontinuous Constituency, pages –. Walter de Gruyter.

Bybee, Joan L. (). From usage to grammar: The mind’s response to repeti-
tion. Language, ():–.

Charniak, Eugene, Mark Johnson, M. Elsner, J. Austerweil, D. Ellis, I. Haxton,
C. Hill, R. Shrivaths, J. Moore, M. Pozar, et al. (). Multilevel coarse-to-fine
PCFG parsing. In Proceedings of NAACL-HLT, pages –.

Chomsky, Noam and Marcel P. Schützenberger (). The algebraic theory
of context-free languages. In Braffort, P. and D. Hirschberg, editors, Com-
puter Programming and Formal Systems, volume  of Studies in Logic and
the Foundations of Mathematics, pages –. Elsevier. Available from:
http://www.sciencedirect.com/science/article/pii/S0049237X08720238.

Cohn, Trevor, Sharon Goldwater, and Phil Blunsom (). Inducing compact
but accurate tree-substitution grammars. In Proceedings of NAACL-HLT, pages
–.

Collins, Michael (). Head-driven statistical models for natural language
parsing. PhD thesis, University of Pennsylvania.

Collins, Michael and T. Koo (). Discriminative reranking for natural lan-
guage parsing. Computational Linguistics, ():–.



http://www.inria.fr/RRRT/RR-3342.html
http://www.sciencedirect.com/science/article/pii/S0049237X08720238

Cormen, Thomas H., Charles E. Leiserson, Ron L. Rivest, and Clifford Stein
(). Introduction to algorithms. MIT press, second edition.

Crescenzi, P., Daniel Gildea, A. Marino, G. Rossi, and Giorgio Satta ().
Optimal head-driven parsing complexity for linear context-free rewriting
systems. In Proc. of ACL.

Dowty, David R. (). Toward a minimalist theory of syntactic structure. In
Bunt, Harry C. and Arthur van Horck, editors, Discontinuous Constituency,
pages –. Walter de Gruyter.

Dubey, Amit and Frank Keller (). Parsing german with sister-head depen-
dencies. In Proc. of ACL, pages –.

Dufour, Mark (). Shed skin: An optimizing Python-to-C++ compiler.
Master’s thesis, Delft University of Technology. Available from: http://mark.
dufour.googlepages.com/shedskin.pdf.

Emms, Martin (). Tree-distance and some other variants of evalb. In Proc.
of LREC, pages –.

Gildea, Daniel (). Optimal parsing strategies for linear context-free rewrit-
ing systems. In Proceedings of NAACL HLT ., pages –.

Gómez-Rodríguez, Carlos, Marco Kuhlmann, Giorgio Satta, and David Weir
(). Optimal reduction of rule length in linear context-free rewriting
systems. In Proceedings of NAACL HLT , pages –.

Gómez-Rodríguez, Carlos, David Weir, and John Carroll (). Parsing mildly
non-projective dependency structures. In Proceedings of EACL, pages –.

Goodman, Joshua (). Efficient algorithms for parsing the DOP model. In
Proceedings of EMNLP, pages –.

Goodman, Joshua (). Efficient parsing of DOP with PCFG-reductions. In
Bod, Rens, Remko Scha, and Khalil Sima’an, editors, Data-Oriented Parsing.
The University of Chicago Press.

Groenink, Annius V. (). Literal movement grammars. In Proceedings of
EACL, pages –. Available from: http://aclweb.org/anthology/E/E95/
E95-1013.pdf.

(a). Mild context-sensitivity and tuple-based generalizations of
context-grammar. Linguistics and Philosophy, ():–. Available from:
http://www.jstor.org/stable/25001685.

(b). Surface Without Structure. PhD thesis, University of Utrecht.

Harman, Gilbert H. (). Generative grammars without transformation rules:
a defense of phrase structure. Language, ():–. Available from:
http://www.jstor.org/stable/411954.

Hoogweg, Lars (). Extending DOP with the insertion operation. Master’s
thesis, University of Amsterdam.



http://mark.dufour.googlepages.com/shedskin.pdf
http://mark.dufour.googlepages.com/shedskin.pdf
http://aclweb.org/anthology/E/E95/E95-1013.pdf
http://aclweb.org/anthology/E/E95/E95-1013.pdf
http://www.jstor.org/stable/25001685
http://www.jstor.org/stable/411954

Huang, Liang and David Chiang (). Better k-best parsing. In Proceedings of
IWPT , pages –.

Johnson, Mark (). Parsing with discontinuous constituents. In Proc. of ACL,
pages –.

Johnson, Mark (). The DOP estimation method is biased and inconsistent.
Computational Linguistics, ():–.

Joshi, Aravind K. (). How much context sensitivity is necessary for charac-
terizing structural descriptions: Tree adjoining grammars. In Dowty, David R.,
Lauri Karttunen, and Arnold M. Zwicky, editors, Natural language parsing:
Psychological, computational and theoretical perspectives, pages –. Cam-
bridge University Press, New York.

Kallmeyer, Laura (). Multiple context-free grammars and linear context-
free rewriting systems. In Parsing Beyond Context-Free Grammars, Cognitive
Technologies, pages –. Springer Berlin Heidelberg. Available from:
http://dx.doi.org/10.1007/978-3-642-14846-0_6.

Kallmeyer, Laura and Wolfgang Maier (). An incremental earley parser for
simple range concatenation grammar. In Proceedings of the th International
Conference on Parsing Technologies, pages –.

Kallmeyer, Laura and Wolfgang Maier (). Data-driven parsing with prob-
abilistic linear context-free rewriting systems. In Proceedings of the rd
International Conference on Computational Linguistics, pages –.

Kanazawa, Makoto (). Parsing and generation as datalog queries. In Proc.
of ACL, pages –.

(). Parsing and generation as datalog query evaluation. Unpub-
lished manuscript. Available from: http://research.nii.ac.jp/~kanazawa/
publications/pagadqe.pdf.

Klein, Dan and Christopher D. Manning (a). Accurate unlexicalized pars-
ing. In Proc. of ACL, volume , pages –.

Klein, Dan and Christopher D. Manning (b). Fast exact inference with a
factored model for natural language parsing. Advances in neural information
processing systems, pages –.

Kolb, Hans-Peter, Uwe Mönnich, and Frank Morawietz (). Descriptions of
cross-serial dependencies. Grammars, ():–.

Kübler, Sandra, Wolfgang Maier, Ines Rehbein, and Y. Versley (). How to
compare treebanks. In Proceedings of LREC, volume .

Kübler, Sandra, Ines Rehbein, and Josef van Genabith (). TePaCoC: a
corpus for testing parser performance on complex German grammatical
constructions. In Proceedings of the Seventh International Workshop on Treebanks
and Linguistic Theories. Groningen, The Netherlands.

Kuhlmann, Marco and Giorgio Satta (). Treebank grammar techniques for
non-projective dependency parsing. In Proceedings of EACL, pages –.



http://dx.doi.org/10.1007/978-3-642-14846-0_6
http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf
http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf

Lange, Martin; Leiß, Hans (). To cnf or not to cnf? an efficient yet pre-
sentable version of the cyk algorithm. Informatica Didactica, .

Levy, Roger (). Probabilistic models of word order and syntactic discontinuity.
PhD thesis, Stanford University.

Liang, Percy, Slav Petrov, M. Jordan, and Dan Klein (). The infinite PCFG
using hierarchical Dirichlet processes. In Proceedings of the  Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages –.

Lin, Dekang (). A dependency-based method for evaluating broad-coverage
parsers. In International Joint Conference on Artificial Intelligence, volume ,
pages –.

Maier, Wolfgang (). Direct parsing of discontinuous constituents in German.
In Proceedings of the SPMRL workshop at NAACL HLT , pages –.

Maier, Wolfgang and Laura Kallmeyer (). Discontinuity and non-
projectivity: Using mildly contextsensitive formalisms for data-driven pars-
ing. In Proceedings of TAG, volume .

Maier, Wolfgang and Anders Søgaard (). Treebanks and mild context-
sensitivity. In Proceedings of Formal Grammar , page .

Manning, Christopher D. and Hinrich Schütze (). Foundations of statistical
natural language processing. MIT Press.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini ().
Building a large annotated corpus of english: The penn treebank. Computa-
tional linguistics, ():–.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsujii (). Probabilistic CFG
with latent annotations. In Proc. of ACL, pages –.

Nederhof, Mark-Jan (). Weighted deductive parsing and Knuth’s algorithm.
Computational Linguistics, ():–.

Nguyen, Thuy Linh (). Rank consistent estimation: The DOP case. Master’s
thesis, University of Amsterdam. Available from: http://www.science.uva.
nl/pub/theory/illc/researchreports/MoL-2004-06.text.pdf.

O’Donnell, Timothy J., Noah D. Goodman, Jesse Snedeker, and Joshua B. Tenen-
baum (). Computation and reuse in language. In Proceedings of the
Cognitive Science Society, Amsterdam, The Netherlands.

Pauls, Adam and Dan Klein (). K-best A* parsing. In Proc. of ACL, volume ,
pages –.

Plaehn, Oliver (). Computing the most probable parse for a discontinu-
ous phrase structure grammar. In Bunt, Harry, John Carroll, and Giorgio
Satta, editors, New developments in parsing technology, pages –. Kluwer
Academic Publishers, Norwell, MA, USA.



http://www.science.uva.nl/pub/theory/illc/researchreports/MoL-2004-06.text.pdf
http://www.science.uva.nl/pub/theory/illc/researchreports/MoL-2004-06.text.pdf

Pollard, Carl (). Generalized Phrase Structure Grammars, Head Grammars,
and Natural Languages. PhD thesis, Stanford.

Post, Matt and Daniel Gildea (). Bayesian learning of a tree substitution
grammar. In Proceedings of the ACL-IJCNLP  Conference Short Papers,
pages –.

Prescher, Detlef, Remko Scha, Khalil Sima’an, and Andreas Zollmann (). On
the statistical consistency of DOP estimators. In Proceedings CLIN . Avail-
able from: http://www.cnts.ua.ac.be/clin2003/proc/07Prescher.pdf.

Rafferty, Anna N. and Christopher D. Manning (). Parsing three German
treebanks: Lexicalized and unlexicalized baselines. In Proceedings of the
Workshop on Parsing German, pages –.

Rehbein, Ines and Josef van Genabith (). Evaluating evaluation measures.
In NODALIDA  Conference Proceedings, pages –. Available from:
http://doras.dcu.ie/15237.

Sampson, Geoffrey (). A proposal for improving the measurement of parse
accuracy. International Journal of Corpus Linguistics, ():–.

Sangati, Federico and Willem Zuidema (). Accurate parsing with compact
tree-substitution grammars: Double-DOP. In Proceedings of EMNLP, pages
–. Available from: http://www.aclweb.org/anthology/D11-1008.

Sangati, Federico, Willem Zuidema, and Rens Bod (). Efficiently extract
recurring tree fragments from large treebanks. In Proceedings of the th
international conference on Language Resources and Evaluation (LREC’), pages
–. European Language Resources Association (ELRA). Available from:
http://dare.uva.nl/record/371504.

Sapir, Edward (). Language: An introduction to the study of speech. Harcourt,
Brace and company, New York.

Scha, Remko (). Language theory and language technology; competence
and performance. In de Kort, Q.A.M. and G.L.J. Leerdam, editors, Computer-
toepassingen in de Neerlandistiek, pages –. LVVN, Almere, the Netherlands.
Original title: Taaltheorie en taaltechnologie; competence en performance. Trans-
lation available at http://iaaa.nl/rs/LeerdamE.html.

Schmid, Helmut (). Efficient parsing of highly ambiguous context-free
grammars with bit vectors. In Proceedings of COLING ’. Available from:
http://aclweb.org/anthology/C/C04/C04-1024.

Shieber, Stuart M. (). Evidence against the context-freeness of natural
language. Linguistics and Philosophy, :–.

Shieber, Stuart M., Yves Schabes, and Fernando C.N. Pereira (). Principles
and implementation of deductive parsing. The Journal of logic programming,
(-):–.

Sima’an, Khalil (). Learning efficient disambiguation. PhD thesis, Utrecht
University and University of Amsterdam.



http://www.cnts.ua.ac.be/clin2003/proc/07Prescher.pdf
http://doras.dcu.ie/15237
http://www.aclweb.org/anthology/D11-1008
http://dare.uva.nl/record/371504
http://iaaa.nl/rs/LeerdamE.html
http://aclweb.org/anthology/C/C04/C04-1024

(). Tree-gram parsing lexical dependencies and structural relations.
In Proc. of ACL, pages –.

(). Computational complexity of probabilistic disambiguation.
Grammars, ():–.

Sima’an, Khalil and Luciano Buratto (). Backoff parameter estimation for
the DOP model. Machine Learning: ECML , pages –. Available
from: http://dare.uva.nl/record/126078.

Skut, Wojciech, Brigitte Krenn, Thorten Brants, and Hans Uszkoreit (). An
annotation scheme for free word order languages. In Proceedings of ANLP,
pages –.

Telljohann, Heike, Erhard Hinrichs, and Sandra Kübler (). The tüba-d/z
treebank: Annotating german with a context-free backbone. In In Proceedings
of LREC, pages –.

Trautwein, Marten H. (). Computational pitfalls in tractable grammar for-
malisms. PhD thesis, University of Amsterdam.

Tsarfaty, Reut (). Relational-realizational parsing. PhD thesis, University of
Amsterdam. Available from: http://dare.uva.nl/record/335795.

van Noord, Gertjan (). Head corner parsing for discontinuous constituency.
In Proc. of ACL, pages –.

Vijay-Shanker, K. and David J. Weir (). The equivalence of four extensions
of context-free grammars. Theory of Computing Systems, ():–.

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi (). Characterizing
structural descriptions produced by various grammatical formalisms. In Proc.
of ACL, pages –.

Villemonte de la Clergerie, Éric (). Parsing mildly context-sensitive lan-
guages with thread automata. In Proceedings of the th international conference
on Computational linguistics-Volume , pages –.

Vogel, Carl, Ulrike Hahn, and Holly Branigan (). Cross-serial dependencies
are not hard to process. In Proceedings of the th conference on Computational
linguistics, volume  of COLING ’, pages –, Stroudsburg, PA, USA.
Association for Computational Linguistics. Available from: http://dx.doi.
org/10.3115/992628.992658.

Waxmonsky, Sonjia and I. Dan Melamed (). A dynamic data structure for
parsing with discontinuous constituents. Proteus Project Technical Report
–, New York University.

Weir, David J. (). Characterizing mildly context-sensitive grammar formalisms.
PhD thesis, University of Pennsylvania. Available from: http://repository.
upenn.edu/dissertations/AAI8908403/.

Yngve, Victor (). A model and an hypothesis for language structure. Pro-
ceedings of the American Philosophical Society, ():–.



http://dare.uva.nl/record/126078
http://dare.uva.nl/record/335795
http://dx.doi.org/10.3115/992628.992658
http://dx.doi.org/10.3115/992628.992658
http://repository.upenn.edu/dissertations/AAI8908403/
http://repository.upenn.edu/dissertations/AAI8908403/

Younger, Daniel H. (). Recognition and parsing of context-free languages
in time n3. Information and control, ():–.

Zhang, Kaizhong and Dennis Shasha (). Simple fast algorithms for the edit-
ing distance between trees and related problems. SIAM Journal of Computing,
():–.

Zollmann, Andreas (). A consistent and efficient DOP estimator. Master’s
thesis, University of Amsterdam. Available from: http://www.science.uva.
nl/pub/theory/illc/researchreports/MoL-2004-02.text.pdf.

Zollmann, Andreas and Khalil Sima’an (). A consistent and efficient esti-
mator for Data-Oriented Parsing. Journal of Automata Languages and Combina-
torics, (/):. Available from: http://staff.science.uva.nl/~simaan/
D-Papers/JALCsubmit.pdf.

Zuidema, Willem (). Theoretical evaluation of estimation methods for
data-oriented parsing. In Proceedings of EACL, pages –.

(). Parsimonious data-oriented parsing. In Proceedings of EMNLP-
CoNLL, pages –.



http://www.science.uva.nl/pub/theory/illc/researchreports/MoL-2004-02.text.pdf
http://www.science.uva.nl/pub/theory/illc/researchreports/MoL-2004-02.text.pdf
http://staff.science.uva.nl/~simaan/D-Papers/JALCsubmit.pdf
http://staff.science.uva.nl/~simaan/D-Papers/JALCsubmit.pdf

	Introduction
	Discontinuity
	Linguistic motivation
	Corpora
	Previous work

	Linear Context-Free Rewriting Systems
	The grammar formalism
	Grammar extraction
	Parsing
	Binarization

	Data-Oriented Parsing
	The probabilistic framework
	Estimators
	Discontinuous fragments
	Goodman's reduction of DOP
	Double-DOP

	Disco-DOP
	Simplicity Likelihood DOP
	Finding the k-best derivations
	Coarse-to-fine PLCFRS parsing
	Even coarser-to-fine parsing: from PCFG to PLCFRS

	Implementation
	Python
	Cython
	Data structures
	Code overview

	Evaluation
	Metrics
	Results

	Remaining challenges
	Conclusion

