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Abstract

We develop a formal model of opinion polls in elections and study how they
influence voting behaviour, and thereby elections outcomes. We analyse two
settings. In the first, we study a voter’s incentives to misrepresent her prefer-
ences after receiving poll information. We vary the amount of information a poll
provides and examine, for different voting procedures, when a voter starts and
stops having these incentives. In the second setting, voters repeatedly update
their ballot in view of a sequence of polls, and we analyse the effect of this pro-
cess on the election outcome using both analytical and experimental methods.
We consider several ways in which a voter may respond to poll information, and
for different combinations of these response policies we study how opinion polls
affect the properties of different voting procedures. Together, our results clar-
ify under which circumstances opinion polls can improve the quality of election
outcomes and under which circumstances they can have negative effects, due to
the increased opportunities for strategic voting they provide.
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Chapter 1

Introduction

Some countries ban the publication of opinion polls in the days prior to an
election because of their presumed effect on voting behaviour. In this thesis,
we develop a formal model of opinion polls to study how they may influence
voting behaviour, and thereby election outcomes. Our findings help to justify
or criticise a ban on opinion polls.

A much-cited example of an election in which polls could have been decisive
(but in the end were not) is the 2000 U.S. presidential election. The main
candidates running for president then were George W. Bush and Al Gore. Bush
won, but only by a tiny margin. A difference that would have been settled in
favour of Gore if all supporters of a third, losing candidate, Ralph Nader, had
voted for their second choice.

Like the U.S. presidential elections, most political elections are based on the
plurality rule, under which voters vote for a single candidate and the candidate
with the most votes wins. The plurality rule, however, often does not elect the
most representative candidate. Other voting procedures do much better in this
respect. For example, the Copeland procedure asks voters to rank all candidates.
The score of a candidate is then computed as the difference between the number
of opponents he will beat in a one-to-one majority contest and the number of
opponents he will lose to in such a contest. The candidate with the highest
score wins. That way, the Copeland procedure also takes voters’ second choices
into account.

All democratic voting procedures, however, are susceptible to tactical voting
behaviour when voters’ sole concern is getting the best outcome possible. A
classical result in voting theory, the Gibbard-Satterthwaite Theorem, states
that if there are three or more candidates, then for any nondictatorial voting
procedure there are situations in which voters are better off by not reporting
their true preferences (Gibbard, 1973; Satterthwaite, 1975). To recognise these
situations, a voter needs to know exactly what everybody else is voting. Clearly,
this is not a realistic assumption for actual elections with many voters, but also
then voters often have some idea about the voting intentions of others. Opinion
polls play an important role in the formation of these beliefs (Faas et al., 2008;
Irwin & van Holsteyn, 2002). How much information may a poll provide before
voters start knowing when they can benefit from voting tactically? In other
words, does the Gibbard-Satterthwaite Theorem generalise to settings where
voters only have partial information about other voters’ ballots?

1
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In plurality elections, the most natural way to communicate poll results
is by publishing the number of votes each candidate would currently receive.
Since we are interested in the whole range of possible voting procedures, we also
consider other ways of communicating poll results. In Copeland elections, for
example, we could publish the Copeland score of each candidate, or we could
record how many copies of each possible ballot were received. Alternatively,
we could publish the majority graph (a directed graph on the set of candidates
that contains an edge from x to y if a majority of voters prefer x over y) or the
weighted majority graph (in which each edge is labelled with the strength of the
corresponding majority).

The aim of this thesis is twofold. We study how much information a poll
may provide before it gives rise to tactical voting behaviour, and we study the
effects of tactical voting behaviour on election outcomes. Ultimately, we would
like to know under which circumstances opinion polls lead to less representa-
tive winners, and under which circumstances they lead to more representative
winners.

1.1 Approach

We study opinion polls from the theoretical perspective of social choice theory,
the formal study of methods for collective decision making (Arrow et al., 2002).
To its machinery we add the concept of poll information function, a function
mapping ballot information obtained via an opinion poll to a communicable
format (e.g., a majority graph or a list of scores). From the poll information
they receive, voters can infer certain things about the voting intentions of other
voters.

We shall analyse two scenarios. In the first, we study a voter’s incentives
to misrepresent her preferences after receiving poll information. We vary the
amount of information a poll provides and examine, for different voting proce-
dures, when a voter starts and stops having these incentives.

In the second scenario, voters repeatedly update their ballot in view of a se-
quence of polls, and we analyse the effect of this process on the election outcome.
We consider several types of responses to poll information: a strategist will sub-
mit a best response to what she knows about other voters’ ballots; a pragmatist
will support her favourite candidate from a small set of, say, two front-runners;
and a truth-teller will always vote truthfully. For different combinations of these
response policies, we study how polls affect the properties of a voting procedure
using both analytical methods and simulations. An example of such a property
is the frequency of electing a Condorcet winner, i.e., a candidate that would
beat any other candidate in a one-to-one majority contest.

Our model of opinion polls is particularly applicable to small elections and
straw polls.

1.2 Outline

This thesis is laid out as follows. In Chapter 2 we review related work on
opinion polls and tactical voting behaviour. This is also where we discuss some
exemplary, experimental results on the influence of opinion polls in real-world
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political elections. Chapter 3 introduces the basic framework of voting theory
which is part of social choice theory. On top of this framework we will build
our model. We then focus on the strategic response of a single voter to a single
poll. We present the central notion of poll information function in Chapter 4,
along with our results on manipulation by a single voter under (partial) poll
information. Chapter 5 is concerned with voter response to sequences of polls.
Here we discuss how polls may affect election outcomes. For this purpose, we
also ran numerous simulations of elections. The uncut results of all experiments
are listed in Appendix A. Finally, Chapter 6 concludes and gives some directions
for future research.





Chapter 2

Influence of Opinion Polls

This chapter discusses related work. Sections 2.1 and 2.2 are concerned with re-
search on opinion polls done in the field of political science. We review the main
lines of work: how polls affect a voter’s perception of other voters’ preferences,
and how that in turn may affect her voting intentions. These sections provide
some empirical motivation for our work. In Section 2.3, we give an overview of
related theoretical research on opinion polls. Finally, Section 2.4 ends with a
summary.

2.1 On Perceptions of Collective Opinion

Generally, opinion polls are assumed to influence a voter’s expectations regard-
ing the election outcome. Political scientists study whether this is actually the
case. Other factors are also believed to play a role. For example, a voter may
base her expectations on the opinions of her friends and family, or on the opin-
ions that are most prominent in the media. A voter may also rely on her own
preferences in predicting the preferences of others (“wishful thinking”). Or a
voter may presume that a candidate’s performance in past elections for the same
legislative body is illustrative for his performance in future elections.

Irwin & van Holsteyn (2002) studied in how far opinion polls controlled vot-
ers’ perceptions of collective opinion in comparison to other factors in the 1994
Dutch parliamentary election. They found that poll information best predicted
voters’ perceptions. In particular, it did so better than past elections, wishful
thinking, and general interest in (discussing) politics. In a similar study on
the 2005 German parliamentary election it was also found that opinion polls
strongly influenced voters’ expectations of the election outcome, and that this
effect persisted when the influences of wishful thinking and interest in the cam-
paign were cancelled out (Faas et al., 2008). Both studies also found a significant
effect of wishful thinking.

Clearly, these studies alone do not provide enough evidence to draw any
general conclusions about the effect of opinion polls on voters’ expectations.
Research in this field is seriously limited by the lack of appropriate data for such
analyses. Future research should therefore focus on the gathering and analysis
of appropriate data to come to more general conclusions about the relation
between opinion polls and voters’ perceptions. Additionally, while most work

5
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in this area pertains to political elections with very large numbers of voters,
it would also be interesting to analyse the effect of polls in elections with few
voters.

2.2 On Voting Behaviour

The hypothesised effects of opinion polls on voting behaviour can be categorised
into faithful, tactical, and emotional responses. A faithful voter does not change
her ballot upon receiving poll information. Tactical and emotional voters, on
the other hand, do. According to Fisher (2004), a tactical voter is “someone
who votes for a candidate she believes is more likely to win than her preferred
candidate, to best influence who wins in the constituency”. Tactical voting be-
haviour leads to momentum effects in which candidates that are winning support
win even more support, and candidates that are losing support lose even more
support. Formally, a tactical voter can follow different strategies, depending
on the voting procedure. The best-known strategy is compromising; ranking a
candidate higher to get him elected. Other strategies are: burying – ranking a
candidate lower to get him defeated, and push-over – ranking a candidate higher
to get some other candidate elected. We refer to Saari (2003) for an overview of
strategies for different voting procedures. A voter may also respond emotionally
to poll information. She may, for example, change her vote to the candidate
who is already winning in the polls, because of her intrinsic desire to be part
of the winning team. On the contrary, she may also change her vote to the
candidate who is losing in the polls, because she feels pity for him. Responses
of the first type trigger a bandwagon effect in which the winning candidate gains
support, and responses of the second type trigger an underdog effect in which
the losing candidate gains support (terminology from Simon (1954)). Another
much-cited emotional reaction to poll information is disillusioned voting. A
supporter of a very popular winning candidate then decides to vote for her
second most preferred candidate, because she does not feel her vote is needed
anymore, or because she does not sympathise with some of the other supporters
and therefore no longer feels represented (Riker, 1976).

According to Duverger (1954), tactical voting (compromising) is so common
in plurality elections that many such voting systems eventually result in two-
candidate systems. Take for example the U.S. presidential elections that com-
pletely revolve around the Democrats versus the Republicans. In the Indian
general elections, however, votes are often split between three major parties.
Hence, Duverger’s law may not be as law-like as suggested (see Riker (1976) for
an analysis).

Typically, in laboratory experiments on opinion polls large numbers of tac-
tical voting are found. In such experiments, each subject is assigned a payoff
vector which specifies her reward for each possible election outcome. Voters’
preferences can be completely controlled that way, and emotional responses to
opinion polls do not need to be taken into account. Following this methodology,
Forsythe et al. (1993), for example, found that opinion polls significantly re-
duced the frequency with which the Condorcet loser won in plurality elections,
due to increased rates of tactical voting behaviour.1

1A Condorcet loser is a candidate that would lose to any other candidate in a one-to-one
majority contest.
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In real-world political elections, the influence of opinion polls on voting be-
haviour seems to be much smaller (Faas et al., 2008). Many studies did not
find a significant effect of opinion polls on the election outcome. There are sev-
eral reasons that could explain this apparent discrepancy between laboratory
experiments and actual elections. First, subjects in a laboratory experiment
simply want to end up with as much reward (money) as possible. They are not
confronted with ideological considerations, and the winner of the election is not
going to rule their country. Moreover, in many laboratory experiments situa-
tions are created that are particularly vulnerable to tactical voting. Addition-
ally, in actual elections emotional responses may cancel out tactical responses to
opinion polls. But above all, many other factors may influence a voter’s voting
intentions in the actual world, and there is not much data available that allows
for a direct analysis of the influence of opinion polls (see Section 2.1). More
work is needed to come to any definite conclusion on the influence of opinion
polls on voting behaviour and election outcomes.

Interestingly, Mutz (1997) argues that opinion polls may not only change the
voting intentions of a voter, but also her preferences. According to Mutz (1997),
opinion polls trigger a cognitive process in which pros and cons of candidates
are mentally rehearsed, thereby possibly causing a voter’s own preferences to
shift. This would better account for momentum effects than tactical voting
alone. Either way, in this thesis we assume that a voter’s own preferences are
fixed.

2.3 Formal Models of Opinion Polls

Formal models of opinion polls can provide insight into how opinion polls may
affect voting behaviour, and thereby election outcomes. They can roughly be
divided into what we shall call here ‘mathematical’ approaches and ‘logical’ ap-
proaches. In the mathematical approach, each voter is assigned a payoff vector
which specifies her payoff (or utility) for each possible election winner. All vot-
ers are so-called expected utility-maximisers, i.e., they always submit a ballot
that maximises their expected payoff given what they know about other vot-
ers’ ballots. Opinion polls provide voters with information about other voters’
ballots with some (unknown) uncertainty. Typically, polls communicate the
approximate scores that each candidate would currently receive. In each poll
round, all voters may change their ballot.

Myerson & Weber (1993) focused on voting equilibria in such models. A
voting equilibrium is a point from which no voter wishes to deviate, i.e., an-
other poll round would not change any voter’s ballot. Myerson & Weber (1993)
prove that there exists at least one such voting equilibrium for any allocation
of payoff vectors under any positional scoring rule (e.g., plurality, veto, and
Borda). Myatt (2007) also developed a mathematical model of opinion polls.
Contrary to Myerson & Weber (1993), who assume that all voters hold the same
beliefs about collective opinion, Myatt (2007) assumes that a voter’s perception
of other voters’ preferences depends not only on opinion polls, but also on her
own preferences (wishful thinking) and on the preferences of her friends and
family. He proves that under these conditions, tactical voting is limited in equi-
libria of three-candidate plurality elections. Applied to the 1997 U.K. general
election, his model correctly predicted the impact of tactical voting and the
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reported accuracy of voters’ perceptions of collective opinion.
In the logical approach to opinion polls, there is no uncertainty regarding

the accuracy of the communicated poll information, although polls may provide
partial information about other voters’ preferences. Moreover, voters are not
necessarily expected utility-maximisers, i.e., voters do not necessarily always
play a best response to what they know about other voters’ ballots. For example,
Brams & Fishburn (1983) proposed a model of opinion polls in which voters
always vote for their favourite candidate from a small set of front-runners as
identified by the previous poll. They give several examples that show, for both
the plurality rule and another system known as approval voting, that opinion
polls can have both positive and negative effects on the election of the Condorcet
winner. Chopra et al. (2004) and Meir et al. (2010), on the other hand, do
assume that voters always play a best response to poll information. Chopra
et al. (2004) give further examples, showing that a sequence of polls may or
may not reach an equilibrium. Meir et al. (2010) identify conditions under
which termination can be guaranteed in plurality elections in which exactly one
voter changes her ballot in each poll round.

Brams & Fishburn (1983) assume that voters have complete knowledge re-
garding the current electoral situation, that is, voters know the scores of all
candidates and from this information they can derive for each possible way of
voting themselves who would win in the next round if all other voters keep their
vote. Chopra et al. (2004) and Meir et al. (2010) make the same assumption.
Conitzer et al. (2011), however, do consider scenarios in which voters only have
partial information about the current electoral situation. Their work on the
problem of strategic manipulation under partial information is closely related
to the first scenario we study in which a voter may or may not decide to vote
strategically on the basis of a single opinion poll: a poll is one way to model the
partial information available to a manipulator-to-be.

In this thesis, we take the logical approach. We study the influence of opinion
polls on voting behaviour and election outcomes for varying poll information
levels and voters’ responses, and under different voting procedures.

2.4 Summary

Opinion polls may affect a voter’s perception of other voters’ preferences, and
this may in turn affect her voting behaviour. Ultimately, opinion polls may lead
to different election outcomes that way. Experimental research seems to support
these claims, but more work needs to be done to come to any definite conclusion
(Faas et al., 2008; Forsythe et al., 1993; Irwin & van Holsteyn, 2002). Mathe-
matical models of opinion polls provide insight into how poll information may
affect voting behaviour, and thereby election outcomes (Myatt, 2007; Myerson
& Weber, 1993). We will take a logical approach and prove general theorems
on the relation between opinion polls, voting procedures, voting behaviour, and
election outcomes. In addition, we will simulate various elections to provide
further insights. The work in this thesis is most closely related to the work of
Brams & Fishburn (1983), Chopra et al. (2004), Meir et al. (2010), and Conitzer
et al. (2011).



Chapter 3

Voting Theory

In this chapter we describe relevant concepts from voting theory (Taylor, 2005).

3.1 Basic Framework

Let N = {1, 2, . . . , n} be a finite set of voters, and let X = {x1, x2, . . . , xm}
be a finite set of candidates (or alternatives). To vote, each voter i submits a
ballot bi. If not stated otherwise, we adopt the standard assumption that ballots
are strict linear orders on X . Let L(X ) be the set of all such orders. A profile
b = (b1, . . . , bn) ∈ L(X )N is a vector of ballots, one for each voter. A voting
procedure F is a function from ballot profiles to nonempty sets of candidates,
the election winners:

F : L(X )N → 2X \{∅}

A voting procedure may give multiple initial winners. A tie-breaking rule then
picks a unique winner from this set of initial winners. We assume that tie-
breaking rules are choice functions: T : 2X \{∅} → X . An example of a tie-
breaking rule that is not a choice function is the random tie-breaking rule which
breaks ties randomly. Sometimes we further restrict attention to rationalisable
tie-breaking rules, i.e., tie-breaking rules under which ties are broken according
to some fixed but arbitrary order over the candidates (Definition 1).

Definition 1. A tie-breaking choice function T is rationalisable if there is a
strict linear order over the candidates B ∈ L(X ) such that for any C ∈ 2X \{∅}:

T (C) = x where x B y for all y ∈ C

The following are examples for common voting procedures (Brams & Fishburn,
1983; Taylor, 2005):

• Positional scoring rules: A PSR is defined by a scoring vector (s1, . . . , sm)
with s1 > . . . > sm and s1 > sm. A candidate receives sj points for each
voter who ranks him at the jth position. The candidate(s) with the most
points win(s) the election. Important PSRs are plurality with scoring
vector (1, 0, . . . , 0), antiplurality (or veto) with scoring vector (1, . . . , 1, 0),
and Borda with scoring vector (m−1,m−2, . . . , 0).

9
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• Copeland: A candidate’s score is the number of pairwise majority contests
he wins minus the number he loses. The candidate(s) with the highest
score win(s). A pairwise majority contest between candidates x and y is
won by x if a majority of voters rank x above y.

• Maximin (or Simpson): A candidate’s score is the lowest number of voters
preferring him in any pairwise contest. The candidate(s) with the highest
score win(s).

• Bucklin: A candidate’s score is the smallest k such that a majority of
voters rank him in their top k. The candidate(s) with the lowest score
win(s).

• Single transferable vote: An STV election proceeds in rounds. In each
round the candidate(s) ranked first by the fewest voters get(s) eliminated.
This process is repeated until only one candidate remains (or until all
remaining candidates are ranked first equally often).

• Approval: Each voter approves of as many candidates as she wishes. The
candidate(s) with the most approvals win(s). Under approval voting bal-
lots are not strict linear orders over candidates, but instead they are (not
necessarily strict) subsets of candidates.

Example 1 illustrates the working of some of these procedures.

Example 1. Suppose there are 3 candidates (a, b, c) and 11 voters who submit
the following ballots (where underlining indicates approval):

5 voters: c � a � b
4 voters: a � b � c
2 voters: b � c � a

Who wins this election? Under the plurality rule, candidate c wins. He receives
5 plurality points against 4 points for candidate a and 2 points for candidate b.
Under the Borda rule, candidate a wins. He receives 13 Borda points against
12 points for candidate c and 8 points for candidate b. The Copeland procedure,
on the other hand, does not elect a unique winner. All candidates win and
lose exactly one pairwise majority contest. Therefore, all candidates are tied
under this procedure. Finally, approval voting elects candidate b. He receives 6
approval points against 5 points for candidate c and 4 points for candidate a.

Voting procedures can be categorised by their formal properties, often referred
to as axioms (Taylor, 2005). Resolute voting procedures always elect a unique
winner (Definition 2).

Definition 2. A voting procedure F is resolute if |F (b)| = 1 for any ballot
profile b ∈ L(X )N .

To simplify notation, we will sometimes think of a resolute voting procedure as
a function from ballot profiles to candidates, i.e., F : L(X )N → X . A resolute
voting procedure is surjective if each candidate wins under at least one ballot
profile (Definition 3).

Definition 3. A resolute voting procedure F is surjective if for any candidate
x ∈ X there is a ballot profile b ∈ L(X )N such that F (b) = x.
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Anonymous voting procedures treat all voters equally (Definition 4). And con-
stant voting procedures always elect the same, unique winner (Definition 5).

Definition 4. A voting procedure F is anonymous if F (b1, . . . , bn) =
F (bτ(1), . . . , bτ(n)) for any ballot profile b ∈ L(X )N and any permutation
τ : N → N .

Definition 5. A voting procedure F is constant if there is a candidate x ∈ X
such that F (b) = {x} for any ballot profile b ∈ L(X )N .

If there is a voter such that her top-ranked candidate is always the unique
winner, then the voting procedure is dictatorial (Definition 6). Otherwise it is
nondictatorial. We call a voter powerful if there is a ballot profile in which her
vote matters (Definition 7). Thus a dictatorial voting procedure yields exactly
one powerful voter. Note that a powerful voter is the opposite of a dummy
voter, as defined in the field of cooperative games.

Below, b(x � y) denotes the set of voters ranking x above y in ballot profile b.

Definition 6. A voting procedure F is dictatorial if there is a voter i ∈ N
such that for any ballot profile b ∈ L(X )N :

F (b) = {x} whenever i ∈ b(x � y) for all y ∈ X\{x}

Definition 7. A voter i is powerful with respect to a voting procedure F if there
are a ballot profile b ∈ L(X )N and a ballot b′i ∈ L(X ) such that F (bi, b−i) 6=
F (b′i, b−i).

A voting procedure is unanimous if it elects candidate x whenever x is ranked
first by all voters (Definition 8). And a voting procedure satisfies the Pareto
condition if it does not return a candidate that is ranked below some other
candidate by all voters (Definition 9). Note that any Pareto-efficient voting
procedure is unanimous (but not vice versa).

Definition 8. A voting procedure F is unanimous if for any ballot profile
b ∈ L(X )N :

F (b) = {x} whenever b(x � y) = N for all y ∈ X\{x}

Definition 9. A voting procedure F is Pareto-efficient if for any ballot profile
b ∈ L(X )N :

y /∈ F (b) whenever b(x � y) = N for some x ∈ X

Finally, a voting procedure is Condorcet-consistent if it elects (only) the Con-
dorcet winner whenever he exists (Definition 10), and it is strongly Condorcet-
consistent if it elects (only) the full set of weak Condorcet winners whenever
that set is nonempty (Definition 11). A weak Condorcet winner is a candidate
that does not lose any pairwise majority contest, although he may tie some. A
Condorcet winner wins any pairwise majority contest. Note that (weak) Con-
dorcet winners only exist for some profiles. If a Condorcet winner exists, then he
must be unique, while there can be several weak Condorcet winners. A related
notion is that of a Condorcet loser: a candidate who loses any pairwise majority
contest.
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Definition 10. A voting procedure F is Condorcet-consistent if for any
ballot profile b ∈ L(X )N :

F (b) = {x} whenever |b(x � y)| > |b(y � x)| for all y ∈ X\{x}

Definition 11. A voting procedure F is strongly Condorcet-consistent if
for any ballot profile b ∈ L(X )N :

F (b) = W b whenever W b 6= ∅

where W b is the set of all weak Condorcet winners of b, i.e.:

W b = {x ∈ X | |b(x � y)| > |b(y � x)| for all y ∈ X\{x}}

3.2 Manipulation

Each voter i is endowed with a preference order �i on X . A voter i votes
truthfully if she votes �i and untruthfully otherwise. In classical voting theory,
a voter i is said to have an incentive to manipulate if she can improve the election
outcome with respect to �i by voting untruthfully (Definition 12). A resolute
voting procedure is susceptible to manipulation if there is a profile in which
some voter has an incentive to manipulate (Definition 13). If a resolute voting
procedure is not susceptible to manipulation, then it is immune to manipulation.

Definition 12. Given a resolute voting procedure F and a profile b, a voter i
has an incentive to manipulate if there is a ballot c?i ∈ L(X ) such that
F (c?i , b−i) �i F (�i, b−i).

In above definition, F (�i, b−i) denotes the election winner under F when ev-
eryone votes as in profile b, while voter i votes according to �i, et cetera.

Definition 13. A resolute voting procedure F is susceptible to manipulation
if there are a profile b and a voter i such that i has an incentive to manipulate.

Impossibility theorems play an important role in voting theory: they describe
which combinations of axioms cannot be satisfied by any voting procedure.
An influential impossibility result is that of Gibbard (1973) and Satterthwaite
(1975):

Theorem 1. (Gibbard-Satterthwaite) When m > 3, any resolute voting
procedure that is surjective and nondictatorial is susceptible to manipulation.

Proof. See Gibbard (1973) or Satterthwaite (1975). For a simple proof see
Barberà (1983) or Benôıt (2000).

In other words, the Gibbard-Satterthwaite Theorem states that if there are
three or more candidates, then for any ‘democratic’ voting procedure there are
situations in which voters are better off by not reporting their true preferences.
This is problematic for two reasons. In the actual world voting procedures are
designed to elect the most representative candidate assuming that all voters
vote truthfully, and they may elect a less representative candidate if some vote
untruthfully. Additionally, when voting untruthfully can be beneficial, a voter
has to strategise over how to vote, which asks a lot of her cognitive abilities.
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The Gibbard-Satterthwaite Theorem may, however, be less general than implied.
Four of its underlying assumptions can be questioned and provide escapes from
its major consequences.

First, the Gibbard-Satterthwaite Theorem makes the universal domain as-
sumption: any ballot and preference order is possible. If we restrict the domain
of a resolute voting procedure that is surjective and nondictatorial, then it might
get immune to manipulation. Moulin (1980) gives a characterisation of such a
class of voting procedures for single-peaked domains, a rather natural restriction
on domains.

Second, even if it is possible for a voter to manipulate, it may be difficult to
do so. Unfortunately, Bartholdi III et al. (1989) find that many common voting
procedures are easy to manipulate, among which all positional scoring rules,
Copeland and maximin. On the other hand, Conitzer & Sandholm (2003) define
a qualifying round that makes common voting procedures hard to manipulate,
including plurality, Borda, and maximin. In this round all candidates are paired,
and the winners of the corresponding pairwise majority contests qualify for the
final round in which the original procedure decides. We refer to Faliszewski &
Procaccia (2010) for a review of work on hardness of manipulation.

Third, the Gibbard-Satterthwaite Theorem only applies to voting procedures
that take strict linear orders as their input. Thus, voting procedures that are
defined on, for example, subsets of candidates might be immune to manipula-
tion. In fact, we will prove that under approval voting no voter ever has an
incentive to misrepresent her preferences (see Section 4.3).

Finally, the Gibbard-Satterthwaite Theorem presupposes that a
manipulator-to-be knows exactly how all other voters are voting. Limit-
ing information about other voters’ ballots, may make voting procedures less
susceptible to manipulation, or even immune. In the actual world, voters
will often obtain this information from opinion polls. In the next chapter,
we analyse how much information a voter needs to be able to manipulate
successfully. Conitzer et al. (2011) studied a similar scenario, but focused on
the computational difficulty of manipulation.





Chapter 4

Response to a Single Poll

In this chapter, we study the scenario in which a single voter strategises in view
of a single poll. We vary the amount of information that a poll provides and
examine, for different voting procedures, when a voter starts and stops having
an incentive to manipulate the election.

4.1 Polling Perspective

In this section we extend the basic framework of voting theory as described in
Chapter 3, and define the central notion of poll information function.

4.1.1 Poll Information Functions

In an opinion poll, all voters are asked for their ballot. We call the resulting
ballot profile a poll profile. Often we would not want to communicate the whole
poll profile to the electorate, e.g., to respect the privacy of voters, or because
it is computationally too expensive to do so. Let I be the set of all possible
pieces of poll information that we might want to communicate to the electorate
in view of a given poll profile. A poll information function (PIF) is a function
π : L(X )N → I mapping poll profiles to elements of I. Here are some natural
choices for I and the corresponding PIF π:

• Profile: The profile-PIF simply returns the full input profile: π(b) = b.

• Ballot: The ballot-PIF returns a vector recording how often each ballot oc-
curs in the input profile. Formally, π(b) = (c(d1, b), . . . , c(dm!, b)), where
c : L(X ) × L(X )N → N counts the number of occurrences of a ballot
in a ballot profile, and all ballots d ∈ L(X )N are ordered lexicographi-
cally with ballot d1 being the lexicographic first and ballot dm! being the
lexicographic last.

• Weighted Majority Graph: The WMG-PIF returns the weighted majority
graph of the input profile. A weighted majority graph is a directed graph
in which each node represents a candidate. There is an edge (x, y) from x
to y if x wins their pairwise majority contest. Each edge (x, y) is labelled
with the difference in number between voters ranking x above y and voters

15
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ranking y above x. Let wmg(b) be the weighted majority graph of ballot
profile b. Then π(b) = wmg(b).

• Majority Graph: The MG-PIF returns the majority graph of the input
profile. A majority graph is a weighted majority graph without weights.
Let mg(b) be the majority graph of ballot profile b. Then π(b) = mg(b).

• Score: Given a voting procedure F , the corresponding score-PIF returns
for each candidate its score under the input profile according to F . F
should assign points to each candidate for this PIF to be well-defined.
Formally, π(b) = (sF (x1, b), . . . , sF (xm, b)), where sF : X × L(X )N → N
computes the score of a candidate under a ballot profile according to F .

• Rank: Given a voting procedure F , the corresponding rank-PIF returns
the rank of each candidate under the input profile according to F . F
should rank all candidates for this PIF to be well-defined. Formally,
π(b) = (rF (x1, b), . . . , rF (xm, b)), where rF : X × L(X )N → N com-
putes the rank of a candidate under a ballot profile according to F . If F
is paired with a tie-breaking rule T , then we assume that T is also used
to break ties for second place, third place, et cetera.

• Winner: Given a voting procedure F , the corresponding winner-PIF re-
turns the winning candidate(s) under the input profile according to F :
π(b) = F (b).

• Zero: The zero-PIF does not provide any information, i.e., it simply re-
turns a constant value: π(b) = 0.

Upon receiving poll information π(b), and assuming she knows how π is defined,
what can voter i infer about the poll profile b? Of course, she knows her own
ballot bi with certainty. So, what can she infer about the remainder of the profile,
b−i? We call the set of (partial) profiles that voter i must consider possible in
view of the information she holds after receiving π(b) her information set. It is
defined as follows:

Wπ(b)
i := {c−i ∈ L(X )N\{i} | π(bi, c−i) = π(b)}

Epistemologically speaking, we may think of poll profile b as the actual world

and of {(bi, c−i) | c−i ∈ Wπ(b)
i } as the set of possible worlds that are consistent

with i’s knowledge in world b. It is not difficult to see that W satisfies all
properties of an S5-operator (see Blackburn et al. (2001) for an introduction in
modal logic). For any PIF π, any voter i, and any ballot ai, the following holds:

• (REF) b−i ∈ Wπ(ai,b−i)
i for any profile b−i ∈ L(X )N\{i}.

• (SYM) if b−i ∈ Wπ(ai,c−i)
i , then c−i ∈ Wπ(ai,b−i)

i for any profiles b−i,
c−i ∈ L(X )N\{i}.

• (TRA) if b−i ∈ Wπ(ai,c−i)
i and c−i ∈ Wπ(ai,d−i)

i , then b−i ∈ Wπ(ai,d−i)
i

for any profiles b−i, c−i, d−i ∈ L(X )N\{i}.
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Axiom (REF) simply states that the actual poll profile is always part of every
voter’s information set. And Axioms (SYM) and (TRA) together express that
whenever a voter considers some ballot profile possible, then that profile would
also induce her current information set. For a discussion of the knowledge-
theoretic properties of polls in view of strategic voting we refer to the work of
Chopra et al. (2004).

We define the degree of ‘informativeness’ of a PIF in terms of the information
sets it induces:

Definition 14. A PIF π is said to be at least as informative as another

PIF σ, if Wπ(b)
i ⊆ Wσ(b)

i for any poll profile b ∈ L(X )N and any voter i ∈ N .

Definition 14 places a hierarchy on poll information functions, in which a PIF
is ranked above all PIFs that are less informative, and below all PIFs that are
more informative. Figures 4.1(a) and 4.1(b) show this hierarchy for the above
defined PIFs for Borda and Copeland, respectively.

Profile

Ballot

Score

WMG

Rank

MG

Winner

Zero

(a) Borda

Profile

Ballot

WMG

MG

Score

Rank

Winner

Zero

(b) Copeland

Figure 4.1: Information hierarchies of selected poll information functions for
Borda (a) and Copeland (b).

We note that Conitzer et al. (2011) work with the same notion of information
set as we do here, except that they do not require an information set to be
induced by poll information, but rather permit any set of conceivable profiles to
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form the information set of a given voter. There are also interesting connections
to the work of Chevaleyre et al. (2009) on the compilation complexity of voting
procedures: their compilation functions are the same types of functions as our
PIFs.

4.1.2 Manipulation with respect to Poll Information

Now that we extended the basic framework of voting theory to encompass opin-
ion polls and how they affect the information voters have regarding the voting
intentions of others, the classical definition of manipulation (Definition 12) does
not suffice anymore. We say that a voter has an incentive to π-manipulate if
from what she knows about the voting intentions of other voters, by voting un-
truthfully she has a chance of improving the election outcome according to her
true preferences and no chance of worsening it (Definition 15).

In below definition, �i is the reflexive closure of �i.1

Definition 15. Let π be a PIF. Given a resolute voting procedure F , a voter i,
and a poll profile b with bi = �i, voter i has an incentive to π-manipulate
if there is a ballot c?i ∈ L(X ) such that:

F (c?i , c−i) �i F (�i, c−i) for some profile c−i ∈ Wπ(b)
i

and F (c?i , c−i) �i F (�i, c−i) for all other profiles c−i ∈ Wπ(b)
i

Susceptibility to manipulation of voting procedures is defined in the classical way
(Definition 16). Likewise, a resolute voting procedure that is not susceptible to
π-manipulation is immune to π-manipulation.

Definition 16. A resolute voting procedure F is susceptible to π-
manipulation if there are a profile b and a voter i such that i has an incentive
to π-manipulate.

Note that when π is the profile-PIF, returning the full poll profile, then our
notion of π-manipulation reduces to the standard notion of manipulability as
defined in Chapter 3.

Lemma 1 below relates the degree of informativeness of a PIF to the suscep-
tibility results it brings about.

Lemma 1. If a PIF π is at least as informative as another PIF σ, then any
resolute voting procedure that is susceptible to σ-manipulation is also susceptible
to π-manipulation.

Proof. Let F be a resolute voting procedure that is susceptible to σ-
manipulation and let π be a PIF that is at least as informative as σ. By assump-
tion, there are a voter i, a poll profile b with bi = �i, and a ballot c?i such that

F (c?i , c−i) �i F (�i, c−i) for some c−i ∈ Wσ(b)
i and F (c?i , c−i) �i F (�i, c−i) for

all other profiles c−i ∈ Wσ(b)
i . Fix any c−i ∈ Wσ(b)

i such that F (c?i , c−i) �i
F (�i, c−i). By W-properties (SYM) and (TRA), we get Wσ(bi,c−i)

i = Wσ(b)
i .

Since PIF π is at least as informative as σ, we have thatWπ(bi,c−i)
i ⊆ Wσ(bi,c−i)

i .

By W-property (REF), we get c−i ∈ Wπ(bi,c−i)
i . It follows that voter i has an

1The reflexive closure of a relation R on a set X is the smallest relation on X that is
reflexive and contains R.
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incentive to π-manipulate when the poll profile is (bi, c−i) = (�i, c−i). Hence,
F is susceptible to π-manipulation.

Corollary 1.1. If a PIF π is at least as informative as another PIF σ, then
any resolute voting procedure that is immune to π-manipulation is also immune
to σ-manipulation.

In the following two sections, we prove several susceptibility and immunity re-
sults for specific PIFs. Lemma 1 and Corollary 1.1 show how such results can
be generalised to other PIFs.

4.2 Susceptibility Results

In our poll framework, the Gibbard-Satterthwaite Theorem (Theorem 1) can be
restated as follows.

Theorem 2. When m > 3, any resolute voting procedure that is surjective and
nondictatorial is susceptible to profile-manipulation.

Not every voting procedure requires all information a ballot profile supplies to
compute the winner(s). For the plurality rule, for example, it suffices to give
for each candidate the number of ballots in which it is ranked first. We would
therefore expect that the Gibbard-Satterthwaite Theorem generalises to PIFs
that are less informative than the profile-PIF for voting procedures that require
less information than full ballot profiles to compute the election winner(s).

For a given PIF π : L(X )N → I, we say that a voting procedure F is com-
putable from π-images if there exists a function H : I → 2X \{∅} such that
F = H ◦ π. We furthermore say that F is strongly computable from π-images if
it is computable from π-images and π(b) = π(bi, c−i) entails F (ci, b−i) = F (c)
for any two profiles b and c, i.e., upon learning π(b) a voter i can compute
the winners for any way of voting herself (rather than just for bi). For exam-
ple, the Copeland procedure is computable but not strongly computable from
MG-information (i.e., from images under the MG-PIF), while it is strongly com-
putable from WMG-information. Furthermore, any anonymous voting proce-
dure is strongly computable from ballot-information, and any positional scoring
rule is strongly computable from score-information.

Theorem 3. Let π be a PIF. When m > 3, any resolute voting procedure that is
surjective, nondictatorial, and strongly computable from π-images is susceptible
to π-manipulation.

Proof. Fix any X andN such that m > 3. Let π be a PIF with range I and let F
be any resolute voting procedure that is surjective, nondictatorial, and strongly
computable from π-images. From Theorem 2 it follows that F is susceptible to
profile-manipulation, i.e., there exist a profile b, a voter i, and a ballot c?i such
that F (c?i , b−i) �i F (�i, b−i). Since F cannot differentiate between profiles
that produce the same I-structure, we get F (�i, c−i) = F (�i, b−i) for any c−i
with π(�i, c−i) = π(�i, b−i). As F is strongly computable from π-images, this
entails F (c?i , c−i) = F (c?i , b−i) for any c−i with π(�i, c−i) = π(�i, b−i). It
follows that voter i has an incentive to π-manipulate when the poll profile is
(�i, b−i). Hence, F is susceptible to π-manipulation.
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The conditions of Theorem 3 are not necessary for susceptibility. There are
resolute voting procedures that are surjective, nondictatorial, and susceptible
to π-manipulation, yet not (strongly) computable from π-images, as our next
two results show.

Theorem 4. When m > 3 and n is even, any strongly Condorcet-consistent
voting procedure, paired with a tie-breaking choice function, is susceptible to
MG-manipulation.

Proof. Fix any X and N such that m > 3 and n is even, and fix any tie-breaking
choice function T . Let F be any strongly Condorcet-consistent voting procedure
paired with T , and let π be the MG-PIF. We construct a ballot profile with three
weak Condorcet winners such that voter i’s second favourite candidate wins if
she votes truthfully, and her first favourite wins if she votes untruthfully.

Fix a, b, c ∈ X with a 6= b 6= c. Without loss of generality, we shall assume
that T ({a, b, c}) = a and T ({b, c}) = b. Let �i = b � a � c � X\{a, b, c},
where candidates X\{a, b, c} are ranked in any order. And let c?i = b � c �
a � X\{a, b, c}. Let b−i be a profile in which n−2

2 voters submit b � a �
c � X\{a, b, c}, and n−2

2 + 1 voters submit c � a � b � X\{a, b, c}. Then
F (�i, b−i) = a and F (c?i , b−i) = b. It is not difficult to check that there is

no profile c−i ∈ Wπ(�i,b−i)
i such that F (c?i , c−i) ≺i F (�i, c−i). It follows that

voter i has an incentive to π-manipulate when the poll profile is (�i, b−i). Hence,
F is susceptible to MG-manipulation.

Examples for voting procedures that are strongly Condorcet-consistent in-
clude the maximin procedure, but not, for instance, the (Condorcet-consistent)
Copeland procedure. From Lemma 1 it follows that if there are three or
more candidates and an even number of voters, then any strongly Condorcet-
consistent voting procedure, paired with a tie-breaking choice function, is sus-
ceptible to WMG-manipulation, as well as to ballot-manipulation and profile-
manipulation (the latter also holds for an odd number of voters by Theorem 2).

Our final π-susceptibility result concerns positional scoring rules. Observe
that a positional scoring rule is unanimous if and only if s1 > s2 holds for the
scoring vector defining it.

Theorem 5. When m > 3 and n > 4, any unanimous positional scoring rule,
paired with a tie-breaking choice function, is susceptible to winner-manipulation.

Proof. Fix any X and N such that m > 3 and n > 4, and fix any tie-breaking
choice function T . Let F be any unanimous positional scoring rule paired with
T , and let π be the winner-PIF with respect to F . We construct a profile where
voter i’s third favourite candidate wins if she votes truthfully and her second
favourite wins if she votes untruthfully.

Fix a, b, c ∈ X with a 6= b 6= c. Without loss of generality, we shall assume
that T ({a, b}) = a and T ({b, c}) = b. Let �i = c � a � b � X\{a, b, c},
where candidates X\{a, b, c} are ranked in any order. And let c?i = a � c �
b � X\{a, b, c}. If n is odd, let b−i be a profile in which n−3

2 voters submit
a � b � X\{a, b}, n−3

2 voters submit b � a � X\{a, b}, and the remaining two
voters submit c � b � a � X\{a, b, c} and b � a � c � X\{a, b, c}. If n is
even, let b−i be a profile in which n−2

2 voters submit a � b � X\{a, b}, and
n−2
2 voters submit b � a � X\{a, b}, and the remaining voter submits b � c �
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a � X\{a, b, c}. Since F is unanimous, i.e., s1 > s2, we get F (�i, b−i) = b and
F (c?i , b−i) = a.

It is not difficult to check that there is no profile c−i ∈ Wπ(�i,b−i)
i such

that F (c?i , c−i) ≺i F (�i, c−i). It follows that voter i has an incentive to π-
manipulate when the poll profile is (�i, b−i). Hence, F is susceptible to winner-
manipulation.

From Lemma 1 it follows that if there are three or more candidates and four
or more voters, then any unanimous positional scoring rule, paired with a tie-
breaking choice function, is susceptible to rank-manipulation, as well as to score-
manipulation, ballot-manipulation, and profile-manipulation. The restriction on
the number of voters can be dropped for PIFs that are at least as informative
as the score-PIF by Theorem 3.

4.3 Immunity Results

We now turn our attention to voting procedures that are immune to certain
types of manipulation. First, it is not difficult to verify that any dictatorial vot-
ing procedure is immune to profile-manipulation (Theorem 6). This is in fact
the opposite direction of the Gibbard-Satterthwaite Theorem. Clearly, any con-
stant voting procedure is immune to profile-manipulation as well (Theorem 7).
From Lemma 1 it follows that these voting procedures are also immune to any
other form of manipulation.

Theorem 6. Any dictatorial voting procedure is immune to profile-
manipulation.

Proof. Fix any X and N . Let F be any dictatorial voting procedure and let
π be the profile-PIF. Fix any voter i and any poll profile b with bi = �i. If
voter i is the dictator, then F (�i, b−i) is her favourite candidate and therefore
she does not have an incentive to π-manipulate. If voter i is not the dictator,
then she does not have any influence on the election outcome and therefore she
does not have an incentive to π-manipulate. Hence, F is immune to profile-
manipulation.

Theorem 7. Any constant voting procedure is immune to profile-manipulation.

Proof. Immediate from the fact that no voter has any influence on the election
outcome.

At the other extreme, as we shall see next, we can obtain immunity results
for two large classes of voting procedures with respect to the weakest form
of immunity considered here, namely zero-manipulation. The next theorem is
inspired by (and corrects two minor mistakes in) a result due to Conitzer et al.
(2011).

Theorem 8. When n > 3, any strongly Condorcet-consistent voting procedure,
paired with a tie-breaking choice function, is immune to zero-manipulation.

Proof. Fix any X and N such that n > 3, and fix any tie-breaking choice
function T . Let F be any strongly Condorcet-consistent voting procedure paired
with T , and let π be the zero-PIF. Fix any voter i, any poll profile b with bi = �i,
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and any untruthful ballot c?i . Since c?i 6= �i, there is a pair of candidates such

that x �i y and y �c?i x. Claim: there exists a profile c−i ∈ Wπ(b)
i (i.e., any

c−i) such that F (c?i , c−i) ≺i F (�i, c−i).
We construct a profile c−i such that x and y are the only possible winners. If

n is odd, let c−i be a profile in which n−1
2 voters submit x � y � X\{x, y}, and

n−1
2 voters submit y � x � X\{x, y}, where candidates X\{x, y} are ranked

in any order. If n is even, let c−i be a profile in which n−2
2 voters submit

x � y � X\{x, y}, and n−2
2 voters submit y � x � X\{x, y}, and the remaining

voter submits y � x � X\{x, y} in case T ({x, y}) = x and x � y � X\{x, y}
otherwise. Then F (�i, c−i) = x and F (c?i , c−i) = y. It follows that for any
untruthful ballot c?i there is a situation where voter i will do strictly better by
voting truthfully. Hence, F is immune to zero-manipulation.

Theorem 9. When n is odd, any resolute voting procedure that is Condorcet-
consistent is immune to zero-manipulation.

Proof. Immediate from the first part of the proof of Theorem 8.

Conitzer et al. (2011) state a slightly stronger variant of Theorem 8: any reso-
lute voting procedure that is (not necessarily strongly) Condorcet-consistent is
immune to zero-manipulation (or “immune to dominating manipulation when
the manipulator has no information”, using their terminology). This is true for
an odd number of voters, as Theorem 9 shows. For an even number of vot-
ers, however, Condorcet consistency is not sufficient, as demonstrated by the
following example.

Example 2. Consider a scenario with 4 voters and 3 candidates (a, b, c). Sup-
pose that voting procedure F elects the Condorcet winner if one exists, and
otherwise the bottom choice of voter 1. Let �1 = a � b � c, and consider ballot
c?1 = a � c � b. Now there is a profile c−1 such that voter 1 benefits from voting
untruthfully, namely when the others vote a � b � c, b � a � c, and b � a � c.
Then F (�1, c−1) = c and F (c?1, c−1) = b.

Claim: there is no profile c−1 such that F (c?1, c−1) ≺1 F (�1, c−1). Fix
any profile c−1. If F (�1, c−1) = a, then F (c?1, c−1) = a, because candidate a
can only win (�1, c−1) if he is the Condorcet winner, in which case he is
also the Condorcet winner of (c?1, c−1). Furthermore, if F (�1, c−1) = b, then
F (c?1, c−1) = b, because candidate b can only win (�1, c−1) if he is the Con-
dorcet winner, in which case either he also is the Condorcet winner of (c?1, c−1)
or voter 1’s bottom candidate b wins.

It follows that voter 1 has an incentive to zero-manipulate. Hence, F is a
resolute voting procedure for n > 3 that is Condorcet-consistent and susceptible
to zero-manipulation.

We stress that Theorem 8 also cannot be simplified to stating that any resolute
voting procedure that always elects some weak Condorcet winner whenever
one exists is immune to zero-manipulation. Example 3 presents such a voting
procedure that is susceptible to zero-manipulation. This example makes use
of a tie-breaking rule that is not a choice function, but instead depends on a
specific voter’s ballot. This tie-breaking rule is then paired with a strongly
Condorcet-consistent voting procedure to get our desired procedure.

Note that Example 3, like Example 2, is also an example of a resolute voting
procedure for three or more voters that is Condorcet-consistent and susceptible
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to zero-manipulation. However, Example 2 is more general and simpler than
Example 3 and may therefore be more convincing for this purpose.

Example 3. Consider a scenario with 4 voters and 3 candidates (a, b, c). Sup-
pose that voting procedure H always elects the set of all weak Condorcet winners.
This set is never empty, because there are 4 voters and 3 candidates and therefore
there always is a candidate that is ranked first by at least two voters. Suppose
further that tie-breaking rule T breaks ties according to c � b � a if voter 1
submits a � b � c, and according to a � b � c otherwise. Let F = T ◦H. Let
�1 = a � b � c, and consider ballot c?1 = a � c � b. Now there is a profile c−1
such that voter 1 benefits from voting untruthfully, namely when the others vote
a � b � c, b � a � c, and b � a � c. Then F (�1, c−1) = b and F (c?1, c−1) = a.

Claim: there is no profile c−1 such that F (c?1, c−1) ≺1 F (�1, c−1). Fix any
profile c−1. We have that H(c?1, c−1)∩H(�1, c−1) 6= ∅, because c?1 and �1 have
the same top-ranked candidate. Since T breaks ties according to c � b � a if
voter 1 submits �1, and according to a � b � c if she submits c?1, it follows that
our claim holds.

We get that voter 1 has an incentive to zero-manipulate. Hence, F is a
resolute voting procedure for n > 3 that always elects some weak Condorcet
winner whenever one exists and is susceptible to zero-manipulation.

In their formulation of Theorem 8, Conitzer et al. (2011) do not require the
number of voters to be greater or equal than 3. Example 4 demonstrates why
this restriction cannot be dropped.

Example 4. Consider a scenario with 2 voters and 3 candidates (a, b, c). Sup-
pose that voting procedure H always elects the set of all weak Condorcet winners.
This set is never empty, because there are only 2 voters. Suppose further that T
is the lexicographic tie-breaking rule, i.e., T breaks ties according to a � b � c.
Let F = T ◦H. Let �1 = b � a � c, and consider ballot c?1 = b � c � a. Now
there is a ballot c2 of voter 2 such that voter 1 benefits from voting untruthfully,
namely when c2 = c � a � b. Then F (�1, c2) = a and F (c?1, c2) = b. For all
other ballots c2 of voter 2, we have that F (�1, c2) = F (c?1, c2).

It follows that voter 1 has an incentive to zero-manipulate. Hence, F is a
(strongly) Condorcet-consistent voting procedure for n = 2 that is susceptible to
zero-manipulation.

The following theorem strengthens another result by Conitzer et al. (2011), who
use a bound of n > 6m− 12.

Theorem 10. When n > 2m − 2, any positional scoring rule, paired with a
tie-breaking choice function, is immune to zero-manipulation.

Proof. Fix any X and N such that n > 2m− 2, and fix any tie-breaking choice
function T . Let F be any positional scoring rule paired with T , and let π be
the zero-PIF. Fix any voter i and any poll profile b with bi = �i. And fix
any untruthful ballot c?i such that F (c?i , c−i) 6= F (�i, c−i) for some profile c−i.
Then there exists a pair of candidates such that x �i y and y �c?i x, and x’s

score differs from y’s in �i and c?i . Claim: there exists a profile c−i ∈ Wπ(b)
i

(i.e., any c−i) such that F (c?i , c−i) ≺i F (�i, c−i).
We construct a profile c−i such that x and y are the only possible winners.

If n is odd, let c−i be a profile in which n−1
2 voters submit x � y � X\{x, y},
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and n−1
2 voters submit y � x � X\{x, y}, where every candidate z ∈ X\{x, y}

is ranked last by at least one voter. If n is even, let c−i be a profile in which
n−2
2 voters submit x � y � X\{x, y}, and n−2

2 voters submit y � x � X\{x, y},
where every candidate z ∈ X\{x, y} is ranked last by at least two voters, and the
remaining voter submits the ballot that is like �i but with x and y swapped in
case T ({x, y}) = x and c?i with x and y swapped otherwise. Then F (�i, c−i) = x
and F (c?i , c−i) = y. Hence, F is immune to zero-manipulation. Observe that
the bound of n > 2m−2 follows from our requirements on the number of voters
ranking each z ∈ X\{x, y} last. The case with 4 voters and 3 candidates must
be checked separately.

From the first part of the proof of Theorem 10 it follows that for an odd number
of voters, the bound can be improved to n > m− 1.

Together, Theorem 8 and Theorem 10 cover a broad range of voting pro-
cedures. In particular, as is well known, the classes of Condorcet-consistent
procedures and positional scoring rules do not overlap (Taylor, 2005).

So far, all our immunity results involved either trivial voting procedures
(dictatorships and constant procedures) or the trivial information set (for zero-
manipulation). While we should not expect many positive results between these
two extremes, they are not impossible to obtain either:

Theorem 11. When n > 10, the plurality rule, paired with a tie-breaking choice
function, is immune to MG-manipulation.

Proof. Fix any X and N such that n > 10, and fix any tie-breaking choice
function T . Let F be the plurality rule paired with T , and let π be the MG-
PIF. Fix any voter i and any poll profile b with bi = �i. And fix any untruthful
ballot c?i such that F (c?i , c−i) 6= F (�i, c−i) for some profile c−i ∈ L(X )N\{i}.
Let x be the top-ranked candidate of �i, and let y be the top-ranked candidate

of c?i . It follows that x 6= y. Claim: there exists a profile c−i ∈ Wπ(b)
i such that

F (c?i , c−i) ≺i F (�i, c−i).
We construct a profile c−i such that x and y are the only possible winners.

If n is odd, let c−i be a profile in which n−1
2 −1 voters rank x on top, and

n−1
2 −1 voters rank y on top, and the remaining two voters rank some candidate

z ∈ X\{x, y} on top. The remaining part of the profile is filled so that the
majority graphs of (�i, c−i) and (�i, b−i) are the same. Note that this is
possible, because each candidate can still win and lose each pairwise contest.
If n is even, let c−i be a profile in which n

2−2 voters rank x on top, and
n
2−2 voters rank y on top, and the remaining three voters rank some candidate
z ∈ X\{x, y} on top. Again, the remaining part of the profile is filled so that the
majority graphs of (�i, c−i) and (�i, b−i) are the same. Then F (�i, c−i) = x
and F (c?i , c−i) = y. Hence, F is immune to MG-manipulation. Observe that
the bound of n > 10 ensures that each candidate can still win, lose and tie
each pairwise contest in our construction. The case with 2 candidates must be
checked separately.

Our next π-immunity result concerns the antiplurality rule.
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Theorem 12. When n > 2m − 2, the antiplurality rule, paired with a tie-
breaking choice function, is immune to winner-manipulation.

Proof. Fix any X and N such that n > 2m− 2, and fix any tie-breaking choice
function T . Let F be the antiplurality rule paired with T , and let π be the
winner-PIF with respect to F . Without loss of generality, we may assume that
voters only submit a candidate they wish to veto. Fix any voter i, any poll profile
b with bi is voter i’s true least favourite candidate, and any ballot c?i 6= bi. By

definition, Wπ(b)
i = {c−i | F (bi, c−i) = F (b)}. Claim: voter i never has an

incentive to π-manipulate.
Suppose m > 3 and F (b) = w. If w = bi, then i cannot change the outcome.

If w = c?i , let c−i be a profile in which n−1 voters veto some candidate x ∈
X\{bi, w}, and all candidates x ∈ X\{bi, w} are vetoed by at least one voter. If
w ∈ X\{bi, c?i }, let c−i be a profile in which n−2 voters veto some candidate x ∈
X\{bi, w}, and all candidates x ∈ X\{bi, w} are vetoed by at least two voters,
and the remaining voter vetoes w in case T ({bi, w}) = w and some candidate
x ∈ X\{bi, w} otherwise. Then F (bi, c−i) = w and F (c?i , c−i) = bi. Hence, F is
immune to winner-manipulation. Observe that the bound of n > 2m−2 follows
from our requirements on the number of voters ranking each x ∈ X\{bi, w} last.
The case with 2 candidates must be checked separately.

In its original formulation, the Gibbard-Satterthwaite Theorem only applies
to voting procedures that are defined on strict linear orders, as we discussed
in Section 3.2. This raises the question whether for example approval voting,
defined on subsets of candidates, is susceptible to manipulation. To answer this
question we need to revise our definition of a truthful vote: there is no way of
fully representing a voter’s true preference order in a subset of candidates. A
voter i is said to vote sincerely if she truly prefers each approved candidate to
each disapproved candidate, i.e., if x �i y for any x ∈ bi and any y ∈ X\bi.
Note that a voter has multiple sincere ballots.

Endriss (2009) gives a thorough analysis of manipulation under approval
voting. He does not pair approval voting with a tie-breaking rule like we do,
but instead lifts a voter’s preference order over individual candidates to one
over sets of candidates. He proves for different sets of axioms on this lifting
that any insincere ballot of a voter is weakly dominated by some sincere ballot,
i.e., that no voter will ever have an incentive to vote insincerely when given
profile-information. Theorem 13 below is a corollary of his Theorem 7 (Endriss,
2009).

Theorem 13. Under approval voting, paired with a rationalisable tie-breaking
choice function, no voter will ever have an incentive to vote insincerely when
given profile-information.

Proof. Fix any X and N , and fix any rationalisable tie-breaking choice func-
tion T . Let F be approval voting paired with T , and let π be the profile-PIF.
Proof by contradiction. Suppose that there are a voter i, a poll profile b and an
insincere ballot c?i such that F (c?i , b−i) �i F (bi, b−i) for any sincere ballot bi.
Since c?i is insincere, we have that c?i does not contain candidate x while it does
contain candidate y for some x and y with x �i y. Two cases. If F (c?i , b−i) = z
for some z �i x, then voter i should add candidate x to her ballot (outcome
can only improve). And if F (c?i , b−i) = z for some z �i x, then voter i should
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remove all candidates y′ with y′ ≺i x from her ballot (outcome is not affected).
Repeat the above until voter i has a ballot without any ‘gaps’. But then she has
a sincere alternative bi to c?i such that F (bi, b−i) �i F (c?i , b−i). Contradiction!
It follows that under F no voter will ever have an incentive to vote insincerely
when given profile-information.

The above result ceases to hold when we allow approval voting to pair with any
tie-breaking choice function, as Example 5 shows.

Example 5. Consider a scenario with 2 voters and 3 candidates (a, b, c). Sup-
pose that voting procedure H is approval voting. Suppose further that T is
a (non-rationalisable) tie-breaking choice function that breaks ties as follows:
T ({a, b, c}) = a, T ({b, c}) = b, T ({a, c}) = a, and T ({a, b}) = b. Let F = T◦H.
Let �1 = c � b � a, and consider (insincere) ballot c?1 = {b}. Now there is
a ballot c2 of voter 2 such that voter 1 benefits from voting insincerely, namely
when c2 = {a}. Then F (b1, c2) = a for any sincere ballot b1 of voter 1, and
F (c?1, c2) = b.

It follows that voter 1 has an incentive to vote insincerely when given profile-
information. Hence, under approval voting, paired with a non-rationalisable tie-
breaking choice function, a voter can have an incentive to vote insincerely when
given profile-information.

4.4 Discussion

Does the Gibbard-Satterthwaite Theorem continue to hold in a setting of par-
tial information? In this chapter, we studied the susceptibility to manipulation
of different voting procedures while limiting the information about other vot-
ers’ ballots available to voters. We proved a straightforward generalisation of
the Gibbard-Satterthwaite Theorem: any resolute voting procedure for three or
more candidates that is surjective, nondictatorial, and strongly computable from
π-images is susceptible to π-manipulation. As is well known, at least three dif-
ferent candidates must be able to win for a voting procedure to be susceptible
to manipulation. Nondictatorship is also a necessary condition for suscepti-
bility: any dictatorial voting procedure is immune to manipulation. (Strong)
Computability from π-images, however, is not. We showed that for an even
number of voters, any strongly Condorcet-consistent voting procedure (which
may not be computable from (W)MG-information) is susceptible to (W)MG-
manipulation.2 Additionally, any unanimous positional scoring rule (which is
not strongly computable from rank- nor winner-information) is susceptible to
rank- and winner-manipulation. The unanimity constraint in the latter propo-
sition cannot be dropped. In particular, we proved that the antiplurality rule is
immune to winner-manipulation.

The only voting procedures that are (strongly) computable from zero-
information are constant procedures. These, however, always elect the same
candidate regardless of voters’ ballots, and therefore they are immune to any
form of π-manipulation. We would expect most ‘reasonable’ voting procedures
to be immune to zero-manipulation. And indeed, we proved this for two large

2An example of a voting procedure that is strongly Condorcet-consistent, yet not com-
putable from (W)MG-information is the procedure that elects the set of weak Condorcet
winners whenever that set is nonempty, and the Borda winner(s) otherwise.
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classes of voting procedures: strongly Condorcet-consistent procedures and posi-
tional scoring rules. This is not to suggest that every (resolute) voting procedure
is immune to zero-manipulation. We can think of wild procedures that are sus-
ceptible to zero-manipulation, for example, the voting procedure that always
elects the candidate that is ranked second by voter 1.

What remains open is whether the Gibbard-Satterthwaite Theorem extrap-
olates to polls that provide ballot-information. That is, is there a resolute
voting procedure for three or more candidates that is surjective, nondictato-
rial and immune to ballot-manipulation? The same question may be asked for
WMG-information. From our π-susceptibility result on strong computability
from π-images, it follows that the voting procedures we are looking for are not
strongly computable from ballot-information and WMG-information, respec-
tively. Note that any voting procedure that is not strongly computable from
ballot-information is not anonymous.

We do know that the Gibbard-Satterthwaite Theorem does not extrap-
olate to polls that provide MG-information, winner-information, or zero-
information. More specifically, we found that the plurality rule is immune
to MG-manipulation, and that the antiplurality rule is immune to winner-
manipulation. Since the score- and rank-PIFs are ill-defined for many vot-
ing procedures, we did not investigate the extrapolation of the Gibbard-
Satterthwaite Theorem to these information functions. However, it is not
difficult to come up with a voting procedure that is immune to score- and
rank-manipulation. Take, for example, a procedure that is immune to winner-
manipulation and let it assign the same score (different from the winner’s score)
to all losing candidates.

Finally, in line with the work done by Conitzer et al. (2011), it would also be
worthwhile to analyse how hard it is for a voter to π-manipulate under different
voting procedures that are susceptible to π-manipulation.





Chapter 5

Repeated Response to Polls

In this chapter, we study the scenario in which voters repeatedly update their
ballot in view of a sequence of polls. This voting game proceeds in rounds.
In each round an opinion poll is held and one of the voters may change her
ballot accordingly. We consider three types of responses to poll information:
a strategist will choose a ballot such that no other ballot provides a strictly
better outcome for some and at least as good an outcome for all ballot profiles
she considers possible; a pragmatist will support her favourite candidate from a
small set of, say, two front-runners; and a truth-teller will always vote truthfully.
For different voting procedures and for different combinations of these response
policies, we analyse whether the corresponding voting game will always reach
a point from which no voter wishes to deviate. We then observe that a voting
game can itself be considered a voting procedure if we fix a number of rounds
to be played, a voting procedure, a poll information function, and for each
voter a response policy: for any input ballot profile it will return a nonempty
set of winning candidates. We study how the properties of the original voting
procedure relate to the properties of this induced procedure.

This process in which a poll is held after each changed ballot, is common
among internet polls and elections. See for example the poll gadgets for Google
Wave: http://sites.google.com/site/polloforwave. Our approach is also
relevant to the study of collective decision making by means of voting in multi-
agent systems. In these systems we can precisely model the amount of informa-
tion available to agents (voters), and agents can be expected to follow relatively
simple rules when adjusting their behaviour in response to polls.

5.1 Extended Polling Perspective

In this section, we extend our framework of Chapter 4 to deal with sequences
of polls.

5.1.1 Voting Games and Induced Voting Procedures

A voting game is defined by a resolute voting procedure, a poll information
function, and for each voter a response policy (Definition 17).
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Definition 17. A voting game is a tuple G = 〈F, π, δ〉, where F is a resolute
voting procedure, π is a PIF, and δ = (δ1, . . . , δn) is a vector of response policies.

A voting game G proceeds in rounds. In the first round, each voter i sub-
mits a ballot bi, and the obtained poll information π(b) is communicated to all
voters. In each subsequent round, exactly one voter changes her ballot, and
the updated poll information is again communicated to all voters. Whether
or not a voter wishes to change her ballot depends on the response policy
she is following. A response policy determines for each voter i a function

δi : L(X ) × L(X ) × 2L(X )N\{i} → L(X ), mapping voter i’s true preference
order, her previously submitted ballot, and her current information set to a
new ballot. In Section 5.1.2 we give some examples of such response policies.
A voting game is said to terminate in round t if no voter wishes to change her
ballot according to her response policy at the end of t. A game is played until
termination (or until a given maximum number of rounds has been reached).
We then apply voting procedure F to this final profile to obtain the winner of
the voting game.

Observe that a voter’s response policy does not specify how she should
vote in the first round. We shall assume that all voters vote truthfully then.
This is not unreasonable, given the immunity results to zero-manipulation in
Section 4.3. Furthermore, for a voting game to be uniquely defined, we have to
fix the order in which voters may change their vote. Any such order is allowed,
even one that only offers voter 1 a chance to update her ballot. We will not
specify exactly how a voting game selects the next voter to change her ballot,
but simply assume that it has a way of doing so.

A voting game G induces a new voting procedure F t when the number of rounds
to be played is t (Definition 18). If G always terminates after at most t rounds
(for any truthful, initial profile b), then we write F ? instead of F t.

Definition 18. Let G = 〈F, π, δ〉 be a voting game, and let t ∈ N be the number
of rounds to be played. Then a voting procedure F t is induced by G if for any
ballot profile b ∈ L(X )N :

F t(b) :=

{
x ∈ X

∣∣∣ x is a winner of G after t rounds
when b is the truthful, initial profile

}
As the framework is set up now, voters only take into account information from
the latest poll round. However, the framework could be extended to include
previous rounds by adding the information sets induced by those rounds to the
input arguments of response policies.

5.1.2 Response Policies

In each round of the voting game, a voter receives poll information and has to
decide whether or not she wants to update her ballot accordingly. We assume
that a voter uses a response policy to determine what to vote next, and that
she uses the same policy throughout the election. Recall that a response policy

determines for each voter i a function δi : L(X ) × L(X ) × 2L(X )N\{i} → L(X ),
mapping voter i’s true preference order �i, her previously submitted ballot bi,
and her current information set Wi to a new ballot ci. We shall work with the
following policies:
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• Truth-teller: A truth-teller always votes truthfully: δi(�i, bi,Wi) = �i.

• Strategist: A strategist computes her best responses to a poll and submits
(any) one of them if her previously submitted ballot bi is not amongst
them, and bi otherwise. We say that a ballot ci is a better response to
voter i’s information set than a ballot c′i if ci yields a strictly better out-
come for some and at least as good an outcome for all profiles considered
possible by voter i.1 Then a ballot ci is a best response to voter i’s infor-
mation set if there is no ballot c′i such that c′i is a better response:

Definition 19. Given a resolute voting procedure F , a voter i, an infor-
mation set Wi, and a ballot ci, ballot ci is a best response to Wi if there
is no ballot c′i ∈ L(X ) such that:

F (c′i, c−i) �i F (ci, c−i) for some profile c−i ∈ Wi

and F (c′i, c−i) �i F (ci, c−i) for all other profiles c−i ∈ Wi

Observe that a voter may have multiple best responses to her information
set. A specific strategist response policy always picks a unique one. Such
a policy may, for example, favour compromising, burying, or push-over
strategies (see Section 2.2). All of the results in this chapter hold for any
strategist response policy.

If we restrict attention to the plurality rule and assume that polls give
score-information, then the strategist response policy is similar to the one
used by Meir et al. (2010).

• Pragmatist: A pragmatist cannot or does not want to compute her best
response to a poll, e.g., because this takes too much effort. A pragmatist
can also be optimistic about other voters following her example and there-
fore be willing to vote for a candidate that has a better chance of winning
than her favourite, even though she does not believe that her vote will
change the election outcome at that moment.

A k-pragmatist always moves her favourite amongst the k currently high-
est ranked candidates to the first position in her ballot, without changing
the relative ranking of the others. For a voter to be a pragmatist, the
voting procedure and polls should give enough information to deduce who
are the k currently highest ranked candidates.

The pragmatist response policy is also described by Brams & Fishburn
(1983) for the plurality rule.

5.2 Termination Results

Since we do not want the number of poll rounds to have a great influence on the
winner of a voting game, we prefer voting games to terminate. In this section,
we study which voting games are guaranteed to terminate, and which are not.
All of our termination results hold for any way of selecting the next voter to
change her ballot.

1Note that a voter i has an incentive to π-manipulate in some poll profile b with bi = �i
if there is a ballot c?i such that c?i is a better response to Wπ(b)

i than �i.
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Obviously, if all voters are truth-tellers, then any voting game terminates
after 0 rounds (Theorem 14). Moreover, if F is immune to π-manipulation and
all voters are strategists, then G terminates after 0 rounds as well (Theorem 15).

Theorem 14. Let G = 〈F, π, δ〉 be any voting game such that δ is a vector of
truth-tellers. Then G terminates after 0 rounds.

Proof. Immediate.

Theorem 15. Let G = 〈F, π, δ〉 be any voting game such that F is immune
to π-manipulation and δ is a vector of strategists. Then G terminates after 0
rounds.

Proof. Immediate.

Corollary 15.1. Let G = 〈F, π, δ〉 be any voting game such that F is immune
to π-manipulation and δ is a vector of strategists and truth-tellers. Then G
terminates after 0 rounds.

Note that if all voters are strategists or truth-tellers and a voting game G does
not always terminate after 0 rounds, then its voting procedure F is susceptible
to π-manipulation. It is not the case, however, that if F is susceptible to π-
manipulation and all voters are strategists, then there is a (possibly untruthful)
initial profile for G such that G never terminates. Consider, for example, the
voting procedure that always elects the candidate that is ranked second by
voter 1; this procedure can be manipulated, but the voting game will always
terminate after at most one round.

Meir et al. (2010) show that for any voting game G with F being the plurality
rule, paired with a rationalisable tie-breaking choice function, and π being the
score-PIF with respect to F , if p voters are strategists and n−p voters are
truth-tellers, then G terminates after at most m · p rounds. To be precise, these
authors show this for a specific kind of strategist response policy, namely one in
which a voter, whenever her previously submitted ballot is not amongst the best
responses, wishes to change her ballot to the best response that matches the next
candidate to win (since Meir et al. (2010) focus on the plurality rule, we may
assume that voters only submit their top-ranked candidate). Their result ceases
to hold when we allow plurality to pair with any tie-breaking choice function,
as Example 6 shows.

Example 6. Consider a scenario with 3 voters and 4 candidates (a, b, c, d).
Suppose that voting procedure H is the plurality rule. Suppose further that T is
a (non-rationalisable) tie-breaking choice function that breaks ties according to
a � b � c � d except for: T ({a, b, c}) = b, T ({a, c, d}) = c, and T ({b, c, d}) = d.
Let F = T ◦H and let π be the score-PIF with respect to F . Suppose that all
voters are strategists according to the definition of Meir et al. (2010). Let their
true preference orders be as follows:

�1 = b � c � d � a
�2 = c � a � b � d
�3 = d � b � a � c

Then: F (b, c, d) = d
2−→ F (b, a, d) = a

1−→ F (c, a, d) = c
3−→ F (c, a, b) = b

2−→
F (c, c, b) = c

1−→ F (b, c, b) = b
3−→ F (b, c, d) = d

2−→ . . . . It follows that G does
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not terminate. Hence, a voting game G with F being the plurality rule, paired
with a non-rationalisable tie-breaking choice function, and π being the score-PIF
with respect to F , and δ being a vector of strategists (and truth-tellers) does not
always terminate.

On the other hand, the result of Meir et al. (2010) does generalise to any strate-
gist response policy (Theorem 16), provided that all voters vote truthfully in
the first round.

Theorem 16. Let G = 〈F, π, δ〉 be any voting game such that F is the plurality
rule, paired with a rationalisable tie-breaking choice function, π is the score-PIF
with respect to F , and δ is a vector of p strategists and n−p truth-tellers. Then
G terminates after at most m · p rounds.

Proof. Let G, F , π, and δ satisfy above conditions. Without loss of generality,
we may assume that voters only submit their top-ranked candidate. Fix any
truthful, initial profile b. Suppose that voter i wishes to change her ballot and
may do so next. There are 4 types of strategist moves. Below, bi,t denotes
voter i’s ballot at round t.

type 0: from bi,t 6= F t(b) to bi,t+1 6= F t+1(b)

type 1: from bi,t 6= F t(b) to bi,t+1 = F t+1(b)

type 2: from bi,t = F t(b) to bi,t+1 6= F t+1(b)

type 3: from bi,t = F t(b) to bi,t+1 = F t+1(b)

Meir et al. (2010) only consider moves of type 1 and 3. They prove that there
are at most m · p moves of type 1, and no moves of type 3. In addition, we will
prove that there are no moves of type 0 nor 2.

Since voter i is a strategist who receives score-information from π, we have
that F t+1(b) �i F t(b). Now, suppose that voter i makes a move of type 0.
Then old winner F t(b) does not lose any points and new winner F t+1(b) does
not win any. It follows that F t(b) = F t+1(b), because the applied tie-breaking
choice function is rationalisable. Contradiction! Hence, voter i does not have
any moves of type 0.

Claim: voter i does not have any moves of type 2. Proof by induction. Since
initial profile b is truthful, we have that no strategist wishes to make a move of
type 2 at round 1. Now, suppose that no strategist has made a move of type 2
at round t. It follows that only moves of type 1 have been made. Let voter i
be the next to change her ballot. Suppose, by contradiction, that i wishes to
make a move of type 2. Then bi,t = F t(b) and F t+1(b) �i F t(b). Since i voted
truthfully initially, we have that she has made a move of type 1 at some round
t′ < t. It follows that i could not make F t+1(b) win at t′. From the induction
hypothesis, we get that no voter could make F t+1(b) win at any round t′′ with
t′ < t′′ < t. It follows that at round t the scores of F t+1(b) and F t(b) differ at
least 1 point if ties are broken in favour of F t(b), and at least 2 points otherwise.
Thus, voter i cannot make a move of type 2 at round t. Contradiction! Our
claim holds. Hence, strategists only make moves of type 1 in G, and therefore
G terminates after at most m · p rounds.
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We obtain a similar result for an electorate composed of truth-tellers and prag-
matists (as opposed to strategists). In fact, under these assumptions the result
can be generalised to arbitrary positional scoring rules:

Theorem 17. Let G = 〈F, π, δ〉 be any voting game such that F is a PSR,
paired with a rationalisable tie-breaking choice function, π is the rank-PIF with
respect to F , and δ is a vector of p k-pragmatists and n−p truth-tellers. Then
G terminates after at most p rounds.

Proof. Let G, F , π, and δ satisfy above conditions. Fix any truthful, initial
profile b. Let Ht

k(b) be the set of k highest ranked candidates in b according
to F t. Claim: Ht

k(b) = Ht+1
k (b) for any number of rounds t ∈ N. Suppose

that voter i changes her ballot at round t. Since i is a k-pragmatist, and F
is a PSR, we have that no candidate x ∈ Ht

k(b) loses points and no candidate
y ∈ X\Ht

k(b) wins any. It follows that our claim holds, because the applied tie-
breaking choice function is rationalisable. Hence, each k-pragmatist will update
her ballot at most once, and therefore G terminates after at most p rounds.

A similar argument can be used to prove that if F is the Copeland procedure,
paired with a rationalisable tie-breaking choice function, π is the rank-PIF with
respect to F , and p voters are k-pragmatists and n− p voters are truth-tellers,
then G terminates after at most p rounds. This also holds in case F is the
maximin procedure or the Bucklin procedure. On the other hand, games defined
in terms of other voting procedures or other response policies need not always
terminate. The following example illustrates this for the Copeland procedure.

Example 7. Consider a scenario with 2 voters and 3 candidates (a, b, c).
Suppose that voting procedure H is the Copeland procedure. Suppose further
that T is the lexicographic tie-breaking rule, i.e., T breaks ties according to
a � b � c. Let F = T ◦H and let π be the score-PIF with respect to F . Suppose
that all voters are strategists. Consider the following truthful, initial profile:

b = (a � b � c, c � b � a). Then: F 0(b) = a
2−→ F 1(b) = b

1−→ F 2(b) = a
2−→

F 3(b) = c
1−→ F 4(b) = a

2−→ . . . (voters 1 and 2 alternately move candidate
b up and down in their ballot). It follows that G does not terminate. Hence, a
voting game G with F being the Copeland procedure, paired with a tie-breaking
choice function, and π being the score-PIF with respect to F , and δ being a
vector of strategists (and truth-tellers) does not always terminate.

The Borda voting game with all voters being strategists (or truth-tellers) also
does not guarantee termination, as Example 8 shows.

Example 8. Consider a scenario with 4 voters and 4 candidates (a, b, c, d).
Suppose that voting procedure H is the Borda rule. Suppose further that T is
the lexicographic tie-breaking rule. Let F = T ◦H and let π be the score-PIF
with respect to F . Suppose that all voters are strategists. Consider the following
truthful, initial profile:

b1 = a � b � c � d
b2 = c � b � a � d
b3 = a � c � d � b
b4 = b � c � d � a

Then: F 0(b) = c
1−→ F 1(b) = b

2−→ F 2(b) = c
1−→ F 3(b) = a

2−→ F 4(b) =

c
1−→ . . . (voters 1 and 2 alternately move candidate b up and down in their
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ballot). It follows that G does not terminate. Hence, a voting game G with F
being the Borda rule, paired with a tie-breaking choice function, and π being the
score-PIF with respect to F , and δ being a vector of strategists (and truth-tellers)
does not always terminate.

5.3 Properties of Induced Voting Procedures

In this thesis, we study the effects of polls on election outcomes. In order to
judge these effects as positive or negative, we have to be able to identify the can-
didate who best represents the electorate. For some preference profiles, voting
theory provides us with a clear-cut identification method, e.g., Condorcet win-
ners should always win, and Condorcet losers and Pareto-dominated candidates
should always lose. For other preference profiles, however, it is not directly clear
who should or should not win. For these cases, voting theorists came up with
numerous desirable properties that voting procedures should possess. In this
section, we investigate the properties of voting games through the voting proce-
dures they induce. More specifically, we are interested in how these properties
relate to the properties of the underlying voting procedures.

Let us begin with a simple observation: If G always terminates after 0
rounds, then any property of F is transferred to F t. This observation leads to
the following two transfer results for dictatorship and constancy:

Theorem 18. Let G = 〈F, π, δ〉 be any voting game such that F is dictatorial,
π is a PIF, and δ is a vector of pragmatists, strategists and truth-tellers. Then
F t is dictatorial for any t ∈ N.

Proof. Immediate.

Theorem 19. Let G = 〈F, π, δ〉 be any voting game such that F is constant,
π is a PIF, and δ is a vector of response policies. Then F t is constant for any
t ∈ N.

Proof. Immediate.

Our next result is closely related to Theorem 18. It states that any induced
voting procedure is dictatorial if its underlying voting procedure is surjective
and yields exactly one powerful voter who is a strategist. From Theorem 20
it follows, for example, that any voting game based on the voting procedure
that always elects the candidate that is ranked second by voter 1 induces a
dictatorial voting procedure if voter 1 is a strategist. Thus, non-dictatorships
do not always transfer.

Theorem 20. Let G = 〈F, π, δ〉 be any voting game such that F is surjective
and yields one powerful voter, π is a PIF, and δ is a vector of response policies
such that the powerful voter is a strategist. Then F t is dictatorial for any t > 1.

Proof. Immediate.

Although voting procedures F and F t in Theorem 20 both yield exactly one
powerful voter, we do not have that the set of powerful voters transfers in
general. More specifically, the set of powerful voters of F t can be a strict subset
of the set of powerful voters of F . Take, for example, the voting procedure that
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elects voter 1’s top-ranked candidate unless she ranks some candidate a last, in
which case voter 2’s top-ranked candidate is elected. Then voters 1 and 2 are
both powerful in F , but induced voting procedure F t yields only one powerful
voter, namely voter 1 (for m > 3, and all powerful voters being strategists). It
is not difficult to see that the set of powerful voters of F t must always be a (not
necessarily strict) subset of the set of powerful voters of F .

Less obvious is the transfer result that we obtain for unanimity:

Theorem 21. Let G = 〈F, π, δ〉 be any voting game such that F is unanimous,
π is a PIF, and δ is a vector of pragmatists, strategists and truth-tellers. Then
F t is unanimous for any t ∈ N.

Proof. Let G, F , π, and δ satisfy above conditions. Fix any truthful, initial
profile b such that there is a candidate w who is ranked first by all voters.
Claim: F t(b) = w for any number of rounds t ∈ N. Proof by induction. Since
F is unanimous, we have that F 0(b) = w. Now, suppose that F t(b) = w, and
that voter i wishes to change her ballot and may do so next. As no truth-teller
or pragmatist who already has her favourite candidate winning will ever change
her ballot, we only need to consider the case where i is a strategist. Since
strategists always switch to a ballot that is at least as good as their previous
ballot for all profiles in their information set (and strictly better for some), we
have that F t+1(b) = w. Hence, F t is unanimous for any t ∈ N.

However, the Pareto condition, a slightly stronger condition than unanimity,
does not always transfer, as we shall see next.

Example 9 (Pareto efficiency). Consider a scenario with 2 voters and 3 can-
didates (a, b, c). Suppose that voting procedure H elects all candidates who are
not Pareto-dominated. Suppose further that T is the lexicographic tie-breaking
rule. Let F = T ◦H and let π be the winner-PIF with respect to F . Suppose
that all voters are strategists and suppose that t > 1. Consider the following

truthful, initial profile: b = (b � c � a, c � a � b). Then: F 0(b) = b
2−→

F 1(b) = F ?(b) = a, because the second voter will rank candidate a on top,
given that she has no chance to make c win, after which no other voter wishes
to change her ballot. However, candidate a is Pareto-dominated by candidate
c in profile b. It follows that F t is not Pareto-efficient, whereas F is. Hence,
a voting game G with F being Pareto-efficient, and π being the winner-PIF
with respect to F , and δ being a vector of strategists (and truth-tellers) does not
always induce a Pareto-efficient voting procedure.

We also cannot guarantee the transfer of the Pareto condition for voting games
in which all voters are pragmatists. Consider, for this purpose, voting proce-
dure F of Example 9 and pair it with a procedure that assigns 1 point to the
winning candidate according to F , and 0 points to all other candidates, and let
tie-breaking rule T break ties to obtain a ranking. Then F is Pareto-efficient,
whereas F t is not if all voters are 2-pragmatists. In general, these examples in
which all voters are pragmatists are more artificial (and therefore less interest-
ing) than our examples in which all voters are strategists, because all properties
under investigation are requirements on the winning candidate and do not pose
any restrictions on the ranking of losing candidates, whereas the pragmatist
response policy needs voting procedures to produce a ranking of all candidates.
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In this section, most of our counterexamples therefore focus on the strategist
response policy.

Surprisingly, the transfer of surjectivity, one of our weakest properties de-
fined, is also not guaranteed, as Example 10 shows.

Example 10 (Surjectivity). Consider a scenario with 4 voters and 3 candi-
dates (a, b, c). Suppose that voting procedure F almost always elects candidate
a, unless some other candidate is ranked last by all voters, then F elects that
candidate. Let π be the ballot-PIF. Suppose that all voters are strategists and
suppose that t > 2. Then F t = F ? is a constant voting procedure, always elect-
ing candidate a. It follows that F t is not surjective, whereas F is. Hence, a
voting game G with F being surjective, and π being the ballot-PIF, and δ be-
ing a vector of strategists (and truth-tellers) does not always induce a surjective
voting procedure.

Again, we can think of an example to show that surjectivity is also not guaran-
teed to transfer if all voters are pragmatists. Consider a voting procedure F that
almost always elects candidate a, unless a is ranked first by all voters except
for voter 1, then F elects the top-ranked candidate of voter 1. Now, suppose
that F assigns 1 point to the winning candidate, 1

2 point to some candidate
other than a ranked first by some voter other than 1 if such a candidate exists,
-1 points to candidate a if a loses, and 0 points to all other candidates. Let
some tie-breaking choice function T break ties to obtain a ranking. Then F is
surjective, whereas F t is not if all voters are 2-pragmatists.

Another axiom that is satisfied by many voting procedures, but does not
always transfer, is anonymity:

Example 11 (Anonymity). Consider a scenario with 3 voters and 3 candidates
(a, b, c). Let F be the plurality rule paired with the lexicographic tie-breaking rule,
and let π be the ballot-PIF. Suppose that all voters are strategists and suppose
that t > 1. Suppose further that the next voter to change her ballot is selected
from the set of voters who wish to change, and that the voter with the lowest
index may do so next. Consider the following truthful, initial profile:

b1 = a � b � c
b2 = b � c � a
b3 = c � b � a

Then: F 0(b) = a
2−→ F 1(b) = F ?(b) = c, because the second voter will rank

candidate c on top, given that she has no chance to make b win, after which
no other voter wishes to change her ballot. However, if we define permutation
τ : N → N as follows: τ(1) = 1, τ(2) = 3, and τ(3) = 2, then F 0(b) = a
2−→ F 1(b) = F ?(b) = b, because the second voter is now endowed with true
preference order c � b � a. It follows that F t is not anonymous, whereas F is.
Hence, a voting game G with F being anonymous, and π being the ballot-PIF,
and δ being a vector of strategists (and truth-tellers) does not always induce an
anonymous voting procedure.

Observe that the above example works, because the order in which voters may
change their vote is not permuted. We can construct a similar example to show
that anonymity is also not guaranteed to transfer if all voters are pragmatists.
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Consider, for this purpose, voting procedure F of Example 11 and pair it with
a procedure that assigns m− 1 points to the winning candidate according to F ,
m−2 points to the remaining candidate that is ranked highest by voter 2, m−3
points to the remaining candidate that is ranked second highest by voter 2, et
cetera. Then F is anonymous, whereas F t is not if all voters are 2-pragmatists.

Furthermore, Condorcet consistency does not always transfer either:

Example 12 (Condorcet consistency). Consider a scenario with 4 voters and
4 candidates (a, b, c, d). Suppose that voting procedure F elects the Condorcet
winner if one exists, and candidate a otherwise. Let π be the ballot-PIF. Suppose
that all voters are strategists and suppose that t > 1. Consider the following
truthful, initial profile:

b1 = a � b � c � d
b2 = b � a � c � d
b3 = c � b � a � d
b4 = d � b � a � c

Then: F 0(b) = b
1−→ F 1(b) = F ?(b) = a, because the first voter will rank

candidate b on the bottom of her ballot, given that a is the election winner by
default, after which no other voter wishes to change her ballot. It follows that
F t is not Condorcet-consistent, whereas F is. Hence, a voting game G with
F being Condorcet-consistent, and π being the ballot-PIF, and δ being a vector
of strategists (and truth-tellers) does not always induce a Condorcet-consistent
voting procedure.

On the other hand, if all voters are pragmatists (or truth-tellers), then Con-
dorcet consistency does transfer:

Theorem 22. Let G = 〈F, π, δ〉 be any voting game such that F is Condorcet-
consistent, π is the rank-PIF, and δ is a vector of pragmatists and truth-tellers.
Then F t is Condorcet-consistent for any t ∈ N.

Proof. Let G, F , π, and δ satisfy above conditions. Fix any truthful, initial
profile b with a Condorcet winner w. Claim: F t(b) = w for any number of
rounds t ∈ N. Proof by induction. Since F is Condorcet-consistent, we have
that F 0(b) = w. Now, suppose that F t(b) = w, and that voter i wishes to
change her ballot and may do so next. Since i is a k-pragmatist for some k ∈ N,
and w is among the k currently highest ranked candidates, we have that w
cannot lose support in any pairwise contest with respect to its original pairwise
scores. It follows that F t+1(b) = w. Hence, F t is Condorcet-consistent for any
t ∈ N.

A similar argument as in Example 12 can be used to show that if F never elects
the Condorcet loser, then F t might still elect the Condorcet loser if all voters
are strategists.

Example 13 (Condorcet loser). Consider a scenario with 4 voters and 4 candi-
dates (a, b, c, d). Suppose that voting procedure F almost always elects candidate
a, unless he is the Condorcet loser in which case F elects candidate b. Let π
be the ballot-PIF. Suppose that all voters are strategists and suppose that t > 1.
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Consider the following truthful, initial profile:

b1 = c � d � a � b
b2 = b � c � d � a
b3 = c � b � a � d
b4 = d � b � a � c

Then: F 0(b) = b
1−→ F 1(b) = F ?(b) = a, because the first voter will rank

candidate a on top of her ballot, given that a and b are the only possible winners,
after which no other voter wishes to change her ballot. It follows that F t elects
the Condorcet loser, whereas F does not. Hence, a voting game G with F being
a voting procedure that never elects the Condorcet loser, and π being the ballot-
PIF, and δ being a vector of strategists (and truth-tellers) does not always induce
a voting procedure that never elects the Condorcet loser.

Unlike Condorcet consistency, this example also works if all voters are 2-
pragmatists. In that case, assume that candidates a and b are always the two
highest ranked candidates.

5.4 Condorcet Efficiency: Simulations

It is widely acknowledged that Condorcet consistency is a highly desirable prop-
erty, but many important voting procedures do not satisfy it (Taylor, 2005). The
Condorcet winner efficiency of a voting procedure is its tendency to elect the
Condorcet winner. Theorem 22 identifies conditions under which Condorcet
consistency transfers from F to F t, but it does not say anything about the
transfer of Condorcet winner efficiency. Brams & Fishburn (1983) give several
examples that show that polls can have both a positive and a negative effect on
the Condorcet winner efficiency of plurality and approval voting. We would like
to know how positive or negative this effect exactly is.

As we prefer Condorcet winners to win, we prefer Condorcet losers to lose.
However, under several important voting procedures the Condorcet loser can
win sometimes. The Condorcet loser efficiency of a voting procedure is its
tendency to not elect the Condorcet loser. Example 13 shows that the property
of never electing the Condorcet loser does not always transfer, but it does not
say anything about the transfer of Condorcet loser efficiency. We would like to
know how polls influence the Condorcet loser efficiency of a voting procedure.

In this section, we study the effect of polls on the Condorcet winner efficiency
as well as on the Condorcet loser efficiency of six common voting procedures by
means of simulations. These voting procedures are: plurality, Borda, Copeland,
STV, Bucklin, and approval voting. In our main comparative experiment, we
assume that all voters are pragmatists. The pragmatist response policy can be
seen as a formalisation of what political scientists call ‘tactical voting’, a way
of voting that is not very common in large elections, like national presidential
elections, but presumably occurs much more often in small elections, like the
ones we consider here (Fisher, 2004). In a follow-up experiment, we analyse the
influence of poll information on election outcomes, and we consider two types of
information that polls may provide: each candidate’s score or each candidate’s
rank. The pragmatist response policy does not differentiate between these types
of information. The strategist response policy does, but this policy is much



CHAPTER 5. REPEATED RESPONSE TO POLLS 40

more demanding. It is conceivable, however, that voters would use a strategist
response policy for the plurality rule, which is computationally particularly easy
to reason about for voters. We therefore focus on the plurality rule in this
experiment.

Note that the pragmatist response policy is not well-defined for approval vot-
ing under which voters submit a subset of candidates rather than a linear order.
A k-pragmatist for approval voting wishes to approve of exactly one candidate
from the k currently highest ranked candidates. If she does not approve of any
top k candidate or if she approves of more than one top k candidate, she will
approve of her favourite and all candidates preferred to him. Thus, a pragmatist
for approval voting may contract and expand her ballot, but will always vote
sincerely. This response policy is also proposed by Brams & Fishburn (1983).

In each of our experiments we simulate a large number of elections. That
means that we need a large number of truthful, initial ballot profiles.2 Since
it is extremely cumbersome if not impossible to obtain this data from actual
elections, we will automatically generate it. How to do this, is a hotly debated
topic in social choice theory. One of the most prominent solutions is to assume
that any permutation of candidates is equally likely to occur as a voter’s pref-
erence order; the impartial culture (IC) assumption. The limitations of the IC
assumption are well known (Regenwetter et al., 2006). In particular, we should
not expect the preferences in a real-world electorate to be distributed uniformly.
More realistic solutions have been proposed, like using a spatial model to gen-
erate voters’ preferences (Downs, 1957). A spatial model is a multidimensional
space in which each dimension corresponds to an election issue. Both voters
and candidates are allocated a position in this space according to their stance
on these issues. A voter’s preference order is then obtained from the distances
between her and the candidates; the closer, the higher up in her preference
order.

Nevertheless, the IC assumption is still the de facto standard used in social
choice theory; results based on it provide an important base line and allow for
direct comparison with a large number of findings documented in the literature.
We shall therefore use the IC assumption to generate preference profiles.

For approval voting, we also need to generate a voter’s initial approval set.
As for the other voting procedures, we shall assume that all voters vote sincerely
initially. Recall that a voter votes sincerely if she truly prefers each approved
candidate to each disapproved candidate (see Section 4.3 for more on this).
Thus, it suffices to generate for each voter a cutoff point in her preference order
such that she approves of all candidates before the cutoff point and disapproves
of all other candidates. Since approving of zero or all candidates does not affect
the election outcome, we shall assume that cutoff points are placed somewhere
after the first and before the last candidate in voters’ preference orders. We will
generate cutoff points randomly to facilitate the comparison between approval
voting and other voting procedures.

5.4.1 Design

The design of our simulation program is depicted in Figure 5.1. We implemented
this simple program in Java 1.6.0.

2Note that if we did not require voters to vote truthfully initially, we would need twice as
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Figure 5.1: Program design.

The profile generator generates preference profiles with a Condorcet candi-
date (a Condorcet winner of loser) under the impartial culture assumption. We
varied the number of candidates (m) from 3 to 15 in steps of 1 while keeping the
number of voters (n) fixed at 50, and we varied the number of voters from 10 to
100 in steps of 5 while keeping the number of candidates fixed at 5. Using the
IC assumption, the profile generator generated for each of these combinations
10,000 profiles with a Condorcet winner, and 10,000 profiles with a Condorcet
loser.

Each generated ballot profile b is then sent through the poll loop t times. In
this loop, the poll unit computes poll information π(b) and communicates it to
all voters in the voter response unit. There, a voter i is selected who wishes to
change her ballot according to her response policy δi, and her updated ballot
together with the other voters’ ballots is passed to the poll unit again. We fixed
the order in which voters may change their ballot to be the ascending order:
voters are offered a chance to update their ballot according to their index in N ,
beginning with the successor of the voter who was the last to change (and with
voter 1 in the first round).

Voting procedure F calculates the winner of the resulting ballot profile b′

and of the original ballot profile b. Both winners are compared to the Condorcet
candidate of b, and the program outputs ‘yes’ in case these are equal and ‘no’
otherwise.

Finally, the Condorcet winner efficiency of a voting procedure F (or F t) is
computed as the percentage of elections in which the Condorcet winner wins
according to F (or F t) provided one exists, and the Condorcet loser efficiency
is computed as the percentage of elections in which the Condorcet loser loses
according to F (or F t) provided one exists.

We conducted 3 experiments in our simulation program, varying voting pro-
cedure F , response policies δ, and poll information function π. All experiments
were performed on all generated election data with m ranging from 3 to 15, and
n ranging from 10 to 100.

• Experiment 1: The aim of this experiment was to investigate the effect of
polls on the Condorcet winner efficiency as well as on the Condorcet loser
efficiency of plurality, Borda, Copeland, STV, and Bucklin. We varied F
between plurality, Borda, Copeland, STV, and Bucklin, and δ between a

many ballot profiles, namely a truthful one and an initial one.
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vector of all 2-pragmatists and a vector of all 3-pragmatists. PIF π was
set to be the rank-PIF with respect to F , and all ties were broken using
the lexicographic tie-breaking rule (also ties for second and third place).
We ran all voting games until termination.

• Experiment 2: The aim of this experiment was to investigate the effect
of polls on the Condorcet winner efficiency as well as on the Condorcet
loser efficiency of approval voting. We set F to be approval voting, and
we varied δ between a vector of all 2-pragmatists and a vector of all 3-
pragmatists for approval voting. PIF π was set to be the rank-PIF with
respect to F , and all ties were broken using the lexicographic tie-breaking
rule (also ties for second and third place). We ran all voting games for n
rounds and 100n rounds.

• Experiment 3: The aim of this experiment was to investigate the effect of
polls on the Condorcet winner efficiency as well as on the Condorcet loser
efficiency for different poll information levels. We set F to be plurality,
and δ to be a vector of all strategists. PIF π was varied between the score-
PIF and the rank-PIF with respect to F , and all ties were broken using
the lexicographic tie-breaking rule (also ties for second place, third place,
et cetera). We ran all voting games using the score-PIF until termination,
and all voting games using the rank-PIF for n rounds and 100n rounds.

We used R for the statistical analysis of our data (R Development Core Team,
2011), and we performed McNemar’s test on all data pairs to determine whether
the poll effect was significant. McNemar’s test takes election pairs as input and
tests whether the number of elections in which the Condorcet candidate (the
Condorcet winner of loser) wins significantly changed before and after the polls.3

5.4.2 Results

The results of all our experiments are listed in Appendix A. In this section we
present and discuss some exemplary results.

In general, what can we say about the influence of the number of voters
and candidates on our results? For all but one of the studied (induced) voting
procedures, the Condorcet winner efficiency decreased and the Condorcet loser
efficiency increased (or was not affected) as the number of candidates increased.
This is not surprising, given that candidates in elections with many other can-
didates have a smaller chance of winning to start with than candidates with
few opponents. Only the (induced) Bucklin procedures displayed a different,
irregular pattern. Additionally, for all but one of the studied (induced) voting
procedures, the Condorcet winner efficiency was higher when the number of
voters was even than when the number of voters was odd. This difference di-
minished as the number of voters increased. The odd-even effect was also visible
in our Condorcet loser efficiency experiments, though to a much smaller extent.
Again, this is what we would expect, because for a Condorcet winner (loser) to
win (lose) a pairwise majority contest against some candidate x, he must win

3To be more precise, let yn denote the number of elections where the Condorcet candidate
wins in the no-poll condition, but loses in the poll condition, and let ny denote the number
of elections where the Condorcet candidate loses in the no-poll condition, but wins in the poll
condition. McNemar’s test then checks whether the ratio yn/ny significantly differs from 1.
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Figure 5.2: Average probability of electing the Condorcet winner for elections
with 50 voters and 5 candidates over 10,000 trials. Poll effect on Condorcet
efficiency is significant (p < 0.05) for plurality, STV and Bucklin.

(lose) with a difference of 2 when the number of voters is even, but only with
a difference of 1 when the number of voters is odd. This contrast is relatively
large for small numbers of voters. The (induced) Bucklin procedures form an
exception. The Condorcet winner efficiency and the Condorcet loser efficiency
of these procedures simply decreased as the number of voters increased.

Figure 5.2 shows the Condorcet winner efficiency results of Experiment 1
for elections with 50 voters and 5 candidates. Small variations in the number
of voters or candidates did not change this pattern, except for the plurality
rule, to which we will come back later. Note that we included the Copeland
procedure for comparison, but we already know that the procedure itself is
Condorcet-consistent, and thus its induced voting procedure will be as well (cf.
Theorem 22).

Polls had a significant positive effect on the Condorcet winner efficiency of
plurality, STV and Bucklin, and no significant effect for Borda. Intuitively,
one can think of the pragmatist response policy as offering a Condorcet winner
another chance to win if he ended up among the k highest ranked candidates
in the first round. For plurality and Bucklin we can state this intuition as a
general rule: if all voters are 2-pragmatists and the Condorcet winner is among
the two highest ranked candidates in the first round, then he will always win
under induced voting procedure F ?. This follows from the fact that the top
2 candidates do not change throughout these voting games (see also the proof
of Theorem 17) and from the voting procedures themselves, and can also be
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Figure 5.3: Average probability of not electing the Condorcet loser for elections
with 50 voters and 5 candidates over 10,000 trials. Poll effect on Condorcet
efficiency is significant (p < 0.05) for plurality and Bucklin.

seen from our simulation data in Appendix A.1.1. However, if all voters are
3-pragmatists, then this no longer holds. Generally, a candidate in a runoff
between 2 candidates has a greater chance of winning to start with than a
candidate in a runoff between 3 candidates. We would therefore expect the
2-pragmatist response policy to have a greater positive effect on the Condorcet
winner efficiency than the 3-pragmatist response policy. Indeed, our data reflect
this expectation. On the other hand, as the number of candidates increases, it
becomes less likely that the Condorcet winner ends up amongst the two highest
ranked candidates in the first round. This would explain that for large numbers
of candidates, the 3-pragmatist response policy had a greater positive effect
on the Condorcet winner efficiency of the plurality rule than the 2-pragmatist
response policy (see Appendix A.1.1).

Our results also show that polls had a greater effect on plurality and Bucklin
than on STV and Borda. This might be due to the substantially lower Condorcet
winner efficiencies of plurality and Bucklin compared to STV and Borda, leaving
more room for improvement. More specifically, plurality and Bucklin do not
respect the relative ranking of candidates within a ballot as much as STV and
Borda, whereas this information is crucial for identifying the Condorcet winner.
Plurality and Bucklin can therefore profit more from the pragmatist response
policy which brings back some of this respect for relative rankings of candidates.

Figure 5.3 shows the Condorcet loser efficiency results of Experiment 1 for
elections with 50 voters and 5 candidates. Small variations in the number of
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voters or candidates did not change this pattern. Note that we included the
Copeland procedure for comparison, but we already know that the procedure
itself always ranks the Condorcet loser last, and thus its induced voting proce-
dures will never elect the Condorcet loser either.

The Borda rule is also known for satisfying the Condorcet loser criterion,
and so is the STV procedure if it breaks ties between plurality losers during
execution. In our implementation, however, these ties were not broken and all
candidates that were ranked first by the fewest voters got eliminated. In that
case the Condorcet loser can win sometimes in an STV election; see our results
in Appendix A.1.2.

Polls had a significant positive effect on the Condorcet loser efficiency of
plurality and Bucklin, and no significant effect for Borda and STV. Let us now
think of the pragmatist response policy as offering a Condorcet loser another
chance to lose. For plurality, STV, and Bucklin we can state this intuition as
a general rule: if all voters are 2-pragmatists, then the Condorcet loser will
always lose under induced voting procedure F ?. This follows directly from the
definitions of these procedures, and can also be seen from our simulation data
in Appendix A.1.2. However, if all voters are 3-pragmatists, then this no longer
holds. This would explain that the 2-pragmatist response policy had a greater
positive effect on the Condorcet loser efficiency than the 3-pragmatist response
policy.

We now turn to the results of Experiment 2. In this experiment we used
a modified version of the pragmatist response policy, because approval voting
does not fit in our standard framework. Figures 5.4 and 5.5 show the results
concerning, respectively, the Condorcet winner efficiency and the Condorcet
loser efficiency of approval voting for elections with 50 voters and 5 candidates
after 5000 poll rounds. Almost all voting games had terminated by then. Small
variations in the number of voters or candidates did not change these patterns
(see Appendix A.2). We found that polls had a significant positive effect on
the Condorcet winner efficiency of approval voting. Polls also had a significant
positive effect on the Condorcet loser efficiency of approval voting in elections
with only 2-pragmatists, but in elections with only 3-pragmatists we did not
find any significant effect.

Recall that the pragmatist response policy for approval voting and the stan-
dard pragmatist response policy have one important thing in common: accord-
ing to both policies a voter always differentiates between her favourite top k
candidate and the other top k candidates. It is therefore not surprising that
the results of our second experiment closely resembled the results of our first
experiment.

Finally, Figure 5.6 shows the Condorcet winner efficiency results of Experi-
ment 3 for elections with 50 voters and 5 candidates after 5000 poll rounds. All
voting games using the score-PIF had terminated by then, but only 37.8% of the
voting games using the rank-PIF had. We found that polls had a significant pos-
itive effect on the Condorcet winner efficiency of plurality when voters received
score-information. On the other hand, when polls only gave rank-information,
then we observed no significant effect on the Condorcet winner efficiency of plu-
rality. The latter effect, however, turned significantly positive for large m/n
ratios, and significantly negative for small m/n ratios (except for m = 3, for
which it was significantly positive). For very large m/n ratios the effect of the
rank-PIF on the Condorcet winner efficiency of plurality even outweighed the
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Figure 5.4: Average probability of electing the Condorcet winner for elections
with 50 voters and 5 candidates over 10,000 trials. Poll effect on Condorcet
efficiency is significant (p < 0.05).
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Figure 5.5: Average probability of not electing the Condorcet loser for elections
with 50 voters and 5 candidates over 10,000 trials. Poll effect on Condorcet
efficiency is significant (p < 0.05) if all voters are 2-pragmatists for approval
voting.
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Figure 5.6: Average probability of electing the Condorcet winner for elections
with 50 voters and 5 candidates over 10,000 trials. Poll effect on Condorcet
efficiency is significant (p < 0.05) if polls give score-information.
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Figure 5.7: Average probability of not electing the Condorcet loser for elections
with 50 voters and 5 candidates over 10,000 trials. Poll effect on Condorcet
efficiency is significant (p < 0.05) if polls give score-information.



CHAPTER 5. REPEATED RESPONSE TO POLLS 48

effect of the score-PIF.
How can we explain this pattern? First, the less information we provide to

voters, the more likely a strategist will consider it possible to benefit from updat-
ing her ballot. That this is indeed the case is clear from our experimental data:
termination took much longer (or did not occur at all) when we switched from
score- to rank-information. Second, strategists are ‘selfish’ and are not per se
interested in getting the Condorcet winner elected. Poorly informed strategists
may therefore cause elections to drift away from the Condorcet winner. This
effect was especially prominent in elections with many voters, possibly because
then relatively many voters think they can benefit from updating their ballot.
On the other hand, as the number of candidates increases, a strategist will con-
sider it more likely to harm herself by updating her ballot. More specifically,
in elections with many candidates, a strategist who is not satisfied with the
current outcome is more likely to change to a front-runner, than to a candidate
that is currently ranked midway. As the Condorcet winner often is amongst the
two or three highest ranked candidates in a plurality election (see the results
of Experiment 1 for plurality in Appendix A.1.1), this could account for the
increasingly positive effect of the rank-PIF on the Condorcet winner efficiency
of plurality for large numbers of candidates (and also for m = 3).

Well-informed strategists only change their ballot if they are sure that they
can change the election outcome. That is, they only change their ballot if the
front-runners’ scores differ by at most one vote. Since the Condorcet winner
often is one of the front-runners, this would explain that the score-PIF had
a positive effect on the Condorcet winner efficiency of plurality, but also that
this effect was outweighed by the effect of the rank-PIF for large numbers of
candidates, for then the front-runners’ scores often differ by more than one vote.

Figure 5.7 shows the Condorcet loser efficiency results of Experiment 3 for
elections with 50 voters and 5 candidates after 5000 poll rounds. All voting
games using the score-PIF had terminated by then, but only 32.3% of the voting
games using the rank-PIF had. The results mirrored the results of the first
part of Experiment 3 concerning the Condorcet winner efficiency of plurality,
although the (poll) effect size was much smaller. And we may put forward
similar reasons to explain the positive effect of score-PIFs and the varying effect
of rank-PIFs on the Condorcet loser efficiency of plurality.

5.5 Discussion

In this chapter, we studied the effects of sequences of polls on election outcomes.
Under which circumstances is the electorate better represented by a candidate
who wins after a series of polls than by a candidate who wins before, and under
which circumstances worse? Often one cannot appoint a candidate who repre-
sents the voters’ preferences best, but we focused on the preference profiles for
which one can. We developed a formal model of elections that are preceded by
a series of polls, and we considered three types of responses to poll information:
a strategist submits a best response to what she knows about other voters’ bal-
lots; a pragmatist supports her favourite candidate amongst the front-runners;
and a truth-teller always votes truthfully.

We found that when all voters are pragmatists or truth-tellers, many voting
procedures that incorporate multiple poll rounds reach a point from which no
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voter wishes to deviate, even if each voter is offered only one chance to update
her ballot. Such termination is advantageous, for then the number of poll rounds
barely influences who ultimately wins an election. However, when all voters are
strategists or truth-tellers, termination often cannot be guaranteed. The widely
used plurality rule forms an interesting exception.

We also briefly looked into the question which voting games always terminate
after 0 poll rounds, i.e., which voting procedures are immune to polls? We stated
two obvious results: if all voters are truth-tellers, then any voting procedure is
immune to polls, and if all voters are strategists, then any voting procedure
that is immune to π-manipulation is immune to polls that give π-information.
Another example is plurality with runoff, which is immune to polls when all
voters are 2-pragmatists. Plurality with runoff is a two-round voting procedure.
If there is a candidate that is ranked first by a majority of voters in the first
round, then that candidate wins. Otherwise, the two candidates that are ranked
first most often in the first round continue to the second round, and the winner
of their pairwise majority contest wins the election. It is not difficult to see that
plurality with runoff always produces the same winner as the plurality voting
game with only 2-pragmatists after termination (Brams & Fishburn (1983), cf.
Theorem 17). It then follows that plurality with runoff is immune to polls when
all voters are 2-pragmatists.

Returning to our original question about the influence of polls on election
outcomes, we studied how polls affect the properties of different voting proce-
dures. Obviously, polls do not affect the properties of voting procedures that
are immune to polls, like dictatorial and constant voting procedures. More in-
terestingly, we found that unanimity transfers if all voters are pragmatists or
strategists. That is, any unanimous voting procedure remains unanimous if it
incorporates multiple poll rounds. Many properties, however, do not always
transfer, among which Pareto efficiency, surjectivity, anonymity, and Condorcet
consistency, although the latter property does transfer if all voters are pragma-
tists.

What remains open is whether our (non-)termination and (non-)transfer re-
sults continue to hold in a setting where polls are less (or more) informative than
we assumed in the theorems and examples of this chapter. In general the answer
is no. While the plurality voting game with only strategists always terminates if
polls give score-information (Theorem 16), it does not always terminate if polls
give rank-information (see our simulation results in Appendix A.3), and it does
always terminate if polls give zero-information (Theorem 10). The intuition
behind this observation is that when polls give enough information to exclude
some candidates as possible winners, but not all, then a voter may update her
ballot because she will be better off in situation b, whereas another voter may
update her ballot because she will be better off in situation c, both situations
being consistent with the received poll information and possibly none of them
being the actual poll profile. For this same reason, (non-)transfer results prob-
ably also do not always generalise to PIFs that are less (or more) informative.
All of our non-transfer examples, however, do generalise to PIFs that are more
informative than we assumed in those examples. We also know that if F is
a voting procedure that is immune to zero-manipulation (as most reasonable
voting procedures are) and all voters are strategists, then any property of F is
transferred to F t, in which polls give zero-information. It would be interesting
to analyse exactly how much information a poll may provide before a property
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stops being transferred (if such a point is ever reached).
Moreover, it would be worthwhile to investigate whether combinations of

properties of voting procedures induce particular properties of elections with
polls, like Theorem 20 which states that surjective voting procedures that yield
only one powerful voter induce dictatorial voting games.

For properties that do not persist in general, further work on simulations,
similar to our study of Condorcet efficiency, will be required. Our simulations
showed that polls may strengthen the Condorcet winner efficiency and the Con-
dorcet loser efficiency of a voting procedure when all voters respond pragmat-
ically, and that this also holds when all voters respond strategically provided
that polls bound the strategising opportunities of voters. Other suitable prop-
erties to study via simulations are: Pareto efficiency and top cycle efficiency,
i.e., a voting procedure’s tendency to elect a candidate that is in the top cycle
(the smallest non-empty subset of candidates such that every candidate in that
subset wins every pairwise majority contest against any candidate outside that
subset).

In this chapter, we assumed that voters respond strategically, pragmatically,
or truthfully to poll information, and that they use the same response policy
throughout the voting game. This is, of course, only a very rough approxima-
tion of voting behaviour in the actual world. For example, under the pragmatist
response policy for approval voting, voters may contract and expand their bal-
lot, and it can happen that a voter ends up approving of candidates that she
actually does not approve of. We would like to know whether this is a realistic
assumption. It would also be interesting to consider additional and perhaps
more realistic types of response policies and to investigate their influence on
election outcomes. However, before we can judge a response policy to be more
realistic than some other policy, more experimental research on real-world opin-
ion polls needs to be done.

Another way to get an idea of how realistic a response policy is, is to study
its complexity. How hard is it for a voter to compute her next (tactical) move?
If that turns out to be extremely difficult, then we may wonder whether voters
actually follow such a policy.

Finally, in our framework only one voter updates her ballot after each poll
round. This is not unusual for internet elections or elections with few voters,
but far from usual for, e.g., national presidential elections. A setting in which
multiple voters may change their ballot at once is more complex, and most of
our results will cease to hold in such a setting. However, if all voters are k-
pragmatists (or truth-tellers) and the set of k front-runners does not change
throughout the voting game, then a voting game elects the same candidate as
a game in which multiple voters may change their ballot at once. It would be
worthwhile to study the latter setting in its own right.



Chapter 6

Conclusion

In this chapter we briefly summarise our results and give some directions for
future work.

6.1 Results

We have developed a framework to study the effects of opinion polls on voting
behaviour and election outcomes. First, we focused on the strategising opportu-
nities of a single voter in view of a single poll. Upon receiving poll information,
the voter reconsiders her truthful ballot and changes to an untruthful ballot if
she has a chance of improving the election outcome according to her true pref-
erences, and no chance of worsening it. When a poll communicates exactly who
is voting what, then we know from the Gibbard-Satterthwaite Theorem that for
any reasonable voting procedure there are situations in which a voter has an
incentive to vote untruthfully. On the other hand, we found that when a poll
does not communicate anything, then for many voting procedures voters never
have an incentive to vote untruthfully. This incentive, however, starts coming
as soon as voters know who is currently winning, according to the poll.

Thus, polls provoke strategic voting behaviour rather quickly. Does this
mean that polls generally have a negative effect on the election outcome? No. In
the second part of this thesis, we analysed the scenario in which multiple voters
repeatedly update their ballot in view of a sequence of polls. We considered three
types of responses to poll information: a strategist submits a best response to
what she knows about other voters’ ballots; a pragmatist supports her favourite
candidate amongst the front-runners; and a truth-teller always votes truthfully.
We found that some desirable properties of voting procedures persist, and may
even be strengthened, when a voting procedure is preceded by a series of polls
to which voters can respond in a strategic, pragmatic, or truthful way. Other
desirable properties, however, do not always persist. Among the properties that
may be strengthened by polls is the tendency of a voting procedure to elect
the Condorcet winner, i.e., a candidate that would beat any other candidate
in a one-to-one majority contest. This is an important positive result, because
whenever there exists a Condorcet winner, then he is seen as the candidate who
best represents the electorate.

Hence, polls can both improve and reduce the quality of election outcomes,
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but on average they seem to have a positive effect.

6.2 Future Research

Throughout this thesis, we made several recommendations for future research.
Here we list the most important ones:

• Gibbard-Satterthwaite Theorem under partial information: The Gibbard-
Satterthwaite Theorem states that for any ‘democratic’ voting procedure
there are situations in which voters are better off by not reporting their
true preferences, provided that they know exactly how all other voters
are voting. We showed that this theorem ceases to hold when polls only
communicate who is currently winning, or which candidates beat which
other candidates in a one-to-one majority contest. However, we did not
determine precisely how much information a poll may hide before the
Gibbard-Satterthwaite Theorem stops being generalizable. Mapping out
this dividing line between the possible and the impossible presents an
important challenge for future research.

• Response policies: We defined three possible ways in which voters may
respond to poll information. These policies are loosely based on the hy-
pothesised influence of polls on voting behaviour as suggested by political
science literature. We can think of more such response policies. For ex-
ample, pity-feelers who support the candidate that is currently losing, or
followers who support the candidate that is currently gaining the most
votes. Note that pity-feelers bring about an underdog effect, and that fol-
lowers bring about a momentum effect. It would be interesting to study
the influence of these and other (combinations of) response policies on
the election outcome. In addition, it would be worthwhile to investigate
whether real voters in real elections actually behave in a way that can be
accounted for by the proposed response policies.

• Properties of elections with polls: We studied how polls affect the proper-
ties of different voting procedures for different response policies and poll
information levels. Many desirable properties do not always persist. To
find out how bad this is, further work on simulations, similar to our study
of Condorcet efficiency, will be required. Beyond this, while we have fo-
cussed on the persistence of single properties of voting procedures, it would
also be interesting to investigate whether combinations of such properties
induce particular properties of elections with polls.

• Complexity: In this thesis, we did not focus on complexity issues. However,
it would be worthwhile to analyse for different voting procedures, different
response policies, and different poll information functions how hard it is
for a voter to compute her response to the received poll information.



Appendix A

Simulation Results

This appendix lists the results of the experiments we conducted (see Section 5.4).
The experiments were set up to test the effect of polls on the Condorcet efficiency
of different voting procedures while varying the number of voters and candidates,
the amount of information polls provide, and the response policies of voters.
For all conditions, we ran 10,000 trials and checked how often the Condorcet
candidate (the Condorcet winner of loser) was elected compared to the condition
without polls. Let yn denote the number of elections where the Condorcet
candidate wins in the no-poll condition, but loses in the poll condition, and
let ny denote the number of elections where the Condorcet candidate loses in
the no-poll condition, but wins in the poll condition. Below, the increase in
Condorcet efficiency when elections are complemented with polls is given by
∆ := ny−yn

10,000 · 100%,1 and the fluidity between the no-poll and poll condition is

given by Fl := ny+yn
10,000 · 100%. Note that yn and ny can be computed from this

information. To enhance the readability of the tables below, we write� for the
fluidity if yn = 0 and ny > 0, and � if yn > 0 and ny = 0, and − if yn = 0
and ny = 0.

We used McNemar’s test to determine whether the poll effect was significant.
Significance is denoted by asterisks: (?) if p < 0.05, (??) if p < 0.01, and (???) if
p < 0.001. McNemar’s test can only be applied if the fluidity is large enough;
we required ny + yn > 25. All our data was analysed in R (R Development
Core Team, 2011).

A.1 Experiment 1

In this section, we present the results of our first experiment. In this experiment,
we examined the effect of polls on the Condorcet winner efficiency as well as on
the Condorcet loser efficiency of plurality, Borda, Copeland, STV, and Bucklin
under the assumption that polls provide (at least) rank-information, and that
all voters are 2-pragmatists or all voters are 3-pragmatists. Note that we left
out the Condorcet winner efficiency results for Copeland, and the Condorcet
loser efficiency results for Borda and Copeland. Regardless of the number of
candidates, the number of voters, and voters’ response policies, those efficiencies

1More precisely, ∆ gives the increase in Condorcet winner efficiency, but the decrease in
Condorcet loser efficiency.
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are known to be 100% with or without polls, except for the Condorcet loser
efficiency of Borda with polls for 50 voters and 3 2-pragmatic candidates, which
was 99.97%.

A.1.1 Condorcet Winner Efficiency

Number of Candidates
3 4 5 6 7 8 9

Plurality 83.23 72.52 64.18 58.64 54.24 50.10 47.08
Borda 95.64 93.13 91.72 91.33 91.21 91.21 91.11
STV 97.01 93.56 90.23 88.62 86.02 84.03 82.63
Bucklin 36.17 61.82 48.71 44.55 64.37 49.53 60.55

Number of Candidates
10 11 12 13 14 15

Plurality 44.02 39.86 37.68 35.93 34.37 32.39
Borda 91.11 90.95 91.24 90.54 91.28 91.00
STV 80.19 78.12 76.22 74.58 74.31 72.05
Bucklin 59.78 57.88 63.08 62.40 63.75 65.42

Figure A.1: Condorcet winner efficiency for elections with 50 voters and 3 to 15
candidates. Average over 10,000 trials.

Number of Candidates
3 4 5 6 7 8 9

Plurality ∆ 14.45??? 18.87??? 20.85??? 21.64??? 20.56??? 19.73??? 19.83???

Fl � � � � � � �
Borda ∆ -1.11??? -0.33 0.48 -0.14 0.23 0.13 0.23

Fl 6.13 8.67 9.66 10.62 9.97 10.69 11.17
STV ∆ 0.67??? 1.35??? 2.18??? 2.47??? 2.75??? 3.62??? 3.57???

Fl � 1.55 2.60 3.35 3.89 4.76 5.35
Bucklin ∆ 32.64??? 32.98??? 15.33??? 34.68??? 15.07??? 22.31??? 24.78???

Fl � � � � � � �

Number of Candidates
10 11 12 13 14 15

Plurality ∆ 19.20??? 19.09??? 18.36??? 17.95??? 16.28??? 15.72???

Fl � � � � � �
Borda ∆ -0.48 0.05 -0.01 0.55 0.59 -0.25

Fl 11.06 10.79 10.27 10.73 10.05 10.77
STV ∆ 4.56??? 4.57??? 5.08??? 5.49??? 5.21??? 5.87???

Fl 5.94 6.17 7.10 7.45 7.31 7.99
Bucklin ∆ 16.21??? 24.54??? 19.33??? 19.27??? 20.49??? 17.93???

Fl � � � � � �

Figure A.2: Poll effects on Condorcet winner efficiency for elections with 50
voters and 3 to 15 candidates. Average over 10,000 trials. All elections were
preceded by a series of polls which provided voters with rank-information. All
voters were 2-pragmatists. And all voting games were run until termination.
For explanation of the symbols used in this table, we refer to the introduction
of Appendix A.
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Number of Candidates
4 5 6 7 8 9

Plurality ∆ 7.64??? 12.08??? 14.73??? 16.64??? 17.77??? 18.76???

Fl 17.52 23.64 26.57 27.40 27.73 28.66
Borda ∆ -0.28 -0.43 -0.34 -0.45 -0.37 -0.73?

Fl 4.84 7.55 7.96 8.03 8.13 9.07
STV ∆ 0.35??? 0.99??? 1.05??? 1.53??? 1.67??? 1.85???

Fl 0.67 1.59 2.63 3.49 4.15 4.97
Bucklin ∆ 0.27??? 9.42??? 9.38??? 1.36??? 16.30??? 6.67???

Fl � 11.86 13.70 13.96 22.18 19.25

Number of Candidates
10 11 12 13 14 15

Plurality ∆ 18.66??? 19.32??? 19.96??? 19.42??? 18.56??? 18.97???

Fl 27.98 28.38 27.40 26.34 25.60 25.53
Borda ∆ -0.61? -0.36 -0.45 0.13 -0.51 -0.66?

Fl 8.53 9.16 8.95 9.21 9.19 9.40
STV ∆ 2.67??? 2.71??? 3.45??? 4.32??? 3.53??? 3.78???

Fl 5.35 5.83 6.67 7.54 7.21 7.90
Bucklin ∆ 6.93??? 12.68??? 5.16??? 9.00??? 8.00??? 7.30???

Fl 18.81 23.30 20.56 21.72 21.02 21.14

Figure A.3: Poll effects on Condorcet winner efficiency for elections with 50
voters and 3 to 15 candidates. Average over 10,000 trials. All elections were
preceded by a series of polls which provided voters with rank-information. All
voters were 3-pragmatists. And all voting games were run until termination.
For explanation of the symbols used in this table, we refer to the introduction
of Appendix A.

Number of Voters
10 15 20 25 30 35 40

Plurality 77.45 63.33 71.15 62.12 67.30 60.34 67.07
Borda 97.19 86.33 94.81 85.95 93.34 86.12 92.62
STV 92.11 85.83 92.38 84.99 91.11 87.13 90.35
Bucklin 81.20 66.33 70.98 61.42 62.78 58.02 54.72

Number of Voters
45 50 55 60 65 70

Plurality 59.56 64.34 59.51 64.21 59.27 63.38
Borda 85.87 92.09 85.63 91.56 85.49 91.20
STV 86.78 90.58 87.08 90.56 87.52 90.16
Bucklin 51.29 49.68 45.45 43.47 41.04 39.40

Number of Voters
75 80 85 90 95 100

Plurality 58.62 63.20 58.91 62.20 57.80 62.19
Borda 85.91 90.58 85.71 90.13 85.39 89.99
STV 87.90 90.35 87.69 90.30 87.82 90.08
Bucklin 37.40 34.97 34.29 32.76 32.21 30.27

Figure A.4: Condorcet winner efficiency for elections with 5 candidates and 10
to 100 voters. Average over 10,000 trials.
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Number of Voters
10 15 20 25 30 35 40

Plurality ∆ 14.05??? 21.22??? 17.66??? 21.27??? 19.38??? 22.13??? 19.25???

Fl � � � � � � �
Borda ∆ -1.02??? -0.31 -0.52 0.06 -0.21 0.68 -0.02

Fl 4.34 12.93 6.98 13.88 8.51 13.78 9.32
STV ∆ 2.37??? 2.85??? 1.73??? 4.07??? 2.27??? 2.44??? 2.28???

Fl 2.61 3.55 1.91 4.67 2.83 3.14 2.74
Bucklin ∆ 13.03??? 19.51??? 13.65??? 16.17??? 13.92??? 14.98??? 14.46???

Fl � � � � � � �

Number of Voters
45 50 55 60 65 70

Plurality ∆ 22.55??? 21.28??? 23.19??? 21.25??? 22.78??? 21.45???

Fl � � � � � �
Borda ∆ 0.47 0.52 0.98?? 0.04 0.69 0.46

Fl 13.45 9.52 13.72 10.54 14.59 9.98
STV ∆ 2.71??? 2.04??? 2.98??? 2.15??? 1.99??? 2.29???

Fl 3.29 2.46 3.90 2.57 2.89 2.71
Bucklin ∆ 14.64??? 14.84??? 15.63??? 16.24??? 16.92??? 16.83???

Fl � � � � � �

Number of Voters
75 80 85 90 95 100

Plurality ∆ 23.51??? 21.41??? 23.15??? 21.89??? 24.01??? 21.73???

Fl � � � � � �
Borda ∆ 0.13 0.44 0.83? 0.33 1.37??? 0.61

Fl 14.23 10.94 14.45 11.13 14.67 11.15
STV ∆ 1.93??? 1.86??? 2.52??? 1.83??? 2.10??? 2.06???

Fl 2.89 2.34 3.16 2.31 2.72 2.58
Bucklin ∆ 16.89??? 17.53??? 16.99??? 17.96??? 17.57??? 17.46???

Fl � � � � � �

Figure A.5: Poll effects on Condorcet winner efficiency for elections with 5
candidates and 10 to 100 voters. Average over 10,000 trials. All elections were
preceded by a series of polls which provided voters with rank-information. All
voters were 2-pragmatists. And all voting games were run until termination.
For explanation of the symbols used in this table, we refer to the introduction
of Appendix A.
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Number of Voters
10 15 20 25 30 35 40

Plurality ∆ 8.61??? 8.53??? 10.12??? 8.79??? 11.83??? 9.97??? 10.79???

Fl 14.93 20.13 19.12 22.83 22.03 24.17 22.37
Borda ∆ -0.37? -0.91?? -0.36 -0.23 -0.13 -0.07 -0.33

Fl 2.45 9.07 4.30 9.51 5.73 9.51 6.31
STV ∆ 0.58??? 0.34 0.68??? 0.87??? 0.91??? 0.79??? 0.64???

Fl 2.12 2.94 1.50 2.37 1.93 1.89 1.56
Bucklin ∆ 4.04??? 4.23??? 4.89??? 4.14??? 6.19??? 5.13??? 7.81???

Fl 5.82 9.19 8.25 9.84 9.51 10.87 10.71

Number of Voters
45 50 55 60 65 70

Plurality ∆ 10.81??? 12.11??? 11.10??? 11.77??? 10.83??? 12.46???

Fl 24.39 23.41 24.98 24.03 24.91 23.46
Borda ∆ -0.36 -0.13 -0.32 -0.18 0.01 0.18

Fl 9.68 6.97 9.80 6.96 10.41 6.90
STV ∆ 1.13??? 1.06??? 0.58??? 0.60??? 0.70??? 0.56???

Fl 2.11 1.76 2.08 1.52 1.86 1.48
Bucklin ∆ 6.96??? 9.04??? 8.96??? 10.71??? 9.85??? 11.12???

Fl 11.54 11.68 12.10 13.03 12.51 12.64

Number of Voters
75 80 85 90 95 100

Plurality ∆ 11.68??? 11.47??? 11.26??? 12.13??? 11.82??? 12.03???

Fl 25.50 24.43 25.52 25.55 26.14 25.01
Borda ∆ -0.70? -0.44 -0.41 -0.26 0.16 -0.21

Fl 9.90 7.40 10.15 8.12 9.96 7.65
STV ∆ 0.48??? 0.45??? 0.70??? 0.87??? 0.53??? 0.46???

Fl 1.84 1.35 1.84 1.39 1.39 1.26
Bucklin ∆ 10.65??? 11.18??? 10.61??? 10.95??? 10.96??? 10.55???

Fl 12.37 12.38 12.43 12.09 12.00 11.15

Figure A.6: Poll effects on Condorcet winner efficiency for elections with 5
candidates and 10 to 100 voters. Average over 10,000 trials. All elections were
preceded by a series of polls which provided voters with rank-information. All
voters were 3-pragmatists. And all voting games were run until termination.
For explanation of the symbols used in this table, we refer to the introduction
of Appendix A.
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A.1.2 Condorcet Loser Efficiency

Number of Candidates
3 4 5 6 7 8 9

Plurality 97.39 98.35 98.54 98.93 98.90 99.15 99.33
STV 99.72 99.85 99.89 99.97 99.97 100.00 99.99
Bucklin 69.07 99.39 92.63 99.87 99.21 99.96 99.94

Number of Candidates
10 11 12 13 14 15

Plurality 99.33 99.44 99.33 99.48 99.50 99.50
STV 99.98 99.99 99.98 99.99 100.00 100.00
Bucklin 99.99 100.00 99.99 100.00 100.00 100.00

Figure A.7: Condorcet loser efficiency for elections with 50 voters and 3 to 15
candidates. Average over 10,000 trials.

Number of Candidates
3 4 5 6 7 8 9

Plurality -∆ 2.61??? 1.65??? 1.46??? 1.07??? 1.10??? 0.85??? 0.67???

Fl � � � � � � �
STV -∆ 0.28??? 0.15 0.11 0.03 0.03 0.00 0.01

Fl � � � � � − �
Bucklin -∆ 30.93??? 0.61??? 7.37??? 0.13 0.79??? 0.04 0.06

Fl � � � � � � �

Number of Candidates
10 11 12 13 14 15

Plurality -∆ 0.67??? 0.56??? 0.67??? 0.52??? 0.50??? 0.50???

Fl � � � � � �
STV -∆ 0.02 0.01 0.02 0.01 0.00 0.00

Fl � � � � − −
Bucklin -∆ 0.01 0.00 0.01 0.00 0.00 0.00

Fl � − � − − −

Figure A.8: Poll effects on Condorcet loser efficiency for elections with 50 voters
and 3 to 15 candidates. Average over 10,000 trials. All elections were preceded
by a series of polls which provided voters with rank-information. All voters
were 2-pragmatists. And all voting games were run until termination. For
explanation of the symbols used in this table, we refer to the introduction of
Appendix A.
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Number of Candidates
4 5 6 7 8 9

Plurality -∆ 0.60??? 1.05??? 0.77??? 0.90??? 0.68??? 0.53???

Fl 1.74 1.41 1.25 1.12 0.94 0.77
STV -∆ 0.03 0.02 0.01 0.03 0.00 0.00

Fl 0.07 0.04 � � − 0.02
Bucklin -∆ 0.00 1.94??? -0.14 0.48??? 0.00 0.06

Fl − � 0.16 � − �

Number of Candidates
10 11 12 13 14 15

Plurality -∆ 0.59??? 0.55??? 0.65??? 0.47??? 0.49??? 0.48???

Fl 0.71 � 0.69 0.53 0.51 0.52
STV -∆ 0.02 0.00 0.02 0.01 0.00 0.00

Fl � − � � − −
Bucklin -∆ 0.01 0.00 0.00 0.00 0.00 0.00

Fl � − − − − −

Figure A.9: Poll effects on Condorcet loser efficiency for elections with 50 voters
and 3 to 15 candidates. Average over 10,000 trials. All elections were preceded
by a series of polls which provided voters with rank-information. All voters
were 3-pragmatists. And all voting games were run until termination. For
explanation of the symbols used in this table, we refer to the introduction of
Appendix A.

Number of Voters
10 15 20 25 30 35 40

Plurality 99.22 98.25 98.82 97.9 98.72 98.19 98.82
STV 99.81 99.49 99.85 99.47 99.84 99.9 99.81
Bucklin 99.82 98.95 98.76 97.17 97.18 94.89 95.28

Number of Voters
45 50 55 60 65 70

Plurality 98.27 98.49 98.1 98.74 98.39 98.58
STV 99.73 99.89 99.74 99.86 99.89 99.69
Bucklin 92.86 92.75 89.98 90.78 89.14 88.43

Number of Voters
75 80 85 90 95 100

Plurality 98.23 98.31 97.99 98.63 98.17 98.45
STV 99.9 99.92 99.79 99.89 99.93 99.86
Bucklin 87.49 86.97 85.96 86.19 85.23 85.03

Figure A.10: Condorcet loser efficiency for elections with 5 candidates and 10
to 100 voters. Average over 10,000 trials.
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Number of Voters
10 15 20 25 30 35 40

Plurality -∆ 0.78??? 1.75??? 1.18??? 2.10??? 1.28??? 1.81??? 1.18???

Fl � � � � � � �
STV -∆ 0.19 0.51??? 0.15 0.53??? 0.16 0.10 0.19

Fl � � � � � � �
Bucklin -∆ 0.18 1.05??? 1.24??? 2.83??? 2.82??? 5.11??? 4.72???

Fl � � � � � � �

Number of Voters
45 50 55 60 65 70

Plurality -∆ 1.73??? 1.51??? 1.90??? 1.26??? 1.61??? 1.42???

Fl � � � � � �
STV -∆ 0.27??? 0.11 0.26??? 0.14 0.11 0.31???

Fl � � � � � �
Bucklin -∆ 7.14??? 7.25??? 10.02??? 9.22??? 10.86??? 11.57???

Fl � � � � � �

Number of Voters
75 80 85 90 95 100

Plurality -∆ 1.77??? 1.69??? 2.01??? 1.37??? 1.83??? 1.55???

Fl � � � � � �
STV -∆ 0.10 0.08 0.21 0.11 0.07 0.14

Fl � � � � � �
Bucklin -∆ 12.51??? 13.03??? 14.04??? 13.81??? 14.77??? 14.97???

Fl � � � � � �

Figure A.11: Poll effects on Condorcet loser efficiency for elections with 5 can-
didates and 10 to 100 voters. Average over 10,000 trials. All elections were
preceded by a series of polls which provided voters with rank-information. All
voters were 2-pragmatists. And all voting games were run until termination.
For explanation of the symbols used in this table, we refer to the introduction
of Appendix A.
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Number of Voters
10 15 20 25 30 35 40

Plurality -∆ 0.56??? 0.78??? 0.68??? 1.10??? 0.86??? 0.75??? 0.71???

Fl 0.84 1.96 1.22 2.38 1.36 2.17 1.31
STV -∆ 0.03 -0.08 0.13 0.17?? -0.01 0.05 0.01

Fl 0.21 0.26 0.15 0.31 0.11 � 0.09
Bucklin -∆ 0.07 0.37??? 0.43??? 1.10??? 0.89??? 1.84??? 1.63???

Fl � 0.49 � 1.14 � 1.90 �

Number of Voters
45 50 55 60 65 70

Plurality -∆ 0.92??? 0.83??? 0.90??? 0.73??? 1.03??? 0.79???

Fl 1.94 1.83 2.10 1.39 1.75 1.71
STV -∆ 0.11 0.05 0.01 0.03 0.03 0.03

Fl � � 0.13 0.09 0.05 0.15
Bucklin -∆ 2.27??? 2.02??? 3.47??? 2.51??? 3.09??? 2.58???

Fl 2.31 � 3.53 2.53 � �

Number of Voters
75 80 85 90 95 100

Plurality -∆ 0.95??? 1.01??? 1.11??? 0.76??? 0.98??? 0.96???

Fl 2.09 1.89 2.27 1.50 2.08 1.68
STV -∆ -0.03 0.01 0.00 0.02 -0.01 0.02

Fl 0.07 0.05 0.10 0.04 � 0.08
Bucklin -∆ 3.35??? 2.89??? 3.36??? 2.70??? 3.22??? 2.57???

Fl � � 3.38 � � �

Figure A.12: Poll effects on Condorcet loser efficiency for elections with 5 can-
didates and 10 to 100 voters. Average over 10,000 trials. All elections were
preceded by a series of polls which provided voters with rank-information. All
voters were 3-pragmatists. And all voting games were run until termination.
For explanation of the symbols used in this table, we refer to the introduction
of Appendix A.
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A.2 Experiment 2

This section presents the results of our second experiment. In this experiment,
we examined the effect of polls on the Condorcet winner efficiency as well as
on the Condorcet loser efficiency of approval voting under the assumption that
polls provide (at least) rank-information, and that all voters are 2-pragmatists
or all voters are 3-pragmatists for approval voting.

A.2.1 Condorcet Winner Efficiency

Number of Candidates
3 4 5 6 7 8

No Polls 81.06 72.70 67.84 64.45 61.76 59.94
Polls, ∆ 17.62??? 24.50??? 28.17??? 29.99??? 31.73??? 33.27???

2-pragmatists Fl 18.14 25.28 29.15 30.75 32.85 34.41

Polls (n rounds), ∆ 7.61??? 10.05??? 12.85??? 14.59??? 15.70???

3-pragmatists Fl 31.67 35.79 37.33 39.83 40.22

Polls (100n rounds), ∆ 7.42??? 10.03??? 12.00??? 13.35??? 14.73???

3-pragmatists Fl 31.64 36.19 37.86 40.45 41.15

Number of Candidates
9 10 11 12 13

No Polls 56.69 56.16 56.41 55.06 55.27
Polls, ∆ 35.31??? 35.42??? 34.40??? 35.76??? 35.48???

2-pragmatists Fl 36.59 36.98 35.70 37.08 36.94

Polls (n rounds), ∆ 18.18??? 18.98??? 17.48??? 18.87??? 18.70???

3-pragmatists Fl 42.22 42.28 42.16 43.29 42.48

Polls (100n rounds), ∆ 16.66??? 16.79??? 15.69??? 17.02??? 15.98???

3-pragmatists Fl 43.44 43.75 43.15 44.48 43.88

Number of Candidates
14 15

No Polls 53.18 53.16
Polls, ∆ 36.84??? 36.88???

2-pragmatists Fl 38.18 38.40

Polls (n rounds), ∆ 20.05??? 20.21???

3-pragmatists Fl 43.55 42.81

Polls (100n rounds), ∆ 17.64??? 17.55???

3-pragmatists Fl 45.26 45.39

Figure A.13: Poll effects on Condorcet winner efficiency of approval voting for
elections with 50 voters and 3 to 15 candidates. Average over 10,000 trials. All
elections were preceded by a series of polls which provided voters with rank-
information. All voters were 2-pragmatists or all voters were 3-pragmatists for
approval voting. And all voting games were run twice: once for n rounds and
once for 100n rounds. All voting games with only 2-pragmatists had terminated
by 100n rounds. For explanation of the symbols used in this table, we refer to
the introduction of Appendix A.
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Number of Voters
10 15 20 25 30 35

No Polls 72.83 62.08 69.76 61.76 68.79 61.41
Polls, ∆ 25.19??? 32.34??? 27.39??? 32.14??? 28.09??? 32.45???

2-pragmatists Fl 26.01 33.9 28.21 33.76 29.01 34.05

Polls (n rounds), ∆ 14.90??? 10.71??? 12.76??? 10.26??? 11.29??? 9.98???

3-pragmatists Fl 29.80 38.59 32.98 38.58 34.71 38.78

Polls (100n rounds), ∆ 14.33??? 10.10??? 11.99??? 9.71??? 10.95??? 9.67???

3-pragmatists Fl 30.07 38.72 33.27 39.09 34.71 39.05

Number of Voters
40 45 50 55 60 65

No Polls 68.03 62.61 67.25 62.24 67.17 61.54
Polls, ∆ 27.95??? 31.09??? 28.84??? 31.46??? 27.91??? 31.72???

2-pragmatists Fl 28.73 32.61 29.4 32.94 29.01 32.94

Polls (n rounds), ∆ 11.13??? 9.61??? 11.15??? 10.17??? 10.27??? 10.38???

3-pragmatists Fl 35.19 38.07 35.51 39.33 35.93 39.00

Polls (100n rounds), ∆ 10.60??? 9.02??? 10.85??? 10.18??? 10.13??? 9.85???

3-pragmatists Fl 35.48 38.42 35.91 39.66 36.29 39.23

Number of Voters
70 75 80 85 90

No Polls 67.03 62.74 66.59 61.64 65.48
Polls, ∆ 27.82??? 30.29??? 27.87??? 31.25??? 28.84???

2-pragmatists Fl 28.8 31.27 28.97 32.37 29.68

Polls (n rounds), ∆ 10.60??? 8.57??? 9.46??? 11.21??? 10.75???

3-pragmatists Fl 35.62 38.61 35.98 38.69 36.71

Polls (100n rounds), ∆ 10.36??? 8.49??? 9.37??? 10.78??? 10.59???

3-pragmatists Fl 36.26 38.75 36.15 38.74 37.15

Number of Voters
95 100

No Polls 62.07 66.44
Polls, ∆ 30.60??? 27.78???

2-pragmatists Fl 31.58 28.60

Polls (n rounds), ∆ 9.52??? 9.26???

3-pragmatists Fl 38.56 36.24

Polls (100n rounds), ∆ 9.25??? 9.21???

3-pragmatists Fl 38.67 35.87

Figure A.14: Poll effects on Condorcet winner efficiency of approval voting for
elections with 5 candidates and 10 to 100 voters. Average over 10,000 trials.
All elections were preceded by a series of polls which provided voters with rank-
information. All voters were 2-pragmatists or all voters were 3-pragmatists for
approval voting. And all voting games were run twice: once for n rounds and
once for 100n rounds. All voting games with only 2-pragmatists had terminated
by 100n rounds. For explanation of the symbols used in this table, we refer to
the introduction of Appendix A.
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A.2.2 Condorcet Loser Efficiency

Number of Candidates
3 4 5 6 7 8

No Polls 97.71 98.79 99.43 99.71 99.74 99.92
Polls (100n rounds), -∆ 2.29??? 1.21??? 0.57??? 0.29??? 0.26??? 0.08
2-pragmatists Fl � � � � � �

Polls (100n rounds), -∆ 0.19 -0.04 -0.04 0.03 -0.05
3-pragmatists Fl 2.11 1.10 0.62 0.49 0.19

Number of Candidates
9 10 11 12 13

No Polls 99.91 99.98 99.95 99.97 99.99
Polls (100n rounds), -∆ 0.09 0.02 0.05 0.03 0.01
2-pragmatists Fl � � � � �

Polls (100n rounds), -∆ 0.01 -0.04 0.03 -0.02 -0.02
3-pragmatists Fl 0.17 0.08 0.07 0.08 0.04

Number of Candidates
14 15

No Polls 100.00 100.00
Polls (100n rounds), -∆ 0.00 0.00
2-pragmatists Fl − −
Polls (100n rounds), -∆ -0.02 -0.02
3-pragmatists Fl � �

Figure A.15: Poll effects on Condorcet loser efficiency of approval voting for
elections with 50 voters and 3 to 15 candidates. Average over 10,000 trials. All
elections were preceded by a series of polls which provided voters with rank-
information. All voters were 2-pragmatists or all voters were 3-pragmatists for
approval voting. And all voting games were run twice: once for n rounds and
once for 100n rounds. We do not show the results for n rounds, because these
did not differ significantly from the results for 100n rounds. For explanation of
the symbols used in this table, we refer to the introduction of Appendix A.
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Number of Voters
10 15 20 25 30 35

No Polls 99.59 99.03 99.41 98.96 99.45 99.01
Polls (100n rounds), -∆ 0.41??? 0.97??? 0.59??? 1.04??? 0.55??? 0.99???

2-pragmatists Fl � � � � � �

Polls (100n rounds), -∆ 0.19? -0.15 0.09 0.06 0.06 -0.09
3-pragmatists Fl 0.63 1.95 1.05 1.90 1.04 2.03

Number of Voters
40 45 50 55 60 65

No Polls 99.44 99.18 99.44 99.05 99.35 99.04
Polls (100n rounds), -∆ 0.56??? 0.82??? 0.56??? 0.95??? 0.65??? 0.96???

2-pragmatists Fl � � � � � �

Polls (100n rounds), -∆ 0.07 -0.25 -0.10 0.00 0.06 0.28?

3-pragmatists Fl 1.03 1.81 1.18 1.82 1.24 1.58

Number of Voters
70 75 80 85 90

No Polls 99.19 98.90 99.45 99.05 99.34
Polls (100n rounds), -∆ 0.81??? 1.10??? 0.55??? 0.95??? 0.66???

2-pragmatists Fl � � � � �

Polls (100n rounds), -∆ 0.10 0.18 -0.17 0.03 0.08
3-pragmatists Fl 1.48 1.96 1.23 1.83 1.24

Number of Voters
95 100

No Polls 99.14 99.34
Polls (100n rounds), -∆ 0.86??? 0.66???

2-pragmatists Fl � �

Polls (100n rounds), -∆ 0.05 0.14
3-pragmatists Fl 1.53 1.16

Figure A.16: Poll effects on Condorcet loser efficiency of approval voting for
elections with 5 candidates and 10 to 100 voters. Average over 10,000 trials.
All elections were preceded by a series of polls which provided voters with rank-
information. All voters were 2-pragmatists or all voters were 3-pragmatists for
approval voting. And all voting games were run twice: once for n rounds and
once for 100n rounds. We do not show the results for n rounds, because these
did not differ significantly from the results for 100n rounds. For explanation of
the symbols used in this table, we refer to the introduction of Appendix A.
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A.3 Experiment 3

In this section, we present the results of our third experiment. In this experi-
ment, we examined the effect of polls on the Condorcet winner efficiency as well
as on the Condorcet loser efficiency of plurality under the assumption that polls
provide score- or rank-information, and that all voters are strategists.

A.3.1 Condorcet Winner Efficiency

Number of Candidates
3 4 5 6 7 8

No Polls 83.23 72.52 64.18 58.64 54.24 50.10
Polls, ∆ 6.31??? 8.16??? 9.17??? 9.76??? 9.86??? 10.35???

score-PIF Fl � 8.20 9.41 10.24 10.46 10.95

Polls (n rounds), ∆ 5.92??? -23.80??? -25.87??? -24.05??? -21.93??? -18.51???

rank-PIF Fl 18.58 46.42 50.13 49.31 48.19 45.15

Polls (100n rounds), ∆ 6.21??? -6.21??? -0.71 2.95??? 5.03??? 6.67???

rank-PIF Fl 18.41 37.95 40.95 41.99 41.75 40.91

Number of Candidates
9 10 11 12 13

No Polls 47.08 44.02 39.86 37.68 35.93
Polls, ∆ 10.79??? 10.69??? 10.66??? 10.70??? 10.93???

score-PIF Fl 11.79 11.53 11.96 11.88 12.01

Polls (n rounds), ∆ -17.53??? -15.22??? -13.01??? -11.40??? -10.34???

rank-PIF Fl 43.03 41.98 39.03 37.26 36.64

Polls (100n rounds), ∆ 8.95??? 10.54??? 11.82??? 13.67??? 12.97???

rank-PIF Fl 40.25 39.94 38.10 37.75 35.81

Number of Candidates
14 15

No Polls 34.37 32.39
Polls, ∆ 10.31??? 10.42???

score-PIF Fl 11.85 11.88

Polls (n rounds), ∆ -10.79??? -9.39???

rank-PIF Fl 34.61 32.31

Polls (100n rounds), ∆ 12.06??? 13.21???

rank-PIF Fl 35.18 32.75

Figure A.17: Poll effects on Condorcet winner efficiency of plurality for elections
with 50 voters and 3 to 15 candidates. Average over 10,000 trials. All elections
were preceded by a series of polls which provided voters with score- or rank-
information. All voters were strategists. And all voting games using the score-
PIF were run until termination, and all voting games using the rank-PIF were
run twice: once for n rounds and once for 100n rounds. For explanation of the
symbols used in this table, we refer to the introduction of Appendix A.
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Number of Voters
10 15 20 25 30 35

No Polls 77.45 63.33 71.15 62.12 67.30 60.34
Polls, ∆ 11.52??? 13.29??? 11.20??? 12.17??? 10.55??? 10.49???

score-PIF Fl 12.74 14.39 12.14 12.63 10.99 11.01

Polls (n rounds), ∆ 9.17??? 0.79 -4.96??? -11.69??? -15.36??? -17.27???

rank-PIF Fl 19.41 33.95 33.28 41.19 41.88 45.15

Polls (100n rounds), ∆ 13.10??? 10.36??? 9.75??? 6.16??? 6.58??? 3.76???

rank-PIF Fl 19.34 33.14 29.17 37.60 35.00 39.70

Number of Voters
40 45 50 55 60 65

No Polls 67.07 59.56 64.34 59.51 64.21 59.27
Polls, ∆ 9.19??? 10.14??? 9.33??? 10.13??? 8.64??? 8.47???

score-PIF Fl 9.67 10.48 9.59 10.45 8.84 8.71

Polls (n rounds), ∆ -23.73??? -21.98??? -26.30??? -25.09??? -29.36??? -28.33???

rank-PIF Fl 48.17 48.04 49.24 51.07 52.66 53.11

Polls (100n rounds), ∆ 0.69 0.38 -1.19 -3.34??? -5.36??? -6.95???

rank-PIF Fl 38.83 41.66 39.21 43.00 42.26 44.81

Number of Voters
70 75 80 85 90

No Polls 63.38 58.62 63.20 58.91 62.20
Polls, ∆ 7.59??? 8.51??? 7.78??? 7.41??? 6.95???

score-PIF Fl 7.83 8.77 7.94 7.65 7.13

Polls (n rounds), ∆ -31.82??? -28.91??? -33.62??? -31.47??? -33.75???

rank-PIF Fl 54.46 54.07 55.92 55.51 56.03

Polls (100n rounds), ∆ -8.37??? -9.46??? -12.40??? -12.42??? -14.38???

rank-PIF Fl 43.85 46.60 45.56 46.94 47.42

Number of Voters
95 100

No Polls 57.80 62.19
Polls, ∆ 8.08??? 7.27???

score-PIF Fl 8.26 7.47

Polls (n rounds), ∆ -30.31??? -34.11???

rank-PIF Fl 55.13 57.37

Polls (100n rounds), ∆ -12.98??? -16.65???

rank-PIF Fl 47.04 48.39

Figure A.18: Poll effects on Condorcet winner efficiency of plurality for elections
with 5 candidates and 10 to 100 voters. Average over 10,000 trials. All elections
were preceded by a series of polls which provided voters with score- or rank-
information. All voters were strategists. And all voting games using the score-
PIF were run until termination, and all voting games using the rank-PIF were
run twice: once for n rounds and once for 100n rounds. For explanation of the
symbols used in this table, we refer to the introduction of Appendix A.
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A.3.2 Condorcet Loser Efficiency

Number of Candidates
3 4 5 6 7 8

No Polls 97.39 98.35 98.54 98.93 98.90 99.15
Polls, -∆ 1.55??? 0.96??? 0.92??? 0.77??? 0.72??? 0.55???

score-PIF Fl � � � � � �

Polls (n rounds), -∆ 2.46??? -6.90??? -4.53??? -2.90??? -1.43??? -1.12???

rank-PIF Fl 2.74 9.72 7.05 4.74 3.27 2.62

Polls (100n rounds), -∆ 2.53??? -2.17??? -0.24 0.17 0.54??? 0.56???

rank-PIF Fl 2.67 5.37 3.12 1.87 1.64 1.14

Number of Candidates
9 10 11 12 13

No Polls 99.33 99.33 99.44 99.33 99.48
Polls, -∆ 0.49??? 0.44??? 0.37??? 0.48??? 0.44???

score-PIF Fl � � � � �

Polls (n rounds), -∆ -0.93??? -0.56??? -0.47??? -0.24 -0.09
rank-PIF Fl 2.01 1.74 1.45 1.40 1.13

Polls (100n rounds), -∆ 0.38??? 0.50??? 0.29?? 0.60??? 0.39???

rank-PIF Fl 0.96 0.82 0.79 0.74 0.65

Number of Candidates
14 15

No Polls 99.50 99.50
Polls, -∆ 0.38??? 0.39???

score-PIF Fl � �

Polls (n rounds), -∆ 0.00 -0.15
rank-PIF Fl 0.94 0.97

Polls (100n rounds), -∆ 0.40??? 0.40???

rank-PIF Fl 0.60 0.56

Figure A.19: Poll effects on Condorcet loser efficiency of plurality for elections
with 50 voters and 3 to 15 candidates. Average over 10,000 trials. All elections
were preceded by a series of polls which provided voters with score- or rank-
information. All voters were strategists. And all voting games using the score-
PIF were run until termination, and all voting games using the rank-PIF were
run twice: once for n rounds and once for 100n rounds. For explanation of the
symbols used in this table, we refer to the introduction of Appendix A.
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Number of Voters
10 15 20 25 30 35

No Polls 99.22 98.25 98.82 97.90 98.72 98.19
Polls, -∆ 0.71??? 1.46??? 0.99??? 1.51??? 0.96??? 1.20???

score-PIF Fl � � � � � �

Polls (n rounds), -∆ -0.19 -1.89??? -2.19??? -3.06??? -3.13??? -4.83???

rank-PIF Fl 1.71 4.95 4.25 6.80 5.41 7.95

Polls (100n rounds), -∆ 0.53??? 0.99??? 0.73??? 1.01??? 0.46?? 0.21
rank-PIF Fl 1.03 2.43 1.59 3.07 2.04 3.29

Number of Voters
40 45 50 55 60 65

No Polls 98.82 98.27 98.49 98.10 98.74 98.39
Polls, -∆ 0.81??? 1.08??? 1.03??? 0.93??? 0.64??? 0.91???

score-PIF Fl � � � � � �

Polls (n rounds), -∆ -4.17??? -5.10??? -4.70??? -4.41??? -5.11??? -5.59???

rank-PIF Fl 6.21 8.00 7.20 7.75 7.31 8.35

Polls (100n rounds), -∆ -0.07 -0.14 -0.32 -0.57?? -0.72??? -1.04???

rank-PIF Fl 2.39 3.38 3.20 4.15 3.10 4.18

Number of Voters
70 75 80 85 90

No Polls 98.58 98.23 98.31 97.99 98.63
Polls, -∆ 0.74??? 0.86??? 0.93??? 0.94??? 0.66???

score-PIF Fl � � � � �

Polls (n rounds), -∆ -4.87??? -5.89??? -4.80??? -5.65??? -5.46???

rank-PIF Fl 7.35 8.71 7.66 9.23 7.80

Polls (100n rounds), -∆ -1.08??? -1.39??? -1.22??? -1.71??? -2.17???

rank-PIF Fl 3.86 4.71 4.28 5.55 4.75

Number of Voters
95 100

No Polls 98.17 98.45
Polls, -∆ 0.83??? 0.81???

score-PIF Fl � �

Polls (n rounds), -∆ -5.38??? -5.47???

rank-PIF Fl 8.44 8.13

Polls (100n rounds), -∆ -2.17??? -2.04???

rank-PIF Fl 5.55 4.98

Figure A.20: Poll effects on Condorcet loser efficiency of plurality for elections
with 5 candidates and 10 to 100 voters. Average over 10,000 trials. All elections
were preceded by a series of polls which provided voters with score- or rank-
information. All voters were strategists. And all voting games using the score-
PIF were run until termination, and all voting games using the rank-PIF were
run twice: once for n rounds and once for 100n rounds. For explanation of the
symbols used in this table, we refer to the introduction of Appendix A.
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