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Abstract

Mechanism design is a field that deals with designing algorithms for making
decisions based on the preferences of the agents in such a way that the outcome
is guaranteed to be good for society and the agents are not incentivised to
misreport their preferences. An appropriate mechanism manages to turn a group
of self-interested agents into a group collectively satisfied with the decision.
Most of the research on the subject is based on enforcing taxes and subsidies
to compensate agents, but monetary transactions are not always applicable —
for instance, buying and selling organs for transplantation is illegal. Therefore,
it is important to know what can be achieved without utilizing payments. This
thesis provides a broad survey of both classic and recent results in the field and
points out the most important challenges and achievements.
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Chapter 1

Introduction

When in a political election a voter supports an unpopular candidate, he faces
the choice to vote for his favourite candidate, knowing that his ballot will not
make a difference to the final outcome, or to misreport his preferences and
support one of the other candidates that actually does have a chance to win. It
is not hard to imagine that some of the voters, when faced with this dilemma,
will actually try to influence the outcome, because otherwise a candidate they
consider really bad might be elected. This makes the strategic behaviour of the
voters extremely important when the simple majority rule is used.

However, this strategic behaviour depends on the voters’ beliefs about who
is a potential winner and who is not. Therefore if those beliefs are wrong the
outcome of the election may have little to do with the actual preferences of the
electorate. This, of course, is a serious problem when important decisions have
to be made.

In many decision making situations it is the case that a self-interested agent
can influence the final decision in a way that increases his own welfare by mis-
reporting his preferences. The decision based on this incorrect information can,
however, significantly reduce the social welfare. Thus such misrepresentations,
though completely rational, are undesirable and, if possible, should be regulated.

Mechanism design is a sub-field of economic theory that attempts to make
the rules of the interaction system such that even in a strategic setting, in which
the agents may hold private information relevant to the decision, the outcome
is good for the society as a whole in some prespecified sense. In order to achieve
this, it is important to incentivise agents to reveal their true preferences, so that
the final outcome is not based on incorrect information provided by the agents
in an attempt to achieve a better outcome.

A mechanism is called incentive compatible (or truthful) if no agent can
benefit from misreporting his preferences. However, the task of constructing
incentive compatible mechanisms proves to be extremely difficult. The Gibbard-
Satterthwaite theorem, a well-known impossibility result in the field of social
choice, states that if the set of possible decisions is finite and the agents can
have any preference ordering over those decisions, no social choice function that
has at least three possible outcomes is incentive compatible and non-dictatorial.
This result seems to leave no hope for design of desirable incentive compatible
social choice functions. However, the importance of incentive compatibility in
practice drives researchers to seek ways to escape the above result and design
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mechanisms that have this essential property.
A common means that is used to align the preferences of the individuals

with those of the society and make an interaction mechanism incentive compa-
tible, is money. This is used, for example, by governments in order to achieve
different political goals. Taxes and subsidies are helpful under the assump-
tion that agents can accept monetary compensations for potential loss of uti-
lity from the decision that the mechanism makes. A celebrated result is the
well-known Vickrey-Clarke-Groves (VCG) mechanism that manages to ensure
incentive compatibility in a wide range of settings by using payments.

However, monetary compensations are not always applicable. In some set-
tings it is simply very difficult to give cardinal preferences over the alternatives,
which is needed to make the subsidies and taxes dependent on how much better
or worse a given alternative is compared to any other. In other settings, the
payments are simply too difficult to enforce or collect. There could even be le-
gal and ethical reasons why monetary compensations are not a feasible solution
(e.g., in matching patients to transplantable organs).

This makes it important to know what can be achieved without utilizing pay-
ments. In these settings a different way of escaping the Gibbard-Satterthwaite
impossibility result is needed. The most commonly used one is relaxing the
requirement that the agents can have any preference ordering over the possible
outcomes. There are some settings in which it is possible to achieve remark-
ably good results, and in others there are proven impossibility results, and
research aims to design mechanisms that satisfy weaker desirable properties.
For example, one can actually sacrifice the optimality of the solution in favour
of incentive-compatibility and only approximate the best solution, in the cases
when any outcome has a cardinal value associated with it, e.g., the social cost
of a given outcome. In those settings one can find out what the optimal appro-
ximation factor achievable by an incentive compatible mechanism is.

This thesis aims at providing a broad overview of the field, presenting both
the classic positive results and the more recently suggested mechanisms. It
takes a unified approach at a rich variety of formal settings and real-life tasks,
pointing out the challenges and achievements in each of them.

The structure of the rest of the thesis is as follows. Chapter 2 formalizes the
problems and the goals of mechanism design and provides some results that show
how challenging the task at hand is. Chapters 3, 4 and 5 focus on particular
problems that fit within the general framework provided in Chapter 2. Chapter 3
looks at the single-peaked preferences, a restricted, but very natural class of
preferences that allows for a strong positive result. Chapter 4 focuses on some
settings which belong to a class known as location games, for which the powerful
result of Chapter 3 no longer applies. Chapter 5 takes a different direction,
looking at matching tasks, and Chapter 6 discusses the way in which some
of the formal results from Chapter 5 have been applied to practical problems.
Finally, in Chapter 7, some further settings of interest are given.
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Chapter 2

The Formal Setting of
Mechanism Design

In this chapter we will introduce some prerequisite notions and give an overview
of some challenges and goals in the field of mechanism design, as well as giving
the intuitive and psychological motivations for them.

2.1 Social Choice Functions and Correspondences

A finite number of agents N try to reach a common decision on some issue from
a set of possible outcomes (or alternatives) A, that can be finite or infinite.
Each agent i has a set of possible types Θi and some private information (type)
θi ∈ Θi. The type of an agent determines his preferences over the possible
outcomes in A in the form of either a utility function ui : A→ R1, in the case
of cardinal preferences, or a preference ordering2, if only ordinal preferences are
to be modelled.

If all the types of the agents are known, a decision that meets certain condi-
tions can be computed on the basis of those types. For example, a decision that
maximizes the sum of the valuations of all the agents may be chosen (we say
that such a decision maximizes the social welfare), alternatively we can try to
make the least happy agent as happy as possible, or we can aim at meeting any
other criterion for a “good” solution. This may be computationally difficult,
but given the true preferences of all the agents, it can be achieved.

Functions that given a profile of preferences of the agents select an alternative
are called social choice functions. Formally let Θ be the cross product of all
Θi for i ∈ N , then a social choice function has the form f : Θ→ A. Alternatively
we can think of functions h : Θ → P(A) that select a subset of the possible
outcomes. These functions are called social choice correspondences and are
typically used with some tie-breaking rule that selects a unique outcome from
the winning set. For example, a commonly used social choice correspondence,
known as the plurality rule, selects all alternatives that have been ranked first
by the largest number of agents.

1Note that the utility of an agent can be negative. In this case he actually incurs a cost.
2This order may not be linear. In many of the discussed settings indifference between

certain outcomes is allowed.
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Note that if the social choice function that is used to aggregate the preferen-
ces is common knowledge, it is possible for an agent to compute in advance the
outcome that will be selected if he reports a particular type3. Thus since the
types of the agents are private, they may choose to misrepresent them in order
to achieve a more preferred outcome. However, even if a social choice func-
tion guarantees some desirable property of the outcome, when agents misreport
their types the final outcome may no longer satisfy this property with respect
to the true preferences and it may no longer be good for the society. Therefore,
the agents need to be incentivised in some way to reveal enough information,
so that the outcome can be guaranteed to be “good” with respect to the true
preferences of all agents.

2.2 Mechanisms

Based on his private information, each agent i chooses his action or message
from a set of possible messages Mi and the mechanism chooses an outcome
a ∈ A, and possibly a vector of payments, based on all received messages. The
payments can have both positive and negative values, so each agent can make
or receive a payment. The usual definition of a mechanism in the literature is
as follows:

Definition (Mechanism). A mechanism is a pair (M, g) such that M = M1×
M2×· · ·×Mn is a set of possible message profiles that the mechanism can receive
from the agents and g : M → A×Rn is a function that takes a profile of messages
and returns a decision and a vector of payments.

We call g the choice function of the mechanism and, for simplicity, whenever
the message space is clear, we will refer to a mechanism by only specifying the
choice function.

Since we are not interested in the payments in this thesis, for us the vector of
payments will always be set to 0, and the function g will only have to determine
the decision a ∈ A.

Definition (Mechanism without Money). A mechanism without money is
a pair (M, g), where M is the set of possible message profiles and g : M → A is
a function that given a message profile returns an outcome.

Given their private types, the agents choose a message mi ∈ Mi. For sim-
plicity, let M−i be the cross product of all Mj for j 6= i and m−i ∈ M−i — a
vector of messages from the agents without agent i.

Fix the type of agent i to be θi and let the corresponding utility function be
ui. If there exists a message mi ∈Mi such that

∀m̂i∀m−i ui(g(m−i,mi)) ≥ ui(g(m−i, m̂i))

and

3In fact in order to compute the outcome an agent needs to know also the types of the
other agents. However, it can also be done probabilistically based on the agent’s beliefs about
the types of the other agents.
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∀m̂i∃m−i ui(g(m−i,mi)) > ui(g(m−i, m̂i))

we say that mi is a dominant strategy4 for agent i at θi. Intuitively a strategy
mi is dominant if, whatever the other agents do, it is optimal for agent i to
choose mi and for every other strategy m̂i there exists m−i such that mi results
in a strictly better outcome for i than m̂i. This means that a rational agent has
a strong incentive to always use such a strategy if one exists.

Definition (Implementation). We say that a mechanism (M, g) implements a
social choice correspondence f in dominant strategies if there exists a vector of
functions m = (m1,m2, . . . ,mn) such that for every agent i:

• mi has type mi : Θi →Mi;

• ∀θi mi(θi) is a dominant strategy for i at θi;

• and for every profile of types θ, when each agent uses his dominant strategy
mi(θi) to determine his message, the outcome chosen by g on the messages
is an element of f(θ).

Since a social choice function can be seen as a special case of a social choice
correspondence (one that always returns singletons), we can also talk about
implementing social choice functions, but it is more natural for a mechanism
designer to ensure that the mechanism always results in an outcome satisfying
a given property, rather than enforcing a unique outcome.

A notable special case are the direct mechanisms. A mechanism is called
direct when the set of messages for each agent coincides with the set of his
possible types. A direct mechanism is called strategy-proof or incentive
compatible if revealing his true preference is a dominant strategy for each
agent.

Proposition 2.1. (The Revelation Principle) If there exists a mechanism
(M, g) that implements a social choice correspondence f in dominant strategies,
then there exists a direct incentive compatible mechanism that implements f .

Proof. Consider the mechanism M = (M, g) implementing the social choice
correspondence f in dominant strategies. There exist functions mi : Θi → Mi

that determine the dominant strategies for each agent i. Let h : Θ → A be
such that h(θ) = g(m1(θ1),m2(θ2) . . . ,mn(θn)). Then the direct mechanism
M′ = (Θ, h) is incentive compatible and implements f .

Assume thatM′ is not incentive compatible. Then for some agent i and some
type θi with corresponding utility function ui we have ∃θ′i 6= θi : ui(h(θ′i, θ−i)) >
ui(h(θ)), but this means by the definition of h that ui(g(mi(θ

′
i),m−i(θ−i))) >

ui(g(mi(θi),m−i(θ−i))) which contradicts the assumption that mi(θi) is a do-
minant strategy for i at θi.

The revelation principle allows us to restrict our attention to direct mecha-
nisms when searching for a mechanism that implements a social choice function
in dominant strategies. That is why in most of what follows we will be concerned
with direct mechanisms.

It is important to note that the direct mechanisms may have several disad-
vantages. For example, the procedure in the proof adds to the computational

4A similar definition can be given in the case of ordinal preferences.
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Figure 2.1: The Revelation Principle

complexity of the algorithm. However, we may expect that this overhead is not
too significant, because if finding the dominant strategy for a given agent is
computationally difficult, the agent himself may not be able to find it and then
we have no reason to expect him to always choose this, otherwise optimal, stra-
tegy even in the original algorithm. Of course, the overhead here is proportional
to the number of agents.

Another advantage of the non-direct mechanisms may be the communication
complexity. If the messages are significantly shorter than any representation of
the full type of the agent and still allow for a good decision to be made, then it
is superfluous to reveal the whole type, especially if the communication channels
have some significant cost.

The mechanisms discussed so far are deterministic, but it is of course possible
that a mechanism is allowed to make a probabilistic decision if this ensures some
desirable properties of the outcome selected in the end. For example, consider
the task of allocating n objects to n agents with all agents having exactly the
same preferences over the objects. Obviously no deterministic algorithm can
be considered fair and intuitively the most fair solution would be to assign
the objects randomly. To accommodate for this, we define an extension of the
deterministic mechanisms:

Definition (Randomized mechanism). A randomized mechanism is a pair
(M, g) such that g : M → P (A) is a function that given a profile of messages
returns a probability distribution over the outcomes.

In this case the utility of agent i for a probability distribution p ∈ P (A) is
defined as his expected utility when the outcome o is selected according to the
probability distribution p, which we denote as o ∼ p, so the expected utility
is ui(p) = E

o∼p
ui(o). Similarly we can take the expected social welfare —

E
o∼p

∑
i∈N

ui(o).

It is interesting to note that there are settings in which it is possible to
construct a truthful randomized mechanism with expected social welfare higher
than the social welfare of any truthful deterministic mechanism. This is demon-
strated by the following example from [15]. There are two agents — agent 1 has
types Θ1 = {θ1

1, θ
1
2} and agent 2 has one type only Θ2 = {θ2

1}. There are three
alternatives A = {a1, a2, a3} and the utility functions are given by the following
tables:

θ1
1 θ1

2

u1(a1) 1 8
u1(a2) 2 2
u1(a3) 0 0

θ2
1

u2(a1) 0
u2(a2) 0
u2(a3) 4
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Now the deterministic incentive compatible mechanism that achieves maxi-
mal social welfare is the following f(θ1

1, θ
2
1) = a2 and f(θ1

2, θ
2
1) = a1. This can

be verified by observing that if the mechanism selects a3 in the case when agent
1 has type θ1

1, agent 1 has incentive to falsely report θ1
2. However, if we allow

the mechanism to make probabilistic decisions, if θ1
1 is reported, we can select

a2 with probability 1
2 and a3 with probability 1

2 . Then if agent 1 has type θ1
1

he has expected utility 1 and so no incentive to misreport. But in that case
the expected social welfare when agent 1 has type θ1 is 3 instead of 2. Thus
the randomized algorithm achieves expected social welfare that at all possible
profiles is higher or equal to the welfare achieved by the deterministic algorithm,
while both are incentive compatible.

Looking at the above example, we notice that selecting the outcome that
maximizes the social welfare gives incentive to agent 1 to misreport his pre-
ferences, and so it is reasonable to ask what is the best approximation of the
optimal social welfare achievable by an incentive compatible mechanism. In our
case, if agent 1 has type θ1

1 the optimal social welfare is 4, while the best deter-
ministic algorithm f achieves a social welfare of 2, in the other case both the
optimal social welfare and the one achieved by the algorithm are 8. Therefore
for any profile the value achieved by the proposed algorithm is within a factor
of 2 from the optimal and we say that f has an approximation ratio of 1

2 .

Definition. We say that an algorithm f is an α-approximation (or has an
approximation ratio of α) with respect to some target function g : Θ×A→ R,
if for all profiles θ ∈ Θ we have g(θ, f(θ)) ≥ α ·max

a∈A
g(θ, a) .

In the above example the target function was the social welfare, but one
could also be interested in approximating the social cost5 in some situations.
Then naturally the desirable values of the target functions will be the small ones
and in the definition we would take the minimum.

2.3 Fairness and Efficiency

In order to design mechanisms that result in desirable outcomes we need formal
mathematical definitions of intuitive ideas such as fairness, efficiency, and non-
manipulability. Therefore, let us take a look into some more desirable properties
of mechanisms that capture those notions.

One of the most important properties is Pareto efficiency . Given a profile
of utility functions u, an alternative a ∈ A is called Pareto efficient, if there is
no other alternative b such that ∀i ∈ N ui(b) ≥ ui(a) and there exists at least
one agent j ∈ N such that uj(b) > uj(a). For instance, in the above example,
if agent 1 has type θ1

2, then a2 is not a Pareto efficient outcome, because a1

improves the payoff of agent 1 without decreasing the payoff of agent 2. In this
case we say that the outcome a1 Pareto dominates the outcome a2. On the
other hand, a1 and a3 are not Pareto dominated by any other outcome, so they
are Pareto efficient. A mechanism is called Pareto efficient if for all profiles all
outcomes selected by the mechanism are Pareto efficient.

Another important property is group strategyproofness. A mechanism
is said to be group strategy-proof if no group of agents can jointly misreport

5The social cost is simply the sum of the costs of all agents.
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their preferences to the mechanism in a way that results in an outcome weakly
preferred by all agents in it and strictly preferred by at least one of them.

A mechanism is called unanimous if for all profiles of utility functions, in
which all agents have the same most preferred alternative, this alternative is
chosen by the mechanism.

Another desirable property is that the mechanism does not treat certain
agents or alternatives specially. The property that guarantees that the alterna-
tives are treated equally is called neutrality . For all permutations π of the out-
comes and all profiles of utility functions u define uπ such that uπi (a) = ui(π(a)).
A mechanism f is called neutral if for all u and all π we have f(uπ) = π(f(u)).

The property that guarantees fair treatment of the agents is known as
anonymity . Similarly to the previous property we take a permutation π, this
time of the agents, and define a new profile uπ such that uπi = uπ(i). Then a
mechanism f is anonymous if for all u and all π we have f(u) = f(uπ).

Anonymity guarantees that no agent is treated specially and thus implies
that no agent is a dictator. Formally a social choice function f is dictatorial
if there exists an agent i such that for all profiles f always selects the most
preferred alternative of agent i. Generalizing the concept, a social choice corre-
spondence f is called weakly dictatorial if there exists an agent i such that
for all profiles the top choice of i is among the alternatives selected by f .

2.4 Impossibility Results and Characterisations

Obviously if fairness is to be considered, any dictatorial rule is very undesirable,
but then a well-known impossibility result from social choice seems to make the
goal that mechanism design aims at impossible to achieve. This impossibility
needs to be escaped if any positive results are to be obtained.

Theorem 2.2 (Gibbard-Satterthwaite). If |A| ≥ 3, then any strategy-proof
social choice function f that is onto A is dictatorial.

The above strong result assumes that any preference over the alternatives
is admissible. Therefore, in what follows we investigate settings in which the
set of alternatives has certain structure that excludes some possible preferences
and thus they escape the Gibbard-Satterthwaite theorem.

Another way of escaping the impossibility theorem would be to give up
the resoluteness6 and work with social choice correspondences instead of social
choice functions. However, when the preferences of agents are over outcomes
it is not entirely clear how they should be lifted to preferences over sets of
outcomes and thus defining strategyproofness of social choice correspondences
is not straight-forward.

Think, for example, of a mechanism that uniformly at random selects an
alternative from the ones selected by a social choice correspondence f and let
the agents have ordinal preferences, in other words, the profile of preferences is
�= (�1,�2 . . . ,�n), where each �i is a linear order of A. It is pretty clear that
if an agent i prefers alternative a to alternative b, he would prefer the singleton
{a} to the singleton {b}, but it is not at all clear for some a, b, c, d ∈ A such
that a �i b �i c �i d whether i would prefer {a, d} to {b, c}.

6Resoluteness is the property of a rule to select a single outcome.
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One way to lift preferences over outcomes to preferences over sets of out-
comes is to consider some psychological assumptions. We say that an agent i is
optimistic if he prefers X ⊆ A to Y ⊆ A whenever x �i y for x = max�i

X and
y = max�i Y , that is, i prefers his most preferred outcome among the ones in X
to his most preferred outcome among the ones in Y . A social choice correspon-
dence is immune to manipulation by optimistic agents if no optimistic
agent has incentive to misrepresent his preferences to obtain a more preferable
set.

Similarly a pessimistic agent prefers X ⊆ A to Y ⊆ A whenever x �i y
for x = min�i X and y = min�i Y . So the pessimistic agents try to make
the worst that can happen to them as good as possible. Again a social choice
correspondence is immune to manipulation by pessimistic agents if no
pessimistic agent has incentive to misrepresent his preferences.

Based on those possible psychological attitudes a generalization of Gibbard-
Satterthwaite theorem was established in [20].

We say that a social choice correspondence is nonimposed if for every
alternative a ∈ A there exists a profile such that a is the only alternative selected
by f on this profile.

Theorem 2.3 (Duggan-Schwartz). If |A| ≥ 3, any social choice correspon-
dence that is nonimposed and immune to manipulation by both optimistic and
pessimistic agents is weakly dictatorial.

The property of being nonimposed is not too restrictive, because it is pretty
intuitive that if a unanimous most favourite alternative exists, any desirable
social choice rule would make it the unique selected outcome. Thus this result
is also very discouraging from the viewpoint of the goals of mechanism design.

Alternative ways of lifting preferences that do not depend on psychologi-
cal assumptions have been proposed by Kelly, Fishburn and Gärdenfors (as is
described in [12]). They imply weaker versions of nonmanipulability of social
choice correspondences that can be achieved by a nondictatorial rule. This sug-
gests that mechanisms selecting more than one outcome may indeed provide
no incentive for the agents to manipulate. The relevant formal results are pre-
sented here, but we will not refer to them in the rest of the thesis, because we
will consider only resolute mechanisms.

Kelly suggests a very weak extension that can guarantee to the agents that
they will be better off even if the lottery, that will be used to pick the winner
among the alternatives in a set, is not known. This is achieved by stating that
agent i prefers a set X ⊆ A to a set Y ⊆ A if and only if ∀x ∈ X∀y ∈ Y x �i y.

The extension suggested by Fishburn can be motivated by assuming that
there exists an unknown linear order according to which the winning alternative
is picked from the set. Then according to this extension an agent i prefers a set
X ⊆ A to a set Y ⊆ A if x �i y, x �i z and y �i z for all x ∈ X \Y , y ∈ X ∩Y
and z ∈ Y \X. Note that if X is preferred to Y according to Kelly’s extension,
then this also holds according to Fishburn’s extension.

Another way of comparing two sets is to ignore what is common and to
only compare the additional alternatives in each of them. This was proposed
by Gärdenfors. According to his extension agent i prefers X ⊆ A to Y ⊆ A if
one of the following 3 conditions holds:

• X ⊂ Y and ∀x ∈ X∀y ∈ Y \X x �i y
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• Y ⊂ X and ∀x ∈ X \ Y ∀y ∈ Y x �i y

• X 6⊂ Y , Y 6⊂ X and ∀x ∈ X \ Y ∀y ∈ Y \X x �i y

Note that if X is preferred to Y according to Fishburn’s extension, the same
holds for Gärdenfors’ extension. All three of these extensions are incomplete
and a lot of sets are incomparable according to all of them.

In two recent papers [11] and [12] Felix Brandt characterizes the social choice
correspondences that are not manipulable under the above three extensions.
For all three he provides necessary conditions for a social choice function to be
nonmanipulable and proves that those conditions are also sufficient on the class
of pairwise social choice correspondences, that is, social choice correspondences
such that their outcome only depends on the number of agents that prefer
alternative a to alternative b for every pair of alternatives.

These characterizations can be used to show that some very natural social
choice correspondences (such as: the omninomination rule that selects all alter-
natives ranked first by at least one agent; and the Condorcet rule that selects
a Condorcet winner7 if one exists and otherwise selects all alternatives) are
nonmanipulable according to all three of the above extensions.

In order to present the formal results we need to introduce the following
properties of social choice correspondences. We say �∗i 8 is obtained from �i by
strengthening alternative a with respect to alternative b if

�∗i= (�i \{(b, a)}) ∪ {(a, b)}.

For any preference profile �= (�i,�−i) we denote the profile obtained by
strengthening alternative a with respect to alternative b in agent i’s preference
as �i:(a,b)= (�∗i ,�−i).

Definition. A social choice correspondence f satisfies set monotonicity (SET-
MON) if for all preference profiles �, alternatives a, b ∈ A such that b 6∈ f(�)
and all agents i we have f(�) = f(�i:(a,b)).

In [11] Brandt shows that SET-MON is a necessary condition for group
strategyproofness according to Kelly’s extension and it is also sufficient on the
class of the pairwise social choice correspondences.

Theorem 2.4.

(i) Every social choice correspondence that satisfies SET-MON is group strategy-
proof according to Kelly’s extension.

(ii) Every pairwise group strategy-proof social choice correspondence satisfies
SET-MON.

Two more properties are needed to characterise the group strategy-proof
correspondences under Fishburn’s and Gärdenfors’ extensions.

7An outcome a ∈ A is called a Condorcet winner if it is preferred to any other outcome
a′ in a pairwise comparison by a majority of the agents.

8Brandt and Brill only require the preferences to be antisymmetric, so the fact that this
manipulation does not preserve transitivity is not a problem for them.
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Definition. A social choice correspondence f satisfies exclusive indepen-
dence of chosen alternatives (EICA) if f(�′) ⊆ f(�) for all pairs of profiles
that differ only on pairs of alternatives in f(�) — that is for all alternatives a, b
such that b 6∈ f(�) and for all i we have a �i b if and only if a �′i b.

A social choice correspondence f satisfies weak EICA if f(�) 6⊂ f(�′) for
all pairs of profiles that differ only on pairs of alternatives in f(�).

Definition. A social choice correspondence f satisfies the symmetric diffe-
rence property (SDP) if either f(�) ⊆ f(�′) or f(�′) ⊆ f(�) for all pairs
of preference profiles � and �′ such that for all alternatives a, b such that
a ∈ f(�) \ f(�′) and b ∈ f(�′) \ f(�) and for all i we have a �i b if and only
if a �′i b.

In [12] Brandt and Brill show the following results.

Theorem 2.5.

(i) EICA and SET-MON together characterise the class of social choice corre-
spondences that are group strategy-proof according to Fishburn’s extension.

(ii) Every pairwise social choice correspondence that is group strategy-proof
according to Fishburn’s extension satisfies SET-MON and weak EICA.

Theorem 2.6.

(i) Every social choice correspondence that satisfies SET-MON, EICA, and
SDP is group strategy-proof according to Gärdenfors’ extension.

(ii) Every pairwise social choice function that is group strategy-proof according
to Gärdenfors’ extension satisfies SET-MON, weak EICA and SDP.

Note, however, that no deterministic tie-breaking rule known to the agents
can be used to fix a single outcome from the set selected by a social choice
correspondence, because then we simply have a resolute social choice rule and
Gibbard-Satterthwaite theorem applies again. In fact, in the justifications of the
above extensions, the lottery or rule selecting a final outcome from the chosen
set was assumed to be unknown to the agents.
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Chapter 3

Single-peaked Preferences

This chapter presents a strong positive result by Moulin. He characterizes the
strategy-proof, Pareto efficient, and anonymous mechanisms on a restrictive,
but natural, class of preferences that allows for nontrivial rules.

3.1 Moulin’s Single-peakedness Theorem

Despite the Gibbard-Satterthwaite impossibility result, it is still possible to
implement non-dictatorial social choice functions in dominant strategies in set-
tings with restricted domains of preferences. The most celebrated result in that
direction is concerned with the so-called single-peaked preferences. This is a
restrictive, but quite natural class of preferences.

Assuming there is an intrinsic linear order of the possible outcomes, it is
often the case that the agents have a most preferred outcome on that scale and
their utility decreases as the selected outcome moves away from their peaks.
For example, if a group of agents needs to decide on what the legal drinking
age should be, it is quite natural to assume that every agent has an age that he
considers the “right” one and the further away from this age the decision is, the
less happy he would be about it. Another example is the location game played
on a line. In this setting each agent has a position on the line, for example his
house on a street, and a public facility has to be built somewhere on the same
street. It is quite natural to assume that the further away the facility is from
some agent’s home, the less happy this agent will be. One can also argue that
in political elections the candidates can be ordered according to the left to right
political spectrum and then each voter has a peak somewhere on that spectrum.

In this section we will concentrate on the continuous case when the set of
possible alternatives is the unit interval A = [0, 1] and each agent has a utility
function ui : A→ R.

Definition (Single-peaked preference profile). We call a profile of utility func-
tions single-peaked if for every agent i ∈ N there exists a peak pi ∈ [0, 1] such
that ∀x ∈ [0, 1] \ {pi} ∀λ ∈ [0, 1) ui(λx+ (1− λ)pi) > ui(x).

Intuitively, given any outcome x that is not agent i’s peak, i prefers any
point between his peak and x to x. Note that this definition does not require
the preferences to be symmetric with respect to the peak. Thus in the legal

13



drinking age example a we can express a belief that setting the age too high is
much worse than setting it too low.

We consider the mechanism that asks the agents to reveal their peaks (so
Mi = [0, 1] for all i) and then selects the median of the reported peaks (that

is the (n+1)
2

th
lowest peak in the case when n is odd and the n

2
th lowest peak

otherwise). Note that this mechanism is not a direct mechanism, since the
agents do not reveal their utility functions.

It is straightforward to see that revealing his true peak is a dominant stra-
tegy for each agent when this mechanism is used. If the agent happens to have
the median peak, misreporting can only hurt him, because he already received
his best outcome. Now if the agent’s real peak is to the right of the median,
reporting any other value to the right of the median will result in the same
outcome and reporting a peak to the left of the current median only moves the
median further to the left, which makes the agent even less happy. Symmetri-
cally if the agent’s real peak is to the left of the median, he cannot benefit from
misreporting.

By a similar argument the mechanism that picks the kth highest peak is
also incentive compatible, but the median peak is the most reasonable choice
if fairness is to be considered. It is straightforward to observe that in the case
of an odd number of agents this mechanism results in the Condorcet winner
outcome. To that end consider the pairwise comparison of the median peak p

and any alternative x such that x < p. There are at least (n+1)
2 agents with

peaks higher or equal to p and those agents would all prefer p to x guaranteeing
that the majority prefers p. By a symmetric argument considering the agents
with peaks lower or equal to p we can observe that a majority of the agents
prefers p to any strictly higher outcome.

Another quite natural mechanism to consider in this setting would be taking
the average of all peaks. Unfortunately, this mechanism is not incentive com-
patible. This can be demonstrated by a simple example. Consider two agents
with peaks at 0 and 0.5. If they both report their true peaks, the mechanism
would select 0.25. However, if the second agent reports 1 instead of 0.5, he gets
his best outcome.

In fact, the median peak mechanism is in a sense the only mechanism that
is incentive compatible, onto, and anonymous. This is shown by the following
theorem by Moulin in [38]:

Theorem 3.1. Let N be a set of n agents and U be the set of all profiles of
single-peaked utility functions over [0, 1]. A mechanism f is incentive compa-
tible, onto, and anonymous if and only if there exist y1, y2, . . . , yn−1 ∈ [0, 1]
(referred to as phantom peaks) such that for every profile of single-peaked uti-
lity functions u = (u1, u2, . . . , un) ∈ U f(u) is the median of the peaks of the
reported utility functions and the points y1, y2, . . . , yn−1.

Proof. One direction is easy. The median rule with phantom peaks is incentive
compatible, because adding the phantom peaks obviously does not change the
incentives of the agents and the above argument still applies. We can also easily
see that such a rule is onto, because even after the n−1 phantom peaks are set,
the n agents have enough power to make any alternative x ∈ [0, 1] a winner by
having the first agent report that point as his peak and then using the remaining
n − 1 agents to balance out the set phantom peaks. Also permutations of the
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agents do not affect rules based on order statistics, so the median peak rule is
anonymous.

The other direction is more involved. Take a function f : U → [0, 1] such
that f is incentive compatible, onto, and anonymous. First we prove that f is
also Pareto efficient.

Lemma 3.2. Let U be the set of all profiles of single-peaked utility functions
over [0, 1]. Any social choice function f : U → [0, 1] on the single-peaked profiles
over [0, 1] that is incentive compatible and onto is also Pareto efficient.

Proof. To that end we will first show that if the agents have a unanimous peak,
f selects that peak. Fix a point x ∈ [0, 1]. Since f is onto there exists a profile
u = (u1, u2, . . . , un) such that f(u) = x. Now let u′1 be a function with a peak at
x. By incentive compatibility f((u′1, u2, . . . , un)) = x, because otherwise agent
1 can manipulate by reporting u1. Repeating the same argument if we replace
each agent’s utility function by one with a peak at x we would still get x as
the outcome of f . So any profile u′ with a unanimous peak at x is such that
f(u′) = x. And this holds for any x ∈ [0, 1].

Now note that in this setting Pareto efficiency only requires that the selected
outcome is not smaller than all the peaks of the profile and also not larger than
all the peaks. Assume that there is a profile u = (u1, u2, . . . , un) such that
f(u) = y < pi for all the peaks of u. Without loss of generality we can assume
that the agents are indexed in such a way that p1 ≤ p2 ≤ · · · ≤ pn. It could
not be the case that the profile has a unanimous peak, because by the above
observation this would make f select this unanimous peak. Let j be the number
of agents with the lowest peak. So p1 = p2 = · · · = pj < pj+1. Let for all i > j,
u′i be a utility function with a peak p1 and such that u′i(y) ≥ u′i(pi).

Now f((u1, u2, . . . , u
′
n)) = xn ∈ [y, pn] since otherwise if agent n’s true utility

function is u′n he would have incentive to report un. If however xn ∈ (y, pn],
agent n would benefit from reporting u′n instead of un. Therefore xn = y. By
repeating this argument we get

f((u1, u2, . . . , uj , u
′
j+1, . . . , u

′
n)) = y.

But this profile has a unanimous peak at p1 and this contradicts the above
observation that a unanimous peak is always selected by f . The case when the
selected outcome is larger than all the peaks can be handled by a symmetric
argument.

Now we will find some points ym for m ∈ {0, 1, . . . , n − 1} depending on f
and then we will proceed to proving that ∀u ∈ U f(u) is the median of the peaks
in u and the selected y1, y2, . . . , yn−1.

Consider the extreme preferences that have peaks at 0 and at 1 and let Um
for m ∈ {1, 2, . . . , n−1} be the set of all possible profiles of single-peaked utility
functions such that agents in {1, 2 . . . , n −m} have peaks at 0 and the rest of
the agents have peaks at 1. Since f is incentive compatible for all m all the
profiles in Um should result in the same outcome x ∈ [0, 1] being chosen by f .

Claim. ∀m∀u′, u′′ ∈ Um f(u′) = f(u′′).

Proof. Let u′ = (u′1, u
′
2, . . . , u

′
n) and u′′ = (u′′1 , u

′′
2 , . . . , u

′′
n). Let f(u′) = x. Con-

sider the profile u = (u′′1 , u
′
2, . . . , u

′
n). If f(u) < x, agent 1 with true preference
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u′1 would have incentive to report u′′1 . On the other hand if f(u) > x and agent 1
has true preference u′′1 he would benefit from reporting u′1. So f(u) = f(u′) = x.

By repeatedly replacing u′i by u′′i in the profile and applying the above ar-
gument, we finally get f(u′) = f(u′′) as desired.

Now we take ym = f(u) for some u ∈ Um. By the above lemma ym is
well-defined. Also notice that for all m ∈ {1, 2, . . . , n− 2} we have ym ≤ ym+1,
because otherwise agent n−m could report a utility function with a peak in 1
and obtain a smaller outcome, which is always better for him since his peak is
at 0. By anonymity we can also assume that the order of the agents is fixed in
such a way that pi ≤ pi+1 for all i ∈ {1, 2, . . . , n− 1}.

Let us for simplicity fix a single-peaked utility function with a peak in 0 and
call it u0

i whenever we attribute it to agent i and similarly fix a single-peaked
function with a peak in 1 and call it u1

i . We will now prove that f(u) is the
median of the peaks of u and y1, y2, . . . , yn−1 for any profile u = (u1, u2, . . . , un).
Consider the following two cases:

Case 1: the median of the peaks of u and y1, y2, . . . , yn−1 is ym for some m.
That implies that pn−m ≤ ym ≤ pn−m+1, because ym is the median of 2n − 1
points. We know that f((u0

1, . . . , u
0
n−m, u

1
n−m+1, . . . , u

1
n)) = ym by the choice of

ym. If f((u1, u
0
2 . . . , u

0
n−m, u

1
n−m+1, . . . , u

1
n)) > ym agent 1 would have incentive

to report u0
1 instead of u1. If f((u1, u

0
2 . . . , u

0
n−m, u

1
n−m+1, . . . , u

1
n)) < ym and

agent 1 truly has a peak at 0 he would benefit from reporting u1 instead. Thus
f((u1, u

0
2 . . . , u

0
n−m, u

1
n−m+1, . . . , u

1
n)) = ym. By repeatedly applying the above

argument for agents 1 through n−m we obtain that

f((u1, . . . , un−m, u
1
n−m+1, . . . , u

1
n)) = ym

and we can proceed similarly for the agents with peak at 1. If

f((u1, . . . , un−m, un−m+1, u
1
n−m+2, . . . , u

1
n)) > ym

than since pn−m+1 ≥ ym if agent n −m + 1 has a peak at 1, he would benefit
by reporting un−m+1 and conversely

f((u1, . . . , un−m, un−m+1, u
1
n−m+2, . . . , u

1
n)) < ym

would allow agent n−m+1 with true utility function un−m+1 to report u1
n−m+1

and obtain a better outcome. Again repeating this argument we have the desired
result f(u) = ym.

Case 2: the median of the peaks of u and y1, y2, . . . , yn−1 is an agent’s peak
pi for some i. This case requires some technical observations.

Define for simplicity y0 = 0 and yn = 1. Now for some m ∈ {0, 1, . . . , n− 1}
we have ym ≤ pi ≤ ym+1 and i = n−m.

Claim. f((u0
1, u

0
2, . . . , u

0
n−m−1, un−m, u

1
n−m+1, . . . , u

1
n)) = pn−m.

Proof. The option set of agent n−m at the above profile is

O = {x | ∃un−m f((u0
1, u

0
2, . . . , u

0
n−m−1, un−m, u

1
n−m+1, . . . , u

1
n)) = x}.

So O is the set of all outcomes that agent n−m can obtain by varying his prefe-
rences. If pn−m ∈ O, the lemma holds by strategyproofness, because otherwise
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agent n − m has a misrepresentation that makes him obtain his peak. So we
consider the case when pn−m 6∈ O.

Assume that f((u0
1, u

0
2, . . . , u

0
n−m−1, un−m, u

1
n−m+1, . . . , u

1
n)) = x′ < pn−m.

We will derive a contradiction and the case when x′ > pn−m can be handled
symmetrically.

If agent n−m was to report u0
n−m, by definition f would select ym, so by in-

centive compatibility we have ym ≤ x′ < pn−m. Also by incentive compatibility
x′ = max{x ∈ O |x ≤ pn−m}.

Let x′′ = inf{x ∈ O |x ≥ pn−m}. Then x′′ ∈ O. To see this consider a
utility function u′′n−m with peak at x′′ such that for some small ε > 0 we have
u′′n−m(x′) < u′′n−m(x′′ + ε). Then by the incentive compatibility

f((u0
1, u

0
2, . . . , u

0
n−m−1, u

′′
n−m, u

1
n−m+1, . . . , u

1
n)) ∈ [x′′, x′′ + ε].

But if it is strictly larger than x′′ there exists a way to misreport that results
in an arbitrarily close to x′′ outcome. So x′′ ∈ O and we have

x′′ = min{x ∈ O |x ≥ pn−m}.

Also x′′ > pn−m, since we are considering the case when pn−m 6∈ O.
Let us define uLi and uHi to be symmetric utility functions with peaks re-

spectively at pL = x′+x′′

2 − ε and pH = x′+x′′

2 + ε for some sufficiently small ε
such that pL, pH ∈ (x′, x′′), so pL, pH 6∈ O as illustrated by Figure 3.1.

ym ym+1x′

��
�
��

�
��
�HH

HHH
HHHH��

�
��

�
��
�HH

HHH
HHHH

pL pH

x′′

Figure 3.1: Choice of pL and pH .

Now incentive compatibility implies that

f((u0
1, u

0
2, . . . , u

0
n−m−1, u

H
n−m, u

1
n−m+1, . . . , u

1
n)) = x′′

because that is the closest to pH point in the option set and uHi was chosen to
be symmetric.

By repeated applications of incentive compatibility we obtain that

f((uL1 , u
L
2 , . . . , u

L
n−m−1, u

H
n−m, u

1
n−m+1, . . . , u

1
n)) = x′′.

Also by the Pareto efficiency of f proven in the first lemma we have

f((uL1 , u
L
2 , . . . , u

L
n−m−1, u

L
n−m, u

1
n−m+1, . . . , u

1
n)) = y ≥ pL.

Assume pL ≤ y < x′′ and ε is selected small enough so that 2ε < x′′−x′
2 − ε,

then agent n −m would have incentive to report uLn−m instead of uHn−m. Also
if y > x′′ agent n −m would have incentive to report uHn−m instead of uLn−m.
Therefore we have:

17



f((uL1 , u
L
2 , . . . , u

L
n−m−1, u

L
n−m, u

1
n−m+1, . . . , u

1
n)) = x′′ (3.1)

On the other hand by incentive compatibility we have

f((u0
1, u

0
2, . . . , u

0
n−m−1, u

L
n−m, u

1
n−m+1, . . . , u

1
n)) = x′,

because that is the closest to pL point in the option set.
Now consider the profile (uL1 , u

0
2, . . . , u

0
n−m−1, u

L
n−m, u

1
n−m+1, . . . , u

1
n). By

incentive compatibility the outcome of f should be in the interval [x′, x′′ − 2ε],
otherwise agent 1 can benefit by reporting u0

1. By repeating this argument we
have f((uL1 , u

L
2 , . . . , u

L
n−m−1, u

L
n−m, u

1
n−m+1, . . . , u

1
n)) ∈ [x′, x′′ − 2ε]. But this

contradicts Equation 3.1.

We have established that f((u0
1, u

0
2, . . . , u

0
n−m−1, un−m, u

1
n−m+1, . . . , u

1
n)) =

pn−m. Now consider f((u1, u
0
2, . . . , u

0
n−m−1, un−m, u

1
n−m+1, . . . , u

1
n)) = z. If

z < pn−m, agent 1 would have incentive to report u1 instead of u0
1. On the

other hand, if z > pn−m since u1’s peak is lower than pn−m agent 1 would
benefit from misreporting u0

1. Therefore it is the case that z = pn−m. Now by
repeating the same argument for agents 2 through n−m−1 and the symmetric
argument for agents n−m+ 1 through n we have f((u1, u2, . . . , un)) = pn−m.
Which completes the proof of case 2 and the proof of the theorem.

Notice that every Pareto efficient mechanism f is unanimous, so such an f
is also onto. Thus the above theorem means that any mechanism that satisfies
Pareto efficiency, incentive compatibility, and anonymity, is a median peak rule
with some phantom peaks. A careful inspection of the proof shows that the
phantom peaks essentially allow for some compromise between two groups of
agents with conflicting preferences. For example, if all agents have extreme
peaks, the median peak rule without phantom peaks can only result in 0 or 1
as an outcome and there is no way to have a compromise solution.

This mechanism has also quite remarkably low communication complexity —
the only information each agent needs to report to the mechanism is his peak.
In contrast, a direct mechanism for this domain would require every agent to
report his entire utility function.

Another thing to notice is that in the setting with the location of the public
facility if we assume that the cost of an agent, who lives at distance x from
the facility is x, the median peak rule minimizes the social cost. This is the
case, because whenever a change in the location makes one agent better off
and another worse off, it does so by exactly the same amount of utility — the
distance between the new location and the old location. Thus in the case of
an odd number of agents since the median peak is the Condorcet winner it is
also the point that minimizes the social cost. In the case of 2n agents a change
between any two points in the interval [pn, pn+1] makes exactly half of the agents
better off and the other half worse off. Also any point x < pn is worse than pn
for at least n+ 1 of the agents and symmetrically any point x > pn+1 is worse
than pn+1 for at least n + 1 of the agents. So the points within [pn, pn+1] all
result in the same social welfare and the points outside it result in a smaller
social welfare. Thus in both cases the median peak rule minimizes the social
cost and achieves this in dominant strategies.
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Chapter 4

Location Games

The remarkable result from the previous chapter is, however, easily destroyed
by minor modifications of the setting. In this chapter we consider such modi-
fications. In Section 4.1 we study the task of locating two public facilities of
the same type on the real line (street) and in Section 4.2 we look at the situ-
ation when a single agent can control more than one point. In Section 4.3 we
explore mechanisms that aim at minimizing the maximal cost incurred by an
agent instead of minimizing the social cost. These settings were first studied
by A. Procaccia and M. Tennenholtz in their seminal paper [44] that formally
initiated the study of approximate mechanism design without money.

4.1 Two-facility Location Games

Let us take a closer look into the case of locating two facilities instead of one.
We can assume that the facilities are identical and every agent makes use of the
one closer to his home. Formally we have a set of agents N and each agent i has
a location xi ∈ R. Based on the entire profile of locations a mechanism selects
two points to locate facilities at: f : (R)n → R2. The cost of agent i when the
mechanism selects (y1, y2) is cost((y1, y2), xi) = min(|y1 − xi|, |y2 − xi|). Note
that since we consider the domain to be R our street will be infinite, but due to
the fact that there are only finitely many agents, they will always be located on
some finite part of the real line. We will refer to this setting as the two-facility
location game .

It may not be immediately obvious, but there is a polynomial algorithm
computing the locations of the two facilities that minimize the social cost given
the true locations of the agents. To this end observe that since the agents are
located on a line whatever the selected locations of the facilities y1 ≤ y2 are,
there is some border point b such that all agents whose location is less than or
equal to b are closer to the facility at y1 and the rest are closer to the one at y2.
If we knew how to divide the locations of the agents into two such groups by the
observations in the single facility case we would know that the median location
for each subgroup is optimal. But for any profile with n agents there exist
only n − 1 ways to select the two groups of agents1, so we can easily compare

1It is never optimal to leave one group empty and we assume that n ≥ 2.
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the social cost at each of the possible divisions and thus determine the overall
optimal locations. This algorithm, however, is not strategy-proof.

Procaccia and Tennenholtz prove that no deterministic strategy-proof algo-
rithm can achieve an approximation ratio better than 3

2 −O( 1
n ), but they only

manage to provide a strategy-proof (n−1)-approximation mechanism — namely
the one that picks the leftmost and the rightmost of the reported locations. In
[35] this lower bound is improved to 2, which still leaves the gap between a
constant and n − 1 unsolved. Finally Lu et al. close the gap in [34] with the
following theorem:

Theorem 4.1. Any deterministic strategy-proof mechanism f : Rn → R2 for
the two-facility location game with n agents has an approximation ratio of at
least n−1

2 .

Before proving this theorem we will show several important lemmas.

Definition (Partial group strategyproofness). A mechanism f for the two-
facility location game is called partially group strategy-proof if for any group of
agents S ⊆ N located at the same point a at some profile x = (xS , x−S) ∈ Rn
and any group misreport x′S we have cost(f(xS , x−S), a) ≤ cost(f(x′S , x−S), a).

Lemma 4.2. Any strategy-proof mechanism f for the two-facility location game
satisfies partial group strategyproofness.

Proof. We need to prove that a group of agents that share a location can-
not benefit from group misrepresentation, so we will use the strategyproofness
through a chain of profiles.

Let S = {s1, s2, . . . , sk}. Take the following profiles x0 = x = (xS , x−S),
x1 = (x′s1 , xS\{s1}, x−S) and continue to add the changes until reaching xk =
(x′S , x−S), that is between profiles xi and xi+1 agent si+1 changes from reporting
his original a in xS to his misreport in x′S .

By the strategyproofness of f we have cost(f(xi), a) ≤ cost(f(xi+1), a) for
all 0 ≤ i ≤ k − 1. So we have cost(f(x0), a) ≤ cost(f(xk), a).

Definition (Image set).

• For a single agent i the image set at a profile x ∈ Rn is:

Ii(x) = {y | ∃x′i.y ∈ f(x′i, x−i)}.

• For a coalition S ⊂ N the image set at a profile x ∈ Rn is:

JS(x) = {y | ∃x′S .y ∈ f(x′S , x−S)}.

Intuitively, the image sets are the relevant for the setting variant of the
option set. They contain all possible locations of a facility that an agent or a
coalition can obtain by reporting different locations at a given profile.

Lemma 4.3. For any strategy-proof deterministic mechanism f for the two-
facility location game and any profile x ∈ Rn we have for all i:

cost(f(x), xi) = inf
y∈Ii(x)

|y − xi|.
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Proof. Observe that if ∃y′ ∈ Ii(x)(cost(f(x), xi) < |y′ − xi|), we also have a
x′i 6= xi such that y′ ∈ f(x′i, x−i) and this contradicts the strategyproofness of
f .

Lemma 4.4. For any strategy-proof deterministic mechanism f for the two-
facility location game, any nonempty coalition S ⊂ N and any profile x =
(xS , x−S) ∈ Rn such that xS = (a, a, . . . , a) we have:

cost(f(xS , x−S), a) = inf
y∈JS(x)

|y − a|.

Proof. Since f is strategy-proof, by Lemma 4.2 f is also partially group strategy-
proof. And assuming that there exists a y′ ∈ JS(x) such that

|y′ − a| < cost(f(xS , x−S), a)

would contradict the partial group strategyproofness of f .

Proof of Theorem 4.1. We will use profiles with an odd number of agents of the
form

x(a, b) = ( a, a, . . . , a︸ ︷︷ ︸
n−1
2

, b, b, . . . , b︸ ︷︷ ︸
n−1
2

, 1) for a ≤ b ≤ 1

and we will prove that in all such profiles we have a ∈ f(x(a, b)) and b ∈
f(x(a, b)) for any deterministic strategy-proof f with approximation ratio smaller
than n−1

2 . Intuitively this is problematic when a and b are very close to each
other and far enough from 1, because an optimal algorithm will place one facility
near a and b and the other at 1.

Let Sa be the coalition of agents that report a in x(a, b) and Sb the coalition
of those that report b. First we will prove that a ∈ f(x(a, b)) for all a ≤ b ≤ 1
for any deterministic strategy-proof f with approximation ratio smaller than
n−1

2 .
To that end first notice that if b = 1 the result is trivial, because the optimal

cost is 0 and any algorithm with finite approximation ratio selects the same two
locations.

Now let b < 1. In this case (−∞, b) ⊆ JSa
(x). Assume for a contradiction

that there is some c < b such that c 6∈ JSa
(x). Now if we have a approaching

−∞ at some point any algorithm with finite approximation ratio will be forced
to place a facility near a and that is below c, so JSa(x) ∩ (−∞, c) 6= ∅, then
we can take a∗ = supz∈JSa (x) z < c. Observe that then we have a∗ ∈ JSa(x),
because by the above lemma cost(f(x(a∗, b)), a∗) = infy∈JSa (x) |y− a∗| = 0 and
then a∗ ∈ JSa

(x) .
Now take ε = c−a∗

3 so that ε < c−a∗
2 . The closest point to a∗ + ε in JSa

(x)
is a∗ and by the same lemma we have

cost(f(x(a∗ + ε, b)), a∗) = inf
a′∈JSa (x)

|a′ − (a∗ + ε)| = ε,

so a∗ ∈ f(x(a∗ + ε, b)).
Consider the profile

x′ = (a∗ + ε, a∗ + ε, . . . , a∗ + ε︸ ︷︷ ︸
n−1
2 agents

, b, b, . . . , b︸ ︷︷ ︸
n−1
2 agents

, a∗).
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Note that a∗ ∈ In(x′), because we have a∗ ∈ f(x(a∗ + ε, b)). Then

inf
y∈In(x)

|y − a∗| = 0 = cost(x′, a∗)

and so a∗ ∈ f(x′). Now, no matter where the mechanism puts the second

facility, the social cost is at least (n−1)·ε
2 . However, the optimal location of the

facilities is (a∗ + ε, b) and it yields a social cost of only ε. This contradicts the
claim that the approximation ratio of f is less than n−1

2 .
Thus we have (−∞, b) ⊆ JSa(x) and for any a < b we have

inf
y∈JSa (x)

|y − a| = 0 = cost(x(a, b), a).

Therefore for all a < b, a ∈ f(x(a, b)). Further, for a = b the result is trivial,
because again the optimal social cost is 0.

Now we prove the same claim for b, namely b ∈ f(x(a, b)) for all a ≤ b ≤ 1.
The claim is obvious when we have b = a or b = 1, so we concentrate on the

case a < b < 1.
Assume for a contradiction that b 6∈ JSb

(x). Take b′ to be the middle of
(a, 1), i.e. b′ = a + 1−a

2 . By the previous result we have that a ∈ f(x(a, b′))
now if we place the second facility outside the interval (a, 1), we would have a
social cost of at least 1−a

2 ·
n−1

2 and the optimal social cost in this case is 1−a
2

achieved by (a, b), so since f has an approximation ratio smaller than n−1
2 we

have (a, 1)∩JSb
(x) 6= ∅. Then since b 6∈ JSb

(x) we have either (a, b)∩JSb
(x) 6= ∅

or (b, 1) ∩ JSb
(x) 6= ∅. First assume that (a, b) ∩ JSb

(x) 6= ∅.
Let b∗ = supy∈JSb

(x) y < b. Then we have (b∗, b) ∩ JSb
(x) = ∅ and also

b∗ ∈ JSb
(x), because by the last lemma we have:

cost(f(x(a, b∗), b∗) = inf
y∈JSb

(x)
|y − b∗| = 0.

If b∗ = b we have b ∈ JSb
(x), so b∗ < b. Take ε such that 0 < ε < b−b∗

3 . Then
b∗ is the closest to b∗ + ε point in JSb

(x) and so b∗ ∈ f(x(a, b∗ + ε)). Then
b∗ ∈ In(x(a, b∗ + ε)−n). Now we have that

cost(f(a, a . . . , a, b∗ + ε, b∗ + ε . . . , b∗ + ε, b∗), b∗) = inf
y∈In(x(a,b∗+ε)−n)

|y − b∗| = 0.

So b∗ ∈ f(a, a . . . , a, b∗ + ε, b∗ + ε . . . , b∗ + ε, b∗) and by the previous result we
have a ∈ f(a, a . . . , a, b∗ + ε, b∗ + ε . . . , b∗ + ε, b∗). The social cost of (a, b∗) at

this profile is (n−1)·ε
2 , while the optimal social cost is only ε and is achieved by

(a, b∗ + ε). This contradicts f having an approximation ratio less than n−1
2 . So

it is not possible that (a, b) ∩ JSb
(x) 6= ∅.

a 1
a+1

2 bb∗

Figure 4.1: Position of b∗.

In a similar way we can prove that (b, 1)∩ JSb
(x) 6= ∅ leads to contradiction

by taking b∗ = infy∈JSb
(x) y > b.
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So we have that b ∈ JSb
(x) and by Lemma 4.4 this means that

cost(f(x(a, b)), b) = inf
y∈JSb

(x)
|y − b| = 0

and b ∈ f(x(a, b)).
To conclude the proof of the theorem take the profile

x = (− 1

n2
,− 1

n2
, . . . ,− 1

n2︸ ︷︷ ︸
n−1
2 agents

, 0, 0, . . . , 0︸ ︷︷ ︸
n−1
2 agents

, 1).

By what we proved above − 1
n2 ∈ f(x) and 0 ∈ f(x), but the social cost of

(− 1
n2 , 0) is 1, while the optimal social cost achieved by (0, 1) is only n−1

2n2 , which
contradicts the assumption that f has an approximation ratio of n−1

2 .

Note that this lower bound implies that the simple mechanism suggested
by Procaccia and Tennenholtz that chooses the leftmost and the rightmost of
the reported locations is asymptotically optimal, because it has an approxima-
tion ratio of n − 1 and by Theorem 4.1 any deterministic algorithm has an
approximation ratio of at least n−1

2 .
This result might seem really discouraging, but it is in fact possible to achieve

constant approximation for the two-facility location game by using a randomized
mechanism. A mechanism that achieves this was introduced in [34] by Lu et al.

Definition (The Proportional Mechanism). Given a profile x ∈ Rn do the
following:

• Step 1: Select an agent i uniformly at random from N and locate the first
facility at xi.

• Stem 2: Select a second agent j from N \ {i} according to the probability

distribution pj =
|xj−xi|∑

k∈N\{i}
|xk−xi|

2.

Claim. The Proportional Mechanism is strategy-proof and achieves an appro-
ximation ratio of 4.

The known lower bound for a randomized mechanism is 1.045. This was
done in [35] for more than 4 agents.

4.2 Multiple Locations per Agent

Another interesting extension to the standard location game setting is allowing
each agent to control multiple points and act strategically based on them. For
example, a housing company owning multiple houses wants to increase the value
of all of them by claiming proximity to the facility that is to be build. We assume
that if agent i controls the locations (xi,1, xi,2 . . . , xi,m) the cost of i when the
facility is built at y is cost((xi,1, xi,2 . . . , xi,m), y) =

∑
k∈{1,2...,m}

|xi,k − y|. Note

2When all agents report the same location the formula does not specify a probability
distribution, but in this case we can take the second location to be the same as the first.
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that each agent may control a point more than once. In our intuitive example
the housing corporation may own several apartments in the same building. It
is also not a problem if two different agents claim the same location.

A profile for the setting with multiple locations per agent will consist of
vectors of m points controlled by each agent i — x = (x1, x2 . . . , xn) where
xi = (xi,1, xi,2 . . . , xi,m) for all i.

Minimizing the social cost in this setting does not depend on which agent
controls any given point, because the distance between the point and the selected
location is added to the social cost irrespectively of who owns the point. So the
minimal social cost is obtained by taking the median of all reported points.
However this algorithm is obviously not strategy-proof. To see this assume that
all the other points, controlled by the owner of the median one, are larger than
it, then he has incentive to report some larger value thus making the outcome
closer to his other locations.

This setting was also studied by Procaccia and Tennenholtz, but the formal
results that follow are proven in a different setting in [18]. A suggested strategy-
proof mechanism for this setting is the following:

Definition (Mechanism for the multiple locations setting). Let med(p1, . . . pk)
select the median of the points given to it. Then given a profile x = (x1, x2 . . . , xn)
take the location to be f(x) = med(med(x1),med(x2) . . . ,med(xn)).

Claim. The above mechanism f is strategy-proof and has an approximation
ratio of 3 for the multiple location setting.

Proof. Let us start by showing that f is strategy-proof. First note that med(xi)
is optimal for each agent i. In fact it may be the single optimal point if m is
odd or it may be the least point in an interval that has the same valuation3 for
agent i in case m is even. In this case, however, we still have the important for
strategyproofness property that the further from the peak interval a point is,
the worse it is for the agent.

Now if m is odd med(xi) is the single most preferred point for each agent and
we already know that selecting the median is strategy-proof when preferences
are single-peaked. In case m is even we only need to note that an agent j with
med(xj) < f(x) can only manipulate by making the new outcome larger than
f(x). Note that if f(x) is in the interval that maximizes the valuation of j, he
has no incentive to manipulate and otherwise every point in his optimal interval
is smaller that f(x), because we assumed that med(xj) < f(x), so changing the
outcome to some y > f(xj) strictly hurts j. A symmetrical argument applies
to any agent j such that med(xj) > f(x).

Now to show that f provides a 3-approximation of the optimal social cost,
fix an arbitrary profile x, let a∗ be the optimal solution and f(x) = a. Let also
|a− a∗| = d.

First observe that |{xi,j |xi,j ≤ a}| ≥ 1
4nm, because of the following simple

facts:

• |{i ∈ N : med(xi) ≤ f(x)}| ≥ 1
2n,

• if med(xi) ≤ f(x), then
|{j ∈ {1, 2 . . . ,m} : xi,j ≤ med(xi) ≤ f(x)}| ≥ 1

2m.

3Preferences like this are called single-plateaued .
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Similarly |{xi,j : xi,j ≥ a}| ≥ 1
4nm.

If a = a∗ the claim holds. Now assume without loss of generality that a < a∗.
Then we can establish an upper bound on the social cost of the outcome a:

∑
i,j

|xi,j − a| =

=
∑

i,j: xi,j≤a
(a− xi,j) +

∑
i,j: a<xi,j≤a∗

(xi,j − a) +
∑

i,j: a∗<xi,j

(xi,j − a) ≤

≤
∑

i,j: xi,j≤a
(a− xi,j) +

∑
i,j: a<xi,j≤a∗

d+
∑

i,j: a∗<xi,j

(d+ (xi,j − a∗)) =

=
∑

i,j: xi,j≤a
(a− xi,j) +

∑
i,j: a∗<xi,j

(xi,j − a∗) + |{xi,j : xi,j > a}| · d ≤

≤
∑

i,j: xi,j≤a
(a− xi,j) +

∑
i,j: a∗<xi,j

(xi,j − a∗) + 3
4nmd

Similarly we can establish a lower bound on the social cost of the outcome
a∗. ∑

i,j

|xi,j − a∗| ≥

≥
∑

i,j: xi,j≤a
(d+ (a− xi,j)) +

∑
i,j: a∗<xi,j

(xi,j − a∗) ≥

≥
∑

i,j: xi,j≤a
(a− xi,j) +

∑
i,j: a∗<xi,j

(xi,j − a∗) + 1
4nmd

These bounds have two nonnegative common terms. Therefore for the ratio

we have

∑
i,j
|xi,j−a|∑

i,j
|xi,j−a∗| ≤ 3 as claimed.

Note, however, that the fact that all agents control the same number of
points is important for this proof. Consider an example with three agents such
that agent 1 controls location 0 k times for some k > 2, agents 2 and 3 each have
a single point located at 1. The above mechanism selects 1, but the optimal
solution is in fact 0. While the optimal social cost is 2, the one achieved by the
mechanism is k, so the approximation ratio of f is not bounded if the number
of points controlled by a single agent is not bounded. The obvious problem here
is that agents should not be treated as equals if they have different potentials
to make the social cost higher. This is why we look at the case when agents
have equal importance and control equal number of points.

The next result shows that no deterministic mechanism can do better than
the suggested one, even when |N | = 2.

Theorem 4.5. Let N = {1, 2}. Then for all ε > 0 there exists an m ∈ N
such that when each agent controls m points any strategy-proof deterministic
mechanism f : Rm × Rm → R has an approximation ratio of at least 3 − ε for
the social cost in the multiple locations setting.

Proof. Fix some strategy-proof mechanism f with finite approximation ratio.
Let us first show a technical claim.

Claim. For all q, t ∈ N, t 6= 0 there exists a profile x for two agents such that
agent 1 controls some point y 2t − 1 times, agent 2 controls a point y′ 2t − 1
times and we have y − y′ = 2q and either f(x) ≥ y − 1

2 or f(x) ≤ y′ + 1
2 .
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Proof. Fix any t. We show the claim by induction on q.
Base case: For q = 0 take y = 1 and y′ = 0. Then the claim cannot be false.

To see this note that f(x) ∈ [0, 1]. Let us assume without loss of generality
that f(x) > 1. Then if both agents report all their locations to be at 1, the
optimal social cost is 0, so f selects 1, because this is the only way to achieve
bounded approximation in this case. However, this means that agent 2 has
incentive to report that his locations are at 1 instead of at 0, which contradicts
the strategyproofness of f .

Inductive step: Assume that for some q we have found y and y′ as required
and let the respective profile be x.

Case 1: f(x) ≥ y − 1
2 . Let z = y and z′ = 2y′ − y. Then note that

z− z′ = y− (2y′− y) = 2(y− y′) = 2q+1 as required. Then let x∗ be the profile
in which agent 1 controls z 2t − 1 times and agent 2 controls z′ 2t − 1 times.
By strategyproofness it holds that |f(x′)− y′| ≥ |f(x)− y′| ≥ 2q − 1

2 . Therefore
either f(x′) ≥ y − 1

2 or f(x′) ≤ y′ − (2q − 1
2 ) = 2y′ − y + 1

2 .
Case 2: f(x) ≤ y′ + 1

2 . Then let z = 2y − y′ and z′ = y′. As above
using strategyproofness we see that the new profile satisfies all the required
properties.

Now for some q take the profile found in the claim be x, such that agent
1 controls point y and agent 2 controls point y′. Without loss of generality
f(x) ≥ y − 1

2 . First observe that f(x) > y is not possible, because if f(x) > y,
then by strategyproofness f(x′) ≥ f(x) for the profile x′ such that all the points
controlled by both agents are at y, but the optimal solution in this case is
selecting y and again it is selected by any bounded approximation algorithm,
because it has a social cost of 0.

Now consider a profile x′′ in which agent 1 controls t times location y and t−1
times location y′ and agent 2 controls y′ 2t−1 times. Then by strategyproofness
it holds that |f(x′′)−y| = |f(x)−y|, as otherwise agent 1 will have incentive to
misrepresent either at x or at x′′, because in both profiles his optimal point is y.
But the optimal solution for this profile is y′ with a total social cost of 2qt, while

the social cost of f(x) is at least (3t − 2)(2q − 1
2 ). And lim

t,q→∞
(3t−2)(2q− 1

2 )

2qt =

lim
t,q→∞

3t2q−2q+1− 3t
2 +1

2qt = 3. Therefore for all ε > 0 there exist t and q such that

at the corresponding profile the approximation ratio of f is at least 3− ε.

4.3 A Different Objective Function

Even without locating more than one facility or allowing agents to control more
than one point, if we aim at minimizing the maximum cost incurred by an agent,
we get a problem that is not optimally solvable by a strategy-proof mechanism.
The solution that optimizes this target function is simply the middle value be-
tween the smallest and the largest reported value, so the maximal cost incurred
by an agent is exactly half of the distance between them. Observe that the
median peak mechanism achieves an approximation ratio of 2 for this target
function, because it always picks a reported point, but it may pick the least or
the largest of all reported values. For example, if we have 3 agents, 2 of them
report x1 and 1 reports x2, for some x1 < x2, the median peak is x1.
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The approximation ratio of 2 is, however, optimal for all deterministic algo-
rithms. This is shown in the following theorem from [44]:

Theorem 4.6. Any deterministic strategy-proof mechanism f : Rn → R has an
approximation ratio of at least 2 for the maximum cost objective function.

Proof. Let |N | = n. Consider the profile x in which agent 1 reports 0, agent 2
reports 1 and all other n−2 agents (if any) report 1

2 . Without loss of generality
let f(x) = 1

2 + ε for ε ≥ 0. Now take the profile x′ in which agent 2 reports
1
2 + ε instead, and all the rest report as in x. The optimal solution in this case
is 1/4 + ε

2 , so any mechanism with an approximation ratio better than 2 will
have to place the facility in the interval (0, 1

2 + ε). But then at x′ agent 2 will
have incentive to misreport 1, which contradicts the strategyproofness of f .

In this setting allowing for randomization again leads to an improvement.

Definition. (Randomized Mechanism for Minimizing the Maximum Cost) Given
a profile (x1, x2 . . . , xn) select mini xi with probability 1

4 , maxi xi with proba-

bility 1
4 and mini xi+maxi xi

2 with probability 1
2 .

Claim. The above mechanism is strategy-proof and has an approximation ratio
of 3

2 for the maximum cost objective function.

Proof. To see that the mechanism has an approximation ratio of 3
2 take an

arbitrary profile (x1, x2 . . . , xn) and denote ∆ = maxi xi−mini xi. The optimal
solution that picks the average of maxi xi and mini xi has maximal cost of ∆

2 ,
while the expected maximum cost of our randomized mechanism is

1

4
·∆ +

1

4
·∆ +

1

2
· ∆

2
=

3

4
·∆.

Therefore the approximation ratio of the mechanism is 3
2 .

Now to see that this mechanism is strategy-proof, note that the outcome only
depends on the values of maxi xi and mini xi. In order to change the smallest
reported value to some bigger one, the manipulating agent i has to be the one
that reported the smallest value. Then he obviously strictly looses, because if
he reports xi + ε for some ε > 0 instead of xi, then his expected cost changes
from 1

4 · 0 + 1
2 ·

∆
2 + 1

4 · ∆ = 1
2 · ∆ to 1

4 · ε + 1
2 ·

∆+ε
2 + 1

4 · ∆ = 1
2 · (∆ + ε),

which is strictly larger. Analogously if the agent who reported the largest value
misreports a smaller value than his true position, he strictly loses.

Now any agent can misreport a value smaller than mini xi or a value larger
than maxixi. Without loss of generality let x1 < x2 · · · < xn, so x1 = mini xi
and xn = maxi xi and let agent j misreport x1 − ε. Then the expected cost of
j changes from 1

4 · (xj − x1) + 1
2 · |xj −

x1+xn

2 |+ 1
4 · (xn − xj) to

1
4 · (xj + ε−x1)+ 1

2 · |xj−
x1−ε+xn

2 |+ 1
4 · (xn−xj), which is larger or equal to the

expected cost without manipulating. Similarly if any agent misreports xn + ε,
his expected cost increases by ε

2 . Thus the mechanism is strategy-proof.

This is also the optimal approximation ratio achievable by a strategy-proof
randomized mechanism for this target function.

Theorem 4.7. When |N | ≥ 2 any randomized strategy-proof mechanism f has
an approximation ratio of at least 3

2 for the minimizing maximum cost target
function.
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Proof. Take a strategy-proof randomized mechanism f , fix a profile such that
x1 = 0, x2 = 1 and xi = 1

2 for all i ∈ {3, 4 . . . , n} and a probability distribution
P over R such that f(x1, x2 . . . , xn) = P .

Since for any y ∈ R and for any two points x1, x2 ∈ R it holds that |y−x1|+
|y − x2| ≥ |x1 − x2|, we also know that Ey∼P (|y − x1| + |y − x2|) ≥ |x1 − x2|.
Thus having that Ey∼P |y − x1|+ Ey∼P |x2| = Ey∼P (|y − x1|+ |y − x2|), we can
conclude that either Ey∼P |y| ≥ 1

2 or Ey∼P |y − 1| ≥ 1
2 .

Without loss of generality let us assume the latter is the case. Then let
x′2 = 2 and consider the profile (x1, x

′
2, x3 . . . , xn). By strategyproofness if

f(x1, x
′
2, x3 . . . , xn) = P ′, then Ey∼P ′ |y− 1| ≥ 1

2 , because otherwise agent 2 has
incentive to report x′2 instead of x2. But the maximum cost when a point y is
selected by the mechanism is |y−1|+1, so we have that the expected maximum
cost of f at (x1, x

′
2, x3 . . . , xn) is Ey∼P ′(|y − 1|+ 1) = Ey∼P ′ |y − 1|+ Ey∼P ′1 ≥

1
2 + 1 = 3

2 . Since the expected maximum cost is at least 3
2 , while the optimal

maximum cost achieved by placing the facility at 1 is 1, the approximation ratio
of f is at least 3

2 .

Further interesting settings can be obtained by combining features from the
ones discussed here — for example minimizing the maximum cost incurred by
an agent in the two-facility location game or in the multiple locations per agent
setting. These settings are also studied in the original paper of Procaccia and
Tennenholtz. Also an interesting generalization of this setting are the location
games on networks. In particular, the special cases when the network is a circle
or a tree are important in computer science and can for example be applied to
determine the optimal location of a server in a network.

This important setting was first studied by Schummer and Vohra in [53]
and then further developed in [6] for randomized mechanisms and the objective
function of minimizing the maximum cost.
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Chapter 5

Matching

A common task that fits well into the mechanism design framework is matching
agents to objects or other agents based on their preferences. In everyday life
matching problems are common — we match students to dorm rooms, students
to universities, roommates, employees to open positions, etc. All of those tasks
have specific requirements for the feasible solutions and are studied separately.

The two main types of matching problems are one-sided matching and two-
sided matching. In the one-sided version we have agents on one hand and objects
on the other, where the agents have preferences over the objects and objects do
not. There may or may not be some initial allocation. In the two-sided version
we are matching agents to agents and they all express their preferences. There
may or may not be a predetermined separation of the agents in groups with a
feasibility requirement that the agents from one group need to be matched with
agents from the other.

The rest of the chapter is organized as follows. In Sections 5.1 and 5.2
two classical settings are presented — the Gale-Shapley marriage market and
the Shapley-Scarf housing market. Section 5.3 deals with allocating indivisible
objects to agents with strict preferences. An insightful comparison between
the mechanisms for allocating objects with and without initial endowment is
discussed in Section 5.4 and in Section 5.5 is about a setting in which some
agents have an endowment and others do not. Section 5.6 relaxes the assumption
that all agents need a single object and suggests mechanisms that can allocate
a set of objects to each agent.

5.1 Two-sided Matching: Gale-Shapley Marriage
Market

An example of the two-sided problem is the classical Gale-Shapley marriage
setting introduced in the seminal paper [25]. In this setting we have a set of
men M and a set of women W . A feasible solution or matching consists of
possibly some unmatched agents and a set of pairs each consisting of a man and
a woman. We can represent a matching by a function µ : M ∪W → M ∪W
that satisfies the following conditions:

1. ∀m ∈M µ(m) ∈W ∪ {m}
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2. ∀w ∈W µ(w) ∈M ∪ {w}

3. ∀m ∈M∀w ∈W (µ(m) = w)→ (µ(w) = m)

4. ∀m ∈M∀w ∈W (µ(w) = m)→ (µ(m) = w)

If µ(m) = m or µ(w) = w, we say the agent is unmatched under µ and for
all matched agents if m is the partner of w, then necessarily w is the partner of
m and the other way around.

Every man m has a strict preference ordering �m over W ∪{m}. Intuitively
m represents the option of staying single and a woman such that w �m m
is called acceptable for m, otherwise a woman is unacceptable and m would
rather stay single than be matched with an unacceptable woman. Similarly
every woman w has a preference ordering over M∪{w} and again the acceptable
men are those preferred to the option w. A matching is individually rational
if every agent is either matched with an acceptable partner or unmatched. The
preferences of every agent over the matchings only depend on the partner he or
she is matched with, so every agent is indifferent between any two matchings in
which he or she is matched with the same partner.

A very important condition imposed on solutions in this setting is stability.
Intuitively a matching is stable if it is individually rational and there are no
two agents that are not matched to each other, but would prefer this to being
matched to their current partners. Obviously, if such a pair exists those two
agents would prefer to be together and no unstable solution would last if agents
are free to deviate from the selected matching.

Formally we say that a pair (m,w) is a blocking pair for a matching µ if
µ(m) 6= w and also m �w µ(w) and w �m µ(m). A matching µ is called stable
if it is individually rational and there is no blocking pair. A mechanism f that
assigns a matching to all profiles of strict preferences is called stable if f(�) is
stable for all profiles �.

It is not immediately clear that a stable matching exists for all possible
preference profiles and to prove this Gale and Shapley propose a mechanism
that always results in a stable outcome.

Definition (Deferred Acceptance Algorithm).

• At stage 1 every man who has at least one acceptable partner proposes
to his most preferred woman. If a woman received only unacceptable
proposals, she rejects them all. Every woman who received at least one
acceptable proposal tentatively accepts her most preferred one and rejects
all the other proposals she received.

• Every man who was rejected at the previous stage makes a new proposal
to his most preferred acceptable woman, who has not yet rejected him.
If all acceptable partners have already rejected a given man, he makes
no further proposals. Every woman who received at least one acceptable
proposal in the current stage tentatively accepts the proposal she prefers
most among the ones she received in the current stage and the one she
tentatively accepted at the previous stage if any. Then she rejects all other
proposals she received. If a woman receives only unacceptable proposals,
she rejects them all.
If no further proposals can be made, the algorithm terminates and every
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woman who has a tentatively accepted proposal is matched with the re-
spective man. All other agents remain unmatched. Otherwise this step is
repeated until no further proposals can be made.

This algorithm terminates, because a man never proposes to a woman more
than once, so every man can propose for at most |W | stages of the algorithm.
The matching µ that the deferred acceptance algorithm terminates in is stable.
To see this note that at no stage a man proposes to an unacceptable woman and
a woman never holds an unacceptable proposal. Now if a blocking pair (m,w)
exists, then m has proposed to w before proposing to µ(m). But then w has
rejected his proposal for a more preferred one, so at the end it is the case that
µ(w) �w m, which contradicts the assumption that (m,w) is a blocking pair for
µ. So µ is stable.

Note that the algorithm in which women propose analogously results in a
stable matching that is not necessarily the same one.

To illustrate how the algorithm works consider the following example profile:

m1 w2 �m1
w1 �m1

w3 �m1
m1

M m2 w1 �m2 w2 �m2 w3 �m2 m2

m3 w1 �m3 w2 �m3 w3 �m3 m3

w1 m1 �w1
m3 �w1

m2 �w1
w1

W w2 m3 �w2 m1 �w2 m2 �w2 w2

w3 m1 �w3 m2 �w3 m3 �w3 w3

At the first stage m2 and m3 propose to w1 and m1 proposes to w2. All
proposals are acceptable, therefore w2 tentatively accepts the proposal of m1

and w1 prefers m3 to m2, so she tentatively accepts the proposal of m3 and
rejects m2.

At stage 2 the rejected man m2 proposes to his second most preferred woman
w1. However, she prefers the proposal she tentatively accepted at the previous
stage, so she keeps holding the same proposal and rejects m2.

At stage 3 m2 proposes to w3, who accepts his proposal. At this stage no
further proposals can be made, so the algorithm terminates and the tentative
assignment becomes final. Let us call this matching µ1.

Observe that when the women propose and the man accept or reject their
proposals the result is different. At stage 1 w2 proposes to m3 and w1 and w3

propose to m1. m1 prefers w1, so he rejects w3. In stage 2 w3 proposes to
her second most preferred man m2. He tentatively accepts her proposal and
no further proposals can be made, so the algorithm terminates after the second
stage and the tentative assignment is finalized. Let us call this matching µ2.

x µ1(x) µ2(x)
m1 w2 w1

m2 w3 w3

m3 w1 w2

w1 m3 m1

w2 m1 m3

w3 m2 m2

The outcomes of the two versions of the algorithm are different and in fact
it turns out that the deferred acceptance algorithm favours the proposing side

31



and results in a stable matching weakly preferred to all other stable matchings
by all the agents of the proposing side.

Definition (M -optimal Stable Matching). A stable matching µ is called M-
optimal if for all stable matchings µ′ ∀m ∈M µ(m) �m µ′(m).

Theorem 5.1. For all profiles of strict preferences the deferred acceptance
mechanism results in the M-optimal stable matching.

Proof. We have already seen that the deferred acceptance algorithm results in
a stable matching and we only need to prove that it is M -optimal. To see
this assume that for some preference profile there exists a man and a stable
matching such that the agent prefers this stable matching to the outcome of the
deferred acceptance algorithm. Then at some stage of the deferred acceptance
algorithm for the first time some man m is rejected by a woman w that is
his partner under some other stable matching µ′. Let the proposal w holds at
this stage be the one of m′. Then m′ �w m. Also any woman that rejected
m′ before this stage cannot be matched with m′ under any stable matching,
because we assumed that m was the first man rejected by a partner he can have
in a stable matching. Take the stable matching µ′ under which m and w are
matched together. Then w �m′ µ′(w) and as we already noted m′ �w m, which
contradicts the stability of µ′.

Similarly the mechanism in which women propose results in the best stable
outcome for the women and we call it W-optimal . It is surprising that for each
profile and each side of the market there exists a stable outcome weakly preferred
by all agents on that side of the market to any other stable matching. Such an
alignment of preferences seems unexpected, because in the market women are
supposed to be competing for desirable men and men are similarly supposed to
be competing for desirable women. In fact it turns out that the interests of the
two parts of the market are opposed as was first shown by Knuth in [31].

Theorem 5.2. For any profile of strict preferences and any two stable match-
ings µ and µ′ it holds that ∀m ∈ M µ(m) �m µ′(m) if and only if ∀w ∈
W µ′(w) �w µ(w).

Proof. Take a preference profile and two stable matchings µ and µ′ such that
∀m ∈M µ(m) �m µ′(m). Assume that there is some w ∈W such that µ(w) �w
µ′(w). We know that w is not unmatched under µ, because all stable matchings
are individually rational. Then letm = µ(w). Note thatm has different partners
under µ and µ′, because w has different partners, and he thus strictly prefers
w to his partner under µ′, but since w also prefers m to her partner under µ′,
they form a blocking pair for µ′, which contradicts the stability of µ′.

Let for each woman w Sw ⊆M be the set of men that are her partners under
some stable matching — that is Sw = {m | ∃µµ(w) = m and µ is stable}. The
above result means that the partners the women get in the M -optimal matching
are in fact the least preferred partners they can have under any stable matching:
if µ is the M -optimal matching we have that ∀w ∈ W µ(w) = min�wSw .
Similarly the partners the men get under the W-optimal matching are their
least preferred partners achievable under a stable matching.
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Let us now look at the strategic behaviour of the agents. The following
theorem was first proven by Dubins and Freedman, but we present a shorter
proof from [26].

Theorem 5.3. The deferred acceptance algorithm is strategy-proof for the propos-
ing side of the market.

To show this we will start with a technical lemma:

Lemma 5.4. Fix a preference profile � and let µM be the M-optimal matching
on �. Take a matching µ 6= µM and let M ′ = {m ∈M |µ(m) �m µM (m)} 6= ∅.
Then there exists a pair (m,w) that blocks µ with m ∈M \M ′.

Proof. Case 1: Consider the case when µ(M ′) 6= µM (M ′). Note that no man
in M ′ is unmatched under µ, because if that was the case for some m ∈ M ′,
since µ(m) �m µM (m) he must be matched with an unacceptable woman in
µM , which contradicts the stability of µM . Therefore |µ(M ′)| ≥ |µM (M ′)| and
so µ(M ′) \ µM (M ′) 6= ∅. Then take a w ∈ µ(M ′) \ µM (M ′). Let w = µ(m′).
Then w �m′ µM (m′), but since µM is stable µM (w) �w m′. Now by the choice
of w µM (w) 6∈M ′. Therefore (µM (w), w) blocks µ and µM (w) is in M \M ′.

Case 2: If µ(M ′) = µM (M ′) = W ′, let w be the last woman in W ′ who
receives a proposal from some m ∈ M ′. Since all women in W ′ reject some
proposals under the deferred acceptance algorithm w holds a proposal from some
man m at this stage and m ∈M \M ′, because otherwise after being rejected he
would propose to another woman in W ′ contradicting the choice of w to be the
last woman from W ′ to receive such a proposal. But since µ(w) ∈M ′ w rejects
his proposal before rejecting m’s proposal, thus m �w µ(w). We also have
w �m µM (m), because m proposed to w and was rejected and µM (m) �m µ(m),
because m 6∈M ′. So w �m µ(m) and (m,w) blocks µ.

Having the above lemma we can actually prove the stronger claim that the
deferred acceptance mechanism with men proposing cannot be manipulated by
coalitions of men so that all manipulators strictly benefit.

Theorem 5.5. Fix a profile � and a misrepresentation �′M ′ for a coalition of
men M ′ ⊆ M . Let µ be the outcome of the deferred acceptance under � and
µ′ 6= µ be the outcome under (�−M ′ ,�′M ′). Then ∃m ∈M ′ µ(m) �m µ′(m).

Proof. Assume all agents in M ′ strictly benefit by the manipulation. By the
lemma there is a pair (m,w) that blocks µ′ such that µ(m) �m µ′(m). Then
m 6∈ M ′. Thus neither m, nor w is misreporting and so (m,w) also blocks µ′

under (�−M ′ ,�′M ′).

Taking |M ′| = 1 implies that a single man cannot strictly benefit from
misrepresenting his preferences. This, however, in not the case for the women.

Remember the example profile. In this case there exist only two stable
matchings — the M − optimal µ1 and the W -optimal µ2. However, if w1

misreports �′w1
such that m1 �′w1

m2 �′w1
m3 �′w1

w1, the only stable matching
becomes µ2 and it is selected by any stable mechanism. So w1 can manipulate
the differed acceptance algorithm.

In fact the above example can be used to make a very interesting observation.
Note that similarly to the manipulation of w1 if m1 misreports �′m1

such that
w2 �′m1

w3 �′m1
w1 �′m1

m1, the only stable matching becomes µ1.
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Now any stable mechanism f chooses ether µ1 or µ2 on the above profile. In
case f results in µ1 w1 has incentive to misrepresent her preferences. If f results
in µ2 m1 has incentive to misrepresent. This proves the following impossibility
result:

Theorem 5.6. There exists no stable strategy-proof mechanism for the Gale-
Shapley marriage market.

In conclusion it is interesting to mention the similar problem when no initial
partitioning of the agents into men and women is given. Then all agents have
strict preferences over all other agents. The objective remains matching the
agents in pairs based on their preferences. This setting is known in the literature
as the roommates problem .

Interestingly in this setting it is no longer the case that a stable matching
always exists. To see this consider the following example:

a b �a c �a d
b c �b a �b d
c a �c b �c d
d a �d b �d c

Note that whoever is matched with d will want to change to any other
roommate and there is some agent who has him as a top choice, so there exists
a blocking pair for every possible matching of the four agents.

5.2 Housing Market

In the seminal paper [54] Shapley and Scarf define a market with indivisible
goods without money in which each agent owns an object and agents are allowed
to exchange their objects in order to maximize their utility, but without making
or receiving side payments. They suggest a market in houses as an appropriate
example and this setting remains known as the Shapley-Scarf Housing Market.

Formally the setting involves a set of agents N = {1, 2 . . . , n}, a set of houses
H = {h1, h2 . . . , hn} and an initial allocation, which is a bijective function
h : N → H. We say that agent i is the owner of house h(i). Each agent i
has a strict preference �i over the houses including his own. A mechanism
for this setting decides on a final allocation, which is again a bijective function
x : N → H that can be the same as the initial allocation or different if some
agents exchange their houses.

The strict preferences over houses induce weak preferences over the possible
allocations if each agent is only concerned with the house he receives. Note that
even when the preferences over houses are not restricted, we are not working on
the complete preference domain over allocations, because each agent is required
to be indifferent between all allocations in which he receives the same house,
therefore the Gibbard-Satterthwaite theorem cannot be applied.

Since in this setting agents have some initial endowments, a mechanism
should guarantee that if an agent participates in the exchange he will get a
house that he likes at least as much as his own house. This property is known
as individual rationality .

A strategy-proof, individually rational, and Pareto efficient mechanism at-
tributed to David Gale was suggested in the original paper of Shapley and Scarf.
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Definition (Top Trading Cycles Mechanism (TTC)).

• Step 1. Construct a graph with the agents as vertices. For every agent i if
j owns i’s most preferred house put an edge from i to j. In the case when i
likes his own house best, use the edge (i, i). Since there are n vertices and
n edges, at least one cycle exists in this graph. Let (i1, i2 . . . , ik) form a
cycle. Then i1 leaves the market with the house of i2, i2 leaves the market
with the house of i3 and so on, and ik leaves the market with the house
of i1. This is repeated for all cycles in the graph1. Let N1 consist of all
the agents that leave the market at this stage.

• Step k. Let Nk−1 consist of all the agents that left the market at step
k − 1 or earlier. Then construct a graph with vertices N \ Nk−1. For
every agent put an edge that points to the owner of his most preferred
house among the ones that are still in the market. Again at least one
cycle exists because the number of vertices and the number of edges are
the same. The agents that are in a cycle leave the market with their most
preferred houses.

The above algorithm terminates, because at every step at least one cycle
exists, so at least one agent leaves the market. Therefore the algorithm can
have at most n steps.

Theorem 5.7. TTC is strategy-proof.

Proof. Let us assume that TTC is not strategy-proof. Then there exist an agent
i, a profile �= (�1,�2 . . . ,�n) and a misreport �′i such that agent i prefers
the house that he receives under TTC when he reports �′i to the one he receives
under TTC when he reports his true preference �i.

Run TTC on �. Assume that i leaves the market at step k. Observe that
i cannot obtain a house that left the market before he did, because the cycles
formed in those steps will remain unchanged whatever preferences i reports to
the mechanism. So TTC will assign i a house that belongs to some agent in
N \ Nk−1 whatever his reported preferences are. But agent i already received
his favourite among those, so he has no incentive to misreport.

TTC also obviously satisfies individual rationality, because when all houses
that agent i prefers to his own have left the market, he starts pointing at himself.
Thus a cycle of length one is formed and agent i leaves the market with his own
house, because all the cycles are removed at each stage. The fact that TTC
is Pareto efficient is also easy to observe, because if any agent receives a house
better than the one allocated to him, this house leaves the market at an earlier
step and so it is the favourite of the agent who receives it among the available
ones at this earlier step. If the potential new allocation also makes this agent
better off, he receives a house that leaves the market at an even earlier step.
Constructing a chain like this we always reach an agent who receives his most
preferred house and since the new allocation gives his house to some other agent
he is for sure made worse off.

The outcome of the TTC mechanism cannot be improved upon by any coali-
tion S ⊆ N , in the sense that if the agents of that coalition trade only between

1The cycles do not overlap, because the out degree of all nodes is 1.
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themselves all of them will be at least as happy as in the original allocation and
at least one will be strictly happier. Formally, if for an allocation x there exists
a coalition S ⊂ N and a bijective function y : S → S that represents a way the
agents in S can trade between themselves such that for all i ∈ S y(i) �i x(i)
or y(i) = x(i) and for at least one j ∈ S y(j) �j x(j), we say that coalition S
blocks x. An allocation x is said to be in the core if it is not blocked by any
coalition.

The following result by Roth and Postlewaite [47]:

Theorem 5.8. The assignment resulting from TTC is the unique assignment
in the core for any profile of preferences.

Proof. First let us prove that the assignment resulting from TTC is in the core.
Assume this is not the case. Then for some profile � there exists a coalition
S and a way y : S → S that the agents in S can trade between themselves,
such that if x is the outcome of TTC on � for all i ∈ S y(i) �i x(i) and for at
least one j ∈ S y(j) �j x(j). Define Sk = S ∩ (Nk \Nk−1) and find the least k
such that Sk 6= ∅. Then the agents in Sk already received their most preferred
houses from a superset of the set of the houses of agents in S. Since y should not
decrease their utility they should still get exactly the same houses they received
before. Note that for each cycle formed on step k either all of the agents in the
cycle are in S or none of them, because if one agent from the cycle is in S he
already received his most preferred house among the ones belonging to agents
in N \ Nk−1 and therefore this house belongs to an agent in S, otherwise the
agent will be made worse off by trading within S. So he receives the same house
he receives under TTC, and the agent owning this house is also in S. Repeating
the argument we have that the entire cycle is in S. Then consider the least
k′ > k such that Sk′ 6= ∅. Again all the houses that have already left the market
are either already reserved for the agents in Sk or just do not belong to agents
in S. Therefore the agents in Sk′ should also receive the same houses as before.
Repeating this argument down the partition of S, we get ∀i ∈ S x(i) = y(i),
which contradicts the fact that for at least one j ∈ S y(j) �j x(j).

Now assume that the core has more than one element. We already know
that the outcome of TTC is in the core. Since the agents of N1 receive their
most preferred houses under TTC they would form a blocking coalition for any
assignment that does not assign all of them exactly those houses. Now given
that all those houses are already assigned the agents of N2 \N1 received their
most preferred among the rest of the houses and they would form a blocking
coalition for any assignment that fails to give to all of them the same houses.
This argument can be continued for allNk\Nk−1 and so any assignment different
from x has a blocking coalition.

In fact it turns out that TTC is the only mechanism that is strategy-proof,
Pareto efficient and individually rational. This result is from [36].

Theorem 5.9. A mechanism for the housing market setting is strategy-proof,
Pareto efficient and individually rational if and only if it results in the unique
allocation in the core.

Proof. We have already seen that TTC results in the unique allocation in the
core and has the required properties, so we need to prove one direction only.
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Let for any two allocations x and y J(x, y,�) be the set of those agents that
strictly prefer the house assigned to them in x to the one assigned to them in y.
That is J(x, y,�) = {i ∈ N |x(i) �i y(i)} and let I(x, y,�) be the set of agents
that receive the same house under x and y. So I(x, y,�) = {i ∈ N |x(i) = y(i)}.
Obviously for any x and y J(x, y,�), J(y, x,�) and I(x, y,�) form a partition
of N . First make several observations.

Claim. For any two allocations, x 6= y that are Pareto efficient with respect to
some profile � we have J(x, y,�) 6= ∅.

Proof. To see this assume the contrary J(x, y,�) = ∅. Then either for some
j ∈ N j ∈ J(y, x,�) and then y Pareto dominates x or ∀i ∈ N i ∈ I(x, y,�),
which implies that x = y. So in both cases we reach a contradiction.

Claim. Take some profile �. Let x be the unique allocation in the core for � and
y be some individually rational and Pareto efficient with respect to � allocation,
such that x 6= y. Then ∃j ∈ J(x, y,�) such that x(j) �j y(j) �j h(j).

Proof. Since x is also Pareto efficient, by the first claim we have J(x, y,�) 6= ∅.
If for all agents i ∈ N x(i) �i y(i) �i h(i) is false, then ∀i ∈ J(x, y,�) it is
the case that y(i) = h(i), because of the individual rationality of y. Take S =
N \J(x, y,�). The agents of S all get the house of some other agent in S under
y, because the other agents receive their own houses. Then ∀i ∈ S y(i) �i x(i)
and also J(y, x,�) 6= ∅ again by the first claim, so S is a blocking coalition for
x, which contradicts the choice of x as the allocation in the core. Therefore a j
with the required property exists.

Now take a mechanism g that is strategy-proof, Pareto efficient and individ-
ually rational and let f(�) give us the unique allocation in the core. Fix an ar-
bitrary profile � until the end of the proof. We need to show that g(�) = f(�).

Let again x be f(�). Now define a new profile �′ from � such that for each
agent i and each a ∈ H such that a 6= h(i) and x(i) �i a we have h(i) �′i a and
otherwise �′ agrees with �. Intuitively this means that for all agents who did
not receive their own house under TTC their own house is moved up in their
preferences right after the house they received and nothing else changes.

Obviously this change in the preferences of the agents does not affect the
way TTC assigns the houses. So f(�) = f(�′) = f(�T ,�′−T ) for all T ⊆ N .

Claim. g(�′) = f(�′)

Assume that f(�′) = x, g(�′) = y and x 6= y. Then by the second claim
∃j ∈ J(x, y,�′) x(j) �′j y(j) �′j h(j). However, since f(�) = f(�′) = x, by
the construction of �′ we know that this is impossible, because for all i either
h(i) = x(i) or h(i) directly follows x(i) in �′i.

Now to finish the proof of the theorem we will show by induction on the size
of T that for all T g(�′−T ,�T ) = f(�′−T ,�T ).

Base case: T = ∅ is covered in the claim above.
Inductive step: Let the claim be proven for every |T | = k and assume that

for some |T | = k + 1 we have g(�′−T ,�T ) 6= f(�′−T ,�T ). Let g(�′−T ,�T ) = y
and f(�′−T ,�T ) = x. And so by the second claim ∃j ∈ J(x, y,�′−T ,�T ) such
that j likes the house allocated to him in x strictly more than the one allocated
to him by y, which he likes strictly better than the one he owns.
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• Case 1: j ∈ N\T . Then we have x(j) �′j y(j) �′j h(j), which is impossible
by the definition of �′, because x(j) is exactly the house allocated to j by
the allocation in the core when the profile is �.

• Case 2: j ∈ T . Then x(j) �j y(j) �j h(j). By the induction hypothesis
g(�′−T∪{j},�T\{j}) = f(�′−T∪{j},�T\{j}). Since f(�′−T∪{j},�T\{j}) =

f(�′−T ,�T ) = f(�) = x, we have g(�′−T∪{j},�T\{j}) = x. Now this
contradicts the strategyproofness of g, because if j has preference �j he
has incentive to report �′j instead, since x(j) �j y(j).

In both cases a contradiction is reached, therefore the assumption was wrong
and g(�′−T ,�T ) = f(�′−T ,�T ).

This finishes the induction argument and now taking N for T gives us the
claim of the theorem.

5.3 House Allocation

In this section we look into a setting similar to the above one, but without initial
ownership. We assume that the objects are collectively owned instead or that
they are social endowments. However, we keep the assumption that each agent
needs only one object, which is known as the unit-demand assumption.

Let |N | = n be a set of agents and |O| = m be a set of objects. We assume
that n ≤ m. Each agent i has a strict preference �i over the objects and we
denote the preference profile �= (�1,�2 . . . ,�n). A feasible assignment is a
1-1 function x : N → O that determines for each agent his assigned object.

This setting resembles many real-life scenarios — the assignment of dorm
rooms to freshmen, offices to employees, jobs to workers and so on. But it
became popular as the house allocation setting, in terms of houses that are
social endowments, and need to be allocated to agents.

A mechanism in this setting is a function that given a profile � returns a
feasible assignment. Note that any feasible assignment is a possible outcome,
but the preferences of every agent depend only on the house he receives in the
assignment. Thus any agent is indifferent between all assignments in which he
receives the same object and so his preferences over the possible outcomes are
not strict even though we are assuming strict preferences over the houses.

These indifferences might prove problematic when an agent can by reporting
different preferences cause the mechanism to allocate different objects to others
without changing the object allocated to him. This may lead to bribery or joint
attempts at manipulation. It is therefore natural to require that a rule does not
allow for situations like this.

Definition (Nonbossy profiles). A mechanism f is called nonbossy if for all
preference profiles �, all �′i and assignments x and y such that f(�) = x and
f(�′i,�−i) = y, x(i) = y(i) implies that x = y.

Another intuitive property that may seem desirable for mechanisms in our
setting is monotonicity. It turns out that strategyproofness and nonbossiness
together imply monotonicity.
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Definition (Monotonicity). A mechanism f is called monotonic if for all
profiles � and �′ if f(�) = x and for all o ∈ O and all i ∈ N we have x(i) �i o
implies x(i) �′i o, then f(�′) = x = f(�).

Lemma 5.10. Any strategy-proof and nonbossy mechanism f for the house
allocation setting is also monotonic.

Proof. Take a mechanism f that is strategy-proof and nonbossy and two profiles
� and �′ such that f(�) = x and for all o ∈ O and all i ∈ N we have x(i) �i o
implies x(i) �′i o. Let f(�′1,�−1) = y. By nonbossiness we know that either
x = y or x(1) 6= y(1). Assume that x(1) 6= y(1). Then by strategyproofness
x(1) �1 y(1) and y(1) �′1 x(1), but that contradicts the required property of �
and �′. So x = y.

The above argument can be repeated for all agents one after another chang-
ing from �i to �′i, so in the end we have f(�′) = f(�).

Definition (Neutrality). Take any permutation π of the objects. Let �πi be the
permutation of a preference �i, so o1 �πi o2 if and only if π−1(o1) �i π−1(o2).
Also define xπ for each allocation x such that xπ(i) = π(x(i)).

A mechanism f is called neutral if f(�π) = xπ whenever f(�) = x.

Lemma 5.11. Any neutral mechanism f for the house allocation setting is also
onto.

Proof. Take a neutral mechanism f and any feasible assignment x. We need to
prove that there exists a profile such that the mechanism results in x.

To that end take an arbitrary profile � and let f(�) = y. Consider any
permutation π such that π(y(i)) = x(i) for all i. Then by neutrality f(�π) =
x.

Lemma 5.12. Any strategy-proof, nonbossy, onto mechanism f for the house
allocation setting is Pareto efficient.

Proof. Let f be strategy-proof, nonbossy and onto. Suppose it is not Pareto
efficient, so there exist a profile � and an assignment x such that f(�) = y is
Pareto dominated by x. That is for each i ∈ N x(i) �i y(i) and for at least
one j x(j) �j y(j). Take a profile �′ such that all agents rank first x(i) and
if x(i) 6= y(i), then they rank y(i) second. Then by monotonicity (since f is
strategy-proof and nonbossy it is also monotonic) f(�′) = y. Since f is onto
there is some profile �′′ such that f(�′′) = x. Then again by monotonicity we
get f(�′) = x. Thus x = y, which contradicts ∃j x(j) �j y(j).

Corollary 5.13. Any strategy-proof, nonbossy and neutral mechanism f for the
house allocation setting is Pareto efficient.

The following theorem, proved by Svensson in [57], characterizes the class of
strategy-proof, nonbossy and neutral mechanisms.

Definition (Serial dictatorship). For a given order i1, i2 . . . , in of the agents
in N the corresponding serial dictatorship is the mechanism that assigns to
agent i1 his favourite item oi1 , to agent i2 his favourite oi2 among O \ {oi1}
and so on. So that for each k agent ik is assigned his favourite object among
O \ {oi1 , oi2 . . . , oik−1

}.
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Theorem 5.14. Any strategy-proof, nonbossy, neutral mechanism f for the
house allocation setting is equivalent to the serial dictatorship for some order of
the agents.

Proof. Take a profile � in which all agents have the preference o1 �i o2 · · · �i
om. We know by Pareto efficiency that the allocated objects are o1 through
on. Without loss of generality let ik get ok and call this assignment x. Then
in this profile f is equivalent to the serial dictatorship determined by the order
i1, i2 . . . , in. By neutrality it is easily proved that for any profile in which all
agents have the same preferences the outcome is the same as in the serial dic-
tatorship determined by the above order of the agents. To that end consider a
profile in which all agents share the arbitrary preferences oj1 �i oj2 · · · �i ojm .
Take the permutation π such that π(ok) = ojk . Then f(�π) = xπ and we have
again that agent i1 receives his favourite object oj1 = π(o1), agent i2 receives
his favourite oj2 among O \ {oj1}, etc.

Now to prove it for an arbitrary profile � take the same ordering of the
agents and compute in the serial dictatorship which object would be assigned
to which agent. Let the result be ik gets assigned some object ojk for all k. And
define the preferences �′ to be the following:

• ojk �′ ojl if k < l ≤ n

• ojk �′ os if k ≤ n and os 6∈ {oj1 , oj2 . . . , ojn}

• os �′ ot if os, ot 6∈ {oj1 , oj2 . . . , ojn} and s < t

Now consider the profile in which all agents share the above preferences. We
know that in this profile agent ik is assigned object ojk and by monotonicity the
result at � is the same, so again we have that the outcome is equivalent to the
outcome of the serial dictatorship.

Note that relaxing the neutrality to just Pareto efficiency makes the above
result invalid. The following example from [57] shows this. Take three agents
N = {1, 2, 3} and three objects O = {a, b, c} and consider the following mecha-
nism — in case a is the top preference of agent 2, assign agent 2 a, assign agent
1 his favourite among {b, c} and give the remaining object to agent 3. Otherwise
let agent 1 take his favourite object, let agent 2 take his favourite among the
remaining two and assign the last one to agent 3.

It is easily verified that the above mechanism is Pareto-efficient, strategy-
proof, nonbossy, and onto, but it is obviously not neutral, because object a has
a distinct role, and it is not a serial dictatorship.

5.4 A Comparison of TTC with Random Endow-
ments and Random Serial Dictatorship

The serially dictatorial mechanism described in the previous section has many
desirable properties, but it fails to treat agents equally. In fact Svensson’s re-
sult implies that no deterministic mechanism that is strategy-proof, neutral and
nonbossy can treat agents as equals. To circumvent this in practice the ordering
of the agents is chosen uniformly at random. The resulting randomized mecha-
nism is known as random serial dictatorship (RSD) and is often used, because
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of its desirable properties like Pareto efficiency, fairness and computational sim-
plicity2.

Another way of achieving ex-ante fairness when allocating n objects among
n agents is fixing an endowment uniformly at random and then using TTC to
find the unique allocation in the core of the resulting housing market.

In [2] Abdulkadiroğlu and Sönmez show that the core from random endow-
ments mechanism is equivalent to random serial dictatorship, i.e. they result in
the same lottery. They believe that their insightful result further justifies the
use of RSD in practice.

Let us fix a set of agents N = {1, 2 . . . , n} and a set of houses H =
{h1, h2 . . . , hn}. Denote φπ the serial dictatorship determined by ordering the
agents according to the permutation π and ψh the TTC mechanism with ini-
tial endowment h : N → H. Let Φ = {φπ |π is a permutation of N} and
Ψ = {ψh |h : N → H is a bijection}. Note that there are exactly n! permu-
tations of the agents and n! possible bijective initial allocations. So |Φ| = |Ψ|.

Fix a preference profile � and denote the set of all Pareto efficient matchings
by Υ. For an allocation x define Ex = {h |ψh(�) = x} to be the set of initial
endowments such that the core mechanism from them results in x on � and
Ωx = {π |φπ(�) = x} to be the orderings of the agents such that the serial
dictatorship mechanism determined by them results in x on �. We will show
that ∀x ∈ Υ |Ex| = |Ωx| by defining a 1− 1 onto mapping f : Ex → Ωx.

To that end we need to take a closer look into the structure of the graphs
obtained at any step of applying TTC to a given profile. Consider for a step
t ≥ 2 the agents in Nt \ Nt−1. Those are exactly the agents that leave the
market at step t. At step t− 1 the cycles of step t have not yet formed, so some
of the agents in Nt \ Nt−1 point to an agent that leaves the market at stage
t− 1. Let us call those agents unsatisfied and denote the set of them by

Ut = {i | i ∈ Nt \Nt−1 and at step t− 1 i’s top choice
house belongs to some agent j ∈ Nt−1 \Nt−2}

where N0 = ∅. Take St = (Nt \ Nt−1) \ Ut. Those are the satisfied agents,
because they liked even at step t− 1 the house they got in step t.

Observe that at every stage t except for the cycles in Nt \ Nt−1 also some
chains form. The head of each formed chain is an unsatisfied agent possibly
followed by some satisfied agents, such that each of them points at the previ-
ous one. And at the next step, after some more houses leave the market all
unsatisfied agents start pointing at some tail of such a chain. Note that mak-
ing each unsatisfied agent point at some tail does not automatically guarantee
that cycles are formed, but since we are considering only agents that leave the
market at step t + 1 in this case we know that cycles will form. Let the set
of chains formed in the graph of step t be Ct+1 = {C1

t+1, C
2
t+1 . . . , C

s
t+1}. For

completeness assume C1 = ∅We refer to this as the chain structure of Nt+1\Nt.
Observe that it forms a partition of Nt+1 \Nt.

2Note, however, that when agents have cardinal utilities over the objects RSD is not
efficient — that is there may exist a lottery that is weakly preferred in expectation to the one
resulting from RSD by all agents and strictly preferred by at least one agent. A mechanism
that is efficient in that sense, but not strategy-proof is known as PS (probabilistic-serial). In
fact when agents have cardinal utilities no mechanism satisfies all strategyproofness, Pareto
efficiency and equal treatment of equals, see [59].
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Since both the cycle and the chain structure depend on the initial endowment
in what follows for simplicity we will write Nt(h) and Ct(h) to denote the
structures that are formed when TTC is run on the fixed preference profile �
with initial endowment h.

Theorem 5.15. For any house allocation problem the number of serially dic-
tatorial mechanisms selecting a given Pareto efficient allocation x is the same
as the number of initial endowments that make x the unique element in the core
of the resulting housing market. That is, ∀x ∈ Υ |Ex| = |Ωx|.

Proof. Fix a Pareto efficient allocation x. Define a function f : Ex → Ωx.
For any initial endowment h : N → H such that ψh(�) = x find Nk(h) and

Ck(h) for every k and define an ordering of the agents f(h) according to the
following rules:

1. The agents inNt(h)\Nt−1(h) are listed before the agents inNt+1(h)\Nt(h)
for all t.

2. The agents in N1 are ordered based on the index of their endowment
according to h, starting with the smallest index.

3. Within Nt(h) \Nt−1(h) the chains are ordered according to the index of
the endowment of the tails in h. The smallest index first. Let the ordering
of the chains at some t be Ci1 , Ci2 . . . , Cis . Then the agents in Cik are
listed before the agents in Cik+1

for all k ∈ {1, 2 . . . , s− 1}.

4. Within each chain the agents are ordered starting with the head and fol-
lowing their order in the chain.

First let us show that the range of f is a subset of Ωx.

Claim. For all h such that ψh(�) = x we have φf(h)(�) = x.

Proof. This claim is easy to verify, because given an endowment h and the
corresponding partition of the agents Nk we know that each agent in Nk \Nk−1

receives his favourite house among the ones still in the market, so those houses
are necessarily different and any ordering that places the agents in Nk \ Nk−1

before the agents in Nk+1 \Nk will determine a serial dictatorship mechanism
that results in the same outcome as ψh on �. Since the above construction has
this property, the range of f is a subset of Ωx.

Claim. The f : Ex → Ωx defined above is 1− 1.

Proof. Take h1, h2 ∈ E . We need to prove that f(h1) = f(h2) implies h1 = h2.
Without loss of generality let f(h1) be the ordering i1, i2 . . . , in. We first show
that the same agents leave the market at any step of TTC under both initial
endowments. This is proven by induction on the number of steps.

Base case: N0(h1) = N0(h2) = ∅
Inductive step: Assuming Nt(h1) = Nt(h2) for all t ∈ {1, 2 . . . , k− 1}, prove

Nk(h1) = Nk(h2).
Since in all the previous steps the same agents have left the market, then for

some s1 and s2 Nk(h1) = {i1, i2 . . . , is1} and Nk(h2) = {i1, i2 . . . , is2}. Suppose
s1 6= s2 and without loss of generality let s1 < s2. Then agent is1+1 is the
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first agent in Nk+1(h1) \ Nk(h1) and by the construction of the order he is an
unsatisfied agent. So agent is1+1 does not get his favourite house among those of
agents in N \Nk−1(h1) and since by inductive hypothesis Nk−1(h1) = Nk−1(h2)
he also does not get his favourite among N \ Nk−1(h2), because under both
endowments is1+1 receives the same house, which contradicts the assumption
that is1+1 ∈ Nk(h2). So s1 = s2 and thus Nk(h1) = Nk(h2), which concludes
the proof of the inductive step.

Let Hk be the set of the most preferred houses of the agents in Nk \Nk−1.
Now given that Nk(h1) = Nk(h2) = Nk for all steps k, we need to prove h1 = h2.
We also do this by induction on k for each Nk:

Base case: ∀i ∈ N1 h1(i) = h2(i).
To see this note that each agent in N1 gets his most preferred house. Since

all of them receive their favourite house, they are all different and so |H1| = |N1|
and they are all endowments of agents in N1. Since the agents in N1 are ordered
according to the indexes of their endowments and f(h1) = f(h2), this order
determines uniquely the endowments of agents in N1.

Inductive step: Assuming that ∀i ∈ Nj h1(i) = h2(i) for all j in {1, 2 . . . , k−
1} and let the set of houses endowed to agents in Nk \Nk−1 Hk be fixed, prove
that ∀i ∈ Nk h1(i) = h2(i).

We only need to prove the claim for all agents in Nk \Nk−1. Observe that
since we know the set Hk−1 and the set Hk consists of the favourite houses of

the agents in Nk \ Nk−1 among H \ (
k−1⋃
j=1

Hj) we know exactly which are the

unsatisfied agents in Nk, because we know if the favourite house of each agent

among H \ (
k−2⋃
j=1

Hj) is in Hk−1 or not. Therefore the chain structure within Nk

is the same under both h1 and h2. We also know that each agent among the
satisfied ones receives his favourite house among the ones still available, so this
house is the endowment of the agent before him in the chain that he is part
of. It now remains to fix the endowments of the agents that are tails of some
chain, but we know the set of houses that are endowed to them and also by the
rules of building the order from the initial endowment, we know that chains are
ordered according to the indices of the endowments of their tails. Therefore the
endowment of each agent in Nk \ Nk−1 can be determined and it is the same,
so ∀i ∈ Nk h1(i) = h2(i).

Observe that since f is 1− 1, |Ex| ≥ |Ωx|.

Claim. The function f : Ex → Ωx is onto.

Proof. Since we know from the previous sections that both TTC and serial
dictatorships result in Pareto efficient allocations

⋃
x∈Υ

{ψh |h ∈ Ex} = Ψ and⋃
x∈Υ

{ψπ |π ∈ Ωx} = Φ. So
∑
x∈Υ

|{ψh |h ∈ Ex}| =
∑
x∈Υ

|{ψπ |π ∈ Ωx}| = n!, but

since for all x ∈ Υ |Ex| ≥ |Ωx|, we have ∀x ∈ Υ |Ex| = |Ωx|

This concludes the proof of the theorem.

Corollary 5.16. The random serial dictatorship results in exactly the same
lottery as TTC on random endowments.
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Proof. Since both mechanisms always result in a Pareto efficient outcome and
for every Pareto efficient outcome x by the previous theorem there are the same
number of endowments and orderings of the agents such that the corresponding
mechanisms result in x. Under the uniformly random distribution every ordering
and every endowment have the same chance of being selected, so the lottery over
the outcomes is the same.

5.5 Housing Market with Both Existing and New
Tenants

So far we considered the problem of assigning indivisible goods to agents both
when a predetermined allocation exists and when all objects are a social en-
dowment. In real life situations, however, it is often the case that some agents
already have an object assigned to them possibly in a previous round, while oth-
ers just enter the market. Consider, for example, allocating on-campus housing
to students. In this market we have some freshmen who enter the market for
the first time, some rooms vacated by the graduating class and some existing
tenants.

In practice usually a variant of RDS is applied to this setting. It is known as
random serial dictatorship with squatting rights. This mechanism asks
the existing tenants to chose between keeping their own rooms and joining the
lottery. After they make their choices, the ones who choose to make use of their
squatting rights are assigned to the rooms they already have. All the other
rooms are declared vacant and RSD is used to allocate them among the agents
whose assignment has not been finalized yet.

A significant disadvantage of this mechanism is that it does not guarantee
a Pareto efficient outcome. This is the case because an existing tenant who
chooses to enter the lottery, may in fact receive a worse room than the one he
had before. Since this mechanism is not individually rational for the existing
tenants, they may prefer to stay out of the lottery, thus generating potential loss
of efficiency. To see this consider the following example: there are three houses
h1, h2 and h3 and three tenants i1, i2 and i3. Only i1 is an existing tenant and
he lives at h1. The order is i3, i2, i1 and the preferences are as follows:

i �i
i1 h2 �i1 h1 �i1 h3

i2 h1 �i2 h2 �i2 h3

i3 h3 �i3 h2 �i3 h1

Now since agent i1 is last in the order if agents i2 and i3 like houses h1 and h2

better than h3, he will be worse off if he participates in the lottery. Therefore if
i1 does not know the preferences of the other agents, he may choose to keep h1.
This is, in fact, a rational decision if he likes h2 only slightly better than h1, but
he really dislikes h3. In this case agent i2 receives h2 and agent i3 receives h3.
This allocation is, however, Pareto dominated by the one in which i1 receives
h2, i2 receives h1 and i3 receives h3.

Formally the setting of house allocation with both existing and new tenants
consists of a set of agents N partitioned into existing tenants NE and new ones
NN , a set of houses H and an injective function h : NE → H that determines
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the house of every existing tenant. A feasible allocation is a bijective function
x : N → H.

All agents have strict preferences over H and as before those induce the
weak preferences of every agent i over the feasible allocations that depend only
on the house allocated to i.

As can be seen from the example, in this setting it is important to find a
mechanism that is incentive compatible and makes it safe for existing tenants
to participate. A mechanism that is incentive compatible, strategy-proof, and
Pareto efficient was suggested by Abdulkadiroğlu and Sönmez in [3].

Mechanism 1 is a modification of TTC to include vacant houses and agents
without initial endowments. It depends on a fixed in advance priority order of
the agents that again can be based on seniority or can be selected at random.

Definition (Mechanism 1). Given a priority order i1, i2, . . . , in of the agents
follow the procedure.

Step 1. Construct a graph with the agents and the houses as vertices. For every
agent i put an edge in the graph pointing at his most preferred house.
For every occupied house put an edge pointing at its owner, and for every
vacant house put an edge pointing at the first agent in the ordering. The
graph has equal number of vertices and edges, so there is at least one cycle
and the out degree of every node is 1, so if there is more than one cycle,
they are all disjoint. Remove the agents and houses that participate in
a cycle and assign to every agent the house he points at. If an existing
tenant leaves the market, but the house he owned remains3, label his house
vacant for the next steps.

Step k. While there are remaining agents and houses, make the new version of the
graph. For every agent that remains in the market add an edge pointing
to his most preferred house that is still available, for every occupied house
add an edge pointing at its owner and for every vacant house add an
edge pointing at the agent with the highest priority among the remaining
ones. New cycles form, because the number of edges and nodes is the
same. Remove the agents and houses that form cycles and assign them
correspondingly. Again if an existing tenant leaves without the house he
owned, label the house vacant.

Intuitively this mechanism treats all vacant houses as if they all belong to
the agent with the highest priority. Having agents that own more than one
house does not affect the desirable properties of TTC such as Pareto efficiency,
incentive compatibility and strategyproofness4.

Note that in this variant of the mechanism it is not necessarily the case that
an occupied house leaves the market together with the agent who owned it,
because it may be the case that he had the highest priority and all the vacant
houses were treated as belonging to him, so one of them left the market instead.
In this case we simply declare the house vacant for the next round.

In case all agents are existing tenants the algorithm reduces to TTC. In
case all agents are new tenants, the algorithm reduces to RSD. To see this note
that when all houses are vacant at every round the only cycle that can form

3This can happen if he is the highest priority agent and all the vacant houses point at him.
4Of course, the additional endowments cannot depend on the reported preferences.
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is between the agent who has the highest priority in this round and his most
preferred house.

Interestingly this mechanism looks like it can accommodate for any hierarchy
of seniorities like the RSD algorithm, but it fact it is possible that a more senior
agent envies an existing tenant for the house he received. This can be seen in
another simple example. Let us again have three houses h1, h2 and h3 and three
tenants i1, i2 and i3. Again only i1 is an existing tenant and he lives at h1. The
order of seniority is i3, i2, i1 and the preferences are as follows:

i �i
i1 h2 �i1 h1 �i1 h3

i2 h2 �i2 h1 �i2 h3

i3 h1 �i3 h3 �i3 h2

Now at the first step the following graph is formed:

i1 // h2

��

i2oo

h1

OO

i3oo h3
oo

So agent i1 receives h2 and agent i3 receives h1. For the next round there is
only one house and one agent left, so agent i2 is assigned h3. Note that agent
i2 is more senior that agent i1 and still he received a hose he likes less than the
house i1 received.

This should not be considered a problem, because it is necessarily the case
that existing tenants have some more power than new tenants, because of the
incentive compatibility requirement that applies to existing tenants only.

In fact an alternative mechanism, that proves to be equivalent to the sug-
gested one, gives some more incentive into what is happening in practice when
the above mechanism is used.

Definition (The “you request my house - I get your turn” mechanism(YRMH-IGYT)).
Given a priority ordering of the agents i1, i2, . . . , in follow the procedure:

1. Introduce a marker for every agent, indicating whether he has already
received a higher priority than the one he had in the original list, and
mark all agents as having their original priority.

2. Let the agent with the highest priority who is still in the market be ik and
his most preferred house among the ones still in the market be hj .

If hj is a vacant house, find the agent with the highest priority that has
not been marked as moved. Let this agent be ip

5. Assign all agents up
to and including ip their most preferred hoses and remove them from the
market. Note that the most preferred house of each of them, with the
exception of ik, is the house originally owned by the previous one.

If hj is an occupied house, let the owner of this house be it. If it is marked
as having his original priority, move him to the top of the priority ordering,
mark him as moved and go back to the beginning of step 2 with it as the

5It is possible that ip = ik.
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highest priority agent. If it is already marked as moved, then assign all
the agents with priority higher than it and it himself their most preferred
houses and remove them from the market. Note that in this case all of
the removed agents are existing tenants that were moved to the top of the
priority ordering by another agent who wanted their house.

3. Repeat step 2 until no agents remain.

It is relatively straightforward to see that the two mechanisms suggested
are equivalent, but YRMH-IGYT reveals the way priority is traded for the
opportunity to get an occupied house. In the above example agent 1 receives
priority, because agent 3, who is first in the order, wants his house. Thus agent
1 gets his most preferred house allowing agent 3 to receive the house he owned,
and agent 2 receives his least preferred house despite his priority.

Theorem 5.17. YRMH-IGYT and mechanism 1 are equivalent for any priority
order.

Proof. For any set of agents N ′ and houses H ′ that are still in the market there
are two possible ways YRMH-IGYT can assign some more houses.

Case 1. If there is a sequence of agents (possibly consisting of one agent
only) such that all but the last one have been moved up in the priority order
and the first one wants a vacant house most. Then after the last assignment
took place, the last agent in this sequence had the highest priority, so all the
vacant houses point at him in the graph of mechanism 1 over N ′ and H ′. All
of the agents in the sequence, except the first one, like best the house of the
agent before them, because this is the only way they can receive this priority in
the order. Also the first agent in the sequence likes best a house that points at
the last one. Therefore the sequence forms a cycle in the graph of mechanism
1 over N ′ and H ′ and the agents in it are removed with the same assignments
under mechanism 1.

Case 2. If there is a sequence of existing tenants such that each likes the
house owned by the previous one most and thus gave him this place in the
priority order and the first one likes best the house of the last one. This is
a cycle consisting of existing tenants only and it also forms in the graph of
mechanism 1 over N ′ and H ′, so these agents receive the same assignments
under both mechanisms.

The YRMH-IGYT mechanism was later characterized by Sönmez and Ünver
in [55]. In order to give the characterisation we need to define weak neutrality
and consistency.

Definition (Weak neutrality). A mechanism f is called weakly neutral if for
all permutations of the houses π such that for every occupied house h π(h) = h
we have that whenever f(�) = x and f(�π) = y for all agents i π(x(i)) = y(i).

Intuitively, a mechanism is weakly neutral if the labelling of vacant houses
does not influence the outcome.

A subproblem of a house allocation problem with both new and existing
tenants with some set of agents N , some set of houses H, some ownership
function h : NE → H and some preference profile � is called well-defined with
respect to some mechanism f if f(�) = x and for some subset of agents N ′ ⊂ N
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such that ∀i ∈ N ′∃j ∈ N ′ h(i) = x(j) the subproblem consists of the agents in
N ′, the houses in H ′ = {h | ∃i ∈ N ′ x(i) = h} and the original ownership
function h restricted to N ′. The preferences of the agents in N ′ over the houses
in H ′ agree with their preferences in �. We refer to this profile as �H′N ′ .

Definition (Consistent). A mechanism f is called consistent if whenever for
some set of agents N , some set of houses H, some ownership function h and
some preference profile � f(�) = x for every well-defined with respect to f
subproblem determined by some N ′ ⊂ N such that f(�H′N ′) = y we have ∀i ∈
N ′x(i) = y(i).

Theorem 5.18. A mechanism for the house allocation setting with both new and
existing tenants is Pareto efficient, strategy-proof, incentive compatible, weakly
neutral, and consistent if and only if it is the YRMH-IGYT for some ordering
of the agents.

5.6 Allocation of Multiple Objects per Agent

An interesting extension of the house allocation setting is obtained by relaxing
the unit-demand assumption and allowing agents to be allocated sets of objects
instead of single objects only. In this setting the preferences of the agents need
to be defined over sets of objects instead of just objects. It is not entirely clear
how preferences should be lifted from objects to sets and if in this setting it is
at all reasonable to think of preferences over objects, because certain objects
might only be desirable together and completely lose their value separately, or
the other way around — two objects might be desirable separately, but not
together. For example, a pair of shoes is only of some value if you have both
the left and the right one.

Therefore we consider the possible preferences of the agents to be all linear
orderings of the subsets of O. Denote R to be the set of all possible profiles
and let P(O) be the power set of O. An allocation x : N → P(O) is feasible
if x(i) ∩ x(j) = ∅ for all i 6= j, because no object can be allocated to more
than one agent. An agent’s preferences over allocations only depend on what
he receives under that allocation, and so every agent is indifferent between all
allocations in which he receives the same subset of the objects. Observe that
the above feasibility requirement does allow for what is known in the literature
as free disposal — that is some objects may be left unallocated. For example,
allocating no object at all is a feasible assignment.

We refer to this setting as the multiple allocation setting .
Note that it is quite possible that some set of objects S is undesirable for

some agent i and he would rather receive nothing than receive this set. This is
formally represented by having the preferences of i such that ∅ �i S. Thus a
notion of individual rationality is reasonable for this setting, because an agent,
that receives an undesirable set, would prefer not to take part in the mechanism
at all. However, when free disposal is possible Pareto efficiency implies that no
agent receives an undesirable set. This is simple to show, because if we assume
that in a Pareto efficient allocation x some agent receives an undesirable set we
can define the allocation y such that:

y(j) =

{
∅ j receives an undesirable set under x
x(i) otherwise
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Then y clearly Pareto dominates x and y is feasible.
For this setting S. Pápai in [43] manages to characterize the class of strategy-

proof, nonbossy, Pareto efficient rules as the sequentially dictatorial rules, which
are essentially a generalization of the serial dictatorship rules in which only the
first dictator is fixed and the next agent at every step may depend on the choices
made by the previous agents.

Definition (Sequential choice rules). Let Σ(N) be the set of permutations of
the agents and σ : R → Σ(N) be a function from the possible profiles into the
permutations of the agents. The sequential choice rule determined by σ is
the procedure that for a given profile � runs the serial dictatorship with the
order σ(�) — in this setting that is the first agent receives his most preferred
set and the next agents receive their most preferred subset of the remaining
objects. We refer to such a function σ as an s-hierarchy network and denote the
sequential choice rule determined by the s-hierarchy network σ as fσ.

For σ ∈ Σ(N) denote σi� to be the i-th agent in the permutation σ(�).

Definition (Sequentially dictatorial mechanisms). A sequentially dictatorial
mechanism is a sequential choice rule determined by an s-hierarchy σ that
satisfies the following two conditions:

• ∀ �,�′∈ R σ1
� = σ1

�′

• Let fσ(�) = x and fσ(�′) = y. For all j > 1 if ∀i < j x(σi�) = y(σi�),

then σj� = σj�′ .

That is the first dictator is fixed for all profiles and the order of the other agents
only depends on the partial allocation already determined. We refer to such a
σ as an s-hierarchy tree.

Let us first make some observations about the setting.

Lemma 5.19. Any strategy-proof and nonbossy mechanism f is also monotonic.
Any strategy-proof and nonbossy mechanism f for the multiple allocation setting
is also monotonic.

Lemma 5.20. Any strategy-proof, nonbossy onto mechanism f for the multiple
allocation setting is Pareto efficient.

The proofs are analogous to the proofs of the corresponding lemmas for the
house allocation setting and therefore are omitted.

Theorem 5.21. A mechanism for the multiple allocation setting is strategy-
proof, nonbossy, and Pareto efficient if and only if it is a sequential dictatorship.

Proof. (⇐)
We need to show that sequential dictatorships are strategy-proof, nonbossy,
and Pareto efficient. Fix some s-hierarchy tree σ and consider the sequential
dictatorship determined by σ.

Strategyproofness: Assume fσ is not strategy-proof. Take a profile � and an
agent i, who can manipulate at�. Obviously if σ1

� = i, then i cannot manipulate
at this profile, because he already received his most favourite set. Assume
σ2
� = i. Then the preferences of i do not influence the first step and for all �′i
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if fσ(�) = x and fσ(�−i,�′i) = y, then x(σ1
�) = y(σ1

�) and σ1
� = σ1

(�−i,�′i)
.

Thus by the second condition on σ we have σ2
� = σ2

(�−i,�′i)
= j. But agent j

already receives his favourite set of the remaining at stage 2 objects and so he
cannot manipulate at this profile. This contradicts σ2

� = i. Repeating the same
argument for all stages we reach a contradiction.

Nonbossiness As we saw the proof above if a single agent changes his prefe-
rences his turn in the orderings determined by σ remains unchanged. Obviously
an agent j = σk� cannot affect agents σl� for all l ∈ {1, 2 . . . , k − 1}. There-
fore assume that there is some agent σl� for some l > k that can be affected

by j. Let fσ(�) = x, fσ(�−j ,�′j) = y and x(i) 6= y(i). But if x(σj�) =

y(σj�) = y(σj(�−j ,�′j)), then x(σl�) = y(σl�) = y(σl�) for all l ∈ {1, 2 . . . , k}
and so σk+1

� = σk+1
(�−j ,�′j). But this agent already received his favourite subset

of the remaining objects, so x(σk+1
� ) = y(σk+1

� ). Therefore by continuing this
argument we have x = y, which contradicts the existence of such an i.

Onto Take a feasible assignment x and a profile � in which each agent
likes best the set of objects allocated to him under x. Any serial dictatorship
mechanism would result in x, therefore so would any sequentially dictatorial
mechanism. Thus for every x there is a profile � such that fσ(�) = x .

Pareto efficiency Follows from the above properties by Lemma 5.20.
(⇒)

To establish that any strategy-proof, Pareto efficient and nonbossy mechanism
f is a sequential dictatorship first we need to show that there exists an agent
that always receives his most preferred set under f .

Claim. Fix a profile � such that the most preferred set of every agent is the
entire O and the second most preferred is ∅. So every agent wants either all
or nothing. If f(�) = x by Pareto efficiency there is one agent i such that
x(i) = O and x(j) = ∅ for all j 6= i. Then ∀ �′−i f(�i,�′−i) = x.

Proof. This claim is proven by induction on the size of the coalition S ⊆ N \{i}
trying to alter the assignment by misreporting.

Base case: Let |S| = 1 and j ∈ S for some j ∈ N \ {i}. Fix arbitrary
�′j and define �′′j to have O as the most preferred set and otherwise to be the
same as �j . By strategyproofness agent j cannot obtain O by reporting any
preference. So if f(�−j ,�′j) = z and f(�−j ,�′′j ) = y, then z(j) = y(j) also by
strategyproofness. And by nonbossiness z = y. Suppose y(j) 6= ∅. Then since
no agent k 6= j can receive O in this case, they all receive nothing by Pareto
efficiency and if y(j) 6= O, then y is Pareto dominated by the allocation that
gives O to j and nothing to all other agents, which is a contradiction with the
Pareto efficiency of f . So y(j) = O and therefore strategyproofness is violated.
Then y(j) = ∅ and by nonbossiness f(�) = f(�−j ,�′j) as needed.

Inductive step: Let for all l < k for all coalitions S ⊆ N such that |S| = l
and for all joint misrepresentations �′S f(�) = f(�−S ,�′S) = x.

Consider a coalition S ⊆ N \ {i} such that |S| = k. We need to show that
∀ �′S f(�) = f(�−S ,�′S). To that end fix �′S and let f(�−S ,�′S) = z. Fix an
agent h ∈ S. By inductive hypothesis f(�−S∪{h},�′S\{h}) = f(�) = x. Now

z(h) 6= O by strategyproofness. If z(h) = ∅ by nonbossiness z(l) 6= O for all
l ∈ S. If ∅ 6= z(h) ⊂ O, then by feasibility again we have z(l) 6= O for all l ∈ S.
So in every case for all l ∈ S z(l) 6= O.
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Consider a profile �′′S such that �′′j ranks O first and the other sets are
ranked according to �′j for all j ∈ S. By strategyproofness and nonbossiness
f(�′S ,�−S) = f(�′′S ,�−S) = z.

Now define a profile �̂ such that

�̂j =

{
�j if j 6∈ S
a profile ranking O first, z(j) second and ∅ third if z(j) 6= ∅ if j ∈ S

Note that since f is strategy-proof and nonbossy, f is also monotonic. By
monotonicity f(�̂) = f(�′′S ,�−S) = z.

Now assume x 6= z. Since no agent gets O under z, if there is only one agent
that receives a nonempty set under z, then giving O to that agent is a feasible
allocation that Pareto dominates z. Therefore by Pareto efficiency there are at
least two different agents h1, h2 ∈ N \ {i} such that z(h1) 6= ∅ and z(h2) 6= ∅.

Take �h2 be a profile ranking O first , z(h1) second and z(h2) third. If
f(�h2 , �̂−h2) allocates z(h1) to h2, then by Pareto efficiency it allocates ∅ to
h1. But f(�h1

,�h2
, �̂−{h1,h2}) = x by induction hypothesis. And so h1 is bossy

in profile (�h2
, �̂−h2

) versus the profile (�h1
,�h2

, �̂−{h1,h2}). So f(�h2
, �̂−h2

)
allocates z(h2) to h2 by strategyproofness and thus f(�h2

, �̂−h2
) = f(�̂) = z

by nonbossiness.
Let �h1 be a profile ranking O first, then z(h1) and z(h2) third. By strate-

gyproofness and nonbossiness

f(�h1 ,�h2 , �̂−{h1,h2}) = f(�h2 , �̂−{h2}) = z. (5.1)

Let �∗h1
be a profile that ranks O first, z(h2) second and z(h1) third. Then if

f(�∗h1
,�h2 , �̂−{h1,h2}) allocates z(h1) to h1, by nonbossiness and f(�h2 , �̂−h2) =

z, we get f(�∗h1
,�h2 , �̂−{h1,h2}) = z. This, however, violates Pareto efficiency,

because switching the endowments of h2 and h1 is a feasible allocation that
dominates z. So by strategyproofness f(�∗h1

,�h2
, �̂−{h1,h2}) allocates z(h2) to

h1 and by Pareto efficiency it allocates z(h1) to h2.
Now take �∗∗h2

to be a preference profile that ranks O first, z(h1) second, and
∅ third. Then by strategyproofness and nonbossiness we have:

f(�∗h1
,�h2

, �̂−{h1,h2}) = f(�∗h1
,�∗∗h2

, �̂−{h1,h2}) (5.2)

Now if f(�h1
,�∗∗h2

, �̂−{h1,h2}) allocates z(h1) to h1, then by Pareto efficiency
it allocates ∅ to h2 and h2 is bossy in profile (�h1

,�∗∗h2
, �̂−{h1,h2}) versus the

profile (�h1 ,�h2 , �̂−{h1,h2}), because by the inductive hypothesis

f(�h1
,�h2

, �̂−{h1,h2}) = f(�) = x.

Thus by strategyproofness and 5.2 we get that f(�h1
,�∗∗h2

, �̂−{h1,h2}) allocates
z(h2) to h1 and by nonbossiness it allocates z(h1) to h2.

Since z(h1)�h2
z(h2) and f(�h1

,�h2
, �̂−{h1,h2}) = z by Equation 5.1, then

h2 can manipulate at (�h1 ,�h2 , �̂−{h1,h2}) by reporting �∗∗h2
and receiving z(h1)

instead of z(h2). Which is a contradiction and so x = z. And thus f(�) =
f(�−S ,�′S) as desired.

Having established the above claim, we can show that agent i always receives
his most preferred set under f . First notice that ∀ �′−i ∀A ⊆ OA ∈ oi(�′−i).
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So every subset of objects is in the option set of i for any profile of preferences
of the other agents.

To that end fix �′−i, fix A 6= ∅ and take �i to be a preference for agent
i such that A is the most preferred set of agent i, the next most preferred
set is O and after that ∅. Let f(�i,�′−i) = x. Assume that x(i) 6= A, then
by strategyproofness x(i) = O, since otherwise i can misreport a preference
such that O is his only desirable set and benefit from this misreport. But this
contradicts Pareto efficiency, because the allocation in which i receives A and
all the other agents receive nothing is also feasible and Pareto dominates the
allocation in which i receives O. So x(i) = A. Also if some agent finds all subsets
of O undesirable, Pareto efficiency guarantees that he would receive nothing.

Now by strategyproofness under any profile � f allocates to i his most
preferred set of objects A, otherwise i would have incentive to misreport a
preference that ranks A first, O next and after that ∅, thus guaranteeing that
he obtains A.

Now the first dictator under all preference profiles is i. And he always gets
his most preferred objects. We only need to establish that for all subsets A ⊆ O
there exists an agent j who always receives his favourite subset of N \ A. This
is analogous to the way we find i. This argument can be repeated at all steps.
Since f is nonbossy, the above guarantees that an s-hierarchy tree σ can be
uniquely defined.

Corollary 5.22. A mechanism for the multiple allocation setting is strategy-
proof, nonbossy, and onto if and only if it is a sequential dictatorship.

Proof. Follows immediately from the above theorem and the observation that
every strategy-proof and nonbossy mechanism for the multiple allocation setting
is also Pareto efficient.

Notice that sequential dictatorships are an extension of serial dictatorships
and therefore it is interesting to see what additional properties serial dicta-
torships have in addition to the strategyproofness, nonbossiness and Pareto
efficiency that are satisfied by all sequentially dictatorial rules.

In her paper [43] S. Pápai also manages to characterize serial dictatorships.
It turns out that fixing the entire order of the agents independently of the partial
allocations at the different stages strengthens the nonbossiness property.

The nonbossiness property required that an agent cannot by reporting dif-
ferent preferences change the allocation of any other agent without changing his
own. In our setting, however, an agent can change his allocation by claiming he
also wants a previously unallocated object. Intuitively there is no reason why
such a change should influence any of the other agents, but the nonbossiness
property would still allow for it. So we take a definition that allows agents to
influence each other through feasibility only.

Definition (Total nonbossiness). An allocation mechanism f is called totally
nonbossy if for all profiles �, agents i ∈ N and misreports �′i such that if
f(�) = x and f(�−i,�′i) = y for each j 6= i we have x(i) ∩ y(j) = ∅ and
y(i)∩ x(j) = ∅, then the allocation of all other agents under both profiles is the
same — that is x(j) = y(j) for each agent j 6= i.

52



Note that total nonbossiness implies nonbossiness, because if x(i) = y(i) the
intersections in the above definition are empty, because of the feasibility of x
and y.

Theorem 5.23. A mechanism for the multiple allocation setting is strategy-
proof, totally nonbossy, and Pareto efficient if and only if it is a serial dictator-
ship.

Proof. (⇐) Since any serial dictatorship can be seen as a sequential dictator-
ship, it has already been shown that serial dictatorships are strategy-proof and
Pareto efficient. Therefore it is only left to show the total nonbossiness of serial
dictatorships. This is easy to see, because if an agent i receives an object o that
was not allocated before, the most preferred subset of the remaining objects for
all agents that are after i does not contain o, then the lack of o in the available
set of objects does not affect the preferences of any of those agents and for all
of them their assignment remains the same. Similarly if i leaves an object that
does not change the most preferred subsets of the agents after him in the order,
their assignments remain the same and the object he leaves remains unassigned.
Also obviously i’s preferences cannot affect the assignment of the agent before
him in the order, so serial dictatorships are totally nonbossy.

(⇒) Fix a strategy-proof, totally nonbossy, and Pareto efficient mechanism
f . We need to find an ordering of the agents such that f is equivalent to the
serial dictatorship determined by this order. By the previous theorem we know
that f is a sequential dictatorship, so there exists an s-hierarchy tree σ such
that f is the sequential dictatorship determined by σ.

Suppose that f is not a serial dictatorship. Then there is a j < n such that
for all profiles � and �′ and for all k < j we have σk� = σk�′ , but there exist

profiles � and �′ such that σj� 6= σj�′ . Fix those two profiles, let f(�) = x and

f(�′) = y and also fix the two agents h and h′ such that σj� = h and σj�′ = h′.
Let S = {σk� | k < j} be the set of agents that under all profiles are picked

in the same order according to σ and A = O \
⋃
k∈S

x(k) be the set of objects

left after they pick their most favourite subsets of remaining objects according
to �. Take a profile � such that �i ranks ∅ first for all i 6∈ {h, h′} and �h and
�h′ rank A first and ∅ second.

Consider the profile (�S ,�−S). Up to step j we have the sequential dicta-
torship progress exactly as it progresses under �, therefore if f(�S ,�−S) = z1

we have ∀k < j x(σk�) = z1(σk�) and therefore σj
(�S ,�−S)

= h by the second

property in the definition of an s-hierarchy tree. Therefore z1(h) = A, because
h′ 6∈ S.

Similarly to the above argument take B = O \
⋃
k∈S

y(k) and define a profile

� such that �i ranks ∅ first for all i 6∈ {h, h′} and �h and �h′ rank B first and
∅ second. Consider the profile (�′S ,�−S). As above we have σj

(�′S ,�−S)
= h′.

And if f(�′S ,�−S) = z2 we have z2(h′) = B.
Now take C = A ∪ B and a profile �̂ such that �̂i ranks ∅ first for all

i 6∈ {h, h′} and �̂h and �̂h′ rank C first and ∅ second. By Pareto efficiency if
f(�̂) = z, either z gives C to h and nothing to all the other agents, or z gives
C to h′ and nothing to all other agents.

Case 1: z(h) = C and z(i) = ∅ for all i 6= h
Then σ�̂ orders h before h′. Then also on the profile (�{h,h′}, �̂N\{h,h′}) σ
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orders h before h′. But on N \ {h, h′} we have �̂ = �, so σ orders h before
h′ on �. Therefore f(�) gives B to h and nothing to everyone else. Therefore
by total nonbossiness z2(h) = B, which contradicts the above conclusion that
z2(h′) = B.

Case 2: z(h′) = C and z(i) = ∅ for all i 6= h′

Similarly to the above case we can prove that z1(h′) = A, which contradicts
z1(h) = A.

Both cases lead to contradiction, so such a j does not exist and f is a serial
dictatorship.

Corollary 5.24. A mechanism for the multiple allocation setting is strategy-
proof, totally nonbossy, and onto if and only if it is a serial dictatorship.
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Chapter 6

Real-life Applications of
Matching Mechanisms

When Gale and Shapley came up with the name marriage market for the setting
discussed in their seminal work, they probably did not anticipate that their
algorithm will be indeed used in the domain of romance. But in our time,
when online dating services offer impressive databases of singles, algorithms for
matching are involved in suggesting potential pairs. This was recently studied
in papers like [28] and [33].

However, the application of this and the other discussed mechanisms is not
limited to the settings suggested by their authors. The wide range of matching
tasks in every-day life makes studying of matching mechanisms important for
many domains. Both the specific properties of the markets and the general
tendencies are of particular interest when designing an applicable mechanism
that manages to work for a given market and does not degenerate with time.
Following [46] and [40], this chapter will look at the valuable experience derived
by observing real markets over time, trying to redesign them in order to make
them more efficient, and then taking note of the mistakes and the successes
achieved.

This chapter is organized as follows. Section 6.1 looks at the development
of entry-level labour markets for young medical specialists, Section 6.2 is con-
cerned with allocating students to schools and Section 6.3 studies a mechanism
suggested for arranging exchanges between incompatible donor-patient pairs in
the kidney transplantation domain.

6.1 NRMP and Other Entry-level Labour Mar-
kets

Matching residents to hospitals in the United States and Canada was a notable
example studied by Roth in [52]. An internship or residency in a hospital for
medical graduates was first introduced in the early 1900’s and it seemed bene-
ficial for both the hospitals, which received a supply of relatively cheap labour,
and for the students, who got some experience in practising clinical medicine.
This is a typical two-sided matching market, since the hospitals prefer to hire
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students with good performance in the areas that interest them and the stu-
dents have preferences over hospitals based on many factors such as location,
reputation in their fields of interest, etc.

At the beginning the hiring of the graduates happened near the end of their
last year of studies. From the very start of the program there were more posi-
tions available than interested graduates, so hospitals competed for interns and
it was beneficial for them to arrange a binding contract with a desirable student
before he received an offer from another hospital. Therefore hospitals started
making their offers earlier and earlier and often the offers expired in a short
time, so that candidates were forced to accept or reject them before knowing
whether they will receive a more desirable offer. Thus the market suffered from
the problem known as unraveling .

By the 1930’s the hiring of the interns had moved to the beginning of the
students’ last year in the medical schools, and by the 1940’s it happened some-
times as early as two full years before the expected beginning of the internship.
This was a problem for both the students, who did not have time to decide on
what kind of medicine they want to practice, and for the hospitals, who did not
yet know the subsequent performance of the candidates in their studies.

The decentralized market could not prevent this problem, because if a single
hospital decided on delaying the hiring dates it might very well be the case
that the most desirable candidates have already accepted other offers by this
time. Since the inefficiency of the market was recognized by all participants, in
1945 the medical schools managed to reach an agreement to release information
about the performance of students to hospitals only after a certain date.

This move solved the problem of employment happening too early, but intro-
duced a new one. The offers were made simultaneously, so if a potential intern
rejected an offer there was a good chance that by that time the next candidate
in the hospital’s preference would have accepted a different offer. To reduce this
risk hospitals started to pressure the prospective interns to decide quickly on
their offers. On the other hand the students had incentive to wait as long as
possible before accepting, because in the meantime they might receive an offer
from a more preferable hospital. In 1945 the students had 10 days to respond
to an offer but this period got smaller and smaller quickly and by 1949 the
deadline for giving a response was only 12 hours. This time the market suffered
from congestion .

To solve this new problem the market was centralized by introducing the so-
called National Resident Matching Program (NRMP). Both the hospitals and
the students were asked to submit their list of preferences and the matching
was determined on the base of all the available information. The participation
in the program was voluntary, but the program was so successful that today it
is virtually the only way of hiring medical graduates as interns.

The mechanism that was used was essentially equivalent to the hospital-
proposing deferred acceptance algorithm and therefore it produced stable match-
ings. It is, however, notable that this mechanism was introduced in 1953, which
is well before the properties of this kind of markets were formally studied by
Gale and Shapley and even before the introduction of the notion of the core in
game theory.

Many similar markets used mechanisms that were successful as in the case
of NRMP, while many others collapsed and the mechanisms in use had to be
changed. When similar problems were experienced in the UK market for medical
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graduates a Royal Commission recommended a similar solution — centralizing
the market. However, due to the regional nature of the British market each
region was allowed to introduce their own matching mechanism. Some of those
worked successfully, while others failed and were abandoned. A closer look into
the mechanisms that were used and their properties reveals that stability and
incentive compatibility are indeed essential for the successful application of a
mechanism in practice. The fates of those mechanisms were insightfully studied
by Roth in [52].

In one of the regions, the designers of the mechanism were aware of both
the solution successfully applied to the American market and the theoretical
research of Gale and Shapley. They successfully used a modified version of the
deferred acceptance algorithm and the same mechanism was adopted in one
more region the next year. This and other similar success stories show that
the stability of a mechanism contributes to its success significantly. However,
it is apparently not a necessary condition since all of the other regions used
mechanisms that were neither stable, nor incentive compatible, but while some
of them quickly collapsed, others were in fact successful.

On the other hand, there are also reported examples of situations when
stable mechanisms failed to satisfy the needs of a market or simply did not per-
form optimally. An example is the entry-level market for clinical psychologists
studied in [51]. For this market a real time simulation of the deferred acceptance
algorithm was used. Offers and rejections were made on a selection day between
9:00 and 16:00 by phone calls. This, however, led to congestion — the 7 hours
of the match day were simply not enough for a market with more than 2000 po-
sitions and making this period longer meant that students could no longer stay
by the phone the entire time and lead to much longer times between new offers
and rejections. So this was also not a practical solution. Therefore in spite of
the fact that the nature of the deferred acceptance algorithm does not require a
centre, applying it as a decentralized mechanism to large markets proved ineffi-
cient and suffered congestion. The market was later centralized in the so called
APPIC Match System. But a new problem — the imbalance between supply
and demand — keeps this market interesting to observe and analyse1.

Another example of a failed in practice stable mechanism was the entry-
level gastroenterology labour market. A very detailed study of the reasons
why a stable mechanism collapsed in this setting was provided by McKinney,
Niederle and Roth in [37]. They show how the shock reverse of the supply and
demand imbalance was the most probable reason for the problems. A centralized
clearinghouse was later successfully re-established2.

Yet another interesting problem that threatens the stability of many employ-
ment markets is the increasing number of dual-career households. In a market
when the preferences of one of the partners in a couple actually depend on the
placement of the other, it is shown that stable matchings may not exist. A
simple example with 2 couples and 4 hospitals is suggested in [52]. Let there be
four hospitals h1, h2, h3, and h4, each looking for a single intern and 4 students
such that students s1 and s2 are a couple and students s3 and s4 are a couple.

If the preferences of the hospitals and the couples are as given respectively
in Table 6.1(a) and (b), then for all possible assignments there exists a blocking

1See [13] for a recent discussion.
2See [39].
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pair (as shown in Table 6.1(c)).

(a) Preferences of the hos-
pitals.

h1 h2 h3 h4

s4 s4 s2 s2

s2 s3 s3 s4

s1 s2 s1 s1

s3 s1 s4 s3

(b) Preferences of the
couples.

(s1, s2) (s3, s4)
(h1, h2) (h4, h2)
(h4, h1) (h4, h3)
(h4, h3) (h4, h1)
(h4, h2) (h3, h1)
(h1, h4) (h3, h2)
(h1, h3) (h3, h4)
(h3, h4) (h2, h4)
(h3, h1) (h2, h1)
(h3, h2) (h2, h3)
(h2, h3) (h1, h2)
(h2, h4) (h1, h4)
(h2, h1) (h1, h3)

(c) Blocking pairs for each assignment.

h1 h2 h3 h4 blocking pair
s1 s2 s3 s4 (s4, h2)
s1 s2 s4 s3 (s4, h2)
s1 s3 s2 s4 (s2, h4)
s1 s3 s4 s2 (s4, h1)
s1 s4 s2 s3 (s2, h4)
s1 s4 s3 s2 (s4, h1)
s2 s1 s3 s4 (s4, h1)
s2 s1 s4 s3 (s4, h2)
s2 s3 s1 s4 (s2, h4)
s2 s3 s4 s1 (s4, h1)
s2 s4 s1 s3 (s2, h4)
s2 s4 s3 s1 (s4, h1)
s3 s1 s2 s4 (s4, h2)
s3 s1 s4 s2 (s2, h3)
s3 s2 s1 s4 (s2, h4)
s3 s2 s4 s1 (s2, h3)
s3 s4 s1 s2 (s1, h1)
s3 s4 s2 s1 (s2, h1)
s4 s1 s2 s3 (s4, h2)
s4 s1 s3 s2 (s2, h3)
s4 s2 s1 s3 (s2, h4)
s4 s2 s3 s1 (s2, h3)
s4 s3 s1 s2 (s3, h3)
s4 s3 s2 s1 (s4, h4)

Table 6.1: Example of the non-existence of stable matching with couples in the
market.

Klaus and Klijn provide a condition on the preferences of couples under
which stable matchings are guaranteed to exist in [30], however, even though
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there are intuitive reasons to consider their condition plausible, empirical data
shows that many couples’ preferences violate it. This is an area of ongoing
research with increasing importance for young families trying to stay together in
a dynamic economic situation in which finding a suitable position often requires
moving to a different city or even country.

6.2 School Choice

Another interesting example of practical application of matching mechanisms is
the assignment of students to schools. This task lies on the borderline between
one-sided and two-sided matching. The assignment of the students needs to
be based on the preferences of the students, but it should also satisfy certain
priority requirements, such as students who live within walking distance of a
school and/or have a sibling in the school should be accepted at the school
with priority. In this setting schools are not to be considered strategic players,
because students should not be rejected by schools on the grounds of their
personality or ability levels.

Even though the priorities of students can be seen as “preferences” of the
schools, the concept of stability does not seem appropriate, since schools are
not strategic players and would not deviate from a prescribed matching in order
to obtain more preferred students. However, it is important that a mechanism
eliminates justified envy . A student s1 is said to be envious of another
student s2 if s2 is accepted to a school that s1 prefers to his own. The envy
is said to be justified if s1 has higher priority for that school than s2. This
property of the matchings is essentially equivalent to stability from a formal
point of view. Only the intuitive motivation behind it is different.

It is also desirable that mechanisms in this setting are strategy-proof and
Pareto efficient for the students.

Let us first look at two examples of mechanisms used in practice. The first
one was used in Boston and is described in [4]. The priorities determined by
the city were the following:

• Priority 1: sibling in the school and address in the walk zone,

• Priority 2: address in the walk zone,

• Priority 3: sibling in the school,

• Priority 4: all other students.

The assignment mechanism worked as follows:

1. Students submit a preference ranking of the schools and their priorities at
each school are determined.

2. Students in the same priority group are ordered according to a previously
announced lottery.

3. For each school consider the students who listed this school as their first
choice. Order them according to their priority and assign them places at
the school until there are no seats left at the school or all the students
who listed the school as their first choice are assigned a seat in it.
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4. Remove from the algorithm all students that were assigned a seat and all
schools with no seats left.

5. Consider the second choices of students and again assign them places
at this school until no seats are left or until all students who listed the
school are assigned a seat. Remove schools with no seats left and assigned
students.

6. Repeat the previous step as long as there are unassigned students3.

This algorithm aims at assigning as many students as possible to their first
choice school, but the main problem is that revealing the true preferences over
schools is not the best strategy if a student has little chance of being admitted
to his first choice school. Then his second choice school might fill its available
seats with students who listed it first and even admit students who have lower
priority. So the Boston mechanism both fails to eliminate justified envy and fails
to make revealing true preferences a safe strategy. Families are therefore forced
to make difficult strategic decisions based on their estimation of the chances of
the children to be admitted at different schools.

Note that if the submitted preferences are the true ones, the Boston mech-
anism would be Pareto efficient for the students, but since there are obvious
reasons to try and manipulate the mechanism and many families did so, even
this property cannot be guaranteed with respect to the true preferences of the
students.

Another example of a mechanism that failed to do well in practice was used
in New York City for allocating students to high schools and was described
in [1]. In New York there are several types of high schools — a few schools
have their own entrance exams or auditions, some programmes are allowed to
select all their students based on their performance, others select half of their
quotas and the other half is allocated by lottery and for some programmes the
allocation is entirely based on a lottery. There are also some quota restrictions
based on performance.

Candidates were allowed to apply to up to 5 programs excluding the ones
with separate examinations. They submitted a ranked list to the schools and
received a letter from each of them whether they were accepted, rejected, or put
on the waiting list. This decision could even be based on the rank of a school
in the candidate’s preferences. Then students were allowed to keep at most one
school in which they are accepted and one waiting list option, and then they
were removed from the lists of all the other schools. If an accepted student
refused the offer in favour of some other school, a new offer was made to some
candidate on the waiting list. This process was repeated for 3 rounds and after
that all unassigned students were assigned through an administrative process
typically to their zoned schools.

Despite the decentralized nature of the mechanism, because of the limits
on the number of programs candidates could list, there was no congestion, but
those limits were insufficient for reaching an efficient allocation in a market with
more than 500 programmes and 100 000 students. Every year around 30 000
students were allocated to schools that were not on their preference list.

Also strategic behaviour was important, because a school that a candidate
has little chances of being admitted to might be a bad way to use one of the

3We assume that enough school seats are available.
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5 slots on the preference list. On the other hand since schools knew their rank
on a candidate’s list and some of them took this information into consideration
(e.g., by preferring students that listed them first) while others did not, the
students had further incentive to misreport by placing the schools that did look
at this information higher in their preferences.

This motivated the need to introduce a more efficient system. Both in Boston
and in New York City the new mechanism that was introduced was a modifica-
tion of the student optimal deferred acceptance mechanism. As elimination of
justified envy is equivalent to stability, the new mechanisms could guarantee it,
and even more importantly families were no longer required to use complicated
strategies in the application process. This significantly improved the efficiency
of the matching. In New York, in the first year of the operation of the new
system only 3 000 students were assigned to a school that was not among the
ones they expressed preferences for, which was only 10% of such matches during
the previous year.

There is, however, a trade-off between elimination of justified envy and
Pareto efficiency. Consider the following example with 3 schools and 3 students:

s1 i1 � i3 � i2
schools s2 i2 � i1 � i3

s3 i2 � i1 � i3
i1 s2 �i1 s1 �i1 s3

students i2 s1 �i2 s2 �i2 s3

i3 s1 �i3 s2 �i3 s3

There exists only one stable matching µ1, which is Pareto dominated for the
students by the matching µ2.

x µ1(x) µ2(x)
i1 s1 s2

i2 s2 s1

i3 s3 s3

In the above example the pair (i3, s1) blocks µ2, which is weakly preferred
by all students to µ1.

In [4] it is proposed to use the TTC mechanism in the school choice setting.
Even though no ownership notion is applicable in this setting, we can make a
graph with both schools and students as vertices. Then at every stage of the
algorithm schools point to the student with the highest priority and students
point to their most preferred school. For every school there is a counter of
available seats and the school leaves the market when its quota is full. Thus
students basically trade their priorities for schools between themselves. This
algorithm is known to be Pareto efficient and strategy-proof, however it may
fail to eliminate justified envy. To see this, note that on the example above
TTC results in the allocation µ2.

In [23] Ergin presents an interesting technical result that characterizes the
conditions under which there is no conflict between complete elimination of
justified envy and Pareto efficiency. The condition makes TTC equivalent to
the student-optimal deferred acceptance mechanism.

Another interesting question is whether the random breaking of ties between
students, with the same priority, introduces further inefficiencies by adding arti-
ficial requirements for stability, based on the higher priority randomly assigned
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to one student over another. The answer to this question is positive and this
problem is addressed in [22], but remains outside of the scope of this thesis.

6.3 Kidney Exchange

Kidney transplantation is the preferred method of treatment for patients with
serious forms of kidney disease. Those patients need to receive either a cadaver
kidney or one from a donor — usually a relative or spouse. As the medical
advances in the area decrease the health risks for a potential donor, more and
more people become willing to donate a kidney to a relative, spouse or even
just a friend. However some donor-patient pairs are incompatible for medical
reasons like blood type or tissue type.

There are four blood types — 0, A, B and AB. Their names represent the lack
or presence of the two proteins A and B. Typically a kidney can be transplanted
if the donor’s blood does not contain a protein foreign to the patient’s blood.
This means that, for example, patients with blood type AB can receive a kidney
from a donor with any blood type, while patients with the rare blood type 0
can only receive a kidney from a donor with the same blood type.

The tissue type, also known as human leukocyte antigens or HLA, is a com-
bination of six proteins. While a transplantation is possible when there is a
mismatch between the patient’s and the donor’s HLA, if the patient has pre-
formed antibodies against some HLA proteins in the donor’s blood, also known
as a positive crossmatch, the transplantation cannot be carried out, because
the likelihood of rejection is much higher. There is no consensus in the medical
community regarding whether HLA mismatches with no preformed antibodies
decrease the likelihood of graft survival4. It was claimed to be the case in [42]
based on European data, but later (see, for example, [14]) no statistically sig-
nificant difference was found in the US data for transplantations of live-donor
kidneys. The claim that all live-donor compatible kidneys have the same like-
lihood of survival naturally implies that patients should be indifferent between
the options of receiving any of the compatible live-donor kidneys. On the other
hand most doctors agree that factors such as age and health condition of the
donor do influence the success of a transplantation.

As already mentioned, patients who need a transplantation can either wait
for a cadaver kidney or receive one from a compatible live donor. Since the
waiting list is very long and the average waiting time is too much, it is often the
case that patients die or are classified as too sick for a transplantation before
their turn comes. While some patients have relatives, spouses, or friends willing
to donate a kidney to them, it may be the case that those potential donors are
immunologically incompatible with the intended recipient. Initially such willing
donors were just sent home.

Later a different possibility started to be utilized. If the donor of one incom-
patible pair could feasibly donate to the patient in another and the other way
around, the operations were performed. Since the intentions of both donors to
benefit their intended recipients are achieved and the welfare of both patients,
as well as the ones on the waiting list for the short-supply cadaver kidneys, is
improved, this kind of exchange is officially declared ethically acceptable in a

4The survival of the organ after the transplantation.
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consensus statement of the transplantation community. Note that even com-
patible donor-patient pairs can potentially benefit from such exchanges. If a
middle-aged compatible pair, for example, has a donor of blood-type O and a
patient who does not need this rare type, they can exchange with an incompat-
ible pair in which the patient has O blood type and the donor is younger. Since
the donor’s age is believed to influence the graft survival period, the compatible
pair benefits from the exchange, and the incompatible pair also benefits, because
they receive a compatible kidney. Despite the fact that such pairwise exchanges
increase the efficiency, very few of them were carried out, because there was no
centralized database and the market lacked thickness.

A different option is the so called indirect exchange. In this case the donor’s
kidney is received by someone on the cadaver queue, and in return the intended
recipient receives the highest priority on the queue and gets the next avail-
able compatible kidney. The ethical complications of this type of exchange are
more controversial. On one hand, the patient receives a lottery instead of a
specific kidney in exchange for his donor’s one and cadaver kidneys have lower
survival expectation compared to ones from living donors, on the other hand,
the patient’s welfare is definitely increased by shortening the waiting time on
the queue. In every particular case the patient and the donor need to decide
together whether this option is feasible for them or not.

However, it is easy to see that indirect exchanges might hurt 0 blood type
patients without willing donors. It will often be the case that 0 blood type
patients are incompatible with the intended donors and if many of them choose
the indirect exchange option, the limited amount of cadaver kidneys with this
blood type will result in long waiting times for the patients without willing
donors.

The exchange proposed between two pairs can also be done with a cycle
of 3 or more pairs. Assuming that patients have strict preferences over the
compatible kidneys and if we consider the indirect exchange option to be always
infeasible, the kidney exchange setting is formally equivalent to the housing
market setting. This is the case because a donor’s incentives can be assumed
to be the same as the ones of the intended patient. Then the TTC algorithm is
directly applicable. In order to accommodate for the indirect exchanges in [49]
Roth, Sönmez and Ünver propose an extension of TTC called Top Trading
Cycles and Chains (TTCC).

Let the set of patient-donor pairs be N = {(k1, t1), (k2, t2) . . . , (kn, tn)}.
Note that the patients without a living donor will not be thought of as strategic
players in this setting, though we need to be concerned with their welfare as well.
Let for each patient ti Ki be the set of compatible kidneys. Since compatible
pairs can also benefit from participating in the exchange and the mechanism
proposed will be individually rational, we will allow both for cases in which
ki ∈ Ki and ones in which ki 6∈ Ki.

Each patient ti can express his preferences �i over Ki ∪ {ki, w}, where the
option ki stays for patient ti either receiving his own donor’s kidney, if it is
compatible, or waiting for new pairs to enter the market in the hope of arranging
a better outcome. The w option stands for indirect exchange with the cadaver
queue. Note that the indirect exchange can be considered infeasible by some
pairs. Such preferences can be expressed by placing ki higher than w in their
preferences.

Now the TTCC mechanism proceeds as follows:
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1. Construct a graph with the donor-patient pairs and a special w for waiting
list as vertices. Have each patient i point to the pair which has the most
preferred donor or to w if that is the most preferred option for the patient.

2. If cycles form in this graph, perform the exchange and remove the pairs
from the market with the corresponding assignments. Note that since
all vertices have an out degree of 1 the cycles are disjoint. Change the
outgoing edges of the remaining pairs to point to their most preferred
option among the ones still in the market. If new cycles form, repeat.

3. If there are no pairs left, the algorithm terminates. Otherwise all pairs in
the market should be tails of a w-chain — that is either (ki, ti) points at w
or there exist pairs (ki1 , ti1), (ki2 , ti2) . . . , (kin , tin) such that (ki, ti) points
at (ki1 , ti1), (kis , tis) points at (kis+1

, tis+1
) for all s ∈ {1, 2 . . . , n− 1} and

(kin , tin) points at w. Then select a chain and as specified by the chain
selection rule either perform the exchange, including having the donor of
the tail pair donate to someone on the cadaver queue and remove the
pairs from the market, or keep the kidney at the tail for the next cycle,
while making all pairs in the chain inactive, just waiting for the chain to
possibly become longer before the operations are carried out. If there are
remaining pairs update the edges in the graph.

4. After a chain is removed new cycles may form, so if there are remaining
pairs, return to step 2.

Note that, unlike cycles, the chains need not be disjoint, so different choices of
which chain is removed at any step do influence the outcome of the mechanism.
Only the head of a w-chain cannot be influenced by the chain selection rule,
because any rule will eventually chose to carry out the indirect exchange.

Consider the following possible chain selection rules:

(a) If a priority ordering is to be considered (for example children can have
higher priority than adults), select a chain that contains the highest pri-
ority pair. If there is more than one, select the one that contains the next
highest priority pair, etc. Remove the chain and carry out the correspond-
ing transplantations.

(b) Select a chain as in (a), but keep the kidney at the tail available to the
mechanism, so that the chain may become longer and make all other pairs
in the chain inactive, because their assignment is finalized.

(c) Select the chain staring with the highest priority pair, remove it and carry
out the corresponding transplantations.

(d) Select a chain as in (c) and keep its tail in the mechanism so that the
chain may become longer.

(e) Select all minimal w-chains and remove them. Note that the order of
removing minimal w-chains does not matter and also whether one or all
are selected at a time does not make a difference to the outcome.

(f) Select the longest w-chain and remove it. If there is more than one, use a
priority order for tie-breaking.
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(g) Select a chain as in (f), but keep the tail kidney in the mechanism.

The different choice rules change the properties of the outcome of the mech-
anism. An important observation is given by the following theorem:

Theorem 6.1. The TTCC mechanism is Pareto efficient with all chain selec-
tion rules that keep the kidney of the tail pair’s donor in the mechanism for the
next rounds. So TTCC with rules (b), (d) and (g) is Pareto efficient.

Proof. The proof closely follows the proof of the strategyproofness of TTC.
Observe that if a patient prefers a kidney to the one he receives, this kidney
leaves the market at an earlier stage of the algorithm. Any Pareto improvement
should then also match the patient who received this kidney with one that left
the market at an even earlier stage. Any such chain necessarily reaches a patient
who receives his most preferred kidney, so he can only be made worse off.

Observe that when the kidney at the end of a chain is left in the mechanism,
there may be more than one possible way to make the chain longer. To chose
between them the same chain selection rule can be used.

Another interesting observation is that even though rule (c) might result in
an outcome that is not Pareto efficient, if the priority given to pairs with blood
type O is high, this rule may increase the amount of O blood type kidneys that
go to the cadaver queue and thus compensate for the negative effect of indirect
exchanges on the O blood type patients on the queue.

The strategyproofness issue, however, is more involved, because by changing
their preferences the pairs can change the chains to which they belong and thus
may be selected at an earlier stage and receive a preferred kidney. However,
there are some chain selection rules that manage to guarantee strategyproofness.

Theorem 6.2. The TTCC mechanism with chain selection rules (c),(d) and
(e) is strategy-proof.

Proof. First to see that the rules that select the chain starting with the highest
priority patient are indeed strategy-proof, observe that if under a given profile
of preferences � a pair (ki, ti) is matched at stage s, under all profiles (�−i,�′i)
all the cycles and chains that formed before stage s remain unchanged. But at
stage s the patient was matched with his most preferred kidney among the ones
still in the market, so he has no incentive to report preferences that differ from
his true ones.

For the minimal w-chains selection rule we can observe that whenever an
indirect exchange is made there is only one pair influenced. Therefore for the
mechanism the only important information is when the pair wishes to leave the
market and not if that decision means that they wait for new pairs to enter the
market, make an indirect exchange or the patient receives the kidney of his own
donor. Thus the waiting list option can be changed to the pair pointing at itself
whenever the waiting list becomes the most preferred option for them. Then
they leave the market forming a minimal cycle. In this case the mechanism is
formally equivalent with TTC and TTC is known to be strategy-proof.

It is easy to see that there is a significant improvement in the efficiency that
can be achieved by allowing both direct and indirect exchanges, however, the
length of the cycles and chains cannot be unlimited. The main reason is that
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all the operations need to be performed simultaneously, because a donation is
a gift and it is illegal to make any kind of contract binding a potential donor
to it. Thus if only a part of the operations were carried out, a donor, whose in-
tended patient already received a kidney, may become unwilling to donate. This
makes it necessary to have four operating theatres and four teams of surgeons
simultaneously ready for only a pairwise exchange.

This difficulty and the assumption that patients should be indifferent be-
tween any two compatible live-donor kidneys, since they were shown to have
the same likelihood of survival, lead to the development of the pairwise kid-
ney exchange mechanism suggested in [50]. It assumes dichotomous preferences
based solely on compatibility. This makes the problem equivalent to a classic
problem in graph theory. The first kidney exchange clearinghouse organized in
New England used this mechanism, while keeping track of the missed utility of
potential three-way exchanges.

In [48] Roth, Sönmez and Ünver investigate the efficiency cost of restricting
the lengths of feasible exchanges in large markets. They note that three-way ex-
changes add significantly to the efficiency achieved, but beyond that the poten-
tial gains are minimal. Since that fact was established, the three-way exchanges
are also accommodated in the mechanisms used in practice.

An interesting recent phenomenon that is not affected by the length feasi-
bility limitations also deserves mentioning. In the market there are also a few
altruistic donors, who do not have an intended patient, but just want to donate
a kidney to someone in need. At first such donors simply donated to the waiting
list, but there is also the option of altruistic donors starting a chain of donations
that ends with the last pair’s donor donating to the waiting list. In this case,
however, simultaneous donations are not really necessary, because even if the
chain is broken, all patients benefit from the exchange happening. This allowed
for the so-called “never ending” altruistic donor chains.

In this case a patient with an incompatible donor receives the kidney of the
altruistic donor and his intended donor donates to some other pair not neces-
sarily simultaneously. This means that chains can reach impressive lengths of
more than 30 pairs that are obviously practically not achievable simultaneously.
Donors that donate after their intended patient has received a kidney are called
bridge donors and cannot be bound in any way to continuing the chain. They,
however, usually do so, thus providing an example of a beautiful feature of
human nature — not always to be driven by rational mathematical incentives.

It is interesting to note that all of the mechanisms discussed so far treat
the setting of kidney exchange as static, thus overlooking one of its important
characteristics — the fact that patients enter and leave the market as time
passes. Recently this was taken into account and extensively studied in [58].

Another direction recent research has taken is considering hospitals and
transplantation centres as strategic players that try to maximize the number
of their own patients who receive a transplantation. To achieve this it is some-
times beneficial for a hospital to arrange matchings between its own pairs of
donors and patients, instead of reporting them to a centralized mechanism,
which might lead to generally improved welfare, but with less patients of the
particular hospital benefiting from the exchange. This perspective is taken in
[8].
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Chapter 7

Further Topics in
Mechanism Design without
Money

The area of mechanism design without money is very broad and there is a lot
of research that concentrates on different settings and mechanisms for them.
In this thesis we looked mainly at settings in which the set of outcomes has a
certain structure that implies some properties of the preferences of the agents.
This is important for escaping the Gibbard-Satterthwaite impossibility theorem,
but leaves out the general voting problem, where no internal structure over the
alternatives is assumed.

In political elections and many other voting situations it is important that
no monetary incentives influence the way the electorate votes, so studying the
possible mechanisms without money is necessary. There exists a great number of
proposed voting rules, each having different advantages over the others, but they
are all subject to the Gibbard-Satterthwaite Theorem. An interesting approach
to the problem of the manipulability of voting rules is making a successful
manipulation computationally difficult to find. There is a large body of work
on this topic. A few influential papers are [9] and [16], but the success of this
approach was limited as shown in [17] and [24], so the problem remains open.

Another type of voting, which was also not discussed, is the voting on com-
binatorial domains. In this setting the outcome space, in fact, has structure,
but it only makes the problem harder. For example, selecting projects to spend
some public funds on or selecting a committee consisting of k members out of a
group of agents. In this setting it may be the case that whether or not an agent
wants some possible committee member to be elected or not, depends on the
rest of the elected committee. The problem of voting on multiple issues that are
related is often addressed by consecutive voting on each of the issues separately.
This, however, makes it difficult for voters to express their preferences on issues
that depend on other issues, which have not yet been decided, and the final
outcome may prove to be particularly undesirable.

Most of the work in this area is concentrated on ways to represent the prefe-
rences of agents in such a way that a desirable outcome can be obtained without
voting on the full combinatorial domain. A notable accomplishment in this di-
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rection are the CP-nets introduced in [10].
Interestingly even in areas such as auctions, in which money is typically

thought of as the essential means of negotiation, there are situations when a
mechanism without money is needed. This is the case, for example, when a
client has a fixed budget and is looking for the best possible thing he can obtain
within that budget. In this setting money is not an issue in the negotiation and
the bidders are in fact the “sellers” who compete with the quality of the offered
product or service for the fixed price. Think, for instance, of a government
looking for a company to work on a public project. For the fixed price dif-
ferent companies offer different characteristics and the company with the most
desirable offer is chosen. This, however, gives incentive to companies to claim
that they can accomplish only the cheapest offer that would still be winning
and keep the rest of the budget as profit. Since this is undesirable behaviour
an interesting strategy-proof mechanism for this setting, resembling the well-
known Vickrey auction, is suggested in [27]. This mechanism gives incentives to
companies to reveal the best possible quality they can provide, even if providing
that much quality will make them indifferent between receiving the project and
not receiving it, because after winning the auction with a particularly desirable
offer, a company is required to provide only something at least as good as the
second most desirable bid in the auction. Thus the negotiation happens in terms
of quality instead of in terms of money.

Another interesting setting has to do with the fair division of a cake. Un-
like the settings discussed in detail when all objects that were allocated were
indivisible, in the cake cutting problem the cake is divisible, but different parts
of it may have different values. For example, half of the cake may be chocolate
and the other half may have strawberries, and while some agents like chocolate,
others prefer strawberries. In this setting the cake is represented by the interval
[0, 1] and a feasible allocation is given by a partitioning of [0, 1] into a finite set
of intervals and an allocation of each interval to an agent. The most common
objectives in this setting are ensuring that each agent thinks he got at least his
proportional share of the cake and eliminating envy — that is no agent should

believe that he got less than 1
n

th
the cake, according to his valuation of the cake,

or that another agent received a piece better than his one, again according to
his valuation. If a way of dividing the cake is envy-free, then it is obviously also
proportional, but the other way around is not necessarily the case. The proce-
dure in which one of two agents cuts the cake in two pieces he considers equal
and lets the other agent choose the piece he likes better, obviously accomplishes
both goals when there are only. However, the task becomes significantly more
difficult when there are more agents.

The first paper to note that cake cutting is a problem of significant mathe-
matical interest is [56]. It introduces the Steinhaus procedure and the Banach-
Knaster procedure (also known as the last diminisher procedure) that guarantee
proportionality for 3 and n agents, respectively. The first envy-free procedures
for 3 agents is proposed independently by Selfridge and Conway. [45] is an
example of a good survey of cake cutting procedures.

Another topic of interest is the generalized assignment problem. This prob-
lem consists of a set of machines and a set of tasks. Each machine has a capacity
and each task has a size and a value that are potentially different for each ma-
chine. The objective is to assign the tasks to machines in such a way that the
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capacity of each machine is sufficient and the sum of the values is maximized.
In this setting the machines are the strategic agents. If the size and value of
each task are private information of every machine, no interesting results are
possible, because each machine has incentive to claim ever larger values in order
to receive a feasible task. Therefore, slight variations of the setting are studied
from the viewpoint of mechanism design.

In [21] the sizes and the values of each pair of a machine and a task are
public, but not all machines can do all tasks and it is private information of the
machines which tasks are feasible for them. A different variant is studied in [32],
Koutsoupias assumes that the edges have sizes only and the machines incur this
size as a cost in order to execute a task. The tasks are to be allocated in such a
way that the social cost is minimized. To circumvent the incentive of machines
to report much higher costs than they would actually incur, they are assumed
to be bounded to their reports. That is, if for some task a machine reports a
cost c1 higher than its actual cost c, it pays c1 instead of c if the task is allocated
to it. And if the reported cost is less than or equal to c, the machine actually
pays c. Both of those, as well as other variants of the generalized assignment
problem have natural real life applications and are also of theoretical interest.

The recent topic of impartiality is also of particular interest. Consider the
situation in which a prize is to be awarded to a member of a group and the
agents in this group need to decide who will receive it. This is quite natural
for real settings in which the people who work in an area are best suited to
decide whose accomplishment is most valuable. However, naturally each of
them would want to win the prize and will therefore have incentive to report
a message that makes him the winner if that is possible. For example, in a
simple voting situation in which agents can vote for anybody but themselves,
if an agent has significant support a potential rival has incentive to vote for
a less popular candidate instead, thus increasing his own chances of winning.
A mechanism for this setting is called impartial if the message of each agent
cannot influence whether or not he is selected. Notable recent results can be
found in [7], a paper which evaluates the approximation ratio of approval voting
in this setting, and [29], that studies the properties of some more suggested
mechanisms.

As a closing remark the variety of interesting settings and the fact that
every real life problem comes with its own assumptions and feasibility restric-
tions, makes the automation of designing mechanisms with desirable properties
a particularly appealing prospect. Notably some work on the complexity of the
task has already been done in [15] and there are logics for social choice (e.g., [5])
that have been developed, so the way towards this goal is already being paved.
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