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Abstract

Left-sequential logics provide a means for reasoning about (closed) propositional terms with
atomic propositions that may have side effects and that are evaluated sequentially from left to
right. Such propositional terms are commonly used in programming languages to direct the flow
of a program. In this thesis we explore two such left-sequential logics. First we discuss Fully
Evaluated Left-Sequential Logic, which employs a full evaluation strategy, i.e., to evaluate a term
every one of its atomic propositions is evaluated causing its possible side effects to occur. We
then turn to Short-Circuit (Left-Sequential) Logic as presented in [BP10b], where the evaluation
may be ‘short-circuited’, thus preventing some, if not all, of the atomic propositions in a term
being evaluated. We propose evaluation trees as a natural semantics for both logics and provide
axiomatizations for the least identifying variant of each. From this, we define a logic with
connectives that prescribe a full evaluation strategy as well as connectives that prescribe a short-
circuit evaluation strategy.
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CHAPTER 1

Introduction

In computer programming it is common to use propositional terms to control the flow of a
program. These expressions occur for example in if and while statements. Although at first
sight it might appear as though these expressions are terms of a Boolean algebra, it turns out
that their semantics are not governed by ordinary Propositional Logic (PL). The reason is that
many programming languages allow arbitrary instructions, e.g., method calls, to occur as atomic
propositions in such terms. Those instructions may have side effects. Therefore the truth value
of a term may depend on the state of the execution environment, e.g., the operating system or
the Java Virtual Machine. This state in turn can also be altered by the evaluation of (part of)
a term. For example, in the term x && y, a side effect of the evaluation of x may be that any
subsequent evaluation of y yields false. In that case x && y will yield false, while y && x may
yield true, i.e., conjunction is no longer commutative.

This shows that, unlike in PL, the evaluation strategy that is used impacts the truth values
of terms. Most programming languages evaluate such terms sequentially from left to right. We
refer to such an evaluation strategy as a left-sequential evaluation strategy. In addition, some
programming languages offer connectives that are evaluated using a short-circuit (left-sequential)
evaluation strategy, such as && and || in the Java programming language, see, e.g., [AGH06].
A short-circuit evaluation strategy is one that evaluates only as much of a propositional term
as is necessary to determine its truth value. For example, when evaluating the term x && y,
if x evaluates to false, the entire term will be false, regardless of the truth value of y. In that
case the evaluation is ‘short-circuited’ and y is never evaluated. An evaluation strategy that
always evaluates terms in their entirety is called a full (left-sequential) evaluation strategy. In
Java, for example, the connectives & and | are evaluated using a full evaluation strategy. Some
languages provide both short-circuited and full versions of the binary connectives, as Java does,
thus allowing the programmer to write terms that prescribe a mixed evaluation strategy.

In [BP11], Bergstra and Ponse introduce Proposition Algebra as a means for reasoning about
sequential evaluations of propositional terms using a ternary conditional connective, y / x . z,
to be read as ‘if x then y else z’. In [BP10b], they define Short-Circuit Logic (SCL) in terms
of Proposition Algebra using left-sequential versions of the standard logical connectives. SCL
formalizes equality between propositional terms that are evaluated with a short-circuit evaluation
strategy. They use ¬ for negation, ∨rb for (short-circuit) left-sequential disjunction and ∧rb for
(short-circuit) left-sequential conjunction. The position of the circle indicates the direction of
the evaluation, i.e., from left to right. The negation symbol does not have a circle, because it
has only one possible evaluation strategy, i.e., evaluate the negated subterm and then negate the
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result. Several variants of SCL are described in [BP10b], ranging from the least identifying, Free
SCL (FSCL), to the most identifying, Static SCL, which corresponds to PL. The only difference
between Static SCL and PL is that the connectives in Static SCL are left-sequential and that
the evaluation is short-circuited. Several semantics have been given for SCL, such as valuation
congruences [BP11], Hoare-McCarthy algebras [BP10a] and truth tables [Pon11].

In [Blo11] Blok first defined Fully Evaluated Left-Sequential Logic, or Fully Evaluated Logic
(FEL) for short. FEL is used for dealing with terms that are to be evaluated using a full
evaluation strategy. Blok refers to this logic as Side-Effecting Logic, but we prefer the name
FEL so that we do not implicitly discount SCL as a logic that can be used for reasoning about
side effects. To allow for a mixed setting of FEL and SCL, we must distinguish the symbols used
in FEL-terms from those of Bergstra and Ponse. We use ∧rb for full left-sequential conjunction
and ∨rb for full left-sequential disjunction. We still use ¬ for negation, because it is evaluated
with the same strategy as in SCL. We can now view the open circles in ∧rb and ∨rb as indicating
short-circuiting while the closed circles of ∧rb and ∨rb indicate full evaluations. No variants of FEL
other than Free FEL (FFEL) have yet been formally defined.

In this thesis we will also define a logic for reasoning about propositional terms that contain
both short-circuit left-sequential connectives and full left-sequential connectives. We refer to a
logic that offers both types of connectives as a general left-sequential logic.

The main differences between these left-sequential logics and PL is that they employ a left-
sequential evaluation strategy and that their atoms may have side effects. We note that logics
employing right-sequential evaluation strategies can easily be expressed in terms of their left-
sequential counterparts. We study the left-sequential versions because most programming lan-
guages are oriented left-to-right, mainly due to having been developed in the Western world.
Although side effects are well understood in programming, see e.g., [BW96] or [Nor97], they
are often explained without a general formal definition. In Chapter 5 we will substantiate our
claim that these logics can be used to formally reason about propositional terms whose atoms
may have side effects. We note that both SCL and FEL are sublogics of PL, in the sense that
they identify fewer propositions, i.e., closed terms, although both have extreme variants that are
equivalent with PL.

We start in Chapter 2 by formally introducing FFEL and the set of equations EqFFEL. We
prove that EqFFEL is an axiomatization of FFEL. In Chapter 3 we introduce FSCLse as an
alternative semantics for the Proposition Algebra semantics of FSCL. We also discuss the set
of equations EqFSCL and prove that it axiomatizes FSCLse . In Section 4.2 we prove that it
also axiomatizes FSCL. Chapters 2 and 3 are written to be self-contained, hence there is some
duplication of definitions and narrative. In Chapter 4 we investigate the relations between FFEL
and FSCL. We show in Section 4.1 that FFEL can also be expressed in terms of Proposition
Algebra. In Section 4.2 we prove that FSCLse is equivalent to FSCL. In Section 4.3 we show
that FFEL is a sublogic of FSCL and use this fact to define a general left-sequential logic. We
conclude with some final remarks and provide an outlook for further study in Chapter 5.
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CHAPTER 2

Free Fully Evaluated Logic
(FFEL)

In this chapter we define Free Fully Evaluated Left-Sequential Logic, or Free Fully Evaluated
Logic (FFEL) for short, and the set of equations EqFFEL, which we will prove axiomatizes FFEL
in Section 2.3. We start by defining FEL-terms, which are built up from atomic propositions,
referred to as atoms, the truth value constants T for true and F for false and the connectives ¬
for negation, ∧rb for full left-sequential conjunction and ∨rb for full left-sequential disjunction.

Definition 2.1. Let A be a countable set of atoms. FEL-terms (FT) have the following
grammar presented in Backus-Naur Form.

P ∈ FT ::= a ∈ A | T | F | ¬P | (P ∧rb P ) | (P ∨rb P )

If A = ∅ then the resulting logic is trivial.
Let us return for a moment to our motivation for left-sequential logics, i.e., propositional

terms as used in programming languages. We will consider the FEL-term a ∨rb b and informally
describe its evaluation, naturally using a full evaluation strategy. We start by evaluating a and
let its yield determine our next action. If a yielded F we proceed by evaluating b, i.e., the yield
of the term as a whole will be the yield of b. If a yielded T, we already know at this point that
a ∨rb b will yield T. We still evaluate b though, but ignore its yield and instead have the term
yield T. Evaluating a subterm even though its yield is not needed to determine the yield of the
term as a whole is the quintessence of a full evaluation strategy.

Considering the more complex term (a ∨rb b) ∧rb c, we find that we start by evaluating a ∨rb b
and if it yielded T we proceed by evaluating c. If it yielded F we still evaluate c, even though
we know that the term as a whole will now yield F. The discussion of the evaluations of these
terms may have evoked images of trees in the mind of the reader. We will indeed define equality
of FEL-terms using (evaluation) trees. We define the set T of binary trees over A with leaves in
{T,F} recursively. We have that

T ∈ T , F ∈ T , and (X E a D Y ) ∈ T for any X,Y ∈ T and a ∈ A.

In the expression X E a D Y the root is represented by a, the left branch by X and the right
branch by Y . As is common, the depth of a tree X is defined recursively by d(T) = d(F) = 0
and for all a ∈ A, d(Y E a D Z) = 1 + max(d(Y ), d(Z)). Our reason for choosing this particular
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notation for trees, out of the many that exist, is explained in Chapter 4. We shall refer to trees
in T as evaluation trees, or simply trees for short. Figure 2.1 shows the trees corresponding to
the evaluations of (a ∨rb b) ∧rb c and (a ∧rb b) ∨rb c.

Returning to our example, we have seen that the tree corresponding to the evaluation of
(a ∨rb b) ∧rb c can be composed from the tree corresponding to the evaluation of a ∨rb b and that
corresponding to the evaluation of c. We said above that if a ∨rb b yielded T, we would proceed
with the evaluation of c. This can be seen as replacing each T-leaf in the tree corresponding
to the evaluation of a ∨rb b with the tree that corresponds to the evaluation of c. Formally
we define the leaf replacement operator, ‘replacement’ for short, on trees in T as follows. Let
X,X ′, X ′′, Y, Z ∈ T and a ∈ A. The replacement of T with Y and F with Z in X, denoted
X[T 7→ Y,F 7→ Z], is defined recursively as

T[T 7→ Y,F 7→ Z] = Y

F[T 7→ Y,F 7→ Z] = Z

(X ′ E a D X ′′)[T 7→ Y,F 7→ Z] = X ′[T 7→ Y,F 7→ Z] E a D X ′′[T 7→ Y,F 7→ Z].

We note that the order in which the replacements of the leaves of X is listed inside the brackets
is irrelevant. We will adopt the convention of not listing any identities inside the brackets, i.e.,

X[F 7→ Y ] = X[T 7→ T,F 7→ Y ].

Furthermore we let replacements associate to the left. We also use that fact that

X[T 7→ Y ][F 7→ Z] = X[T 7→ Y,F 7→ Z]

if Y does not contain F, which can be shown by a trivial induction. Similarly,

X[F 7→ Z][T 7→ Y ] = X[T 7→ Y,F 7→ Z]

if Z does not contain T. We now have the terminology and notation to formally define the
evaluation of FEL-terms.

Definition 2.2. Let A be a countable set of atoms and let T be the set of all finite binary trees
over A with leaves in {T,F}. We define the unary Full Evaluation function fe : FT→ T as:

fe(T) = T

fe(F) = F

fe(a) = T E a D F for a ∈ A

fe(¬P ) = fe(P )[T 7→ F,F 7→ T]

fe(P ∧rb Q) = fe(P )[T 7→ fe(Q),F 7→ fe(Q)[T 7→ F]]

fe(P ∨rb Q) = fe(P )[T 7→ fe(Q)[F 7→ T],F 7→ fe(Q)].

Note that because we require A to be a set, T is also a set. By a trivial induction we can
show that all trees in the image of fe are perfect binary trees, i.e., all their paths are of equal
length. As we can see from the definition on atoms, the evaluation continues in the left branch
if an atom yields T and in the right branch if it yields F. Revisiting our example once more,
we indeed see how the evaluation of a ∨rb b is composed of the evaluation of a followed by the
evaluation of b in case a yields F and by the evaluation of b, but with a constant yield of T, in
case a yields T. We can compute fe(a ∨rb b) as follows.

fe(a ∨rb b) = (T E a D F)[T 7→ (T E b D F)[F 7→ T],F 7→ (T E b D F)]

= (T E a D F)[T 7→ (T E b D T),F 7→ (T E b D F)]

= (T E b D T) E a D (T E b D F)
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Now the evaluation of (a ∨rb b) ∧rb c is a composition of this tree and T E c D F, as can be seen in
Figure 2.1b.

a

b

c

T T

c

T F

b

c

T F

c

T F

(a) fe((a ∧qa b) ∨qa c)

a

b

c

T F

c

T F

b

c

T F

c

F F

(b) fe((a ∨qa b) ∧qa c)

Figure 2.1: Trees depicting the evaluation of two FEL-terms. The evaluation starts at the
root. When (the atom at) an inner node yields T the evaluation continues in its left branch
and when it yields F it continues in its right branch. The leaves indicate the yield of the
terms as a whole.

Informally we see that two FEL-terms are equal when they not only yield the same truth
value given the truth values of their constituent atoms, but also contain the same atoms in the
same order. Consider for example the terms a and a ∧rb (b ∨rb T) and note that the truth value
of both is determined entirely by the truth value of a. Also note that since b occurs after a in
the second term, no side effect of b could ever affect a. When both terms would be placed in the
context of another term, e.g., a ∧rb c and (a ∧rb (b ∨rb T)) ∧rb c, the situation changes. A side effect
of b might, for example, be that c will yield F. In that case the truth value of the first term is
determined by a and c, while that of the second term is always F. We are now ready to define
Fully Evaluated Left-Sequential Logic.

Definition 2.3. A Fully Evaluated Left-Sequential Logic (FEL) is a logic that satisfies
the consequences of fe-equality. Free Fully Evaluated Left-Sequential Logic (FFEL) is the
fully evaluated left-sequential logic that satisfies no more consequences than those of fe-equality,
i.e., for all P,Q ∈ FT,

FEL � P = Q ⇐= fe(P ) = fe(Q) and FFEL � P = Q ⇐⇒ fe(P ) = fe(Q).

It is not considered standard to define a logic equationally, but in this case we feel it is
warranted to avoid having to mix the connectives from PL with those from FEL.

There is an immediate correspondence between trees and sets of traces, namely the paths of
such trees annotated with the truth value of each internal node. For example, Figure 2.1a would
correspond to the set of traces

{(aTbTcT,T), (aTbTcF,T), (aTbFcT,T), (aTbFcF,F),

(aFbTcT,T), (aFbTcF,F), (aFbFcT,T), (aFbFcF,F)}.

This means we could have defined the image of fe to be sets of such annotated traces. We chose
to define FEL with tree semantics rather than with trace semantics because the former affords
us a more succinct notation.

We now turn to the set of equations EqFFEL, listed in Table 2.1, which we will show in
Section 2.3 is an axiomatization of FFEL. This set of equations was first presented by Blok in
[Blo11].
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F = ¬T (FEL1)

x ∨rb y = ¬(¬x ∧rb ¬y) (FEL2)

¬¬x = x (FEL3)

(x ∧rb y) ∧rb z = x ∧rb (y ∧rb z) (FEL4)

T ∧rb x = x (FEL5)

x ∧rb T = x (FEL6)

x ∧rb F = F ∧rb x (FEL7)

x ∧rb F = ¬x ∧rb F (FEL8)

(x ∧rb F) ∨rb y = (x ∨rb T) ∧rb y (FEL9)

x ∨rb (y ∧rb F) = x ∧rb (y ∨rb T) (FEL10)

Table 2.1: The set of equations EqFFEL.
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If two FEL-terms s and t, possibly containing variables, are derivable by equational logic and
EqFFEL, we denote this by EqFFEL ` s = t and say that s and t are derivably equal. By virtue
of (FEL1) through (FEL3), ∧rb is the dual of ∨rb and hence the duals of the equations in EqFFEL
are also derivable. We will use this fact implicitly throughout our proofs.

The following lemma shows some useful equations illustrating the special properties of terms
of the form x ∧rb F and x ∨rb T. The first is an ‘extension’ of (FEL8) and the others show two
different ways how terms of the form x ∨rb T, and by duality terms of the form x ∧rb F, can change
the main connective of a term.

Lemma 2.4. The following equations can all be derived by equational logic and EqFFEL.

1. x ∧rb (y ∧rb F) = ¬x ∧rb (y ∧rb F)

2. (x ∨rb T) ∧rb y = ¬(x ∨rb T) ∨rb y

3. x ∨rb (y ∧rb (z ∨rb T)) = (x ∨rb y) ∧rb (z ∨rb T)

Proof. We derive the equations in order.

x ∧rb (y ∧rb F) = (x ∧rb F) ∧rb y by (FEL7) and (FEL4)

= (¬x ∧rb F) ∧rb y by (FEL8)

= ¬x ∧rb (y ∧rb F) by (FEL7) and (FEL4)

(x ∨rb T) ∧rb y = (x ∧rb F) ∨rb y by (FEL9)

= (¬x ∧rb F) ∨rb y by (FEL8)

= (¬x ∧rb ¬T) ∨rb y by (FEL1)

= ¬(x ∨rb T) ∨rb y by (FEL3) and (FEL2)

x ∨rb (y ∧rb (z ∨rb T)) = x ∨rb (y ∨rb (z ∧rb F)) by (FEL10)

= (x ∨rb y) ∨rb (z ∧rb F) by the dual of (FEL4)

= (x ∨rb y) ∧rb (z ∨rb T) by (FEL10)

Theorem 2.5. For all P,Q ∈ FT, if EqFFEL ` P = Q then FFEL � P = Q.

Proof. It is immediately clear that identity, symmetry and transitivity are preserved. For con-
gruence we show only that for all P,Q,R ∈ FT, FFEL � P = Q implies FFEL � R ∧rb P = R ∧rb Q.
The other cases proceed in a similar fashion. If FFEL � P = Q, then fe(P ) = fe(Q) and hence
fe(P )[T 7→ F] = fe(Q)[T 7→ F], so

fe(R)[T 7→ fe(P ),F 7→ fe(P )[T 7→ F]] = fe(R)[T 7→ fe(Q),F 7→ fe(Q)[T 7→ F]].

Therefore by definition of fe , FFEL � R ∧rb P = R ∧rb Q.
The validity of the equations in EqFFEL is also easily verified. As an example we show this

for (FEL8).

fe(P ∧rb F) = fe(P )[T 7→ F,F 7→ F[T 7→ F]] by definition

= fe(P )[T 7→ F] because F[T 7→ F] = F

= fe(P )[T 7→ F,F 7→ T][T 7→ F] by induction

= fe(¬P ∧rb F),

where the induction that proves the third equality is on the structure of evaluation trees.
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2.1 FEL Normal Form

To aid in our completeness proof we define a normal form for FEL-terms. Due to the possible
presence of side effects, FFEL does not identify terms which contain different atoms or the
same atoms in a different order. Because of this, common normal forms for PL are not normal
forms for FEL-terms. For example, rewriting a term to Conjunctive Normal Form or Disjunctive
Normal Form may require duplicating some of the atoms in the term, thus yielding a term that
is not derivably equal to the original. We first present the grammar for our normal form, before
motivating it. The normal form we present here is an adaptation of a normal form proposed by
Blok in [Blo11].

Definition 2.6. A term P ∈ FT is said to be in FEL Normal Form (FNF) if it is generated
by the following grammar.

P ∈ FNF ::= PT | P F | PT ∧rb P ∗

P ∗ ::= P c | P d

P c ::= P ` | P ∗ ∧rb P d

P d ::= P ` | P ∗ ∨rb P c

P ` ::= a ∧rb PT | ¬a ∧rb PT

PT ::= T | a ∨rb PT

P F ::= F | a ∧rb P F,

where a ∈ A. We refer to P ∗-forms as ∗-terms, to P `-forms as `-terms, to PT-forms as T-terms
and to P F-forms as F-terms. A term of the form PT ∧rb P ∗ is referred to as a T-∗-term.

We immediately note that if it were not for the presence of T and F we could define a much
simpler normal form. In that case it would suffice to ‘push in’ or ‘push down’ the negations, thus
obtaining a Negation Normal Form, as exists for PL. Naturally if our set A of atoms is empty,
the truth value constants would be a normal form.

When considering the image of fe we note that some trees only have T-leaves, some only have
F-leaves and some have both T-leaves and F-leaves. For any FEL-term P , fe(P ∨rb T) is a tree
with only T-leaves, as can easily be seen from the definition of fe . All terms P such that fe(P )
only has T-leaves are rewritten to T-terms. Similarly fe(P ∧rb F) is a tree with only F-leaves.
All terms P such that fe(P ) only has F-leaves are rewritten to F-terms. The simplest trees in
the image of fe that have both T-leaves and F-leaves are fe(a) for a ∈ A. Any (occurrence of
an) atom that determines (in whole or in part) the yield of a term, such as a in this example, is
referred to as a determinative (occurrence of an) atom. This as opposed to a non-determinative
(occurrence of an) atom, such as the a in a ∨rb T, which does not determine (either in whole or in
part) the yield of the term. Note that a term P such that fe(P ) contains both T and F must
contain at least one determinative atom.

Terms that contain at least one determinative atom will be rewritten to T-∗-terms. In T-
∗-terms we encode each determinative atom together with the non-determinative atoms that
occur between it and the next determinative atom in the term (reading from left to right) as an
`-term. Observe that the first atom in an `-term is the (only) determinative atom in that `-term
and that determinative atoms only occur in `-terms. Also observe that the yield of an `-term
is the yield of its determinative atom. This is intuitively convincing, because the remainder of
the atoms in any `-term are non-determinative and hence do not contribute to its yield. The
non-determinative atoms that may occur before the first determinative atom are encoded as a
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T-term. A T-∗-term is the conjunction of a T-term encoding such atoms and a ∗-term, which
contains only conjunctions and disjunctions of `-terms. We could also have encoded such atoms
as an F-term and then taken the disjunction with a ∗-term to obtain a term with the same
semantics. We consider `-terms to be ‘basic’ in ∗-terms in the sense that they are the smallest
grammatical unit that influences the yield of the ∗-term.

In the following, PT, P `, etc. are used both to denote grammatical categories and as variables
for terms in those categories. The remainder of this section is concerned with defining and
proving correct the normalization function f : FT → FNF. We will define f recursively using
the functions

fn : FNF→ FNF and f c : FNF× FNF→ FNF.

The first of these will be used to rewrite negated FNF-terms to FNF-terms and the second to
rewrite the conjunction of two FNF-terms to an FNF-term. By (FEL2) we have no need for a
dedicated function that rewrites the disjunction of two FNF-terms to an FNF-term.

We start by defining fn. Analyzing the semantics of T-terms and F-terms together with the
definition of fe on negations, it becomes clear that fn must turn T-terms into F-terms and vice
versa. We also remark that fn must preserve the left-associativity of the ∗-terms in T-∗-terms,
modulo the associativity within `-terms. We define fn : FNF → FNF as follows, using the
auxiliary function fn

1 : P ∗ → P ∗ to ‘push down’ or ‘push in’ the negation symbols when negating
a T-∗-term. We note that there is no ambiguity between the different grammatical categories
present in an FNF-term, i.e., any FNF-term is in exactly one of the grammatical categories
identified in Definition 2.6.

fn(T) = F (2.1)

fn(a ∨rb PT) = a ∧rb fn(PT) (2.2)

fn(F) = T (2.3)

fn(a ∧rb P F) = a ∨rb fn(P F). (2.4)

fn(PT ∧rb Q∗) = PT ∧rb fn
1 (Q∗) (2.5)

fn
1 (a ∧rb PT) = ¬a ∧rb PT (2.6)

fn
1 (¬a ∧rb PT) = a ∧rb PT (2.7)

fn
1 (P ∗ ∧rb Qd) = fn

1 (P ∗) ∨rb fn
1 (Qd) (2.8)

fn
1 (P ∗ ∨rb Qc) = fn

1 (P ∗) ∧rb fn
1 (Qc) (2.9)

Now we turn to defining f c. These definitions have a great deal of inter-dependence so we first
present the definition for f c when the first argument is a T-term. We see that the conjunction
of a T-term with another term always yields a term of the same grammatical category as the
second conjunct.

f c(T, P ) = P (2.10)

f c(a ∨rb PT, QT) = a ∨rb f c(PT, QT) (2.11)

f c(a ∨rb PT, QF) = a ∧rb f c(PT, QF) (2.12)

f c(a ∨rb PT, QT ∧rb R∗) = f c(a ∨rb PT, QT) ∧rb R∗ (2.13)

For defining f c where the first argument is an F-term we make use of (FEL7) when dealing
with conjunctions of F-terms with T-∗-terms. The definition of f c for the arguments used in the
right hand side of (2.16) starts at (2.23). We note that despite the high level of inter-dependence
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in these definitions, this does not create a circular definition. We also note that the conjunction
of an F-term with another term is always itself an F-term.

f c(F, PT) = fn(PT) (2.14)

f c(F, P F) = P F (2.15)

f c(F, PT ∧rb Q∗) = f c(PT ∧rb Q∗,F) (2.16)

f c(a ∧rb P F, Q) = a ∧rb f c(P F, Q) (2.17)

The case where the first conjunct is a T-∗-term is the most complicated. Therefore we first
consider the case where the second conjunct is a T-term. In this case we must make the T-term
part of the last (rightmost) `-term in the T-∗-term, so that the result will again be a T-∗-term.
For this ‘pushing in’ of the second conjunct we define an auxiliary function f c

1 : P ∗ × PT → P ∗.

f c(PT ∧rb Q∗, RT) = PT ∧rb f c
1(Q∗, RT) (2.18)

f c
1(a ∧rb PT, QT) = a ∧rb f c(PT, QT) (2.19)

f c
1(¬a ∧rb PT, QT) = ¬a ∧rb f c(PT, QT) (2.20)

f c
1(P ∗ ∧rb Qd, RT) = P ∗ ∧rb f c

1(Qd, RT) (2.21)

f c
1(P ∗ ∨rb Qc, RT) = P ∗ ∨rb f c

1(Qc, RT) (2.22)

When the second conjunct is an F-term, the result will naturally be an F-term itself. So we
need to convert the T-∗-term to an F-term. Using (FEL4) we reduce this problem to converting
a ∗-term to an F-term, for which we use the auxiliary function f c

2 : P ∗ × P F → P F.

f c(PT ∧rb Q∗, RF) = f c(PT, f c
2(Q∗, RF)) (2.23)

f c
2(a ∧rb PT, RF) = a ∧rb f c(PT, RF) (2.24)

f c
2(¬a ∧rb PT, RF) = a ∧rb f c(PT, RF) (2.25)

f c
2(P ∗ ∧rb Qd, RF) = f c

2(P ∗, f c
2(Qd, RF)) (2.26)

f c
2(P ∗ ∨rb Qc, RF) = f c

2(P ∗, f c
2(Qc, RF)) (2.27)

Finally we are left with conjunctions and disjunctions of two T-∗-terms, thus completing the
definition of f c. We use the auxiliary function f c

3 : P ∗×PT ∧rb P ∗ → P ∗ to ensure that the result
is a T-∗-term.

f c(PT ∧rb Q∗, RT ∧rb S∗) = PT ∧rb f c
3(Q∗, RT ∧rb S∗) (2.28)

f c
3(P ∗, QT ∧rb R`) = f c

1(P ∗, QT) ∧rb R` (2.29)

f c
3(P ∗, QT ∧rb (R∗ ∧rb Sd)) = f c

3(P ∗, QT ∧rb R∗) ∧rb Sd (2.30)

f c
3(P ∗, QT ∧rb (R∗ ∨rb Sc)) = f c

1(P ∗, QT) ∧rb (R∗ ∨rb Sc) (2.31)

As promised, we now define the normalization function f : FT→ FNF recursively, using fn

and f c, as follows.

f(a) = T ∧rb (a ∧rb T) (2.32)

f(T) = T (2.33)

f(F) = F (2.34)

f(¬P ) = fn(f(P )) (2.35)

f(P ∧rb Q) = f c(f(P ), f(Q)) (2.36)

f(P ∨rb Q) = fn(f c(fn(f(P )), fn(f(Q)))) (2.37)
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Theorem 2.7. For any P ∈ FT, f(P ) terminates, f(P ) ∈ FNF and EqFFEL ` f(P ) = P .

In Appendix A.1 we first prove a number of lemmas showing that the definitions fn and f c

are correct and use those to prove the theorem. The reader might wonder why we have used
a normalization function rather than a term rewriting system to prove the correctness of FNF.
The main reason is the author’s lack of experience with term rewriting systems, although the
fact that using a function relieves us of the need to prove the confluence of the induced rewriting
system, thus simplifying the proof, is also a factor.

2.2 Tree Structure

In Section 2.3 we will prove that EqFFEL axiomatizes FFEL by showing that for P ∈ FNF
we can invert fe(P ). To do this we need to prove several structural properties of the trees in
the image of fe . In the definition of fe we can see how fe(P ∧rb Q) is assembled from fe(P )
and fe(Q) and similarly for fe(P ∨rb Q). To decompose these trees we will introduce some
notation. The trees in the image of fe are all finite binary trees over A with leaves in {T,F},
i.e., fe [FT] ⊆ T . We will now also consider the set T� of binary trees over A with leaves in
{T,F,�}, where the ‘�’ symbol is pronounced ‘box’. Similarly we consider T1,2, the set of binary
trees over A with leaves in {T,F,�1,�2}. The �, �1 and �2 will be used as placeholders when
composing or decomposing trees. Replacement of the leaves of trees in T� and T1,2 by trees
(either in T , T� or T1,2) is defined analogous to replacement for trees in T , adopting the same
notational conventions.

For example we have by definition of fe that fe(P ∧rb Q) can be decomposed as

fe(P )[T 7→ �1,F 7→ �2][�1 7→ fe(Q),�2 7→ fe(Q)[T 7→ F]],

where fe(P )[T 7→ �1,F 7→ �2] ∈ T1,2 and fe(Q) and fe(Q)[T 7→ F] are in T . We note that
this only works because the trees in the image of fe , or more general, in T , do not contain any
boxes. Similarly, as we discussed previously, fe(P ∧rb F) = fe(P )[T 7→ F], which we can write as
fe(P )[T 7→ �][� 7→ F]. We start by analyzing the fe-image of `-terms.

Lemma 2.8 (Structure of `-terms). There is no `-term P such that fe(P ) can be decomposed
as X[� 7→ Y ] with X ∈ T� and Y ∈ T , where X 6= �, but does contain �, and Y contains
occurrences of both T and F.

Proof. Let P be some `-term. When we analyze the grammar of P we find that one branch
from the root of fe(P ) will only contain T and not F and the other branch vice versa. Hence if
fe(P ) = X[� 7→ Y ] and Y contains occurrences of both T and F, then Y must contain the root
and hence X = �.

By definition a ∗-term contains at least one `-term and hence for any ∗-term P , fe(P )
contains both T and F. The following lemma provides the fe-image of the rightmost `-term in
a ∗-term to witness this fact.

Lemma 2.9 (Determinativeness). For all ∗-terms P , fe(P ) can be decomposed as X[� 7→ Y ]
with X ∈ T� and Y ∈ T such that X contains � and Y = fe(Q) for some `-term Q. Note that
X may be �. We will refer to Y as the witness for this lemma for P .

Proof. By induction on the complexity of ∗-terms P modulo the complexity of `-terms. In the
base case P is an `-term and fe(P ) = �[� 7→ fe(P )] is the desired decomposition by Lemma
2.8. For the induction we have to consider both fe(P ∧rb Q) and fe(P ∨rb Q).
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We treat only the case for fe(P ∧rb Q), the case for fe(P ∨rb Q) is analogous. Let X[� 7→ Y ]
be the decomposition for fe(Q) which we have by induction hypothesis. Since by definition of
fe on ∧rb we have

fe(P ∧rb Q) = fe(P )[T 7→ fe(Q),F 7→ fe(Q)[T 7→ F]],

we also have

fe(P ∧rb Q) = fe(P )[T 7→ X[� 7→ Y ],F 7→ fe(Q)[T 7→ F]]

= fe(P )[T 7→ X,F 7→ fe(Q)[T 7→ F]][� 7→ Y ],

where the second equality is due to the fact that the only boxes in

fe(P )[T 7→ X,F 7→ fe(Q)[T 7→ F]]

are those occurring in X. This gives our desired decomposition.

The following lemma illustrates another structural property of trees in the image of ∗-terms
under fe , namely that the left branch of any determinative atom in such a tree is different from
its right branch.

Lemma 2.10 (Non-decomposition). There is no ∗-term P such that fe(P ) can be decomposed
as X[� 7→ Y ] with X ∈ T� and Y ∈ T , where X 6= � and X contains �, but not T or F.

Proof. By induction on P modulo the complexity of `-terms. The base case covers `-terms and
follows immediately from Lemma 2.9 (fe(P ) contains occurrences of both T and F) and Lemma
2.8 (no non-trivial decomposition exists that contains both). For the induction we assume that
the lemma holds for all ∗-terms with lesser complexity than P ∧rb Q and P ∨rb Q.

We start with the case for fe(P ∧rb Q). Suppose for contradiction that fe(P ∧rb Q) = X[� 7→ Y ]
with X 6= � and X not containing any occurrences of T or F. Let R be a witness of Lemma 2.9
for P . Now note that fe(P ∧rb Q) has a subtree

R[T 7→ fe(Q),F 7→ fe(Q)[T 7→ F]].

Because Y must contain both the occurrences of F in the one branch from the root of this subtree
as well as the occurrences of fe(Q) in the other (because they contain T and F), Lemma 2.8
implies that Y must (strictly) contain fe(Q) and fe(Q)[T 7→ F]. Hence there is a Z ∈ T such
that fe(P ) = X[� 7→ Z], which violates the induction hypothesis. The case for fe(P ∨rb Q)
proceeds analogously.

We now arrive at two crucial definitions for our completeness proof. When considering ∗-terms
we already know that fe(P ∧rb Q) can be decomposed as

fe(P )[T 7→ �1,F 7→ �2][�1 7→ fe(Q),�2 7→ fe(Q)[T 7→ F]].

Our goal now is to give a definition for a type of decomposition so that this is the only such
decomposition for fe(P ∧rb Q). We also ensure that fe(P ∨rb Q) does not have a decomposition of
that type, so that we can distinguish fe(P ∧rb Q) from fe(P ∨rb Q). Similarly, we define another
type of decomposition so that fe(P ∨rb Q) can only be decomposed as

fe(P )[T 7→ �1,F 7→ �2][�1 7→ fe(Q)[F 7→ T],�2 7→ fe(Q)]

and that fe(P ∧rb Q) does not have a decomposition of that type.
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Definition 2.11. The pair (Y,Z) ∈ T1,2 × T is a candidate conjunction decomposition
(ccd) of X ∈ T , if

• X = Y [�1 7→ Z,�2 7→ Z[T 7→ F]],

• Y contains both �1 and �2,

• Y contains neither T nor F, and

• Z contains both T and F.

Similarly, (Y,Z) is a candidate disjunction decomposition (cdd) of X, if

• X = Y [�1 7→ Z[F 7→ T],�2 7→ Z],

• Y contains both �1 and �2,

• Y contains neither T nor F, and

• Z contains both T and F.

The ccd and cdd are not necessarily the decompositions we are looking for, because, for
example, fe((P ∧rb Q) ∧rb R) has a ccd (fe(P )[T 7→ �1,F 7→ �2], fe(Q ∧rb R)), whereas the
decomposition we need is (fe(P ∧rb Q)[T 7→ �1,F 7→ �2], fe(R)). Therefore we refine these
definitions to obtain the decompositions we seek.

Definition 2.12. The pair (Y,Z) ∈ T1,2×T is a conjunction decomposition (cd) of X ∈ T ,
if it is a ccd of X and there is no other ccd (Y ′, Z ′) of X where the depth of Z ′ is smaller than
that of Z. Similarly, (Y,Z) is a disjunction decomposition (dd) of X, if it is a cdd of X
and there is no other cdd (Y ′, Z ′) of X where the depth of Z ′ is smaller than that of Z.

Theorem 2.13. For any ∗-term P ∧rb Q, i.e., with P ∈ P ∗ and Q ∈ P d, fe(P ∧rb Q) has the
(unique) cd

(fe(P )[T 7→ �1,F 7→ �2], fe(Q))

and no dd. For any ∗-term P ∨rb Q, i.e., with P ∈ P ∗ and Q ∈ P c, fe(P ∨rb Q) has no cd and its
(unique) dd is

(fe(P )[T 7→ �1,F 7→ �2], fe(Q)).

Proof. We first treat the case for P ∧rb Q and start with cd. Note that fe(P ∧rb Q) has a ccd
(fe(P )[T 7→ �1,F 7→ �2], fe(Q)) by definition of fe (for the first condition) and by Lemma 2.9
(for the fourth condition). It is immediate that it satisfies the second and third conditions. It also
follows that for any ccd (Y, Z) either Z contains or is contained in fe(Q), for suppose otherwise,
then Y will contain an occurrence of T or of F, namely those we know by Lemma 2.9 that fe(Q)
has. Therefore it suffices to show that there is no ccd (Y,Z) where Z is strictly contained in
fe(Q). Suppose for contradiction that (Y, Z) is such a ccd. If Z is strictly contained in fe(Q)
we can decompose fe(Q) as fe(Q) = U [� 7→ Z] for some U ∈ T� that contains but is not equal
to �. By Lemma 2.10 this implies that U contains T or F. But then so does Y , because

Y = fe(P )[T 7→ U [� 7→ �1],F 7→ U [� 7→ �2]],

and so (Y,Z) is not a ccd for fe(P ∧rb Q). Therefore (fe(P )[T 7→ �1,F 7→ �2], fe(Q)) is the
unique cd for fe(P ∧rb Q).

Now for the dd. It suffices to show that there is no cdd for fe(P ∧rb Q). Suppose for
contradiction that (Y, Z) is a cdd for fe(P ∧rb Q). We note that Z cannot be contained in fe(Q),
for then by Lemma 2.10 Y would contain T or F. So Z (strictly) contains fe(Q). But then
because

Y [�1 7→ Z[F 7→ T],�2 7→ Z] = fe(P ∧rb Q),
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we would have by Lemma 2.9 that fe(P ∧rb Q) does not contain an occurrence of fe(Q)[T 7→ F].
But the cd of fe(P ∧rb Q) tells us that it does, contradiction! Therefore there is no cdd, and
hence no dd, for fe(P ∧rb Q). The case for fe(P ∨rb Q) proceeds analogously.

At this point we have the tools necessary to invert fe on ∗-terms, at least down to the level
of `-terms. We note that we can easily detect if a tree in the image of fe is in the image of P `,
because all leaves to the left of the root are one truth value, while all the leaves to the right are
the other. To invert fe on T-∗-terms we still need to be able to reconstruct fe(PT) and fe(Q∗)
from fe(PT ∧rb Q∗). To this end we define a T-∗-decomposition.

Definition 2.14. The pair (Y,Z) ∈ T� × T is a T-∗-decomposition (tsd) of X ∈ T , if
X = Y [� 7→ Z], Y does not contain T or F and there is no decomposition (U, V ) ∈ T� ×T of Z
such that

• Z = U [� 7→ V ],

• U contains �,

• U 6= �, and

• U contains neither T nor F.

Theorem 2.15. For any T-term P and ∗-term Q the (unique) tsd of fe(P ∧rb Q) is

(fe(P )[T 7→ �], fe(Q)).

Proof. First we observe that (fe(P )[T 7→ �], fe(Q)) is a tsd because by definition of fe on ∧rb
we have fe(P )[T 7→ fe(Q)] = fe(P ∧rb Q) and fe(Q) is non-decomposable by Lemma 2.10.

Suppose for contradiction that there is another tsd (Y,Z) of fe(P ∧rb Q). Now Z must contain
or be contained in fe(Q) for otherwise Y would contain T or F, i.e., the ones we know fe(Q)
has by Lemma 2.9.

If Z is strictly contained in fe(Q), then fe(Q) = U [� 7→ Z] for some U ∈ T� with U 6= �
and U not containing T or F (because then Y would too). But this violates Lemma 2.10, which
states that no such decomposition exists. If Z strictly contains fe(Q), then Z contains at least
one atom from P . But the left branch of any atom in fe(P ) is equal to its right branch and
hence Z is decomposable. Therefore (fe(P )[T 7→ �], fe(Q)) is the unique tsd of fe(P ∧rb Q).

2.3 Completeness

With the two theorems from the previous section, we can prove completeness for FFEL. We define
three auxiliary functions to aid in our definition of the inverse of fe on FNF. Let cd : T → T1,2×T
be the function that returns the conjunction decomposition of its argument, dd of the same type
its disjunction decomposition and tsd : T → T� × T its T-∗-decomposition. Naturally, these
functions are undefined when their argument does not have a decomposition of the specified type.
Each of these functions returns a pair and we will use cd1 (dd1, tsd1) to denote the first element
of this pair and cd2 (dd2, tsd2) to denote the second element.

We define g : T → FT using the functions gT : T → FT for inverting trees in the image of
T-terms and gF, g` and g∗ of the same type for inverting trees in the image of F-terms, `-terms
and ∗-terms, respectively. These functions are defined as follows.

gT(X) =

{
T if X = T

a ∨rb gT(Y ) if X = Y E a D Z
(2.38)
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We note that we might as well have used the right branch from the root in the recursive case.
We chose the left branch here to more closely mirror the definition of the corresponding function
for FSCLse , defined in Chapter 3.

gF(X) =

{
F if X = F

a ∧rb gF(Z) if X = Y E a D Z
(2.39)

Similarly, we could have taken the left branch in this case.

g`(X) =


a ∧rb gT(Y ) if X = Y E a D Z for some a ∈ A

and Y only has T-leaves

¬a ∧rb gT(Z) if X = Y E a D Z for some a ∈ A

and Z only has T-leaves

(2.40)

g∗(X) =


g∗(cd1(X)[�1 7→ T,�2 7→ F]) ∧rb g∗(cd2(X)) if X has a cd

g∗(dd1(X)[�1 7→ T,�2 7→ F]) ∨rb g∗(dd2(X)) if X has a dd

g`(X) otherwise

(2.41)

We can immediately see how Theorem 2.13 will be used in the correctness proof of g∗.

g(X) =


gT(X) if X has only T-leaves

gF(X) if X has only F-leaves

gT(tsd1(X)[� 7→ T]) ∧rb g∗(tsd2(X)) otherwise

(2.42)

Similarly, we can see how Theorem 2.15 is used in the correctness proof of g. It should come as
no surprise that g is indeed correct and inverts fe on FNF.

Theorem 2.16. For all P ∈ FNF, g(fe(P )) ≡ P .

The proof for this theorem can be found in Appendix A.2. For the sake of completeness, we
separately state the completeness result below.

Theorem 2.17. For all P,Q ∈ FT, if FFEL � P = Q then EqFFEL ` P = Q.

Proof. It suffices to show that for P,Q ∈ FNF, fe(P ) = fe(Q) implies P ≡ Q. To see this
suppose that P ′ and Q′ are two FEL-terms and fe(P ′) = fe(Q′). We know that P ′ is derivably
equal to an FNF-term P , i.e., EqFFEL ` P ′ = P , and that Q′ is derivably equal to an FNF-term
Q, i.e., EqFFEL ` Q′ = Q. Theorem 2.5 then gives us fe(P ′) = fe(P ) and fe(Q′) = fe(Q).
Hence by the result P ≡ Q and in particular EqFFEL ` P = Q. Transitivity then gives us
EqFFEL ` P ′ = Q′ as desired.

The result follows immediately from Theorem 2.16.
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CHAPTER 3

Free Short-Circuit Logic (FSCL)

In this chapter we define Free Short-Circuit Logic on evaluation trees and present the set of
equations EqFSCL, which we will prove axiomatizes this logic in Section 2.3. Formally, SCL-
terms are built up from atomic propositions that may have side effects, called atoms, the truth
value constants T for true and F for false and the connectives ¬ for negation, ∧rb for (short-circuit)
left-sequential conjunction and ∨rb for (short-circuit) left-sequential disjunction.

Definition 3.1. Let A be a countable set of atoms. SCL-terms (ST) have the following gram-
mar presented in Backus-Naur Form.

P ∈ ST ::= a ∈ A | T | F | ¬P | (P ∧rb P ) | (P ∨rb P )

As is the case with FEL, if A = ∅ then resulting logic is trivial.

First we return for a moment to our motivation for left-sequential logics, i.e., propositional
terms as used in programming languages. We will consider the SCL-term a ∨rb b and informally
describe its evaluation, naturally using a short-circuit evaluation strategy. We start by evaluating
a and let its yield determine our next action. If a yielded F we proceed by evaluating b, i.e.,
the yield of the term as a whole will be the yield of b. If a yielded T, we already know at this
point that a ∨rb b will yield T. We skip the evaluation of b and let the term yield T, i.e., b is
short-circuited.

Considering the more complex term (a ∨rb b) ∧rb c, we find that we start by evaluating a ∨rb b
and if it yields T we proceed by evaluating c. If it yields F we skip the evaluation of c, because
we know the term will yield F. This example shows that evaluating SCL-terms is an interactive
procedure, where the yield of the previous atom is needed to determine which atom to evaluate
next. We believe these semantics are best captured in trees. Hence we will define equality of
SCL-terms using (evaluation) trees. We define the set T of finite binary trees over A with leaves
in {T,F} recursively. We have that

T ∈ T , F ∈ T , and (X E a D Y ) ∈ T for any X,Y ∈ T and a ∈ A.

In the expression X E a D Y the root is represented by a, the left branch by X and the
right branch by Y . We define the depth of a tree X recursively by d(T) = d(F) = 0 and
d(Y E a D Z) = 1 + max(d(Y ), d(Z)) for a ∈ A. The reason for our choice of notation for trees
will become apparent in Chapter 4. We refer to trees in T as evaluation trees, or trees for short.
Figure 3.1 shows the trees corresponding to the evaluations of (a ∨rb b) ∧rb c and (a ∧rb b) ∨rb c.
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Returning to our example, we have seen that the tree corresponding to the evaluation of
(a ∨rb b) ∧rb c can be composed from the tree corresponding to the evaluation of a ∨rb b and that
corresponding to the evaluation of c. We said above that if a ∨rb b yielded T, we would proceed
with the evaluation of c. This can be seen as replacing each T-leaf in the tree corresponding
to the evaluation of a ∨rb b with the tree that corresponds to the evaluation of c. Formally
we define the leaf replacement operator, ‘replacement’ for short, on trees in T as follows. Let
X,X ′, X ′′Y, Z ∈ T and a ∈ A. The replacement of T with Y and F with Z in X, denoted
X[T 7→ Y,F 7→ Z], is defined recursively as

T[T 7→ Y,F 7→ Z] = Y

F[T 7→ Y,F 7→ Z] = Z

(X ′ E a D X ′′)[T 7→ Y,F 7→ Z] = X ′[T 7→ Y,F 7→ Z] E a D X ′′[T 7→ Y,F 7→ Z].

We note that the order in which the replacements of the leaves of X is listed inside the brackets
is irrelevant. We will adopt the convention of not listing any identities inside the brackets, i.e.,

X[F 7→ Y ] = X[T 7→ T,F 7→ Y ].

Furthermore we let replacements associate to the left. We also use that fact that

X[T 7→ Y ][F 7→ Z] = X[T 7→ Y,F 7→ Z]

if Y does not contain F, which can be shown by a trivial induction. Similarly,

X[F 7→ Z][T 7→ Y ] = X[T 7→ Y,F 7→ Z]

if Z does not contain T. We now have the terminology and notation to formally define the
mapping from SCL-terms to evaluation trees.

Definition 3.2. Let A be a countable set of atoms and let T be the set all finite binary trees over
A with leaves in {T,F}. We define the unary Short-Circuit Evaluation function se : ST→ T
as:

se(T) = T

se(F) = F

se(a) = T E a D F for a ∈ A

se(¬P ) = se(P )[T 7→ F,F 7→ T]

se(P ∧rb Q) = se(P )[T 7→ se(Q)]

se(P ∨rb Q) = se(P )[F 7→ se(Q)].

As we can see from the definition on atoms, the evaluation continues in the left branch if an
atom yields T and in the right branch if it yields F. Revisiting our example once more, we indeed
see how the evaluation of a ∨rb b is composed of the evaluation of a followed by the evaluation of
b in case a yields F. We can compute

se(a ∨rb b) = (T E a D F)[F 7→ (T E b D F)]

= T E a D (T E b D F).

Now the evaluation of (a ∨rb b) ∧rb c is a composition of this tree and T E c D F, as can be seen in
Figure 2.1b.
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(b) se((a ∨qa b) ∧qa c)

Figure 3.1: Trees depicting the evaluation of two SCL-terms. The evaluation starts at the
root. When (the atom at) an inner node yields T the evaluation continues in its left branch
and when it yields F it continues in its right branch. The leaves indicate the yield of the
terms as a whole.

These trees show us that a function of the yield of the atoms in an SCL-term is insufficient
to determine the semantics of the term as a whole. They show us that we must also consider the
(conditional) order in which the atoms occur in the term. In particular we see that in P ∨rb Q, Q
will be short-circuited if P yields T, while in P ∧rb Q, it will be short-circuited if P yields F. We
are now ready to define Short-Circuit Logic on evaluation trees.

Definition 3.3. Free Short-Circuit Logic (FSCLse ) is the logic that satisfies exactly the
consequences of se-equality, i.e., for all P,Q ∈ ST,

FSCLse � P = Q ⇐⇒ se(P ) = se(Q).

Using the completeness result we shall prove in Section 3.3, we will show that FSCLse is in
fact equivalent to FSCL as defined by Bergstra and Ponse in [BP10b]. This should come as no
surprise given the tree-like structure that Proposition Algebra terms exhibit, see, e.g., [BP11] or
[BP12].

We choose a representation of T as trees rather than as sets of traces, i.e., the paths of those
trees annotated with truth values for the atoms, because the tree notation allows us to be more
succinct. These tree semantics were first given, although presented as trace semantics, by Ponse
in [Pon11].

We now turn to the set of equations EqFSCL, listed in Table 3.1, which we will show in
Section 3.3 is an axiomatization of FSCLse . This set of equations is based on one presented by
Bergstra and Ponse in [BP10b]. If two SCL-terms s and t, where we extend the definition to allow
for terms containing variables, are derivable by equational logic and EqFSCL, we denote this by
EqFSCL ` s = t and say that s and t are derivably equal. As a consequence of (SCL1) through
(SCL3), ∧rb is the dual of ∨rb and hence the duals of the equations in EqFSCL are also derivable.
We will use this fact implicitly throughout our proofs. Observe that unlike with EqFFEL, we
have an equation in EqFSCL for (a special case of) distributivity, i.e., (SCL10).

The following lemma shows some equations that will prove useful in Section 3.1. These
equations show how terms of the form x ∧rb F and x ∨rb T can be used to change the order in which
atoms occur in an SCL-term. This is very different from the situation with FEL, where terms
that contain the same atoms, but in a different order, are never derivably equal. In terms of a
comparison between EqFSCL and EqFFEL this can be seen as a consequence of (SCL10).
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F = ¬T (SCL1)

x ∨rb y = ¬(¬x ∧rb ¬y) (SCL2)

¬¬x = x (SCL3)

(x ∧rb y) ∧rb z = x ∧rb (y ∧rb z) (SCL4)

T ∧rb x = x (SCL5)

x ∧rb T = x (SCL6)

F ∧rb x = F (SCL7)

x ∧rb F = ¬x ∧rb F (SCL8)

(x ∧rb F) ∨rb y = (x ∨rb T) ∧rb y (SCL9)

(x ∧rb y) ∨rb (z ∧rb F) = (x ∨rb (z ∧rb F)) ∧rb (y ∨rb (z ∧rb F)) (SCL10)

Table 3.1: The set of equations EqFSCL.

26



Lemma 3.4. The following equations can all be derived by equational logic and EqFSCL.

1. (x ∨rb y) ∧rb (z ∧rb F) = (¬x ∨rb (z ∧rb F)) ∧rb (y ∧rb (z ∧rb F))

2. (x ∨rb (y ∧rb F)) ∧rb (z ∧rb F) = (¬x ∨rb (z ∧rb F)) ∧rb (y ∧rb F)

3. (x ∧rb (y ∨rb T)) ∨rb (z ∧rb F) = (x ∨rb (z ∧rb F)) ∧rb (y ∨rb T)

Proof. We derive the equations in order.

(x ∨rb y) ∧rb (z ∧rb F)

= (x ∨rb y) ∧rb ((z ∧rb F) ∧rb F) by (SCL7) and (SCL4)

= (x ∨rb y) ∧rb (¬(z ∧rb F) ∧rb F) by (SCL8)

= ((x ∨rb y) ∧rb ¬(z ∧rb F)) ∧rb F by (SCL4)

= ((¬x ∧rb ¬y) ∨rb (z ∧rb F)) ∧rb F by (SCL8), (SCL2) and (SCL3)

= ((¬x ∨rb (z ∧rb F)) ∧rb (¬y ∨rb (z ∧rb F))) ∧rb F by (SCL10)

= (¬x ∨rb (z ∧rb F)) ∧rb ((¬y ∨rb (z ∧rb F)) ∧rb F) by (SCL4)

= (¬x ∨rb (z ∧rb F)) ∧rb ((y ∧rb ¬(z ∧rb F)) ∧rb F) by (SCL8), (SCL2) and (SCL3)

= ((¬x ∨rb (z ∧rb F)) ∧rb y) ∧rb (¬(z ∧rb F) ∧rb F) by (SCL4)

= ((¬x ∨rb (z ∧rb F)) ∧rb y) ∧rb ((z ∧rb F) ∧rb F) by (SCL8)

= ((¬x ∨rb (z ∧rb F)) ∧rb y) ∧rb (z ∧rb F) by (SCL4) and (SCL7)

= (¬x ∨rb (z ∧rb F)) ∧rb (y ∧rb (z ∧rb F)) by (SCL4)

(x ∨rb (y ∧rb F)) ∧rb (z ∧rb F)

= (¬x ∨rb (z ∧rb F)) ∧rb ((y ∧rb F) ∧rb (z ∧rb F)) by part (1) of this lemma

= (¬x ∨rb (z ∧rb F)) ∧rb (y ∧rb F) by (SCL7) and (SCL4)

(x ∧rb (y ∨rb T)) ∨rb (z ∧rb F)

= (x ∨rb (z ∧rb F)) ∧rb ((y ∨rb T) ∨rb (z ∧rb F)) by (SCL10)

= (x ∨rb (z ∧rb F)) ∧rb (y ∨rb T) by the duals of (SCL7) and (SCL4)

Theorem 3.5. For all P,Q ∈ ST, if EqFSCL ` P = Q then FSCLse � P = Q.

Proof. To see that identity, symmetry, transitivity and congruence hold in FSCLse , we refer the
reader to the proof of Theorem 2.5 and note that the proofs for FSCLse are highly similar.

Verifying the validity of the equations in EqFSCL is cumbersome, but not difficult. As an
example we show it for (SCL3). We have

se(¬¬P ) = se(P )[T 7→ F,F 7→ T][T 7→ F,F 7→ T] = se(P )

by a trivial structural induction on evaluation trees.

3.1 SCL Normal Form

To aid in our completeness proof we define a normal form for SCL-terms. Because the atoms in
SCL-terms may have side effects common normal forms for PL such as Conjunctive Normal Form
or Disjunctive Normal Form are not normal forms for SCL. For example, the term a ∧rb (b ∨rb c)
would be written as (a ∧rb b) ∨rb (a ∧rb c) in Disjunctive Normal Form, but a trivial examination
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shows that the evaluation trees of these terms are not the same. Our normal form is inspired by
the FEL Normal Form presented in Chapter 2. We present the grammar for our normal form
before we motivate it.

Definition 3.6. A term P ∈ ST is said to be in SCL Normal Form (SNF) if it is generated
by the following grammar.

P ∈ SNF ::= PT | P F | PT ∧rb P ∗

P ∗ ::= P c | P d

P c ::= P ` | P ∗ ∧rb P d

P d ::= P ` | P ∗ ∨rb P c

P ` ::= (a ∧rb PT) ∨rb P F | (¬a ∧rb PT) ∨rb P F

PT ::= T | (a ∧rb PT) ∨rb PT

P F ::= F | (a ∨rb P F) ∧rb P F,

where a ∈ A. We refer to P ∗-forms as ∗-terms, to P `-forms as `-terms, to PT-forms as T-terms
and to P F-forms as F-terms. A term of the form PT ∧rb P ∗ is referred to as a T-∗-term.

Without the presence of T and F in our language, a traditional Negation Normal Form would
have sufficed. Furthermore, if A = ∅, an even more trivial normal form could be used, i.e., just
T or F.

When considering trees in the image of se we note that some trees only have T-leaves, some
only F-leaves and some both T-leaves and F-leaves. For any SCL-term P , se(P ∨rb T) is a tree
with only T-leaves, as can easily be seen from the definition of se . All terms P such that se(P )
is a tree with only T-leaves are rewritten to T-terms. Similarly, for any term P , se(P ∧rb F) is
a tree with only F-leaves. All P such that se(P ) has only F-leaves are rewritten to F-terms.
The simplest trees in the image of se that have both types of leaves are se(a) for a ∈ A. Any
(occurrence of an) atom that determines (in whole or in part) the yield of the term, such as a
in this example, is referred to as a determinative (occurrence of an) atom. This as opposed to
a non-determinative (occurrence of an) atom, such as the a in a ∨rb T, which does not determine
(either in whole or in part) the yield of the term. Note that a term P such that se(P ) contains
both T and F must contain at least one determinative atom.

Terms that contain at least one determinative atom will be rewritten to T-∗-terms. In T-
∗-terms we encode each determinative atom together with the non-determinative atoms that
occur between it and the next determinative atom in the term (reading from left to right) as an
`-term. Observe that the first atom in an `-term is the (only) determinative atom in that `-term
and that determinative atoms only occur in `-terms. Also observe that the yield of an `-term
is the yield of its determinative atom. This is intuitively convincing, because the remainder of
the atoms in any `-term are non-determinative and hence do not contribute to its yield. The
non-determinative atoms that may occur before the first determinative atom are encoded as a
T-term. A T-∗-term is the conjunction of a T-term encoding such atoms and a ∗-term, which
contains only conjunctions and disjunctions of `-terms. We could also have encoded such atoms
as an F-term and then taken the disjunction with a ∗-term to obtain a term with the same
semantics. We consider `-terms to be ‘basic’ in ∗-terms in the sense that they are the smallest
grammatical unit that influences the yield of the ∗-term.

The `-terms in SNF are more complex than those in FEL Normal Form, because short-
circuiting allows for the possibility of evaluating different non-determinative atoms depending on
the yield of the determinative atom. This is also the reason why the T-terms and the F-terms
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are more complex. Although the atoms occurring in them are not determinative, their yield can
influence which atoms in the T-term (F-term) are evaluated next.

We use PT, P ∗, etc. both to denote grammatical categories and as variables for terms in
those categories. The remainder of this section is concerned with defining and proving correct
the normalization function f : ST→ SNF. We will define f recursively using the functions

fn : SNF→ SNF and f c : SNF× SNF→ SNF.

The first of these will be used to rewrite negated SNF-terms to SNF-terms and the second to
rewrite the conjunction of two SNF-terms to an SNF-term. By (SCL2) we have no need for a
dedicated function that rewrites the disjunction of two SNF-terms to an SNF-term.

We start by defining fn. Analyzing the semantics of T-terms and F-terms together with the
definition of se on negations, it becomes clear that fn must turn T-terms into F-terms and vice
versa. We also remark that fn must preserve the left-associativity of the ∗-terms in T-∗-terms,
modulo the associativity within `-terms. We define fn : SNF → SNF as follows, using the
auxiliary function fn

1 : P ∗ → P ∗ to ‘push down’ or ‘push in’ the negation symbols when negating
a T-∗-term. We note that there is no ambiguity between the different grammatical categories
present in an SNF-term, i.e., any SNF-term is in exactly one of the grammatical categories
identified in Definition 3.6.

fn(T) = F (3.1)

fn((a ∧rb PT) ∨rb QT) = (a ∨rb fn(QT)) ∧rb fn(PT) (3.2)

fn(F) = T (3.3)

fn((a ∨rb P F) ∧rb QF) = (a ∧rb fn(QF)) ∨rb fn(P F) (3.4)

fn(PT ∧rb Q∗) = PT ∧rb fn
1 (Q∗) (3.5)

fn
1 ((a ∧rb PT) ∨rb QF) = (¬a ∧rb fn(QF)) ∨rb fn(PT) (3.6)

fn
1 ((¬a ∧rb PT) ∨rb QF) = (a ∧rb fn(QF)) ∨rb fn(PT) (3.7)

fn
1 (P ∗ ∧rb Qd) = fn

1 (P ∗) ∨rb fn
1 (Qd) (3.8)

fn
1 (P ∗ ∨rb Qc) = fn

1 (P ∗) ∧rb fn
1 (Qc). (3.9)

Now we turn to defining f c. These definitions have a great deal of inter-dependence so we first
present the definition for f c when the first argument is a T-term. We see that the conjunction
of a T-term with another terms always yields a term of the same grammatical category as the
second conjunct.

f c(T, P ) = P (3.10)

f c((a ∧rb PT) ∨rb QT, RT) = (a ∧rb f c(PT, RT)) ∨rb f c(QT, RT) (3.11)

f c((a ∧rb PT) ∨rb QT, RF) = (a ∨rb f c(QT, RF)) ∧rb f c(PT, RF) (3.12)

f c((a ∧rb PT) ∨rb QT, RT ∧rb S∗) = f c((a ∧rb PT) ∨rb QT, RT) ∧rb S∗ (3.13)

For defining f c where the first argument is an F-term, we make use of (SCL7). This imme-
diately shows that the conjunction of an F-term with another term is itself an F-term.

f c(P F, Q) = P F (3.14)

The case where the first conjunct is a T-∗-term and the second conjunct is a T-term is defined
next. We will use an auxiliary function, f c

1 : P ∗ × PT → P ∗, to turn conjunctions of a ∗-term
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with a T-term into ∗-terms. Together with (SCL4) this allows us to define f c for this case.

f c(PT ∧rb Q∗, RT) = PT ∧rb f c
1(Q∗, RT) (3.15)

f c
1((a ∧rb PT) ∨rb QF, RT) = (a ∧rb f c(PT, RT)) ∨rb QF (3.16)

f c
1((¬a ∧rb PT) ∨rb QF, RT) = (¬a ∧rb f c(PT, RT)) ∨rb QF (3.17)

f c
1(P ∗ ∧rb Qd, RT) = P ∗ ∧rb f c

1(Qd, RT) (3.18)

f c
1(P ∗ ∨rb Qc, RT) = f c

1(P ∗, RT) ∨rb f c
1(Qc, RT) (3.19)

When the second conjunct is an F-term, the result will naturally be an F-term itself. So we
need to convert the T-∗-term to an F-term. Using (SCL4) we reduce this problem to converting
a ∗-term to an F-term, for which we use the auxiliary function f c

2 : P ∗ × P F → P F.

f c(PT ∧rb Q∗, RF) = f c(PT, f c
2(Q∗, RF)) (3.20)

f c
2((a ∧rb PT) ∨rb QF, RF) = (a ∨rb QF) ∧rb f c(PT, RF) (3.21)

f c
2((¬a ∧rb PT) ∨rb QF, RF) = (a ∨rb f c(PT, RF)) ∧rb QF (3.22)

f c
2(P ∗ ∧rb Qd, RF) = f c

2(P ∗, fc
2(Qd, RF)) (3.23)

f c
2(P ∗ ∨rb Qc, RF) = f c

2(fn(f c
1(P ∗, fn(RF))), f c

2(Qc, RF)) (3.24)

Finally we are left with conjunctions of two T-∗-terms, thus completing the definition of f c.
We use the auxiliary function f c

3 : P ∗ × PT ∧rb P ∗ → P ∗ to ensure that the result is a T-∗-term.

f c(PT ∧rb Q∗, RT ∧rb S∗) = PT ∧rb f c
3(Q∗, RT ∧rb S∗) (3.25)

f c
3(P ∗, QT ∧rb R`) = f c

1(P ∗, QT) ∧rb R` (3.26)

f c
3(P ∗, QT ∧rb (R∗ ∧rb Sd)) = f c

3(P ∗, QT ∧rb R∗) ∧rb Sd (3.27)

f c
3(P ∗, QT ∧rb (R∗ ∨rb Sc)) = f c

1(P ∗, QT) ∧rb (R∗ ∨rb Sc) (3.28)

As promised, we now define the normalization function f : ST → SNF recursively, using fn

and f c, as follows.

f(a) = T ∧rb ((a ∧rb T) ∨rb F) (3.29)

f(T) = T (3.30)

f(F) = F (3.31)

f(¬P ) = fn(f(P )) (3.32)

f(P ∧rb Q) = f c(f(P ), f(Q)) (3.33)

f(P ∨rb Q) = fn(f c(fn(f(P )), fn(f(Q)))) (3.34)

Theorem 3.7. For any P ∈ ST, f(P ) terminates, f(P ) ∈ SNF and EqFSCL ` f(P ) = P .

In Appendix B.1 we first prove a number of lemmas showing that the definitions fn and
f c are correct and use those to prove the theorem. We have chosen to use a function rather
than a rewriting system to prove the correctness of the normal form, because the author lacks
experience with term rewriting systems and because using a function relieves us of the task of
proving confluence for the underlying rewriting system.

In Section 4.3 we show that FFEL is a sublogic of FSCL and that any FEL-term can be
rewritten to an SCL-term with the same semantics. There we will pay special attention to the
application of that translation to terms in FEL Normal Form.
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3.2 Tree Structure

In Section 3.3 we will prove that EqFSCL axiomatizes FSCLse by showing that if P ∈ SNF we
can invert se(P ). To do this we need to prove several structural properties of the trees in the
image of se . In the definition of se we can see how se(P ∧rb Q) is assembled from se(P ) and se(Q)
and similarly for se(P ∨rb Q). To decompose these trees we will introduce some notation. The
trees in the image of se are all finite binary trees over A with leaves in {T,F}, i.e., se [ST] ⊆ T .
We will now also consider the set T� of binary trees over A with leaves in {T,F,�}, where ‘�’ is
pronounced ‘box’. The box will be used as a placeholder when composing or decomposing trees.
Replacement of the leaves of trees in T� by trees in T or T� is defined analogous to replacement
for trees in T , adopting the same notational conventions.

For example we have by definition of se that se(P ∧rb Q) can be decomposed as

se(P )[T 7→ �][� 7→ se(Q)],

where se(P )[T 7→ �] ∈ T� and se(Q) ∈ T . We note that this only works because the trees
in the image of se , or in T in general, do not contain any boxes. We start by analyzing the
se-image of `-terms.

Lemma 3.8 (Structure of `-terms). There is no `-term P such that se(P ) can be decomposed
as X[� 7→ Y ] with X ∈ T� and Y ∈ T , where X 6= �, but does contain �, and Y contains
occurrences of both T and F.

Proof. Let P be some `-term. When we analyze the grammar of P we find that one branch
from the root of se(P ) will only contain T and not F and the other branch vice versa. Hence if
se(P ) = X[� 7→ Y ] and Y contains occurrences of both T and F, then Y must contain the root
and hence X = �.

By definition a ∗-term contains at least one `-term and hence for any ∗-term P , se(P ) contains
both T and F. The following lemma provides the se-image of the rightmost `-term in a ∗-term
to witness this fact.

Lemma 3.9 (Determinativeness). For all ∗-terms P , se(P ) can be decomposed as X[� 7→ Y ]
with X ∈ T� and Y ∈ T such that X contains � and Y = se(Q) for some `-term Q. Note that
X may be �. We will refer to Y as the witness for this lemma for P .

Proof. By induction on the complexity of ∗-terms P modulo the complexity of `-terms. In the
base case P is an `-term and se(P ) = �[� 7→ se(P )] is the desired decomposition by Lemma
3.8. For the induction we have to consider both se(P ∧rb Q) and se(P ∨rb Q).

We start with se(P ∧rb Q) and let X[� 7→ Y ] be the decomposition for se(Q) which we have
by induction hypothesis. Since by definition of se on ∧rb we have

se(P ∧rb Q) = se(P )[T 7→ se(Q)]

we also have

se(P ∧rb Q) = se(P )[T 7→ X[� 7→ Y ]] = se(P )[T 7→ X][� 7→ Y ].

The last equality is due to the fact that se(P ) does not contain any boxes. This gives our desired
decomposition. The case for se(P ∨rb Q) is analogous.

The following lemma illustrates another structural property of trees in the image of ∗-terms
under se , namely that the left branch of any determinative atom in such a tree is different from
its right branch.
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Lemma 3.10 (Non-decomposition). There is no ∗-term P such that se(P ) can be decomposed
as X[� 7→ Y ] with X ∈ T� and Y ∈ T , where X 6= � and X contains �, but not T or F.

Proof. By induction on P modulo the complexity of `-terms. The base case covers `-terms
and follows immediately from Lemma 3.9 (se(P ) contains occurrences of both T and F) and
Lemma 3.8 (no non-trivial decomposition exists that contains both). For the induction we
assume that the lemma holds for all ∗-terms with lesser complexity than P ∧rb Q and P ∨rb Q.

We start with the case for se(P ∧rb Q). Suppose for contradiction that se(P ∧rb Q) = X[� 7→ Y ]
with X 6= � and X not containing any occurrences of T or F. Let R be a witness of Lemma 3.9
for P . Now note that se(P ∧rb Q) has a subtree R[T 7→ se(Q)]. Because Y must contain both the
occurrences of F in the one branch of R[T 7→ se(Q)] as well as the occurrences of se(Q) in the
other (because they contain T and F), Lemma 3.8 implies that Y must (strictly) contain se(Q).
Hence there is a Z ∈ T such that fe(P ) = X[� 7→ Z], which violates the induction hypothesis.
The case for se(P ∨rb Q) is symmetric.

We now arrive at two crucial definitions for our completeness proof. When considering ∗-
terms, we already know that se(P ∧rb Q) can be decomposed as

se(P )[T 7→ �][� 7→ se(Q)].

Our goal now is to give a definition for a type of decomposition so that this is the only such
decomposition for se(P ∧rb Q). We also ensure that se(P ∨rb Q) does not have a decomposition of
that type, so that we can distinguish se(P ∧rb Q) from se(P ∨rb Q). Similarly, we need to define
another type of decomposition so that se(P ∨rb Q) can only be decomposed as

se(P )[F 7→ �][� 7→ se(Q)]

and that se(P ∧rb Q) does not have a decomposition of that type.

Definition 3.11. The pair (Y,Z) ∈ T� × T is a candidate conjunction decomposition
(ccd) of X ∈ T , if

• X = Y [� 7→ Z],

• Y contains �,

• Y contains F, but not T, and

• Z contains both T and F.

Similarly, (Y, Z) is a candidate disjunction decomposition (cdd) of X, if

• X = Y [� 7→ Z],

• Y contains �,

• Y contains T, but not F, and

• Z contains both T and F.

We note that the ccd and cdd are not necessarily the decompositions we are looking for,
because, for example, se((P ∧rb Q) ∧rb R) has a ccd (se(P )[T 7→ �], se(Q ∧rb R)), whereas the
decomposition we need is (se(P ∧rb Q)[T 7→ �], se(R)). Therefore we refine these definitions to
obtain the decompositions we seek.

Definition 3.12. The pair (Y,Z) ∈ T�×T is a conjunction decomposition (cd) of X ∈ T ,
if it is a ccd of X and there is no other ccd (Y ′, Z ′) of X where the depth of Z ′ is smaller than
that of Z. Similarly, (Y, Z) is a disjunction decomposition (dd) of X, if it is a cdd of X
and there is no other cdd (Y ′, Z ′) of X where the depth of Z ′ is smaller than that of Z.
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Theorem 3.13. For any ∗-term P ∧rb Q, i.e., with P ∈ P ∗ and Q ∈ P d, se(P ∧rb Q) has the
(unique) cd

(se(P )[T 7→ �], se(Q))

and no dd. For any ∗-term P ∨rb Q, i.e., with P ∈ P ∗ and Q ∈ P c, se(P ∨rb Q) has no cd and its
(unique) dd is

(se(P )[F 7→ �], se(Q)).

Proof. By simultaneous induction on P ∧rb Q and P ∨rb Q modulo the complexity of `-terms. In
the basis we have to consider, for `-terms P and Q, the terms P ∧rb Q and P ∨rb Q. Both of these
are covered by the cases in the induction where the second conjunct (or disjunct) Q is an `-term.
This is valid reasoning, since we don’t call upon the induction hypothesis in those cases. For the
induction we assume that the theorem holds for all ∗-terms with lesser complexity than P ∧rb Q
and P ∨rb Q. We first treat the case for P ∧rb Q.

First for the cd. Note that (se(P )[T 7→ �], se(Q)) is a ccd of se(P ∧rb Q) by definition of se
on ∧rb (for the first condition) and Lemma 3.9 (for the third and fourth condition). We also know
that for any ccd (Y,Z) either Z contains or is contained in se(Q). For suppose otherwise, then
Y will contain an occurrence of T, namely the one we know by Lemma 3.9 that se(Q) has. By
the above it suffices to show that there is no ccd (Y,Z) where Z is strictly contained in se(Q).
Suppose for contradiction that such a ccd (Y,Z) does exist.

By definition of ∗-terms Q is either an `-term or a disjunction. If Q is an `-term and Z is
strictly contained in se(Q) then Z does not contain both T and F by Lemma 3.8. Therefore
(se(P )[T 7→ �], se(Q)) is the unique cd for se(P ∧rb Q).

If Q is a disjunction, then if Z is strictly contained in se(Q) we can decompose se(Q) as
se(Q) = U [� 7→ Z] for some U ∈ T� that contains but is not equal to �. By Lemma 3.10 this
implies that U contains either T or F. If it contains T, then so does Y , because

Y = se(P )[T 7→ U ],

and (Y,Z) is not a ccd for se(P ∧rb Q). If it only contains F then (U,Z) is a ccd for se(Q)
which violates the induction hypothesis. Therefore (se(P )[T 7→ �], se(Q)) is the unique cd for
se(P ∧rb Q).

Now for the dd. It suffices to show that there is no cdd for se(P ∧rb Q). Again Q is either
an `-term or a disjunction. Suppose for contradiction that (Y,Z) is a cdd for se(P ∧rb Q). If Q
is an `-term, then Z must contain all occurrences of F in se(P ∧rb Q). So in particular it must
contain all occurrences of F in se(Q). It must also contain at least one occurrence of T. Hence
by Lemma 3.8 Z must contain se(Q). But then Z contains all the occurrences of T in se(P ∧rb Q)
and hence X does not contain any occurrences of T. Therefore there is no cdd for se(P ∧rb Q).

If Q is a disjunction then Z must contain all occurrences of F in se(P ∧rb Q). Let R be
a witness of Lemma 3.9 for P . Now note that R[T 7→ se(Q)] is a subtree of se(P ∧rb Q).
Also note that Lemma 3.8 implies that there is no way to decompose R[T 7→ se(Q)] such that
R[T 7→ se(Q)] = U [� 7→ V ] for some U ∈ T� that contains but is not equal to � and some
V ∈ T containing occurrences of both se(Q) and F. So because Z must contain all occurrences
of F in se(P ∧rb Q), it must strictly contain se(Q). But all the occurrences of T in se(P ∧rb Q)
are in occurrences of se(Q). Hence X does not contain any occurrences of T. Therefore there is
no cdd for se(P ∧rb Q). The case for se(P ∨rb Q) is symmetric.

At this point we have the tools necessary to invert se on ∗-terms, at least down to the level
of `-terms. We can easily detect if a tree in the image of se is in the image of P `, because
all leaves to the left of the root are one truth value, while all the leaves to the right are the
other. To invert se on T-∗-terms we still need to be able to reconstruct se(PT) and se(Q∗) from
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se(PT ∧rb Q∗). To this end we define a T-∗-decomposition, as with cds and dds we first define a
candidate T-∗-decomposition.

Definition 3.14. The pair (Y,Z) ∈ T�×T is a candidate T-∗-decomposition (ctsd) of X ∈
T , if X = Y [� 7→ Z], Y does not contain T or F and there is no decomposition (U, V ) ∈ T�×T
of Z such that

• Z = U [� 7→ V ],

• U contains �,

• U 6= �, and

• U contains neither T nor F.

Unlike with FEL, this is not the decomposition we seek in this case. Consider for example
that there is a T-term with the following semantics:

a

b

c

T T

d

T T

b

c

T T

d

T T

Let PT be the T-term with these semantics and observe that se(PT ∧rb Q∗) has a ctsd

(� E a D �, (se(Q∗) E c D se(Q∗)) E b D (se(Q∗) E d D se(Q∗))).

But the decomposition we seek is (se(PT)[T 7→ �], se(Q∗). Hence we will refine this definition
to aid in the theorem below.

Definition 3.15. The pair (Y,Z) ∈ T� × T is a T-∗-decomposition (tsd) of X ∈ T , if it is
a ctsd of X and there is no other ctsd (Y ′, Z ′) of X where the depth of Z ′ is smaller than that
of Z.

Theorem 3.16. For any T-term P and ∗-term Q the (unique) tsd of se(P ∧rb Q) is

(se(P )[T 7→ �], se(Q)).

Proof. First we observe that (se(P )[T 7→ �], se(Q)) is a ctsd because by definition of se on ∧rb
we have se(P )[T 7→ se(Q)] = se(P ∧rb Q) and se(Q) is non-decomposable by Lemma 3.10.

Suppose for contradiction that there is ctsd (Y,Z) such that the depth of Z is smaller than
that of se(Q). Now Z must contain or be contained in se(Q) for otherwise Y would contain T
or F, i.e., the ones we know se(Q) has by Lemma 3.9. Clearly the former cannot be the case, for
then Z would have a greater depth than se(Q). So the latter is the case and se(Q) = U [� 7→ Z]
for some U ∈ T� that is not equal to � and does not contain T or F (because then Y would too).
But this violates Lemma 3.10, which states that no such decomposition exists.

3.3 Completeness

With the two theorems from the previous section, we can prove completeness for FSCLse . We
define three auxiliary functions to aid in our definition of the inverse of se on SNF. Let cd : T →
T� × T be the function that returns the conjunction decomposition of its argument, dd of the
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same type its disjunction decomposition and tsd, also of the same type, its T-∗-decomposition.
Naturally, these functions are undefined when their argument does not have a decomposition
of the specified type. Each of these functions returns a pair and we will use cd1 (dd1, tsd1) to
denote the first element of this pair and cd2 (dd2, tsd2) to denote the second element.

We define g : T → ST using the functions gT : T → ST for inverting trees in the image of
T-terms and gF, g` and g∗ of the same type for inverting trees in the image of F-terms, `-terms
and ∗-terms, respectively. These functions are defined as follows.

gT(X) =

{
T if X = T

(a ∧rb gT(Y )) ∨rb gT(Z) if X = Y E a D Z
(3.35)

gF(X) =

{
F if X = F

(a ∨rb gF(Z)) ∧rb gF(Y ) if X = Y E a D Z
(3.36)

g`(X) =


(a ∧rb gT(Y )) ∨rb gF(Z) if X = Y E a D Z for some a ∈ A

and Y only has T-leaves

(¬a ∧rb gT(Z)) ∨rb gF(Y ) if X = Y E a D Z for some a ∈ A

and Z only has T-leaves

(3.37)

g∗(X) =


g∗(cd1(X)[� 7→ T]) ∧rb g∗(cd2(X)) if X has a cd

g∗(dd1(X)[� 7→ F]) ∨rb g∗(dd2(X)) if X has a dd

g`(X) otherwise

(3.38)

g(X) =


gT(X) if X has only T-leaves

gF(X) if X has only F-leaves

gT(tsd1(X)[� 7→ T]) ∧rb g∗(tsd2(X)) otherwise

(3.39)

Theorem 3.17. For all P ∈ SNF, g(se(P )) ≡ P .

The proof for this theorem can be found in Appendix B.2. For the sake of completeness, we
separately state the completeness result below.

Theorem 3.18. For all P,Q ∈ ST, if FSCLse � P = Q then EqFSCL ` P = Q.

Proof. It suffices to show that for P,Q ∈ SNF, se(P ) = se(Q) implies P ≡ Q. To see this
suppose that P ′ and Q′ are two SCL-terms and se(P ′) = se(Q′). We know that P ′ is derivably
equal to an SNF-term P , i.e., EqFSCL ` P ′ = P , and that Q′ is derivably equal to an SNF-term
Q, i.e., EqFSCL ` Q′ = Q. Theorem 3.5 then gives us se(P ′) = se(P ) and se(Q′) = se(Q).
Hence by the result P ≡ Q and in particular EqFSCL ` P = Q. Transitivity then gives us
EqFSCL ` P ′ = Q′ as desired.

The result follows immediately from Theorem 3.17.

In Section 4.2 we use this result to prove that FSCLse is equivalent to FSCL as it is defined
by Bergstra and Ponse in [BP10b].
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CHAPTER 4

Relating FFEL to FSCL and
Proposition Algebra

This chapter is concerned with explaining the connection between FFEL and FSCL, a connection
we formalize in the setting of Proposition Algebra. Because the main results of this thesis were
not presented in this setting, we will forgo a detailed introduction to Proposition Algebra. Instead
we refer the reader to [BP11] for a proper introduction to Proposition Algebra and to [BP10b]
and [BP12] for an introduction to FSCL as it is defined in terms of Proposition Algebra. We will
however, very briefly, fix some core concepts and notation from this setting.

In [BP11] Bergstra and Ponse introduce Proposition Algebra for reasoning about the sequen-
tial evaluation of propositional terms using the ternary connective y / x . z, to be read as ‘if x
then y else z’ and called ‘Hoare’s conditional operator’, defined in [Hoa85]. The terms under
consideration can be described in Backus-Naur Form, letting A be a countable set of atoms, by

P ∈ CT ::= a ∈ A | T | F | P / P . P.

The equality of two of these terms is defined by the set of axioms CP, for ‘Conditional Proposi-
tions’:

x / T . y = x (CP1)

x / F . y = y (CP2)

T / x . F = x (CP3)

x / (y / z . u) . v = (x / y . v) / z . (x / u . v). (CP4)

When the equality of two terms s and t in CT, possibly containing variables, can be derived from
equational logic and (CP1)–(CP4), we denote this by CP ` s = t. Bergstra and Ponse extend
Proposition Algebra with negation and the short-circuit connectives ∧rb and ∨rb to obtain the set
CTs of closed terms, where we see that ST ⊂ CTs. They extend CP with the following defining
equations for the newly introduced connectives.

¬x = F / x . T (4.1)

x ∧rb y = y / x . F (4.2)

x ∨rb y = T / x . y (4.3)
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Let CPs denote CP together with these defining equations. If the equality of two terms s and t in
CTs, possibly containing variables, can be derived from equational logic and CPs, we denote this
by CPs ` s = t. Free Short-Circuit Logic (FSCL) is then defined as follows. For all P,Q ∈ ST,

FSCL � P = Q ⇐⇒ CPs ` P = Q.

We will show in Section 4.1 that FFEL can also be expressed in terms of Proposition Algebra
with an extended signature, by adding defining equations for the full left-sequential connectives
to CP. In Section 4.2 we will prove that FSCLse , as we defined it in Chapter 3, is equivalent to
FSCL. Finally in Section 4.3 we will prove that FFEL is a sublogic of FSCL by showing that its
connectives are definable in FSCL, which will allow us to define a general left-sequential logic.

4.1 Relating FFEL to Proposition Algebra

To relate FFEL to Proposition Algebra, we first add negation, ∧rb and ∨rb to the signature of
Proposition Algebra, to obtain the set CTf of closed terms, where we note that FT ⊂ CTf .
We then extend the set of equations CP with the following defining equations for the full left-
sequential connectives.

¬x = F / x . T (4.4)

x ∧rb y = y / x . (F / y . F) (4.5)

x ∨rb y = (T / y . T) / x . y (4.6)

Let CPf denote CP together with these three equations. When two terms s, t ∈ CTf , possibly
containing variables, are derivable by equational logic and CPf we denote this by CPf ` s = t.

Our goal is to prove that FFEL can also be characterized by CPf , i.e., we will show that for
all P,Q ∈ FT,

FFEL � P = Q ⇐⇒ CPf ` P = Q.

To this end we first define the function ce : CT→ T that will interpret CT-terms in T . We will
then extend this definition to cef : CTf → T .

With the informal semantics of ‘if x then y else z’ in mind for terms of the form y / x . z,
defining ce becomes straightforward.

Definition 4.1. Let A be a countable set of atoms and let T be the set all finite binary trees over
A with leaves in {T,F}. We define the unary Conditional Evaluation function ce : CT→ T
as:

ce(T) = T

ce(F) = F

ce(a) = T E a D F for a ∈ A

ce(Q / P . R) = ce(P )[T 7→ ce(Q),F 7→ ce(R)]

We observe that ce [CT] = T . We extend this definition to cef : CTf → T by adding the
following clauses to the definition.

cef (¬P ) = cef (P )[T 7→ F,F 7→ T]

cef (P ∧rb Q) = cef (P )[T 7→ cef (Q),F 7→ cef (Q)[T 7→ F]]

cef (P ∨rb Q) = cef (P )[T 7→ cef (Q)[F 7→ T],F 7→ cef (Q)]

It is now trivial to see that cef restricted to FEL-terms is equal to fe .
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Theorem 4.2. For all P,Q ∈ FT,

FFEL � P = Q ⇐⇒ CPf ` P = Q.

Proof. First we show that FFEL � P = Q implies that CPf ` P = Q. If FFEL � P = Q, then
fe(P ) = fe(Q) and by Theorem 2.17 EqFFEL ` P = Q. It suffices to prove that EqFFEL is
sound with respect to CPf . It is immediate that identity, symmetry, transitivity and congruence
are sound and checking that (FEL1)–(FEL10) are valid is cumbersome, but not difficult. As an
example we show this for (FEL8):

P ∧rb F = F / P . (F / F . F) by (4.5)

= (F / F . (F / F . F)) / P . F by (CP2)

= (F / F . (F / F . F)) / P . (F / T . (F / F . F)) by (CP1)

= F / (F / P . T) . (F / F . F) by (CP4)

= ¬P ∧rb F by (4.5) and (4.4)

Given this soundness, FFEL � P = Q implies CPf ` P = Q.
Next we show that CPf ` P = Q implies FFEL � P = Q. Because cef restricted to FT

equals fe , it suffices to show that CPf is sound with respect to cef -equality, i.e., that for all
R,S ∈ CTf , CPf ` R = S implies cef (R) = cef (S). This proof is also trivial. As an example
we show this for (CP2) as follows:

cef (R / F . S) = cef (F)[T 7→ cef (R),F 7→ cef (S)]

= F[T 7→ cef (R),F 7→ cef (S)]

= cef (S),

and for (4.5) as

cef (R ∧rb S) = cef (R)[T 7→ cef (S),F 7→ cef (S)[T 7→ F]]

= cef (R)[T 7→ cef (S),F 7→ cef (S)[T 7→ F,F 7→ F]]

= cef (R)[T 7→ cef (S),F 7→ cef (F / S . F)]

= cef (S / R . (F / S . F)).

Given the definition of FSCL, the reason for defining FFEL in terms of evaluation trees
rather than by using Proposition Algebra deserves some clarification. We feel that this makes
our completeness proof more straightforward than it would have been had we defined FFEL in
terms of Proposition Algebra. Although CT-terms are easily interpreted as trees, we would have
had to use a basic form for CT-terms, such as [BP11, Definition 3.1], to perform our analysis as
done in Section 2.2. In fact our function ce converts CT-terms to such basic forms if we read
‘E’ as ‘/’ and ‘D’ as ‘.’, thus explaining our choice of notation for trees. We have taken the
notation y E x D z from the setting of Thread Algebra, see, e.g., [PVdZ06], where it is used to
denote the post-conditional composition of threads.

4.2 EqFSCL axiomatizes FSCL

It has been an open question since FSCL was first defined in [BP10b] whether or not EqFSCL,
or an equivalent set of equations such as the one presented in [BP10b] itself, axiomatizes FSCL.
Given Theorem 3.18 it now suffices to show that FSCLse is equivalent to FSCL, which we shall
prove analogous to how we proved the theorem in the previous section.
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We define the function ces : CTs → T that interprets CTs-terms as evaluation trees by
extending the definition of ce with the following clauses.

ces(¬P ) = ces(P )[T 7→ F,F 7→ T]

ces(P ∧rb Q) = ces(P )[T 7→ ces(Q)]

ces(P ∨
rb
Q) = ces(P )[F 7→ ces(Q)]

It is now trivial to see that ces restricted to SCL-terms is equal to se .

Theorem 4.3. For all P,Q ∈ ST,

FSCLse � P = Q ⇐⇒ FSCL � P = Q.

Proof. If FSCLse � P = Q, then by Theorem 3.18 we have EqFSCL ` P = Q. So it suffices
to show that EqFSCL is sound with respect to CPs, i.e., that EqFSCL ` P = Q implies
CPs ` P = Q. This proof can be found in [BP10b].

For the other direction we must show that if CPs ` P = Q, then FSCLse � P = Q. Because
ces restricted to ST equals se , it suffices to show that CPs is sound with respect to ces-equality,
i.e., that for all R,S ∈ CTs, CPs ` R = S implies ces(R) = ces(S). This is again a trivial
proof. For example, we show it for (CP3) as follows:

ces(T / R . F) = ces(R)[T 7→ ces(T),F 7→ ces(F)]

= ces(R)[T 7→ T,F 7→ F]

= ces(R),

and for (4.3) as

ces(R ∨
rb
S) = ces(R)[F 7→ ces(S)]

= ces(R)[T 7→ T,F 7→ ces(S)]

= ces(T / R . S).

The reader may wonder why in this thesis we presented the completeness of EqFSCL with
respect to FSCLse rather than FSCL. The reason for this is that the author discovered the
result after proving the completeness of EqFFEL with respect to FFEL, and this presentation
emphasizes the similarities and differences of that proof with the proof for FSCL.

4.3 FFEL is a sublogic of FSCL

When we consider a simple FEL-term such as a ∧rb b and picture fe(a ∧rb b), we see that we can
reconstruct the normal form of the original term as T ∧rb ((a ∧rb T) ∧rb (b ∧rb T)). However, we can also
reconstruct this tree as T ∧rb ((a ∧rb T) ∨rb ((b ∨rb F) ∧rb F)) ∧rb ((b ∧rb T) ∨rb F)). We will indeed show that
for any FEL-term P there is an SCL-term Q such that fe(P ) = se(Q). To this end we define a
translation function h, which translates FEL-terms to SCL-terms with the same evaluation tree
semantics as follows.

h(T) = T (4.7)

h(F) = F (4.8)

h(a) = a (4.9)

h(¬P ) = ¬h(P ) (4.10)

h(P ∧rb Q) = (h(P ) ∨rb (h(Q) ∧rb F)) ∧rb h(Q) (4.11)

h(P ∨rb Q) = (h(P ) ∧rb (h(Q) ∨rb T)) ∨rb h(Q) (4.12)
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We immediately turn to the proof that h has the desired property.

Theorem 4.4. FFEL is a sublogic of FSCL, i.e., for all P,Q ∈ FT ,

FFEL � P = Q =⇒ FSCL � h(P ) = h(Q).

Proof. It suffices by Theorem 4.3 to show that for any FEL-term P , fe(P ) = se(h(P )), which
we shall do by induction on P . The base cases are trivial. For the induction we have

fe(P ∧rb Q) = fe(P )[T 7→ fe(Q),F 7→ fe(Q)[T 7→ F]]

= se(h(P ))[T 7→ se(h(Q)),F 7→ se(h(Q))[T 7→ F]] by induction hypothesis

= se(h(P ))[F 7→ se(h(Q))[T 7→ F]][T 7→ se(h(Q))]

= se((h(P ) ∨rb (h(Q) ∧rb F)) ∧rb h(Q))

= se(h(P ∧rb Q)),

where the third equality follows from the fact that se(h(Q))[T 7→ F] does not contain T. The
case for P ∨rb Q is similar.

Let us consider the translation of FEL-terms in PT. In the base case we have that h(T) = T
and in the inductive case we have h(a ∨rb P ) = (a ∧rb (h(P ) ∨rb T)) ∨rb h(P ). By Lemma B.1 and
the induction hypothesis this is equal to (a ∧rb h(P )) ∨rb h(P ). In other words, FEL-terms in PT

are equivalent to SCL-terms in PT. Similarly, FEL-terms in P F are translated to SCL-terms in
P F. In both cases they are equivalent with T-terms (F-terms) P for which the paths of se(P )
all contain the same atoms in the same order.

In Chapter 1 we promised to define a general left-sequential logic, i.e., a logic for reasoning
about propositional terms that contain both short-circuit left-sequential connectives and full
left-sequential connectives. We can now easily define such a logic by adding the following two
equations to EqFSCL:

x ∧rb y = (x ∨rb (y ∧rb F)) ∧rb y and x ∨rb y = (x ∧rb (y ∨rb T)) ∨rb y.

By the results from Chapter 3 and this chapter, it is immediate that this set of equations
axiomatizes a (free) general left-sequential logic. Naturally, we could also express this logic in
terms of Proposition Algebra by adding both types of connectives to its signature and considering
CP together with (4.1)–(4.3), (4.5) and (4.6). Without making any assumptions about the side
effects that atoms may have, this logic can be used to reason about propositional terms in
programming languages which offer both types of connectives, such as Java.

In the next chapter we will discuss our motivations for examining FEL separately from SCL.
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CHAPTER 5

Conclusion and Outlook

The evaluation strategy prescribed by a propositional-based logic is key to determining the
semantics of propositional terms as they are used in programming languages to direct the flow of a
program. For any such evaluation strategy to be of use to programmers, it must be deterministic.
For suppose otherwise, then two evaluations of the same term in the same execution environment
could yield different results and such a system can hardly be called a logic. Given that these
evaluation strategies must be deterministic, we are left with considering sequential evaluation
strategies and parallel evaluation strategies.

We have not found any programming language that uses a parallel evaluation strategy when
dealing with propositional terms for program flow control. The likely reason being that to truly
evaluate several subterms in parallel, the state of the entire execution environment prior to
the start of the evaluation must be copied so that each subterm can be evaluated in the same
environment. This would likely cause the evaluation to be slowed down to such an extent as
to render it useless in practice. The ‘merging’ of multiple copies of the environment after the
subterms have been evaluated would also be a highly non-trivial exercise. Perhaps in the setting of
Quantum Computing we can imagine an evaluation in superposition resulting in a superposition
of environments, but it is not at all clear how we should interpret the superposition of the yields
of the individual atoms.

Therefore we focus on sequential evaluation strategies, which are widely used in programming
languages. We focus entirely on left-sequential evaluation strategies, since most programming
languages read from left to right. We have examined both short-circuit evaluation strategies,
in the form of FSCLse , and full evaluation strategies, in the form of FFEL. Both induce right-
sequential evaluation strategies. For example, for FEL we could introduce the symbols ‘∧rb’ for
full right-sequential conjunction and ‘∨

rb
’ for full right-sequential disjunction. The equations in

EqFFEL could then easily be rewritten to accommodate the new direction, e.g., (FEL9) would
become y ∨

rb
(F ∧rbx) = y ∧rb (T ∨rbx). For examining a setting with both left-sequential and

right-sequential connectives, we would naturally define the right-sequential connectives in terms
of their left-sequential counterparts.

In ordinary propositional logic no particular evaluation strategy is prescribed. SAT-solvers
make eager use of this freedom and often employ complex evaluation strategies that go far
beyond simple left-sequential evaluation. See, e.g., [GPFW96] for a survey of some of the different
algorithms used for satisfiability solving. We emphasize that SAT-solvers deal with propositional
terms whose atoms do not have side effects. Both FFEL and FSCLse are designed to deal with
atoms that do have side effects, to which can be contributed much of the complexity of these
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logics.

As promised in Chapter 1 we return to our claim about the applicability of left-sequential
logics for reasoning about side effects. The yield of any occurrence of an atom a ∈ A in some
term P can be influenced by the side effects of the atoms that precede the occurrence of a in
P as well as the state of the execution environment in which P is evaluated. If an atom a ∈ A
does not have a side effect, then it always behaves either as the constant T or as the constant F
depending on the atoms that were evaluated before it and the state of the execution environment.
For a ∈ A and P ∈ ST let [T/a]P denote the term which results from replacing each occurrence
of a in P by T. Similarly, let [F/a]P be the term that results from replacing each occurrence of
a in P with F. Let ye be the function that returns the boolean yield of an SCL-term when it is
evaluated in execution environment e. An atom a ∈ A has a side effect if there is some execution
environment e and there are P,Q ∈ ST with ye(P ) = ye(Q) such that either

ye([T/a]P ) 6= ye([T/a]Q or ye([F/a]P ) 6= ye([F/a]Q).

As an example consider atoms a and b and suppose that a side effect of a is that any evaluation
of b that follows it will yield T. Also suppose that if b were not preceded by a it would yield
F. To make this concrete we could imagine a being a method that sets some global variable
in the execution environment and always yields T. We could then see b as being a method
that checks whether that variable has been set, in which case it yields T, or not, in which case
it yields F. Letting e be some execution environment where the global variable is not set, or
alternatively the empty execution environment, we see that ye(a ∧rb b) = T = ye(¬b) and that
ye(T ∧rb b) = F 6= ye(¬b). Hence a has a side effect by our definition.

This opens the door to more involved reasoning about side effects. The example above hints
at the possibility of defining what it means for an atom to be ‘impacted’ by the side effect of a
single other atom. We could, for example, restrict our attention to P,Q ∈ ST containing only a
and some other atom b. If there is an environment e and there are P,Q ∈ ST that contain only a
and b such that ye(P ) = ye(Q), but ye([T/a]P ) 6= ye([T/a]Q or ye([F/a]P ) 6= ye([F/a]Q, then we
know that b is impacted by a side effect of a. Another interesting definition would be that of a
‘positive side effect’. In that case we could say that an atom a has a positive side effect if there is
some environment e and some P,Q ∈ ST such that ye(P ) = ye(Q), but ye([T/a]P ) 6= ye([T/a]Q).

With this definition of a side effect we see that FEL, unlike PL, preserves side effects in the
sense that FFEL � P = Q implies FFEL � [T/a]P = [T/a]Q and FFEL � [F/a]P = [F/a]Q for
all P,Q ∈ FT and all a ∈ A. The same goes for SCL. Thus, if we adopt our proposed definition
of side effects, both FEL and SCL can be used to reason about propositional expressions with
atoms that may have side effects.

For defining and reasoning about side effects as we have done above we need constants for
our truth values. The constants T and F are not definable in SCL and FEL, except in terms
of one another. This is unlike PL, where the law of excluded middle allows one to define T in
terms of negation and disjunction, naturally assuming we have at least one atom at our disposal.
The constant F can then be defined in terms of T or by the law of non-contradiction. With SCL
and FEL we cannot exclude the possibility that every atom has a side effect that causes any
subsequent evaluation of that same atom to yield the opposite truth value. Hence neither the
law of excluded middle nor the law of non-contradiction are valid in SCL or FEL.

We now turn to the question of the usefulness of FEL. As mentioned in Chapter 1 we
find that some programming languages offer full left-sequential connectives, which motivates the
initial investigation of FEL. We claim that FEL has a greater value than merely to act as means
of writing certain SCL terms using fewer symbols. The usefulness of a full evaluation strategy
lies in the increased predictability of the state of the environment after a (sub)term has been
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evaluated. In particular, we know that the side effects of all the atoms in the term have occurred.
Naturally we leave errors and error values out of this discussion.

SCL is characterized by its efficiency, in the sense that atoms are not evaluated if their yield
is not needed to determine the yield of a term as a whole. From that perspective FEL might
seem rather inefficient, but this is not necessarily so. To determine the state of the environment
after the evaluation of a FEL term in a given environment, we need only compute how each
atom in the term transforms the environment. It is not necessary to compute the yield of any
of the atoms. With SCL terms in general we must know what the first atom yields in order to
determine which atom is next to transform the environment. Thus to compute the state of the
environment after the evaluation of an SCL term we must compute the yield of each atom that
transforms the environment and we must compute the transformation of the environment for
each atom that affects it. Consider the SCL-term

((a ∨rb (b ∧rb F)) ∧rb F) ∨rb c

and note that to compute its yield we must first compute the yield of a to determine whether or
not b is short-circuited. Consider atoms a and b that have no side effects, and hence do not affect
the environment. If computing the yield of a is computationally very demanding, the FEL-term

((a ∨rb (b ∧rb F)) ∧rb F) ∨rb c

can be evaluated more quickly, because it is not necessary to compute the yield of a.
In [BP10b] several variants of SCL are defined in addition to FSCL. In this thesis we have

only defined one variant of FEL, i.e., FFEL. An important variant of SCL is Memorizing Short-
Circuit Logic, MSCL, which is defined in the same way as FSCL, but adding the following axiom
to CP:

x / y . (z / u . (v / y . w)) = x / y . (z / u . w) (CPmem)

As we can see from (CPmem), once an atom has been evaluated all subsequent evaluations of
the same atom will yield the same truth value. An example of such a ‘memorizing’ atom in
programming might be a call to a memoizing function1 with a fixed argument. Naturally we
could define Memorizing Fully Evaluated Left-Sequential Logic, MFEL, in a similar fashion.
Given our evaluation tree semantics however, we can also define a ‘post-processing’ on our trees
instead. We simply take the fe image of a term and recursively walk down the tree. Whenever
we encounter X E a D Y in a left subtree of an a, we replace it by X E a D X. Similarly, we
replace it by Y E a D Y if we are in the right subtree of an a.

Another variant of SCL is Static SCL, SSCL, which is defined in [BP10b] in the same way as
FSCL, but adding (CPmem) and the following equation to CP.

F / x . F = F

This equation implies that x∧rb F = F, and more generally, x∧rb y = y∧rb x. As shown in [BP10b], this
variant is the same as PL, except that a particular evaluation strategy is prescribed. Naturally we
could define Static FEL, SFEL, similarly. We believe that the most elegant method of defining
variants, other than the free variants, for FEL and SCL is by means of Proposition Algebra.
We believe that evaluation trees offer a didactically interesting alternative definition for the free
variants, because they offer a straightforward semantics just for the left-sequential connectives.

When considering these and other variants of FEL and SCL it is useful to consider what these
logics express in terms of the properties of atoms. Any atom in MFEL (or MSCL) is memorizing

1A memoizing function is a function which maintains a cache of function values for arguments it has pre-
viously been called with. See, e.g., http://en.wikipedia.org/wiki/Memoization for a detailed description of
memoization.
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in the sense that its yield becomes constant after it is first evaluated. The atoms in SFEL (or
SSCL) have no side effects according to our definition. For practical applications of the theory of
left-sequential logics it may be useful to partition the set A of atoms into sets of atoms possessing
certain of these properties. A compound logic, geared towards the optimization of propositional
statements in programming, could then be defined. In such a logic, for example, we would have
x ∧rb F = F for any atom in the ‘static’ partition of A. The potential for optimization, i.e.,
evaluating as few atoms as possible to compute the yield of a term, becomes even greater when
we consider the variants of Contractive SCL and Repetition-Proof SCL, see [BP10b].

In [Reg10] Regenboog showed that CP is ω-complete if and only if, for A a countable set of
atoms, |A| > 1. For an axiomatization of Static CP which is interderivable with the one presented
above he showed ω-completeness for any countable set of atoms. He also showed that the axioms
in CP and several axiomatizations extending it are independent. We have shown neither ω-
completeness nor independence for EqFFEL, although we would consider such theorems valuable
future work. It is also an open question whether EqFSCL is ω-complete or independent. The set
EqFSCL as presented in [BP10b] and [BP12] is a different set from the one we have introduced
in Chapter 3, although they are interderivable. The set we presented came about in consultation
with the authors of the original definition. Because the set EqFSCL is somewhat ‘in flux’ in
this sense, and to a lesser degree because its independence and ω-completeness are still open
questions, we have refrained from referring to the equations in EqFSCL as axioms. Similarly,
our definition of EqFFEL differs slightly from that in [Blo11], hence we do not refer to those
equations as axioms either. Formal definitions of variants of FEL other than FFEL and a
comparative analysis of these and the corresponding variants of SCL we also consider a great
avenue for further study.
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APPENDIX A

Proofs for FFEL

A.1 Correctness of f

To prove that f : FT → FNF is indeed a normalization function we need to prove that for
all FEL-terms P , f(P ) terminates, f(P ) ∈ FNF and EqFFEL ` f(P ) = P . To arrive at this
result, we prove several intermediate results about the functions fn and f c, roughly in the order
in which their definitions were presented in Section 2.1. For the sake of brevity we will not
explicitly prove that these functions terminate. To see that each function terminates consider
that a termination proof would closely mimic the proof structure of the lemmas dealing with the
grammatical categories of the images of these functions.

Lemma A.1. For any P F and PT, EqFFEL ` P F = P F ∧rb F and EqFFEL ` PT = PT ∨rb T.

Proof. We prove both claims simultaneously by induction. In the base case we have F = T ∧rb F
by (FEL5), which is equal to F ∧rb F by (FEL8) and (FEL1). The base case for the second claim
follows from that for the first claim by duality.

For the induction we have a ∧rb P F = a ∧rb (P F ∧rb F) by the induction hypothesis and the result
follows from (FEL4). For the second claim we again appeal to duality.

Lemma A.2. The following equations can be derived by equational logic and EqFFEL.

1. x ∧rb (y ∧rb (z ∧rb F)) = (x ∨rb y) ∧rb (z ∧rb F)

2. ¬x ∧rb (y ∨rb T) = ¬(x ∧rb (y ∨rb T))

Proof.

x ∧rb (y ∧rb (z ∧rb F)) = x ∧rb ((¬y ∧rb z) ∧rb F) by (FEL4) and 2.4 (1)

= (¬x ∧rb ¬y) ∧rb (z ∧rb F) by (FEL4) and 2.4 (1)

= ¬(¬x ∧rb ¬y) ∧rb (z ∧rb F) by Lemma 2.4 (1)

= (x ∨rb y) ∧rb (z ∧rb F) by (FEL2)

¬x ∧rb (y ∨rb T) = ¬x ∨rb (y ∧rb F) by (FEL10)

= ¬(x ∧rb ¬(y ∧rb F)) by (FEL2) and (FEL3)

= ¬(x ∧rb ¬(¬y ∧rb ¬T)) by (FEL8) and (FEL1)

= ¬(x ∧rb (y ∨rb T)) by (FEL2)
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Lemma A.3. For all P ∈ FNF, if P is a T-term then fn(P ) is an F-term, if it is an F-term
then fn(P ) is a T-term, if it is a T-∗-term then so is fn(P ), and

EqFFEL ` fn(P ) = ¬P.

Proof. We start with proving the claims for T-terms, by induction on PT. In the base case
fn(T) = F. It is immediate that fn(T) is an F-term. The claim that EqFFEL ` fn(T) = ¬T is
immediate by (FEL1). For the inductive case we have that fn(a ∨rb PT) = a ∧rb fn(PT), where we
may assume that fn(PT) is an F-term and that EqFFEL ` fn(PT) = ¬PT. The grammatical
claim now follows immediately from the induction hypothesis. Furthermore, noting that by the
induction hypothesis we may assume that fn(PT) is an F-term, we have:

fn(a ∨rb PT) = a ∧rb fn(PT) by definition

= a ∧rb (fn(PT) ∧rb F) by Lemma A.1

= ¬a ∧rb (fn(PT) ∧rb F) by Lemma 2.4 (1)

= ¬a ∧rb fn(PT) by Lemma A.1

= ¬a ∧rb ¬PT by induction hypothesis

= ¬(a ∨rb PT). by (FEL3) and (FEL2)

For F-terms we prove our claims by induction on P F. In the base case fn(F) = T. It is
immediate that fn(F) is a T-term. The claim that EqFFEL ` fn(F) = ¬F is immediate by the
dual of (FEL1). For the inductive case we have that fn(a ∧rb P F) = a ∨rb fn(P F), where we may
assume that fn(P F) is a T-term and EqFFEL ` fn(P F) = ¬P F. It follows immediately from the
induction hypothesis that fn(a ∧rb P F) is a T-term. Furthermore, noting that by the induction
hypothesis we may assume that fn(P F) is a T-term, we prove the remaining claim as follows:

fn(a ∧rb P F) = a ∨rb fn(P F) by definition

= a ∨rb (fn(P F) ∨rb T) by Lemma A.1

= ¬a ∨rb (fn(P F) ∨rb T) by the dual of Lemma 2.4 (1)

= ¬a ∨rb fn(P F) by Lemma A.1

= ¬a ∨rb ¬P F by induction hypothesis

= ¬(a ∧rb P F). by (FEL3) and (FEL2)

To prove the lemma for T-∗-terms we first verify that the auxiliary function fn
1 returns a

∗-term and that for any ∗-term P , EqFFEL ` fn
1 (P ) = ¬P . We show this by induction on the

number of `-terms in P . For the base cases, i.e., for `-terms, it is immediate that fn
1 (P ) is a

∗-term. If P is an `-term with a positive determinative atom we have:

fn
1 (a ∧rb PT) = ¬a ∧rb PT by definition

= ¬a ∧rb (PT ∨rb T) by Lemma A.1

= ¬(a ∧rb (PT ∨rb T)) by Lemma A.2 (2)

= ¬(a ∧rb PT). by Lemma A.1

If P is an `-term with a negative determinative atom the proof proceeds the same, substituting
¬a for a and applying (FEL3) where needed. For the inductive step we assume that the result
holds for ∗-terms with fewer `-terms than P ∗ ∧rb Qd and P ∗ ∨rb Qc. We note that each application of
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fn
1 changes the main connective (not occurring inside an `-term) and hence the result is a ∗-term.

Derivable equality is, given the induction hypothesis, an instance of (the dual of) (FEL2).
With this result we can now see that fn(PT ∧rb Q∗) is indeed a T-∗-term. Furthermore we

find that:

fn(PT ∧rb Q∗) = PT ∧rb fn
1 (Q∗) by definition

= PT ∧rb ¬Q∗ as shown above

= (PT ∨rb T) ∧rb ¬Q∗ by Lemma A.1

= ¬(PT ∨rb T) ∨rb ¬Q∗ by Lemma 2.4 (2)

= ¬PT ∨rb ¬Q∗ by Lemma A.1

= ¬(PT ∧rb Q∗). by (FEL2) and (FEL3)

Hence for all P ∈ FNF, EqFFEL ` fn(P ) = ¬P .

Lemma A.4. For any T-term P and Q ∈ FNF, f c(P,Q) has the same grammatical category as
Q and

EqFFEL ` f c(P,Q) = P ∧rb Q.

Proof. By induction on the complexity of the first argument. In the base case we see that
f c(T, P ) = P and hence has the same grammatical category as P . Derivable equality follows
from (FEL5).

For the induction step we make a case distinction on the grammatical category of the second
argument. If the second argument is a T-term we have that f c(a ∨rb PT, QT) = a ∨rb f c(PT, QT),
where we assume that f c(PT, QT) is a T-term and EqFFEL ` f c(PT, QT) = PT ∧rb QT. The
grammatical claim follows immediately from the induction hypothesis. The claim about derivable
equality is proved as follows:

f c(a ∨rb PT, QT) = a ∨rb f c(PT, QT) by definition

= a ∨rb (PT ∧rb QT) by induction hypothesis

= a ∨rb (PT ∧rb (QT ∨rb T)) by Lemma A.1

= (a ∨rb PT) ∧rb (QT ∨rb T) by Lemma 2.4 (3)

= (a ∨rb PT) ∧rb QT. by Lemma A.1

If the second argument is an F-term we assume that f c(PT, QF) is an F-term and that
EqFFEL ` f c(PT, QF) = PT ∧rb QF. The grammatical claim follows immediately from the
induction hypothesis. Derivable equality is proved as follows:

f c(a ∨rb PT, QF) = a ∧rb f c(PT, QF) by definition

= a ∧rb (PT ∧rb QF) by induction hypothesis

= a ∧rb (PT ∧rb (QF ∧rb F)) by Lemma A.1

= (a ∨rb PT) ∧rb (QF ∧rb F) by Lemma A.2 (1)

= (a ∨rb PT) ∧rb QF. by Lemma A.1

Finally, if the second argument is a T-∗-term then f c(a∨rb PT, QT ∧rb R∗) = f c(a∨rb PT, QT)∧rb R∗.
The fact that this is a T-∗-term follows from the fact that f c(a ∨rb PT, QT) is a T-term as was
shown above. Derivable equality follows from the case where the second argument is a T-term
and (FEL4).
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Lemma A.5. For any T-∗-term P and F-term Q, f c(P,Q) is an F-term and

EqFFEL ` f c(P,Q) = P ∧rb Q.

Proof. By (FEL4) and Lemma A.4 it suffices to show that f c
2(P ∗, QF) is an F-term and that

EqFFEL ` f c
2(P ∗, QF) = P ∗ ∧rb QF. We prove this by induction on the number of `-terms in

P ∗. In the base cases, i.e., `-terms, the grammatical claims follow from Lemma A.4. The claim
about derivable equality in the case of `-terms with positive determinative atoms follows from
Lemma A.4 and (FEL4). For `-terms with negative determinative atoms it follows from Lemma
A.4, Lemma A.1, (FEL7), (FEL4) and (FEL8).

For the induction step we assume the claims hold for any ∗-terms with fewer `-terms than
P ∗ ∧rb Qd and P ∗ ∨rb Qc. In the case of conjunctions we have f c

2(P ∗ ∧rb Qd, RF) = f c
2(P ∗, f c

2(Qd, RF))
and the grammatical claim follows from the induction hypothesis (applied twice). Derivable
equality follows from the induction hypothesis and (FEL4).

For disjunctions we have f c
2(P ∗ ∨rb Qc, RF) = f c

2(P ∗, f c
2(Qc, RF)) and the grammatical claim

follows from the induction hypothesis (applied twice). The claim about derivable equality is
proved as follows:

f c
2(P ∗ ∨rb Qc, RF) = f c

2(P ∗, f c
2(Qc, RF)) by definition

= P ∗ ∧rb (Qc ∧rb RF) by induction hypothesis

= P ∗ ∧rb (Qc ∧rb (RF ∧rb F)) by Lemma A.1

= (P ∗ ∨rb Qc) ∧rb (RF ∧rb F) by Lemma A.2 (1)

= (P ∗ ∨rb Qc) ∧rb RF. by Lemma A.1

Lemma A.6. For any F-term P and Q ∈ FNF, f c(P,Q) is an F-term and

EqFFEL ` f c(P,Q) = P ∧rb Q.

Proof. We make a case distinction on the grammatical category of the second argument. If the
second argument is a T-term we proceed by induction on the first argument. In the base case we
have f c(F, PT) = fn(PT) and the result is by Lemma A.3, Lemma A.1, (FEL7) and (FEL8). In
the inductive case we have f c(a ∧rb P F, QT) = a ∧rb f c(P F, QT), where we assume that f c(P F, QT)
is an F-term and EqFFEL ` f c(P F, QT) = P F ∧rb QT. The result now follows from the induction
hypothesis and (FEL4).

If the second argument is an F-term the proof is almost the same, except that we need not
invoke Lemma A.3 or (FEL8) in the base case.

Finally, if the second argument is a T-∗-term we again proceed by induction on the first
argument. In the base case we have f c(F, PT ∧rb Q∗) = f c(PT ∧rb Q∗,F). The grammatical claim
now follows from Lemma A.5 and derivable equality follows from Lemma A.5 and (FEL7). For
for the inductive case the results follow from the induction hypothesis and (FEL4).

Lemma A.7. For any T-∗-term P and T-term Q, f c(P,Q) has the same grammatical category
as P and

EqFFEL ` f c(P,Q) = P ∧rb Q.

Proof. By (FEL4) it suffices to prove the claims for f c
1 , i.e., that f c

1(P ∗, QT) has the same
grammatical category as P ∗ and that EqFFEL ` f c

1(P ∗, QT) = P ∗ ∧rb QT. We prove this by
induction on the number of `-terms in P ∗. In the base case we deal with `-terms and the results
follow from Lemma A.4 and (FEL4).
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For the inductive cases we assume that the results hold for any ∗-term with fewer `-terms
than P ∗ ∧rb Qd and P ∗ ∨rb Qc. In the case of conjunctions the results follow from the induction
hypothesis and (FEL4). In the case of disjunctions the grammatical claim follows from the
induction hypothesis. For derivable equality we have:

f c
1(P ∗ ∨rb Qc, RT) = P ∗ ∨rb f c

1(Qc, RT) by definition

= P ∗ ∨rb (Qc ∧rb RT) by induction hypothesis

= P ∗ ∨rb (Qc ∧rb (RT ∨rb T)) by Lemma A.1

= (P ∗ ∨rb Qc) ∧rb (RT ∨rb T) by Lemma 2.4 (3)

= (P ∗ ∨rb Qc) ∧rb RT. by Lemma A.1

Lemma A.8. For any P,Q ∈ FNF, f c(P,Q) is in FNF and

EqFFEL ` f c(P,Q) = P ∧rb Q.

Proof. By the four preceding lemmas it suffices to show that f c(PT ∧rb Q∗, RT ∧rb S∗) is in FNF and
that EqFFEL ` f c(PT ∧rb Q∗, RT ∧rb S∗) = (PT ∧rb Q∗)∧rb (RT ∧rb S∗). By (FEL4), in turn, it suffices to
prove that f c

3(P ∗, QT ∧rb R∗) is a ∗-term and that EqFFEL ` f c
3(P ∗, QT ∧rb R∗) = P ∗ ∧rb (QT ∧rb R∗).

We prove this by induction on the number of `-terms in R∗. In the base case we have that
f c
3(P ∗, QT ∧rb R`) = f c

1(P ∗, QT) ∧rb R`. The results follow from Lemma A.7 and (FEL4).

For the inductive cases we assume that the results hold for all ∗-terms with fewer `-terms
than R∗ ∧rb Sd and R∗ ∨rb Sc. For conjunctions the result follows from the induction hypothesis
and (FEL4) and for disjunctions it follows from Lemma A.7 and (FEL4).

Theorem 2.7. For any P ∈ FT, f(P ) terminates, f(P ) ∈ FNF and EqFFEL ` f(P ) = P .

Proof. By induction on the complexity of P . If P is an atom, the result is by (FEL5) and
(FEL6). If P is T or F the result is by identity. For the induction we assume that the result
holds for all FEL-terms of lesser complexity than P ∧rb Q and P ∨rb Q. The result now follows
from the induction hypothesis, Lemma A.3, Lemma A.8 and (FEL2).

A.2 Correctness of g

Theorem 2.16. For all P ∈ FNF, g(fe(P )) ≡ P .

Proof. We first prove that for all T-terms P , gT(fe(P )) ≡ P , by induction on P . In the base case
P ≡ T and we have gT(fe(P )) ≡ gT(T) ≡ T ≡ P . For the inductive case we have P ≡ a ∨rb QT

and

gT(fe(P )) ≡ gT(fe(QT) E a D fe(QT)) by definition of fe

≡ a ∨rb gT(fe(QT)) by definition of gT

≡ a ∨rb QT by induction hypothesis

≡ P.

Similarly, we see that for all F-terms P , gF(fe(P )) ≡ P , by induction on P . In the base case
P ≡ F and we have gF(fe(P )) ≡ gF(F) ≡ F ≡ P . For the inductive case we have P ≡ a ∧rb QF
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and

gF(fe(P )) ≡ gF(fe(QF) E a D fe(QF)) by definition of fe

≡ a ∧rb gF(fe(QF)) by definition of gF

≡ a ∧rb QF by induction hypothesis

≡ P.

Now we check that for all `-terms P , g`(fe(P )) ≡ P . We observe that either P ≡ a ∧rb QT or
P ≡ ¬a ∧rb QT. In the first case we have

g`(fe(P )) ≡ g`(fe(QT) E a D fe(QT)[T 7→ F]) by definition of fe

≡ a ∧rb gT(fe(QT)) by definition of g`

≡ a ∧rb QT as shown above

≡ P.

In the second case we have that

g`(fe(P )) ≡ g`(fe(QT)[T 7→ F] E a D fe(QT)) by definition of fe

≡ ¬a ∧rb gT(fe(QT)) by definition of g`

≡ ¬a ∧rb QT as shown above

≡ P.

We now prove that for all ∗-terms P , g∗(fe(P )) ≡ P , by induction on P modulo the com-
plexity of `-terms. In the base case we are dealing with `-terms. Because an `-term has neither
a cd nor a dd we have g∗(fe(P )) ≡ g`(fe(P )) ≡ P , where the first equality is by definition of g∗

and the second was shown above. For the induction we have either P ≡ Q ∧rb R or P ≡ Q ∨rb R.
In the first case note that by Theorem 2.13, fe(P ) has a cd and no dd. So we have

g∗(fe(P )) ≡ g∗(cd1(fe(P ))[�1 7→ T,�2 7→ F]) ∧rb g∗(cd2(fe(P ))) by definition of g∗

≡ g∗(fe(Q)) ∧rb g∗(fe(R)) by Theorem 2.13

≡ Q ∧rb R by induction hypothesis

≡ P.

In the second case, again by Theorem 2.13, fe(P ) has a dd and no cd. So we have that

g∗(fe(P )) ≡ g∗(dd1(fe(P ))[�1 7→ T,�2 7→ F]) ∨rb g∗(dd2(fe(P ))) by definition of g∗

≡ g∗(fe(Q)) ∨rb g∗(fe(R)) by Theorem 2.13

≡ Q ∨rb R by induction hypothesis

≡ P.

Finally, we prove the theorem’s statement by making a case distinction on the grammatical
category of P . If P is a T-term, then fe(P ) has only T-leaves and hence g(fe(P )) ≡ gT(fe(P )) ≡
P , where the first equality is by definition of g and the second was shown above. If P is an F-term,
then fe(P ) has only F-leaves and hence g(fe(P )) ≡ gF(fe(P )) ≡ P , where the first equality is
by definition of g and the second was shown above. If P is a T-∗-term, then it has both T and
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F-leaves and hence, letting P ≡ Q ∧rb R,

g(fe(P )) ≡ gT(tsd1(fe(P ))[� 7→ T]) ∧rb g∗(tsd2(fe(P ))) by definition of g

≡ gT(fe(Q)) ∧rb g∗(fe(R)) by Theorem 2.15

≡ Q ∧rb R as shown above

≡ P,

which completes the proof.

53



54



APPENDIX B

Proofs for FSCL

B.1 Correctness of f

In order to prove that f : ST → SNF is indeed a normalization function we need to prove that
for all SCL-terms P , f(P ) terminates, f(P ) ∈ SNF and EqFSCL ` f(P ) = P . To arrive at
this result, we prove several intermediate results about the functions fn and f c in the order
in which their definitions were presented in Section 3.1. For the sake of brevity we will not
explicitly prove that these functions terminate. To see that each function terminates consider
that a termination proof would closely mimic the proof structure of the lemmas dealing with the
grammatical categories of the images of these functions.

Lemma B.1. For any P F and PT, EqFSCL ` P F = P F ∧rb x and EqFSCL ` PT = PT ∨rb x.

Proof. We prove both claims simultaneously by induction. In the base case we have F = F ∧rb x
by (SCL7). The base case for the second claim follows from that for the first claim by duality.

For the induction we have (a ∨rb P F) ∧rb QF = (a ∨rb P F) ∧rb (QF ∧rb x) by the induction hypothesis
and the result follows from (SCL4). For the second claim we again appeal to duality.

Lemma B.2. The following equations can all be derived by equational logic and EqFSCL.

1. (x ∨rb T) ∧rb ¬y = ¬((x ∨rb T) ∧rb y)

2. (x ∧rb (y ∧rb (z ∨rb T))) ∨rb (w ∧rb (z ∨rb T)) = ((x ∧rb y) ∨rb w) ∧rb (z ∨rb T)

3. (x ∨rb ((y ∨rb T) ∧rb (z ∧rb F))) ∧rb ((w ∨rb T) ∧rb (z ∧rb F)) = ((x ∧rb (w ∨rb T)) ∨rb (y ∨rb T)) ∧rb (z ∧rb F)

4. (x ∨rb ((y ∨rb T) ∧rb (z ∧rb F))) ∧rb (w ∧rb F) = ((¬x ∧rb (y ∨rb T)) ∨rb (w ∧rb F)) ∧rb (z ∧rb F)

Proof. We derive the equations in order.

(x ∨rb T) ∧rb ¬y
= ¬((¬x ∧rb F) ∨rb y) by (SCL1), (SCL2) and (SCL3)

= ¬((x ∧rb F) ∨rb y) by (SCL8)

= ¬((x ∨rb T) ∧rb y) by (SCL9)
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(x ∧rb (y ∧rb (z ∨rb T))) ∨rb (w ∧rb (z ∨rb T))

= ((x ∧rb y) ∧rb (z ∨rb T)) ∨rb (w ∧rb (z ∨rb T)) by (SCL4)

= ((x ∧rb y) ∨rb w) ∧rb (z ∨rb T) by the dual of (SCL10)

(x ∨rb ((y ∨rb T) ∧rb (z ∧rb F))) ∧rb ((w ∨rb T) ∧rb (z ∧rb F))

= (x ∨rb ((y ∧rb F) ∨rb (z ∧rb F))) ∧rb ((w ∨rb T) ∧rb (z ∧rb F)) by (SCL9)

= ((x ∨rb (y ∧rb F)) ∨rb (z ∧rb F)) ∧rb ((w ∨rb T) ∧rb (z ∧rb F)) by the dual of (SCL4)

= (¬(x ∨rb (y ∧rb F)) ∨rb (w ∨rb T)) ∧rb (z ∧rb F) by Lemma 3.4 (1)

= ((¬x ∧rb (¬y ∨rb T)) ∨rb (w ∨rb T)) ∧rb (z ∧rb F) by (SCL1), (SCL2) and (SCL3)

= ((¬x ∧rb (y ∨rb T)) ∨rb (w ∨rb T)) ∧rb (z ∧rb F) by the dual of (SCL8)

= ((¬x ∧rb (y ∨rb T)) ∨rb (w ∨rb (T ∨rb (y ∨rb T)))) ∧rb (z ∧rb F) by the dual of (SCL7)

= ((¬x ∧rb (y ∨rb T)) ∨rb ((w ∨rb T) ∨rb (y ∨rb T))) ∧rb (z ∧rb F) by the dual of (SCL4)

= ((x ∧rb (w ∨rb T)) ∨rb (y ∨rb T)) ∧rb (z ∧rb F) by the dual of Lemma 3.4 (1)

(x ∨rb ((y ∨rb T) ∧rb (z ∧rb F))) ∧rb (w ∧rb F)

= (¬x ∨rb (w ∧rb F)) ∧rb (((y ∨rb T) ∧rb (z ∧rb F)) ∧rb (w ∧rb F)) by Lemma 3.4 (1)

= (¬x ∨rb (w ∧rb F)) ∧rb ((y ∨rb T) ∧rb (z ∧rb F)) by (SCL7) and (SCL4)

= ((¬x ∨rb (w ∧rb F)) ∧rb (y ∨rb T)) ∧rb (z ∧rb F) by (SCL4)

= ((¬x ∧rb (y ∨rb T)) ∨rb ((w ∧rb F) ∧rb (y ∨rb T))) ∧rb (z ∧rb F) by the dual of (SCL10)

= ((¬x ∧rb (y ∨rb T)) ∨rb (w ∧rb F)) ∧rb (z ∧rb F) by (SCL7) and (SCL4)

Lemma B.3. For all P ∈ SNF, if P is a T-term then fn(P ) is an F-term, if it is an F-term
then fn(P ) is a T-term, if it is a T-∗-term then so is fn(P ), and

EqFSCL ` fn(P ) = ¬P.

Proof. We first prove the claims for T-terms, by induction on PT. In the base case fn(T) = F.
It is immediate that fn(T) is an F-term. The claim that EqFSCL ` fn(T) = ¬T is immediate
by (SCL1). For the inductive case we have that fn((a ∧rb PT) ∨rb QT) = (a ∨rb fn(QT)) ∧rb fn(PT),
where we assume that fn(PT) and fn(QT) are F-terms and that EqFSCL ` fn(PT) = ¬PT and
EqFSCL ` fn(QT) = ¬QT. It follows from the induction hypothesis that fn((a ∧rb PT) ∨rb QT) is
an F-term. Furthermore, noting that by the induction hypothesis we may assume that fn(PT)
and fn(QT) are F-terms, we have:

fn((a ∧rb PT) ∨rb QT) = (a ∨rb fn(QT)) ∧rb fn(PT) by definition

= (a ∨rb (fn(QT) ∧rb F)) ∧rb (fn(PT) ∧rb F) by Lemma B.1

= (¬a ∨rb (fn(PT) ∧rb F)) ∧rb (fn(QT) ∧rb F) by Lemma 3.4 (2)

= (¬a ∨rb fn(PT)) ∧rb fn(QT) by Lemma B.1

= (¬a ∨rb ¬PT) ∧rb ¬QT by induction hypothesis

= ¬((a ∧rb PT) ∨rb QT). by (SCL2) and its dual

For F-terms we prove our claims by induction on P F. In the base case fn(F) = T. It is
immediate that fn(F) is a T-term. The claim that EqFSCL ` fn(F) = ¬F is immediate by the
dual of (SCL1). For the inductive case we have that fn((a ∨rb P F) ∧rb QF) = (a ∧rb fn(QF)) ∨rb fn(P F),
where we assume that fn(P F) and fn(QF) are T-terms and that EqFSCL ` fn(P F) = ¬P F and
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EqFSCL ` fn(QF) = ¬QF. It follows from the induction hypothesis that fn((a ∨rb P F) ∧rb QF) is a
T-term. Furthermore, noting that by the induction hypothesis we may assume that fn(P F) and
fn(QF) are T-terms, the proof of derivably equality is dual to that for fn((a ∧rb PT) ∨rb QT).

To prove the lemma for T-∗-terms we first verify that the auxiliary function fn
1 returns a

∗-term and that for any ∗-term P , EqFSCL ` fn
1 (P ) = ¬P . We show this by induction on the

number of `-terms in P . For the base cases it is immediate by the above cases for T-terms and
F-terms that fn

1 (P ) is a ∗-term. Furthermore, if P is an `-term with a positive determinative
atom we have:

fn
1 ((a ∧rb PT) ∨rb QF) = (¬a ∧rb fn(QF)) ∨rb fn(PT) by definition

= (¬a ∧rb (fn(QF) ∨rb T)) ∨rb (fn(PT) ∧rb F) by Lemma B.1

= (¬a ∨rb (fn(PT) ∧rb F)) ∧rb (fn(QF) ∨rb T) by Lemma 3.4 (3)

= (¬a ∨rb fn(PT)) ∧rb fn(QF) by Lemma B.1

= (¬a ∨rb ¬PT) ∧rb ¬QF by induction hypothesis

= ¬((a ∧rb PT) ∨rb QF). by (SCL2) and its dual

If P is an `-term with a negative determinative atom the proof proceeds the same, substituting ¬a
for a and applying (SCL3) where needed. For the inductive step we assume that the result holds
for all ∗-terms with fewer `-terms than P ∗ ∧rb Qd and P ∗ ∨rb Qc. We note that each application of
fn
1 changes the main connective (not occurring inside an `-term) and hence the result is a ∗-term.

Derivable equality is, given the induction hypothesis, an instance of (the dual of) (SCL2).

With this result we can now see that fn(PT ∧rb Q∗) is indeed a T-∗-term. We note that, by
the above, Lemma B.1 implies that ¬PT = ¬PT ∧rb F. Now we find that:

fn(PT ∧rb Q∗) = PT ∧rb fn
1 (Q∗) by definition

= PT ∧rb ¬Q∗ as shown above

= (PT ∨rb T) ∧rb ¬Q∗ by Lemma B.1

= ¬((PT ∨rb T) ∧rb Q∗) by Lemma B.2 (1)

= ¬(PT ∧rb Q∗). by Lemma B.1

Hence for all P ∈ SNF, EqFSCL ` fn(P ) = ¬P .

Lemma B.4. For any T-term P and Q ∈ SNF, f c(P,Q) has the same grammatical category as
Q and

EqFSCL ` f c(P,Q) = P ∧rb Q.

Proof. By induction on the complexity of the T-term. In the base case we see that f c(T, P ) = P ,
which is clearly of the same grammatical category as P . Derivable equality is an instance of
(SCL5).

For the inductive step we assume that the result holds for all T-terms of lesser complexity
than a ∧rb PT. The claim about the grammatical category follows immediately from the induction
hypothesis. For the claim about derivable equality we make a case distinction on the grammatical
category of the second argument. If the second argument is a T-term, we prove derivable equality
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as follows:

f c((a ∧rb PT) ∨rb QT,RT)

= (a ∧rb f c(PT, RT)) ∨rb f c(QT, RT) by definition

= (a ∧rb (PT ∧rb RT)) ∨rb (QT ∧rb RT) by induction hypothesis

= (a ∧rb (PT ∧rb (RT ∨rb T))) ∨rb (QT ∧rb (RT ∨rb T)) by Lemma B.1

= ((a ∧rb PT) ∨rb QT) ∧rb (RT ∨rb T) by Lemma B.2 (2)

= ((a ∧rb PT) ∨rb QT) ∧rb RT. by Lemma B.1

If the second argument is an F-term, we prove derivable equality as follows:

f c((a ∧rb PT) ∨rb QT, RF)

= (a ∨rb f c(QT, RF)) ∧rb f c(PT, RF) by definition

= (a ∨rb (QT ∧rb RF)) ∧rb (PT ∧rb RF) by induction hypothesis

= (a ∨rb ((QT ∨rb T) ∧rb (RF ∧rb F))) ∧rb ((PT ∨rb T) ∧rb (RF ∧rb F)) by Lemma A.1

= ((a ∧rb (PT ∨rb T)) ∨rb (QT ∨rb T)) ∧rb (RF ∧rb F)) by Lemma B.2 (3)

= ((a ∧rb PT) ∨rb QT) ∧rb RF. by Lemma A.1

If the second argument is T-∗-term, the result follows from the case where the second argument
is a T-term and (SCL4).

Lemma B.5. For any F-term P and Q ∈ SNF, f c(P,Q) is a F-term and

EqFSCL ` f c(P,Q) = P ∧rb Q.

Proof. The grammatical result is immediate and the claim about derivable equality follows from
Lemma B.1, (SCL4) and (SCL7).

Lemma B.6. For any T-∗-term P and T-term Q, f c(P,Q) has the same grammatical category
as P and

EqFSCL ` f c(P,Q) = P ∧rb Q.

Proof. By (SCL4) it suffices to prove the claims for f c
1 , i.e., that f c

1(P ∗, QT) is a ∗-term and that
EqFSCL ` f c

1(P ∗, QT) = P ∗ ∧rb QT. We prove this by induction on the number of `-terms in P ∗.
In the base case we deal with `-terms and the grammatical claim follows from Lemma B.4. We
prove derivable equality as follows, letting â ∈ {a,¬a}:

f c
1((â ∧rb PT) ∨rb QF, RT) = (â ∧rb f c(PT, RT)) ∨rb QF by definition

= (â ∧rb (PT ∧rb RT)) ∨rb QF by Lemma B.4

= ((â ∧rb PT) ∧rb RT) ∨rb QF by (SCL4)

= ((â ∧rb PT) ∧rb (RT ∨rb T)) ∨rb (QF ∧rb F) by Lemma B.1

= ((â ∧rb PT) ∨rb (QF ∧rb F)) ∧rb (RT ∨rb T) by Lemma 3.4 (3)

= ((â ∧rb PT) ∨rb QF) ∧rb RT. by Lemma B.1

For the induction step we assume that the result holds for all ∗-terms with fewer `-terms
than P ∗ ∧rb Qd and P ∗ ∨rb Qc. In the case of conjunctions the results follow from the induction
hypothesis and (SCL4). In the case of disjunctions the results follow immediately from the
induction hypothesis, Lemma B.1 and the dual of (SCL10).
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Lemma B.7. For any T-∗-term P and F-term Q, f c(P,Q) is an F-term and

EqFSCL ` f c(P,Q) = P ∧rb Q.

Proof. By Lemma B.4 and (SCL4) it suffices to prove that f c
2(P ∗, QF) is an F-term and that

EqFSCL ` f c
2(P ∗, QF) = P ∗ ∧rb QF. We prove this by induction on the number of `-terms in P ∗.

In the base case we deal with `-terms and the grammatical claim follows from Lemma B.4. We
derive the remaining claim for `-terms with positive determinative atoms as:

f c
2((a ∧rb PT) ∨rb QF, RF) = (a ∨rb QF) ∧rb f c(PT, RF) by definition

= (a ∨rb QF) ∧rb (PT ∧rb RF) by Lemma B.4

= ((a ∨rb QF) ∧rb PT) ∧rb RF by (SCL4)

= ((a ∨rb (QF ∧rb F)) ∧rb (PT ∨rb T)) ∧rb RF by Lemma B.1

= ((a ∧rb (PT ∨rb T)) ∨rb (QF ∧rb F)) ∧rb RF by Lemma 3.4 (3)

= ((a ∧rb PT) ∨rb QF) ∧rb RF. by Lemma B.1

For `-terms with negative determinative atoms we derive:

f c
2((¬a ∧rb PT) ∨rb QF, RF)

= (a ∨rb f c(PT, RF)) ∧rb QF by definition

= (a ∨rb (PT ∧rb RF)) ∧rb QF by induction hypothesis

= (a ∨rb ((PT ∨rb T) ∧rb (RF ∧rb F))) ∧rb (QF ∧rb F) by Lemma B.1

= ((¬a ∧rb (PT ∨rb T)) ∨rb (QF ∧rb F)) ∧rb (RF ∧rb F) by Lemma B.2 (4)

= ((¬a ∧rb PT) ∨rb QF) ∧rb RF. by Lemma B.1

For the induction step we assume that the result holds for all ∗-terms with fewer `-terms
than P ∗ ∧rb Qd and P ∗ ∨rb Qc. In the case of conjunctions the results follow from the induction
hypothesis and (SCL4). In the case of disjunctions note that by Lemma B.3 and the proof of
Lemma B.6, we have that fn(f c

1(P ∗, fn(RF))) is a ∗-terms with same number of `-terms as P ∗.
The grammatical result follows from this fact and the induction hypothesis. Furthermore, noting
that by the same argument fn(f c

1(P ∗, fn(RF))) = ¬(P ∗ ∧rb ¬RF), we derive:

f c
2(P ∗ ∨rb Qc, RF) = f c

2(fn(f c
1(P ∗, fn(RF))), f c

2(Qc, RF)) by definition

= fn(f c
1(P ∗, fn(RF))) ∧rb (Qc ∧rb RF) by induction hypothesis

= ¬(P ∗ ∧rb ¬RF) ∧rb (Qc ∧rb RF) as shown above

= (¬P ∗ ∨rb RF) ∧rb (Qc ∧rb RF) by (SCL3) and (SCL2)

= (¬P ∗ ∨rb (RF ∧rb F)) ∧rb (Qc ∧rb (RF ∧rb F)) by Lemma B.1

= (P ∗ ∨rb Qc) ∧rb (RF ∧rb F) by Lemma 3.4 (1)

= (P ∗ ∨rb Qc) ∧rb RF. by Lemma B.1

This completes the proof.

Lemma B.8. For any P,Q ∈ SNF, f c(P,Q) is in SNF and

EqFSCL ` f c(P,Q) = P ∧rb Q.
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Proof. By the four preceding lemmas it suffices to show that f c(PT ∧rb Q∗, RT ∧rb S∗) is in SNF and
that EqFSCL ` f c(PT ∧rb Q∗, RT ∧rb S∗) = (PT ∧rb Q∗)∧rb (RT ∧rb S∗). By (SCL4), in turn, it suffices to
prove that f c

3(P ∗, QT ∧rb R∗) is a ∗-term and that EqFSCL ` f c
3(P ∗, QT ∧rb R∗) = P ∗ ∧rb (QT ∧rb R∗).

We prove this by induction on the number of `-terms in R∗. In the base case we have that
f c
3(P ∗, QT ∧rb R`) = f c

1(P ∗, QT) ∧rb R`. The results follow from Lemma B.6 and (SCL4).
For conjunctions the result follows from the induction hypothesis and (SCL4) and for dis-

junctions it follows from Lemma B.6 and (SCL4).

Theorem 3.7. For any P ∈ ST, f(P ) terminates, f(P ) ∈ SNF and EqFSCL ` f(P ) = P .

Proof. By induction on the complexity of P . If P is an atom, the result is by (SCL5), (SCL6)
and its dual. If P is T or F the result is by identity. For the induction we get the result by
Lemma B.3, Lemma B.8 and (SCL2).

B.2 Correctness of g

Theorem 3.17. For all P ∈ SNF, g(se(P )) ≡ P .

Proof. We first prove that for all T-terms P , gT(se(P )) ≡ P , by induction on P . In the base
case P ≡ T and we have gT(se(P )) ≡ gT(T) ≡ T ≡ P . For the inductive case we have
P ≡ (a ∧rb QT) ∨rb RT and

gT(se(P )) ≡ gT(se(QT) E a D se(RT)) by definition of se

≡ (a ∧rb gT(se(QT))) ∨rb gT(se(RT)) by definition of gT

≡ (a ∧rb QT) ∨rb RT by induction hypothesis

≡ P.

Similarly we see that for all F-terms P , gF(se(P )) ≡ P , by induction on P . In the base case
P ≡ F and we have gF(se(P )) ≡ gF(F) ≡ F ≡ P . For the inductive case we have P ≡ (a∨rb QF)∧rb RF

and

gF(se(P )) ≡ gF(se(RF) E a D se(QF)) by definition of se

≡ (a ∨rb gF(se(QF))) ∧rb gF(se(RF)) by definition of gF

≡ (a ∨rb QF) ∧rb RF by induction hypothesis

≡ P.

Now we check that for all `-terms P , g`(se(P )) ≡ P . We observe that either P ≡ (a∧rb QT)∨rb RF

or P ≡ (¬a ∧rb QT) ∨rb RF. In the first case we have

g`(se(P )) ≡ g`(se(QT) E a D se(RF)) by definition of se

≡ (a ∧rb gT(se(QT))) ∨rb gF(se(RF)) by definition of g`

≡ (a ∧rb QT) ∨rb RF as shown above

≡ P.

In the second case we have that

g`(se(P )) = g`(se(RF) E a D se(QT)) by definition of se

≡ (¬a ∧rb gT(se(QT))) ∨rb gF(se(RF)) by definition of g`

≡ (¬a ∧rb QT) ∨rb RF as shown above

≡ P.
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We now prove that for all ∗-terms P , g∗(se(P )) ≡ P , by induction on P modulo the com-
plexity of `-terms. In the base case we are dealing with `-terms. Because an `-term has neither
a cd nor a dd we have g∗(se(P )) ≡ g`(se(P )) ≡ P , where the first equality is by definition of g∗

and the second was shown above. For the induction we have either P ≡ Q ∧rb R or P ≡ Q ∨rb R.
In the first case note that by Theorem 3.13, se(P ) has a cd and no dd. So we have

g∗(se(P )) ≡ g∗(cd1(se(P ))[� 7→ T]) ∧rb g∗(cd2(se(P ))) by definition of g∗

≡ g∗(se(Q)) ∧rb g∗(se(R)) by Theorem 3.13

≡ Q ∧rb R by induction hypothesis

≡ P.

In the second case, again by Theorem 3.13, P has a dd and no cd. So we have that

g∗(se(P )) ≡ g∗(dd1(se(P ))[� 7→ F]) ∨rb g∗(dd2(se(P ))) by definition of g∗

≡ g∗(se(Q)) ∨rb g∗(se(R)) by Theorem 3.13

≡ Q ∨rb R by induction hypothesis

≡ P.

Finally, we prove the theorem’s statement by making a case distinction on the grammatical
category of P . If P is a T-term, then se(P ) has only T-leaves and hence g(se(P )) ≡ gT(se(P )) ≡
P , where the first equality is by definition of g and the second was shown above. If P is a F-term,
then se(P ) has only F-leaves and hence g(se(P )) ≡ gF(se(P )) ≡ P , where the first equality is
by definition of g and the second was shown above. If P is a T-∗-term, then it has both T and
F-leaves and hence, letting P ≡ Q ∧rb R,

g(se(P )) ≡ gT(tsd1(se(P ))[� 7→ T]) ∧rb g∗(tsd2(se(P ))) by definition of g

≡ gT(se(Q)) ∧rb g∗(se(R)) by Theorem 3.16

≡ Q ∧rb R as shown above

≡ P,

which completes the proof.
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