
Interaction, observation and denotation

A study of dialgebras for program semantics

MSc Thesis (Afstudeerscriptie)

written by

Alwin Blok
(born January 19th, 1984 in Kornhorn, The Netherlands)

under the supervision of Dr. Vincenzo Ciancia, and submitted to the Board of Examiners
in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September, 2012 Dr. Alexandru Baltag

Dr. Marcello Bonsangue
Dr. Vincenzo Ciancia
Prof. Dr. Benedikt Löwe
Dr. Alessandra Palmigiano

Abstract

We investigate the use of dialgebras for program semantics. Dialgebras generalise both algebras
and coalgebras. As a result dialgebras can model compositional and interactive features of
programs, in addition to program state and behaviour over time. We investigate the theory
of universal dialgebra and use it to derive canonical denotational semantics from dialgebraic
operational specifications. The greatest quotient of a dialgebraic operational semantics provides
us with a denotational semantics that characterises behavioural equivalence. Subdialgebras
on the other hand can provide small stand–alone denotations for programs. We extend the
theory of universal dialgebra with a new result. We define minimisation and simplification
sequences for dialgebras. When used with a dialgebraic operational semantics these sequences
enable us to compute suitable denotations for programs. The technique can be used to decide
equivalence of programs, if equivalence is decidable at all. The thesis is concluded with two
examples. We provide a dialgebraic semantics for regular expressions that aligns with the classic
semantics in which regular expressions are interpreted as deterministic automata. Finally we
give a dialgebraic semantics for the synchronous CCS. In the coalgebraic semantics of the CCS
the behaviour of individual processes is modelled. The dialgebraic semantics illustrates that
dialgebras can model the behaviour of multiple processes at once, along with their interactions
and resulting behaviour.

i

Contents

1 Introduction 1
1.1 Context and motivation . 1
1.2 Overview of the thesis . 9

2 Categorical preliminaries 11
2.1 Categories and diagrams . 11
2.2 Morphisms . 13
2.3 Functors . 14
2.4 Category shaped diagrams . 15
2.5 Functor categories . 16
2.6 Cones and limits . 17
2.7 Comma categories . 20

3 Universal dialgebra 21
3.1 Dialgebras . 21
3.2 Limits and colimits . 25
3.3 Subdialgebras and quotient dialgebras . 27
3.4 Factorisations . 30
3.5 Minimal and simple dialgebras . 33
3.6 Bisimulations . 36

4 Minimisation and Simplification 41
4.1 Bases and cobases . 41
4.2 Closure and density . 43
4.3 Minimisation and simplification . 45
4.4 Quotients of subdialgebras . 49

5 Two Examples 51
5.1 Regular expressions . 51
5.2 Calculus of communicating systems . 54

6 Further research 59

iii

Chapter 1

Introduction

1.1 Context and motivation

In programming language theory at least two different attitudes towards semantics are dis-
cerned. In the denotational approach each program is interpreted as a particular element of
a semantic domain. The elements of this domain are called denotations and a denotational
semantics assigns equivalent programs equal denotations. In contrast, an operational seman-
tics considers the computation steps that are to be performed if the program is executed. It
interprets a program as the first computation step of its execution, coupled with a residual
program that describes the continued process.

Although qualifications of semantics as ‘denotational’ and ‘operational’ are common, we prefer
to be a bit cautious. There are many approaches to programming languages semantics and one
could write a book about their taxonomy. In addition, an accurate classification would involve
a philosophical discussion, not a mathematical investigation. That being said, for a proper
introduction to this thesis we have to make the notion of a denotational and an operational
semantics precise. We do so in this introductory chapter, with a special attention to algebraic
and coalgebraic semantics.

Algebras are relevant for several reasons. Foremost, they have been established as a mathe-
matical theory of syntax [6, 7]. Algebraic semantics is commonly associated with denotational
semantics and the main topic of the thesis is a generalisation of algebras. In contrast, coalge-
bras are commonly associated with operational semantics. They have in fact been proposed
as a mathematically rigorous theory of operational semantics, c.f. [22]. In addition, the main
topic of this thesis is a generalisation of algebras and coalgebras.

In this thesis we investigate the use of dialgebras for program semantics. Dialgebras generalise
algebras and coalgebras. The increased generality offers a more expressive framework for oper-
ational semantics. In particular interaction and input to programs can be intuitively expressed.
The theory of universal dialgebra provides the necessary tools for deriving a canonical deno-
tational semantics. In addition it enables the construction of small denotations that do not
require a reference to the encompassing semantic domain.

1

1.1.1 Syntax

What exactly does and what does not constitute syntax is a philosophical issue. It is not our
aim to give a full account of the philosophical debate. Instead we focus on the use of algebra
as a mathematical theory of syntax.

Computer science tends to have a much more fine–grained view on syntax than mathematics.
For a computer program to correctly handle input a much greater attention to detail is required
than in mathematical discourse. For example, a computer program that expects textual input
has to deal with superfluous parenthesis, indentation, white–space and line–breaks. These is-
sues may not be interesting but in applications they have to be dealt with. In mathematics
the issues are not relevant and it tends to start off with a more abstract view of syntax. This
distinction motivates the introduction of concrete and abstract syntax.

The concrete syntax of a language is the collection of arrangements of symbols that constitute
well–formed terms. The concrete syntax of a (textual) programming language is the set of
character sequences that are accepted by the compiler or interpreter of the language. In [15]
McCarthy proposed abstract syntax. He observes that the actual representation of program
terms is not relevant to the definition and study of their semantics. Rather, what is relevant
are the intentional properties of terms; how they may be composed and if possible, how they
may be decomposed. Now, it would be impossible to define a nontrivial semantics without an
ability to inspect terms so for any practical application it reasonable to assume that terms can
be decomposed. The intuition that terms can be composed motivates the formalisation of a
concrete syntax as an algebra. Abstracting away from a concrete representation is achieved by
considering the concrete syntax up to algebra isomorphism.

A concrete syntax is an algebra. Throughout the thesis we work with a generalised notion of al-
gebra, specifically algebras over an endofunctor. An algebra over an endofunctor F : Set→ Set
is a pair (A,α) of a set A of elements and a composition function α :FA→ A. The set FA can
be thought of as a set of unassembled elements and the composition function α takes unassem-
bled elements to their assembled counterparts. A morphism of algebras f : (X,χ)→ (Y, υ) is a
function f :X → Y that is compatible with composition; specifically υ ◦Ff = f ◦χ. Finally,
an abstract syntax is an isomorphism class of algebras. For any concrete syntax (A,α) the
isomorphism class {(B, β) | (B, β) ∼= (A,α)} is an abstract syntax.

In practice ‘the concrete syntax’ of a (textual) programming language refers to the sequences of
characters that are accepted by the compiler or interpreter whereas ‘abstract syntax’ refers to
an intensional description of the syntactic structure, often called an abstract syntax tree (AST).
Implementations of programming languages employ a parser function that converts a string of
characters to a convenient concrete representation of ASTs. From the theory one would expect
that the concrete syntax and the algebra of concretised ASTs are isomorphic. We should note
though that in applications the parser typically is not an isomorphism, often it maps programs
with minor differences in formatting the same concretised AST.

Abstract syntax provides an intensional description of the syntactic structure of terms. The
mathematical theory that is especially well suited to intensional descriptions is category theory.
Indeed, an object defined categorically by means of limits, colimits or any typical categorical
construction is defined up to isomorphism; up to intensional equivalence if you will. Category
theory is also a powerful tool for defining canonical solutions given particular constraints. Now,
a syntax is typically defined by a grammar and the set of terms generated by a grammar is

2

a good example of a canonical construction. For example, consider the grammar for natural
numbers.

n ∈ N ::= Z
∣∣ S(n)

The grammar can be seen as specifying a class C of sets that adhere to a particular constraint:
every N ∈ C has an element ZN ∈ N and if n ∈ N then there is an element SN (n) ∈ N . This
specifies exactly the class of algebras with one constant and one unary operation. The set of
terms N generated by the grammar is the ‘smallest yet least identified’ set that adheres to this
constraint. This can be expressed succinctly as N being the initial algebra of this signature,
where an algebra (X,χ) is initial if for every algebra (Y, υ) of the same signature there is a
unique algebra morphism ¡

(Y,υ) : (X,χ)→ (Y, υ).
For a full account of initial algebras and their motivation we recommend [6]. We introduce
the concept here because initial algebras are an excellent formalisation of syntax and abstract
syntax. The language generated by a grammar is succinctly described as an initial algebra.
Since initial algebras are unique up to isomorphism they abstract away from the concrete
representation of terms. Finally, composition functions of initial algebras are isomorphisms,
providing an intensional description of both composition and decomposition of terms.

1.1.2 Denotational semantics

In a denotational semantics a program is interpreted as an element of a semantic domain. As-
suming that both the collection of program terms and the collection of denotations are sets, a
denotational semantics is formalised as a function.

A denotational semantics for a set of terms X is an interpretation function f :X → D that
maps each term x to its denotation f(x) in a semantic domain D.

A denotational semantics f :X → D establishes a notion of semantic equivalence. Two terms x
and y are semantically equivalent if they have the same denotation f(x) = f(y) . The semantic
equivalence relation induced by f is its kernel Kf .

Kf
..= {(x, y) ∈ X ×X | f(x) = f(y)}

Conversely, any equivalence relation defines a denotational semantics. For let R ⊆ X ×X be
an equivalence relation. One may consider, for example, a relation defined by a proof system.
Then []R :X → X/R is a denotational semantics that interprets a term as an equivalence class
of terms.

[x]R ..= {y ∈ X | (x, y) ∈ R}

Note that []R is a surjective function. Now, any surjective function essentially characterises
an equivalence relation. Consider a surjection f :X → D. It is isomorphic to the function
[]Kf

:X → X/Kf
via the isomorphism h :X/Kf

→ D where h(S) ..= f(x) for x any element of
S. Moreover, any denotational semantics f :X → D gives rise to a unique surjective denota-
tional semantics that induces the same equivalence relation, simply by restricting its codomain
to its image.

To illustrate the concept of a denotational semantics we consider a simple language. We let
n,m ∈ N range over the natural numbers. The set X of arithmetical expressions is generated
by the following grammar.

t1, t2 ∈ X ::= n ∈ N
∣∣ t1 + t2

∣∣ t1 × t2
3

The semantics that we learn in elementary school is a denotational semantics J K :X → N
that interprets arithmetical expressions as their ‘result’. To make this precise, we assume the
standard definition of addition and multiplication of natural numbers and denote them by (+N)
and (×N). The denotational semantics J K :X → N is defined as follows.

JnK ..= n

Jt1 + t2K ..= Jt1K +N Jt2K
Jt1 × t2K ..= Jt1K×N Jt2K

To wrap up the example, J2 + 2K = J1 + 3K = 4, thus the terms 2 + 2 and 1 + 3 are semantically
equivalent. The example illustrates the concept of a denotational semantics, but it has another
noteworthy property. Recall that a syntax is an algebra (X,χ) where X is a set of terms and
χ :FX → X is a composition function. If the domain of a denotational semantics for X can
be equipped with a compatible algebra structure then we speak of an algebraic denotational
semantics.

Let f :X → D be a denotational semantics for a syntax (X,χ). If there is an algebra structure
δ :FD → D such that f : (X,χ)→ (D, δ) is an algebra morphism then f : (X,χ)→ (D, δ) is an
algebraic denotational semantics.

Algebraic semantics formalise the concept of compositional semantics. In a compositional se-
mantics the meaning of a term is obtained by composing the meaning of its subterms. The
compositional aspect of an algebraic semantics is reflected by its accompanying semantic equiv-
alence, a congruence relation. Moreover any congruence relation induces a surjective algebra
morphism.

However, not every denotational semantics is compositional and it can be illuminating to see
an example of this. We extend the language of arithmetical expressions with variables and
assignment. We let n,m ∈ N range over the natural numbers and let v ∈ V range over a set of
variables. The set of terms X ′ is generated by the following grammar:

t1, t2 ∈ X ′ ::= n ∈ N
∣∣ t1 + t2

∣∣ t1 × t2 ∣∣ v ∈ V ∣∣ v ← t1
∣∣ t1; t2

Intuitively, a term v ← t1 will be interpreted as t1 but it will also assign the result of t1
to the variable v. A term t1; t2 is interpreted as t2 however, it does take into account the
values assigned to variables as per t1. We let variables that have not been assigned a value
default to 0 thus v1 and v1 ← 2; v2 will both be assigned the denotation 0. We define the
denotational semantics formally as a function J K :X ′ → N that takes t 7→ π1(Jt, v 7→ 0K)
where J , K :X ′ × NV → N × NV interprets a term and a variable assignment as the ‘result’
of the term and an updated assignment. The initial assignment v 7→ 0 is the constant function
that assigns 0 to every variable. We define J , K as follows.

Jv, f K ..= (f(v), f)

Jn, f K ..= (n, f)

Jt1 + t2, f K ..= (n+N m, h) where (n, g) ..= Jt1, f K and (m,h) ..= Jt2, gK
Jt1 × t2, f K ..= (n×N m, h) where (n, g) ..= Jt1, f K and (m,h) ..= Jt2, gK

Jv1 ← t1, f K ..= (n, h) where (n, g) ..= Jt1, f K and h : v1 7→ n and v 7→ g(v) if v 6= v1

Jt1; t2, f K ..= (m,h) where (n, g) ..= Jt1, f K and (m,h) ..= Jt2, gK

4

The semantics J K :X ′ → N is not algebraic. Consider the terms v1 and v2 and the terms
v1 ← 1; v1 and v1 ← 1; v2. Then Jv1K = Jv2K = 0 and obviously Jv1 ← 1K = Jv1 ← 1K = 1 but
Jv1 ← 1; v1K = 1 and Jv1 ← 1; v2K = 0. Indeed this is not a compositional semantics.

1.1.3 Operational semantics

An operational semantics is intended to model computation steps. For example, in the deno-
tational semantics for arithmetical expressions the ‘result’ of a term is a suitable denotation.
In a programming language the situation is more complicated, we have to deal a.o. with pro-
grams that do not terminate. One solution is to interpret every non–terminating program as
a particular element of the semantic domain, representing divergence. However this may be
too coarse; programs that do not terminate may still generate output, change internal memory
configurations, or interact with their environment in general.

Since an operational semantics models computation steps it may be more discerning than a
typical denotational semantics. Rather than considering only the final result, the kind– and
number of computation steps can be taken into account. For example, two programs that
have the same final outcome could be discerned by an operational semantics if they require a
distinct amount of computation steps. Note through that there is not one unified notion of
a computation step. An often made distinction is between ‘small–step’ and ‘big–step’ opera-
tional semantics, though what is ‘small’ and what is ‘big’ is not rigorously specified. In fact,
a denotational semantics such as the one we defined for arithmetical expressions can be seen
as a (very) big–step operational semantics that interprets terms in exactly one step. An other
extreme is an ‘executable operational semantics’ in which the size– and order of steps is defined
in such detail that the definition constitutes an interpreter or compiler for the language that
can be executed on an actual physical machine.

To illustrate the concept we define an operational semantics for the language of arithmetical
expressions. We define an interpretation function J K :X → X + N that takes a term t to a
reduced expression t′, signified by ι1(t′) or to a final result n ∈ N signified by ι2(n). Intuitively
this semantics reduces the leftmost subterm of the form n + m to n +N m and can be applied
stepwise until there is no more such subterm. Now, it is common for an operational semantics
to be defined by a set of transition rules instead of an inductive function definition. We feel that
this should be part of the example. Thus, we define two relations (:) ⊆ X×N and (→) ⊆ X×X
by the set of rules below. Incidentally, the way in which transition rules define a relation is
similar to how a context free grammar defines a set of terms. The rules specify constraints and
induce a class of relations that adhere to them. The intended relation is a canonical element
of this class.

n : n

t1 → t′1
t1 + t2 → t′1 + t2

t1 : n t2 → t′2
t1 + t2 → t1 + t′2

t1 : n t2 :m

t1 + t2 → n+N m

t1 → t′1
t1 × t2 → t′1 × t2

t1 : n t2 → t′2
t1 × t2 → t1 × t′2

t1 : n t2 :m

t1 × t2 → n×N m

The relations (:) and (→) are functional relations with dom (:) = N and dom (→) = X \ N.
Together they form a function J K :X → X + N where t 7→ ι1(t′) if t → t′ and t 7→ ι2(n) if

5

t : n. The same function can be defined as follows.

JnK ..= ι2(n)

Jn+mK ..= ι1(n+N m)

Jn+ t2K ..= ι1(n+ Jt2K)
Jt1 + t2K ..= ι1(Jt1K + t2) if t1 6∈ N
Jn×mK ..= ι1(n×N m)

Jn× t2K ..= ι1(n× Jt2K)
Jt1 × t2K ..= ι1(Jt1K× t2) if t1 6∈ N

The stepwise aspect of the operational semantics is revealed by a simple example. If a term t
is such that JtK = ι2(n) then we are done in a single step. If however JtK = ι1(t′) for some t′

then we can continue by interpreting t′. For example, J(1 + (2 + 3)) + 4K = ι1((1 + 5) + 4), then
J(1 + 5) + 4K = ι1(6 + 4), then J6 + 4K = ι1(10) and finally J10K = ι2(10).

The example illustrates the concept of an operational semantics but it has an additional prop-
erty. It is a coalgebraic semantics. Dual to algebras, coalgebras can be seen as modelling a
notion of decomposition, though often a more appropriate intuition is that coalgebras model
processes and their observable behaviour as they evolve over time.

A coalgebra is a pair (X,χ) of a set X and an observation function χ :X → GX where
G : Set→ Set is a functor. The observation function takes elements of X to their behaviour in
GX, which may again involve elements of X. A morphism of coalgebras f : (X,χ) → (Y, υ) is
a function f :X → Y that is compatible with observations; specifically Ff ◦χ = υ ◦ f .

The definition of an algebraic denotational semantics suggests the following analogous defini-
tion of a coalgebraic denotational semantics.

Let f :X → D be a denotational semantics for a set X of terms. If there are coalgebra struc-
tures χ :X → FX and δ :D → FD such that f : (X,χ)→ (D, δ) is a coalgebra morphism then
f : (X,χ)→ (D, δ) is a coalgebraic denotational semantics.

However, this presumes a semantic domain and it adds the requirement that compatible coal-
gebra structures exist. But as we have mentioned previously, it is not always clear at once how
to define a suitable semantic domain for program terms. Now, in the example of an operational
semantics above we have defined a coalgebra structure on terms and we have referred to it as an
interpretation function. We may think of this interpretation function as a recursively defined
denotational semantics. It maps a term x to a ‘denotation’ that consists of observations but
possibly also of other terms, which have to be interpreted in turn to establish the meaning of
x. This motivates the following definition of a coalgebraic operational semantics.

A coalgebraic operational semantics for a set X of terms is a function χ :X → FX.

Recall that a denotational semantics f :X → Y defines a semantic equivalence relation. This
equivalence relation is essentially the surjective denotational semantics obtained by restricting
the codomain of f to its image. The question that arises is if and how an operational semantics
defines an equivalence relation. For coalgebras this is achieved via a notion of behavioural
equivalence, well known as bisimulation equivalence. For us, a bisimulation equivalence is the

6

kernel of a coalgebra morphism thus essentially, it is a surjective coalgebra morphism. Now,
typically one considers the greatest such equivalence. Interestingly, the denotational semantics
characterised by this equivalence is also obtained via an other conceptual approach. This time,
rather than considering equivalences we start with the coalgebraic operational semantics. If we
regard the operational interpretation function as a recursively defined denotational semantics
as sketched previously, then all we have to do to retrieve a proper denotational semantics is ‘un-
fold’ the recursive definition. As it turns out, a repeated unfolding converges to a denotational
semantics and the equivalence relation characterises it is the greatest bisimulation equivalence
on terms.

The method for deriving a unique denotational semantics just described is very similar to how a
grammar defines a language or to how a set of transition rules define a relation. Indeed, one can
consider an operational semantics to be the definition of a denotational semantics thus obtained.

As we have laid out, given an operational semantics the equivalence on terms is determined
by the derived denotational semantics, where two program terms are semantically equivalent if
they are mapped to the same element. Thus if we want to decide equivalence, if at all possible,
we have to compare elements of the semantic domain. To make this possible they have to be
assigned a finite, decidable label. This can be achieved by labelling every element with a finite
part of the semantic domain that uniquely identifies it. Thus, instead of interpreting terms as
elements we can interpret them as subobjects.

In summary, universal coalgebra allows a canonical denotational semantics to be derived from
a coalgebraic operational semantics, in addition it provides tools for constructing small, even
finite denotations for terms that can be used to determine or even decide equivalence.

1.1.4 Dialgebraic semantics

In the previous section we have introduced operational semantics, though the focus has been on
coalgebraic semantics. Coalgebras are suitable for modelling observations, however, interaction
and input are not as intuitively modelled. In fact, the only way to model input in a coalgebra
is as, well, output. Arguably a less intuitive representation is a small price to pay for gaining
access to the theory of universal coalgebra. However, especially if an operational semantics is
regarded as a definition of a denotational semantics we would prefer a more expressive frame-
work. In particular, we would prefer a framework that allows a clean separation of input and
output. To this end we propose to generalise coalgebras to dialgebras and investigate the theory
of universal dialgebra.

A dialgebra is a pair (X,χ) of a set X and an interaction–observation function χ :FX → GX
where F : Set → Set and G : Set → Set are functors. The set FX can be thought of as a set
of experiments or interactions, each of which may involve elements from X. The observation
function takes experiments to observations in GX, which may again involve elements from X.
A morphism f : (X,χ) → (Y, υ) of dialgebras is a function f :X → Y that is compatible with
interactions and observations; specifically υ ◦Ff = Gf ◦χ.

Having defined dialgebras we can trace our steps in the previous section and define dialgebraic
denotational semantics and dialgebraic operational semantics.

7

Let f :X → D be a denotational semantics for a set of terms X. If there are structures
χ :FX → GX and δ :FD → GD such that f : (X,χ) → (D, δ) is a dialgebra morphism then
f : (X,χ)→ (D, δ) is a dialgebraic denotational semantics.

The remarks that were made about coalgebraic denotational semantics apply here as well. It is
often not clear at once how to define a denotational semantics for program terms. Instead, what
can be defined with relative ease is how users may interact with a program or how programs
may interact with each other and what behaviour results from these interactions. Thus, what
is defined instead is a dialgebraic operational semantics.

A dialgebraic operational semantics for a set X of terms is a function χ :FX → GX.

Note that dialgebras generalise coalgebras, thus any coalgebraic operational semantics is also
a dialgebraic operational semantics. Dialgebras are more expressive, they offer more freedom
in how a semantics is defined. The additional functor on the domain side of the interpretation
function allows input and even composition of programs terms to be expressed, whereas a in a
coalgebraic setting one would be forced to model these features as part of the output.

Having discussed coalgebraic semantics it should be clear what we aim for in this thesis. We
hope to discuss the techniques in use with coalgebraic operational semantics and generalise
them to dialgebras. In particular, we investigate how a canonical denotational semantics is
obtained from a dialgebraic operational semantics and how to construct subdialgebras as small
denotations for program terms.

8

1.2 Overview of the thesis

Chapter 1

Given the size of the introduction and the number of concepts introduced we have decided to
make the introduction into a proper chapter. It sketches the big picture and the motivation for
this work and it includes this particular section entitled “Overview of the thesis”.

Chapter 2

In the second chapter we introduce some basic category theory. We have included a discussion
of diagrams and category–shaped diagrams. Even though diagrams are pervasive in category
theory, they tend to be introduced with varying levels of detail. Beyond diagrams we cover
limits, colimits and slice and coslice categories. The reader familiar with category theory may
choose to glance through this chapter just shortly.

Chapter 3

In the third chapter we study universal dialgebra. We include some results on limits and
factorisations and we introduce subdialgebras and quotient dialgebras. Quotient dialgebras
are especially important; the category of quotients of a dialgebraic operational semantics is
the category of appropriate denotational semantics. Categories of subdialgebras on the other
hand are categories of small denotations for individual terms. We conclude the chapter with
a section on dialgebra bisimulations. There are many slightly different notions of bisimulation
for coalgebras. We observe that they are most often used either to specify subcoalgebras or
to specify a quotient coalgebras. We attempt to clean this up a bit by defining dialgebra
bisimulations as joint subdialgebras, which have a the dual notion of joint quotient dialgebras.

Chapter 4

The fourth chapter presents the main development of this thesis. We develop iterative proce-
dures for generating minimal and simple dialgebras. The procedures rely on two new concepts
that generalise images and coimages of morphisms, to which we we refer as their base and
cobase. The G–base of a morphism is used to form subobjects of objects X that are in some
sense contained in GX whereas the F–cobase of a morphism defines quotients of X that are
in some sense compatible with quotients of FX. If equivalence is decidable at all, then the
minimisation and simplification procedures may be used to compute finite, unique denotations
for terms and decide equivalence. We conclude the chapter with a section about the inter-
play between minimisation and simplification, comparing minimisations of simplifications and
simplifications of minimisations.

Chapter 5

In this chapter we present dialgebraic semantics for two systems. The first subject is a classic
in computer science. We define a dialgebraic operational semantics for regular expressions and
show how the theory may be used to derive small denotations. This exhibits how neatly the
dialgebraic semantics resembles the classic semantics that interprets regular expressions as de-
terministic state machines. The second subject is the calculus of communicating systems. We
include the coalgebraic semantics for the synchronous CCS and present a dialgebraic seman-
tics. The coalgebraic semantics models the behaviour of individual processes. The dialgebraic

9

semantics illustrates the use of dialgebras for modelling the behaviour of multiple processes at
once, including their interactions and the resulting behaviour.

Chapter 6

In the final chapter we shortly conclude our work and we include a number of ideas that require
additional research.

10

Chapter 2

Categorical preliminaries

In this chapter we introduce some of the basic concepts of category theory and the notation
that we use throughout the thesis. The chapter is not intended to be a complete reference,
instead we refer to the standard references [1, 11,12].

2.1 Categories and diagrams

Definition 2.1.1 (Quiver). A quiver is a directed graph that may have multiple arrows with
the same source and target vertices. A quiver J consists of:

1. A collection of vertices |J |.
Individual vertices are denoted by A,B,X, Y, Z, where A :J stresses that A is in |J |.

2. For every pair of vertices X,Y a family of arrows J [X,Y].

Individual arrows f, g, h in J [X,Y] are denoted by f :X → Y . ♦

Quivers are depicted graphically as dots connected by arrows where a dot represents exactly
one vertex and a depicted arrow represents exactly one arrow of the quiver.

• •
•

��
• // •

•

��

// •

•

• //// •

Definition 2.1.2 (Category). A category is a quiver with additional structure. In a category,
vertices X,Y are called objects and arrows f :X → Y are called morphisms. A category C is a
quiver along with:

3. For every object A : C a designated identity morphism idA :A→ A.

4. A composition operator ◦ that maps a pair of morphisms f :X → Y and g : Y → Z
to a morphism (g ◦ f) :X → Z such that the following conditions are satisfied.

idZ ◦ g = g (f ◦ g) ◦h = f ◦(g ◦h) f ◦ idX = f ♦

For a morphism f :A→ B we call A the domain of f and B the codomain of f . The collection
of morphisms of C with domain A is denoted by C[A,] and the collection of morphisms with
codomain B is denoted by C[, B]. The collection of all morphisms of C is denoted by C[,].

11

Quivers that do not contain any arrows will be called discrete. Likewise, a discrete category is
a category that has no morphisms other than the identity morphisms.

Definition 2.1.3 (Diagram). A diagram is a labelled quiver. Specifically, if J is a quiver then
a diagram of shape J in a category C is a labelling L :J → C which assigns to every vertex
A :J an object (LA) : C and to every arrow f :A→ B of J a morphism Lf :LA→ LB of C. ♦

Intuitively it is clear that L is a labelled quiver if one thinks of L as a set of ordered pairs
of type (A,LA) and (f, Lf). As one would expect, diagrams in a category C are depicted as
quivers with labels added to the dots and arrows. As an example let X,Y, Z be objects of C and
let f :X → Y , h :Z → Y and g :X → Y be morphisms of C. Below are examples of diagrams
in C based on the quivers depicted previously.

X Y

Z

h
��

X
f
// Y

X

f

��

g // Y

Y

X
f //
g
// Y

Definition 2.1.4 (Commutative diagram). A diagram L :J → C is commutative if for any
two paths with the same start and end object of J , the labels on arrows compose to the same
morphism of C.

For all LA
Lf1−−→LX

Lf2−−→ · · · Lfn−−→LB and LA
Lg1−−→LY

Lg2−−→ · · · Lgm−−→LB,

LA
Lfn ◦... ◦Lf2 ◦Lf1−−−−−−−−−−−−→LB = LA

Lgm ◦... ◦Lg2 ◦Lg1−−−−−−−−−−−−→LB. ♦

A few words on the n and m–ary compositions above are required. For any composition
f1 ◦ . . . ◦ fn we have that f1 ◦ . . . ◦ fn = idX ◦ f1 ◦ . . . ◦ fn ◦ idY for suitable X and Y . Whenever
we specify a morphism as a composition (f1 ◦ . . . ◦ fn) :X → Y we define the case n = 0 to be
idX in which case, of course, X = Y .

As an example of commutative diagrams, note that in the rightmost diagram depicted previ-
ously, to state that it commutes implies that f = g whereas this is not the case in the second
rightmost diagram.

Given a quiver J and a category C, one particular family of commutative diagrams is the family
of diagonal diagrams.

Definition 2.1.5 (Diagonal diagram). For an object A : C the diagonal diagram ∆A :J → C
of shape J assigns to any vertex of J the object A : C and to any arrow of J the morphism
idA of C. ♦

In some sense, a diagonal diagram represents just an object. The fact that it can be of any
shape however, makes them a useful tool and we will soon see an example of this.

12

2.2 Morphisms

Definition 2.2.1 (Monomorphism and epimorphism).

1. A monomorphism m : Y � Z is a morphism m : Y → Z such that for any pair of mor-
phisms g :X → Y and h :X → Y , if m ◦ g = m ◦h then g = h. In diagrams, if the
diagram below on the left commutes, then so does the diagram on the right.

Y

X Z =⇒ X Y

Y

g >>
m

h m

>>
g //
h
//

2. An epimorphism e :X � Y is a morphism e :X → Y such that for any pair g : Y → Z
and h : Y → Z, if g ◦ e = h ◦ e then g = h.

Y

X Z =⇒ Y Z

Y

e
>> g

e h

>>
g //
h
//

♦

Identity morphisms are monomorphisms. If id ◦ g = id ◦h then obviously g = h. Likewise, if
g ◦ id = h ◦ id then g = h thus identity morphisms are epimorphisms, too Moreover, monomor-
phisms of any category C are closed under composition, as are epimorphisms. For let e1 :X � Y
and e2 : Y � Z be epimorphisms. Consider two arbitrary morphisms f :Z → A and g :Z → A
and assume that f ◦ e2 ◦ e1 = g ◦ e2 ◦ e1. Then f ◦ e2 = g ◦ e2 because e1 is an epimorphism and
subsequently f = g because e2 is an epimorphism. Therefore e2 ◦ e1 is an epimorphism. With
this in mind it makes sense to define the categories MonoC and EpiC as follows.

Definition 2.2.2 (Category of monos, epis). Let C be a category.

1. The category MonoC consists of all objects of C and all monomorphisms between them.

Identities and compositions are defined as in C.
2. The category EpiC consists of all objects of C and all epimorphisms between them.

Identities and compositions are defined as in C. ♦

Recall that identity morphisms are monomorphisms. Another instance of a monomorphism is
a morphism m :X → Y that can be ‘undone’ by a morphism e : Y → X. If this is the case then
we call e a retraction of m and we call m a section of e.

Definition 2.2.3 (Section and retraction). Let m :X → Y and e : Y → X. If e ◦m = idX then
e is a retraction of m and m is a section of e.

X X

Y
m e

>>
idX //

♦

A novice may be inclined to think that one can flip the direction of the identity arrow in the
diagram above. This is certainly not the case. Asserting that the diagram commutes with the

13

idX arrow in the converse direction does indeed assert that e ◦m = idX but it also asserts that
m ◦ e = idY which is not implied by commutativity of the original diagram.

A morphism m :X → Y that has a retraction e : Y → X is certainly a monomorphism.
Consider two morphisms g :A → X and h :A → X and assume that m ◦ g = m ◦h. Then
e ◦m ◦ g = e ◦m ◦h and because e is a retraction of m we can conclude that g = h which
confirms that m is a monomorphism. The dual of this argument shows that any morphism that
has a section is an epimorphism.

A more specific case occurs if a morphism f :X → Y has a retraction g : Y → X but in addition
f :X → Y is a retraction of g : Y → X . If this is the case then f and g are isomorphisms.

Definition 2.2.4 (Isomorphism). Let f :X → Y and g : Y → X. Then g is the inverse of
f and f is the inverse of g if g ◦ f = idX and f ◦ g = idY . An isomorphism f :X ∼−→ Y is a
morphism that has an inverse.

X Y
f //
g

oo
♦

The inverse of an isomorphism f :X ∼−→ Y is easily seen to be unique and is denoted by
f−1 : Y ∼−→ X. An isomorphism is both a section and a retraction of its inverse therefore it is
both a monomorphism and an epimorphism.

So far all properties of morphisms that we have discussed have been defined in terms of com-
mutativity. There has been no mention of an internal structure of objects or morphisms. In
category theory properties are commonly defined in this way. The most common category in
which objects and morphisms do have an ‘inner structure’ is the category Set of sets and total
functions. Properties of sets and functions often are expressed by referring to their internal
structure. Typical examples are injectivity and surjectivity, which are defined by referring to
the elements of the domain and codomain of a function. In Set the definitions of monomor-
phism and epimorphism provide an intentional alternative. A morphism f :X → Y of Set is
injective only if it is a monomorphism, and it is surjective only if it is an epimorphism. The
inner structure on sets suggests a particular kind of monomorphism, one that cannot be defined
intensionally.

Definition 2.2.5 (Inclusion). In the category Set an inclusion f :X ↪→ Y is a morphism
f :X � Y such that f(x) = x for all x ∈ X. ♦

2.3 Functors

Definition 2.3.1 (Functor). A functor F : C → D is a map that takes objects A : C to objects
(FA) :D and morphisms f :A → B to morphisms Ff :FA → FB whilst preserving identities
and compositions.

F idX = idFX F (f ◦ g) = Ff ◦Fg ♦

A functor F : C → D is faithful if for all X,Y of C the map F : C[X,Y]→ D[FX,FY] is injective
and F is full if for all X,Y of C the map F : C[X,Y] → D[FX,FY] is surjective. A category
D is a subcategory of C if there is a faithful inclusion functor I :D ↪→ C. If I is both full and
faithful then D is a full subcategory of C.

14

As the reader will have noticed, for an object A we write functor application as FA rather than
the classical F (A). Given a suitable functor G, functor composition will be written as GF .
This does not cause any ambiguity: the notation GFA might be read as G(FA) and (GF)A
which is G(F (A)) and (G ◦F)(A) in classical notation. Finally, we shall use the notation FnA
for iterated applications of F , thus F 0A ..= A and Fm+1A ..= FFmA.

Containers

Intuitively one may think of a functor as a container type. If X and Y are collections of elements
then FX and FY are collections of containers, where a container in FX contains elements of
X and a container in FY contains elements of Y . Given a morphism f :X → Y the morphism
Ff :FX → FY takes a container in FX to a container in FY by applying f to every contained
element.

Preservation of commutative diagrams

A functor is a map between categories that preserves commutative diagrams. Let F : C → D be
a functor and let L :J → C be a diagram of C. Since F takes objects to objects and morphisms
to morphisms we can consider what one might call the image of L under F which contains a
labelled vertex (A,FLA) for ever labelled vertex (A,LA) of L and a labelled arrow (f, FLf)
for every (f, Lf) of L. Hence, we define the image of a diagram L :J → C under a functor
F : C → D to be the diagram FL :J → D.

Now suppose that the diagram L :J → C commutes. Then its image FL :J → D commutes
as well. For consider any two paths between LA and LB of L consisting of labelled arrows
Lf1, . . . , Lfn and Lg1, . . . , Lgm. Their labels compose to the same morphism Lfn ◦ . . . ◦Lf1 =
Lgm ◦ . . . ◦Lg1 of C by definition of commutativity.

C

. . . Lfn
++LA

Lf1 33

Lfn ◦... ◦Lf1

��
LB33

Lgm

HH

Lgm ◦... ◦Lg1

++Lg1 . . .

D

. . . FLfn
++

FLA

FLf1 33

F (Lfn ◦... ◦Lf1)

��
FLB33

FLgm

HH

F (Lgm ◦... ◦Lg1)

++FLg1 . . .

Consider the image of these morphisms under F . Since F is a functor it preserves composition.

FLfn ◦ . . . ◦FLf1 = F (Lfn ◦ . . . ◦Lf1) = F (Lgm ◦ . . . ◦Lg1) = FLgm ◦ . . . ◦FLg1

Thus, any two sequences of labelled arrows of FL compose to the same morphism of D which
shows that the diagram FL :J → D commutes.

2.4 Category shaped diagrams

Consider a quiver J and a diagram L :J → C. Since categories are quivers with additional
structure, J might be a category. If in addition, L preserves identities and compositions then
L :J → C is a functor and L is called a category–shaped diagram. Quiver–shaped diagrams are
more intuitive than category–shaped diagrams and the graphical diagrams that are common in
category theory are depictions of quiver–shaped diagrams. However, category–shaped diagrams

15

are often easier to work with because they get rid of the distinction between diagrams and
functors. Fortunately, any quiver–shaped diagram can be presented as a category–shaped
diagram in a way that preserves their commutativity, a construction that will be shown in a
minute.

Definition 2.4.1 (Free category). Given a quiver J , the free category K based on J is con-
structed as follows.

• Any vertex A :J is an object A :K.

• Any path A
f1−→ B

f2−→ . . .
fn−→ X in J of length n ≥ 0 is a morphism of K[A,X].

• For any object A :K the morphism idA is the zero–length path from A :J to A :J .

• Composition of morphisms is defined as path concatenation:

C
f1−→ · · · fn−→X ◦ A

g1−→ · · · gm−→C ..= A
g1−→ · · · gm−→C

f1−→ · · · fn−→X.
♦

The free category construction allows us to present any quiver–shaped diagram as a category–
shaped diagram. Let L :J → C be a quiver–shaped diagram and let K be the free category on
J . Construct a category–shaped diagram D :K → C by putting:

DX ..= LX

D(X
f1−→ · · · fn−→ Y) ..= Lfn ◦ . . . ◦Lf1

We would like to use D as a ‘drop in’ replacement for L. In particular we would like D to
commute only if L commutes.

So assume that D does indeed commute. Consider any two paths between some pair of vertices

A and B of J . They are morphisms A
f1−→ · · · fn−→B and A

g1−→ · · · gm−→B of K. By commutativ-
ity, D maps these morphisms of K to the same morphism of C and by definition of D they get
mapped to Lfn ◦ . . . ◦Lf1 = Lgm ◦ . . . ◦Lg1 which confirms that L commutes.

Conversely, assume that D does not commute, as witnessed by two paths in K. These paths
compose to two parallel morphisms of K. The paths in K labelled by D compose to distinct
morphisms of C. Since D preserves composition it maps the parallel morphisms of K to the

same two distinct morphisms of C. Let the parallel morphisms of K be A
f1−→ · · · fn−→B and

A
g1−→ · · · gm−→B. Note that they are paths in J . By definition of D they get mapped to

Lfn ◦ . . . ◦Lf1 6= Lgm ◦ . . . ◦Lg1 which confirms that L does not commute.

2.5 Functor categories

Definition 2.5.1 (Natural transformation). Let F : C → D and G : C → D be functors. A
natural transformation ν :F

.→ G is a family of morphisms (νX :FX → GX)X : C such that for
all morphisms f :X → Y of C the following diagram in D commutes.

FX GX

FY GY

νX //

νY
//

Ff

��
Gf

��

♦

16

The diagram above is called a naturality square for ν and a morphism νX :FX → GX is called
the component of ν at X : C.

Definition 2.5.2 (Functor category). Let C and D be categories. The functor category DC is
defined as follows.

• Every functor F : C → D is an object of DC .

• Every natural transformation ν :F
.→ G is a morphism from F to G.

• For every object F the identity morphism idF :F
.→ F is the natural transformation

(idFX :FX → FX)X : C , consisting of identity morphisms of D.

• For any two morphisms ν :F
.→ H and µ :H

.→ G the composition (µ ◦ ν) :F
.→ G is the

natural transformation (µX ◦ νX :FX → GX)X : C . ♦

It is not hard to check that compositions and identities are well defined. In particular, for all
morphisms f :X → Y of C the diagram on the left commutes because (idF)X ..= idFX . The
diagram on the right commutes because it consists of two naturality squares.

FX FX FX HX GX

FY FY FY HY GY

(idF)X // νX // µX //

(idF)Y

//
νY

//
µY

//

Ff

��
Ff

��
Ff

��
Hf

��
Gf

��

Since category–shaped diagrams are just functors, we already have an example of a functor
category. Let J and C be categories. Objects of the functor category CJ are category–shaped
diagrams L :J → C. In the following section we shall see an example of natural transformations
between diagrams in a functor category.

2.6 Cones and limits

An appealing feature of category theory is that it offers a way to formalise an intuitive notion of
canonicity. Sometimes mathematical structures are said to arise naturally, in that there appears
to be only one natural choice among a class of structures that have the required properties.
A way to study this intuitive notion of a canonical structure is to study the mathematical
structure of the solution space itself. This is a powerful concept. Design in the general sense,
might appear to involve lots of arbitrary design decisions (at least, to the unpracticed eye).
In liberal arts, designers are typically guided by intuition. A designer might use some formal
guidelines but many decisions are made based on intuition and experience of how to achieve
the desired effect. If we are able to uncover the mathematical structure of the solution space
then design decisions can be formally described and studied. Often, depending on the structure
of the solution space may be able to uncover a best, or canonical solution. The key concept in
category theory that formalises this intuitive notion of canonicity are initial and final objects.

Definition 2.6.1 (Initial object and final object).

• An initial object of a category C is an object A such that for every object X : C there is
a unique morphism ¡X :A → X. If k satisfies just the existence property then A weakly
initial.

17

• Dually, a final object of C is an object Z such that for every object X : C there is a unique
morphism !X :X → Z. If k satisfies just the existence property then Z is weakly final. ♦

Often we will speak of the initial– and the final object of a category. This is justified by the fact
that initial– and final objects are unique up to unique isomorphism. Consider a category C and
two initial objects A and B. By definition of initiality of A and B respectively there are mor-
phisms ¡B :A→ B and ¡A :B → A and thus a morphism (¡A ◦ ¡B) :A→ A. However by initiality
the identity morphism idA :A → A is the unique morphism from A to A thus ¡A ◦ ¡B = idA.
The converse holds for B and as such ¡B :A→ B and ¡A :B → A are isomorphisms as claimed.
For clarity, if we speak of the initial object of a category C, we refer to a single representative
object of the class of initial objects of C.

A category can often be constructed such that the ‘canonical solution’ that we wish to describe
is exactly the initial– or final object of this category. One particular example is the category
of cones over a diagram.

Definition 2.6.2 (Cones and cocones). Let L : CJ be a (category–shaped) diagram.

• A cone from A : C to L is a pair (A,ϕ) where ϕ is a natural transformation ϕ : ∆A
.→ L.

• A cocone from L to Z : C is a pair (κ, Z) where κ is a natural transformation κ :L
.→ ∆Z . ♦

It is easily checked that the definition above amounts to the following:

• A cone from A : C to L is a pair (A,ϕ) where ϕ is a family of morphisms (ϕX :A →
LX)X : J such that for every f :X → Y of J the two leftmost diagrams below, commute.

• A cocone from L to an object Z : C is a pair (κ, Z) where κ is a family of morphisms
(κX :LX → Z)X : J such that for every f :X → Y of J the two rightmost diagrams
commute.

A

ϕX

��

ϕY

��
LX

Lf
// LY

∆AX

ϕX

��

∆Af // ∆AY

ϕY

��
LX

Lf
// LY

LX
Lf // LY

∆ZX
��

κX

∆Zf
// ∆ZY
��
κY

LX
Lf // LY

Z
��

κX

��
κY

Cones and cocones form a category. We define the category of cones, the category of cocones
is defined likewise.

Definition 2.6.3 (Category of cones). Let L :J → C be a category–shaped diagram. The
category of cones over L is defined as follows.

1. Objects are cones ϕ : ∆A
.→ L.

2. For a pair of cones ϕ : ∆A
.→ L and ψ : ∆B

.→ L a morphisms from ϕ to ψ is a morphism
g :A→ B of C such that for all X and Y of J the following commutes.

A

g
��ϕX

ϕY

��

B
ψX

{{

ψY

##
LX

Lf
// LY

18

3. The identity morphism of a cone ϕ : ∆A
.→ L is the morphism idA :A→ A of C.

4. Composition of morphisms is defined as composition of the underlying morphisms of C. ♦

Definition 2.6.4 (Limits and colimits). Let L :J → C be a category–shaped diagram.

• A limit of L is an initial object π : ∆A
.→ L in the category of cones over L.

If a cone π : ∆A
.→ L is weakly initial then π is a weak limit.

• A colimit of L is a final object ι :L
.→ ∆Z in the category of cocones over L.

If a cone ι :L
.→ ∆Z is weakly final then ι is a weak colimit. ♦

A limit of a diagram L :J → C is a pair (A, π) of an object A : C and a family of morphisms
(πX :A→ LX)X : J . The morphisms πX :A→ LX are called projections, and the notation πX
is reserved for morphisms of initial cones specifically, although we sometimes subscript it with
the object LX of C rather than the vertex X of J . Likewise, a colimit of a a diagram L :J → C
is a pair (ι, Z) where ι is a family of morphisms (ιX :LX → Z)X : J into an object Z : C, called
injections. Again, the notation ιX , or ιLX , is used specifically for morphisms of final cocones.
Below, the most common limits and colimits are introduced.

Definition 2.6.5 (Common limits and colimits).

• Let J be the discrete category with two objects. A diagram L :J → C selects two objects
X and Y of C. The binary product X×Y is the initial cone over L. The unique morphism
h :A→ X × Y is denoted by (ψX , ψY).

A

ψX

~~

ψY

h

��
X X × Y

πX

oo
πY

// Y

X
ιX //

ψX

X + Y

h

��

Y
ιYoo

ψY

~~
Z

• Again, let J be the discrete category with two objects so that L :J → C selects two
objects X and Y of C. The binary coproduct X + Y is the final cocone over L. The
unique morphism h :X + Y → Z is denoted by [ψX , ψY].

• Let J be the free category over the quiver consisting of two arrows with distinct domains
and a common codomain. A diagram L :J → C selects three objects and two morphisms
f :X → Z and g : Y → Z of C. The pullback of f and g is the initial cone over L.

Q

ψX

��

ψY

##
h

!!
P

πX

��

πY // Y

g

��
X

f
// Z

Z

f

��

g // Y

ιY

��
ψY

��

X
ιX

//

ψZ
00

P
h

Q

• Let J be the free category over the quiver consisting of two arrows with a common domain
but distinct codomains. A diagram L :J → C selects three objects and two morphisms
f :Z → X and g :Z → Y of C. The pushout of f and g is the final cocone over L. ♦

19

2.7 Comma categories

Definition 2.7.1 (Comma category). Let D, C and E be categories and let F :D → C and
G : E → C be functors between them. The comma category (F ↓G) of F and G is defined as
follows.

• Objects of (F ↓G) are triples (X, f, Y) where X is an object of D, f :FX → GY is a
morphism of C and Y is an object of E .

• A morphism from (X, f, Y) to (X ′, f ′, Y ′) is a pair (g, h) where g :X → X ′ is a morphism
of D and h : Y → Y ′ is a morphism of E such that the following commutes in C.

FX

f

��

Fg // FX ′

f ′

��
GY

Gh
// GY ′

• The identity morphism id(X,f,Y) of an object (X, f, Y) is simply pair (idX , idY).

• Composition (g′, h′) ◦ (g, h) is defined by (g′ ◦ g, h′ ◦h). ♦

Definition 2.7.2 (Slice– and coslice categories). Let 1 be the category consisting of a single
object and its identity morphism. The diagonal functor ∆X : 1→ C for a given category C picks
out a single object X of C.

• The slice category (C/X) is the comma category (IdC ↓∆X).

• The coslice category (X/C) is the comma category (∆X ↓IdC). ♦

Objects of a slice category (C/X) are triples (A, f, 1) where f :A→ X and 1 is the single object
of 1. Similarly, objects of a coslice category (X/C) are triples (1, f, A) with f :X → A. Since 1
is the only object of 1 we can simply omit it from the triples. Morphisms from (A, f) to (B, g)
in the slice category are tuples (h, id1) with h :A→ B a morphism of C. Morphisms from (f,A)
to (g,B) in the coslice category are tuples (id1, h) again with h :A→ B of C. As before we can
simply omit id1, and thus morphisms of the slice and coslice categories (C/X) and (X/C) are
just morphisms of C such that the two equivalent diagrams on the left and respectively the two
diagrams on the right commute.

A

f
��

h // B

g

��
X

IdA

f

��

Idh // IdB

g

��
∆X1

∆X id1

// ∆X1

∆X1

f

��

∆X id1 // ∆X1

g

��
IdA

Idh
// IdB

X

f

��

g

��
A

h
// B

20

Chapter 3

Universal dialgebra

3.1 Dialgebras

Dialgebras generalise algebras and coalgebras. Algebras model a notion of composition whereas
coalgebras model decomposition. A more commonly cited intuition for coalgebras is that they
model behaviour and the state of a processes as they evolve over time. Coalgebras can model
state, but algebras can be seen as such too. However, the evolution of a ‘state’ in an algebra
occurs by providing input that may contain additional states, something that we otherwise
refer to as composition. In coalgebras there is no notion of input, only output. The output
may contain residual states, which is reminiscent of decomposition. Since dialgebras generalise
algebras and coalgebras both intuitions apply. Formally, dialgebras are defined as follows.

Definition 3.1.1 (Dialgebra). An (F,G)–dialgebra is a pair (X,χ) of an object X : C and a
morphism χ :FX → GX where F : C → C and G : C → C are functors. The object X : C is
called the carrier and the morphism χ :FX → GX is called the structure of the dialgebra. The
category C is called the base category. ♦

An F -algebra is an (F, Id)–dialgebra and a G-coalgebra is an (Id, G)–dialgebra. For algebras
and coalgebras there are appropriate notions of morphisms between them. Dialgebra morphisms
generalise these algebra– and coalgebra morphisms. In particular, an F–algebra morphism is a
(F, Id)–dialgebra morphism and a G–coalgebra morphism is (Id, G)–dialgebra morphism.

Definition 3.1.2 (Dialgebra morphism). An (F,G)–dialgebra morphism h : (X,χ)→ (Y, υ) is
a morphism h :X → Y such that Gh ◦χ = υ ◦Fh.

FX

χ

��

Fh // FY

υ

��
GX

Gh
// GY

♦

For a dialgebra (X,χ) the identity morphism idX :X → X is clearly a dialgebra morphism. In
addition, dialgebra morphisms may be composed. If g : (X,χ) → (Z, ζ) and h : (Z, ζ) → (Y, υ)
are dialgebra morphisms then h ◦ g : (X,χ) → (Z, ζ) is defined by composing the underlying
morphisms g :X → Y and h : Y → Z of C. It is easily checked that the composition laws of
C carry over to dialgebra morphisms. Therefore any pair of functors F : C → C and G : C → C

21

defines a category of (F,G)–dialgebras, which we denote by CFG .

Given a category CFG we let U: CFG → C denote the forgetful functor that takes dialgebras
to their carriers (X,χ) 7→ X and dialgebra morphisms to the underlying morphisms, that is
(f : (X,χ) → (Y, υ)) 7→ (f :X → Y). However, we usually denote the underlying morphism of
a dialgebra morphism f : (X,χ) → (Y, υ) by f :X → Y rather than Uf :X → Y . To prevent
confusion we mention the category explicitly, thus f of CFG versus f of C.

Since dialgebras generalise algebras and coalgebras they model composition and input but
also decomposition and behaviour over time. This makes dialgebras well–suited for modelling
processes that allow input and output, as proposed in [4]. For example, let X be a collection of
elements that are to describe processes, equipped with a dialgebra structure δ :C×X → D×X.
A tuple (c, x) ∈ C ×X models a user command c that is to be issued to the process x ∈ X.
The structure δ models the computation steps so that δ(c, x) yields a pair (d, x′) ∈ D×X that
models the output d sent back to the user alongside a residual state x′ ∈ X. Note that this
is only a simple example. Not only input of constants can be modelled. We may also model
passing states as input, for example as a dialgebra structure ξ :X × C ×X → D ×X.

Closure

Intuitions of both algebras and coalgebras may apply to dialgebras, but with the added expres-
sivity some properties of algebras, or coalgebras, are lost. One of those properties is closure.
A set A ⊆ X is closed under a functor F : Set → Set if FA ⊆ A. More generally, it is closed
under an algebraic structure σ :FX → X if the image σ[FA] is a subset of A.

Algebras are necessarily closed under their structure. The structure α of an F–algebra (A,α)
is a morphism α :FA → A and thus by virtue of its type α[FA] ⊆ A. The carrier of a di-
algebra however need not be closed under the dialgebra structure. For example, consider a
SetFG–dialgebra (X, δ) with FX ..= X2 and GX ..= X + 1. Its structure may take (x1, x2) 7→ ∗
where ∗ is the element ∗ ∈ 1 not in X. Then obviously δ(x1, x2) 6∈ X and δ[FX] 6⊆ X.

A partial F–algebra on a set is an algebra (A,α) except that α :FA → A is a partial func-
tion. Now, a partial algebra structure α :FA → A can be extended to a dialgebra structure
α′ :FA → GA where GX ..= X + 1 by letting α′ take x 7→ (ι1 ◦α)(x) if α(x) is defined and
x 7→ ι2(∗) otherwise.

For example, the set N of natural numbers is an F–algebra (N, α) where FX ..= 1 + X. An
element a ∈ FN is either ι1(∗) for ∗ the only element of 1 or it is ι2(n) for n ∈ N; we typically
denote them by Z and Sn. The structure α :FN → N takes Z 7→ 0 and Sn 7→ n + 1 where
(0) and (+) are to be interpreted in N as usual. The set N is closed under these operations:
for all n ∈ N we have α(Z) ∈ N and α(Sn) ∈ N. Now consider an additional operator to
denote the predecessor of a number. We define HX ..= 1 + X + X and use the notation
HN = {Z,Pn, Sn | n ∈ N}. We would define ξ by extending α with Pn 7→ n − 1. However,
0− 1 6∈ N so we would end up with a partial function. Instead, we define GX ..= X + 1 and we
define ξ :HN→ GN by P(n+ 1) 7→ ι1(n), P0 7→ ι2(∗) and a 7→ ι1(α(a)) otherwise. We have an
example of a dialgebra (N, ξ) and a method to turn partial algebras into dialgebras.

22

Density

A concept dual to a closed set is sometimes referred to as a dense set [8]. A set Z is dense under
a functor F : Set → Set if Z ⊆ FZ. More generally, it is dense under a coalgebraic structure
σ :X → FX if Z ⊆ σ−1[FZ]. Dual to algebras, coalgebras are necessarily dense under their
structure. For, the structure ζ of an F–coalgebra (Z, ζ) is a morphism ζ :Z → FZ and as such
Z ⊆ ζ−1[FZ].

The carrier of a dialgebra however is generally not dense under its structure. We are not aware
of a familiar concept dual to partial algebras. However, the technique that we described in
the previous subsection is easily dualised. For example, consider a structure (Z, ζ) that is a
‘partial’ G–coalgebra in the sense that Z is almost dense under ζ but still, Z 6⊆ ζ−1[FZ]. We
can complete (Z, ζ) to a SetFG dialgebra (Z, ξ) by defining C ..= ζ−1[FZ]\Z and FX ..= C+X.
We let ξ take ι1(c) 7→ c and ι1(z) 7→ ζ(z). Then (Z, ξ) is a dialgebra.

Graphs and hypergraphs

Coalgebras are often used for representing transition graphs. For example, consider a G–
coalgebra (X,) where GX ..= P(C × X) for some constant set C. This encodes a directed
labelled graph (X,E) where X is the set of vertices and E ⊆ X × C × X is the set of edges
defined by {(x, c, y) | x ∈ X and (c, y) ∈ χ(x)}, which is just another way to encode the graph
Gχ

..= {(x, χ(x)) | x ∈ X} of χ.

This perspective on coalgebras extends to dialgebras. In particular, dialgebras can be seen as
transition hypergraphs. A hypergraph is a graph in which a single edge can connect an arbitrary
number of vertices. Thus a plain (unlabelled, unordered) hypergraph is a pair (X,E) of a set
of vertices X and a set of edges E ⊆PX ×PX.

A dialgebra (X, ξ) with ξ :X2 →P(C ×X) can be seen as a special hypergraph (X,E) where
E ⊆ X2 × C ×X is defined by {((x, y), c, z) | (x, y) ∈ X2 and (c, z) ∈ ξ(x, y)} in line with the
coalgebra example. This encoding of the edges is somewhat arbitrary and one might indeed
prefer to define E ..= Gξ.

Restricting a class of algebras

Consider a carrier X equipped with an algebra structure χ :FX → X. Algebra morphisms
provide us with a class of algebras that agree with the structure of (X,χ). We will discuss this
in more detail later but for now let us consider algebras (Y, υ) such that there is an algebra
morphism h : (X,χ)→ (Y, υ). Even though the existence of an algebra morphism to (Y, υ) en-
sures that (Y, υ) is compatible with the structure χ on X, we may still want to further restrict
this class of algebras.

By extending (X,χ) to a dialgebra it is possible to impose a partitioning on X and consider
a class algebras that is compatible with both the partitioning and the structure χ. Assume a
partitioning on X has been defined via a morphism q :X � C, representing each partition by
an element c ∈ C. We can extend the algebra structure χ :FX → X to a dialgebra structure
ξ :FX → X × C via ξ ..= (χ, q ◦χ). Then any dialgebra (Y, υ) that is the codomain of a
dialgebra morphism h : (X, ξ)→ (Y, υ) agrees with the partitioning q on X. In addition, given
any such dialgebra morphism we can retrieve an algebra morphism h : (X,χ) → (Y, π1 ◦ υ)

23

so that the algebra structure π1 ◦ υ is compatible with the algebra structure χ on X whilst
respecting the partitioning.

Restricting a class of coalgebras

Consider a G–coalgebra (X,χ) on a set of states X. Coalgebra morphisms m : (Y, υ)→ (X,χ)
provide us with a class of coalgebras (Y, υ) that are compatible with the structure on X. As
with the previous subsection, in some situations we would like to further restrict this class of
coalgebras. By extending (X,χ) to a dialgebra, it is possible to enforce that a subobject of the
carrier X is in the image of any of the morphisms h : (Y, υ) → (X,χ), effectively imposing a
lower bound on the size Y . Incidentally, generated subcoalgebras ‘rooted’ at a particular state
can be obtained using this very technique.

Consider a SetH coalgebra (X,χ). We can extend its structure χ to a dialgebra structure
δ :FX → GX where FX ..= 1 + X and GX ..= PX + HX. Let δ take ι1(∗) 7→ X ′ and
ι2(x) 7→ ι2(χ(x)) where X ′ is a subset of X that we wish to enforce. We can now consider the
class of dialgebras (Y, ξ) such that there is a morphism h : (Y, ξ) → (X, δ). This ensures that
for all such dialgebras (Y, ξ) we have h−1[X ′] ⊆ Y . And finally, from any such dialgebra (Y, ξ)
we can retrieve a coalgebra (Y, υ) by letting υ take y 7→ ξ(ι2(y)).

Multi–dialgebras

The previous subsections on restricting classes of algebras and coalgebras use a technique that
is an instance of a more general scheme. Since dialgebras generalise algebras and coalgebras
they allow both algebra structures and coalgebra structures to be expressed at once. More gen-
erally, dialgebra structures themselves may be composed of algebra–, coalgebra and dialgebra
structures. Extending a structure with an additional algebra–, coalgebra or dialgebra structure
is a powerful technique for restricting a class of dialgebras as sketched in the previous examples.
The technique is best explained through a variant of dialgebras that we call multi–dialgebras.

Definition 3.1.3 (Multi–dialgebra). Let (Fi, Gi)i be a family of pairs of functors Fi : C → C
and Gi : C → C. An (Fi, Gi)i dialgebra is a pair (X, (χi)i) of a carrier X : C and a family of
dialgebra structures (χi :Fi → Gi)i. A morphism h : (X, (χi)i)→ (Y, (υi)i) of multi–dialgebras
is a morphism h :X → Y where h : (X,χi)→ (Y, υi) is a dialgebra morphism for all indices i.

FiX

χi

��

Fih // FiY

υi

��
GiX

Gih
// GiY

♦

Intuitively, multi–dialgebra morphisms are more restricted than dialgebra morphisms. Indeed,
multi–dialgebra morphisms h : (X, (χ1, χ2))→ (Y, (υ1, υ2)) are those morphisms h :X → Y such
that both h : (X,χ1) → (Y, υ1) and h : (X,χ2) → (Y, υ2) are dialgebra morphisms. However,
any category of multi–dialgebras embeds into a category of (F,G)–dialgebras for a suitable pair
of functors F and G.

24

Proposition 3.1.4. Consider a family of pairs of functors (Fi, Gi)i on a base category C and
let D denote the category of (Fi, Gi)i multi–dialgebras.

1. Then D is a full subcategory of CFG where FX ..=
∐
i FiX and GX ..=

∐
iGiX.

2. In addition D is a full subcategory of CFG where FX ..=
∏
i FiX and GX ..=

∏
iGiX.

Proof. We consider the first item shortly. We have to show that there is a faithful inclusion func-
tor I :D ↪→ CFG . Thus let I take objects (X, (χ)i) 7→ (X,

∐
i χi) and morphisms h 7→ h. Then

(Ih) : (X,
∐
i χi) → (Y,

∐
i υi) is a morphism of CFG because products and likewise coproducts

are computed pointwise. In particular, for every a family of morphisms ((ιi ◦ υi) :FY → GY)i
there is a unique morphism from FY to GY by the definition of coproduct. This unique mor-
phism is the the copairing [ιi ◦ υi]i, which is

∐
i υi. Likewise [ιi ◦Fih]i = Fh, [ιi ◦Gih]i = Gh

and [ιi ◦χi]i =
∐
i χi.

Since categories of multi–dialgebras embed into categories of dialgebras we will only work with
the latter. We can at any point use the proposition above to combine multiple dialgebra
structures on the same carrier into one.

3.2 Limits and colimits

Algebras have products and coalgebras are have coproducts. In particular, limits in a category
CF of algebras are obtained by equipping limits of C with appropriate algebra structures. For
example, consider two algebras (A,α) and (B, β) of CF and assume that C has products. By def-
inition, the product A×B is the carrier of the unique algebra structure k = (α ◦FπA, β ◦FπB)

FA

α

��

F (A×B)
FπAoo FπB //

k

��

FB

β

��
A A×B

πA

oo
πB

// B

In addition (A×B, k) is the product of (A,α) and (B, β) in CF . For consider an algebra (X,χ)
and two algebra morphisms f : (X,χ) → (A,α) and g : (X,χ) → (B, β). By the definition of
products there is a unique morphism u :X → A×B such that πA ◦u = f and πB ◦u = g in C,
which extends to a unique algebra morphism u : (X,χ)→ (A×B, k).

Under the assumption that F preserves colimits there is a similar result for coproducts of al-
gebras. If (A,α) and (B, β) are F–algebras and F preserves coproducts then F (A + B) is
the coproduct of FA and FB and (A + B, k) is the coproduct of (A,α) and (B, β) where
k :F (A+B)→ A+B is the unique morphism [ιX ◦α, ιY ◦β].

The arguments can be generalised to other limits and colimits without much effort and are easily
dualised for coalgebras to obtain the results of [20] section 4. By combining the dual results we
obtain the following theorem for limits and colimits of dialgebras, restating theorem 13 of [23].

Theorem 3.2.1.

1. If C has limits of shape J and G preserves them then CFG has limits of shape J .

2. If C has colimits of shape J and F preserves them then CFG has colimits of shape J .

25

Proof. We prove the first item. Let L :J → CFG be a diagram in CFG . Then UL :J → C is a
diagram in C and so are FUL and GUL. For clarity, if L labels a vertex V :J with (X,χ) then
UL labels V with X, FUL labels V with FX and GUL labels V with GX. For readability we
shall write (XV , χV) for the dialgebra LV where V :J .

Let (A, π) be the limit of UL (in C) and recall that π is a family of morphisms (πV :A→ XV)V :J .
We wish to show that there is a unique dialgebra structure α :FA→ GA such that the projec-
tions πV :A→ XV extend to dialgebra morphisms πV : (A,α)→ (XV , χV) and that ((A,α), π)
is the limit of L in CFG .

Let us write Gπ for the family of morphisms (GπV :GA→ GXV)V :J . Observe that (GA,Gπ) is
the initial cone over GUL (in C) because G preserves limits. Now consider the cone (FA,Fπ)
over FUL (in C). It extends to a cone (FA, χV ◦FπV :FA → GXV)V :J over GUL. Since
(GA,Gπ) is the limit of GUL there is a unique morphism from (FA,χV ◦FπV)V :J to (GA,Gπ).
By definition this is a morphism α :FA → GA in C such that the projections πV :A → XV

extend to dialgebra morphisms πV : (A,α)→ (XV , χV). For every for every arrow e : V → U in
J the following diagram in C commutes.

FA

FXV FXU

GA

GXV GXU

α

��

GπV

{{

GπU

##

FπV

��

FπU

��

χV

��

χU

��

FULe ..

GULe
..

It remains to show that ((A,α), π) is the limit of L in CFG . So consider any other cone ((B, β), ψ)
with ψ a family of morphisms (ψV : (B, β)→ (XV , χV))V :J . Since (A, πV :A→ XV)V :J is the
limit of UL (in C) there is a unique morphism of cones from (B,ψV :B → XV)V :J to (A, π)
thus there is a unique morphism k :B → A in C. Consider the cone (FB,χV ◦FϕV)V :J
over GUL. Recall that (GA,Gπ) is the initial cone over GUL, so that there is a unique
morphism u :FB → GA in C and thus Gk ◦β = u = α ◦Fk which makes k : (B, β) → (A,α)
and ϕV : (B, β)→ (XV , χV) for V :J dialgebra morphisms.

B

A

XV XU

k
��

πV

||

πU

""

ULe
//

ψV

ψU

��

FB

GA

GXV GXU

u
��

GπV

||

GπU

""

GULe
//

χV ◦FψV

χU ◦FψU

��

In summary, the limits of C that are preserved by F can be equipped with a unique dialgebra
structure to obtain limits in CFG , and colimits in C that are preserved by G extend uniquely to
colimits in CFG . Now as indicated by [19,20] in a category CG of coalgebras limits of C that are
not preserved by G may exist. However they are not obtained just by equipping the limit in
C with a coalgebra structure. It may very well be possible to to dualise the results in [19] and
obtain the more general results about limits and colimits in dialgebras that are not obtained
by equipping limits and colimits in the base category with a dialgebra structure.

26

3.3 Subdialgebras and quotient dialgebras

Intuitively both subobjects of– and quotients of an object are ‘smaller versions’ of that ob-
ject. Their smallness however is realised in distinct ways. We motivate this intuition, but we
use the notion of elements of objects as we have in Set. Now, the codomain of a surjective
function f :X → Y may be smaller than its domain, for there may be elements x1, x2 ∈ X
that are identified via f(x1) = f(x2). Even if X and Y have the same cardinality an intuition
of smallness applies, in the sense that Y can be obtained from X by merging and renaming
elements. On the other hand, the domain of an injective function g :X → Y may be smaller
than its codomain, for there may be elements y ∈ Y for which there is no x ∈ X with g(x) = y.
Again, even if X and Y have the same cardinality an intuition of smallness applies, for X may
be obtained by renaming elements of Y while discarding those that are not in the image of f .
Thus the distinct notions of smallness are distinguished by considering surjective functions and
injective functions separately. The approach is generalised to other categories as follows.

In general, the category SubC of subobjects of a category C is a suitably chosen subcategory
of MonoC. Dually, the category of quotients QuotC is a suitably chosen subcategory of EpiC.
The chosen subcategories depend on C. In some cases SubC is MonoC and QuotC is EpiC
but for some categories this does not yield the desired result. As may be expected from the
introduction above, for Set it does. The category SubSet is MonoSet in its entirety. Likewise,
QuotSet is EpiSet. For a category CFG of dialgebras the categories Sub(CFG) and Quot(CFG) are
defined as follows.

Definition 3.3.1 (Categories of subdialgebras and quotient dialgebras).

1. An object (X,χ) of Sub(CFG) is an object of CFG .

2. A morphism m : (Y, υ) → (X,χ) of Sub(CFG) is a morphism of CFG where m : Y → X is a
morphism of SubC.

1. An object (X,χ) of Quot(CFG) is an object of CFG .

2. A morphism e : (X,χ) → (Y, υ) of Quot(CFG) is a morphism of CFG where e :X → Y is a
morphism of QuotC. ♦

Note that Sub(CFG) is indeed a subcategory of Mono(CFG), dually, Quot(CFG) is a subcategory
of Epi(CFG). If e : (X,χ)→ (Y, υ) is a morphism of Quot(CFG) and g and h of CFG are such that
g ◦ e = h ◦ e then g = h in C because e :X → Y is in QuotC and thus epic.

This definition may be surprising in that the objects of the categories SubC and QuotC are
just objects of C. Instead, the we refer to the morphisms of SubC as subobjects and to the
morphisms of QuotC as quotients. This is convenient if we consider subobjects and quotients
of a particular object X : C. For, a subobject of an object X : C is an object m :A � X of the
slice category (SubC/X) and a quotient of X : C is an object e :X � Z of the coslice category
(X/QuotC). However, if clear from the context we refer to an object A : C as a subobject of
X : C if there is a morphism m :A� X in SubC and similarly for quotients.

27

Definition 3.3.2 (Subobjects and quotients).

1. A subobject is a morphism of SubC.
2. A subobject of X : C is an object m :A� X of (SubC/X).

1. A quotient is a morphism of QuotC.
2. A quotient of X : C is an object e :X � Y of (X/QuotC). ♦

Subdialgebras and quotient dialgebras are defined accordingly. A subdialgebra of a CFG dialgebra
(X,χ) is an object m : (A,α) � (X,χ) of (Sub(CFG)/(X,χ)). A quotient dialgebra of (X,χ) is
an object e : (X,χ) � (Z, ζ) of ((X,χ)/Quot(CFG)).

Semilattices

If a category of subobjects has pullbacks then subobjects form a meet semilattice, likewise
quotients form a join semilattice if their category has pushouts. We shortly investigate pullbacks
of subdialgebras and pushouts of quotient dialgebras. The following well known lemma allows a
more specific analogue of theorem 3.2.1 for pullbacks of subdialgebras and pushouts of quotient
dialgebras.

Proposition 3.3.3.

1. Let (P, πX , πZ) be the pullback of a pair of morphisms f :X → Y and g :Z → Y . If g is
monic then πX :P → X monic. If in addition f is monic then f ◦πX = g ◦πY is monic.

2. Let (ιZ , ιY , P) be the pushout of a pair of morphisms f :X → Y and g :X → Z. If g is
epic then ιY : Y → P is epic. If in addition f is epic then f ◦πX = g ◦πY is epic.

Proof. We prove the second item. Consider two arbitrary functions h :P → Q and k :P → Q
such that h ◦ ιY = k ◦ ιY . Then certainly h ◦ ιY ◦ f = k ◦ ιY ◦ f . Then h ◦ ιZ ◦ g = k ◦ ιZ ◦ g
because ιY ◦ f = ιZ ◦ g. But then h ◦ ιZ = k ◦ ιZ because g is epic. We already had h ◦ ιY =
k ◦ ιY . In proposition 3.6.2 we will show that injections are jointly which allows us to conclude
that h = k, thus ιY is an epimorphism. Finally, if in addition f is epic then ιY ◦ f = ιZ ◦ g is
epic because epimorphisms are closed under composition.

This proposition establishes that if a category C has pullbacks then MonoC has pullbacks.
Likewise if C has pushouts then so does EpiC. In fact, it is reasonable to require that SubC has
pullbacks if C has them and that QuotC has pushouts if C does. Henceforth, if keep the base
category abstract, then we assume that these requirements are met. Using theorem 3.2.1 we
now obtain the following.

Proposition 3.3.4. Consider a category CFG of dialgebras.

1. If G preserves pullbacks then subdialgebras form a meet semilattice under pullback.

If C is Set and G preserves pullbacks then subdialgebras are closed under intersection.

2. If F preserves pushouts then quotient dialgebras form a join semilattice under pushout.

Note that in Set subobjects are isomorphic to inclusions and the pullback of two inclusions
m :X ↪→ Z and n : Y ↪→ Z is the inclusion d :X ∩ Y ↪→ Z where d ..= m ◦πX = n ◦πY . Thus
if m : (X,χ) ↪→ (Z, ζ) and n : (Y, υ) ↪→ (Z, ζ) are subdialgebras and G preserves pullbacks then
d extends uniquely to a subdialgebra of (Z, ζ).

28

The above does not in general imply that subdialgebras do not have a meet if G does not
preserve pullbacks. The remark that we made near theorem 3.2.1 applies here as well. If G
preserves pullbacks then the pullback of subdialgebras is obtained from the pullback in the
base category by extending it with a unique dialgebra structure. But if G does not preserve
pullbacks then pullback of subdialgebras may still exist. However it is not obtained simply by
taking the pullback of the underlying morphisms.

Quotient dialgebras as semantics

Consider a set of terms X equipped with a dialgebraic operational semantics δ :FX → GX.
In Set every equivalence relation is essentially a surjective function. The category of quotients
(X/QuotSet) is essentially the category of equivalence relations on the set of terms. By con-
sidering ((X, δ)/Quot(SetFG)) rather than (X/QuotSet) we restrict attention to equivalences
that are compatible with the operational semantics, thus we restrict attention to behavioural
equivalences on terms.

We assume that we are interested only in denotational semantics that discern distinct behaviour.
Under this assumption the quotients of (X, δ) are its suitable denotational semantics. Perhaps a
more striking way to express this is that if we wish to define a denotational semantics for (X, δ)
then ((X, δ)/Quot(SetFG)) is the solution space. Defining a semantics then involves selecting an
object of this category. Since good design is about the absence of arbitrary design decisions we
can use the structure of the solution space and select a canonical object. In particular, we are
interested in the final object of the category. We discuss such objects in the next section and
in chapter 4.

Subdialgebras as denotations

Quotients may be small intuitively, but for nontrivial languages they are infinite. Any interest-
ing language has infinitely many behaviourally distinct terms, therefore all its quotients have
infinitely many elements. However, we are often not interested in the entire semantic domain
at once. We can restrict attention to its subdialgebras. In particular, subdialgebras of the
semantic domain provide small denotations for terms.

Assume that we have settled on a quotient J K : (X, δ) → (Z, ζ) of an operational semantics.
Then two terms p, q ∈ X are semantically equivalent if JpK = JqK. However, if Z is infinite
then we can not naively check whether this is the case. Instead we need finite, decidable
representations of JpK and JqK. What we can do is interpret terms not as elements of Z
but as subdialgebras. If a semantics is at all decidable then it may be possible to construct
for each element of the semantic domain a finite subdialgebra that uniquely represents it.
Moreover, we may use the technique outlined in section 3.1 to help us with this task. Consider
a term p ∈ X and its interpretation JpK ∈ Z. We can construct for p a class of possible
denotations by extending (Z, ζ) to a dialgebra (Z, pJpK + ζ) where pJpK : 1→ Z takes ∗ 7→ JpK.
Now (Sub(SetFG)/(Z, pJpK + ζ)) is a category of denotations for p. For clarity, objects of this
category are subdialgebras of (Z, pJpK + ζ) that are enforced to contain at least JpK. In typical
situations the initial object of this category is an appropriate and finite denotation for p that
may be compared against similar denotations of other terms. We will pay special attention to
such objects in the the next section and we investigate how to construct subdialgebras whilst
ensuring that they are suitable denotations in chapter 4.

29

3.4 Factorisations

A factorisation of a morphism f :X → Y is an object Z and a pair of morphisms e :X → Z
and h :Z → Y in C such that f = h ◦ e. In this section we study whether factorisations in a
base category extend to factorisations of dialgebras. We start with sections and retractions. In
particular, if a dialgebra morphism has a section in the base category then that section extends
to a dialgebra morphism.

Proposition 3.4.1.

1. If e : (X,χ)→ (Y, υ) is a dialgebra morphism and e :X → Y has a section ē : Y � X then
there is a dialgebra structure χ′ such that ē : (Y, υ) � (X,χ′) is a dialgebra morphism.
Consequently ē ◦ e is a dialgebra morphism (ē ◦ e) : (X,χ)→ (X,χ′).

2. If m : (X,χ)→ (Y, υ) is a dialgebra morphism and m :X → Y has a retraction m̄ : Y � X
then there is a dialgebra structure υ′ such that m̄ : (Y, υ′) � (X,χ) is a dialgebra mor-
phism. Consequently m̄ ◦m is a dialgebra morphism (m ◦ m̄) : (X, υ′)→ (Y, υ).

Proof. We prove the first item. Define χ′ ..= Gē ◦ υ ◦Fe. We have to show that χ′ ◦F ē = Gē ◦ υ.
Now χ′ ◦F ē is Gē ◦ υ ◦Fe ◦F ē by definition of χ′, which is Gē ◦ υ because ē is a retraction of e.
For the second item define υ′ ..= Gm ◦χ ◦Fm̄. Then χ ◦Fm̄ = Gm̄ ◦Gm ◦χ ◦Fm̄ = Gm̄ ◦ υ′.

FX FY FX FY

GX GY GX GY

Fe // F ē // Fe //

Ge
//

Gē
//

Gē
oo

χ

��

υ

��

χ′

υ

��

Factorisations f = m ◦ e in the underlying category of dialgebra morphisms extend to factori-
sations of dialgebra morphisms if e has a retraction or if m has a section.

Proposition 3.4.2. Let f : (X,χ)→ (Y, υ) be a morphism of CFG such that f = m ◦ e in C.
1. If e has a section then there are dialgebra structures χ′ and ζ such that e : (X,χ′)→ (Z, ζ)

and m : (Z, ζ)→ (Y, υ) are dialgebra morphisms.

2. Ifm has a retraction then there are dialgebra structures ζ and υ′ such that e : (X,χ)→ (Z, ζ)
and m : (Z, ζ)→ (Y, υ′) are dialgebra morphisms.

3. If e has a section and m has a retraction then there is a dialgebra structure ζ such that
e : (X,χ) → (Z, ζ) and m : (Z, ζ) → (Y, υ) are dialgebra morphisms. If in addition F
preserves epis and G preserves monos then there is a unique such structure.

Proof. Assume that e :X → Z has a section ē :Z � X. Then f ◦ ē = m ◦ e ◦ ē and as such
f ◦ ē = m. Therefore we have Ff ◦F ē = Fm and Gf = Gm ◦Ge. Since f : (X,χ)→ (Y, υ) is a
dialgebra morphism we have υ ◦Ff = Gf ◦χ. Define ζ :FZ → GZ by ζ ..= Ge ◦χ ◦F ē. Then
the diagram on the left commutes and m : (Z, ζ)→ (Y, υ) is a dialgebra morphism.

FX FY

FZ

GX GY

GZ

ζ

��

F ē

cc

Ge ## Gm

;;

Fm

;;

χ

��

υ

��

Ff 00

Gf 00

FX FY

FZ

GX GY

GZ

ζ

Fe ##

Ge ## Gm̄{{

Fm

;;

χ

��

υ

��

Ff 00

Gf 00

30

The diagram on the right corresponds to the dual case.

In general it does not hold that e : (X,χ) → (Z, ζ) is a dialgebra morphism. However, we can
define χ′ ..= Gē ◦ ζ ◦Fe. Then Ge ◦χ′ = Ge ◦Gē ◦ ζ ◦Fe = ζ ◦Fe so that e : (X,χ′)→ (Z, ζ) is
a dialgebra morphism.

The second item is dual to the first. As for the third item, it follows from the above there are
dialgebra structures ζ1, ζ2 such that e : (X,χ) → (Z, ζ2) and m : (Z, ζ1) → (Y, υ) are dialgebra
morphisms. Then Gm ◦ ζ2 ◦Fe = Gm ◦Ge ◦χ = Gf ◦χ and Gm ◦ ζ1 ◦Fe = υ ◦Fm ◦Fe =
υ ◦Ff . Thus Gm ◦ ζ2 ◦Fe = Gm ◦ ζ1 ◦Fe because f is a dialgebra morphism. But then
ζ2 = ζ1 because Ge is epic and Gm is monic.

In the category Set every epimorphism has a section and every monomorphism has a retraction.
Moreover, all functors F : Set → Set preserve epimorphisms and monomorphisms, except pos-
sibly for monomorphisms with domain ∅. Thus a factorisation f = m ◦ e in Set of a dialgebra
morphism f extends to a unique factorisation in SetFG if e is epic and m monic, unless perhaps
X = ∅.

We may use proposition 3.4.2 to define quotient dialgebras and subdialgebras by factorising
dialgebra morphisms. Similar to limits and colimits there is a notion of a canonical factorisation.
If we pay restrict attention to quotients and subobjects then we arrive at a generalisation of
the set–theoretic image.

Definition 3.4.3 (Image and coimage).

1. The image (imf) :Z � Y of a morphism f :X → Y is the least subobject such that
there is a factorisation f = (imf) ◦ g. Specifically, for any subobject m :Z ′ � Y and
factorisation f = m ◦h there is a unique morphism k :Z → Z ′ that makes the diagram
on the left commute.

X Y

Z

Z ′

f //

g ## << imf

<<

k

��

h

%% ;;
m

MM Z ′

Z

X Y
f

//

ımf ;; ;; g

##

k
��e

99 99

h

��

2. The coimage (ımf) :X � Z of a morphism f :X → Y is the greatest quotient such
that there is a factorisation g ◦ (ımf) = f . Specifically, for any quotient e :X � Z ′ and
factorisation h ◦ e = f there is a unique morphism k :Z ′ → Z that makes the diagram on
the right above commute. ♦

Thus the image of a morphism f :X → Y is the least subobject of Y through which f factorises.
The coimage of f is the greatest quotient of X through which f factorises. Images and coimages
generalise the set–theoretic image of a function. In particular, the image {f(x) | x ∈ X} of a
function f is isomorphic to the domain of imf which in Set is isomorphic to the codomain of
ımf .

31

Intuitively, a composition of morphisms g ◦ f identifies more than a morphism f alone. So one
would expect that the coimage of a morphism g ◦ f is a quotient of the coimage of f . The
following proposition confirms that this intuition is correct.

Proposition 3.4.4. Let f :X → Y and g : Y → Z be morphisms of a category C.

1. If C has images then im(g ◦ f) is a subobject of img.

2. If C has coimages then ım(g ◦ f) is a quotient of ımf .

Proof. We prove the second item. Consider ımf :X � P and ımg : Y � Q. Let f ′ :P → Y
and g′ :Q → Z be such that f ′ ◦ ımf = f and g′ ◦ ımg = g. Define h :P → Q ..= ımg ◦ f ′ and
consider consider ımh :P � R and h′ :R→ Q such that h′ ◦ ımh′ = h.

S

R

P Q

X Y Z
f

//
g

//

ımf ;; ;; f ′

##

ımg ;; ;; g′

##

ımh ;; ;; h′

##

k

OO

ım(g ◦ f)

22 22

��

Then g′ ◦h′ ◦ ımh ◦ ımf = g ◦ f and therefore there is a unique morphism k :R→ S where S is
the codomain of ım(g ◦ f). The morphism k ◦ ımh is a morphism from ımf to ım(g ◦ f), that
is, ım(g ◦ f) is a quotient of ımf .

Images and coimages of a base category extend to images and coimages of dialgebra morphisms
as indicated in proposition 3.4.2.

Proposition 3.4.5. Consider a category CFG of dialgebras.

1. If a dialgebra morphism f has an image factorisation f = (imf) ◦ e in C and e has a
section then f has an image factorisation in CFG .

2. If a dialgebra morphism f has a coimage factorisation f = m ◦ (ımf) in C and m has a
retraction f has a coimage factorisation in CFG .

3. Any category SetFG has image and coimage factorisations.

Semilattices

We may use proposition 3.4.2 to extend image and coimage factorisations in a base category
to image and coimage factorisations of dialgebra morphisms. Recall that in section 3.3 we
have discussed the meet of subdialgebras and the join of quotient dialgebras. The join of two
subobjects and the meet of two quotients are not defined as colimits and limits. Instead they
are canonical factorisations as follows.

Definition 3.4.6 (Join and meet).

1. The join of two subobjects m :A � X and n :B � X is the least subobject s : Y → X
such that there are morphisms g, h and factorisations m = s ◦ g and n = s ◦h

2. The meet of two quotients e :X � A and f :X � B is the greatest quotient q :X � Y
such that there are morphisms g, h and factorisations g ◦ q = e and h ◦ q = f . ♦

32

In the presence of coproducts and products the join of two subobjects m and n is im[m,n] and
the meet of two quotients e and f is ım(e, f). This suggests the following.

Proposition 3.4.7. Consider a category CFG of dialgebras.

1. If F preserves coproducts and CFG has images then the join of two subdialgebras exists
and gives rise to a subdialgebra of (X,χ). Consequently, if C is Set and F preserves
coproducts then subdialgebras are closed under union.

2. If G preserves products and CFG has coimages then the meet of two quotient dialgebras
exists and gives rise to a quotient of (X,χ).

Again, this does not suggest that subdialgebras do not have a join if F does not preserve
coproducts. In fact, in chapter 4 we develop a technique for generating minimal dialgebras
which may also be employed to generate the join of subdialgebras. However, if F does preserve
coproducts then the join of two subdialgebras can simply be obtained by equipping the carrier
of the join in the base category with a unique dialgebra structure.

3.5 Minimal and simple dialgebras

In universal algebra and coalgebra it is common to study initial and final objects. Indeed,
in many categories of algebras and coalgebras initial and final objects exist. In categories of
dialgebras the situation is more delicate. In fact, many categories of dialgebras do not have a
final object. Intuitively, all dialgebras of such categories can be extended with elements that
are behaviourally distinct from all others so that the cardinality the carriers is not bounded.

Proposition 3.5.1. The category SetFG with FX ..= X2 and GX ..= 2 where 2 is the two
element set {0, 1} does not have a final object.

Proof. Assume for a contradiction that (Z, ζ) is the final object of SetFG. Define Z ′ ..= Z ∪{z′}
with z′ 6∈ Z and define ξ :FZ ′ → GZ ′ as follows.

(x, y) 7→ 1 if x = z′ and y = z′

(x, y) 7→ 0 if x = z′ or y = z′

(x, y) 7→ ζ(z, y) otherwise

Now (Z ′, ξ) is a SetFG dialgebra and by finality of (Z, ζ) there is a morphism h : (Z ′, ξ)→ (Z, ζ).
Since h is a dialgebra morphism ζ ◦Fh = Gh ◦ ξ = id2 ◦ ξ = ξ. Now let z ∈ Z such that
h(z′) = z. Note that z ∈ Z and thus z ∈ Z ′. Then (ζ ◦Fh)(z′, z′) = ζ(z, z) = (ζ ◦Fh)(z′, z).
However, ξ(z′, z′) = 1 and ξ(z′, z) = 0 which contradicts that h is a dialgebra morphism.

At first sight this may seem discouraging. Given a coalgebraic operational semantics, the mor-
phism into the final coalgebra defines a canonical denotational semantics. The lack of a final
dialgebra would seem to suggest that a canonical denotational semantics for a dialgebraic opera-
tional semantics is problematic. However, final objects offer much more than we require. A final
coalgebra provides a semantic domain not just for a single coalgebraic operational semantics,
but for any operational semantics of the same signature. In addition, morphisms into it are of-
ten not surjective, which implies that it contains denotations that are not associated with terms.

Rather than considering finality and likewise initiality of dialgebras over–all, we restrict atten-
tion to final quotients and initial subobjects of a given dialgebra. These restrictions result in
categories that meet our needs and in which initial and final objects exist.

33

Definition 3.5.2 (Minimal objects and simple objects).

1. The least subobject of an object X : C is the initial object of the category (SubC/X).

A minimal object is an object A that is the domain of a least subobject m :A� X.

2. The greatest quotient of an object X : C is the final object of the category (X/QuotC).
A simple object is an object Z that is de codomain of a greatest quotient e :X � Z. ♦

Minimal objects are truly minimal in that they have no proper subobjects. Indeed, any sub-
object of a minimal object is an isomorphism. Likewise any quotient of a simple object is an
isomorphism.

Proposition 3.5.3. Consider a category C.

1. If A is minimal and n :B � A is a subobject then it is an isomorphism.

2. If Z is simple and e :Z � Y is a quotient then it is an isomorphism.

There is a well known result about initial algebras and final coalgebras, known as Lambek’s
lemma. It states that the structure of an initial algebra is an isomorphism and dually, so is the
structure of a final coalgebra.

Proposition 3.5.4 (Lambek’s lemma).

1. If (A,α) is an initial algebra then α is an isomorphism.

2. If (Z, ζ) is a final coalgebra then ζ is an isomorphism.

Proof. We prove the second item. Observe that ζ : (Z, ζ)→ (FZ,Fζ) is a coalgebra morphism.
By finality of (Z, ζ) there is a unique coalgebra morphism !(FZ,Fζ). For readability we denote its
underlying morphism by !FZ . Again by finality there is a unique coalgebra morphism id(Z,ζ) =
!(Z,ζ) whose underlying morphism is idZ . Thus !FZ ◦ ζ = idZ and !FZ is a retraction of ζ but
also F !FZ ◦Fζ = idFZ . Since !(FZ,Fζ) is a coalgebra morphism we have ζ ◦ !FZ = F !FZ ◦Fζ
which is idFZ so !FZ is also a section of ζ and ζ is an isomorphism.

Z FZ Z

FZ FFZ FZ

Fζ

��

ζ
//

Fζ // F !FZ //

!FZ

//

ζ

��
ζ

��

idZ

&&

idFZ

77

Inspired by Lambek’s lemma we investigate the structure of minimal algebras and simple coal-
gebras. Unlike initial algebras and final coalgebras these structures are not in general isomor-
phisms. However a similar weaker but similar result does hold.

Proposition 3.5.5. Consider a category CF of algebras and a category CG of coalgebras.

1. If (A,α) is a minimal algebra then imα is an isomorphism.

2. If (Z, ζ) is a simple coalgebra then ımζ is an isomorphism.

Proof. Consider the second item. Let h :Z → Y be such that ζ = h ◦ ımζ and define υ : Y → FY
by υ ..= h ◦ ımζ. Then ımζ : (Z, ζ)→ (Y, υ) is a quotient dialgebra. If (Z, ζ) is simple then ımζ
is an isomorphism by proposition 3.5.3.

34

In Set and in other category where the morphismm of a factorisation ζ = m ◦ ımζ is a monomor-
phism, this implies that the structure of a simple coalgebra is a monomorphism. Likewise, if
(A,α) is a minimal algebra and α = imα ◦ e with e an epimorphism then α is an epimorphism.
Consequently, in Set the structure of a minimal algebra is surjective and the structure of a
simple coalgebra is injective.

Neither Lambek’s lemma nor the weaker result on minimal algebras and simple coalgebras ex-
tend to dialgebra structures. This is illustrated by the following counterexamples.

For a simple dialgebra consider (N, ζ) where FX ..= X + X, GX ..= X + 1 and ζ :FN → GN
is defined by ιi(0) 7→ ι2(∗) and ιi(n + 1) 7→ n for both i = 1 and i = 2. Then (N, ζ) is simple
but ζ is not injective: ζ(ι1(n)) = ζ(ι2(n)) for all n ∈ N.

For a minimal dialgebra consider (N, ξ) where ξ :FN → GN with FX ..= 1 + X and GX ..=
X+1. Define ξ by ι1(∗) 7→ ι1(0) and ι2(n) 7→ ι1(n+1). Then (N, ξ) is minimal. It is almost an
algebra but its structure has an extended codomain. Then imξ is isomorphic to the injection
ι1 :N � N + 1 which is not an isomorphism.

However, the counterexamples do not defeat the purpose of minimal and simple dialgebras. In
fact they have many properties that are intuitively similar to their algebraic and coalgebraic
counterparts. These properties are just not as easily expressed in terms of their structure. For
example, the intuition that in a minimal dialgebra all states can be constructed is correct, even
though it is a bit more complicated to express what it means for a state of a dialgebra to be
constructed. Shortly, in a SetF algebra (A,α) an element a ∈ A is constructed from c ∈ FA if
α(c) = a whereas an element x ∈ X of a SetFG dialgebra (X,χ) is constructed from c ∈ FX if
x is ‘occurs’ in χ(c). For instance, if GX ..= X ×X then x occurs in (y, z) if y = x or z = x.

The intuition that elements of X can occur in elements of GX will be made precise in the next
chapter where we investigate minimal and simple dialgebras more thoroughly. We conclude this
section by stating as additional results about factorisations and minimal and simple objects.

Proposition 3.5.6. Consider a category C and an object X of C.

1. The image im¡X of the initial morphism ¡X : ∅ → X is the least subobject of X.

2. The coimage ım!X of the final morphism !X :X → 1 is the greatest quotient of X.

Proof. We prove the first item. Consider any subobject m :B � X of X : C. We have to show
that there is a unique morphism of subobjects k : im¡X → m. By initiality of ∅ there is a unique
morphism ¡B : ∅ → B. Initial morphisms are unique by definition therefore m ◦ ¡B = ¡X . By
the definition of image there is a unique morphism k :A → B which is the unique morphism
k : im¡X → m. The second item is dual. We obtain for every quotient e :X � Q a unique
morphism of quotients u : e→ ım!X .

∅ X

A

B

¡X //

;;

;;

im ¡X

99

m

NN

¡B

'' ��
k

Q

S

X 1
!X

//##

ım !X
:: ::

e

77 77

!Q

��

��
u

35

3.6 Bisimulations

In the literature on universal algebra and coalgebra, congruence relations and bisimulation
relations play a central role. However confusingly, there are quite a few related, yet different
definitions to be found [21].
Most commonly a bisimulation between two coalgebras (X,χ) and (Y, υ) is defined to be a
subobject m :R� X × Y such that R has a coalgebra structure making (π1 ◦m) :R→ X and
(π2 ◦m) :R → Y coalgebra morphisms. On the other hand, bisimilarity between (X,χ) and
(Y, υ) is more commonly defined as the existence of a pair of coalgebra morphisms g : (X,χ)→
(Z, ζ) and h : (Y, υ)→ (Z, ζ) to a common coalgebra (Z, ζ), in which case a bisimulation relation
may be defined as the pullback of the two morphisms g :X → Z and h : Y → Z in the base
category.
In extension, we notice that bisimulations are often used with one out of two particular goals.
A bisimulation relation R � X × X might be used to define a subcoalgebra of a particular
coalgebra (X,χ). More generally, a bisimulation relation R � X × Y may be used to define
a subcoalgebra of (X,χ) and a subcoalgebra of (Y, υ) whose structures are in agreement. On
the other hand, a bisimulation equivalence may be used to specify a quotient coalgebra rather
than a subcoalgebra. We attempt to distinguish those uses and specify bisimulations as a
generalisation of subobjects so that they have a dual notion which generalises quotients. In
doing so we depend on a generalisation of monomorphisms and epimorphisms.

Definition 3.6.1 (Jointly monic and jointly epic morphisms).

1. A pair of morphisms m1 : Y → Z1 and m2 : Y → Z2 is jointly monic if for any pair of
morphisms g :X → Y and h :X → Y , if m1 ◦ g = m1 ◦h and m2 ◦ g = m2 ◦h then g = h.

Y

X Z1 Z2 =⇒ X Y

Y

g >> m2

��
m1

h m1

>>

m2

??
g //
h
//

2. A pair of morphisms e1 :X1 → Y and e2 :X2 → Y , is jointly epic if for any pair g : Y → Z
and h : Y → Z, if g ◦ e1 = h ◦ e1 and g ◦ e2 = h ◦ e2 then g = h.

Y

X1 X2 Z =⇒ Y Z

Y

e2
==e1 //

g

��

e2 !!
e1 // h

??
g //
h
//

♦

In a category that has products, a jointly monic pair m :Z → X and n :Z → Y gives rise to
the monomorphism (m,n) :Z � X×Y and dually, a jointly epic pair e :X → Z and f : Y → Z
gives rise to the epimorphism [e, f] :X+Y � Z if C has coproducts. More generally, projections
are jointly monic and injections are jointly epic, which we state for pullbacks and pushouts.

Proposition 3.6.2.

1. Let P be the pullback of f :X → Z and g : Y → Z. The projections πX :P → X and
πY :P → Y such that f ◦πX = g ◦πY are jointly monic.

2. Let P be the pushout of f :Z → X and g :Z → Y . The injections ιX :X → P and
ιY : Y → P such that ιX ◦ f = ιY ◦ g are jointly epic.

36

Proof. We prove the first item. Consider an arbitrary pair of morphisms h :Q → P and
k :Q → P . We have to show that if πX ◦h = πX ◦ k and πY ◦h = πY ◦ k then h = k. Since P
is a pullback of f and g we have f ◦πX = g ◦πY and by the definition of pullback h = k is the
unique morphism such that f ◦πX ◦h = g ◦πY ◦h and f ◦πX ◦ k = g ◦πY ◦ k.

Q

P Y

X Z

πY //

πX

��
g

��

f
//

h=k
��

πX ◦h=πX ◦ k

!!

πY ◦h=πY ◦ k
��

If C is a category such that SubC and QuotC are defined to be MonoC and EpiC we may
as well call a jointly monic pair of morphisms a joint subobject and call a jointly epic pair of
morphisms a joint quotient. If SubC and QuotC do not coincide with MonoC and EpiC then
joint subobjects and joint quotients have to be defined more carefully.

Definition 3.6.3 (Category of joint subobjects).

1. A joint subobject (A,mX ,mY) of X : C and Y : C is a jointly monic pair of morphisms
mX :A→ X and mY :A→ Y of a suitable subclass of jointly monic morphisms of C.

2. A joint subobject morphism k : (A,mX ,mY) → (B,nX , nY) is a morphism k :A → B of
SubC such that nX ◦ k = mX and nY ◦ k = mY .

A

X Y

B

mX

yy

nX

ee

mY

%%

nY

99k

��
♦

Definition 3.6.4 (Category of joint quotients).

1. A joint quotient (eX , eY , Z) of objects X : C and Y : C is a jointly epic pair of morphisms
eX :X → Z and eY : Y → Z of a suitable subclass of jointly epic morphisms of C.

2. A joint quotient morphism k : (eX , eY , Z) → (qX , qY , B) is a morphism k :Z → B of
QuotC such that k ◦ eX = qX and k ◦ eY = qY .

Z

X Y

B

eX
99

qX %%

eY
ee

qYyy

k

��
♦

Recall that a subobject m :A � X of an object X : C is a morphism in a suitably chosen
subcategory of MonoC. This subcategory is typically defined by specifying a property that
the monomorphisms must satisfy. Defining joint subobjects involves carefully generalising this
property. However, doing so requires getting into the details of subobjects and quotients of
particular categories. We do not let ourselves be distracted by these issues and will assume
that for base categories of dialgebras joint subobjects and joint quotients coincide with joint
monomorphisms and joint epimorphisms.

37

Of special interest to us are joint subdialgebras and joint quotient dialgebras. Tracing our steps
in the previous section we generalise the categories of subdialgebras and quotient dialgebras as
follows.

Definition 3.6.5 (Category of joint subdialgebras).

1. A joint subdialgebra of two dialgebras (X,χ) and (Y, υ) is a joint subobject (A, πX , πY)
of X and Y in C such that A has a dialgebra structure α that makes πX : (A,α)→ (X,χ)
and πY : (A,α)→ (Y, υ) dialgebra morphisms.

FX

χ

��

FA
FπXoo FπY //

α

��

FY

υ

��
GX GA

GπX

oo
GπY

// GY

2. A joint subdialgebra morphism k : ((A,α),mX ,mY) → ((B, β), nX , nY) is a dialgebra
morphism k : (A,α)→ (B, β) that makes the following diagram in CFG commute.

(A,α)

(X,χ) (Y, υ)

(B, β)

mX

ww

nX

gg

mY

''

nY

77k

��
♦

With this we have redefined bisimulations: A joint subdialgebra is exactly a bisimulation as
defined in [9, 20, 23]. In addition, the existence of a joint quotient dialgebra defined dually,
is remarkably close to the definition of bisimilarity as the existence of two morphisms to a
common codomain.

Definition 3.6.6 (Category of joint quotient dialgebras).

1. A joint quotient dialgebra of (X,χ) and (Y, υ) is a joint quotient (ιX , ιY , Z) of X and
Y in C such that Z has a dialgebra structure ζ that makes ιX : (X,χ) → (Z, ζ) and
ιY : (Y, υ)→ (X,χ) dialgebra morphisms.

FX

χ

��

FZ//
FιX oo FιY

ζ

��

FY

υ

��
GX GZ//

GιX

oo
GιY

GY

2. A joint quotient dialgebra morphism k : (eX , eY , (Z, ζ)) → (qX , qY , (B, β)) is a dialgebra
morphism k : (A,α)→ (B, β) that makes the following diagram in CFG commute.

(Z, ζ)

(X,χ) (Y, υ)

(B, β)

eX 77

qX ''

eYgg

qYww

k

��
♦

38

Note that joint subdialgebras are indeed jointly monic pairs of dialgebra morphisms and joint
quotient dialgebras are jointly epic pairs of dialgebra morphisms. This follows from the under-
lying pairs of morphisms being jointly monic and jointly epic, respectively.

In universal coalgebra there are quite a few theorems that relate subcoalgebras, quotient coal-
gebras and bisimulations. We shortly discuss some of them for dialgebras.

• Let (A,α) be a dialgebra and let id : (A,α) → (A,α) denote the identity morphism on
(A,α). Then ((A,α), id, id) is a joint subdialgebra, i.e. a bisimulation. If the base
category is Set then A is isomorphic to the diagonal relation ∆A

..= {(x, x) | x ∈ A}
via k : x 7→ (x, x) which has an inverse π1 = π2 given by the projections out of ∆A.
The isomorphism extends to a dialgebra isomorphism that makes ((∆A, α

2), π1, π2) a
bisimulation and k : ((A,α), id, id) ∼−→ ((∆A, α

2), π1, π2) a bisimulation isomorphism.

• Dually, if (Z, ζ) is a dialgebra then (id, id, (Z, ζ)) is a joint quotient dialgebra.

• If m : (A,α)→ (X,χ) is a subdialgebra then ((A,α),m,m) is a bisimulation. If the base
category is Set then this bisimulation is isomorphic to ((∆A, α

2),m ◦π1,m ◦π2).

• If e : (X,χ)→ (Z, ζ) is a quotient dialgebra then (e, e, (Z, ζ)) is a joint quotient dialgebra.

• Let f : (X,χ) → (Y, υ) be a dialgebra morphism in CFG . Because id : (X,χ) → (X,χ) is
both monic and epic ((X,χ), id, f) is a bisimulation and (f, id, (Y, υ)) is a joint quo-
tient dialgebra. If C is Set then there is an injection k :X � Gf into the graph
Gf

..= {(x, f(x)) | x ∈ X} of f via x 7→ (x, f(x)). The morphism k extends to a dialgebra
morphism k : (X,χ)→ (Gf , χ× υ) and to a morphism of bisimulations k : ((X,χ), id, f)→
((Gf , χ× υ), π1, π2). In addition, it has a retract π1 : Gf → X which extends to a dialge-
bra morphism and to a morphism of bisimulations π1 : ((Gf , χ× υ), π1, π2)→ ((X,χ), id, f).

(X,χ)

(X,χ) (Y, υ)

(Gf , χ× υ)

id

vv

π1

hh

f

((

π2

77k

��

(Gf , χ× υ)

(X,χ) (Y, υ)

(X,χ)
id

hh

π1

vv

f

66

π2

''
π1

��

• Let f : (X,χ) → (Z, ζ) and g : (Y, υ) → (Z, ζ) be dialgebra morphisms and let R be
the pullback of f :X → Z and g : Y → Z. By proposition 3.6.2 πX :R → X and
πY :R→ Y are jointly monic. If in addition G preserves pullbacks then by theorem 3.2.1
R has a unique dialgebra structure ρ such that πX and πY dialgebra morphisms and
((R, ρ), πX , πY) a bisimulation.
Note that in Set the kernel Kf = {(x, y) | f(x) = f(y)} of a function f :X → Z is the
pullback of f along itself, thus if G preserves pullbacks then Kf is (the carrier of) a
bisimulation.

Much of the theory of bisimulations and joint quotient dialgebras can be stated by generalis-
ing the theory of subdialgebras and quotient dialgebras. Indeed without too much effort the
propositions of the previous sections on subdialgebras and quotient dialgebras can be adapted
to obtain similar results about bisimulations and joint quotients. We refer to [20] for results
about coalgebra bisimulations and to [23] in which they are stated for dialgebras.

39

Chapter 4

Minimisation and Simplification

In this chapter we introduce two new concepts that generalise images and coimages of mor-
phisms. We employ these concepts in a minimisation procedure and a simplification procedure
for dialgebras. The chapter is concluded with a short investigation of the interplay between
minimisation and simplification.

4.1 Bases and cobases

The base of a morphism is a generalisation of the image of a morphism, where the image of a
morphism its Id–base. Intuitively, the G–base of a morphism f :A→ GX is a subobject of X
that is in some sense compatible with the subobject imf of GX.

Definition 4.1.1 (Base). Let G : C → C be a functor and let X be an object of C. The G–base
of a morphism f :A → GX is the least subobject m :B � X such that f factorises through
Gm. Specifically, if f = Gm ◦ g then for any subobject m′ :B′ � X with a factorisation
f = Gm′ ◦ g′ there is a unique morphism k :B → B′ such that m = m′ ◦ k and Gk ◦ g′ = g. We
use the notation imG f to denote the G–base m :B � X of a morphism f :A→ GX.

A GX

GB

GB′

f //

g ## Gm

::

Gk

��
g′

&&

Gm′

MM

♦

In Set the G–base of a function f :A → GX is the set of elements of X that are ‘contained’
in elements of dom imf . This is best understood by considering the base of inclusions. For
example, if GX ..= X ×X and m : 1 ↪→ GX is the inclusion of the singleton set {(x, y)} into
GX then the G–base of m is the set B = {x, y}. This generalises to subsets of GX, for example
if A ..= {(x, y), (x, z), (z, x)} then the base of the inclusion m :A ↪→ GX is the set {x, y, z}.
More generally, for morphisms f :A→ GX of Set the G–base is obtained exactly as one would
expect, by extracting and collecting all elements of X from elements of f [A]. For common
instantiations of G the base (imG f) :B ↪→ X of f is as follows.

41

GX ..= C B = ∅
GX ..= X B = f [A]

GX ..= X + C B = {x | ι1(x) ∈ f [A] }
GX ..= X +X B = {x | ι1(x) ∈ f [A] or ι2(x) ∈ f [A] }
GX ..= X × C B = (π1 ◦ f)[A]

GX ..= X ×X B = (π1 ◦ f)[A] ∪ (π2 ◦ f)[A]

GX ..= PX B =
⋃
f [A]

Dual to the base of a morphism, the F–cobase generalises the concept of a coimage. Specifically,
the coimage of a morphism is the Id–cobase of that morphism. Intuitively, the F–cobase of
a morphism f :FX → X is a partitioning of X that is in some sense compatible with the
partitioning ımf of FX.

Definition 4.1.2 (Cobase). Let F : C → C be a functor and let X be an object of C. The
F–cobase of a morphism f :FX → Z is the greatest quotient e :X � Y such that f factorises
through Fe. Specifically, if f = g ◦Fe then for any quotient e′ :X � Y ′ with a factorisation
f = g′ ◦Fe′ there is a unique morphism k : Y ′ → Y such that g′ ◦Fk = g and e = k ◦ e′. We
use the notation ımF f to denote the F–cobase e :X � Y of a morphism f :FX → Z.

FY ′

FY

FX Z
f

//

g

##

Fe

::

Fk

�� g′

��

Fe′

77

♦

The G–base of a morphism can be used to extract contents of containers, a concept that is easy
to grasp. The dual concept of a cobase may require a bit of additional attention. To get an intu-
ition it is easiest to consider Set where an epimorphism f :FX � Z is essentially a partitioning
of FX. Indeed, Z is isomorphic to the set of equivalence classes (FX)/f ..= {[a]f | a ∈ FX}
where [a]f ..= {b ∈ FX | f(a) = f(b)}. Now let e :X � Y denote the cobase ımF f . Then e is
essentially a partitioning of X and Fe a partitioning of FX. The requirement that f factorises
through Fe enforces that (FX)/Fe is compatible with (FX)/f . The existence of a unique
morphism enforces that X/e is the coarsest partitioning on X such that this is the case.

Let us go through an example. Consider a morphism f :FX � Z of Set where X ..= {s, r, t}
and FX ..= X2. We let Z = 2 be a two element set and we let f take (t,) 7→ 0, (, t) 7→ 0
and (,) 7→ 1 otherwise. Then Z is isomorphic to (FX)/f .

(FX)/f = { {(s, s), (r, r), (s, r), (r, s)}, {(t, s), (t, r), (s, t), (r, t), (t, t)} }

The F–cobase of f is a quotient e :X � Y for some Y which is essentially a partitioning of
X. Since X is a three element set there are essentially three candidates for Y , that is, Y ∼= 1,
Y ∼= 2 or Y ∼= X. By definition e is the greatest quotient of X such that f factorises through
Fe :FX → FY , This excludes the possibility that Y ∼= 1, for F1 ∼= 1 and f :FX � Z certainly

42

does not factorise through 1. So let us try Y ∼= 2. There are three ways to partition X into two
parts, corresponding to three essential candidates for e :X � 2. Defined in terms of equivalence
classes we have the following candidates.

X/e1 = {{s, r}, {t}} X/e2 = {{s, t}, {r}} X/e3 = {{t, r}, {s}}

For ease of writing let us assume that the codomain of each ei is in fact X/ei . Now, if some ei
is the F–cobase of f then there is a morphism g such that Fei ◦ g = f . A quick examination
reveals that e2 and e3 are out, for Fe2(s, s) = Fe2(t, t) and Fe3(r, r) = Fe3(t, t) whereas
f(s, s) 6= f(t, t) and f(r, r) 6= f(t, t). However Fe1 is compatible with f via a morphism
g :F (X/e)→ Z as follows.

({t}, {t}) 7→ 0 ({t}, {s, r}) 7→ 1 ({s, r}, {t}) 7→ 1 ({s, r}, {s, r}) 7→ 1

Let us investigate this a bit further. Intuitively the morphism e1 defines a partitioning of X such
that Fe1 is compatible with f whereas e2 and e3 do not. Specifically, each of the candidates
ei defines a partitioning of FX via Fei. We can find the appropriate candidate by comparing
(FX)/Fei to (FX)/f for each ei. Working out the details gives us the following.

(FX)/Fe1 = { {(s, s), (r, r), (s, r), (r, s)}, {(t, s), (t, r)}, {(s, t), (r, t)}, {(t, t)} }
(FX)/Fe2 = { {(s, s), (t, t), (s, t), (t, s)}, {(r, s), (r, t)}, {(s, r), (t, r)}, {(r, r)} }
(FX)/Fe3 = { {(t, t), (r, r), (t, r), (r, t)}, {(s, r), (s, t)}, {(r, s), (t, s)}, {(s, s)} }

As one can check, (FX)/f can be partitioned further into (FX)/Fe1 but it cannot be partitioned
into either of (FX)/Fe2 or (FX)/Fe2 . Thus, Fe1 is compatible with f , whereas Fe2 and Fe3
are not.

4.2 Closure and density

In chapter 3 we have made a remark that dialgebras are not closed under their structure.
Shortly, if (X, δ) is a SetFG dialgebra with FX ..= 1 +X and GX ..= X + 1 then δ(ι2(x)) is not
an element of X. Indeed, it is an element of GX. However, we have not been entirely accurate.
In some sense, dialgebras are closed under their structure. Shortly, if δ takes ι2(x) 7→ ι1(y)
then δ is defined on ι2(y) of FX.

Recall that a subset A ⊆ X is closed under a function σ :FX → X if σ[FA] ⊆ A. Let us put
this in proper category theoretic terms. A subobject m :A� X is closed under σ :FX → X if
im(σ ◦Fm) factorises through m :A� X, i.e. there is a morphism u such that im(σ ◦Fm) =
m ◦u. Note that any such u is necessarily unique because m and im(σ ◦Fm) are monomor-
phisms. Moreover, it implies that m :A � X extends to a subdialgebra m : (A,α) � (X,σ)
where α ..= u ◦ e with e such that im(σ ◦Fm) ◦ e = σ ◦Fm as per the definition of the image.
With the generalisation of the image of a morphism to the base of a morphism we can define
closure under a dialgebraic structure. In addition, density under a dialgebra structure turns
arises as the dual of dialgebraic closure.

Definition 4.2.1 (Closure and density).

1. A subobject m :A� X is closed under δ :FX → GX if imG (δ ◦Fm) factors through m.

2. A quotient w :X � Z is dense under δ :FX → GX if ımF (Gw ◦ δ) factors through w. ♦

43

Now that we have a generalised concept of closure we can generalise the story above to dial-
gebras. As one would hope, we find that if a subobject is closed under a dialgebraic structure
then it is a subdialgebra and again, if a quotient is dense under a dialgebra structure then it is
a quotient dialgebra.

Proposition 4.2.2.

1. If a subobject m :A� X is closed under σ :FX → GX then m is a subdialgebra.

2. If a quotient w :X � Z is dense under σ :FX → GX then w is a quotient dialgebra.

Proof. We prove the first item. Define m1 :B → X by m1
..= imG (δ ◦Fm). By definition of

base there is a morphism α :FA → FB such that Gm1 ◦α = δ ◦Fm. By definition of closure
there is a morphism u :B → A such that m ◦u = m1. Note that u is unique because m and m1

are monic. Now m : (A, Gu ◦α) � (F, δ) is a subdialgebra.

FA FX

GB GX

GA

Fm //

δ

��

α

�� Gm1 //

Guzz

Gu ◦α

��

Gm

<<

In section 3.5 we have included proposition 3.5.5, which in a way is a restricted version of
Lambek’s lemma for minimal algebras and simple coalgebras. Moreover we have implied that
this proposition is not applicable to dialgebras. But with the generalised notion of images
and coimages at hand we can conclude this section with a generalised version of this very
proposition.

Proposition 4.2.3.

1. If (X, δ) is a dialgebra then imG δ is a subdialgebra of (X, δ).

If (X, δ) is minimal then imG δ is an isomorphism.

2. If (X, δ) is a dialgebra then ımF δ is a quotient dialgebra of (X, δ).

If (X, δ) is simple then ımF δ is an isomorphism.

Proof. We prove all at once. Let g be such that G(imG δ) ◦ g = δ and let h be such that
δ = h ◦F (ımF δ). Thus imG δ is a subobject of X and ımF δ is a quotient of X.

FA FX FZ

GA GX GZ

δ

��

ζ

��

α

��
g

}}
h

}}

F (imG δ) // F (ımF δ) //

G(imG δ)
//

G(ımF δ)
//

Define α ..= g ◦F (imG δ) and ζ ..= G(ımF δ) ◦h Then (imG δ) : (A,α) � (X, δ) is a subdialgebra
and (ımF δ) : (X, δ) � (Z, ζ) is a quotient dialgebra. If imG δ is not an isomorphism then it is
a proper subdialgebra so that (X, δ) is not minimal. Likewise, if ımF δ is not an isomorphism
then it is a proper quotient dialgebra and (X, δ) is not simple.

44

4.3 Minimisation and simplification

In this section we develop a minimisation and simplification procedures dialgebras. The proce-
dures generalise existing techniques for minimising algebras and simplifying coalgebras. With
a small adjustment the minimisation procedure can be used not just to minimise dialgebras
but also to generate least subdialgebras encompassing a specified subobject of the carrier. This
technique applies to coalgebras as well, where it can be used for generating subcoalgebras that
are ‘rooted’ at a particular state or set of states. Dually, the simplification procedure may
be used to generate the greatest quotient of a dialgebra that is compatible with a predefined
partitioning on the carrier.

We focus on minimisation first. The simplification procedure that we develop is perfectly
dual, however minimisation may be much easier intuitively. Let us consider a CFG dialgebra.
Our aim is to construct the least subdialgebra of (X, δ); recall that this is the initial object
m : (A,α) � (X, δ) of (Sub(CFG)/(X, δ)). Now before we proceed let us think about the solution
space for a moment. If (A,α) is to be a subdialgebra of (X, δ) then m :A � X is a subobject
of X thus the category (SubC/X) encompasses the solution space.

Our procedure iteratively improves an approximation to the carrier A of the minimal dialgebra,
starting from m0 = ¡X : ∅� X until we reach a fixed point. If we restrict attention to inclusions
in Set then this corresponds to a chain of approximants ∅ = A0 ⊆ A1 ⊆ A2 . . ., for which X
is an upper bound. For a CFG dialgebra in general, we generate a sequence of subobjects
¡X = m0 → m1 → m2 → . . . that is connected by a sequence of morphisms (ki :mi → mi+1)i
of (SubC/X). The upper bound for this sequence is the object ididX

of (SubC/X).

Definition 4.3.1 (Minimisation sequence). The minimisation sequence of a CFG dialgebra (X, δ)
is the sequence (mi :Ai � X)i of objects of (SubC/X) defined as follows.

m0
..= ¡X : ∅� X

mi+1
..= imG(δ ◦Fmi)

♦

The simplification sequence is perfectly dual to the minimisation sequence. Thus the simplifi-
cation procedure improves an approximation to the carrier Z of the simple dialgebra, starting
from w0 = !X :X � 1 until a fixed point is reached. If we restrict attention to Set then the
morphism w0 creates the coarsest possible partitioning of X. At each step this partitioning
is refined according to the dialgebra structure δ. We start with Gw0 ◦ δ, which induces a par-
titioning on FX. The cobase of Gw0 ◦ δ corresponds to the coarsest possible partitioning on
X that is compatible with this partitioning of FX. Thus, for a CFG dialgebra in general, we
generate a weakly decreasing sequence of quotients !X = w0 → w1 → w2 → . . . of X with as
lower bound the object ididX

of (X/QuotC).

Definition 4.3.2 (Simplification sequence). The simplification sequence of a CFG dialgebra
(X, δ) is the sequence (wi :X � Zi)i of objects of (X/QuotC) defined as follows.

w0
..= !X :X � 1

wi+1
..= ımF (Gwi ◦ δ) ♦

The following lemma establishes that the sequences just defined are connected by sequences
of morphisms of (SubC/X) and of (X/QuotC) respectively. Thus, the minimisation sequence
of a dialgebra (X, δ) is a weakly increasing sequence of subobjects with upper bound X and
its simplification sequence is a weakly decreasing sequence of quotients with lower bound X.

45

Consequently, fixed points exist and we will soon show that the fixed points are minimal and
simple dialgebras respectively.

Lemma 4.3.3. Let (X, δ) be a CFG dialgebra and let (mi :Ai � X)i and (wi :X � Zi)i as in
definition 4.3.1.

1. Then (mi :Ai � X)i is connected by a sequence of morphisms (ki :mi → mi+1)i of
(SubC/X). In addition there is a sequence of morphisms (αi :FAi → GAi+1)i such that
Gki+1 ◦αi = αi+1 ◦Fki in C.

2. Likewise (wi :X � Zi)i is connected by a sequence (ki :wi+1 → wi)i of morphisms of
(X/QuotC). In addition there is a sequence of morphisms (ζi :FZi+1 → GZi)i such that
ζi ◦Fki+1 = Gki ◦ ζi+1 in C.

Proof. We prove the first item. Define (αi :FAi → GAi+1)i by letting αi :FAi → GAi+1 be a
morphism such that Gmi+1 ◦αi = δ ◦Fmi. Its existence is implied by the definition of the base.
We proceed by induction, simultaneously showing that there is a unique connecting morphism
kj :Aj → Aj+1 such that mj = mj+1 ◦ kj and Gkj+1 ◦αj = αj+1 ◦Fkj in C for all ordinals j.

• For j = 0 recall that A0 = ∅. We have m0 = ¡X by definition and k0 = ¡A1 and
m1 ◦ k0 = m0 = ¡X by uniqueness initial morphisms.

• For j = i + 1 the induction hypothesis is mj ◦ ki = mi. By definition of αi and αj we
have Gmj ◦αi = δ ◦Fmi and Gmj+1 ◦αj = δ ◦Fmj . We have to show that there is a
unique morphism kj :Aj → Aj+1 such that the following diagram commutes.

FAi FAj FX

GAj GAj+1 GX

Fki

//

Gkj //

αj

��

αi

��

δ

��

Fmj

##

Fmi

##

Gmj+1

;;

Gmj

;;

Now mj = imG (δ ◦Fmi) which is imG (δ ◦Fmj ◦Fki) by the induction hypothesis. By
proposition 3.4.4 the image of a morphism g ◦ f is a subobject of a morphism g. This gen-
eralises to the base of morphisms, thus imG (δ ◦Fmj ◦Fki) is a subobject of imG (δ ◦Fmj)
via a unique morphism ki :Ai → Aj such that mj ◦ ki = mi.

Theorem 4.3.4 (Minimisation and simplification). Consider a CFG dialgebra (X, δ).

1. Let (mi :Ai � X)i be as in definition 4.3.1 and let (ki :mi → mi+1)i be as in lemma 4.3.3.
The least subdialgebra of (X, δ) is the morphismmj+1 where j is such that kj :mj → mj+1

is an isomorphism.

2. Let (wi :X � Zi)i be as in definition 4.3.2 and let (ki :wi+1 → wi)i be as in lemma 4.3.3.
The greatest quotient of (X, δ) is the morphism wj where j is such that kj :wj+1 → wj
is an isomorphism.

46

Proof. We prove the first item. Let us write m for mj+1 and A for Aj+1. We have to show that
there is a dialgebra structure α :FA → GA such that m : (A,α) � (X, δ) is a subdialgebra.
Since kj :mj → m is an isomorphism it has has an inverse k−1

j with an underlying morphism

k−1
j :A→ Aj . Thus let (αi :FAi → GAi+1)i be as in lemma 4.3.3 and define α :FA→ GA by

α ..= αj ◦ k−1
j . Then m : (A,α) � (X, δ) is a subdialgebra.

It remains to show that m : (A,α) � (X, δ) is the least subdialgebra. So consider any other
subdialgebra s : (Y, υ) � (X, δ). We have to show that there is a unique morphism h : (Y, υ)→
(A,α). To this end we consider the minimisation sequence (ni :Bi � Y)i of (Y, υ) and we show
by induction that there exists a sequence of morphisms (hi :Ai � Bi)i, simultaneously showing
that s ◦nj ◦hj = mj for all ordinals j to load the induction.

• For j = 0 we have A0 = ∅ = B0 thus h0 :A0 → B0 is the initial identity morphism ¡∅.
Moreover, m0 = ¡X thus s ◦n0 ◦h0 = m0 by uniqueness of initial morphisms.

• For j = i+ 1 consider mj
..= imG(δ ◦Fmi) and nj ..= imG(υ ◦Fni). Let βi be such that

Gnj ◦βi = υ ◦Fni as by the definition of the base. By induction hypothesis there is a
morphism hi :Ai � Bi such that s ◦ni ◦hi = mi thus we have Fs ◦Fni ◦Fhi = Fmi and
then because s is a subdialgebra we have δ ◦Fs ◦Fni ◦Fhi = Gs ◦ υ ◦Fni ◦Fhi so that
we have Gs ◦Gnj ◦βi ◦Fhi = δ ◦Fmi. Now, mj = imG(δ ◦Fmi) and therefore there is
a unique morphism hj :Aj → Bj such that s ◦nj ◦hj = mj .

F∅ FA1 FA2 FA3 FA4 FX

GA1 GA2 GA3 GA4 GA5 GX

. . .
Fk3

//
Fk2

//
Fk1

//
Fk0

//

. . .Gk4 //Gk3 //Gk2 //Gk1 //

α3

��

α2

��

α1

��

α0

��

δ

��

Fm3

%%

Fm2

$$

Fm1

$$

Fm0

##

Gm4

::

Gm3

;;

Gm2

;;

Gm1

;;

47

FX FZ5 FZ4 FZ3 FZ2 FZ1

GX GZ4 GZ3 GZ2 GZ1 G1
. . . Gk3 // Gk2 // Gk1 // Gk0 //

. . .
Fk4

//
Fk3

//
Fk2

//
Fk1

//

ζ3

��

ζ2

��

ζ1

��

ζ0

��

δ

��

Gw3

::

Gw2

::

Gw1

;;

Gw0

;;

Fw4

%%

Fw3

$$

Fw2

##

Fw1

##

48

4.4 Quotients of subdialgebras

In the previous section we have introduced procedures for generating least subdialgebras and
greatest quotients. We have stressed the importance of greatest quotients of operational seman-
tics several times. They are the intended denotational semantics. The main use of subdialgebras
is to limit the size of the operational semantics or of quotients thereof. Often it is possible to
generate for a term an appropriate finite subdialgebra of the operational semantics. If this is the
case then then their greatest quotients can be computed by using the simplification sequence.
If the subdialgebras were chosen appropriately then equality of the quotients coincides with
behavioural equivalence of terms. In many cases, especially in automata theory, generating
the least subdialgebras that contains the respective terms suffices. However, for dialgebras in
general this may not yield correct results, which is what we investigate in this section.

Proposition 4.4.1. Consider a SetFG dialgebra (X,χ).

1. If F preserves pushouts and (A,α) is a subdialgebra of (X,χ) then any quotient of (A,α)
is a subdialgebra of a quotient of (X,χ).

2. If G preserves pullbacks and (Z, ζ) is a quotient of (X,χ) then any subdialgebra of (Z, ζ)
is a quotient of a subdialgebra of (X,χ).

Proof. We prove the first item. Let m : (A,α) � (X,χ) and let q : (A,α) � (Y, υ). If F
preserves pushouts then by theorem 3.2.1 SetFG has them. Thus let (ιX , ιY , (Z, ζ)) be the
pushout of m and q. Then ιX : (X,χ) → (Z, ζ) is epic because q is epic. In Set and more
generally in any topos the pushout of a mono along a morphism is again a mono, c.f. lemma 18
of [10]. Thus ιY : (Y, υ)→ (Z, ζ) is monic because m is monic.

Intuitively, if the interaction functor of a dialgebra preserves pushouts then there cannot be
interdependence between states. The pushout of two initial morphisms ¡A : ∅ → A and ¡B : ∅ → B
is the coproduct A + B and for coproduct preserving functors it is especially clear that they
prevent interdependence. For, if F is such that F (A + B) ∼= FA + FB then experiments
on A are necessarily disjoint from experiments on B. More generally, the use of a pushout
preserving functor effectively enforces that the behaviour of a state is determined only by the
state itself and the states that are reachable from it. Indeed, it enforces that any subdialgebra
that contains a particular state is sufficiently large to determine the behaviour of that state
state in the encompassing dialgebra.

Proposition 4.4.2. Consider a CFG dialgebra (X,χ) and let (A,α) be a subdialgebra of (X,χ).
In general a quotient of (A,α) need not be a subobject of a quotient of (X,χ).

Proof. As a counterexample we consider a SetFG dialgebra (X, ξ) where FX ..= 1 + 1 +X ×X
and GX ..= X +X +C ×X + 1 with C ..= {1, 2}. We let X ..= {r, s, t} and define ξ as follows.

ι1(∗) 7→ ι1(r)

ι2(∗) 7→ ι2(t)

ι3(r, s) 7→ ι3(1, r)

ι3(s, r) 7→ ι3(2, s)

ι3(,) 7→ ι4(∗)

Now (X,χ) is a simple dialgebra. The domain of its least subdialgebra is the dialgebra (A,α)
with A = {r, t} where α takes ι1(∗) 7→ ι1(r), ι2(∗) 7→ ι2(t) and ι3(,) 7→ ι4(∗). Thus it is easy
to see that r and t are behaviourally equivalent in (A,α). The only proper quotient of (A,α)

49

is its greatest quotient q : (A,α) � (Z, ζ) that takes r 7→ z and t 7→ z where z ∈ Z is the only
element of Z. Now, recall that (X, ξ) is also a simple dialgebra. Clearly (Z, ζ) is not isomorphic
to (X, ξ).

There are cases where the signature functors do not meet the requirements of proposition 4.4.1,
yet where the consequences do hold. For example, consider a SetFG dialgebra (X,χ) with
FX ..= 1 + X ×X. We can define a SetFH dialgebra (X, ξ) with HX ..= X + GX where ξ is
defined by ι1(∗) 7→ (χ ◦ ι1)(∗) and ι2(x, y) 7→ (ι2 ◦χ)(x). Now F does not preserve pushouts
and G and H may not preserve pullbacks. However, there is no interdependence between sates;
ξ just ignores the second component of the tuple in an experiment ι2(x, y). The example illus-
trates that the signature of a dialgebra can prevent interaction, but it cannot enforce it.

This result implies that we cannot in general correctly decide equivalence of terms by minimis-
ing and then simplifying. To be precise, the technique may yield false positives. Interestingly,
in automata theory this is the technique to decide equivalence of automata. A closer inspection
reveals that if such automata are modelled as SetFG dialgebras then F does indeed preserve
pushouts.

The following theorem establishes that if F preserves pushouts or if G preserves pullbacks then
the order of simplification and minimisation is irrelevant. This is especially useful if minimal
subdialgebras are finite, in which case their greatest quotient can be computed and equivalence
can be decided.

Theorem 4.4.3. Consider a SetFG dialgebra (X, δ). Let (A,α) be its least subdialgebra and
let (Z, ζ) be its greatest quotient. If F preserves pushouts or G preserves pullbacks then the
greatest quotient of (A,α) is the least subdialgebra of (Z, ζ).

Proof. Let m : (A,α) � (Z, ζ) and e : (X,χ) � (Z, ζ), let q : (A,α) � (B, β) be the greatest
quotient of (A,α) and let n : (Y, υ) � (Z, ζ) be the least subdialgebra of (Z, ζ). Then, let
(P, πX , πY) be the pullback of n and e in Set and let (ιB , ιX , Q) be the pushout of m and q in
Set. Note that πY and ιX are epic whereas πX and ιB are monic.

B

A Q

X

P Z

Y

q
55 55

ιB

$$

πY)))) n

99

¡P

��

!Q

����

��

@@��## ##

��
πX

99

m

%%

ιX 55 55

e))))

If F preserves pullbacks then πX is a subdialgebra. Since (A,α) is the least subdialgebra of
(X,χ) there is a morphism ¡P :A� P underlying a unique dialgebra morphism so that (πY ◦ ¡P)
is a dialgebra morphism. By proposition 3.4.5 im(πY ◦ ¡P) and because (Y, υ) is minimal it is
an isomorphism. We have im(!Q ◦ ιB) ∼= im(e ◦m) ∼= n ◦ im(πY ◦ ¡P) and therefore (B, β) ∼=
(Y, υ). Otherwise G preserves pushouts and (!Q ◦ ιB) is a dialgebra morphism. Then ım(!Q ◦ ιB)
is a dialgebra morphism and it is an isomorphism because (B, β) is simple. Then ım(πY ◦ ¡P) ∼=
ım(e ◦m) ∼= ım(!Q ◦ ιB) ◦ q hence (B, β) ∼= (Y, υ).

50

Chapter 5

Two Examples

In this chapter we present two small examples to exhibit the use of dialgebras for operational
semantics. The first example is a classic. We present a dialgebraic operational semantics for
regular expressions that reveals how closely theory of dialgebras relates to the classic theory
where regular expressions are interpreted as deterministic automata. As a second example we
discuss the calculus of communicating systems (CCS). We include the coalgebraic semantics
for the synchronous CCS and a new dialgebraic semantics. The coalgebraic semantics models
the behaviour of individual processes whereas the dialgebraic semantics models the behaviour
of multiple processes at once, including their interactions and the behaviour that results.

5.1 Regular expressions

Regular expressions are used to describe patterns in sequences of characters. Equivalently, they
define a language; a set of finite strings that match a particular pattern. We let a, b ∈ A range
over a finite set of symbols. The signature of the syntax of regular expressions extends the
signature of a boolean algebra with concatenation r · s and repetition r∗.

Definition 5.1.1 (Syntax).

r, s ∈ X ::= a ∈ A
∣∣ ε ∣∣ > ∣∣ ⊥ ∣∣ ¬r ∣∣ r∨ s ∣∣ r∧ s ∣∣ r · s ∣∣ r∗ ♦

There is a denotational semantics that interprets a regular expression as a language. Here, a
language is a set of stings, each string consisting of characters a ∈ A. We will denote such
strings by ~a,~b ∈ A∗ where A∗ denotes the set of all strings over A. The empty string is de-
noted by ε, strings of length one are denoted by a, b and string concatenation is denoted by
~a ·~b, overloading the notation used for regular expressions. Finally, repeated concatenation of
strings (~a)n for n ∈ N is defined by (~a)0 ..= ε and (~a)m+1 ..= ~a ·(~a)m.

51

The denotational semantics L :X →PA∗ interprets regular expressions r as their language.

Definition 5.1.2 (Language).

L(a) ..= {a}
L(ε) ..= {ε}
L(⊥) ..= ∅
L(>) ..= A∗

L(¬r) ..= A∗ \ L(r)

L(r ∨ s) ..= L(r) ∪ L(s)

L(r ∧ s) ..= L(r) ∩ L(s)

L(r · s) ..= {~a ·~b | ~a ∈ L(r) and ~b ∈ L(s)}
L(r∗) ..= {(~a)n | ~a ∈ L(r) for n ∈ N} ♦

The main drawback of this semantics is that it does not provide a method to compute equiv-
alence. Two regular expressions r and s are equivalent if L(r) = L(s), but many regular
expressions have infinite languages which makes a naive comparison problematic. There is an
alternative denotational semantics that works around this problem by interpreting expressions
as finite recognisers for the language.

Definition 5.1.3 (DFA). A deterministic finite automaton (DFA) is a tuple (Q,A, δ, q0, χF)
where Q is a finite set of states, A is a finite set of symbols, δ :Q × A → Q is a transition
function, q0 ∈ Q is the start state of the DFA and χF :Q → 2 is the characteristic function of
a set F ⊆ Q of accepting states. ♦

DFAs can be modelled as dialgebras. A carrier X : C and a tuple of functions (χi :FiX → GiX)i
can be turned into a CF ′G′ dialgebra (X,

∐
i χi) with F ′X ..=

∐
n Fn and G′X ..=

∐
n Fn which

allows for the following definition.

Definition 5.1.4 (DFA, dialgebraically). A DFA is a SetFG dialgebra (Q, pq0 + δ + χF) where
FX ..= 1 + (A × X) + X and GX ..= X + X + 2. The morphism pq0 : 1 → Q points out the
start state via ∗ 7→ q0. The morphism δ is the transition function as in definition 5.1.3 and
χF :Q → 2 for 2 ..= {0, 1} is the characteristic function of a set F ⊆ Q of accept states. For
the DFA to be finite Q must be a finite set of states. ♦

Recently there has been an interest in using ‘derivatives’ of grammars for parsing algorithms
[16]. For regular expressions derivatives have been defined in [3]. The more recent [18] shows
their relevance in applications. Now the derivative of a regular expression with respect to a
character is again a regular expression and the derivative function is defined inductively on
terms. In addition we can inductively define a function ν :X → 2 that signifies whether the
language of a regular expression contains the empty string. We can group these functions
together and obtain a dialgebraic operational semantics for regular expressions.

52

Definition 5.1.5 (Operational semantics). Let FX ..= (A×X) +X and GX ..= X + 2. The
dialgebraic operational semantics for regular expressions is the SetFG dialgebra (X, δ + ν) where
δ :A×X → X and ν :X → 2 are as follows.

δ(a, a) ..= ε

δ(a, b) ..= ⊥ if a 6= b

δ(a, ε) ..= ⊥
δ(a,⊥) ..= ⊥
δ(a,>) ..= >
δ(a,¬r) ..= ¬δ(a, r)

δ(a, r ∨ s) ..= δ(a, r) ∨ δ(a, s)
δ(a, r ∧ s) ..= δ(a, r) ∧ δ(a, s)
δ(a, r · s) ..= (δ(a, r) · s) if not ν(r)

(δ(a, r) · s) ∨ δ(a, s) otherwise

δ(a, r∗) ..= δ(a, r) · r∗

ν(a) ..= 0

ν(ε) ..= 1

ν(⊥) ..= 0

ν(>) ..= 1

ν(¬r) ..= not ν(r)

ν(r ∨ s) ..= ν(r) or ν(s)

ν(r ∧ s) ..= ν(r) and ν(s)

ν(r · s) ..= ν(r) and ν(s)

ν(r∗) ..= 1

♦

The theory of dialgebras can be used to derive from the operational semantics a canonical
denotational semantics for regular expressions. In particular, the underlying morphism of the
greatest quotient of the operational semantics is the canonical denotational semantics.

Definition 5.1.6 (Canonical denotational semantics). Let (X, δ + ν) be the operational se-
mantics for regular expressions and let J K : (X, δ + ν) � (Z, ζ) be its greatest quotient. The
canonical denotational semantics for regular expressions is the underlying function J K :X → Z.
Two regular expressions r and s are semantically equivalent if JrK = JsK. ♦

This does not give us a method to decide equivalence. For, in order to compute whether r
and s are equivalent we have to compute whether JrK = JsK. However, both (X, δ + ν) and
(Z, ζ) are infinite, as there are infinitely many behaviourally distinct regular expressions. Thus,
to compute whether JrK = JsK we still need a way to represent them as finite structures. We
achieve this by interpreting terms r and s not as elements JrK and JsK of Z but as deterministic
automata instead.

Observe that the signatures of (X, δ + ν) and (Z, ζ) are almost the same as the signature of our
dialgebraic DFAs. In fact, for every r ∈ X and for every z ∈ Z we can define a deterministic
automaton by adding a constant function pr : 1→ X and pz : 1→ Z to δ+ν and ζ respectively.

Definition 5.1.7. Let r be a regular expression and let (X, δ + ν) be the dialgebraic opera-
tional semantics. Define the constant function pr : 1→ X by ∗ 7→ r. The term automaton T (r)
of a regular expression is defined as follows.

T (r) ..= (X, pr + δ + ν) ♦

It is easy to check that adding a constant function pr : 1 → X to a dialgebra does not affect
behavioural equivalence. Therefore for any dialgebra T (r) = (X, pr + δ + ν) the carrier of its
greatest quotient is Z. Moreover, the structure is obtained by adding a constant function to
(Z, ζ) as follows.

Proposition 5.1.8. Let r be a regular expression and let (Z, ζ) be the greatest quotient of the
operational semantics. The greatest quotient of T (r) is the dialgebra (Z, pJrK + ζ) where pJrK
takes ∗ 7→ JrK.

53

In addition, for any simplified dialgebra (Z, pJrK + ζ) the element JrK ∈ Z is present in all its
subdialgebras, where for ease of writing we assume the underlying morphisms to be inclusions.
Again, this is easy to verify. Indeed, as per the minimisation procedure JrK will be part of the
second approximation.

Proposition 5.1.9. Let r and s be regular expressions and assume that JrK = JsK. If (B, β)
is a subdialgebra of (Z, pJrK + ζ) then JpK = JsK is an element of B.

We can now decide equivalence. In particular, we can compute the greatest quotient of a min-
imised term automaton. The minimisation technique of section 4.3 and the inductive definition
of the operational semantics are sufficient to construct minimised term automata. For regular
expressions this is always finite so that we can use the simplification procedure to compute its
greatest quotient. This motivates the following denotational semantics for regular expressions.

Definition 5.1.10. Let M(Y, υ) denote the least subdialgebra of a dialgebra (Y, υ) and let
S(Y, υ) denote its greatest quotient. DefineM(r) to take a regular expression r to its simplified,
minimised term automaton.

M(r) ..= SM(T (r)) ♦

Take note of the fact that for any regular expression r the automaton M(r) is finite and
computable. Now, since the composition functor of a dialgebraic DFA preserves pushouts,
theorem 4.4.3 applies. Thus the computable denotational semantics M() coincides with the
canonical denotational semantics of definition 5.1.6.

Theorem 5.1.11. Let r and s be regular expressions. They are semantically equivalent if and
only if their simplified, minimised term automata coincide.

JrK = JsK ⇐⇒ M(r) =M(s)

Proof. First, if JrK = JsK then S(T (r)) = (Z, pJrK + ζ) = (Z, pJsK + ζ) = S(T (s)) Hence,
MS(T (r)) = MS(T (s)) which is M(s) by theorem 4.4.3. Conversely, assume that M(r) =
M(s). Again, this implies MS(T (r)) = MS(T (s)), that is, M(Z, pJrK + ζ) = M(Z, pJsK + ζ).
By proposition 5.1.9 JrK and JsK are elements of this automaton. Moreover, its structure takes
ι1(∗) 7→ JrK = JsK because it is a subdialgebra of both (Z, pJrK + ζ) and (Z, pJsK + ζ). Thus we
conclude JrK = JsK.

5.2 Calculus of communicating systems

In this section we develop a dialgebraic semantics for the calculus of communicating systems
(CCS) [17]. The CCS is a suitable subject for investigating dialgebraic semantics for interactive
systems, where in particular we wish to model interaction between processes and the resulting
behaviour by a dialgebraic operational semantics. Terms of the CCS represent processes that
may or may not interact with each other. Any interaction that does occur, takes place by
sending and receiving messages. We consider the synchronous CCS, where any such send and
receive interaction must take place in a synchronised fashion.

Definition 5.2.1 (Syntax). Let a, b ∈ A range over a countable set of names. Processes
p, q, r, s ∈ X and actions α, β ∈ A are generated by the following grammars.

α ∈ C ::= τ
∣∣ a ∣∣ a

p ∈ X ::= ε
∣∣ α.p ∣∣ p1 + p2

∣∣ p1 ‖ p2 ♦

54

Intuitively, a process a.p (recieve a then p) waits until it receives an a from a parallel process,
after which it continues as p. Similarly, a process a.p (send a then p) waits until it has delivered
an a to a parallel process and then continues as p. A process τ.p does not wait. It does an
‘internal step’ and continues as p.

Coalgebraic semantics

We first consider the coalgebraic operational semantics for the CCS. However, given the inten-
tion to model communicating processes, ‘operational’ may be a bit of a misnomer. At least, it
does not accurately model computation steps that are performed during execution. For exam-
ple, a process a.p executed in isolation, will be waiting indefinitely for a message a. However,
it will not recieve this message and it will never continue as p as suggested by this operational
semantics.

Definition 5.2.2 (Coalgebraic operational semantics). Let HX ..= P(C×X). The coalgebraic
operational semantics for the CCS is the coalgebra (X, δ) where δ :X → HX is defined as
follows.

ε 7→ ∅
α.p 7→ {(α, p)}

p+ q 7→ δ(p) ∪ δ(q)
p ‖ q 7→ {(α, p′ ‖ q) | (α, p′) ∈ δ(p)}

∪ {(α, p ‖ q′) | (α, q′) ∈ δ(q)}
∪ {(τ, p′ ‖ q′) | (c, p′) ∈ δ(p) and (c, q′) ∈ δ(q)}
∪ {(τ, p′ ‖ q′) | (c, p′) ∈ δ(p) and (c, q′) ∈ δ(q)} ♦

The operational semantics for the CCS is commonly presented by a set of transition rules rather
than an inductive function definition. For completeness we include the corresponding transition
rules below. The rules define a relation (→) ⊆ X × (C ×X) where the notation p

α→ q is used

in place of p→ (α, q). Then δ takes p 7→ (α, q) if and only if p
α→ q.

α.p
α→ p

p
α→ p′

p+ q
α→ p′

q
α→ q′

p+ q
α→ q′

p
α→ p′

p ‖ q α→ p′ ‖ q
q
α→ q′

p ‖ q α→ p ‖ q′
p
c→ p′ q

c→ q′

p ‖ q τ→ p′ ‖ q′
p
c→ p′ q

c→ q′

p ‖ q τ→ p′ ‖ q′

There are many different notions of behavioural equivalence for CCS terms and for process
calculi in general. We consider what is referred to as strong bisimilarity, which is the standard
notion of coalgebraic behavioural equivalence as applied to the operational semantics above.
Thus, terms are strongly bisimilar if and only if there is a coalgebra morphism that identifies
them. In contrast, in a so called weak bisimulation a single internal τ–step is considered to be
equivalent with multiple consecutive such steps. Usually weak bisimulations are defined based
on the operational semantics defined previously as a non–standard bisimulation. Incidentally, it
is certainly possible to define an alternative operational semantics for which weak bisimulation
equivalence does coincide with the standard notion of coalgebraic behavioural equivalence.

55

Definition 5.2.3. Let (X, δ) be the coalgebraic operational semantics of definition 5.2.2 and
let J K : (X, δ) � (Z, ζ) be its greatest quotient. Two processes p and q are semantically equiv-
alent if JpK = JqK. ♦

Any coalgebraic semantics for program terms imposes a notion of process identity. Let us
assume a G–coalgebra (X, δ). The transition function δ models the state of processes over
time. Any state x ∈ X evolves in one time–step to a collection of states δ(x) ∈ GX. Now if
GX ..= PX then x evolves in one step to a set of states. The usual intuitive interpretation of
this is that x is a state of a non–deterministic process that may evolve to any one of the states
x′ ∈ δ(x). Thus the process is in one single state at any given time, but it is is not determined
in which particular state. This intuition is strongly present in the above semantics for the CCS.
However, there is nothing that precludes us from another intuitive interpretation of a structure
δ :X → PX. We could in fact let it model concurrency instead of non–determinism. In that
case, a transition x 7→ X ′ is to be understood as a process that ‘splits’ at state x into a series of
new processes, one for each x′ ∈ X ′. Thus now the process can be in multiple states concurrently
at any given point in time. It is an interesting exercise to define a coalgebraic semantics for
the CCS where the powerset functor models concurrency rather than non–determinism. This
is however not our motivation for the above discussion. Instead, we intend to advice the reader
that any such intuitive understanding of state and process identity may be problematic in a
dialgebraic semantics.

Dialgebraic semantics

Since dialgebras allow input and output to be separated the first thing that comes to mind is to
define a dialgebraic operational semantics for the CCS in which received messages are modelled
as input and sent messages are modelled as output. We would consider a SetFG dialgebra (X, γ)
with FX ..= X + X × A and GX ..= X + A × X. Note that in such a semantics process
identity and non–determinism is modelled similar as in the coalgebraic semantics. Indeed,
such a semantics models the subjective world–view of each process as it evolves over time.
Interestingly, a dialgebraic operational semantics can define the interactions of processes and
the behaviour that results from a third person point of view instead.

Definition 5.2.4 (Dialgebraic operational semantics). Let FX ..= X + X2 and GX ..=
PX + P(X2). The dialgebraic operational semantics for the synchronous CCS is the dial-
gebra (X, δ1 + δ2) where δ1 :X →PX and δ1 :X2 →P(X2) are defined as follows.

δ1(ε) ..= ∅
δ1(α.p) ..= {p} if α = τ

∅ otherwise

δ1(p+ q) ..= δ1(p) ∪ δ1(q)

δ1(p ‖ q) ..= {p′ ‖ q | p′ ∈ δ1(p)} ∪
{ p ‖ q′ | q′ ∈ δ1(q)} ∪
{p′ ‖ q′ | (p′, q′) ∈ δ2(p, q)}

δ2(ε, q) ..= ∅
δ2(α.p, β.q) ..= {(p, q)} if {α, β} = {a, a} for some a

∅ otherwise

δ2(p+ q, r) ..= δ2(p, r) ∪ δ2(q, r)

δ2(p ‖ q, r) ..= {(p′ ‖ q, r′) | (p′, r′) ∈ δ2(p, r)} ∪
{(p ‖ q′, r′) | (q′, r′) ∈ δ2(q, r)}

δ2(p, q) ..= {(p′, q′) | (q′, p′) ∈ δ2(q, p)} ♦

56

The transition functions of the semantics above can be defined by a set of transition rules. For
completeness we present the set of rules below. The reader can check that p→ p′ only if there
is a p′ ∈ δ1(p) and (p, q)→ (p′, q′) only if there is a (p′, q′) ∈ δ2(p, q).

τ.p→ p

p→ p′

p+ q → p′
q → q′

p+ q → q′

p→ p′

p ‖ q → p′ ‖ q
q → q′

p ‖ q → p ‖ q′
(p, q)→ (p′, q′)

p ‖ q → p′ ‖ q′

(a.p, a.q)→ (p, q)

(p, r)→ (p′, r′)

(p+ q, r)→ (p′, r′)

(q, r)→ (q′, r′)

(p+ q, r)→ (q′, r′)

(p, r)→ (p′, r′)

(p ‖ q, r)→ (p′ ‖ q, r′)
(q, r)→ (q′, r′)

(p ‖ q, r)→ (p ‖ q′, r′)
(q, p)→ (q′, p′)

(p, q)→ (p′, q′)

Intuitively, a δ2 transition (p, q) 7→ R indicates that two processes p and q are able to com-
municate with each other. They may do so in multiple ways, each of which leads to a pair
(p′, q′) ∈ R where p′ is the continuation of p and q′ is the continuation of q. Be aware though
that this intuition of p evolving to p′ and q evolving to q′ is just that. The dialgebraic semantics
does not enforce process identity and one may just as well decide to regard q′ a residual of p
and p′ a residual of q.

Given the dialgebraic operational semantics the denotational semantics is defined in the usual
way, as the greatest quotient of the operational semantics. The denotational semantics thus
obtained coincides with the coalgebraic semantics.

Definition 5.2.5. Let (X, δ1 + δ2) be the dialgebraic operational semantics for the CCS as
per definition 5.2.4 and let L M : (X, δ) � (Z, ζ) be its greatest quotient. Two processes p and
q are semantically equivalent if LpM = Lq M. ♦

To prove that the dialgebraic semantics and the coalgebraic semantics coincide we prove some-
thing more general. Any coalgebra morphism out of the coalgebraic operational semantics is a
dialgebra morphism out of the dialgebraic operational semantics. Conversely, any quotient of
the dialgebraic operational semantics is a quotient of the coalgebraic operational semantics.

Lemma 5.2.6. Let (X, δ) be the coalgebraic operational semantics and let (X, δ1 + δ2) be the
dialgebraic operational semantics for the CCS. If h :X → Y extends to a coalgebra morphism
h : (X, δ) � (Y, υ) then it extends to a dialgebra morphism h : (X, δ1 + δ2)→ (Y, ξ).

Proof. In what follows, let HX ..= P(C × X), FX ..= X + X2 and GX ..= PX + P(X2).
Assume that h : (X, δ) → (Y, υ) is a coalgebra morphism and thus υ ◦h = Hh ◦ δ. We have to
show that there is a dialgebra structure ξ :FY → GY such that h : (X, δ1 + δ2) → (Y, ξ) is a
dialgebra morphism. To this end we define two natural transformations νX :HX

.→ PX and
µX : (HX)2 .→P(X2) as follows.

νX(S) ..= {p | (τ, p) ∈ S}
µX(R,S) ..= {(p, q) | (α, p) ∈ R and (β, q) ∈ S where {α, β} = {a, a} for some a ∈ A}

Now define ξ ..= ξ1 + ξ2 where ξ1 ..= (νY ◦ υ) and ξ2 ..= (µY ◦ υ2). We have to show that
(ξ1 + ξ2) ◦ (h + h2) = (Ph + Ph2) ◦ (δ1 + δ2). We start with ξ1 ◦h = Ph ◦ δ1. By definition

57

ξ1 ◦h is νY ◦ υ ◦h which is Ph ◦ νX ◦ δ by naturality of ν. Thus it is sufficient to show that
νX ◦ δ = δ1 which is follows by induction on the structure of terms.

X HX PX X2 (HX)2 P(X2)

Y HY PY Y 2 (HY)2 P(Y 2)

δ // νX //

υ
//

νY
//

h

��
Hh

��
Ph

��

δ2 // µX //

υ2
//

µY

//

h2

��
(Hh)2

��
Ph2

��

On to ξ2 ◦h2 = Ph2 ◦ δ2. By definition ξ2 ◦h2 is µY ◦ υ2 ◦h2 which is Ph2 ◦µX ◦ δ2. Thus it
is sufficient to show that µX ◦ δ2 = δ2 which can be shown by induction.

Lemma 5.2.7. Let (X, δ) be the coalgebraic operational semantics and let (X, δ1 + δ2) be the
dialgebraic operational semantics. If the morphism h :X � Y extends to a dialgebra morphism
h : (X, δ1 + δ2) � (Y, ξ) then it extends to a coalgebra morphism h : (X, δ) � (Y, υ).

Proof. Again, let HX ..= P(C ×X), FX ..= X +X2 and GX ..= PX + P(X2). We have to
show that there is a coalgebra structure υ : Y → HY such that h : (X, δ)→ (Y, υ) is a coalgebra
morphism. We define a natural transformations µ : Id

.→ HF and a natural transformation
ν :HG

.→ H. However we index µ by objects of (X/QuotSet) rather than by objects of Set.
Thus, µ is not a natural transformation from IdSet to HF : Set → Set but rather from IdC to
HF : C → C where C abbreviates (X/QuotSet). This is sufficient, for we only require naturality
‘with respect to’ quotients h :X � Y of (X/QuotSet).

µh(y) ..= {(τ, ι1(y)), (a, ι2(y, h(a.ε)), (a, ι2(y, h(a.ε)) | a ∈ A}
νY (S) ..= {(α, x) | (α, ι1(U)) ∈ S and x ∈ U} ∪{(α, x) | (α, ι2(R)) ∈ S and (x,) ∈ R}

Now define υ by υ ..= νY ◦H(ξ) ◦µh. We have to show that υ ◦h = Hh ◦ δ. Since h is a
dialgebra morphism ξ ◦Fh = Gh ◦(δ1 + δ2) and by naturality of µ and ν the following diagram
commutes. Thus, it is sufficient to show that δ = νX ◦H(δ1 + δ2) ◦µidX

which is a tedious but
straightforward exercise.

X HFX HGX HX

Y HFY HGY HY

µidX // H(δ1+δ2) // νX //

µh

//
Hξ

//
νY

//

h

��

HFh

��

HGh

��

Hh

��

With lemma 5.2.6 and 5.2.7 in place we can conclude that the dialgebraic semantics does indeed
coincide with the coalgebraic semantics.

Theorem 5.2.8. Coalgebraic behavioural equivalence coincides with dialgebraic behavioural
equivalence.

JsK = JpK ⇐⇒ LsM = LpM

58

Chapter 6

Further research

In this thesis we have investigated the use of dialgebras for program semantics. We have
discussed the theory of universal dialgebra and its applications to operational semantics. In
particular, the greatest quotient of a dialgebraic operational semantics provides us with a canon-
ical denotational semantics that characterises behavioural equivalence. Subdialgebras on the
other hand may be used as suitable denotations for individual terms.

The main result is a generalisation of the minimisation and simplification procedures for alge-
bras and coalgebras. We have generalised images and coimages of morphisms to what we have
called the base and the cobase of a morphism. Intuitively, the G–base of a morphism can be
used to extract elements of X from elements of GX whereas the F–cobase of a morphism may
be used to retrieve a partitioning on X that is in some sense compatible with a partitioning on
FX. The notion of a base and a cobase have allowed us to define the minimisation and simplifi-
cation sequences for dialgebras, generalising both the minimisation procedure for algebras and
the simplification procedure for coalgebras. Dialgebra minimisation and simplification can be
used with a dialgebraic operational semantics to derive small, suitable denotations for terms.
If equivalence is decidable at all then the technique allows program equivalence to be decided.

Finally, we have included two examples. A dialgebraic semantics for regular expressions illus-
trates how neatly the dialgebraic approach matches with the classic semantics where regular
expressions are interpreted as deterministic automata. The dialgebraic semantics for the syn-
chronous CCS that we have included illustrates that dialgebras are able to model multiple
processes and their interaction and behaviour at once, in contrast with the coalgebraic seman-
tics that models the behaviour of processes individually.

Induction and compositionality

A topic that we have barely touched upon is how an operational semantics on a set of terms
can be defined. A coalgebraic operational semantics (A, β) on a set of terms A given as an
initial S–algebra (A,α) can be defined by means of a natural transformation λA : SGA

.→ GSA
c.f. [2]. The type of this natural transformation enforces an induction scheme for defining a
coalgebra structure β on terms, defined inductively by β ..= Gα ◦λA ◦Sβ ◦α−1. In addition,
the final coalgebra (Z, ζ) for the semantics (A, β) thus obtained is an algebraic semantics (Z, ξ),

59

where the algebra structure ξ : SZ → Z is defined coinductively by ξ ..= ζ−1 ◦Gξ ◦λZ ◦Sζ.

SA Sβ
((
SGA

λA

��
A

α−1

@@

GSA

Gαvv
GA
��

β

SZ Sζ
((
SGZ

λZ

��
Z
}}

ξ

GSZ

Gξvv
GZ

ζ−1

^^

It is clear to us that a dialgebraic operational semantics (A, δ) on a set of terms (A,α) given
as an initial S–algebra can be defined by two natural transformations µA :FSA

.→ FSFA
and νA :GSGA

.→ GSA. The dialgebra structure δ :FA → GA is then defined inductively
by δ ..= Gα ◦ νA ◦FSδ ◦µA ◦Fα−1. Intuitively, µA specifies how to construct experiments
from decomposed terms whereas νA specifies how the outcome of those experiments is to be
recombined.

FSA
µA // FSFA

FSδ

��
FA

Fα−1

CC

FSGA

νA
��

GA
��

δ

GSA
Gα
oo

However, not all dialgebraic semantics can be inductively defined by this schema. Be aware
though that the same remark applies to the single natural transformation λA : SGA

.→ GSA in
the coalgebraic case, which intuitively, can only depend on the topmost constituent of a term
and the topmost constituents of the behaviour observed from its immediate subterms.

For the dialgebraic case it is not yet clear if, and how a pair of natural transformations defines an
algebra structure on the carrier of a simple dialgebra. Whereas in a final coalgebra the inverse
of the coalgebra structure can be used, this is not a possibility in a simple (or final) dialgebra.
The problem does not appear to be too difficult though. A hint as to how this may be solved
lies in the proof of theorem 5.2.8 where we have used natural transformations to compare a
SetFG dialgebra to a SetH coalgebra and vice versa. We expect that the same technique can
be used to retrieve an algebra structure on the carrier of a simple dialgebra, thus retrieving
a compositional semantics. On the other hand, the inductive and coinductive definitions for
the coalgebraic case employ Lambek’s lemma. We may attempt to use the restricted version
of proposition 3.5.5 and especially proposition 4.2.3 to generalise the technique to simple and
minimal dialgebras, presumably by switching to natural transformations indexed by subobjects
and quotients.

Base and cobase construction

Our main result, the minimisation and simplification sequences for dialgebras, makes heavy use
of the base and the cobase of morphisms. Constructing the base of a morphism of Set appears
an easy task that agrees with the intuition of containers and their contents. Still, we would like
to discuss these constructions more thoroughly and investigate how the base of a morphism is

60

constructed in other categories, especially in toposes.

In contrast with the base, cobase constructions are surprisingly involved, even in Set. A concrete
algorithm that constructs the cobase of a morphism by some other method than brute force
should be provided. Before we found the simplification sequence, we had been working on a
technique to compare dialgebras to coalgebras and use coalgebra simplification instead. One of
the main components of this technique involved generating all experiments with a particular
element in their base, which can be achieved by constructing multi–hole contexts for elements
of a set FX and then ‘plugging the hole’ with a particular element x ∈ X. Inspired by those
experiments we think that a more thorough investigation of the cobase can reveal connections
between congruences, contexts and also with the base of morphisms. Note, a.o. that the F–
cobase of an F–algebra structure is an algebra morphism and thus its kernel is a congruence
relation. Finally, there appears to be a connection between the cobase of a morphism and
contexts and with this a connection with ‘derivatives of functors’ [13,14] which is a fascinating
story all by itself.

Suitable denotations

In chapter 4 we have posed sufficient conditions for the minimisation of a simplification to
coincide with the simplification of a minimisation. This provides a method for computing
denotations of terms, if possible at all, by simplifying the least subdialgebra of the operational
semantics that contains this term. However, if the conditions are not met then the method may
identify behaviourally distinct terms. It should be investigated what is the smallest subdialgebra
large enough to characterise the behaviour of a term in general, so that a general method for
deciding equivalence can be developed.

Sorted dialgebras

Most of the propositions stated are general enough to apply to dialgebras on multi–sorted sets.
However, it should be interesting to investigate instances of multi–sorted dialgebras. We have
the feeling that this will result in insights into the relation between algebras, dialgebras and
coalgebras. This may not work out, but let us provide a rough sketch.

Sorted algebras can be used to retrieve a compositional semantics from a semantics that is not
compositional, where intuitively the sort of a term is used to restrict the contexts in which it
may be placed (see e.g. [5] for our source of inspiration). An other way of seeing this is that
the sorts are essentially equivalence classes of contexts with respect to which the term has the
same meaning. With this in mind, we think that a SetFG dialgebra may be modelled as a multi–
sorted algebra or dually, as a multi–sorted coalgebra. Very roughly, given a dialgebra structure
δ :FX → GX an idea would be to equip elements x with sorts, where sorts are appropriate
quotients of elements of FX that contain x.

Simplification of input

The separation of input and output in dialgebras has an additional benefit that requires further
investigation. Consider a dialgebra structure δ :C × X → D × X. The structure imposes a
behavioural equivalence on states x ∈ X. However, every state also imposes an equivalence
on the experiments {(c, x) | c ∈ C} that involve it. Equivalently in this case, every state x
defines a structure δx :C → D × X that takes c 7→ δ(c, x) thus imposing an equivalence on
C ∼= {(c, x) | c ∈ C}. In actual implementations this is very useful. For example, we have been

61

able to use it in an implementation of the semantics of definition 5.1.5 to allow for an infinite
alphabet while keeping denotations of terms finite and computable. An attempt to generalise
this technique to other signatures should prove useful to applications and should result in a
better understanding of dialgebras.

Dualise and generalise

While working with dialgebras we have found a recurring theme. Many results had been known
in universal algebra before they were dualised to universal coalgebra. When a pair of dual
results is known an attempt can be made to find a restricted class of algebras to which results
from universal coalgebra apply and a dual restricted class of coalgebras to which results from
universal algebra apply. The results may then be merged into a general result for dialgebras.
This approach is illustrated by theorem 3.2.1. Finding the simplification and minimisation
sequences was not as straightforward however, where rather than restricting the class of algebras
and coalgebras, the concept of image and a coimage had to be generalised. Since the theory
of universal algebra and universal coalgebra is well developed there are many opportunities for
generalisations to dialgebras. Foremost this includes varieties and covarieties, equations and
coequations, free and cofee dialgebras, and monads and comonads. We would very much like
to see some of those topics investigated.

62

Bibliography

[1] S. Awodey. Category Theory. Oxford Logic Guides. Clarendon Press, 2006.

[2] F. Bartels. On Generalised Coinduction and Probabilistic Specication Formats (Distributive
laws in coalgebraic modelling). PhD thesis, Vrije Universiteit Amsterdam, 2004.

[3] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, October
1964.

[4] Vincenzo Ciancia. Interaction and observation, categorically. In Alexandra Silva, Simon
Bliudze, Roberto Bruni, and Marco Carbone, editors, Proceedings Fourth Interaction and
Concurrency Experience, volume 59 of EPTCS, pages 25–36, 2011.

[5] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding
(extended abstract). In Proceedings 14th LICS, pages 193–202. IEEE Computer Science
Press, 1999.

[6] J. A. Goguen and J. W. Thatcher. Initial algebra semantics. In Proceedings of the 15th
Annual Symposium on Switching and Automata Theory, SWAT ’74, pages 63–77, Wash-
ington, DC, USA, 1974. IEEE Computer Society.

[7] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra semantics
and continuous algebras. J. ACM, 24(1):68–95, January 1977.

[8] Andrew D. Gordon. A tutorial on co-induction and functional programming. In Glasgow
Functional Programming Workshop, pages 78–95. Springer, 1994.

[9] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:62–222, 1997.

[10] Stephen Lack and Pawel Sobocinski. Toposes are adhesive. In Andrea Corradini, Hartmut
Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozenberg, editors, Graph Transfor-
mations, volume 4178 of Lecture Notes in Computer Science, pages 184–198. Springer
Berlin/Heidelberg, 2006.

[11] S.M. Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 1998.

[12] F.W. Lawvere and S.H. Schanuel. Conceptual Mathematics: A First Introduction to Cat-
egories. Cambridge University Press, 1997.

[13] Conor Mcbride. The derivative of a regular type is its type of one-hole contexts (extended
abstract), 2001.

63

[14] Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting data
structures. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’08, pages 287–295, New York, NY, USA,
2008. ACM.

[15] John McCarthy. Towards a mathematical science of computation. In Cicely M. Popplewell,
editor, Information Processing 62: Proceedings of IFIP Congress 1962, pages 21–28, Am-
sterdam, 1963. North-Holland.

[16] Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: a functional
pearl. In Proceedings of the 16th ACM SIGPLAN international conference on Functional
programming, ICFP ’11, pages 189–195, New York, NY, USA, 2011. ACM.

[17] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

[18] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2):173–190, March 2009.

[19] John Power and Hiroshi Watanabe. An axiomatics for categories of coalgebras. Electronic
Notes in Theoretical Computer Science, 11(0):158 – 175, 1998. CMCS ’98, First Workshop
on Coalgebraic Methods in Computer Science.

[20] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3 – 80, 2000. Modern Algebra.

[21] Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer
Science, 7(1), 2011.

[22] Daniele Turi and Jan Rutten. On the foundations of final coalgebra semantics: non-well-
founded sets, partial orders, metric spaces. Mathematical Structures in Computer Science,
8(05):481–540, 1998.

[23] George Voutsadakis. Universal dialgebra: Unifying universal algebra and coalgebra. Far
East Journal of Mathematical Sciences, 44(1):1 – 53, 2009.

64

	Introduction
	Context and motivation
	Overview of the thesis

	Categorical preliminaries
	Categories and diagrams
	Morphisms
	Functors
	Category shaped diagrams
	Functor categories
	Cones and limits
	Comma categories

	Universal dialgebra
	Dialgebras
	Limits and colimits
	Subdialgebras and quotient dialgebras
	Factorisations
	Minimal and simple dialgebras
	Bisimulations

	Minimisation and Simplification
	Bases and cobases
	Closure and density
	Minimisation and simplification
	Quotients of subdialgebras

	Two Examples
	Regular expressions
	Calculus of communicating systems

	Further research

