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Abstract

The topic of this thesis is the relationship between formal and informal proofs.
Chapter One opens the discussion by examining what a proof is, when two
proofs are identical, what the purpose of proving is and how to distinguish the
two categories of proof. Chapters Two and Three focus in on informal and
formal proof respectively, with the latter also including descriptions of various
computational proof checkers and the Formalist family of positions in the Phi-
losophy of Mathematics. In Chapter Four I look at the Formalisability Thesis,
that every informal proof corresponds to a formal proof, and argue that this
breaks apart into a weak and a strong reading. In Chapter Five, I outline a sim-
ple mathematical problem and attempt the practical process of formalisation,
following which I consider the decisions that were involved in doing so. Finally,
in Chapter Six, I use what was learned from the practicalities of formalisation
to argue in favour of the weak reading of the Formalisability Thesis, which
I take to be closely related to Carnapian explication, but against the strong
reading, which corresponds to the Formalists’ approach to formalisation.
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Chapter 1

Introduction to Proof and Proving

I begin with an outline of the structure of this thesis and some introductory reflections on
the differences between proof in mathematics and proof in logic, what proofs are and what
their purpose is.

1.1 Outline

The starting point for this thesis is the 1999 paper by Yehuda Rav [55], which brought
about a resurgence in interest in the differences between two distinct uses of the term
‘proof’. On the one hand, there are informal proofs. These are proofs as mathematicians
write them; they are presented in textbooks and journals, on blackboards and napkins.
They can appeal to meanings, understanding and intuitions and are used to ascertain and
transfer mathematical knowledge. On the other hand, we have formal proofs.1 These are
proofs as seen in logic: they are syntactic, explicitly defined and strictly formal. The first
calling point for this thesis will be to consider each of these concepts in turn, beginning
with informal proofs in chapter 2 and then proceeding to formal proofs in chapter 3. In
sections 3.4 and 3.5 of the latter I will also introduce several versions of the Formalist
position (drawing on Shapiro’s outline from [60, pp. 140-171]) and describe how they
relate to formal proof.

Having looked at informal and formal proofs individually, I will proceed to the question
of what the relationship between them is. A candidate answer that Rav considers is the
Formalisability Thesis, that all informal proofs can be formalised to be formal proofs (in
some appropriate formal system). Different ways of understanding what this means and

1It should be noted that Rav uses different terminology to that being used here. In [55] he distinguishes
between ‘proof’ and ‘derivation’, but I prefer ‘informal proof’ and ‘formal proof’ because it doesn’t come
burdened with the implicature that formal derivations are not proper proofs. This fits better with, for
example, the conclusions of the empirical study into researchers’ intuitions about proofs in [48], which indi-
cates that knowledge of formal proofs is sufficient but not necessary for mathematical knowledge, suggesting
that a formal proof is a particular type of proof.

9



10 CHAPTER 1. INTRODUCTION TO PROOF AND PROVING

evaluating its philosophical content will be the topic of chapter 4, where I will describe
a weak and a strong reading of the Formalisability Thesis. The former is seen as an
empirical claim, while the latter is the reading of the Formalist position in the philosophy
of mathematics.

In chapter 5, I will work through the laborious practical process of formalising one
simple informal proof, that of the mutilated chess board. I will outline the problem,
present an interpretation of its mathematical content and lastly produce a formalisation.

Finally, what is learned from working through the mutilated chess board example will
motivate the philosophical conclusions of chapter 6. Firstly, I will relate the formalisation
process to Carnap’s explication and from there argue in favour of the weak reading of
the Formalisability Thesis. Secondly, I will reject the stronger, Formalist reading of the
Formalisability Thesis. Finally I conclude that one can agree that in principle any proof
can be formalised without admitting that rigorous proof inherently needs to be formal.

1.2 Why Do We Prove Things?

The question of what a proof is would be the obvious starting point, but it is in my opinion
somewhat of an empty question without first thinking about what proofs do and why we
prove things. So, let me consider some of the main functions of proof in mathematics.

The first and foremost function of proofs is to obtain mathematical knowledge of math-
ematical truths. Until we have a proof, a mathematical statement will remain conjectural.
Of course, there are now other methods of giving evidence for mathematical claims; for
example, probabilistic primality testing can give overwhelming inductive evidence for the
primality of some given number. Despite their reliability, though, such tests are one of the
targets of the PYTHIAGORA oracular computer thought-experiment that Rav uses at the
beginning of [55]. In it, the computer can instantly confirm or deny any mathematical state-
ment fed into it, answering with absolute certainty. The result of the thought-experiment
is that mathematics is not simply about sorting true statements from false, but also about
coming to learn why statements are true or false and how they interrelate. Although
primality tests are one way of convincing us to believe that a particular mathematical
statement is almost certainly true, with many useful applications, it is with a mathemati-
cal proof that we learn with certainty how and why it is true. Mathematical proof reveals
deductively how a mathematical conclusion follows from previously known mathematical
statements.

The moral of PYTHIAGORA tells us that proof does not only need to establish math-
ematical truth, but also show us how and why something is true. In [34], Hersh argues
for the slogan that proof is convincing and explaining : a proof produced by a working
mathematician is primarily aimed at convincing the qualified judges of the mathematical
community, but this is not all. Proofs are also presented by teachers to their students
yet, Hersh observes, students are too easily convinced. So in this context the proof is not
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intended to merely convince, but also to explain to the students why it is true. Maybe a
better way of putting this is to say that proofs, both for the student and the mathematical
community, are used to convince through mathematical explanation, rather than trying
to convince by authority (since being convinced by authority is essentially analogous to
deferring to a mathematical oracle such as PYTHIAGORA).2

The role thusfar ascribed to proof leaves it as a rather tame creature: used and useful,
but still essentially subservient to truth. Another proposal by Rav, though, is to reverse
this prejudice:

...proofs rather than the statement-form of theorems are the bearers of mathe-
matical knowledge. Theorems are in a sense just tags, labels for proofs, sum-
maries of information, headlines of news, editorial devices. The whole arsenal
of mathematical methodologies, concepts, strategies and techniques for solving
problems, the establishment of interconnections between theories, the system-
atisation of results—the entire mathematical know-how is embedded in proofs.
[55, p. 20]

The purpose of proof, from this point of view, is no longer aimed at obtaining mathematical
knowledge of mathematical truths, but instead shifts the focus to obtaining mathematical
knowledge itself, since mathematical knowledge proper consists of knowing and under-
standing proofs. It could then be said that the purpose of proving is to actively take part
in and engage with mathematics.

Another reason for proving and proofs is the end product: that which they reveal.
Above, it sounds as if each proof is a self-standing unit that gets us to a single mathematical
truth, but in general (and merely having considered the alternative proof-first picture) we
know that the reality is much better. For what a proof really reveals is not merely the
truth of a mathematical statement, but the dependencies that exist between it and other
pieces and techniques of mathematics. Doing proofs reveals the rich tapestry of structure
and interrelations in mathematics, which is in a large part what the discipline is all about.
By producing a proof we can learn which other mathematical facts are needed to support
a theorem and how they depend on one another. As is observed by Dawson in [20], we
don’t just prove theorems but also re-prove them, which adds to the web of mathematical
knowledge by showing that a proof can go through in different ways using different methods,
possibly with different dependencies.

Not only do proofs reveal the relationships that obtain between different mathematical
objects or theorems, but also the process of proving is useful for clarifying and disambiguat-
ing our mathematical concepts. Usually proofs will invoke properties of their mathematical
subjects, which means that we become clearer on what the terms of mathematics refer to
through their mathematical properties. Of course, this doesn’t mean that proving leads to

2There is the worry, though, that the idea of proof as convincing and explaining is still idealised when
compared to actual mathematical practice wherein some work is too advanced to convince or explain to
anyone but the top handful of academics in the field.
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a definite answer as to what exactly is meant by a mathematical term, but it is in proofs
that we use and manipulate these terms and so it is through this usage that properties are
revealed and any problems or difficulties may eventually be found.

Proof and provability are also central features in the study of metamathematics. Proofs
are integral to investigating formal systems, in matters of consistency, independence, con-
servativity and much more.

This may not be an exhaustive list of reasons for proof in mathematics, but it covers the
main motivations. Furthermore, it covers a reasonably broad selection, by which I mean
that the listed reasons are sufficiently diverse to reveal that different presentations or styles
of proofs will be better suited to achieving different ends. For example, a diagrammatic
proof may be best for explaining why something is true, but disambiguating concepts is
more likely to be achieved when we try to invoke fewer intuitions in a more formal proof
while metamathematics is focused on formal proofs and provability.

I will return to the specific purpose of informal proofs in section 2.1, but for now I turn
to how exactly such different styles of proof may be distinguished into the two distinct
categories of formal and informal.

1.3 Two Notions of Proof

Before getting into discussing formal and informal proofs separately in the subsequent two
chapters, it is prudent to have a tentative division of the two concepts.

A formal proof is a derivation in a formal, axiomatic system. A formal proof therefore
is a syntactic, mechanical, gapless and explicit step-by-step piece of reasoning to get from
the axioms of the system to the conclusion; a procedure which is therefore, at least in
theory, checkable by an automaton or computer. Formal systems will be defined properly
in section 3.1, but for now they are calculi which link premises to conclusions, through
the application of explicit rules of inference. Such a system should be over some fixed
formal language within which the premises are explicitly formulated and which the rules
operate on. For example, Hilbert-style derivations, as seen in [27, p. 87]; Gentzen’s natural
deduction and sequent calculus, as found in [64]; and the various tableaux favoured by
Priest in [54] are all examples of formal systems found standardly in proof theory. However,
for mathematics such systems are cumbersome and impractical, so in the field of Formal
Mathematics popular formal systems are computational and tend to be designed to better
simulate the structure of informal mathematical proofs. Examples of such formal systems
are found in Mizar, Coq, Naproche, HOL Light and Isabelle.3 Axioms serve as the ultimate

3The difference between the formal systems of proof theory and those of formal mathematics may merely
be a reflection of the balancing act between a system’s practical use in proving theorems and the ease with
which one can prove things about the system. In formal mathematics, the use of computers allows the
system to be quite applicable but with less interest in proving theorems about it, whereas in proof theory
the emphasis is on showing things about the systems while actual derivations can get long, tedious and
overly complicated.



1.4. WHAT IS A PROOF AND WHEN ARE TWO PROOFS THE SAME? 13

premises in the formal systems and example hereof include the Zermelo-Fraenkel axioms
with choice (ZFC) for set theory or the axioms of Peano Arithmetic (PA), to choose but the
most obvious two. Each formal system itself has a formal definition4, hence formal proofs
are mathematical objects in their own right, studied in proof theory and manipulated in
meta-mathematics.

By informal proofs, on the other hand, I will refer to proofs as they are usually written in
practice, such as in journals, textbooks, correspondence or classrooms. Broadly speaking,
they are presented in natural language augmented with mathematical symbols, terminology
and diagrams. Their aim is to convince some intended rational audience of the truth of a
mathematical statement through a reasoned argument or series of arguments which appeal
to the intellect of the audience. They can draw on concepts which have not been explicitly
defined and may (in some cases) even engage our intuitions about space, inductions and
generalisations. These proofs will be tailored to the audience they are intended for, so
that a proof in an academic journal will be different to a proof intended for first-year
undergraduates. So long as the method of the proof is clear and convincing to the intended
audience it may be that easier or routine steps are left unstated.

That I have presented these two types of proof as separate does not necessarily mean
that they are. For one thing, the standard view seems to be that formal proofs are a
subclass of informal proofs. In the other direction, a Formalist may argue that all informal
proofs correspond to, or are only true in virtue of, some formal proof. So how should this
classification go?

1.4 What is a Proof and When are Two Proofs the Same?

Having given a general answer to the question of the purpose of proofs and proving in
section 1.2, it should now be possible to approach the second question of what a proof is
exactly. The question, though, is not quite clear enough, for there is a distinction to be
had between proofs as instantiated and proofs per se. Consider the following statement by
Leitgeb:

Whereas published mathematical proofs—as of 2009—might be identified with
certain traces of chalk on blackboards, printed texts in mathematics journals,
or electronic patterns in some technical devices, we regard mathematical proofs
per se as abstract entities which are independent of any material instantiation.
[43, p. 266]

The dichotomy here is between the practical and the theoretical: in practice, proofs are
presented in many different ways and have certain practical limitations while in theory
they can “transcend all boundaries of a merely pragmatic kind” [43, p. 267]. What this

4However, the issues of this thesis are very much present here, for the definition of formal proofs in the
computational systems might be far beyond the practical limitations for giving such a definition.
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amounts to is that proofs as we create and use them are concrete instantiations of certain
abstract ‘proof’ entities. Formal proofs are then a subset of these which, in addition to
being abstract entities, are also mathematical entities.

Of course, this distinction between abstract proofs and instantiations thereof raises
further questions: what are abstract ‘proof’ entities? what sorts of properties do they
have? how does a concrete proof instantiate an abstract proof? what can we know about
the abstract proof (independent of its instantiations)? The intention of this thesis is not
to delve into the murky depths of these metaphysical questions. However, one question
that is entangled with these other is worth a moment’s thought, and that is the question
of proof identity.

On the picture of proof that divides proofs into abstract proofs and concrete instantia-
tions, the natural approach to proof identity is to say that two concrete proofs are identical
if they instantiate the same abstract proof. But then, one may ask, how similar do two
proofs have to be to instantiate the same abstract proof? The question, I believe, is one
of granularity; but let me separate the answers for informal and formal proofs.

Firstly, let’s consider informal proofs. A very fine-grained approach could require that
the exact wording of two informal proofs be the same for the two informal proofs to be
identical, but this seems too restrictive for there are many words that appear in an informal
proof that aren’t of vital importance to the intended understanding of the proof. Further-
more, it is often acceptable to change the order in which different parts of the proof are
done without turning it into a different proof. At the other end of the spectrum, a coarse-
grained approach may only require the general proof strategy to coincide for two informal
proofs to be the same, yet this may be too liberal because in many respects mathematics
must pay attention to details so despite having the same strategy the execution of that
strategy might be non-trivially different. My leaning for informal proofs is more towards
the coarse-grained approach, as this strikes me as how we really do see proofs: that there is
a natural notion of “being the same proof” on which two proofs are the same unless there
is some substantial difference between them.

Identity of formal proofs will play an important role in chapter 4, so consider whether
the same story that held for informal proofs also holds for these. Let me set aside for
now identity between formal proofs in different systems (which will certainly complicate
things) by fixing a formal system Λ. As it was for informal proofs, we expect there to be
a natural notion of “being the same proof”, but this time relativised to Λ. Such a notion
will induce an equivalence relation of Λ-sameness on formal proofs in Λ. How to spell out
this relation, however, is not entirely clear.

Let us at least give upper and lower bounds for the granularity of the equivalence
relation. The strictest, finest-grained approach would take Λ-sameness to be identity of
sequences of Λ-formulas, but as in the case of informal proofs this is too strict: on this
definition two formal proofs may be different despite only having systematically replaced
variables to get from one to the other. A bound for liberal, coarse-granularity is to identify
all Λ-proofs of the same statement, but this won’t be correct either as we naturally recognise
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that the same statement can be given different proofs.
To try to refine this further, the immediate thought is that formal proofs, by virtue of

their status as mathematical objects, can be identified based on certain syntactic features.
An obvious first step is to deal with the example of systematic variable-renaming by having
Λ-sameness identify Λ-proofs at least up to such renaming (explicitly defined, based on
Λ). Proof theorists have a number of other syntactic features that allow us to identify
equivalence classes of formal proofs. For example, in [21] Došen discusses equivalences
like normalisation and generality, but these equivalence classes do not properly match the
notion of “being the same proof”. On the one hand, many proofs we consider the same
are still distinguished as not the same, but on the other hand, identifying a formal proof
with its normal form is in many cases beyond what we would want to call the same proof.

I do not here have a positive proposal to make for how to further refine or specify
what the classes of Λ-same proofs will look like. However, it can be observed that this
will be no easy task, based on work on a similar question on identifying the sameness
of stories in narratology, as is investigated in [45] and [46]. The latter paper raises a
number of methodological issues for fixing equivalence classes of structurally the same
stories, issues that can be just as troubling in trying to identify sameness of structure in
proofs. Fortunately, making these equivalence classes precise is not all too important for
the coming discussion, so long as Λ-sameness is coarse enough to identify proofs despite
the minor differences discussed, but fine enough to separate proofs that we recognise as
different. For the remainder of this thesis, I will proceed assuming that each formal system
Λ has a corresponding equivalence relation of Λ-sameness.

In this thesis I will be mainly concerned with practical aspects of formalisation and, as
such, much of the focus will be on concrete instantiations of proofs rather than abstract
proof and provability. It is, however, important to keep in mind the distinction between
abstract and concrete instantiations of proofs, the granularity of proof identity and whether
this concrete-abstract picture of proofs is the correct one,5 especially when it comes to
thinking about Formalism in sections 3.4 and 3.5, and the philosophical discussion of
chapter 6.

5The distinction as it has been presented lends itself naturally to a Platonistic approach to the philosophy
of mathematics, which is in strong disagreement with several main theses of the general Formalist position.
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Chapter 2

Informal Proofs

In this chapter I take a closer look at what an informal proof is usually understood to
be, considering various ways in which the particular conception I start with could be
objectionable. Then I consider a paradox raised in [9] which intends to show that informal
proof and mathematics is inconsistent.

2.1 Informal Proof, Elaborated

The preliminary description in section 1.3 has left the notion of an informal proof rather
threadbare in comparison to the easier definition of a formal proof. So, now, let me proceed
with a more detailed examination of what counts as an informal proof.

The standard conception of the purpose of a proof for a theorem in mathematics, I
would say, is roughly captured by the following:

(P) To give a rigorous, indefeasible sequence of mathematical arguments that convince
your intended audience of the certainty of the theorem.

As a starting point this captures many of the purposes, mentioned previously in section
1.2, that apply more naturally to proofs as they are seen in mathematics generally (rather
than, say, proof theory and mathematical logic). Nonetheless, I would like to run through
and dissect the terms used in (P), discussing the various problems that might arise.

Firstly, rigour in mathematics (or, more accurately, in the philosophy thereof) has
become closely linked to formality. The emergence of this link historically coincides with
the extensive programme of rigorisation that took hold in the 19th and early 20th Centuries,
as described by Tarski:

Until the last years of the 19th century the notion of proof was primarily of
a psychological character... No restrictions were put on arguments used in
proofs, except that they had to be intuitively convincing. At a certain period,
however, a need began to be felt for submitting the notion of proof to a deeper

17
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analysis that would result in restricting the recourse to intuitive evidence in
this context as well. This was probably related to some specific developments
in mathematics, in particular to the discovery of non-Euclidean geometries.
The analysis was carried out by logicians, beginning with... Frege; it led to the
introduction of a new notion, that of a formal proof, which turned out to be an
adequate substitute and an essential improvement over the old psychological
notion. [62, p. 70]

As well as the non-Euclidean geometries pointed to in the above quote, problems in analysis
of using implicit or intuitive concepts of continuity, differentiability, convergence etc. were
being replaced with explicit ε-δ definitions to try and face up to growing discontent with
previous methodology. As Feferman puts it:

...the nineteenth century program for the rigorous foundation of analysis and
its arithmetization, ... at the hands most notably of Bolzano, Cauchy, Weier-
strass, Dedekind and Cantor. That program grew in response to the increasing
uncertainty as to what it was legitimate to do and say in mathematics, and es-
pecially in analysis. One could no longer rely on calculations that looked right,
or depend on physical applications to justify the mathematics. [22, p. 321]

The idea, then, is to combat the inadequacies of informality (with its intuitions) and the
problems of rigour that accompany this by formalising our proofs. In section 6.4, I shall
reject that formality is necessary for rigorous mathematical proof, so this concern can be
put aside for the moment.

The next item in (P), that proofs are made up of a sequence of indefeasible arguments
also has its detractors. Lakatos, in [40], presents a dialogue in which a group of fictional
students (named after Greek letters) discuss Euler’s formula for polyhedra.1 The view of
proof offered through this dialogue is heuristic, being a component of Lakatos’s “method of
proofs and refutations”[40, pp. 49-50]. Proofs are given for a primitive conjecture, but the
proofs on this picture amount to little more than convincing thought-experiments, which
are defeasible in various ways: the various ‘lemmas’ that make up the thought-experiment
may turn out to have counter-examples or the conjecture itself may have a global counter-
example. The response to these can be to update and refine the concepts we are using,
incorporate conditions into the statement of the theorem or to dismiss the proposed proof
altogether. In his Introduction to Lakatos, Larvor describes how Lakatos takes the contexts
of mathematical discovery and justification to be far more closely connected than standard
accounts of mathematics acknowledge:

Proofs, for Lakatos, do not just establish the truth of theorems. They can also
be engines of discovery... he presents a picture of mathematics in which proofs,
tests and thought-experiments are so intimately related that it is impossible to
say where one context finishes and another starts. [42, p. 20]

1Euler’s formula is V − E + F = 2 where V , E and F stand for vertices, edges and faces respectively.
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This methodology for mathematics, which Lakatos is proposing as at least one way that
mathematics is practiced, is opposed to the Ravian proof-first perspective (described earlier
in section 1.2) in that it sees mathematics as going backwards and forwards between proof
attempts and theorem statements. The proofs do not just aim to establish the theorems but
also give feedback as to how to improve and refine the theorem. The doctrine advocated by
Lakatos is also fallibilistic: that any accepted theory might turn out to be false. A defence
of this position needs to explain how the many obvious mathematical truths can turn out to
be wrong, which Lakatos does through discussion of conceptual change: that any concept
can change in the development of mathematics. However, I don’t think that either of the
Lakatosian reasons warrant dropping the indefeasibility requirement for informal proofs. A
longer piece of work might have the space to engage with these ideas in greater depth, but
I will simply say that I think the methodology, while interesting, gives a different usage of
the term ‘proof’ than we really do use it: if a theorem has counter-examples then it cannot
be proved.

It is also key to ask in what sense indefeasibility is taken. Does it mean just that this
particular audience can find no counter-examples? that the journal referees couldn’t? that
the wider mathematical community hasn’t? Or do we have some kind of ideal in mind
which means the proof is absolutely free of counter-examples? In section 6.4 I will give an
answer which supports the ideal of absolute indefeasibility.

That a proof is even in sequential form is also too strict a requirement. As well as
the Lakatosian methodological concerns, it is clear that diagrams play an important role in
convincing and explaining in proofs. But, where in the proof sequence would an explanatory
diagram be positioned? Often diagrams are parallel to the main proof, without being
obviously redundant or ‘not part of the proof’, thus breaking the idea that a proof should
be sequential. In fact, this can be taken further by looking at the many example of proofs
without words, as collected in [50] and [51]. These books are filled with examples of
theorems proved diagrammatically, with the occassional formula, wherein the sequential
order of the diagrams only rarely matters.

Another problem with this sequential claim for proofs is that it may depend on the
aim of the proof how one should go about presenting it. For although proofs in academic
mathematics may at least appear sequential, in our vague characterisation of informal proof
above it was also possible to include proofs in classroom. Such proofs may be presented
in other ways to maximise student learning. For instance, in [1] the authors compare the
efficacy of different proof techniques for different purposes. Their results indicate that
explaining a proof strategy first and then filling in the technical details generally worked
better for explaining proofs to students, again showing that sequential proofs are not
necessarily preferred.2 I believe the points of this paragraph and the last make it clear that
arguments in an informal proof certainly do not need to be sequential, thus we can drop it

2It is important to note that the results were from a controlled study, so do not necessarily indicate that
this is a universal truth of teaching mathematics. I merely raise it as a potential way that we could gain
from not doing proofs sequentially.
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from (P).
In the statement of (P) I included the specification that one uses mathematical argu-

ments to rule out other types of convincing such as, for example, appeals to authority or
probabilistic evidence. However, what exactly is to count as mathematical is once again
up for debate. In fact, there is the looming danger of circularity here if the definition
of mathematical were to refer to the methodology of proving. Furthermore, mathematics
has traditionally been conceived of as a priori, but recent uses of computation to perform
long calculations (such as in the case of the famous Four Colour Theorem) may cast doubt
on this, as is argued in [35, pp. 158-159]. The general field of mathematics including
computation or inductive evidence (such as the primality tests mentioned in section 1.2)
is ‘Experimental Mathematics’: in [8], Baker argues that this field is characterised by the
calculation of instances of some general hypothesis, such that it subsumes computer check-
ing, using inductive evidence and statistical tests. Baker then argues that the problems
raised by these methods might concern philosophers, but that in practice the concerns are
different:

Mathematicians have certainly expressed concerns over computer-based proofs,
but for the most part these concerns do not have to do with the kind of knowl-
edge they produce. Instead they are connected to worries over reliability on
the one hand and explanatoriness on the other. [8, p. 341]

Nonetheless, worries about computer accuracy or the lack of explanation that comes with
such proofs, Baker claims, do not detract from their practical uses. Mathematical practice
is likewise the focus of van Kerkhove & van Bendegem’s discussion of Experimental Math-
ematics in [38], saying that the methods it employs are a fact of mathematical practice and
not necessarily incompatible with the use of formal proofs. They make use of an analogy by
Hersh from [33] about mathematics having a frontstage of traditional, indefeasible proofs
and a backstage of discovery through number crunching, computation and experimenta-
tion. In (P) the emphasis is implicitly on the front part of mathematics, so in order to
maintain (P) we may want to restrict the requirement on arguments being mathematical
to those being of this front stage: explanatory and deductive.

Depending on the answer to the question of how to guarantee informal rigour, there
is also the question of how certainty is to be ascertained and verified. Since (P) works
on the basis of intended audiences and informal mathematics is, at least on the surface,
how mathematics is actually practiced, it becomes vital to know how mathematicians
judge a theorem to be certainly true. Establishing what informal proof is then requires an
investigation into the social and human process of being convinced by proofs. For example,
in [44] where Löwe & Müller defend contextualism about mathematical knowledge, it is
shown using examples from mathematical practice that what is required from a proof varies
with context:

Nor is proof a fixed notion: There are various forms of proof, and context
determines which type of proof, if proof at all, is required. [44, p. 17]
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There are also numerous examples of accepted proofs which have later been revealed as
flawed— what does this say about certainty of proofs? Could it be that the certainty
with which we hold theorems and proofs comes in degrees, depending on how many people
understand and have checked the proof? Does certainty depend on the field of mathematics,
or the mathematical culture within which the proof is presented?

Finally, in (P) there is a particular emphasis on the theorem that the proof is a proof
of. But is this necessarily the correct perspective? In [55] Rav argues that, to the contrary,
the main focus of mathematics is the discovery of novel proof-techniques and that proofs
are where the informative content of mathematics resides, with theorems just as titles
and headings. Such a perspective values even incorrect proofs if they still contain useful
techniques and insights. The switch to the Ravian stance on proofs would entail the
reformulation of the standard view into a more method-focused view of proofs.

2.2 Is Informal Proof Inconsistent?

In [9], while arguing in favour of paraconsistent mathematics, Beall mentions ‘Gödel’s
paradox’ which he claims demonstrates that informal mathematics is inconsistent. He asks
us to consider the following sentence denoted by γ:3

(γ) This sentence is informally unprovable.

This can be given a proof by reductio, for supposing that γ is false means that it must be
informally provable and thus true. By reductio we therefore have that the sentence γ is
true. This, though, was an informal proof of γ, which means that it is informally provable,
so the sentence itself is false.

Beall argues from this:

There seems to be little hope of denying that γ is indeed a sentence of our
informal mathematics. Accordingly, the only way to avoid the above result is
to revert to formalising away the inconsistency—a response familiar from the
history of näıve set theory, näıve semantic theory, and so on. [9, p. 324]

I disagree. I shall argue that there is good reason to reject γ as a sentence of our informal
mathematics.

Firstly, I wonder what Beall is drawing on when he says that there is little hope of
denying that γ is a proper sentence of informal mathematics. For looking at it doesn’t reveal
very much that is incontestably mathematical. Sure, Beall’s statement of the problem
(found in fn. 3) has a Greek letter as a label and even some self-reference, but this doesn’t
get very far, since we can similarly give another sentence and denote it by σ:

3I here stray slightly from Beall’s description of the paradox, which stated it as “γ: γ is informally
unprovable.” [9, p. 324].
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(σ) This sentence has a Greek letter as a label and contains self-reference!

This sentence is clearly not a mathematical statement. So what feature does qualify γ as
mathematical which σ fails to include? It appears the only strictly mathematical part of γ
is the mention of provability. I contend, though, that this does not make γ a mathematical
statement. Of course I hold that informal proof and provability are very important notions
in talking about mathematics, but the crucial thing to observe is that these are notions
about mathematics rather than of mathematics. What I mean by this is that informal
proof is certainly used to talk about mathematics and what is done in practicing mathe-
matics, but it is not a concept that is within mathematics itself. For one thing, I am not
aware of any other proofs that feature informal provability as a mathematical concept. As
logicians we are more than familiar with plenty examples of provability featured in other
proofs, but all such examples that spring to mind feature formal proof and provability, for
which the paradox does not work. Beyond merely citing the circumstantial evidence of
not knowing any proofs about informal provability, there is the fact that informal proof
does not have well-established mathematical properties nor does it interrelate with other
mathematical concepts in the way that standard mathematical concepts (such as group,
integer, derivative, line etc.) do. The only clear interaction it has is with mathematical
truth, as exploited in the paradox, but if anything the notion of truth in mathematics
(before being formalised into some formal theory of truth) belongs to the same category of
notions about mathematics rather than within. I say this for precisely the same reasons:
informal truth is not something that is an essential ingredient of any informal proof, nor
does it have well-established mathematical interactions or properties.

By denying that informal provability is a concept within informal mathematics, we
consequently also deny that γ is a sentence of our informal mathematics, thus deny that
Beall has showed that mathematics is inconsistent.4 However, dealing with the paradox
in this way does serve to bring to the foreground the fact that formal proofs do have an
important role to play, for these formal proofs are actually mathematical objects themselves
so do fall into the domain of mathematics. Proof formalisation can therefore serve as an
analytical tool, converting an informal proof that is not a mathematical object into a formal
proof that is, which in turn allows mathematical investigation. This description is, as yet,
rather simplistic; a fuller discussion of formalisability will begin in chapter 4. First, though,
I shall use chapter 3 to conduct a proper investigation into what is meant by formal proof.

4Note, though, that the paradox is not hereby resolved: it still works fine as a paradox for natural
language.



Chapter 3

Formal Proof and Formalism

In this chapter I will first state explicitly and mathematically what formal proofs are, then
move on to discuss the Mizar and Naproche computational formal systems for mathematics.
The second half of this chapter will give a brief history of Formalism, followed by a more
contemporary account which has been offered as a response to Rav. Finally, an argument
against Formalism based on the practical limitations on formal proofs will be rejected based
on the success of developments in Formal Mathematics.

3.1 Formal Proofs

As already observed in section 1.3, there is quite a selection of formal systems within which
it is possible to present formal proofs. Depending on which formal system is being used
and even which variant of each system, in proof theory there are standardly two types of
presentation for formal proofs, although this is complicated somewhat by formal systems
for mathematics such as Mizar and Naproche which are more computational. I shall define
each of the former in turn then in the following two sections look at the two automated
proof-checkers and their associated formal systems.

Definition. An alphabet is a collection of symbols which may be strung together to form
formulae.

Standardly, the alphabet for a formal language will include logical connectives, quanti-
fiers, variables, constants, relations, brackets, reserved words1 etc.

Definition. A (well-formed) formula is a string of symbols from the language, constructed
by adhering to strict formation rules which allow symbols of the language to be combined
in specific ways (rejecting all other strings of symbols as ill-formed).

1Reserved words are generally found in the computational systems but not in the well-known proof-
theoretic systems.

23
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Definition. A formal language is the set of well-formed formulae over the alphabet, as
determined by the formation rules.

Definition. A formal system, over some formal language, is made up of axioms, axiom
schemata and inference rules. The axioms and schemata are well-formed formulae (or sets,
sequences, multisets etc. of formulae), while the inference rules explicitly determine how
to proceed from certain formulae to others.

Depending on the inference rules of a formal system, proofs given in the standard
proof-theoretic systems will either be sequential or tree-like.

Definition. A sequential formal proof in some formal system S is a sequence of well-
formed formulae in the language of S, where each formula is either an axiom or follows
from previous formulae by the inference rules and the last formula in the sequence is the
conclusion.

Definition. A tree-like formal proof in some formal system S is a tree whose nodes are
well-formed formulae in the language of S, where each formula is either an axiom or follows
from its immediate predecessors by the inference rules and where the last formula is the
conclusion.

But this does not capture the shape of formal proofs as they are done in the compu-
tational formal systems, such as Mizar and Naproche. These try to more closely emulate
informal proofs, in which different proof elements are introduced as separate theorems,
lemmas, axioms and definitions. Later items will be able to refer back to earlier ones
without re-proving them. In the subsequent sections 3.2 and 3.3 I will describe these two
systems and how they work. First, though, let me mention three of the other systems that
will not get such a full investigation, but are referred to elsewhere in this thesis.

Firstly, Coq is an interactive proof assistant which allows proofs to be written in the
Gallina specification language. Coq is named for and based on what is called the Calculus
of Inductive Types, a higher-order type theory which includes higher-order functions and
predicates as well as a hierarchy of sets. Interestingly, Coq has recently been used to
check a fully formalised version of the Four Colour Theorem, as described in [28]. The full
reference manual can be found at [19], though for a brief introduction a better start is [11].

The other two systems Isabelle and HOL Light can be considered together, stemming
from the same source: the HOL family of interactive theorem provers, with HOL standing
for higher-order logic, as they are both assisstants for classical higher-order logic. HOL
Light was originally designed to, and still does, have a simpler logical core than the original
HOL system, which has been maintained despite growing into a well-established variant of
HOL. According to [67] where Wiedijk list 100 theorems along with which systems have
checked them, as a gage for the success of Formal Mathematics, HOL Light is currently the
most successful having formalised 85 of the theorems (Mizar is listed as second with 57,
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followed by Coq and Isabelle at 49 and 47 respectively). A good starting point for looking
into HOL Light is the in-depth tutorial by Harrison [29]. Isabelle, rather than being a
variant of HOL is better seen as its successor. Isabelle is less simple than HOL Light,
but its uses do extend beyond Formal Mathematics into projects in logic and program
development and specification languages.2 An authoritative introduction and guide to
Isabelle can be found in [52].

3.2 A Look at Mizar

In this section I will discuss one prominent system in the field of Formal Mathematics:
Mizar, which is making advanced proof formalisation ever more achievable and has already
succeeded in formalising a wide array of famous proofs. In giving the description of the
system, I mainly draw on information in [26] and [49].

The Mizar project consists of three main components: the Mizar language, the Mizar
computer program (for checking proofs in the Mizar language) and the Mizar Mathematical
Library (hereafter MML, containing definitions and proved theorems in Mizar). The main
aim of the project is to provide a practical and convenient language and associated proof-
checking software with which mathematicians can formalise and verify mathematics. The
language is designed such that it is sufficiently flexible to formulate statements in almost any
mathematical field.3 Formal mathematicians can write articles in the language containing
definitions and theorems which have previously been proved informally, and now can be
checked by Mizar. Finally, the definitions and results are added to the MML, which other
articles can then specify are being used in their own articles, allowing the library to develop
a catalogue of interconnected proofs, theorems and definitions. Now I shall look at each
component in slightly more detail.

The Mizar language4 was designed to have the following key properties: firstly, the
wide applicability mentioned above; secondly, legibility to the point that the proofs are still
possible to read and understand for members of the mathematical community; and lastly,
that proofs written in it are formal and mechanically checkable.5 Mizar contains all the
usual first-order logical connectives and quantifiers, plus the ability to use free second-order
variables to form schemata. The language then reserves a large number of mathematical
terms to be used in a specified sense relating to their original meaning, then combining
these with a number of grammatical features of Mizar means proofs can be written for
the theorems in each article. These proofs can proceed in standard mathematical ways

2As can be seen on the Projects page for Isabelle at 〈https://isabelle.in.tum.de/community/Projects〉.
3Only avoiding the universal claim here because mathematics is so broad that it is seems likely that

there may be some counter-examples.
4Technically, the Mizar language has had several different versions, but for our purposes we can focus

on the modern incarnation which is used in the system primarily referred to as Mizar.
5The applicability and checkability are both achieved in Mizar, but reading Mizar proofs is certainly an

acquired skill. The Naproche system described in the next section aims to do better at this.
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(by induction, contradiction, reasoning by cases etc.) under the standard macrostructural
elements (dividing proofs into axioms, definitions, theorems, lemmas etc.). Proving in
Mizar is aided by the ability to type the variables and objects being considered (e.g. as
reals, integers, sets etc.) and furthermore it is possible to define new types to work with.
Structurally, Mizar proofs are required to follow the standard style of forward reasoning.
The proofs in this language differ from informal proof, however, because they need to be
fully formalised into the language of Mizar and explicit, in that every proof-step needs to
be written, which means that Mizar proofs are generally longer than informal proofs.

Once one has written an article in the Mizar language, the text is sent to the Mizar
checker, which mechanically checks the given proofs. The technical side of the computa-
tional process involves putting the proof through six different modules sequentially. First,
the scanner makes an initial pass of the text, primarily to divide the text into its component
parts or tokens, picking out the various symbols, numerals, reserved words etc. Secondly,
the parser module takes the stream of tokens from the scanner and checks for syntactic
correctness with respect to the grammatical rules of the Mizar language. Furthermore the
parser generates the representation of the article that can be computationally handled by
later modules. Next, the analyser works on disambiguating notation and constructions
by using type information from the text.6 The reasoner then verifies that the strategy
of the proof will actually prove the formula it intends to prove. Then the checker goes
through the proof verifying each individual inference. This is done by checking that the
conjunction of the premises and the negation of the conclusion together classically imply
a contradiction. This requires more mathematical content than first-order predicate logic
provides, so Mizar proofs assume the axioms of Tarski-Grothendieck Set Theory. However,
the checker skips the formula schemata which use free second-order variables; these are
checked separately by the schematizer module at the end. If the proof fails in any of the
modules, an error code is generated and the user can rework their proof, otherwise the
proof is accepted.

The third part of the Mizar system is the MML. The MML by now contains a huge
amount of formalised mathematics; at the time of writing it contains 51762 theorems, 10158
definitions and 787 schemata in 1150 articles.7 More and more theorems and definitions
are constantly being added to this collection. Allowing articles to reference and utilise
results from other articles in the MML means that formalised mathematics in the Mizar
system can emulate the cumulative aggregation of mathematics that is found standardly in
regular mathematical practice. This, in turn, makes it possible to approach and formalise
mathematics well beyond the basic foundations that are usually tested by such systems.
The MML contains a large number of reasonably advanced theorems including the non-
denumerability of the continuum, Ramsey’s theorem, Sylow’s theorem and key results from

6For example, the analyser may be required to choose between different operations with the same symbol,
which is done using the types of the objects that the operation is applied to.

7These figures were taken from the MML Query homepage 〈http://mmlquery.mizar.org/〉, maintained
by Grzegorz Bancerek of Bialystok Technical University in Poland, on 28/04/2012.
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diverse areas of mathematics. Proving such theorems clearly indicates the level of progress
being made by formalised mathematics.

3.3 A Look at Naproche

In the previous section I mentioned that reading formal proofs in Mizar, while very much
possible, does require familiarity with the system and it’s phrasing. There is an automatic
translation system which presents Mizar proofs as readable mathematics ready to be pub-
lished in the Journal of Formalized Mathematics, however this only makes the Journal
reader-friendly, not the Mizar language itself. In contrast, the Naproche system is de-
signed to be much easier for the everyday mathematician to get to grips with. Naproche
is a front-end system for Coq, already described in section 3.1, and takes (LATEX) textual
inputs of mathematical texts, converts them into first-order logic and then feeds them into
Coq for verification. “Naproche” itself stands for Natural Language Proof Checking and
puts greater emphasis on incorporating the linguistic study of informal mathematics into
Formal Mathematics. The main introduction to Naproche is [39], which I will draw on in
this section’s explanation of the system.

The central idea of Naproche is to develop a controlled natural language which can be
straightforwardly used to read and write mathematical proofs but which simultaneously has
a canonical representation in first-order logic. A controlled natural language is a language
which maintains many features of natural language (in the case of Naproche: standard
mathematical vernacular) while sufficiently limiting its notoriously unruly character by
restricting the number of words and sentence structures that are allowed to be used, thereby
allowing the text to be read and interpreted by a computer. To do so the Naproche
system takes advantage of the highly structured nature of mathematical proofs, even in
their informal form. As we shall be seeing in section 3.4 on Formalism, this structure
and the heavy use of pieces of formal mathematical terms and interrelations is one of the
main motivations for the Formalist belief that maths is actually a formal enterprise. The
Naproche project is about maintaining the ease of using natural language combined with
mathematical terms, while controlling this language such that it is sufficiently simple that
an automated system can pinpoint the canonical and intended meaning.

The method for achieving this is that a mathematical text given in Naproche has a
unique corresponding Proof Representation Structure (PRS) which are modified versions
of Discourse Representation Structures for natural language semantics as in [36]. These
are used to parse and disambiguate the natural language components of the text and
their relation to the mathematical terms. The PRSs keep track of three different types of
referents in the text and a list of conditions on those referents. The discourse referents
are used to pick out the objects that are in the domain of discourse, i.e. those that can
be referred to. In the case of informal mathematics, this can be either mathematical
objects like numbers, sets, groups etc. or the symbols and formulae of the language.



28 CHAPTER 3. FORMAL PROOF AND FORMALISM

Then mathematical referents are specifically the terms and formulae of the text themselves
(rather than the objects referred to, as is the case for discourse referents), but these can
be bound to discourse referents by a listed condition. The textual referents are used to
pick out other proofs or lemmas that are being used to support the inference step. A full
proof is then built out of a large number of these PRSs, which can be related in various
ways and even nested within each other as conditions. More on the technical details of
PRSs can be found in general overview in [39] or in depth in [37], but the important point
is that each Naproche text has a unique PRS and this, in turn, has a unique translation
into first-order logic. The computational system for Naproche thus takes the outputted
canonical first-order form of the PRS for the proof and verifies it with Coq, reporting back
the results to the formaliser.

As in Mizar, Naproche has standard mathematical macrostructure; mathematical texts
are divided into axioms, definitions, theorems and lemmas. Many standard mathematical
proof-techniques are implemented, such as proof by contradiction, reasoning by cases and
all of the valid proofs of natural deduction. On top of this it allows various types of
definitions, including recursive definitions of functions. Naproche implements a simple to
use system of assumption introduction and discharging via its natural language phrasings,
as well as useful and intuitive variable-binding methods.

A comment on the current status of Naproche is needed to warn that it is still a work in
progress. Its development has been guided by a motivating example of wanting to formalise
a foundational construction of elementary mathematics, that of Landau [41], meaning that
features necessary for that task have taken priority. Two missing pieces that I would’ve liked
for the example I will give in section 5.3 are set-theoretic notation and functions. Although
Naproche does have the membership relation, to properly formalise the set-theoretic version
of the problem that I will attempt, more set theory is needed (especially because the obvious
way to bypass the lack of curly-brackets notation by reducing everything to first-order logic
with ∈ is blocked by limitations on ways in which definitions can currently be constructed
in Naproche.) Secondly, function, though present in naproche, are restricted to elementary
arithmetical functions which is understandable when motivated by Landau’s text, but is
prohibitive when it comes to wider applications.

Furthermore, Naproche as it stands avoids worries of types and typing by not mixing
different types in different proofs. A long-term solution will be necessary if Naproche is
to proceed. On top of this, in order to do anything beyond the very basics of elementary
mathematics, it needs some way of invoking previously established results is needed, as in
Mizar’s MML.

I will return to Naproche in section 5.3, where I will work through an example of
formalisation in the Naproche system. For now, though, I will move on to the philosophical
position that draws most heavily on formal proof and formalisation: Formalism.
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3.4 A Brief History of Formalism

The basic observation behind Formalism is that a great deal of mathematics is about the use
of formal calculations, manipulations and rules, which might lead one to wonder whether
this is all there is to mathematics and mathematical proof. A lot of what is taught at an
elementary level is about how to flip the puzzle pieces of arithmetic around the pivot of
the equality sign, which is essentially a formal exercise involving little or no reference to
the terms’ content. It is easy to see how this line of thought might lead someone to the
idea that mathematics is nothing more than performing moves in some elaborate game or
the shuffling of empty symbols. In this section I will look at the history of Formalism as
a position in the philosophy of mathematics, following the historical accounts given in [60]
and [65].

Let us begin with two early versions of Formalism, Term Formalism and Game Formal-
ism, which are given their academic pedigree more by the criticisms received from Frege in
[24] than by their own positive positions. The proposals for these two types of Formalism
criticised by Frege were forwarded by Thomae in [63] and Heine in [32], but as Weir points
out in [65] they fail to distinguish properly between the two positions.

First up, Term Formalism is the view that the subject of mathematics is not the abstract
referents of mathematical terms but, rather, the terms themselves. By seeing things this
way, the hope is that they will avoid some of the trickiest questions in the philosophy of
mathematics, those of ontology and knowledge. Their answer provides a straightforward
ontology of mathematical terms, which we can know about by writing down tokens of
them, manipulating them and stating facts about them. But really, this idea fails to
get off the ground; questions of truth mostly fail to have any sort of proper answer and
even the ontological simplicity leaves us in a limited position when it is observed that
most mathematical objects don’t have individual terms to refer to them (think of the real
numbers, most of which do not have specific terms that name them or to write them down
with). It is not entirely clear what the Term Formalist is even to make of proof: do they
show us new properties and relations between the tangible signs of mathematics? If so,
then it seems they step beyond the bounds of Term Formalism, but, if not, it is necessary
to give an account of what proofs do do.

A slightly stronger proposal is Game Formalism which draws on the idea that mathe-
matics is about nothing more than knowing the rules for mathematical ‘games’. For each
part of mathematics there are rules as to how we may manipulate and move between
propositions, calculations and formulae; rules which make up elaborate games which are,
on this view, the essence of mathematics. Any further meaning of mathematical terms and
objects can be set aside when actually practicing or playing the game of mathematics, or
even more radically be said not to exist at all. As with Term Formalism, there is a strong
nominalism running through this stance: mathematics isn’t about objects but about the
rules8, epistemology is simply the knowledge of rules and truth is established by showing

8The over-used analogy to chess comes in handy here, for it is easy to argue that the pieces on the
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that something follows about the game pieces of mathematics by these rules. Even proof
makes more sense now because it can be seen as a description of some series of turns of
the game being played out. Although this position may be more coherent than Term For-
malism, it is still not particularly convincing in its given form. For one thing, examining
mathematical practice reveals that the game analogy isn’t perfect because mathematicians
are guided by content and meaning. Furthermore, the point of rules in a game is usually to
get somewhere and achieve some goal (to win the game!) but if maths is just a collection
of rules, what is the point? what guides us to find some results interesting rather than
others? Frege’s criticism [24] of Thomae’s version of Formalism [63] presses the point that
mathematics is highly applicable in ways that other games are not, which at least warrants
explanation.

While both of these two simplistic versions of Formalism were found wanting by Frege,
this did not mark the end of Formalism. The development of logic, proof theory and
axiomatics at the end of the 19th led to the possibility of giving a new version of Formalism.
A new position, called Deductivism, saw mathematics as investigating logical consequences
of stipulated axioms. Mathematical practice is about taking a few foundational statements
which introduce your primitive terms and discovering the logical consequences of them by
explicit logical inferential rules, leading to the moniker “If-Then-ism”. Mathematics on
this view is about formal proofs and proving as defined in 3.1. A great benefit to this is
that it removes all reliance on intuitions in mathematics, making all properties and rules
clear and syntactic. Although historically mathematics is heavily rooted in its applications
(as described by Maddy in the first chapter of [47]), Deductivism treats the axioms for
well-known mathematics as if they are arbitrarily stipulated and reads the primitives to
have no content beyond that ascribed by the axioms. Hence the famous story of Hilbert’s
declaration that

... one must always be able to say, instead of “points, straight lines, and planes”,
“tables, chairs and beer mugs”. [31, p. 403] (translation from [60, p. 151])

The point is that the interpretation of these terms is of no relevance to the consequences in
the formal system, for the theorems established in mathematics are logical consequences of
the axioms of one’s system. So if the axioms are interpreted in such a way that they come
out true, then it follows as a matter of logical necessity that all of the formal consequences
in the system are true on that interpretation too.

Hilbert is commonly seen as the figurehead of Deductivism because of his work in [30]
in which he applies the Deductivist methodology to Euclidean geometry, giving axioms for
geometry and justifying all inferences based on logical relations. All spatial and geometric
intuitions are reduced to mere aids to understanding for the reader. We can apply the

chessboard are not crucial for playing a game of chess: so long as the rules of chess are observed, it would
be equally acceptable to draw one’s board in the dirt or even picture it in your mind. The ontology of chess
is therefore not important, so by analogy that of mathematics need not be either. Such stark minimalism
is not to my liking: I will raise an objection to this in section 6.4.
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system of geometry by interpreting the primitives in the axioms with actual lines, points
etc and thereby also apply the geometric theorems.

The study of deductivism opens the way for new meta-mathematical investigation. As
above, models can be given for the axioms to demonstrate satisfiability; models can be
given to satisfy some but not all of the axioms, to show the logical independence of the
axioms from one another; and questions of consistency can be asked and investigated.
Eventually such investigations did lead to problems for Hilbert’s grander ambitions9, but
this should not detract from the wide influence Deductivism has had. As evidence for this
we can cite the fact that a view along these lines is the target for Rav’s criticisms.

I will now brush over several other Formalist positions such as those proposed by
Curry, Carnap, Quine and, more recently, Weir, details of which can be found in the
Stanford Encyclopedia of Philosophy article [65]. Instead, let me turn to a new version of
Formalism that has arisen to meet Rav’s challenge.

3.5 The Derivation-Indicator View

One of the main Formalist responses to Rav’s [55] is Azzouni’s paper [3] which outlines
what he calls the Derivation-Indicator View of mathematical practice.

Azzouni does not wish to argue with those who claim that informal proofs are indispen-
sible in mathematical practice, for just looking at mathematical practice reveals this to be
the case. However, he contends that something more than social agreement among math-
ematicians is required to explain why there is such an overwhelming consensus over what
counts as a formal proof. The reason that we are so good at reaching such an agreement,
he claims, is that informal proofs indicate formal derivations: whenever a mathematician
presents an informal proof, that proof actually reveals a derivation of that theorem. Unlike
other Formalist positions though, he says:

... a standard mathematical proof indicates any of a family of derivations
without those derivations (1) being what standard proofs abbreviate, (2) being,
in some more extended sense, the ‘logical forms’ of such proofs, or (3) being
items that such proofs are ‘reducible to’. [4, p. 142]

In an analogous way to proof sketches indicating how a full proof must proceed, Azzouni
sees proofs as derivation sketches which indicate how a formal proof would proceed. An
informal proof can then be filled out into a full derivation by formalising missing syntactic
steps that mathematicians gloss over as obvious or trivial. But informal proofs do not
specify which system or language they are working in or what the acceptable manipulation
rules are for their indicated formal proofs. This is why he says they indicate families of
derivations rather than specific individual formal proofs. For

9I am, of course, referring to plan to use Finitary Mathematics to prove the consistency of Ideal Math-
ematics, shown to be impossible by Gödel’s Incompleteness Theorems.
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...since algorithmic systems embedded in one another are so embedded to con-
serve derivational results, we can take the derivation indicated to be one located
in any algorithmic system within which the result occurs and is surveyable. [3,
p. 94]

Furthermore, these systems make use of implicit rules and axioms, which mathematicians
recognise as being used in the mechanically checkable informal proof10 without needing
them explicitly stated to understand the theorem, because mathematicians know and un-
derstand how such rules work. This view of mathematical practice also holds that in
practice we do not worry if we add new rules, i.e. augment the system we were implicitly
working in with new implicit rules, the only restriction being that the newly augmented
system is conservative over the old system. Conservativity is important because this should
allow conservative translations between systems in the way that Azzouni describes:

...we (implicitly) stipulate a co-referential identification among terms in differ-
ent systems; this in turn induces an identification among statements in different
systems, and of course, an identification among concepts. [3, p. 100]

With this added observation, an informal proof will indicate a derivation which can be
found in a whole family of formal systems with the conservativity result holding over
them. Therefore, Azzouni paints a picture of mathematical practice where

... the mathematician is seen... as gracefully sprinting up and down algorithmic
systems, many or which he or she invents for the first time. [3, p. 103]

Having outlined the Derivation-Indicator view, in the next section I will examine an
argument levelled against it based on the practical limitations of formal proofs.

3.6 Grandmother, What Large Derivations You Have

In this section I will consider the argument in [53] where Pelc argues against the Derivation-
Indicator version of Formalism by claiming that it is theoretically impossible to mechani-
cally check advanced mathematical theorems once they are given as formal derivations and
that therefore we get no epistemic benefit from them. In my view, Pelc’s argument demon-
strates an underestimation of the field of Formal Mathematics that leads to dismissing the
Formalist position for the wrong reasons.

Pelc begins the argument as follows:

We want to argue that not only do mathematicians not in practice use deriva-
tions to get or increase confidence in their results, but that in the present state

10That informal proofs are all mechanically checkable seems to follow, for Azzouni, from all mathematics
being somehow algorithmic, but how a mechanical check of most informal mathematics should proceed is,
according to this thesis, rarely straightforward.
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of knowledge it is theoretically impossible to achieve such a gain of confidence
in the case of most interesting mathematical theorems. [53, p. 88]

Pelc’s claim is thus that in order for formal derivations to provide an increase in confidence
over informal proofs alone there must be at least the theoretical possibility of mechanical
verification of that derivation. He then tries to demonstrate that the hypothetical length
of derivations corresponding to deep theorems makes it theoretically impossible to carry
out such a mechanical check.

As an example (and explicitly avoiding the commitment to this as anything more than
an example) Pelc chooses to consider derivations in ZFC as a commonly accepted ax-
iomatisation to act as a foundation for mathematics within which one could theoretically
formulate all or most of mathematical reasoning.11 As an example of a deep theorem with a
long and extended proof he selects Fermat’s Last Theorem (FLT).12 Using L(T ) to denote
the length of the formal derivation of T , he argues:

We conjecture that in the case of most ‘complex’ ‘deep’ theorems T , and in
particular in the case of FLT, it is impossible to provide (and justify) any
upper bound on L(T ). We agree that this is a bold statement but we would
like to challenge a skeptical reader to provide (and justify!) any upper bound
on L(FLT). [53, p. 91]

Next, Pelc calculates the (extremely large) number of mechanical checks that could
potentially be performed in our universe.13 The result of this calculation, the integer M ,
is a very generous upper bound on the number of individual mechanical checks we could
conceivably carry out. From this it is argued that

Consider a derivation of length larger than M . The hypothetical existence of
such a derivation of a theorem T could not possibly contribute to our confidence
in T because we could never have any kind of access (even theoretically) to all

11An interesting issue that arises is that Pelc may not be right to suppose that ZFC is powerful enough
to formalise Fermat’s Last Theorem. A post of Dec 2007 from the Foundations of Mathematics mailing
list in which Timothy Y. Chow quotes an anonymous correspondent discusses this particular pairing. The
worry is that the proof of Fermat’s Last Theorem uses cohomology theory, which may require the use of
Grothendieck universes. These are generally of a consistency strength of ZFC plus countably infinitely many
strongly inaccessible cardinals, so strictly stronger than ZFC. Fortunately for us, when we switch to making
an estimate for the length of a formal proof of FLT in one of our proof checkers, we can suppose we are
using Mizar since the axiomatic basis for this system is Tarski-Grothendieck Set Theory which guarantees
the existence of these universes, sidestepping the problem entirely.

12Presuming, of course, that Fermat himself did not have a significantly shorter proof as hinted at in that
famous margin.

13This is done in the following way: he takes the unit of Planck time, the lower bound on the duration
of any observable physical event and therefore the shortest amount of time that any one single check could
take, and sees how many could fit into the entire duration of the universe (before the heat death caused by
reaching maximum entropy), then multiplies this by the number of particles in the universe, which acts as
an upper bound on the number of potential parallel processing units.
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the terms of such an extremely large sequence of formulae, and hence we could
never verify that it is indeed a correct derivation. [53, p. 93]

Calling a theorem reachable if the length of the shortest proof in the chosen axiomatic
system (in this case ZFC) is less than M , Pelc concludes that since we currently do not
have the fact of the matter settled on whether FLT is reachable, it is unknown whether it
is theoretically possible to mechanically check the formal derivation of it, so the Formalist
cannot claim any gain in confidence for the theorem based on this.

Unfortunately, FLT is not yet among the list of theorems proved in Mizar, nor of
any theorem checker. However, the continually growing list of successful formalisations
in systems such as Mizar can be used to make a convincing argument in favour of the
reachability of FLT or, for that matter, any other given theorem that has been proved
informally.

Pelc spends a lot of time emphasising just how huge M is and allows generous over-
estimations at every point of its definition. In contrast, the number of computations
needed to mechanically check the theorems already proved in Mizar is really rather small.
Of course, there is a lot of mathematics to formalise before one could even start to formalise
FLT in Mizar: Wiles’s proof proceeds by proving a special case of the Taniyama-Shimura-
Weil Conjecture (or the modularity theorem now it has been fully proved) which would
need Mizar to have considerable background in the modular forms and elliptic curves that
the theorem deals with, as well as category theory, Iwasawa theory and many other areas of
mathematics that are made use of in the proof. On top of this, Wiles’s original paper [68]
is over 100 pages long. Now supposing, as Pelc does, that all of the required mathematics
could in theory be formalised, the challenge he presents is to give a reason to expect that
the final formalisation is reachable.

That reason, I claim, is that for a formalisation of a theorem already proved informally
to be unreachable, that is to be longer than the gigantic M , would require a massive blow-
up of length in the translation from the informal to the formal proof. The choice that Pelc
makes to consider ZFC as the formal system is less harmless than it seems: experience
tells us that ZFC derivations are particularly long and cumbersome; thereby making us
suspect that deeper theorems may get exponentially longer, and that it might well follow
for it to be possible for a full derivation to become unreachable. Mizar articles, however,
certainly are longer than their informal counterparts but generally this is only estimated to
be around four times longer.14 Thanks to the use of the MML, it is also reasonably clear
that this will stay constant rather than growing exponentially as the proofs get deeper.
Even if this four were instead one million it would not be sufficient to make FLT even
close to unreachable. Coupling this with the efficiency provided by the accumulation of

14Based on a survey of articles by Wiedijk found at [66]. Wiedijk is looking at the ‘de Bruijn factor’,
named after N. G. de Bruijn because he describes the phenomenon of ‘blow-up’ from informal proof to
formal proof in [13]. He calculates this by comparing the length of the TEX encoding of various informal
proofs to that of their formalisations.
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results provided by the MML, it seems obvious to me that any proof that could be humanly
written without the aid of a computer, and theoretically has a formalisation, will without
a doubt also be reachable.

Recall that the argument provided by Pelc relied on the following:

Since no upper bound on L(FLT) has been justifiably provided, the answer to
the question of whether FLT is reachable is unknown. Given the fact that the
number M is so enormous, one would be tempted to give the answer ‘yes’ to
this question, i.e., to establish M as an upper bound on L(FLT). However, as
observed before, this has never been done (and seems impossible to do, although
we do not need this stronger conjecture in our argument). [53, p. 93]

Well, let me do some calculations. The journal article proof of Fermat’s Last Theorem by
Wiles [68] has 247,666 characters, but we recall that Wiedijk looked at TEX files rather than
the journal article. Based on experience, TEX files are slightly larger but not incredibly
so, especially since Wiles’s article contains large amounts of text which has essentially no
blow up at all. To give a generous bound, let us suppose that for Wiles the TEX file was an
order of magnitude larger at around 2.5 million characters.15 Then I should take the largest
scaling (rather than the average) of Wiedijk’s survey since we are looking at upper bound:
this was Topological Analysis in HOL Light which scaled up 8.8 times from informal to
formal proof. Multiplying these up leads us to a generous estimate of 22 million characters
for the length of the formal proof of Fermat’s Last Theorem.

Is this enough to satisfy Pelc’s demand? Certainly I think so: it has been justifiably
provided estimate based on empirical data, the proof available and the current forefront of
theorem provers. What has been provided is not a proof and is undeniably defeasible, but
Pelc’s requirement cannot be to prove that this upper bound is correct, that is, to provide
an indefeasible estimate, as this simply demands too much. Even if a convincing argument
could be made that these estimates were not sufficiently generous (which I do not expect
to be the case), the given estimate is tiny compared to M . I think it fully justified to
therefore state that, in all likelihood and by a reasonable estimate, FLT is reachable.

In this section we have seen how advances in Formal Mathematics can be used to
defend Formalist positions such as the Derivation-Indicator view from arguments against
the inadequacy of formal proofs. Such a link is made more sturdy by looking at [15] by
Carl & Koepke of the Naproche project, specifically presenting the Naproche system as a
potential way to elaborate some of the vaguer aspects of the Derivation-Indicator view of
mathematical practice, such as what “indication” amounts to exactly and how informal
proofs go about indicating formal proofs.

In the next chapter I will explore this link more thoroughly.

15As a comparison, this thesis only grows by a factor of 1.15 from pdf to TEX.
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Chapter 4

The Formalisability Thesis

In his discussion of informal and formal proofs (in his terminology: proofs and derivations),
Rav considers the following relationship that could obtain between them:

...it has been suggested to name Hilbert’s Thesis the hypothesis that every
conceptual proof can be converted into a formal derivation in a suitable formal
system: proofs on one side, derivations on the other, with Hilbert’s Thesis as a
bridge between the two. [55, pp. 11-12]

This, though, is entirely opposed to Rav’s own views:

...there is no proof, in the technical sense, of Hilbert’s Thesis... This is an article
of faith, and the number of believers in it is constantly dwindling. And even
if such a complete formalisation were in principle possible, who will do it and
who will guarantee that the formalisation has been carried out correctly, before
being fed into the computer for computer verification? [55, pp. 35]

What we see in these quotes are the outline of a particular version of the Formalisability
Thesis and a particular route for arguing against it. In this chapter I will make the case
that the Formalisability Thesis, as it is standardly considered, may be divided into a weak
and a strong reading. I will examine what the significance of these differences is and how
this should affect the debate surrounding the formalisation of proofs.1

A note on terminology: I shall from here on out use ‘formalisation’ to refer to the
process linking informal and formal proofs, and ‘formalised proof’ as the result of this
process.

1Much of the work done in this chapter is influenced by a discussion on the Foundations of Mathematics
mailing list between December 2007 and January 2008, initiated by Timothy Y. Chow. In particular, the
division I will present between the weak and strong readings of the Formalisability Thesis is an attempt to
clear up what was a central difficulty in that discussion.

37
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4.1 The Formalisability Thesis

It strikes me, in looking through the literature on the relationship between formal and
informal proofs, that statements and interpretations of the Formalisability Thesis which are
along the same lines as Rav’s version of Hilbert’s Thesis fail to provide a proper grounding
for a fruitful philosophical debate of the issue. This is because these statements conflate
two different ways of thinking about proof formalisability. In this section I will extract
these two different positions, showing the problem with trying to argue for or against both
simultaneously.

As a point of departure, let’s first begin with Rav’s statement of Hilbert’s Thesis:

HT Every informal proof can be converted into a formal proof in a suitable formal system.

The main new addition here that I have not yet considered in previous sections is the
suitability requirement. That the formal system should be suitable might be justified by
not wanting to trivialise HT. For example, any informal proof could in theory be converted
into a formal proof in the system which has the theorem to be proved as an axiom, but this
will lose all meaning of the informal proof and, furthermore, has no assurance (intuitive or
mathematical) that the formal system will be consistent. Although such a procedure would
convert informal to formal proofs, it certainly isn’t what is intended. Another possibility
is that ‘suitable’ is specifying that each discipline should be formalised in a particular
associated system or family of systems. For example, that arithmetic should be formalised
to an appropriate formal system of arithmetic while geometry should be formalised in a
formal system of geometry etc. This doesn’t really match up with practice, though, since
formalisation does often cross the borders between different areas of mathematics. For
instance, set theory is regularly used to formalise informal proofs from all over mathematics,
not just those pertaining to sets. Also, consider as an example Barwise and Etchemendy’s
[6] where they present their system Hyperproof which has a diagrammatic form of first-
order logic, which strongly suggests that the boundaries between subfields of mathematics
and logic should not be so strictly segregated in the formalisation process. Alternatively, a
weaker and more acceptable justification for adding a suitability requirement may simply
be that some formal systems are inappropriate for certain informal proofs to be formalised
into. It may be that the chosen system is logically too weak, that the formal language
cannot express key concepts of the proof or any other such formal limitation which might
prevent the formalisation being successful.

For the sake of continuing, and in line with the natural reading of the requirement, from
here on I will take a suitable formal system to be one which can adequately represent the
concepts, structure and reasoning of the informal proof (so is not deficient in its language
or logical strength) and for which there is no suspicion of inconsistency.

I am now claiming that HT separates into two distinct lines of thought concerning
formalisability.
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The first family of readings are those associated with the Formalist tradition in the phi-
losophy of mathematics, described above in sections 3.4 and 3.5. The Formalist approach
to HT is roughly along the following lines:

SFT For any correct informal proof and suitable formal system Λ, there is a corresponding
correct formal Λ-proof unique up to Λ-sameness.

SFT, here, stands for Strong Formalisability Thesis and we recall the notion of Λ-sameness
was introduced in section 1.4. This is a philosophical claim about the nature of informal
mathematical proofs and what it means for a proof to be correct. The SFT does contain
certain elements that need to be filled out more, and how this proceeds will depend on the
philosophical inclinations of the particular Formalist you are dealing with. Let me consider
two readings that could be given.

The first reading is the idea that informal proofs abbreviate formal proofs. Such a view
could be associated with Game Formalism or Deductivism, where the argument would be
that because all mathematics is about formal rules in our game of mathematics (for Game
Formalism) or derivations in formal axiomatic systems (for Deductivism), all informally-
phrased mathematics is actually just short-hand for a particular formal proof in a suitable
formal system Λ (unique up to Λ-sameness). Therefore, this version of the SFT sees formal-
isation as the process of expanding all such short-hand and hidden syntactic manipulation
to reveal the formal proof underlying one’s informal proof. However, I believe we should
call this abbreviative reading the Formalist Caricature for it is not much more than the
simplest way of thinking about Formalism and is a rather inadequate position we cannot
expect anyone to seriously defend. The second reading, that correct informal proofs indi-
cate formal proofs, is the Derivation-Indicator view we saw Azzouni advocating in section
3.5. On this view, we can see the correspondence of the SFT as that linking a correct
informal proof to one of the formal proofs it indicates.

For both the Formalist Caricature and the Derivation-Indicator view, a correct informal
proof is only correct in virtue of there being a correct formal proof that it corresponds to
in some suitable formal system (up to the sameness equivalence for that system). It also
follows on the account of the SFT that for any given informal proof and suitable formal
system Λ, that a formal Λ-proof will either be right or wrong, in the sense of belonging
to the unique Λ-sameness equivalence class corresponding to the informal proof. The
uniqueness condition of the SFT should be emphasised because this is the Formalists’ reason
for believing anything in informal mathematics can be correct at all: that each informal
proof depends on a specific formal correspondent in a formal system, which underlies the
informal proof, is abbreviated by the informal proof, is indicated by the informal proof etc.
Of course, this proof is only unique in each suitable system Λ up to Λ-sameness, but this
equivalence class is specifically taken to track when the mathematician would call formal
proofs “the same” so is still in line with the natural understanding of uniqueness.

For the SFT, there is no requirement that the correspondence between an informal
proof and the unique formal proof in a given system is actually accessible in a practical
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way. For example, the Formalist Caricature could hold that an informal does abbreviate a
fully formal proof in some system, but that practical limitations prevent reasonable access
to it, nonetheless convincing the Formalist that such a fully-expanded version does exist.
Likewise, Azzouni says:

My uses of “indication” (in “derivation-indicator” and the like...) may have
been unfortunate in the impression that they can give that the “indicating” of
a derivation by an informal proof is supposed to be phenomenologically visible
to the working mathematician. This was never my intention... [5, fn. 17]

From this we can conclude that the indication does not necessarily mean that we can track
the correspondence that Azzouni’s Formalism relies on.

While the Formalist SFT reading places the Formalisability Thesis firmly in the domain
of philosophers and conceptual analysis, this does not seem to agree with the fact that HT
reads very much like an empirical claim. The question of whether every proof can be
formalised is something that we can check, for any individual instance of an informal
proof, by going about the business of actually formalising that proof. Whether HT is true
or false does seem to be closely related to the success or failure of the field of Formalised
Mathematics described in chapter 3. I thus present a second reading of HT that emphasises
this empirical dimension of going about the process of formalising informal proofs. I shall
call this the Weak Formalisability Thesis:

WFT For every correct informal proof and a suitable formal system Λ, a sufficiently skilled
agent can transform this proof to a correct formal Λ-proof (possibly making some
non-trivial decisions in the formalisation process that result in formal proofs that are
not Λ-same).

The emphasis on the transformative process of formalisation here is key, for this reading
is all about the possibility of actually working through the process. The perspective on
formalisation, here, is also one that is agent-centric, in that it is carried out by some
sufficiently skilled agent who may be making important decisions which affect to formal
proof that is produced. The agent draws upon their understanding of the informal proof to
try to give a formal reconstruction of the proof. Formalisation for the WFT is different to
the ‘correspondence’ account emerging from SFTf: the process of formalisation may well be
possible in many different ways. It may be that different formalisers will produce different
formal proofs by making different decisions as to what the mathematical content of the
informal proof is, by making different choices as to how to best represent that content or,
most likely, both. The SFT corollary that a formalised proof is either right or wrong, is
not warranted for the WFT because many different formalised proofs may be acceptable
formalisations for any given informal proof. Take note that these different proofs are not
just distinct, but may be sufficiently different to no longer be Λ-same in the chosen system
Λ. As a result, an informal proof can correspond to a selection of substantially different
formal proofs. Implicit in this is also that formalisation must change an informal proof.
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The WFT lends itself to pragmatic considerations: different choices during formalisa-
tion will result in formalised proofs that may be good or bad for different purposes. The
choice of which system will be the Λ will affect this, but also different decisions may reveal
different things about the informal proof. The fact that the informal proof is changed can
be beneficial in additional ways, such as casting a known proof in a new light or in revealing
new mathematics (as happened in formalising the Four Colour Theorem in [28]).

Since these positions have not been distinguished in this particular way in the past, let
me re-emphasise the differences. On one hand we have a proposal about the philosophy of
mathematics and the nature of mathematical proofs. A correct informal proof corresponds
to a formal proof in some suitable system Λ, where this formal proof is unique up to Λ-
sameness. The process of formalisation is not itself important except as an epistemic tool
to discover the deeper nature of the given proof, but may even be inaccessible to us. On the
other hand, there is the agent-centric approach in which the process of formalisation and
the decisions that come with it are of main importance. Formalised proofs are no longer
necessarily right or wrong but instead are pragmatically useful. Formalisation does change
the informal proof, the outcome of which depends on the formaliser and the decisions they
make to get there.

4.2 From Two Readings to Two Debates

Having separated the two different ways of looking at the Formalisability Thesis, I will
outline the two separate debates that take shape around it. To my knowledge, this has not
been explicitly discussed in previous works2 and I believe it is an important observation
to make, which I will show by taking some examples of the previous literature where the
arguments misfire by conflating the two positions. First, though, let me give very general
characterisations of the two debates as they stand.3

Formalism, as outlined earlier in section 6.4, has been a prominent position in the
philosophy of mathematics so the debate over the Formalist reading of the Formalisabil-
ity Thesis is fairly well-known. Proponents of this view, including Azzouni, will make a
philosophical case for Formalism. They may invoke mathematical practice and examples
of pure calculation and symbolic manipulations to support their position, but the use of
these is usually to draw upon the readers’ intuitions that mathematics is inherently about
formal manipulations. As mentioned previously in section 2.1, a common line of argu-

2This is not entirely accurate. In [23] Feferman emphasises the difference between the Formalisability
Thesis holding that every informal proof can in principle be formalised, and the “Formalist Thesis according
to which mathematics has no content but merely consists in following formal rules” ([23, pp. 373-374]).
However, his interpretation of the Formalisability Thesis is in fact far closer to the Formalist reading I gave
than to what is claimed by the agent-centric approach to formalisation.

3Although, I think the lack of distinction between the SFT and the WFT has caused confusion in the
past, so the recaps here divide up which of the two debates different lines of thought should be in rather
than where they actually are.
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ment in favour of Formalism comes from equating formality with rigour, that mathematics
is only rigorous if all assumptions and rules of inference are entirely explicit. To argue
against Formalism therefore requires an account of mathematical rigour that separates it
from formality, or at least reasons to think that such an account will be the correct one.
The debate does not concentrate on the practicalities of formalising proofs, nor does it
invoke the more advanced areas of formalised mathematics when such actual formalisation
is mentioned. This may be because those arguing against Formalism often point out that
formalisation changes the proof, an objection which may be effective against the Formalist
position but does far less damage against the weak reading of the Formalisability Thesis.
The debate can thus be primarily characterised as based on philosophical discussion on
both sides, with a focus on giving a correct account of mathematics. The mathematics
being treated by the Formalist, however, is often rather idealised so many detractors point
out that mathematical practice does not lend great support to Formalism.

The debate over the practical, empirical side of the Formalisability Thesis is different.
Whether or not every proof is formalisable, on this reading, is a question which is possible to
investigate. An ideal refutation would offer a counter-example, some correct informal proof
which could not be formalised.4 Such a counter-example, however, is not forthcoming, nor
should we really expect one. For presenting a proof as ‘unformalisable’ offers a very clear
target for those who believe all proofs can be formalised to attempt to formalise (as I will
do in chapter 5!). A slightly more promising avenue of criticism against the agent-centric
approach will thus be to give a solid reason why certain parts of mathematics will fail to
be formalisable. It seems all that supporters of the WFT need in response to this is to
watch as more and more sub-disciplines of mathematics are successfully formalised, while
fending off arguments as to why it is conceptually impossible to complete this programme.

Let us see how distinguishing these two readings is advantageous in dealing with the
discussion found in previous literature.

The most obvious first candidate for reconsideration is Rav. Above, in the introduction
to this chapter, we saw Rav saying:

And even if such a complete formalisation were in principle possible, who will do
it and who will guarantee that the formalisation has been carried out correctly,
before being fed into the computer for computer verification? [55, pp. 35]

Rav’s project is more aimed at undermining the Formalist reading of the Formalisability
Thesis. Yet in this quote we find a problem that in essence challenges the WFT, since
this is the reading on which we find practical computer verifications (the SFT does not
require that we know which formal proof an informal proof corresponds to). A glib reading
of Rav’s problem could be fended off easily: we can simply deny that there is a ‘correct’
formalised proof because, as we know, the weaker reading isn’t about correct or incorrect,
but about the pragmatic benefit of formalised proofs. However, there is a deeper point to

4In [43], Leitgeb refers to this as the “Holy Grail”!
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Rav’s questions which needs a response: how can we say that the formalised proof correctly
formalises the informal proof? A pragmatist position, though, allows for practical answers
and in this case I think the answer can be as simple as community consensus. As in
section 1.4 where I discussed the sameness of proofs for informal proofs and formal proofs
separately, suggesting that there is a natural notion of sameness of proofs, there is no reason
for the mathematical community not to be able to apply the notion across and between
the two categories, especially in systems like Naproche and Mizar which try to follow
standard mathematical style. Appealing to a mathematical community has advantages
and disadvantages: on the one hand, it explains why there are times when there is serious
disagreement about correctness but, on the other hand, it does give an entrance for human
fallibility to make an appearance through. Nonetheless, without making the two different
debates explicitly distinct such a path to respond to Rav would not have been open to us.

Making the distinction between the two readings also allows us to reject arguments
against formalisation of proofs based on the purpose of proof, such as [34] in which Hersh
argues that

All real-life proofs are to some degree informal. A piece of formal argument—
a calculation— is meaningful only as part of an informal proof, to complete or
verify some informal reasoning. The formal-logic picture of proof is a fascinating
topic for study in logic. It is not a truthful picture of real-life mathematical
proof. [34, p. 391]

Central to Hersh’s argument is that the role of proof in mathematics is to convince and
explain, thus informal proofs are the only required type of proof in mathematics. Having
observed our distinction, though, it is revealed that such argumentation begs the question
against the Formalist and misfires against the proponent of the weaker reading. For the
Formalist position is precisely saying that mathematics is only formal manipulations, while
the WFT picture does not strictly require the truthfulness to real-life mathematics, since
the formalised proof is a reconstruction rather than a picture going for total accuracy. The
purpose of giving a formal proof, as Hersh acknowledges, does not necessarily need to be
to convince or to explain, but this does not need to lead to his stronger conclusion that
the formalised proof is no longer a proof.

Another example of where such a distinction adds clarity is in the work of Robinson who
has written extensively on formal and informal proofs and mathematical rigour (and who
will figure prominently in the coming chapter 5). In his [59] he does seem to be addressing
what amounts to the agent-centric reading of the Formalisability Thesis, yet his problems
like

Formalization of a given informal proof then often turns out to be surprisingly
difficult. The translation from informal to formal is by no means merely a
matter of routine. In most cases it requires considerable ingenuity, and has the
feel of a fresh and separate mathematical problem in itself. [59, p. 54]
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and

There is no formal criterion for judging the correctness of a formalization—
indeed, how could there be? The judgement is necessarily intuitive, and it is
not at all clear why the intuition should be granted the final word here when
it is deemed untrustworthy as an arbiter of the validity of the proof itself. [59,
p. 54]

That translation from informal to formal is not a matter of routine is a problem for the
AI work Robinson is mainly interested in, but the requirement of having a skilled agent
carry out the process is even built into the WFT. Furthermore, the WFT does not see
formalisation as revealing that corresponding formal proof which the validity of the informal
proof relies on, so the intuitive nature of the judgement is not problematic for this reading.
Once again, though, these can be re-phrased as more direct criticisms of the SFT. The
defence the SFT would have against Robinson’s questions would be the lack of need for
the correspondence to be accessible to us. So now it can be asked: how does it make sense
for the correspondence to be inaccessible to us (as in the Formalist Caricature) or, more
bizarrely, phenomenologically invisible as Azzouni claimed the derivation-indication can
be (in the quote used in section 4.1). Certainly, such questions need answers and are now
directed at their proper targets.

The main point of separating these debates, however, is that it now allows me to
defend two positions which on the conflation of the two debates would have been opposing.
In section 6.3 I will argue in favour of the WFT, then in section 6.4 argue against the
Formalist reading given by the SFT. Without dividing the Formalisability Thesis properly
these stances may have appeared inconsistent, but now I can show that accepting the one
while rejecting the other presents the best position regarding proof formalisation.



Chapter 5

A Sample Formalisation

This chapter is dedicated to an attempt at going through the practical process of formali-
sation. I begin by presenting the mutilated chess board example that will be the subject of
the formalisation. Next, I extract what I see as the mathematical content of the example,
still informally but as a step towards formality, which I then follow up with the formalisa-
tion itself. I finish this chapter with some discussion of what the example involved on the
part of the formaliser.

5.1 Mutilating Chess Boards

In [58], Robinson discusses the relationship between formal and informal proofs. On formal
proofs, he says

... all systems of formal proof are essentially similar in that they are really no
more than notational systems for providing a display or trace of a systematic
virtual search computation. [58, p. 270]

Robinson’s focus is proof produced by automated theorem provers for which this is broadly
correct. The essence of Robinson’s problem with formal proofs, though, is that while these
search algorithms may verify a theorem to have no counter-examples, in doing so they
obscure or lose the essence of the proof. He argues that what makes informal proofs
preferable is that they still manage to be rigorous, while also presenting the insight that
justifies to us and convinces us of the truth of the mathematical claims. The point seems
to be that formal proofs as constructed by computers will always fail to be capable of
working with such proof ideas, forever doomed to approaching problems by brute force
and enumeration:

What I have tried to do is to suggest why it is that ‘real’ informal-but-rigorous
proofs are so different from the formal ones which our theorem-provers con-
struct, and why I fear they must always remain so. [58, p. 280]

45
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Yet, Robinson’s characterisation of formal proofs by automated provers may not nec-
essarily transfer to formal proofs simpliciter thanks to expansive developments in the field
of Formal Mathematics that we saw in part 3. For one thing, for automated provers the
search for counter-examples makes up the whole of a formal proof whereas in the systems
we considered each step of a proof is checked individually. The main difference, then, is
that a human formaliser can now retain large parts of an informal proof in the formalisation
process. The importance of the agent to the formalisation process will feature heavily in
sections 5.4 and 6.3.

Robinson used two main examples to illustrate his points and I will here focus on one
of those: the Mutilated Chess Board Problem. This is the classic brain-teaser of whether
a chess board with two opposite corners removed can be completely covered by dominoes
(where each domino covers two squares of the board). To make the point discussed above,
Robinson compares an informal proof with a proof by total enumeration, illustrating the
fundamental differences between them. In this part of the thesis I will attempt to formalise
the reasoning that was used in Robinson’s informal version of the proof. The process
of attempting to formalise such an informally presented problem will be helpful to the
philosophical quest into the relationship between formal and informal proofs. It should be
noted, however, that this formalisation has already been done in Mizar, found in [7]; in
section 5.4 I will compare my Naproche formalisation to this Mizar version.

To begin formalising the mutilated chess board problem and the impossibility of domino-
covering, we first need its informal proof. The problem and answer are set up with the
following two quotes, taken from the earliest recorded sources of the puzzle. So as not to
misrepresent the informal proof, let me reproduce these quotes in full.

An ordinary chess board has had two squares—one at each end of a diagonal—
removed. There is on hand a supply of 31 dominos, each of which is large
enough to cover exactly two adjacent squares of the board. Is it possible to
lay the dominos on the mutilated chess board in such a manner as to cover it
completely? [12, p. 157]

It is impossible ... and the proof is easy. The two diagonally opposite corners
are the same color. Therefore their removal leaves a board with two more
squares of one color than of the other. Each domino covers two squares of
opposite color, since only opposite colors are adjacent. After you have covered
60 squares with 30 dominos, you are left with two uncovered squares of the
same color. These two cannot be adjacent, therefore they cannot be covered
by the last domino. [25]

Finally, note that in several of the formulations of the problem the colour of the chess
board’s tiles is not mentioned, but is instead part of what needs to be figured out to find
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the solution.1

5.2 Extracting the Mathematics

In the above description of the puzzle, mathematical content is not separated from other
narrative embellishments that primarily serve to make the puzzle more fun and engaging.
However, to even begin formalising it will be necessary to isolate the mathematics that is at
work. In this section I will briefly go about doing this, setting out the mathematical content
of the above proof in a stricter mathematical style. The mathematics here is naturally very
elementary (as is the nature of the original puzzle), but the point to observe is not the
content itself, but the way in which this content relates to the informal version of the proof
above.

First, the actual area of the tiles of the chess board and dominoes serves no mathemati-
cal purpose. So we can represent each square on the board by natural number co-ordinates.
So, using standard notation for cartesian products and natural numbers defined as the set
of their predecessors, we get:

We define the set of squares S to be equal to the set (8× 8)−{(0, 7), (7, 0)}. Next, we
define the adjacency relation A, to be a relation on S such that for (a, b), (c, d) ∈ S we have
that (a, b)A(c, d) iff either a = c∧ (b = d+ 1∨ d = b+ 1) or b = d∧ (a = c+ 1∨ c = a+ 1).

Finally, we define the mutilated chess board C to be the pair (S,A).

Obviously this satisfies a very crucial property for an adjacency relation:

Lemma 5.2.1 The relation A is symmetric.

Proof Suppose (a, b)A(c, d). There are two cases to consider.
Case 1: a = c ∧ (b = d + 1 ∨ d = b + 1). But since a = c, if either b = d + 1 or d = b + 1
then it follows from the definition that (c, d)A(a, b).
Case 2: b = d ∧ (a = c + 1 ∨ c = a + 1). Similarly, since b = d, if either a = c + 1 or
c = a+ 1 then it follows from the definition that (c, d)A(a, b). 2

This, though, only formalises the squares of the chess board, what is still missing is the
colouring of black and white tiles. The colourings of the tiles will partition the squares into
two sets and there are three immediate ways to go about this. Firstly, one could simply
enumerate the squares and assign them each a colour corresponding to the chess board
we already know. This is hardly the mathematical way, though, and would lie closer to
Robinson’s enumerative strategies which we are explicitly trying to avoid! A better way

1Recently, at the 2012 Foundations of Mathematics conference in Cambridge, Timothy Gowers presented
the talk “Could there be a foundation for mathematical discovery?” in which he used the mutilated chess
board problem as a central example to motivate how we might examine the process of mathematical
discovery. In his talk, the black and white tiling of the board was also presented as part of the puzzle’s
solution.
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would be to give a general rule for partitioning the set. Either, one can give such a general
rule for which numbers belong to each set, then check that we do have the property that
no two adjacent squares are the same colour, or else, we can define the property using that
property and then check it does partition the set. I’m going to use the second of these
three approaches, since it should be the easiest to formalise.

We say a square (a, b) ∈ S is black if a+ b is even, and we call the set of these squares
B. We say a square (a, b) ∈ S is white when a+ b is odd, calling the set of white squares
W .

Lemma 5.2.2 The set {B, W} is a partition of S.

Proof Every natural number is either odd or even so each square belongs to either B
or W , so the partition covers S, and no square can belong to both, so they are pairwise
disjoint. Neither B or W are empty since (0, 0) ∈ B and (0, 1) ∈W . 2

For the proof, a vital fact is the discrepancy between the numbers of tiles of each colour.
Once again this can be checked through counting, but to try to follow the original proof
more closely it is preferable to formalise the appeal to the fact that the full chess board
has the same number, so removing two leaves one colour with fewer.

Lemma 5.2.3 The sets B and W ∪ {(0, 7), (7, 0)} contain the same number of elements,
that is |B| = |W ∪ {(0, 7), (7, 0)}|.

Proof It is straightforward to construct a bijection here. For example f : B →W where

f((a, b)) =

{
(a, b+ 1) : if a is even.
(a, b− 1) : if a is odd.

Checking that this is a bijection is straightforward. 2

Corollary 5.2.4 For the mutilated chess board, we see that |W | < |B|.

Proof Follows directly from lemma 5.2.3, since |W | < |W ∪ {(0, 7), (7, 0)}| = |B|. 2

Now we can consider the problem of covering the board with dominoes. As with the
tiling, we want to cover the whole board, thus a domino covering can be defined as a
partition of the whole board into pairs of squares (each pair being one ‘domino’).

A domino-covering of S is a partition of S into pairs of adjacent squares.

This leads us to the dénouement of the piece:

Theorem 5.2.5 There is no domino-covering of S.
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Proof By contradiction. Suppose there is a domino-covering D. Its elements are pairs of
adjacent squares such that

⋃
D = S.

So let D′ be the set of ordered pairs (a, b) such that {a, b} ∈ D and a ∈ B and b ∈W .
Since each element of B and W belongs to precisely one pair in D, it follows that D′ is a
bijection between B and W , contradicting corollary 5.2.4. 2

Now we have a solid piece of mathematics that we believe can be formalised, it is time
to put this to the test.

5.3 Naproche Formalisation of the Mutilated Chess Board

In this section I will give the text of a Naproche formalisation of the Mutilated Chess
Board problem, but it comes with some provisos. The first is that Naproche, as a work in
progress as described in section 3.3 was not yet up to the task of formalising the problem.
Despite the many useful features we saw that Naproche has, the lack of implemented set
theory and functions is a prohibitive problem in trying to formalise the mutilated chess
board. In order to attempt a formalisation nonetheless, I have simply proceeded as if these
features were implemented in the natural way they would be extended from the current
version of Naproche. It is important to emphasise, though, that this is an assumption and
could end up being done differently or never being done at all! Let me be clear then: this
is a “Naproche formalisation” that will not run in the current system of Naproche.

Our other two worries from section 3.3 also reappear. The formal version of the chess
board problem that I wish to give involves seeing numbers as sets, which could (if the above
problem were resolved) lead to difficulties of types and typing. On top of this, Naproche
doesn’t yet have a way of referring to other results or a catalogue of results to refer to, but
to enumerate all of the basic background information on numbers, sets, pairs, cardinalities
etc. needed even for the mutilated chess board example would have left this as a exceedingly
long and tedious thesis. Instead, where I think these other facts needed to be referred to
and proved, I have supplied a bracketed name/ description of the relevant theorem, lemma
or definition that would be invoked. That this was necessary does not seem to present
an insurmountable problem for the formalisation, but does reveal a practical limitation of
putting the current version of Naproche to use.

The rest of this section is the Naproche formalisation:

Definition 1: Define Squares to be (8× 8)− {〈0, 7〉, 〈7, 0〉}.

Definition 2: Define Adj(m,n, v, w) iff 〈m,n〉 ∈ Squares and 〈v, w〉 ∈ Squares
and (m = v ∧ (n = w + 1 ∨ w = n+ 1) or n = w ∧ (m = v + 1 ∨ v = m+ 1)).

Lemma 1: For all m,n, v, w, if Adj(m,n, v, w) then Adj(v, w,m, n).
Proof. Let m,n, v, w be given.
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Suppose Adj(m,n, v, w). Then by definition 2 〈m,n〉 ∈ Squares and 〈v, w〉 ∈ Squares
and (m = v ∧ (n = w + 1 ∨ w = n+ 1)) or (n = w ∧ (m = v + 1 ∨ v = m+ 1)).
Now precisely one of the following cases holds:

Case 1: m = v and ((n = w + 1 ∨ w = n + 1). Then v = m and ((w = n + 1 ∨ n =
w + 1)). Then by definition 2, Adj(v, w,m, n).
Case 2: n = w and (m = v + 1 ∨ v = m + 1). Then w = n and ((v = m + 1 ∨m =
v + 1)). Then by Definition 2, Adj(v, w,m, n).
So in both cases Adj(v, w,m, n). Qed.

Definition 3: Define Black(v, w) iff 〈v, w〉 ∈ Squares and v + w is even.

Definition 4: Define White(v, w) iff 〈v, w〉 ∈ Squares and v + w is odd.

Definition 5: Define B to be {〈v, w〉| Black(v, w)}.

Definition 6: Define W to be {〈v, w〉| White(v, w)}.

Lemma 2: B ⊆ Squares.
Proof:

Fix v, w. Suppose 〈v, w〉 ∈ B. By Definition 5, Black(v, w). By Definition 3,

〈v, w〉 ∈ Squares. Qed.

Lemma 3: W ⊆ Squares.
Proof:

Fix v, w. Suppose 〈v, w〉 ∈ W. By Definition 5, White(v, w). By Definition

3, 〈v, w〉 ∈ Squares. Qed.

Lemma 4: If Adj(m,n, v, w) then (〈m,n〉 ∈ B iff 〈v, w〉 ∈W).

Proof.

Let Adj(m,n, v, w). By Definition 2, (m = v ∧ (n = w + 1 ∨ w = n + 1)) or

(n = w ∧ (m = v + 1 ∨ v = m+ 1)).
Suppose that 〈m,n〉 ∈ B. Then by Definition 5, Black(m,n). Then by Definition

3, m+ n is even.

By Definition 2, (m = v∧(n = w+1∨w = n+1)) or (n = w∧(m = v+1∨v = m+1)).
Now precisely one of the following cases holds:

Case 1: m = v and n = w + 1. So by Lemma (Addition Properties), m + n =
v + w + 1. Then v + w is odd.

Case 2: m = v and w = n+1. So by Lemma (Addition Properties), m+n+1 =
v + w. Then v + w is odd.

Case 3: n = w and m = v + 1. So by Lemma (Addition Properties), m + n =
v + w + 1. Then v + w is odd.



5.3. NAPROCHE FORMALISATION OF THE MUTILATED CHESS BOARD 51

Case 4: n = w and v = m+1. So by Lemma (Addition Properties), m+n+1 =
v + w. Then v + w is odd.

So in all cases v+w is odd. So by Definition 4, White(v, w). So by Definition

6, 〈v, w〉 ∈W.

Thus 〈m,n〉 ∈ B implies 〈v, w〉 ∈W.

Suppose that 〈v, w〉 ∈W. Then by Definition 6, White(v, w). Then by Definition

4, v + w is odd.

Now precisely one of the following cases holds:

Case 1: m = v and n = w + 1. So by Lemma (Addition Properties), m + n =
v + w + 1. Then n+m is even.

Case 2: m = v and w = n+1. So by Lemma (Addition Properties), m+n+1 =
v + w. Then n+m is even.

Case 3: n = w and m = v + 1. So by Lemma (Addition Properties), m + n =
v + w + 1. Then n+m is even.

Case 4: n = w and v = m+1. So by Lemma (Addition Properties), m+n+1 =
v + w. Then n+m is even.

So in all cases n+m is even. So by Definition 3, Black(m,n). So by Definition

5, 〈m,n〉 ∈ B.
Thus 〈v, w〉 ∈W implies 〈m,n〉 ∈ B.
Hence 〈m,n〉 ∈ B iff 〈v, w〉 ∈W. Qed.

Definition 7: Define Colouring to be {B,W}.

Lemma 5: Colouring covers Squares.
Proof. Fix v, w. Let 〈v, w〉 ∈ Squares.
Now precisely one of the following cases holds:

Case 1: v+w is even. Then by Definition 3, Black(v, w). Then by Definition

5, 〈v, w〉 ∈ B.
Case 2: v+w is odd. Then by Definition 4, White(v, w). Then by Definition

6, 〈v, w〉 ∈W.

So in both cases 〈v, w〉 ∈ B or 〈v, w〉 ∈W.

Hence by Definition (Covers), Colouring covers Squares. Qed.

Lemma 6: Colouring is pairwise disjoint.

Proof. Fix v, w. Suppose that 〈v, w〉 ∈ Squares and 〈v, w〉 ∈ B and 〈v, w〉 ∈ W.

Then by Definition 5, Black(v, w). Then by Definition 3, v + w is even. By

Definition 6, White(v, w). Then by Definition 4, v+w is odd. By Theorem (Not

odd and even), contradiction.

Thus there are no v, w such that 〈v, w〉 ∈ Squares and 〈v, w〉 ∈ B and 〈v, w〉 ∈W.

Hence by definition (Pairwise Disjoint) Colouring is pairwise disjoint. Qed.
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Theorem 1: Colouring partitions Squares.
Proof.

By Lemma 5, Colouring covers Squares.
By Lemma 6, Colouring is pairwise disjoint.

Hence by Definition (Partitions), Colouring partitions Squares. Qed.

Definition 8: Define f from B to W∪{〈0, 7〉, 〈7, 0〉} such that f(〈m,n〉) is 〈m,n+
1(mod8)〉.

Lemma 7: f is one-one.

Proof.

Fix m,n, v, w.
Suppose f(〈m,n〉) = f(〈v, w〉). Then by Definition 8, 〈m,n + 1(mod8)〉 = 〈v, w +
1(mod8)〉.
Then by Lemma (Ordered Pairs), m = v and n+ 1(mod8) = w + 1(mod8).
By Definition 8, 〈m,n〉 ∈ B. Then by Lemma 2, 〈m,n〉 ∈ Squares. Then by Definition

1 n ∈ 8. Hence n < 8.
By Definition 8, 〈v, w〉 ∈ B. Then by Lemma 2, 〈v, w〉 ∈ Squares. Then by Definition

1 w ∈ 8. Hence w < 8.
By Theorem (Modular Arithmetic), n = w.
Thus 〈m,n〉 = 〈v, w〉. Qed.

Lemma 8: f is onto.

Proof. Fix m, v,w.
Suppose 〈v, w〉 ∈W ∪ {〈0, 7〉, 〈7, 0〉}.
By Lemma 3, W ⊆ Squares. By Lemma (Subsets), 〈v, w〉 ∈ Squares∪ {〈0, 7〉, 〈7, 0〉}.
By Definition 1, Squares = (8× 8)− {〈0, 7〉, 〈7, 0〉}. Then 〈v, w〉 ∈ (8× 8).
Then by Definition (Cartesian Products), v ∈ 8 and w ∈ 8.
So there is an m such that w = m + 1(mod8). So by definition 8, there is

an m such that f(〈v,m〉) = 〈v, w〉. Qed.

Lemma 9: f is a bijection.

Proof.

By Lemma 7, f is one-one.

By Lemma 8, f is onto.

Thus by Definition (Bijection) f is a bijection. Qed.

Theorem 2: Card(B) = Card(W ∪ {〈0, 7〉, 〈7, 0〉}).
Proof.

By Lemma 9, f is a bijection.

By Definition 8, Dom(f) = B. By Definition 8, CoDom(f) = W∪{〈0, 7〉, 〈7, 0〉}.
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So by Definition (Cardinality), Card(B) = Card(W ∪ {〈0, 7〉, 〈7, 0〉}). Qed.

Theorem 3: Card(W ) < Card(B).
Proof.

Lemma: W ⊂W ∪ {〈0, 7〉, 〈7, 0〉}.
Proof.

By Definition 4, it is not the case that White(0, 7). So by Definition 6, 〈0, 7〉 6∈
W. Qed.

Lemma: W ∪ {〈0, 7〉, 〈7, 0〉} is finite.

By Lemma 3, W ⊆ Squares. By Definition 1, Squares ⊆ (8 × 8). By Theorem

(Subsets Transitivity), W ⊆ (8× 8).
By Definition (Cartesian Products), {〈0, 7〉, 〈7, 0〉} ⊆ (8× 8).
By Lemma (Subset Unions), W ∪ {〈0, 7〉, 〈7, 0〉} ⊆ (8× 8)
By Lemma (Finite Products), (8× 8) is finite.

By Lemma (Finite Subsets), W ∪ {〈0, 7〉, 〈7, 0〉} is finite. Qed.

So by Theorem (Finite Cardinalities), Card(W ) < Card(W ∪ {〈0, 7〉, 〈7, 0〉}).
By Theorem 2, Card(B) = Card(W ∪ {〈0, 7〉, 〈7, 0〉}).
Thus Card(W ) < Card(B). Qed.

Definition 9: Define x to domino-cover Squares iff x partitions Squares and

for all y, if y ∈ x then there exist n,m, v, w such that (y = {〈n,m〉, 〈v, w〉}
and Adj(n,m, v, w)).

Theorem 10: There is no x such that x domino-covers Squares.
Proof.

Assume for a constradiction that x domino-covers Squares.
By Definition 9, for all y, if y ∈ x then there exist n,m, v, w such that y =
{〈n,m〉, 〈v, w〉} and Adj(n,m, v, w).
Define g from B to W such that g(〈m,n〉) = 〈v, w〉 iff y = {〈n,m〉, 〈v, w〉} and

y ∈ x.
Lemma: g is one-one.

Proof. Suppose g(〈m,n〉) = g(〈v, w〉). So g(〈m,n〉) ∈W and g(〈v, w〉) ∈W. Then

by Lemma 3, g(〈m,n〉) = g(〈v, w〉) ∈ Squares.
By Definition 9, x is a partition of Squares. So by Definition (Partition)

x is pairwise disjoint.

So there is a y such that y ∈ x and g(〈m,n〉) = g(〈v, w〉) ∈ y.
Let y ∈ x and g(〈m,n〉) = g(〈v, w〉) ∈ y.
Then 〈m,n〉 ∈ y and 〈v, w〉 ∈ y.
By Lemma 4, 〈m,n〉 ∈ B and 〈v, w〉 ∈ B.
By Theorem 1, Colouring paritions Squares.
So by Definition (Pairs), 〈m,n〉 = 〈v, w〉.
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Thus g is one-one. Qed.

Lemma: g is onto.

Proof. Suppose 〈m,n〉 ∈ W. By Lemma 3, W ⊆ Squares. So by Lemma (Subset

Transitivity), 〈m,n〉 ∈ Squares.
By Definition 9, x partitions Squares.
So there is a y such that y ∈ x and there are t, u such that y = {〈m,n〉, 〈t, u〉}
and 〈t, u〉 ∈ B.
So there are t, u such that 〈m,n〉 = g(〈t, u〉).
Thus g is onto. Qed.

Hence g is a bijection.

So by Definition (Cardinality), Card(B) = Card(W ).
By Theorem 3, Contradiction.

Thus there is no x such that x domino-covers Squares. Qed.

5.4 Decisions of the Formaliser

Let’s look at what sort of conclusions can be drawn from the above example and compare
it to another formalisation of the same problem, but in Mizar, given in [7]. The process of
formalisation happened in several stages. Before I could even begin formalising I needed
to know what exactly it was I was going to attempt to formalise. There was a fair bit
of thought involved in getting a simple but effective representation of the board and its
relevant properties, leading me to believe I would not have succeeded had I attempted to
go straight from the informal proof in [58] to the Naproche proof. Robinson’s version of
the proof, of course, was presented in a way that emphasised informality, so it does not
follow that the first step would be necessary for all formalisations: in my experience, many
informal proofs are already sufficiently explicit and exact to begin the formalisation process,
but it is worth emphasising that they need not be. On the other hand, though, different
proofs may be further from this type of formality (think of, say, the Proofs Without Words
mentioned in section 2.1) and therefore require more effort at the earlier stage of extracting
the mathematics.

An important point I would like to draw out of the example is the large number of
decisions I made at both stages.

Firstly, if we look back at the original problem and compare it to the mathematics
involved in the final formalisation, I claim that to a certain extent I actually decided in the
extraction phase what the mathematical content of the proof was going to be. Although
there are certain aspects of the original informal proof that were going to have to be included
for the formalisation to be fairly described as a formalisation of that original proof, there
are certainly points at which we could imagine someone else attempting the same process
choosing an entirely different focus for the formal proof. For example, I focused heavily
on partitions of the squares of the chess board into the tilings and domino-coverings, while
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ignoring the area and other facts about the two-dimensional representation of the board.
A different formaliser may have chosen to go the other way on this entirely. This can be
seen by looking at the formalisation in [7] of the same problem but in Mizar. Although
structurally similar in many respects (notably, the board is defined in the same way) it is
different in others: the colour system made use of modular arithmetic and the structure
of the second half of the proof is more general in stating the need for the same number of
squares of each colour.

Secondly, there was the choice of background axiomatic system to formalise into. With-
out too much consideration (and probably due personal academic background) I went ahead
with a set-theoretic orientation. It would certainly be possible to attempt a formalisation
of the same proof in any number of settings from category theory to Euclidean geometry.
The language of set theory and the assumed background of existing sets (or numbers and
pairs) meant the chess board was quickly subsumed as a theorem about finite partitions of
sets under a particular relation (which I called adjacency) but in another setting this may
have formalised into something that looked very different. For example, the given problem
is clearly combinatorial and focusing on that aspect of the proof may have yielded a rather
different formal proof.

Thirdly, there was the specific choice of exactly how to define each concept that was
being used in the original. I chose to abstract the board to just square-coordinates and
the adjacency relation, with a tiling as partitions and revealing that a domino-covering
was also a bijection between the two sides of the tiling, thus their cardinality must be the
same, reaching a contradiction when it is given that there are not the same number of
them. Although the informal proof implicitly relies on the tiling being a partition, the
rest did require me to make decisions. For this particular proof, these definitions worked
well, but had I been working on the actual mathematics of chess and dominoes, a different
formalisation may well have been preferred, even if I had still chosen to use numbers and
sets as a basis. Had somebody else been formalising it may well have been that they chose
entirely different definitions from which the defining features that I used follow and vice
versa.

All of these mean that the resulting formal proof that I constructed in Naproche was
just one among many ways of formalising the informal proof. Furthermore, had I chosen
to use Mizar or one of the other formal checkers instead I would have produced another
proof altogether, because even after extracting the mathematics, getting this to fit with the
particulars of the formal language of Naproche meant that more decisions were involved.

Another key point is that both main stages of formalisation required understanding
of both the informal proof and the formal proof system. In this case the informal proof
was so simple that the understanding was likewise simple, but understanding the workings
of Naproche took some time and effort, even for such a relatively straightforward system
designed to be easy to get the hang of. One implication of this is that the informal proof
could not have been transformed into the formal proof by any straightforward method of
clarifying all assumptions in some algorithmic way: the formalisation was a very human



56 CHAPTER 5. A SAMPLE FORMALISATION

process.
I should also point out the benefits of doing this formalisation. The ultimate ideal would

be for the formal proof to be checkable by Naproche, but as pointed out above this is not
yet possible because of the current limitations of Naproche. However, the formalisation
did require extra mathematics to be done. For example, the definitions of the adjacency
relation and bijections were extra pieces to fill in the gaps left without the reliance on
our ability to reason about the chess board that was present in the informal proof. The
mutilated chess board is easy, but in more advanced proofs such additional mathematics
could be a worthwhile pusuit in itself; for instance, in the formalisation of the Four Colour
Theorem discussed in [28] they mention several original pieces of mathematics that add
to the understanding of the combinatorics involved in the theorem. Finally, I believe that
while the original informal proof was very specific to a single mutilated chess board, the
process of formalisation does demonstrate a number of directions for generalisation and
further inquiry. For example, in discussing the problem and its formalisation, we found
that domino-coverability and having an equal number of black and white squares is not
equivalent. With a first formalisation under the belt we may now gain insight on how to
formalise other harder problems in combinatorics or related fields.



Chapter 6

Explication and the
Formalisability Thesis

In this concluding chapter I will return to the Formalisability Thesis in light of the lessons
learned in Chapter 5 by working through the mutilated chess board example of formali-
sation. Based on these lessons I will firstly argue in favour of the Weak Formalisability
Thesis and secondly attack the Strong Formalisability Thesis.

6.1 Carnap on Explication

Following the discussion of the development of Carnap’s ideas presented in [10], although
it took until 1945 for Carnap to introduce the term ‘explication’ in [17] and another five
years after that before the methodology received a full treatment at the start of [18], the
roots of the idea were firmly implanted in Carnap’s writings from much earlier, such as in
his ‘rational reconstruction’ found in [16]. The usage of such methods of investigation are
very closely related to the project of this thesis since they try to link informal concepts to
formal equivalents, as is part of what is done in proof formalisation.

In Carnap’s terminology, explication is

the transformation of an inexact, prescientific concept, the explicandum, into
a new exact concept, the explicatum. [18, p. 3]

The purpose of explication is to gain new understanding and insight on this explicandum,
as well as to replace an informal or natural language concept with a scientific one which
is useful in more academic research. By talking about replacement it emerges that the
explicatum is something that we introduce and that it is something different to the ex-
plicandum. The change in meaning does imply that there will be cases where we cannot
substitute the explicatum for the explicandum, but this is not the role of the explicatum;
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rather, its purpose is to serve as a more fruitful and precise concept for the more exacting
scientific realms.

A prerequisite for being successful at explicating is to know what it is we want to find
out more about, which is to say that while the explicandum is inexact, this does not mean
anything goes. Before a concept is explicated, Carnap emphasises that there is the need to
be as clear as possible about that concept. This is not explication, but a part of formulating
the problem: we do have methods for reaching a reasonable clarity of even inexact concepts
and can work to have general agreement as to what falls under the concept and what does
not. For example, I hope to have achieved this much clarity in section 2.1 regarding the
concept of informal proof.

Once a target explicandum is settled and clear to the best of our abilities, we wish to go
about the transformation of explication. Carnap’s process of explication sets four require-
ments for an explicatum which I shall briefly discuss in turn: similarity to the explicandum,
exactness, fruitfulness and simplicity. The similarity requirement is what ensures we stay
close to our original explicandum. How is this meant? Well, it could be meaning that our
explicandum and explicatum coincide as much as possible in their extensions. But Carnap
rejects this requirement as too strict, prefering to allow the similarity requirement to be
malleable around the other three requirements. A principled replacement of items in the
extension of the explicandum or being far stricter in what is falls under the explicatum (in
comparison to the explicandum) may serve the scientific purposes motivating the explica-
tion better, thus similarity should be a sufficiently weak condition to allow such decisions
to be made on the part of the explicator.

The second criterion of explication is fruitfulness:

A scientific concept is the more fruitful the more it can be brought into con-
nection with other concepts on the basis of observed facts; in other words, the
more it can be used for the formulation of laws. [18, p. 6]

Carnap also states that if the concept being explicated is a logical concept (as opposed
to an empirical one) then the explicatum should be useful in formulating logical laws.
The fruitfulness of a new concept is demonstrated by it fitting well into the web of other
concepts in the scientific discourse.

The third requirement is that of exactness, that the explicatum is explicitly defined
such that

the rules of its use (for instance, in the form of a definition), is to be given in
an exact form, so as to introduce the explicatum into a well-connected system
of scientific concepts. [18, p. 7]

The explicatum should be defined precisely such that we can accurately determine what
falls under the concept and when it can be used in scientific discourse.

The final requirement is that of simplicity, although this secondary to the other three
requirements. If there are multiple explications that are possible that offer equal degrees
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of exactness and fruitfulness, it is generally preferable to choose the more parsimonious
concept as one’s explicatum. This requirement does not compel us to reject complicated
explications, unless there is an equally good explication which is simpler.

Having been through the nature of explication, one important point made by Carnap
that is particularly relevant here is that

...if a solution for a problem of explication is proposed, we cannot decide in an
exact way whether it is right or wrong. Strictly speaking, the question whether
the solution is right or wrong makes no good sense because there is no clear-
cut answer. The question should rather be whether the proposed solution is
satisfactory, whether it is more satisfactory than another one, and the like. [18,
p. 4]

There is no reason to say that one explication is somehow correct, because the very point
of explication is that one concept is replaced by another in certain areas of discourse. It
may well be that one explication is by far the most suitable for a particular area, but this
does not make it the right explication only the best.

6.2 Proof Formalisation and Explication

In this section I will argue that for some systems Λ the concept of formal proof in Λ
explicates the concept of informal proof. This has already been noted by Sjögren in [61] as
the main thrust of his paper. The difference between here and there is that Sjögren treats
the matter mainly as an exercise in explication, with no consideration of the consequences of
this assertion, while I will continue from here into the consequences for proof formalisation.

To show that formal proof is the explicatum to informal proof’s explicandum we must
check that the requirements listed in section 6.1. First, I note an opponent to this thesis
in Leitgeb’s [43] who declares that these conditions fail to obtain:

[W]hy not think of “formally provable(-in-T)” (for some instantiation of “T”)
as a Carnapian explication of “informally provable”? The answer is simple:
because it is not. According to Carnap, whatever explicates an explicandum
must be as similar as possible to the latter, but as our comparison... has
shown, formal provability and informal provability are just too dissimilar to
satisfy this criterion. There is no reason to believe that if one could explicate
informal provability at all, then this could not be done while preserving more of
its essential features than any explication in terms of “formally provable(-in-T)”
would ever achieve. [43, p. 272]

Leitgeb’s claims here could be charitably read as based on taking the instantiations of
“T” in a traditional, proof-theoretic way (as, it would appear, does Sjögren), say, as formal
proofs in natural deduction or sequent calculus. In this particular case, it is almost tempting
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to agree with Leitgeb for such proofs do feel very different from informal proof. Yet having
now investigated Formal Mathematics and the controlled natural language of Naproche,
this position is less appealing, as in these cases the formal proofs do appear much more
similar to the informal counter-parts.

Other than those of form, the dissimilarities that refers to are along the same lines as
those I have considered above and mostly consist of the fact that informal proofs are vague
and unspecific in a number of respects, while formal proofs are explicit and precise about
everything. But these dissimilarities are not the sort to prevent explication: if anything
they sound exactly like the pre-conditions for explication! Replacing an inexact concept
with an exact one is what explication is for. Disregarding this, even, Carnap’s requirement
that they be as similar as possible is qualified with the extra liberality that one may, within
reason, put fruitfulness and exactness first. Leitgeb seems to be casting aspersions on these
as well, but we already saw in our example that such an explication is very fruitful, on top
of which formal proofs are by their very nature exact.

When it comes to fruifulness, the discussions of sections 3.2 and 3.3 only focused on
some local advantages, like mechanical checkability, the potential for new mathematics,
encouraging the formaliser to get to understand the mathematics more thoroughly, the
scope for generalisation etc. Add to this the general advantages of formal provability:

This explication has made it possible not only to give precise formulations
to vague questions concerning e.g. axiomatisability, consistency, decidability,
proof strength, etc., but also in providing mathematical methods for answering
them. On the whole, one must say that the explication is in fact extremely
successful. [61, p. 455]

Leitgeb suggests that we may find a more similar explication of informal provability: for-
mally provable (-in-Naproche) or formally provable (-in-Mizar) appear to fulfill this role.

6.3 Explication and the Formalisability Thesis

Although it is interesting to consider whether the concept of informal proof explicates
to the concept of formal proof (in some system), this thesis is focused on what is for that
explication at the object level: moving from individual informal proofs to individual formal
proofs. Here, though, I think that something similar is still the case. While on first glance
explication happens on the conceptual level, which individual formal and informal proofs
fall under, this does not necessarily block the way to saying that proof formalisation can
also be explicative.

So how can proof formalisation be explicative? Well, even though an informal proof
itself will fall under the general concept of informal proof that we have been discussing, we
also know that such a proof is not a discrete singularity. What I mean is, an informal proof
in mathematics will make use of many other mathematical concepts. In the process of
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formalising informal proofs we will formalise these concepts to correspond to some formal
equivalents. Doing so will certainly give more exact concepts by its very nature, and I have
already discussed the fruitfulness of formal mathematics. Simplicity decreases in the one
sense because formal versions of concepts are almost invariably less intuitive, but in another
this makes them far simpler by replacing concepts that Rav can claim have “irreducible
semantic content” [55, p. 11] with concepts having only a few basic and algorithmic rules.
Lastly, similarity is a less clear case, for usually formalising a proof involves switching to
formal objects, as well as concepts. The need for a large extensional overlap might well not
be satisfied, say, if we replace each object with it’s formal equivalent.

But the need for extensional overlap is all well and good when Carnap exemplifies the
explication of the concept ‘fish’ as in the example of [18, p. 6], but the actual similarity
requirement is given as:

The explicatum is to be similar to the explicandum in such a way that, in most
cases in which the explicandum has so far been used, the explicatum can be
used; [18, p. 7]

When it comes to mathematical objects, this may still obtain if the formal representatives
of the objects have the correct properties. The systematic replacement of objects described
as a part of explication in section 6.1 will in this case be exact, fruitful and simple, thus
warranted by the Carnapian mode of explication.

The formalisation of informal proofs, though, is clearly not just explication of it’s
various mathematical concepts. An additional factor is in play: the explication is uniform.
Each relevant mathematical concept is not merely explicated in some way; rather, each
concept is explicated in the same way. For one thing, a single formal language is present
within which each of the concepts must be expressed. Secondly, the many mathematical
concepts in a proof will interact and interrelate so it must be ensured that the explications
stay coherent. As a result, the systematic replacement of the subject matter of your proof
(numbers, points, etc.) with formal counterparts will be reflected in the explication of the
higher concepts ranging over these objects, while the explication of concept must be in line
with the explication of the concepts which it is defined in terms of.

At this point, though, the picture is still no quite complete. What is also required
is the reworking of inferences and dependencies. Where before there were many ways
of arguing, still appealing to understanding and intuition, now there are specific rules of
manipulation which strictly enumerate the ways in which one can reason. The new formal
objects will also have axioms governing their use, exiling meanings to the meta-language.
In part, the replacement of interrelations and consequences will be dictated by the choice
of formal objects and the explication of the mathematical concepts, but additionally we
also (uniformly) explicate the reasoning structure to conform to the axioms and inference
rules of our system. This naturally will involve the expansion of many pieces of reasoning
to conform to the explicit nature of the formal deduction rules, but there will be similarity
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here because the formalisation process must maintain a degree of similarity to properly be
said to be a formalisation of the original informal proof.

Thus, on this picture, the formalisation process from informal to formal proofs involves
the systematic replacement of objects and the uniform explication of concepts and reason-
ing patterns. Is it still correct to call this explication? I believe so, for one can still maintain
many aspects of the original informal proof, enough to maintain similarity or else to not
be able to call the formal proof a formalisation of the informal proof. Certainly the formal
proof is exact, with clear rules for each concept and their interrelations. Formalisation is
also fruitful, as has been noted, in that it leads to mechanical checkability, the discovery
of new mathematics, generalisation, insights into the intricate web of mathematical de-
pendencies and allows for interesting meta-mathematical results. Simplicity follows from
the fact that even if as a whole the proof becomes less readable and intuitive, each step is
purely mechanical, meaning that the formal proof is sufficiently simple to not require any
understanding of the mathematical content.

For example, in the mutilated chess board example I systematically replaced the ob-
jects, squares on the board, with set-theoretic ordered pairs which gave their co-ordinates
on the board. From here we could uniformly explicate concepts such as adjacency, colour-
ings and domino-coverability into formal counterparts. The reasoning steps could then be
explicated such that the same overarching reason for the correctness is maintained, while
also expanding the justification for many of the more implicit, intuitive steps.

In section 5.4, it was seen that the process of formalising the mutilated chess board
problem did involve decisions on the part of the formaliser. Formalisation, I noted, requires
understanding of the problem being worked on and the formal system you want to formalise
the informal proof in. This coincides neatly with Carnap’s explication which involves
intelligent analysis and understanding. But, more importantly, this works towards the
Weak Formalisability Thesis with its agent-centric view on proof formalisation. If the agent
can make enough decisions and has the relevant understanding of the informal reasoning
and a good formal system, then of course they can give a formalisation of that proof. This
has been shown by the success of Formal Mathematics and our own example (recalling that
the example was chosen as one that was seen as particularly informal).

What is there to stop an agent with sufficient understanding of the informal proof from
carrying out a formalisation? In section 3.6 we rejected that the length of formal proofs
is a sufficient problem now, given the success of systems like Mizar, Coq, HOL Light and
Isabelle. For any given proof it seems that the formaliser will have to note the relevant
properties that the explicated concepts need to have (this part of the very purpose of the
process) so even if a concept were semantically irreducible in general, there does not seem
to be a problem in listing its salient properties. It may be that diagrammatics are more
problematic, but once again the chess board included important visual, albeit it imagined,
information that was not too challenging to convert into formal reasoning. To my mind, it
is hard to even conceive of a diagram which would contain uninterpretable mathematical
content to challenge the idea that every informal proof can be formalised.



6.4. INFORMAL RIGOUR 63

Returning now to two readings of the Formalisability Thesis, I believe that what we
have seen of this explicative process and the chess board example of chapter 5 have served
two major functions. Firstly, seeing formalisation as explicative in this way and observ-
ing the fact that even in our own example we made non-trivial decisions which lead to
substantially different (i.e. not Λ-same, where Λ is Naproche) formal proofs refutes the
SFT by violating the uniqueness condition. Secondly, the chess board example and the
argument for explication give reasonable inductive evidence in favour of the WFT, since
the chess board example was chosen as something hard to formalise because of its infor-
mality, but nonetheless, taking on the role of agent myself the formalisation managed to
proceed. Additionally, the fact that non-trivial decisions needed to be made shows that
other formalisers may have reached substantially different formalisations of the problem, as
is suggested by the WFT. In its original discussion, I declared the WFT to be an empirical
claim which can be investigated; through the mutilated chess board example I hope to have
begun such an investigation.

6.4 Informal Rigour

I would like to add to the refutation of the SFT claimed in the previous section a coup
de grâce for the Formalists by dismissing their favourite defence: that rigour requires
formality. I hereby add to the literature, such as [2], defending informal rigour.

The argument is that only formal deduction is free from the inherent fallibility of the
intuitions invoked in informal proving. In my opinion, this is obviously not the case.
Let me consider for a moment the distinction between formal consequence and material
consequence as discussed, for example, by Read in [56]. Formal consequence involves
a conclusion following from the premises because of the form of the argument. Read
associated this with the interpretational account of validity:

an argument is valid if there is no (possible) interpretation of the expressions
(other than a reserved class of “logical” expressions) in the argument under
which the premises come out true and the conclusion false. [56, p. 250]

On the other hand, material consequence links premises to a conclusion based on the
meaning of terms contained in them, following the representational account of validity:

an argument is valid if there is no possible situation where the premises are
true and the conclusion false. [56, p. 250]

Read argues that the representational account better captures actual validity than the
interpretational account; consequence should be material not formal. As an example of an
argument which is materially but not formally valid, Read gives:

(5) Iain is a bachelor
So Iain is unmarried. [56, p. 249]
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He goes on to consider the Suppressed Premise Strategy, open to those who would argue
in response that (5) is only valid based on the additional suppressed premise that ‘All
bachelors are unmarried’.1 But Read rejects this strategy:

The extra premise is strictly redundant. For if the original argument were
invalid, the added premise would not be logically true. Given that it is logically
true, it follows that the unexpanded argument was already valid. Hence it was
(logically) unnecessary to add the extra premise. [56, p. 249]

The point of this detour into consequence is that the same can be seen in informal proof.
It is not hard to construct examples of the exact same phenomenon:

(1) The natural number n is even
So the natural number n is divisible by two.

As in Read’s example, the Formalist could point to the suppressed premise ‘All even natural
numbers are divisible by two’, but the same reply that this additional premise is redundant
may be offered. Without needing to go as far as Rav and say that there is irreducible
semantic content in mathematical terms, we can still say that there is semantic content.
So, then, informal proofs in mathematics may be rigorous through their consequences being
materially valid on the representational account of validity. Such a solution to the rigour
and indefeasibility of mathematics is also a more natural solution, in line with the look
and feel of mathematical practice and not requiring reduction, abbreviation or indication
to a formal proof. Formalisation and formality are not required for mathematical rigour.2

(There is a slight worry for the use of material validity in mathematics that needs
addressing. The problem is that true mathematical facts are commonly seen as necessarily
true. Therefore, any mathematical fact follows from no premises or any premises by the
representational account of validity. So it is possible to construct all kinds of consequences,
e.g.

(2) Every natural number is odd or even.
Therefore, there are no positive integers a, b, c, n such that an + bn = cn and
n > 2.

1This idea is not a new one, being found in Buridan:

It seems to me that a material consequence is evident in inference only by its reduction to a
formal one. Now it is reduced to a formal one by the addition of some necessary proposition
or propositions whose addition to the given antecedent produces a formal consequence. [14,
Ch. 4].

Here translated by Read himself and obviously present in his work.
2Note also that validities on the interpretational view are a subclass of validities on the representational

view, meaning that if we take mathematics to be rigorous by material consequences, then it does still
include the pieces of formal reasoning that maths obviously involves.
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The response, though, is to bite the bullet on consequence, but to note that consequence
alone is insufficient for proof. Firstly, the argument (2) fails on all acounts of the purpose of
proof: it does not convince, explain, provide mathematical knowledge, or any of the other
purposes of proof outlined in sections 1.2 or 2.1. For to be convinced of the validity of the
inference, one would first need to be convinced that the conclusion is true, thus failing a
key requirement of proof as laid out in chapters 1, 2 and 3.)

The Formalist response might be to still maintain that the above fails because mathe-
matical terms only have semantic content in their guise as abbreviations of or indications
to formal definitions. Key to Azzouni’s arguments for the Derivation-Indicator view is
the attempt to form a coherent defence of nominalism in the philosophy of mathematics.
This response can be seen as trying to rescue the formality of mathematics by an appeal
to nominalism. But in doing this the Formalist is in danger of circularity, for often the
formality of mathematics is used to lead us to a Formalistic nominalism (see, for example
[60, pp. 140-141] or [65]). The usual order for eliciting the intuitions of the Formalist is
to convince us that mathematics is reducible (or somesuch) to formal manipulations and
thereby reach the nominalism. I thus settle here with the burden on a Formalist to provide
an independent justification of mathematical nominalism, one more convincing than the
picture I have offered of material validity which fits mathematical practice so neatly.

6.5 Conclusion

By separating two different readings of the Formalisability Thesis, I have carved out a
position that lies somewhere between those of Rav and Azzouni.

I have favoured the agent-centric weak reading of the Formalisability Thesis, in which
formalisation is seen as a practical process that we can carry out as a fruitful analytic tool.
Any proof can be subjected to this process, so long as the agent understands the proof
and the target formal system. From an in-depth example of formalising a concrete proof, I
showed that the process invariably requires the agent to make decisions; decisions that lead
to substantially different (i.e., not Λ-same for the formal system Λ) formal proofs, which,
if correct, gives good reason to hold the WFT. Drawing on Carnap’s notion of explication,
I have argued that these different formal proofs can all be legitimate formalisations of
the original informal proof. Nonetheless, seeing it as possible to correctly formalise an
informal proof in not just one way but many different ways, each providing different gains
and benefits, goes against Rav’s doubt that every proof can be formalised and negative
assessment of the positive achievements of doing this.

In contrast, I have rejected the strong reading of the Formalisability Thesis, which
proclaims the Formalist position: that informal proofs abbreviate, indicate or otherwise
depend on formal counterparts. The demonstration that decisions are made in the process
of formalising which give substantially different outcomes is directly against the uniqueness
of the SFT. By furthermore arguing that material consequence, rather than formal conse-
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quence, is at the heart of the mathematical practice of proving, I hereby take mathematics
to have semantic content independent of any formal reductions or indications, contra Az-
zouni and other Formalists and rule out the argument that mathematical rigour depends
on formality.

Finally, I shall end on the titular moral of the story here presented: holding that all
informal proofs can be formalised does not make you a Formalist.
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