
Expressiveness of Monadic Second-Order Logics
on Infinite Trees of Arbitrary Branching Degree

MSc Thesis (Afstudeerscriptie)

written by

Fabio Zanasi
(born December 17th, 1988 in Modena, Italy)

under the supervision of Dr Alessandro Facchini and Prof Dr Yde Venema, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

Msc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 31st, 2012 Prof Dr Johan van Benthem

Dr Alessandro Facchini
Dr Helle Hansen
Prof Dr Benedikt Löwe
Prof Dr Yde Venema

Abstract

In this thesis we study the expressive power of variants of monadic second-order logic (MSO) on infinite
trees by means of automata. In particular we are interested in weak MSO and well-founded MSO, where the
second-order quantifiers range respectively over finite sets and over subsets of well-founded trees. On finitely
branching trees, weak and well-founded MSO have the same expressive power and are both strictly weaker than
MSO. The associated class of automata (called weak MSO-automata) is a restriction of the class characterizing
MSO-expressivity.

We show that, on trees with arbitrary branching degree, weak MSO-automata characterize the expressive
power of well-founded MSO, which turns out to be incomparable with weak MSO. Indeed, in this generalized
setting, weak MSO gives an account of properties of the ‘horizontal dimension’ of trees, which cannot be described
by means of MSO or well-founded MSO formulae.

In analogy with the result of Janin and Walukiewicz for MSO and the modal µ-calculus, this raises the issue of
which modal logic captures the bisimulation-invariant fragment of well-founded MSO and weak MSO. We show
that the alternation-free fragment of the modal µ-calculus and the bisimulation-invariant fragment of well-founded
MSO have the same expressive power on trees of arbitrary branching degree. We motivate the conjecture that
weak MSO modulo bisimulation collapses inside MSO and well-founded MSO.

Contents

Contents 1

Introduction 3

1 Preliminaries 5
1.1 Sets, Functions and Relations . 5
1.2 Trees . 6
1.3 Monadic Second-Order Logics on Trees . 8
1.4 The Modal µ-Calculus . 9
1.5 Definability . 10
1.6 Topological Complexity . 10
1.7 First-Order Logic . 10
1.8 Game Terminology and Parity Games . 12
1.9 Stream Automata . 13

2 Automata Characterization of MSO 15
2.1 MSO-Automata: Definition . 15
2.2 Functional Strategies and Their Syntactic Characterization . 18
2.3 The Simulation Theorem . 20
2.4 From MSO-Formulae to MSO-Automata . 25
2.5 Coda: Normal Form for Non-Deterministic MSO-Automata . 29

3 Automata Characterization of WFMSO 33
3.1 The Two-Sorted Construction . 34
3.2 From WFMSO to Weak MSO-Automata . 38

4 Logical Characterization of Weak MSO-Automata 45
4.1 From Weak MSO-Automata to Non-Deterministic Büchi Automata 45
4.2 The Bounded Information Property . 46
4.3 WFMSO-Formulae for Büchi Acceptance Conditions . 50
4.4 From Non-Deterministic Büchi Automata to WFMSO . 52

5 Expressivity Results 59
5.1 The Finitely Branching Case . 60
5.2 The Arbitrarily Branching Case . 61
5.3 A Janin-Walukiewicz Theorem for WFMSO . 63

Conclusions 67

A Symmetric and ∀-Asymmetric Acceptance Games 71
A.1 Equivalence between Acceptance Games . 71
A.2 A Complementation Lemma for MSO-Automata . 74

Bibliography 77

1

Introduction

Monadic second-order logic (MSO) is an expressive specification language in which first-order logic is extended
with quantification over sets. By adding a successor relation R to the language, path quantification, reachability and
other properties of transition systems can be described in MSO. We are interested in a particular kind of transition
system, namely trees without leaves. In the sequel, we use the name tree to refer to such infinite structures.

In the 60’s, Rabin [27] proved the decidability of MSO on binary trees. This landmark result was obtained by
an automata-theoretic characterization of the expressive power of MSO on these structures. The idea is to define a
class of automata C such that, for each formula ϕ ∈MSO, we can construct an automaton Aϕ in C accepting exactly
the binary trees in which ϕ is true. Viceversa, for each automaton A in C we can find a formula ϕA ∈MSO that is
true exactly in the binary trees that are accepted by A.

Rabin’s work became of direct interest for computer scientists one decade later, when it was realized that
(infinite) trees can be used as models of the behavior of nonterminating systems [26]. In this framework, MSO
plays the role of an assembly-like language into which most specification languages (such as temporal logics and
the modal µ-calculus) can be compiled [6] [10]. The underlying automata theory associated with MSO has been
developed consequently, extending Rabin’s characterization result to more general classes of structures.

In the 90’s, the work of Walukiewicz [33] [32] has provided a very general framework for investigating MSO
by means of automata. In particular, in [33] a class of automata was introduced, which captures the expressive
power of MSO on trees with arbitrary (also infinite) branching degree. We will present them under the name of
MSO-automata.

Parallel to these developments, variants of MSO have also received attention. Among them, weak monadic
second-order logic (WMSO) is a quite appealing specification language, being computationally more manageable
than MSO [21], but as expressive as MSO on simple structures such as streams [19]. Syntax and semantics of
WMSO are defined as for MSO, but for second-order quantifiers, which are restricted to range over finite sets only.
An automata characterization of WMSO on binary trees has been proposed by Rabin [28], to show that WMSO
is strictly less expressive than MSO on this class of structures. Automata for WMSO on binary trees have been
further investigated in the ’80s by Muller, Saoudi and Schupp [24], introducing the notion of weak alternating tree
automaton.

On structures that are more general than binary trees, automata theory for WMSO is less settled. It is a folklore
result that weak alternating tree automata can be suitably generalized to serve as a characterization of the expressive
power of WMSO on finitely branching trees. We call weak MSO-automata the resulting class of automata, being
essentially MSO-automata where further constraints have been imposed on the structure of each run. This automata
characterization leads to the result that WMSO is weaker than MSO also on finitely branching trees.

In this thesis, we consider the question of how MSO and WMSO relate on a more general class of structures,
namely trees of arbitrary branching degree. The motivation is given by a simple observation on MSO-automata,
namely that they are not able to distinguish between trees with finite or infinite branching degree. This Finite
Branching Property can be rephrased on the side of logic, by saying that each MSO-formula that is true in some
tree is true in a finitely branching tree. As a consequence of that, the landscape of connections between MSO and
WMSO on arbitrarily branching trees radically changes with respect to the case of finitely branching trees.

• We can define a WMSO-formula that is only true in trees that are not finitely branching, meaning that WMSO
does not have the Finite Branching Property. It follows that WMSO is no more weaker than MSO on trees of
arbitrary branching degree, but the two logics have incomparable expressive power.

• On the side of automata, weak MSO-automata happen to have the Finite Branching Property, being a
restricted version of MSO-automata. It follows that, contrary to the case of finitely branching trees, weak
MSO-automata cannot serve as a characterization of WMSO on the more general class of structures.

The outcome of this analysis is that the setting of finitely branching trees does not give the complete picture of
WMSO-expressivity, on the side of logic, and of definability by weak MSO-automata, on the side of automata. In this

3

thesis we will be mainly interested in investigating the second question, that is, the theory of weak MSO-automata
on trees of arbitrary branching degree. The structure of our work can be outlined as follows.

• After preliminaries, in the second chapter we rephrase Walukiewicz’s automata characterization of MSO on
arbitrarily branching trees. Given a formula ϕ ∈MSO, we show how an MSO-automaton equivalent to ϕ can
be constructed, by induction on its syntactic shape. The flexibility of MSO-automata makes relatively easy to
prove that the tree languages that they recognize are closed under union and complementation. The hard part
is to show that they are closed under projection, corresponding to the case in which ϕ is of the form ∃p.ψ,
with p a set-variable. For this purpose, we emphasize the role of the Simulation Theorem, which provides a
normal form for MSO-automata. The construction which is involved in this result turns out to be an useful
benchmark to understand the nature of MSO-expressivity.

• The third chapter considers the case of weak MSO-automata, defined as a restricted version of the automata
introduced in the previous chapter. If MSO-automata are tailored to serve as a characterization of MSO,
now we proceed in the converse direction, tailoring a logic that corresponds to weak MSO-automata. This
is given as a variant of MSO, which we call well-founded monadic second-order logic (WFMSO). It is
defined as MSO but for the semantics of second-order quantifiers, that are restricted to range over subsets
of well-founded trees only. Analogously to the case of MSO, given a formula ϕ ∈ WFMSO, we show by
induction how a weak MSO-automaton equivalent to ϕ can be constructed. Once again, the conceptual core
of our argument is the case in which ϕ is of the form ∃p.ψ, with p a set-variable. By definition of WFMSO,
the variable p does not range over arbitrary sets of nodes, but only on the subsets of well-founded trees. To
obtain the characterization result, we provide a normal form theorem for weak MSO-automata, which is the
‘weak’ counterpart of the Simulation Theorem, now tailored to the case of WFMSO-quantification.

• In the fourth chapter we complete the correspondence between weak MSO-automata and WFMSO, by
showing that each weak MSO-automaton is equivalent to some formula ϕ ∈WFMSO. The proof of this result
passes through the introduction of non-deterministic Büchi automata (NDB automata), which are somehow
intermediate between weak MSO-automata and MSO-automata. We prove that for each tree language L, if
both L and its complement are recognized by NDB automata, then L is defined by some WFMSO-formula.
This provides another automata characterization for WFMSO, in terms of NDB automata. Just as for the case
of weak MSO-automata, also NDB automata have a counterpart working on binary trees, which has been
introduced by Rabin to characterize WMSO on this restricted class of structures [28].

• The fifth chapter brings together all the work we did in the previous part to compare the expressive power
of MSO, WMSO and WFMSO on different classes of structures. We argue that automata do not just give
an account of these logics, but also reveal which kind of specifications is better expressed by one logic
with respect to the others. For instance, we observe that MSO is stronger than WFMSO and WMSO in
expressing properties of the vertical dimension of trees, such as ‘each path has only finitely many nodes
whose label includes p’. On the other hand, WMSO turns out to be more expressive than MSO and WFMSO
on the horizontal dimension of trees, expressing properties such as ‘being finitely branching’. This latter
property in particular cannot be expressed by means of MSO or WFMSO formulae, as revealed by a careful
analysis of the automata characterization provided for these two logics in the previous chapters. On the
base of these observations, we state that, on arbitrarily branching trees, WFMSO and WMSO are respectively
strictly weaker and incomparable with MSO. Next, we examine the question of how WFMSO and WMSO
are related. Despite of the fact that they are the same logic on finitely branching trees, we show that
they are incomparable on trees of arbitrary branching degree. This is in some sense a refinement of the
incomparability result for MSO and WMSO, WFMSO being weaker than MSO. In particular, it will follow as
a corollary of another characterization result, which we consider one of the main contributions of this thesis:
the bisimulation-invariant fragment of WFMSO is as expressive as the alternation-free fragment of the modal
µ-calculus.

• We also include an appendix, where a game-theoretical argument is supplied to prove that MSO-automata are
closed under complementation.

4

Chapter 1

Preliminaries

In this section we introduce some of the preliminaries and fix the notation. We refer to [17], [13] and [5]
respectively for the terminology of Set Theory, Model Theory and Order Theory.

1.1 Sets, Functions and Relations

Sets are usually indicated with capital Latin letters X , Y , Z, relations with capital Latin letters R, Q and functions
with small Latin letters f , g and h.

Sets Let X be a set. We indicate with ℘(X) the set of subsets of X . For any subset Y ⊆ X of X , we denote with
X ∖Y the set {x ∈ X ∣ x /∈Y}. If Y is a finite subset of X then we write Y ⊆ω X . If Y is strictly included in X , meaning
that X ∖Y is non-empty, we write Y ⊊ X . Given a set Z, we indicate with X ×Z and X ⊎Z respectively the cartesian
product and the disjoint union of X and Z. For the set X ×Z we have the usual projection functions π1 ∶ X ×Z→ X
and π2 ∶ X ×Z→ Z.

Functions The notation f ∶ X →Y means that f is a function with domain X and codomain Y . We refer to X →Y
as the type of f . The domain and codomain of f are also indicated respectively as Dom(f) and Cod(f). For
any subset Z ⊆ X , the set f [Z] is defined as {y ∈Y ∣ f (x) = y for some x ∈ Z} and we indicate with f↾Z ∶ Z→Y the
restriction of the function f to Z. The image f [X] of f on the whole domain X is also denoted with Ran(f). For
any singleton set {z}, we indicate with f [z↦ y] the function with domain X ∪{z} (where z may be in X) and
codomain Y , which is given by

f [z↦ y](x) ∶= { y If x = z,
f (x) Otherwise.

We say that f is 1-1 if f (x) = f (y) implies that x = y, for all x,y ∈ X . We say that f is onto if Ran(f) =Y . The
function f ∶X →Y is bijective if it is both 1-1 and onto. If f is 1-1, the inverse of f is the function f −1 ∶Ran(f)→X
assigning to each y ∈ Ran(f) the unique x ∈ X such that y = f (x). Given functions g ∶ X → Y and h ∶ Y → Z, we
denote as h○g ∶ X → Z the composition of g and h. Given functions f ∶ X → Y and f ′ ∶ X ′ → Y ′, we say that f ′

extends f if X and Y are subsets respectively of X ′ and Y ′, and f is equal to f ′↾X . Functions are always assumed
total when not specified otherwise.

Relations Let X and Y be sets. Given a binary relation R ⊆ X ×Y , we define Dom(R) ∶= {π1(x,y) ∣ (x,y) ∈ R}
and Ran(R) ∶= {π2(x,y) ∣ (x,y) ∈ R}. For any element x ∈ X , we indicate with R[x] the set {y ∈Y ∣ (x,y) ∈ R}. The
relations R+ and R⋆ are defined respectively as the transitive closure of R and the reflexive and transitive closure of
R.

Natural Numbers The cardinality of a set X is indicated with ∣X ∣. Following von Neumann’s convention, we
denote with ω the set of natural numbers with the usual order ≤ and we identify each natural number i <ω with the
set {0,1,2, . . . , i−1}. For any finite subset Y of ω, we denote with Max(Y) and Min(Y) respectively the largest
and the smallest number occurring in Y . A function f whose domain is γ for some γ ≤ω and whose codomain is
a set Z is called a sequence in Z. The standard notation for Ran(f) is (zi)i<γ, where zi indicates that f (i) = z, for
each i < γ. Suppose that the set Z has some order ⪯. We say that a sequence (zi)i<γ of elements of Z is monotone in

5

⪯ if zi ⪯ zi+1 for each i < γ. In some contexts we refer to an infinite sequence (zi)i<ω of elements of Z as a Z−stream.
We denote with Zω the set of all Z−streams.

1.2 Trees

Convention 1.1. Throughout this thesis we let P be a fixed set of propositional letters, whose elements are denoted
with small Latin letters p, q and r. We denote with C the set ℘(P) of labels on P. An element of C is usually
indicated with the letter c. ◂

Definition 1.2 (Labeled Transition System). A C-labeled transition system is a tuple S = ⟨T,R,V ⟩, where T is a
set, R ∶ T ×T is a binary relation and V ∶ P→ ℘(T) is a function. We say that T is the carrier, R is the successor
relation and V is the valuation function of S. For any pair (s,t) ∈ R we say that s is a predecessor of t and t is a
successor of s. For any pair (s,t) ∈ R+, we say that s is an ancestor of t and t is a descendant of s. ⊲

We introduce trees as a particular kind of transitions systems.

Definition 1.3 (Tree). A tuple T = ⟨T,sI ,R,V ⟩ is a C-labeled tree if T = ⟨T,R,V ⟩ is a C-labeled transition system,
sI ∈ T is a distinguished point that has no predecessor, each s ∈ T that is different from sI has a unique predecessor
and the following identity holds.

T = R⋆[sI]

The elements of T are called nodes and sI is called the root of T. ⊲

Subtree Let T = ⟨T,sI ,R,V ⟩ be a C-labeled tree. A C-labeled tree T′ = ⟨T ′,s′I ,R
′,V ′⟩ is a subtree of T if T ′ ⊆ T ,

R′ = R∩(T ′×T ′) and V ′(p) =V(p)∩T ′ for each p ∈ P. Observe that each subtree of T is uniquely determined by
its carrier. Each node s ∈ T uniquely defines a subtree of T with carrier R⋆[s] and root s, which we denote with T.s.

Height and Leaf The height of a node s ∈ T is inductively defined as follows: the root is the unique node at
height 0; if s ∈ T is a node of height i, then each t ∈ R[s] is a node of height i+1. Two nodes s,t ∈ T are siblings
if there is a node r ∈ T such that s ∈ R[r] and t ∈ R[r]. A leaf of T is a node s ∈ T such that R[s] =∅. A tree T is
leafless if no node in T is a leaf.

Path and Branch Let S ⊆ T be a set of nodes. We say that S is a path if S = (si)i<k for some sequence (si)i<k
with k ≤ω and siRsi+1 for each i < k. We say that S is backwards closed if t ∈ S and sRt implies s ∈ S, for all s,t ∈ T .
Similarly, S is frontwards closed if, for all s ∈ S with R[s] ≠∅, there is some t ∈ S with sRt. The set S is a branch of
T if it is a path and it is both frontwards and backwards closed.

Branching Degree With the terminology branching degree we refer to the cardinality of the set R[s] for nodes
s ∈ T . A tree T is finitely branching if R[s] is finite for all s ∈ T . For any k <ω, we say that T is a k-bounded tree if
∣R[s]∣ ≤ k for all s ∈ T . In the specific case in which ∣R[s]∣ = 2 for all s ∈ T , we say that T is a binary tree. We say
that T is arbitrarily branching if there is no special requirement on its branching degree.

Well-foundedness The tree T is well-founded if every path in T is finite. We denote with WF(T) the set of
well-founded subtrees of T. A set of nodes S ⊆T is well-closed if S ⊆ S′, where S′ is the carrier of some well-founded
subtree of T. We use the notation WC(T) to indicate the set of well-closed subsets of T .

Frontier and Prefix We say that G is a frontier of T if G∩E is a singleton for every branch E of T. A set S is
a prefix of T if there exists a frontier G of T such that S = {s ∈ T ∣ sR⋆t for some t ∈ G}. Observe that each prefix
S of T is the carrier of a well-founded backwards closed subtree of T, with the property that for each node s ∈ S
either none or all successors of s are in S. It is easy to see that every prefix is uniquely determined by a frontier
and viceversa. If S is a prefix, we denote with Ft(S) the associated frontier. Given two frontiers G1 and G2 of T,
we write G1 <G2 if, for every branch E in T, given s1 ∈G1∩E and s2 ∈G2∩E, we have that s1R+s2. Analogously,
G1 ≤G2 holds if, for every branch E in T, given s1 ∈G1∩E and s2 ∈G2∩E, we have that s1R⋆s2.

6

Figure 1.1: naming of parts.

p-variant Let p be a propositional letter (not necessarily in P). Given T = ⟨T,sI ,R,V ⟩, suppose that Tp =
⟨T,sI ,R,V p⟩ is a ℘(P∪{p})-labeled tree such that V p ∶ P∪{p}→ ℘(T) is given as V [p↦ S] for some S ∈ ℘(T).
We refer to Tp as a p-variant of T. A p-variant Tp of T is well-closed if V p(p) ∈WC(T). Similarly, Tp is a finite
p-variant if V p(p) ⊆ω T . For a given set S ∈ ℘(T), we denote with T[p↦ S] the p-variant Tp = ⟨T,sI ,R,V p⟩ of T
obtained by putting V p =V [p↦ S].

Remark 1.4 (Coalgebraic Presentation [31]). It will be convenient to introduce an alternative presentation of
trees, where the evaluation function and the successor relation are specified from the ‘local’ point of view of a
node. Given a C-labeled tree T = ⟨T,sI ,V,R⟩, we can represent V ∶ P→ ℘(T) as a labeling function σC ∶ T →C and
R ⊆ T ×T as a successor function σR ∶ T → ℘(T). Given a node s ∈ T , we call σC(s) the label of s and for each
p ∈ σC(s) we say that s is labeled with p. Since σC and σR have the same domain, we can encode them as a single
function σ ∶ T → ℘(T)×C, assigning to each node the set of its successors and its label. Then we can represent T as
a tuple ⟨T,sI ,σ⟩. Throughout this thesis we will mainly use this presentation for trees. ◂

Bisimulation is a notion of behavioral equivalence between processes [3]. Roughly, two processes are bisimilar
when their behavior is indistinguishable from the point of view of an external observer. Transition systems are a
mathematical model for processes and bisimulation is usually rendered as a binary relation. In the sequel we define
this notion for the case of trees.

Definition 1.5 (Bisimulation). Given C-labeled trees T = ⟨T,sI ,σ⟩ and T′ = ⟨T ′,s′I ,σ
′⟩, a bisimulation is a relation

Z ⊆ T ×T ′ such that for all (t,t′) ∈ Z the following holds:

• σC(t) = σ
′
C(t′);

• for all s ∈ σR(t) there is s′ ∈ σ
′
R(t′) such that (s,s′) ∈ Z;

• for all s′ ∈ σ
′
R(t′) there is s ∈ σR(t) such that (s,s′) ∈ Z.

The trees T and T′ are bisimilar if there is a bisimulation Z ⊆ T ×T ′ including (sI ,s′I). We write T⇄ T′ to
indicate that T and T′ are bisimilar. ⊲

Given a tree T, the ω-expansion Tω of T is a canonical instance of a tree which is bisimilar to T. Intuitively,
Tω is given as a tree with the same root of T and ω copies of any other node s ∈ T .

Definition 1.6 (ω-expansion). Given a C-labeled trees T = ⟨T,sI ,σ⟩, the ω-expansion of T is a C-labeled tree
Tω = ⟨Tω,(sI ,0),σω⟩ defined as follows.

• The carrier Tω is given as ((T ∖{sI})×ω)∪{(sI ,0)}.

• For each node (s, i) ∈ Tω, the label σ
ω

C(s, i) of (s, i) is just σC(s), and the set σ
ω
R(s, i) of its successors is given

as σR(s)×ω. ⊲

7

Remark 1.7. Each C-labeled tree T is bisimilar to its ω-expansion Tω. A bisimulation relation Z ⊆ T ×Tω

witnessing this fact can be defined by putting

Z ∶= {(s,(s, i)) ∣ s ∈ (T ∖{sI}) and i <ω}∪{(sI ,(sI ,0))}.

In words, Z links each node s ∈ T to all the copies of s in the ω-expansion. ◂

Convention 1.8. Throughout this thesis, every tree T that we consider is leafless and C-labeled if not specified
otherwise. ◂

1.3 Monadic Second-Order Logics on Trees

Definition 1.9 (Syntax). The monadic second-order language on P is defined by the grammar

ϕ ∶∶= p ⊑ q ∣ R(p,q) ∣ ¬ϕ ∣ ϕ∨ϕ ∣ ∃p.ϕ, (1.1)

where p and q are letters from P. Given a formula ϕ of the monadic second-order language, we denote with
FV(ϕ) and BV(ϕ) respectively the set of free and bound letters occurring in ϕ, defined as expected. We also adopt
the standard convention that no letter occurs both free and bound in ϕ, that is, FV(ϕ) and BV(ϕ) are disjoint.

The language of monadic second-order logic (MSOP), weak monadic second-order logic (WMSOP) and well-
founded monadic second-order logic (WFMSOP) is the monadic second-order language on P. We omit the subscript
P when this is clear from the context. ⊲

Definition 1.10 (Semantics). Let T = ⟨T,sI ,V,R⟩ be a C-labeled tree and ϕ a formula of the monadic second-order
language on P. The semantics of MSO is given by the following clauses, defining a truth relation ⊧ between T and
ϕ, by induction on ϕ. If T ⊧ ϕ holds, then we say that ϕ is true in T.

T ⊧ p ⊑ q iff V(p) ⊆V(q)
T ⊧ R(p,q) iff for all s ∈V(p) there is some t ∈V(q) with sRt

T ⊧ ¬ϕ iff T /⊧ ϕ

T ⊧ ϕ∨ψ iff T ⊧ ϕ or T ⊧ ψ

T ⊧ ∃p.ϕ iff there is a p-variant Tp of T such that Tp ⊧ ϕ

The semantics of WMSO is given as the semantics of MSO but for the clause of the existential quantifier, which is
replaced by the following clause.

T ⊧ ∃p.ϕ iff there is a finite p-variant Tp of T such that Tp ⊧ ϕ

The semantics of WFMSO is given as the semantics of MSO but for the clause of the existential quantifier, which is
replaced by the following clause.

T ⊧ ∃p.ϕ iff there is a well-closed p-variant Tp of T such that Tp ⊧ ϕ

Let ϕ ∈ MSO be a formula. We denote with ∥ϕ∥P the set of C-labeled trees T such that T ⊧ ϕ. The subscript P is
omitted when the set P of propositional letters is clear from the context. ⊲

Remark 1.11. The monadic second-order language is a one-sorted language: the only variables appearing are the
letters from the set P, which are interpreted over sets. This definition is very convenient for the automata-theoretic
perspective that we will consider throughout this thesis. Perhaps a different version of the monadic second-order
language may have been expected, with two sorts of variables. For instance, given a set Var of individual variables
and the usual set P of set variables, consider the language defined by the following grammar.

ϕ ∶∶= x ≈ y ∣ x ∈ p ∣ xRy ∣ ¬ϕ ∣ ϕ∨ϕ ∣ ∃x.ϕ ∣ ∃p.ϕ (1.2)

Variables x and y are from the set Var and p is from the set P. We can provide a semantic interpretation on
trees for formulae of this language in a completely standard way: ≈ is interpreted as equality of nodes, R as the
successor relation, and ∃x and ∃p denote respectively first-order quantification (that is, quantification over nodes)
and second-order quantification (that is, quantification over sets of nodes).

8

In fact the monadic second-order logics based on languages as in (1.1) or (1.2) are equivalent: the key
observation is that an individual variable x can be seen as a set variable px whose interpretation is restricted to
singletons. The translation from a formula as in (1.2) to a formula as in (1.1) crucially involves formulae Empty(p)
and Singl(p) defined by putting

Empty(p) ∶= ∀q (p ⊑ q)
Singl(p) ∶= (¬(Empty(p))))∧∀q (q ⊑ p→ (Empty(q)∨ p ⊑ q)).

Either if we interpret Empty(p) and Singl(p) according to the semantics of MSO, WMSO or WFMSO, the formula
Empty(p) holds in a tree T when V(p) is the empty set and Singl(p) when V(p) is a singleton. We refer to [31],
remark 6.34 for more details on this translation. ◂

1.4 The Modal µ-Calculus

We refer to [31] for a thorough introduction to the modal µ-calculus (µMC).

Definition 1.12 (Syntax). The language of the modal µ-calculus on P is given by the following grammar:

ϕ ∶∶= p ∣ ¬p ∣ ϕ∨ϕ ∣ ϕ∧ϕ ∣ ◇ϕ ∣ ◻ϕ ∣ µp.ϕ ∣ νp.ϕ,

where p is a letter from P, which does not occur under the scope of ¬ in µp.ϕ and νp.ϕ. We call µ and ν respectively
least and greatest fixpoint operator. Given a formula ϕ ∈ µMC, we define the sets FV(ϕ) and BV(ϕ) of free and
bound variables of ϕ as expected, with fixpoint operators binding propositional letters analogously to quantifiers of
the monadic second-order language. We also adopt the standard convention that FV(ϕ) and BV(ϕ) are disjoint. ⊲

Definition 1.13 (Semantics). Given a tree T = ⟨T,sI ,V,R⟩, we inductively define the meaning ∥ϕ∥T of a formula
ϕ ∈ µMC in T as follows.

∥p∥T ∶= V(p)
∥¬p∥T ∶= T ∖V(p)
∥ψ1∧ψ2∥T ∶= ∥ψ1∥T∩∥ψ2∥T

∥ψ1∨ψ2∥T ∶= ∥ψ1∥T∪∥ψ2∥T

∥◻ψ∥T ∶= {s ∈ T ∣ ∀t (sRt⇒ t ∈ ∥ψ∥T}
∥◇ψ∥T ∶= {s ∈ T ∣ ∃t (sRt ∧ t ∈ ∥ψ∥T}
∥µp.ψ∥T ∶= ⋂{S ⊆ T ∣ S ⊇ ∥ψ∥T[p↦S]}
∥νp.ψ∥T ∶= ⋃{S ⊆ T ∣ S ⊆ ∥ψ∥T[p↦S]}

We say that ϕ is true in T - notation T ⊧ ϕ - if the following condition holds.

T ⊧ ϕ iff sI ∈ ∥ϕ∥T.

As for the case of MSO, we denote with ∥ϕ∥P the set of C-labeled trees T such that T ⊧ ϕ. The subscript P is
omitted when the set P of propositional letters is clear from the context. ⊲

Formulae of the modal µ-calculus are classified according to their alternation depth, which is informally given
as the maximal length of a chain of nested alternating least and greatest fixpoint operators [4]. In particular,
we are interested in the alternation-free fragment of modal µ-calculus, which is the collection of µMC-formulae
without nesting of least and greatest fixpoint operators. The study of this fragment is motivated by computational
feasibility, the alternation depth being the major factor in the complexity of model-checking algorithms for the
modal µ-calculus [8].

Definition 1.14. We define the alternation-free fragment of modal µ-calculus (AFMC) as the set of formulae
ϕ ∈ µMC with the following property:

⋆ for any two subformulae of ϕ of the form µp.ψ1 and νq.ψ2, letters p and q do not occur free respectively in
ψ2 and ψ1. ⊲

Example 1.15. The formula µp.(◻p∨(νq.(◇q∧ r))) is in AFMC, because p does not occur free in ◇q∧ r and q
does not occur free in ◻p∨(νq.(◇q∧ r)). Instead, the formula µp.(νq.(◻p∨ r∨◇q)) is not in AFMC because p
occurs free in ◻p∨ r∨◇q. ◂

9

1.5 Definability

Tree Languages We usually refer to a set of C-labeled trees L as a tree language on P - or just as a tree language,
if P is clear from the context. We indicate with L the complement of L, i.e. the set of C-labeled trees that are not in
L. A tree language L is MSO-definable if there is a formula ϕ ∈MSO such that ∥ϕ∥ =L. We say that ϕ defines L.
Given MSO-formulae ϕ1 and ϕ2, we say that they are equivalent - notation ϕ1 ≡ ϕ2 - if ∥ϕ1∥ = ∥ϕ2∥. We define in
the same way analogous notions of definability for WMSO, WFMSO, µMC and AFMC.

Bisimulation Invariance The tree language L is bisimulation closed if T⇄T′ implies that T ∈L⇔T′ ∈L for
each tree T and T′. A formula ϕ ∈MSO is bisimulation invariant if T⇄T′ implies that T ⊧ ϕ⇔T′ ⊧ ϕ for each
tree T and T′. We define in the same way analogous notions of bisimulation invariance for WMSO, WFMSO, µMC
and AFMC.

Proposition 1.16. Each µMC-definable tree language is bisimulation closed.

Proposition 1.17 (Janin-Walukiewicz Theorem [15]). The class of MSO-definable tree languages that are bisimu-
lation closed coincides with the class of µMC-definable tree languages.

The following is a corollary of Bradfield’s result on the modal µ-calculus [4], showing that the alternation depth
hierarchy does not collapse.

Proposition 1.18 ([4]). The class of AFMC-definable tree languages is strictly included in the class of µMC-
definable tree languages.

1.6 Topological Complexity

We are interested in measuring the complexity of tree languages, from a topological point of view. In chapter 5
we are going to use the topological perspective to compare the expressive power of different logics on trees.

Borel Sets Given a topological space (X ,τ), the class Borel(X) ⊆ ℘(X) of Borel sets of (X ,τ) is the smallest
collection having all the open sets of (X ,τ) as elements and that is closed under the set-theoretical operations of
countable union and complementation. A subset Y ⊆ X is Borel if it is an element of Borel(X).

Prefix Topology [9] We define a topology on C-labeled trees. For a C-labeled tree T and a natural number n <ω

the depth-n prefix of T, denoted as T(n), is the subtree of T with carrier the prefix {s ∈ T ∣ s has height at most n}.
We say that two trees T and T′ are equivalent up to height n if T(n) =T′(n). We call a set X of trees open if, for
each T ∈ X , there is a natural number n ≥ 1 such that, for any tree T′, if T(n) = T′(n) then T′ is in X . It can be
checked that this definition of open set yields a topology on C-labeled trees, which we call prefix topology.

The following results relate topological complexity and logical definability of tree languages.

Proposition 1.19 ([9]). Let L be a tree language on P. If L is WMSO-definable then it is a Borel set of the prefix
topology.

Proposition 1.20 ([9]). The tree language on P defined by the formula µq.(◻q∨ p) is not a Borel set of the prefix
topology.

1.7 First-Order Logic

Throughout this section, we fix a finite set A of unary predicates. First, we present a first-order logic on
signature given by A. It will be used later to define automata whose transition function is given in terms of
first-order sentences.

Definition 1.21. Let Var a set of first-order variables. We define For+(A) as the set of formulae generated by the
following grammar.

ϕ,ψ ∶∶= ⊺ ∣ � ∣ x ≈ y ∣ x /≈ y ∣ a(x) ∣ ϕ∨ψ ∣ ϕ∧ψ ∣ ∃x.ϕ ∣ ∀x.ϕ (1.3)

The variables x and y are from the set Var. Intuitively, For+(A) is the set of first-order formulae on signature A,
where unary predicates from A can only occur positively. Given a subset S of A, we introduce the notation

τ
+
S (x) ∶= ⋀

a∈S
a(x).

10

The formula τ
+
S (x) is called a positive A-type. We use the convention that, if S is the empty set, then τ

+
S (x) is ⊺.

Given a finite set X ⊆ω For+(A) of formulae, ⋁X is the formula given as the (finite) disjunction of all formulae in
X . Given a set Y ⊆ For+(A) of formulae, SLatt(Y) = {⋁X ∣ X ⊆ω Y} is the collection of all finite disjunctions of
formulae in Y . We indicate with FO+(A) the set of sentences from For+(A). ⊲

Definition 1.22 (Semantics). Given a set X , a function m ∶ A→ ℘(X) and a valuation v ∶ Var→ X , we inductively
define the notion of a formula ϕ ∈ For+(A) being true in (X ,m,v) as follows.

(X ,m,v) ⊧ ⊺
(X ,m,v) /⊧ �
(X ,m,v) ⊧ x ≈ y iff v(x) = v(y)
(X ,m,v) ⊧ x /≈ y iff v(x) ≠ v(y)
(X ,m,v) ⊧ a(x) iff x ∈m(a)
(X ,m,v) ⊧ ϕ∨ψ iff (X ,m,v) ⊧ ϕ or (X ,m,v) ⊧ ψ

(X ,m,v) ⊧ ϕ∧ψ iff (X ,m,v) ⊧ ϕ and (X ,m,v) ⊧ ψ

(X ,m,v) ⊧ ∃x.ϕ iff (X ,m,v[x↦ s]) ⊧ ϕ for some s ∈ X

(X ,m,v) ⊧ ∀x.ϕ iff (X ,m,v[x↦ s]) ⊧ ϕ for all s ∈ X

The function m is called a marking. We say that (X ,m,v) is an A-structure. ⊲

Given ϕ and ψ in For+(A), in the sequel we freely use the notation ϕ→ψ to abbreviate ¬ϕ∨ψ, provided that
¬ϕ can be rewritten into an equivalent formula in For+(A).

Definition 1.23. For sets A and X , letMA,X be a set of markings of type A→ ℘(X). We define a partial order ⊴ on
MA,X by putting

m ⊴m′ iff m(a) ⊆m′(a) for all a ∈ A.

⊲

Let ϕ ∈ FO+(A) be a sentence and (X ,m,v) a first-order structure on signature A. Since ϕ has no free variables,
we simply write (X ,m) ⊧ ϕ to indicate that ϕ is true in (X ,m,v) for any v. Each sentence in FO+(A) enjoys a
monotonicity property that we introduce with the following remark.

Remark 1.24 (Monotonicity). Let X be a set and ϕ ∈ FO+(A) a sentence. We observe the following property of ϕ,
that can be easily verified by induction on ϕ:

⋆ Let m ∶ A→ ℘(X) be a marking such that (X ,m) ⊧ ϕ. For every marking m′ ∶ A→ ℘(X) such that m ⊴m′ we
have that (X ,m′) ⊧ ϕ. ◂

Definition 1.25 (Basic Form). Let B1 . . .Bk and C1 . . .C j be sequences of subsets of A, possibly empty if k = 0 or
j = 0. A sentence ϕ ∈ FO+(A) is in basic form if it is of shape

ϕ = ∃x1 . . .∃xk (diff (x̄)∧ ⋀
1≤i≤k

τ
+
Bi
(xi)∧∀z (diff (x̄,z)→ ⋁

1≤l≤ j
τ
+
Cl
(z))),

where each τ
+
Bi
(xi) and τ

+
Cl
(z) is a positive A-type, as in definition 1.21, and diff (y1, . . . ,yn) ∶=⋀1≤m<m′<n(ym /≈ ym′)

is a For+(A)-formula stating that the interpretations of y1, . . . ,yn are pairwise different. The sentence ϕ is of the
form ∃x1 . . .∃xk(ψ1∧∀z ψ2); we refer to ψ1 and ψ2 respectively as the existential and the universal part of ϕ. We
indicate which positive A-types appear in the sentence by saying that ϕ depends on the sequence B1 . . .Bk,C1 . . .C j
of subsets of A. We denote with BF+(A) the set of all sentences from FO+(A) that are in basic form. ⊲

Using Ehrenfeucht-Fraïssé Games [13] it is possible to show that every sentence ϕ ∈ FO+(A) can be rewritten
into an equivalent disjunction of sentences in BF+(A).

Proposition 1.26 ([33] - Lemma 38, [11] - Lemma 16.23). Let ϕ ∈ FO+(A) be a sentence. There is a sentence
ϕ
′ ∈ SLatt(BF+(A)) such that ϕ ≡ ϕ

′.

11

Remark 1.27. A sentence ϕ ∈ BF+(A) in basic form provides a quite informative picture of each A-structure
(X ,m) in which is true. By the particular shape of ϕ, the marking m has the effect of partitioning X into two sets
Xm
∃ and Xm

∀ = X ∖Xm
∃ . The set Xm

∃ consists of the witnesses for variables x1, . . . ,xk in the existential part in ϕ. By the
presence of the subformula diff (x̄) in ϕ, we know that Xm

∃ contains exactly k elements s1, . . . ,sk. For i with 1 ≤ i ≤ k,
the node si ∈ Xm

∃ is associated with the positive A-type τ
+
Bi
(xi), meaning that si ∈⋂a∈Bi m(a). Analogously, the set

Xm
∀ contains all the other elements of X , which are witnesses for the variable z in the universal part of ϕ. We have

that s ∈⋂b∈Cl m(b), for some positive A-type τ
+
Cl
(z) occurring in the universal part of ϕ.

The A-structure (X ,m) is generally a ‘redundant’ representation of the sentence ϕ. Each element t ∈X witnesses
some variable y of ϕ, either in its existential or universal part, associated with a positive A-type τ

+
S (y). This means

that there is a set St ⊆ A, such that S is a subset of St and t is in ⋂a∈St m(a). The key observation is that t would still
be a ‘good’ witness for the variable y if we do not assign to t any unary predicate in St ∖S. Following this intuition,
we say that a marking m♭ ∶ A→ ℘(X) is a shrinking of m if the following conditions hold.

1. Given any si ∈ {s1, . . . ,sk} = Xm
∃ ,

{a ∈ A ∣ si ∈m♭(a)} = Bi.

2. Given any t ∈ X ∖Xm
∃ = Xm

∀ ,

{a ∈ A ∣ t ∈m♭(a)} ⊆ {a ∈ A ∣ t ∈m(a)}.

Furthermore, {a ∈ A ∣ t ∈m♭(a)} is a minimal element of {C1, . . . ,C j} with respect to the order ⊆.

It is clear by the syntactic shape of ϕ that at least one shrinking of m exists. Intuitively, the two conditions express
that the A-structure (X ,m♭) is a ‘non-redundant’ representation of the sentence ϕ, obtained by ‘contracting’ the
representation (X ,m). The marking m♭ assigns to each element t of X a subset of A, which is ⊆-minimal among the
ones making t a witness for the corresponding variable in ϕ, according to the partition Xm

∃ ∪Xm
∀ . These intuitions

are fixed by the next three statements, which easily follow by the conditions on m♭ expressed above.

a) m♭ ⊴m.

b) (X ,m♭) ⊧ ϕ.

c) For each marking m̃ ∶ A→ ℘(X), if m̃ ⊴m♭ and (X ,m̃) ⊧ ϕ, then m̃ =m♭. ◂

1.8 Game Terminology and Parity Games

Throughout this thesis we work with automata processing trees. A very convenient way to describe a run of
such automata is by means of games. In particular, since all trees are assumed leafless, a run will generally be an
infinite object, that we want to model through an infinite game. For this purpose, we introduce some terminology
and background on infinite games. All the games that we consider involve two players called Eloise (∃) and Abelard
(∀). In some contexts we refer to player Π, meaning that we want to specify a notion for a generic player in {∃,∀}.

Board Games A board game G is a tuple (G∃,G∀,E,Win), where G∃ and G∀ are disjoint sets whose union
G =G∃∪G∀ is called board, E ⊆G×G is a set of edges, and Win ⊆Gω is a set of G−streams. Each element u ∈G is
a position. Intuitively, if u is an element of GΠ, this means that player Π is supposed to move from position u. An
initialized board game G@uI is a tuple (G∃,G∀,uI ,E,Win) where (G∃,G∀,E,Win) is a board game and uI ∈G is
a distinguished position that we call the initial position of the game.

Matches Given a board game G, a match in G is a sequence π = (ui)i<α of positions of G, where α is either ω or
a natural number, and (ui,ui+1) ∈ E for all i with i+1 < α. Analogously, given an initialized board game G@uI ,
we say that π is a match in G@uI if it is a match in G and u0 = uI . If α = ω, we say that π is an infinite match.
Otherwise, α = k for some k <ω and π is a finite match. We refer to uk−1 as the last position in π, for which we use
the notation last(π). Since last(π) is an element of G =G∃∪G∀, then one of the two players, that we indicate with
Π, is supposed to move from last(π). If there is no u ∈G such that (last(π),u) ∈ E, we say that player Π gets stuck
in π.

If π is infinite or π is finite with one of the two players getting stuck, we say that π is a total match. Otherwise π

is a partial match. If π is a total match then it is won by some player. If π is finite, then the winner is the opponent
of the player who gets stuck. Otherwise π is infinite, meaning that it is a G−stream: ∃ wins if π belongs to Win,
and ∀ wins if π does not belong to Win. Given two matches π = (ui)i<α and π

′ = (vi)i<γ, we say that π
′ extends π if

α ≤ γ and ui = vi for all i < α.

12

Strategies Given a board game G and a player Π, let PMG
Π

denote the set of partial matches of G whose last
position belongs to player Π. A strategy for Π is a function f of type PMG

Π
→ G. A match π = (ui)i<α of G is

f -conform if for each i < α such that ui ∈GΠ we have that ui+1 = f (u0, . . . ,ui). Given a partial match π in Dom(f),
the position f (π) is legitimate if (last(π), f (π)) is in E.

Given u ∈G, a strategy f ∶ PMG
Π
→G, consider the following two conditions.

1. For each f -conform partial match π of G@u, if last(π) is in GΠ then f (π) is legitimate.

2. Each f -conform total match of G@u is won by Π.

If f respects the first condition, we say that f is a surviving strategy for Π in G@u. Intuitively, if f is surviving
then player Π never gets stuck in matches that are played according to f . Furthermore, if f respects both the first
and the second condition, then we say that f is a winning strategy for Π in G@u. If Π has a winning strategy in
G@u then we say that u is a winning position for Π in G. We denote with WinΠ(G) the set of positions of G that
are winning for Π.

Remark 1.28. As given above, a strategy for player Π is defined for all partial matches in PMG
Π

. However,
throughout this thesis we will occasionally work with strategies which are only defined on a subset X of PMG

Π
. This

is convenient for the purpose of merging several strategies f1, f2, . . . , fk together, obtaining a well-defined strategy
f ′ by the union of their graphs. In fact, we can assume that any partially defined strategy f ∶ X →G has domain
PMG

Π
, by letting f (π) be an arbitrary position for all partial matches π ∈ PMG

Π
∖X .

Similarly, notice that the property of a strategy f of being surviving or winning for Π only depends on the
value of f on partial matches in PMG

Π
that are f -conform. By this observation, for the purpose of showing that f is

surviving or winning, we usually define it just on f -conform partial matches in PMG
Π

. ◂

Parity Games Let G = (G∃,G∀,E,Win) be a board game. A parity map is a function Ω ∶ G→ ω assigning a
natural number to each position in G, such that Ω[G] is finite. Given an infinite match π ∈ Gω, we denote with
Inf (π) the set {k < ω ∣ Ω(u) = k for infinitely many u ∈ π}. Since π is infinite and Ω[G] is finite, then Inf (π) is
non-empty. We say that Win is a parity set if there exists a parity map Ω ∶G→ω such that

Win = {π ∈Gω ∣ Min(Inf (π)) is even}.

A parity game is a board game G = (G∃,G∀,E,Win) where Win is a parity set. We can see parity games as board
games where Win presents a quite regular structure. What makes them so appealing is that they enjoy a remarkable
property which is called positional determinacy.

Positional Determinacy A strategy f ∶PMG
Π
→G is called positional if f (π)= f (π

′) for each π and π
′ in Dom(f)

with last(π) = last(π
′). Intuitively, positional strategies only depend on the last position of partial matches on

which they are defined. For this reason, a positional strategy with type PMG
Π
→G can represented as a function of

type GΠ→G.
A board game G with board G is determined if G =Win∃(G)∪Win∀(G), that is, each u ∈G is a winning position

for one of the two players.

Theorem 1.29 (Positional Determinacy of Parity Games, [7], [22]). For each parity game G, there are positional
strategies f∃ and f∀ respectively for player ∃ and ∀, such that for every position u ∈G there is a player Π such that
fΠ is a winning strategy for Π in G@u.

Following theorem 1.29, it will be convenient to assume that each strategy we work with in parity games is
positional.

1.9 Stream Automata

Many of the concepts we presented so far are related to infinite sequences, also called streams. This motivates
the introduction of automata operating on streams, that will be used in Chapter 2. We assume that the reader is
already familiar with elementary notions of automata theory such as run and acceptance condition, for which we
refer to [11].

Definition 1.30. An X−stream automaton is a tuple Z = ⟨Z,zI ,∆,Acc⟩ where Z is a finite set of states, zI ∈ Z is an
initial state, ∆ ∶ Z ×X → ℘(Z) is a transition function and Acc ⊆ Zω is an acceptance condition. We say that Z is
deterministic if for each (z,x) ∈ Z×X the set ∆(z,x) is a singleton, and non-deterministic otherwise. We call Z a
parity X−stream automaton if Acc is a parity set.

13

For an X−stream (xi)i<ω, a run ρ of Z on (xi)i<ω is a Z−stream (zi)i<ω where z0 = zI and zi+1 ∈ ∆(zi,xi) for
each i <ω. We say that (xi)i<ω is accepted by Z if there exists a run ρ of Z on (xi)i<ω such that ρ ∈ Acc. We denote
with L(Z) the set of X−streams that are accepted by Z, also called the language of Z. ⊲

Definition 1.31. For a set X , let L ⊆ Xω be a set of X−streams. Similarly to the case of trees, we refer to L as a
stream language. We say that L is an ω-regular language if there is an X−stream automaton Z such that L(Z) =L.
⊲

Given X−stream automata Z1 and Z2, we write Z1 ≡ Z2 if L(Z1) = L(Z2). We notice that an X−stream can
also be seen as a very simple kind of tree, with a unique branch and no labeled node - automata on trees, that we
introduce in the next chapter, are in fact a generalization of stream automata. By this observation, we occasionally
make use of the notation introduced in this section also for automata working on trees.

14

Chapter 2

Automata Characterization of MSO

In this chapter we give an account of the expressive power of MSO in terms of automata working on trees.
For this purpose we introduce MSO-automata. The underlying idea is that, for each formula ϕ ∈ MSO, we can
effectively construct an MSO-automaton Aϕ which is equivalent to ϕ, that is, Aϕ has the following property:

for any tree T, T ⊧ ϕ iff Aϕ accepts T. (2.1)

2.1 MSO-Automata: Definition

Every MSO-automaton A will be given as a tuple A = ⟨A,aI ,∆,Ω⟩.

1. The first two components are a finite set A of states (also called carrier) and the initial state aI ∈ A of A.

2. The automaton A depends on an alphabet, which is standardly given as the set C ∶= ℘(P), for P the set of
propositional letters that we fixed with convention 1.1. The third component of A is a transition function ∆

of type A×C→ FO+(A). Operationally, this means that:

• the function ∆ takes as input a state a ∈ A and the label σC(s) ∈C of a node s of T;

• the function ∆ gives as output a first-order sentence ∆(a,σC(s)) ∈ FO+(A) where states a ∈ A of the
automaton can occur positively as unary predicates.

3. The fourth component Ω is a function of type A→ω, assigning to each state a ∈ A a natural number Ω(a).

Before giving the formal definition of MSO-automaton, we provide some intuitions on how the behavior of A is
expressed in terms of ∆ and Ω. For this purpose we fix a tree T. The idea is to describe any run of A on T in terms
of a game, which we call the acceptance game of A on T. The acceptance game has two players: player ∃ claims
that T should be accepted by A, whereas player ∀ tries to refute this statement. A basic position of the game is a
pair (a,s) ∈ A×T where a is a state of A and s is a node of T. A match π proceeds in rounds, where each round is
associated with a basic position. The interplay of the two players determines how we pass from a basic position
(ai,si) in round i to another basic position (ai+1,si+1) in round i+1. Each round consists of two moves, that we
can describe as follows.

• Move of ∃: from position (ai,si) ∈ A×T , player ∃ provides a marking m ∶ A→ ℘(σR(si)) assigning sets of
successors of si to states of A. Then (σR(si),m) is an A-structure according to definition 1.21.

Requirement: the marking m chosen by ∃ must be such that the sentence ∆(ai,σC(si)) is true in (σR(si),m).

• Move of ∀: given the marking m ∶ A→ σR(si), player ∀ chooses the next basic position (ai+1,si+1) ∈ A×T .

Requirement: the position (ai+1,si+1) chosen by ∀ must respect m, in the sense that si+1 is in m(ai+1).

Therefore π consists of basic positions - belonging to ∃ - and positions with markings - belonging to ∀, which
occur alternated.

π = (a1,s1),m1,(a2,s2),m2, . . . ,(an,sn),mn, . . .

We can assign a numeric value - which we call parity - to each position in π. Each basic position (ai,si)
is associated with parity Ω(ai). All positions with a marking receive parity Max(Ω[A]). Since every position
receives some parity, acceptance games can be seen as parity games: winning conditions are defined accordingly.

15

Observe that, if π is infinite, then the minimum parity occurring infinitely often along the play is always associated
with some basic position. The intuition is that positions with markings receive a conventional parity, which is not
relevant for determining the winner of a match.

We are now ready to provide the formal definition of MSO-automata.

Definition 2.1 ([33][31]). An MSO-automaton on alphabet C is a tuple A = ⟨A,aI ,∆,Ω⟩ where:

• A is a finite set of states;

• aI ∈ A is the initial state of A;

• ∆ ∶ A×C→ FO+(A) is the transition function of A;

• Ω ∶ A→ω is the parity map of A.

Given a tree T, the acceptance game of A on T - notation A(A,T) - is a parity game defined according to the
rules of table 2.1. We recall that finite matches of A(A,T) are lost by the player who gets stuck. An infinite match
of A(A,T) is won by ∃ if and only if the minimum parity occurring infinitely often is even.

Position Player Admissible moves Parity
(a,s) ∈ A×S ∃ {m ∶ A→ ℘(σR(s)) ∣ (σR(s),m) ⊧ ∆(a,σC(s))} Ω(a)
m ∶ A→ ℘(σR(s)) ∀ {(b,t) ∣ t ∈m(b)} Max(Ω[A])

Table 2.1: Acceptance game for MSO-automata

The tree T is accepted by A if and only if ∃ has a winning strategy in A(A,T)@(aI ,sI). ⊲

Convention 2.2. In the sequel we assume that each MSO-automaton is on alphabet C, if not specified otherwise. ◂

Remark 2.3. A winning strategy f for ∃ in G =A(A,T)@(aI ,sI) is in particular a surviving strategy for the
same player in G. Indeed, for each basic position (a,s) ∈ A×T that is reached in some f -conform match of G, the
marking m suggested by f makes ∆(a,σC(s)) true in σR(s), meaning that ∃ does not get stuck. The notion of
surviving strategy can be conveniently restricted to subsets of T . Given W ⊆ T , we say that a strategy f ′ for ∃ in
G is surviving in W if, for each basic position (a,s) ∈ A×W that is reached in some f ′-conform match of G, the
marking m suggested by f ′ makes ∆(a,σC(s)) true in σR(s). ◂

Remark 2.4. Given an MSO-automaton A= ⟨A,aI ,∆,Ω⟩ and a tree T, let f be a strategy for ∃ in G =A(A,T)@(aI ,sI).
Since G is a parity game, we can assume f to be positional. Therefore it can be represented as a function from
basic positions (of f -conform matches of G) to markings:

f ∶ (a,s) ↦ ma,s,

where ma,s ∶ A→ ℘(σR(s)) is the move that f suggests to ∃ from position (a,s) ∈ A×T . A very convenient way to
represent the information carried by f is by displaying its graph as a tree T f , defined as follows:

• the carrier Tf of T f consists of the basic positions in Dom(f);

• the root of T f is the basic position (aI ,sI);

• the successor function σ
f
R ∶ Tf → ℘(Tf) is defined by putting

σ
f
R ∶ (a,s) ↦ {(b,t) ∣ t ∈ma,s(b)}

where ma,s = f (a,s).

• the labeling function σ
f
C ∶ Tf →C is defined by putting

σ
f
C ∶ (a,s) ↦ σC(s)

where σC is the labeling function of T.

16

An useful observation is that any f -conform partial match π of A(A,T) corresponds to a unique path B of T f ,
and viceversa. In order to see that, observe that B and π are both sequence of basic positions. The difference is that
markings are represented explicitly in π as positions, whereas in B they determine the successor relation between
basic positions. However, both presentations have the same amount of information, namely which are the sets of
admissible moves for ∀ along the play.

We refer to T f as the tree representation of f . It is convenient to fix a projection function π
f
2 ∶Tf →T , canonically

defined by putting π
f
2 ∶ (a,s)↦ s. Observe that π

f
2 preserves the tree structure, in the sense that, given basic positions

(a,s) and (b,t) in T f with (b,t) in σ
f
R(a,s), the node t = π

f
2(b,t) is in σR(s) = σR(π

f
2(a,s)). ◂

In the sequel we provide two basic examples of how MSO-automata and MSO-formulae can be associated, as
described in (2.1).

Example 2.5. Let p and q be letters in P. We want to provide an MSO-automaton AR(p,q) such that for any tree T

AR(p,q) accepts T iff T ⊧ R(p,q).

Let AR(p,q) = ⟨A,aI ,∆,Ω⟩ be defined as follows.

A ∶= {a0,a1}
aI ∶= a0

∆(a0,c) ∶= { ∃x (a1(x)∧∀y (y ≠ x→ a0(y))) If p ∈ c
∀x (a0(x)) Otherwise

∆(a1,c) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

� If q /∈ c
∃x (a1(x)∧∀y (y ≠ x→ a0(y))) If p ∈ c and q ∈ c
∀x (a0(x)) Otherwise

Ω(a0) ∶= 0
Ω(a1) ∶= 0

Let T be a tree. We provide an informal argument showing that AR(p,q) accepts T if and only if every node in T
labeled with p has a successor labeled with q.

The main observation is that, since both states of AR(p,q) have parity even, ∃ is going to win all infinite matches
of A(AR(p,q),T)@(aI ,sI). Therefore the only chance that ∀ has to win is by letting ∃ get stuck. By definition of ∆,
this happens if and only if the match arrives at some node s that is labeled with p, from which ∃ has to mark with
a1 some node t ∈ σR(s) such that q /∈ σC(t).

If a node s with this property exists, then ∀ has the power of bringing the match, in finitely many rounds, to a
basic position of the form (a,s) for some a ∈ A. It suffices that at each round he selects the next basic position, of
the form (b,t), in such a way that tR⋆s. If no node s with such property exists, the match is infinite and ∃ is the
winner. ◂

Example 2.6. Let p and q be letters in P. We want to provide an MSO-automaton Ap⊑q such that for any tree T

Ap⊑q accepts T iff T ⊧ p ⊑ q.

The automaton Ap⊑q = ⟨A,aI ,∆,Ω⟩ is defined as follows.

A ∶= {a0}
aI ∶= a0

∆(a0,c) ∶= { ∀x a0(x) If q ∈ c or p /∈ c
� Otherwise

Ω(a0) ∶= 0

Similarly to example 2.6 it is straightforward to check that Ap⊑q accepts exactly the trees where every node labeled
with p is also labeled with q. ◂

17

2.2 Functional Strategies and Their Syntactic Characterization

The above examples give an idea of how first-order logic allows for rich and flexible specifications of the
transition function of automata. As we will see in section 2.4, a remarkable consequence of this logical perspective
is that closure properties of the tree languages definable by MSO-automata, such as union and complementation,
are easily derivable from closure properties of the set FO+(A).

However, this flexibility is also a source of difficulties and complexity. In order to see that, let A = ⟨A,aI ,∆,Ω⟩
be an MSO-automaton, T a tree and f a winning strategy for ∃ in G =A(A,T)@(aI ,sI). Suppose that (a,s) ∈ A×T
is a basic position occurring in an f -conform match of G, with ∆(a,σC(s)) ∈FO+(A) defined as ∃x (a1(x)∧a2(x))
for some a1,a2 ∈ A. In order to make this sentence true, the marking suggested by f must assign both a1 and a2 to
the same node t ∈ σR(s). This means that both position (a1,t) and (a2,t) can be chosen by ∀ to continue the match.
Observe that ∀’s move affects significantly the continuation of the match, because he does not only determine the
next node - t, for instance - from which the match is played, but also the associated state - either a1 or a2.

It is convenient to visualize this situation by drawing the tree representation T f of f , as in remark 2.4. If we
compare T f and T at the height of the set σR(s), we see that T f is more ‘complex’ than T with respect to t: both
positions (a1,t) and (a2,t) are nodes of T f . Intuitively, by the sole information that the node t of T f is involved in
an f -conform match, we cannot determine which basic position is associated with t.

This ability of inferring the structure of T f from T is an essential ingredient of the projection construction
on MSO-automata, that we will introduce in section 2.4 as the automata counterpart of existential quantification
in MSO. For this reason, we want to avoid the situation described above, by enforcing that each node in T is
marked with at most one state from A along f -conform matches of G. This corresponds to the projection function
π

f
2 ∶ Tf → T being a 1-1 correspondence between T f and T. In fact, we can express the same condition in terms of

properties of the strategy f itself. For this purpose, we introduce the notion of a strategy for ∃ being functional.

Definition 2.7. Let A= ⟨A,aI ,∆,Ω⟩ be an MSO-automaton and T a tree. Let f be a strategy for ∃ inA(A,T)@(aI ,sI).
We say that f is functional if, for each basic position (a,s) ∈ Dom(f), the marking f (a,s) assigns to each node
t ∈ σR(s) at most one state b ∈ A. ⊲

Our goal is to define a transformation, which allows to pass from an MSO-automaton A to an equivalent
MSO-automaton A′ such that, for each tree T, a winning strategy for ∃ in A(A′,T)@(aI ,sI) can always assumed
to be functional. The idea is to tackle this question by providing a syntactic characterization of functionality, in
terms of the first-order sentences associated with the transition function of MSO-automata.

For this purpose, we recall to the notion of sentence in basic form, as in definition 1.25. By proposition 1.26,
each sentence in FO+(A) is equivalent to a disjunction of sentences in basic form. It follows that the transition
function ∆ of A can be assumed of type A×C→ SLatt(BF+(A)) instead of A×C→ FO+(A). In the same spirit,
we want to show that the codomain of ∆ can be further restricted to first-order sentences having a quite specific
syntactic shape, which will be associated with the property of a strategy for ∃ of being functional.

Definition 2.8 (Functional basic form). Given a set A of unary predicates, let ϕ ∈ BF+(A) be a sentence in basic
form depending on sequences B1 . . .Bk and C1 . . .C j of subsets of A, that is,

ϕ = ∃x1 . . .∃xk (diff (x̄)∧ ⋀
1≤i≤k

τ
+
Bi
(xi)∧∀z (diff (x̄,z)→ ⋁

1≤l≤ j
τ
+
Cl
(z))).

We say that ϕ is in functional basic form if each S in {B1 . . .Bk,C1 . . .C j} is either the empty set or a singleton. We
denote with FBF+(A) the set of all sentences in BF+(A) which are in functional basic form. ⊲

Definition 2.9 (Non-deterministic automata). Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton. We say that A is
non-deterministic if ∆ has type A×C→ SLatt(FBF+(A)). ⊲

The following statement justifies the introduction of sentences in functional basic form as the ‘syntactic
characterization’ of functional strategies for ∃.

Proposition 2.10. Let A = ⟨A,aI ,∆,Ω⟩ be a non-deterministic MSO-automaton. Given any tree T, each surviving
strategy for ∃ in A(A,T)@(aI ,sI) can be assumed to be functional.

The proof of proposition 2.10 requires some preliminary observation. In fact, it is not hard to imagine a
surviving strategy f for ∃ in A(A,T)@(aI ,sI) which is not functional. Given a position (a,s) ∈ A×T , suppose
that m ∶ A→ ℘(σR(s)) is a marking that makes ∆(a,σC(s)) true in σR(s). Since ∆(a,σC(s)) is an element of
FO+(A), it enjoys the monotonicity property described in remark 1.24, meaning that each marking which extends
m also makes ∆(a,σC(s)) true in σR(s). Among these extensions of m, we can find a marking m′ ∶ A→ ℘(σR(s))

18

assigning more than one state to some node in σR(s). Then, f might suggests to ∃ the marking m′ from position
(a,s), implying that it is not a functional strategy.

In order to show proposition 2.10, the key observation is that it is in ∃’s interest to make the fewest number of
moves available for ∀. Thus a rational choice for her would be to assign to each node in σR(s) only the ‘strictly
necessary’ amount of states that makes ∆(a,σC(s)) true. From this point of view, m′ is not a very good suggestion
for ∃, because it generally assigns to each node more states than the marking m, which still makes ∆(a,σC(s)) true
in σR(s). By assuming that ∃ plays according to this idea of rationality, we can rule out redundant markings such
as m′. Following these intuitions, we introduce the notion of minimal strategy.

Definition 2.11. Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton, T a tree and f a surviving strategy for ∃ in
A(A,T)@(aI ,sI). Given a ∈ A and s ∈ T , consider the sentence ∆(a,σC(s)), which we can assume to be an
element of SLatt(BF+(A)) by proposition 1.26. Given a disjunct ϕ ∈BF+(A) of ∆(a,σC(s)), let us use the notation
Ms,ϕ for the set

{m ∶ A→ ℘(σR(s)) ∣ (σR(s),m) ⊧ ϕ}.

The setMs,ϕ can be ordered according to the relation ⊴ between markings, as given in definition 1.23. We say that
f is minimal for A and T if, for each basic position (a,s) ∈Dom(f), there is a disjunct ϕ of ∆(a,σC(s)) such that
the marking f (a,s) is minimal with respect to the order ⊴ in the setMs,ϕ, that is, there is no marking m′ ∈Ms,ϕ
such that m′ ≠ f (a,s) and m′ ⊴ f (a,s). ⊲

Remark 2.12. Since we work with trees where a node can have infinitely many successors, the set Ms,ϕ is
generally infinite and we need some more arguing to show that it always has a minimal element with respect to the
order ⊴. The key observation is given by remark 1.27: a marking m ∶ A→ ℘(σR(s)) that makes ϕ ∈ BF+(A) true
always has some shrinking. This means that there is a marking m♭ ∶ A→ ℘(σR(s)) such that m♭ is inMs,ϕ, we have
that m♭ ⊴m, and also there is no marking m′ ∈Ms,ϕ such that m′ ≠m♭ and m′ ⊴m♭. It follows in particular that m♭

is a minimal element ofMs,ϕ. ◂

With the next proposition, we express the fact that ∃ can be always assumed to play according to the idea of
rationality explained above.

Proposition 2.13. Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton and T a tree. The following are equivalent.

1. Player ∃ has a surviving strategy in A(A,T)@(aI ,sI) .

2. Player ∃ has a surviving strategy in A(A,T)@(aI ,sI) which is minimal for A and T.

The same equivalence holds with ‘winning’ in place of ‘surviving’.

Proof We confine ourselves to the case of surviving strategies. It is immediate to check that the very same argument
shows the statement also for the case of winning strategies. Direction (2⇒ 1) is immediate, so we focus on
direction (1⇒ 2). Let f be a surviving strategy for ∃ in G =A(A,T)@(aI ,sI). We want to define a strategy f ♭

which is both minimal and surviving for ∃ in G. The definition of f ♭ is provided for each stage of the construction
of a match π♭ of G, while maintaining an f -conform shadow match π of G. For each round z that is played in π♭

and π, we want to keep the following condition.

The basic position occurring in the match π♭ also occurs in the shadow
match π at the current round.

(‡)

The match π♭ is initialized at position (aI ,sI). We start the construction of the shadow match π also from
position (aI ,sI), so that condition (‡) holds for the first round. Observe that, since f is a surviving strategy for ∃ in
G, then π is indeed (the initial part of) an f -conform match.

Inductively, consider the case of some round zi where we are playing from the same basic position (a,s) ∈ A×T
both in π and π♭. Since π is f -conform, the strategy f suggests to ∃ a marking m ∶ A→ ℘(σR(s)) that makes
∆(a,σC(s)) true. This means that there is some disjunct ϕ of ∆(a,σC(s)) that is true in (σR(s),m). By remark
2.12, there is also some marking m♭ ∶ A→ ℘(σR(s)) such that m♭ ⊴ m and m♭ is a minimal element ofMs,ϕ. By
definition m♭ makes ϕ true in σR(s), meaning that it also makes ∆(a,σC(s)) true in σR(s). Therefore m♭ is a
legitimate move for ∃ in π♭ and we let it be the suggestion of the strategy f ♭.

If ∀ gets stuck in π♭, then ∃ immediately wins the match. Otherwise, let (b,t) be the next basic position picked
by ∀ in π♭. Since m♭ ⊴m, then t is in m(b). This means that the position (b,t) is an admissible move for ∀ also in

19

the shadow match π. By letting ∀ choose position (b,t) in π, we can keep the same basic position in π♭ and π at
round zi+1 and condition (‡) is maintained for one more stage of the construction.

The strategy f ♭ that we just defined is minimal for A and T, according to definition 2.11. Moreover, in each
round that is played in the match π♭, the marking suggested by f ♭ is a legitimate move for ∃, meaning that she
never gets stuck in π♭. Since π♭ has been constructed as an arbitrary f ♭-conform match, this suffices to show that f ♭

is a surviving strategy for ∃. ◻

We are now ready to supply a proof of proposition 2.10.

Proof of proposition 2.10 Let A = ⟨A,aI ,∆,Ω⟩ be a non-deterministic MSO-automaton, T a tree, and suppose that
∃ has a surviving strategy f in A(A,T)@(aI ,sI). By proposition 2.13 we can assume that f is minimal. Suppose
by way of contradiction that f is not functional. Let (a,s) ∈ Dom(f) and t ∈ σR(s) be such that the marking
m = f (a,s) assigns two distinct states a1,a2 ∈ A to t. Since f is surviving and minimal then there is some disjunct
ϕ ∈ FBF+(A) of ∆(a,σC(s)) such that (σR(s),m) ⊧ ϕ and m is minimal among the markings that make ϕ true in
σR(s).

Let m♭ ∶ A→ ℘(σR(s)) be some shrinking of m as in remark 1.27. By definition, m♭ ⊴ m and (σR(s),m♭) ⊧ ϕ.
By the particular syntactic shape of ϕ, the node t witnesses some variable y occurring either in the existential or the
universal part of ϕ, with associated positive A-type τ

+
S (y). By definition, m♭ assigns to t exactly the states in the

set S. Since ϕ is in functional basic form, then S is either empty or a singleton, meaning that t is in m♭(b) for at
most one b ∈ A. Since m assigns both a1 and a2 to t, it follows that m♭ ≠m, contradicting the assumption that m is
minimal inMs,ϕ. Therefore f is a functional strategy and this completes the proof of the main statement. ◻

2.3 The Simulation Theorem

Our next goal is to show that every MSO-automaton can be assumed to be non-deterministic. This statement,
which is called the Simulation Theorem, can be considered the main technical result on MSO-automata.

Theorem 2.14 (Simulation Theorem, [33]). Given an MSO-automaton A, there is an effectively constructible
non-deterministic MSO-automaton AP℘ such that

A ≡ AP℘.

The transformation of A into a non-deterministic automaton AP℘ is essentially performed in two steps.

1. First A is transformed into an equivalent non-deterministic automaton A℘ with a non-parity acceptance
condition.

2. Then A℘ is transformed into an equivalent non-deterministic MSO-automaton AP℘.

The conceptual core of the construction lies in the first step. As a side remark, notice that the automaton A℘ is
not ‘officially’ an MSO-automaton, because of the non-parity acceptance condition. However, it makes sense to
say that such automaton is non-deterministic, this property depending only on the type of the transition function.
Before introducing further technical details, we gather some intuitions underlying the construction of A℘. For the
purpose of giving the transition function of A℘, a key observation is that each sentence ϕ ∈ BF+(A) can be seen as
a sentence in FBF+(℘(A)), modulo a ‘change of base’ from A to ℘(A). To be more precise, suppose that τ

+
S (x) is

a positive A-type occurring in ϕ, for some non-empty S ⊆ A.

τ
+
S (x) = ⋀

b∈S
b(x)

Now we may think of τ
+
S (x) as a ℘(A)−type instead of an A-type.

τ
+
S (x) = S(x)

Intuitively, what we did is to ‘encapsulate’ the conjunction into S. The resulting formula S(x) is a positive
℘(A)−type. By applying this procedure for each non-empty positive A-type occurring in ϕ, we obtain a sentence
ϕ
℘ in FBF+(℘(A)).

20

Definition 2.15 (Change of base). Fix a set A of unary predicates. Let ϕ ∈ BF+(A) be a sentence in basic form
depending on sequences B1 . . .Bk and C1 . . .C j of subsets of A. For each subset S in the sequence, we define the
formula τ

℘
S (x) as follows:

τ
℘
S (x) ∶= { S(x) If S ≠∅

⊺ Otherwise

We denote with ϕ
℘ the sentence given as follows.

ϕ
℘ = ∃x1 . . .xk (diff (x̄)∧ ⋀

1≤i≤k
τ
℘
Bi
(xi)∧∀z (diff (x̄,z)→ ⋁

1≤l≤ j
τ
℘
Cl
(z)))

⊲
Note that, given ϕ ∈ BF+(A), the sentence ϕ

℘ is in FBF+(℘(A)). Definition 2.15 provides the tools to
characterize a powerset construction on A. The idea would be to construct an automaton A♯ with ℘(A) as set
of states and a transition function ∆♯ ∶ ℘(A)×C → SLatt(FBF+(℘(A))), obtained from the transition function
∆ ∶ A×C→ FO+(A) of A by using definition 2.15. The automaton A♯ would be non-deterministic according to
definition 2.9.

This is almost the construction we are going to define. In fact we still need to specify the acceptance conditions
of A♯, in such a way that it is equivalent to the original automaton A. It turns out that the choice of ℘(A) as carrier
is too coarse for this purpose.

In order to motivate this statement, let T be a tree. The idea is that a match π♯ of A(A♯,T) represents a bundle
of matches π1, . . . ,πk of A(A,T), which ∃ and ∀ play in parallel on the same branch of T. We want to define
the winning conditions of A(A♯,T) in such a way that ∃ wins π♯ if and only if she manages to win each match
π1, . . . ,πk.

The problem is how to recover the structure of the various matches π1, . . . ,πk given the sole information of π♯.
Suppose that (B1,s1),(B2,s2), . . . ,(Bn,sn) . . . are the basic positions visited along π♯, with (Bi,si) in ℘(A)×T for
each i<ω. Every match π j ∈{π1, . . . ,πk} is associated with a sequence of basic positions (b1,s1),(b2,s2), . . . ,(bn,sn), . . .
such that bi is in Bi for each i <ω. However, we do not know which bi is the element that we should pick in Bi to
recover the corresponding position of π j: more than one choice is possible.

Figure 2.1: the problem of recovering the position of π j which is associated with node s2.

A possible way to deal with this problem is to assign a tag to each state bi ∈ Bi, carrying the information of
which is the ‘precedent state’ of A occurring in the corresponding match π j. For instance, if bi ∈ Bi and bi−1 ∈ Bi−1
are such that (bi−1,si−1),(bi,si) are basic positions visited in π j at rounds i−1 and i, then we put the tag bi−1 to bi.

This transformation turns every macro-state B ∈ ℘(A) into a binary relation R ∈ ℘(A×A), where (b1,b2) ∈ R
stands for the state b2 ∈ A equipped with tag b1 ∈ A. The powerset construction on A must be modified accordingly,
leading to a refined powerset construction on A, which we denote with A℘.

Before the formal definition of A℘, we need some preliminary work formalizing the intuitions given above.
First, we introduce the notion of trace. A sequence of positions (R1,s1),(R2,s2), . . . ,(Rn,sn) . . . , with (Ri,si) ∈
(℘(A×A))×T , will induce a set of traces, indicating which matches of A on T are associated with the sequence.

Definition 2.16 ([31]). Let A be a finite set of states and let ρ ∈ (℘(A×A))ω be a ℘(A×A)−stream.

ρ ∶= R0,R1, . . . ,Rn, . . .

A trace α ∈ Aω through ρ is an A−stream such that aiRi+1ai+1 for all i <ω.

α ∶= a0,a1, . . . ,an, . . .

⊲

21

Definition 2.17 ([31]). Let A be a finite set of states and Ω ∶ A→ω a parity map. We say that a trace α ∈ Aω is good
if the minimum parity occurring infinitely often along α is even, and bad otherwise. The set NBTΩ ⊆ (℘(A×A))ω

is defined as

NBTΩ ∶= {ρ ∈ (℘(A×A))ω ∣ every trace through ρ is good}.

⊲

The last component we need to consider before giving the formal definition of A℘ is the transition function.
As we mentioned, the idea is to perform a ‘change of base’ on the transition function of the original automaton A,
passing from first-order sentences on signature A to first-order sentences on signature ℘(A). Now we need to shift
the same argument to the signature ℘(A×A), associated with the binary relations on A which will form the carrier
of A℘. For this purpose we introduce an intermediate step, transforming first-order sentences on signature A into
first-order sentences on signature A×A.

Definition 2.18 ([31]). Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton. Fix a ∈ A and c ∈C. The sentence ∆
⋆(a,c) is

defined as

∆
⋆(a,c) ∶= ∆(a,c)[(a,b)∖b ∣ b ∈ A],

where ∆(a,c)[(a,b)∖b ∣ b ∈ A] denotes the sentence in FO+(A×A) obtained by replacing each occurrence of an
unary predicate b ∈ A in ∆(a,c) with the unary predicate (a,b) ∈ A×A. ⊲

The next step is to put together definition 2.15 and 2.18 to characterize a transition function ranging over
sentences on signature ℘(A×A).

Definition 2.19. Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton. Let c ∈C be a label and R ∈ ℘(A×A) a binary relation
on A. By proposition 1.26 there is a sentence Ψ

′
R,c ∈ SLatt(BF+(A×A)) such that

⋀
a∈Ran(R)

∆
⋆(a,c) ≡ Ψ

′
R,c.

We define ΨR,c to be the sentence (Ψ
′
R,c)℘, where the translation (−)℘ is given as in definition 2.15. ⊲

Observe that ΨR,c is an element of SLatt(FBF+(℘(A×A))). Now we have all the ingredients to provide the
definition of A℘.

Definition 2.20. Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton. The automaton A℘ = ⟨A℘,a℘I ,∆℘,Acc⟩ is defined as
follows.

A℘ ∶= ℘(A×A)
a℘I ∶= {aI ,aI}

∆
℘(R,c) ∶= ΨR,c

Acc ∶= NBTΩ

Here ΨR,c is given according to proposition 2.21 and NBTΩ is given according to definition 2.17. The automaton
A℘ is called the refined powerset construction on A. ⊲

The next step is to show that A℘ is indeed equivalent to the original automaton A. For this purpose, it is
convenient first to prove two lemmata, associating the one-step behaviors of the automata A and A℘.

Proposition 2.21. Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton and A℘ = ⟨A℘,a℘I ,∆℘,Acc⟩ its refined powerset
construction. Let R ∈ A℘ be a binary relation, T a tree and s a node of T. Suppose that, for each a ∈ Ran(R), there
is a marking ma ∶ A→ ℘(σR(s)) such that (σR(s),ma) ⊧ ∆(a,σC(s)). The following two statements hold.

1. There is a marking m⋆ ∶ A×A→ ℘(σR(s)) such that

a) (σR(s),m⋆) ⊧⋀a∈Ran(R)∆
⋆(a,σC(s));

b) for each state a ∈ Ran(R), node t ∈ σR(s), state b ∈ A such that t ∈m⋆(a,b), we have that t ∈ma(b).

2. There is a marking m℘ ∶ A℘→ ℘(σR(s)) such that

a) (σR(s),m℘) ⊧ ∆
℘(R,σC(s));

22

b) for each state Q ∈ A℘, node t ∈ σR(s) such that t ∈m℘(Q), state b ∈ Ran(Q), there is some a ∈ Ran(R)
such that t ∈ma(b).

Proof Fix some R ∈ A℘. For each a ∈ Ran(R), let ma ∶ A→ ℘(σR(s)) be such that (σR(s),ma) ⊧ ∆(a,σC(s)). We
define a marking m⋆ ∶ A×A→ ℘(σR(s)) by putting

m⋆(a,b) ∶= ma(b). (2.2)

For statement 1.a, fix some a ∈ Ran(R). It is easy to check that (σR(s),m⋆) ⊧ ∆
⋆(a,σC(s)), by definition of

∆
⋆ and the monotonicity property of ∆

⋆(a,σC(s)) ∈ FO+(A×A) as in remark 1.24. Statement 1.b is immediate by
definition of m⋆. In order to show statement 2, we define a marking m℘ ∶ ℘(A×A)→ ℘(σR(s)) by putting

m℘(Q) ∶= ⋂
(a,b)∈Q

m⋆(a,b). (2.3)

For statement 2.a, recall that ∆
℘(R,σC(s)) is the sentence ΨR,c ∈ SLatt(FBF+(℘(A×A))) as in definition 2.15.

Then it is not hard to check that statement 2.a follows by statement 1.a and the definition of m⋆ according to (2.2).
For statement 2.b, the main observation is that m℘(Q) ≠ ∅ implies that Dom(Q) ⊆ Ran(R), for each Q ∈ A℘.

In order to see that, just observe that, by (2.2), for any pair (a,b) ∈ A×A, the marking m⋆(a,b) is defined only
if a ∈ Ran(R). Then it suffices to show that, for each state Q ∈ A℘, node t ∈ σR(s) such that t ∈ m℘(Q), for each
(a,b) ∈Q, it holds that t ∈ma(b). This is clearly the case by statement 1.b and definition of m℘ as in (2.3). ◻

Proposition 2.22. Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton and A℘ = ⟨A℘,a℘I ,∆℘,Acc⟩ its refined powerset
construction. Let R ∈ A℘ be a binary relation, T a tree and s a node of T. Suppose that there is a marking
m℘ ∶ A℘→ ℘(σR(s)) such that (σR(s),m℘) ⊧ ∆

℘(R,σC(s)). The following two statements hold.

1. There is a marking m⋆ ∶ A×A→ ℘(σR(s)) such that

a) (σR(s),m⋆) ⊧⋀a∈Ran(R)∆
⋆(a,σC(s));

b) for each state a ∈ Ran(R), node t ∈ σR(s), state b ∈ A such that t ∈ m⋆(a,b), there is Q ∈ A℘ such that
(a,b) ∈Q and t ∈m℘(Q).

2. For each a ∈ Ran(R), there is a marking ma ∶ A→ ℘(σR(s)) such that

a) (σR(s),ma) ⊧ ∆(a,σC(s));

b) for each node t ∈ σR(s), state b ∈ A such that t ∈ ma(b), there is Q ∈ A℘ such that b ∈ Ran(Q) and
t ∈m℘(Q).

Proof Fix some R ∈A℘ and let m℘ ∶ ℘(A×A)→℘(σR(s)) be a marking such that (σR(s),m℘)⊧∆
℘(R,σC(s)). We

define a marking m⋆ ∶ A×A→ ℘(σR(s)) by putting

m⋆(a,b) ∶= ⋃
(a,b)∈Q

m℘(Q). (2.4)

Also for each a ∈ Ran(R) we define a marking ma ∶ A→ ℘(σR(s)) by putting

ma(b) ∶= m⋆(a,b). (2.5)

The argument showing statements 1 and 2 on the base of (2.4) and (2.5) is entirely analogous to the one provided
for proposition 2.21. ◻

Proposition 2.23. Let A be an MSO-automaton and A℘ its refined powerset construction. We have that

A ≡ A℘.

Proof Consider an MSO-automaton A = ⟨A,aI ,∆,Ω⟩ and let A℘ = ⟨A℘,a℘I ,∆℘,NBTΩ⟩ be its refined powerset
construction. In order to show the two directions of the equivalence, we fix a tree T.

(⇒) Given a tree T, suppose that ∃ has a winning strategy f in G =A(A,T)@(aI ,sI). Our goal is to provide
a winning strategy f℘ to ∃ in G℘ =A(A℘,T)@(a℘I ,sI). The definition of f℘ is provided for each stage of the
construction of a match π

℘ of G℘. While playing π
℘, player ∃ maintains a setM of f -conform shadow matches.

We indicate withMi the setM at round i. Inductively, we will make sure that ∃ can keep the following condition
for each round zi that is played in π

℘ and each match inMi.

23

The current basic position in π
℘ is of the form (R,s) ∈ A℘×T . For each

a ∈ Ran(R), there is an f -conform shadow match πa inMi at the same
round zi, such that the current basic position in πa is (a,s) ∈ A×T .

(‡)

Condition (‡) holds for the initial round, where we initialize the match π
℘ at position (a℘I ,sI) and an f -conform

match πaI of G from position (aI ,sI). We setM0 = {πaI}.
By inductive hypothesis suppose that we have constructed (the initial part of) the match π

℘, with rounds z0, . . . ,zi.
Also, we are provided with a setMi, where each element ofMi is (the initial part of) an f -conform shadow match,
with rounds z0, . . . ,zi, such that for each j ≤ i condition (‡) is respected byM j and π

℘. Let (R,s) ∈ A℘×T be the
basic position occurring in π

℘ at round zi. By condition (‡), each a ∈ Ran(R) is associated with an f -conform
match πa inMi at basic position (a,s), from which the strategy f suggests a marking ma ∶ A→ ℘(σR(s)) such that
(σR(s),ma) ⊧ ∆(a,σC(s)). We use this assumption to obtain a marking m℘ ∶ A℘→ ℘(σR(s)) as in proposition 2.21.
We let ∃ choose m℘ from position (R,s) in π

℘.
The marking m℘ is a legitimate choice for ∃ by proposition 2.21, statement 2.a. If m℘(Q)=∅ for all Q ∈A℘, then

∀ gets stuck at the current round and ∃ wins π
℘. Otherwise, ∀ is able to pick a next basic position (Q,t) ∈ A℘×T .

By proposition 2.21, statement 2.b, for each b ∈ Ran(Q), there is some a ∈ Ran(R) such that t ∈ma(b). Therefore
for each b ∈ Ran(Q) we can select a match πa ∈Mi such that t ∈ma(b). We define πa,b as the match πa extended
with the move given by ∀ choosing (b,t) as next basic position. We defineMi+1 to be the collection of matches
πa,b for all b ∈ Ran(Q). In this way we are able to maintain condition (‡) also at round zi+1.

If ∀ does not get stuck at some round, then π
℘ is an infinite match of G℘. The sequence of states visited along

the play induces a A℘−stream ρ given as
a℘I ,R1, . . . ,Rn,

In order to check that ∃ wins π
℘, it suffices to show that ρ is in NBTΩ. For this purpose, let α be a trace through ρ

of the form
aI ,a1, . . . ,an,

By definition of trace, we have that ai ∈ Ran(Ri) for each i ≤ω. Then, by condition (‡), the trace α is the sequence
of states visited along an f -conform match of G. Since f is assumed to be winning, the trace α is good. Therefore
ρ is in NBTΩ.

(⇐) We confine ourself to a sketch, since the argument follows the same line of reasoning of the one provided
for the converse direction. Suppose that ∃ has a winning strategy f℘ in G℘ =A(A℘,T)@(a℘I ,sI). Our goal is to
provide a winning strategy f to ∃ in G =A(A,T)@(aI ,sI). We define f for each stage of the construction of a
match π of G, while maintaining an f℘-conform shadow match π

℘ of G℘. For each round z that is played in π and
π
℘, we want to keep the following condition.

The current basic position in π is of the form (a,s) ∈A×T and the current
basic position in π

℘ is (R,s) ∈ A℘×T , for some R ∈ A℘ with a ∈ Ran(R). (‡)

This condition clearly holds for the initial round. Inductively, let (a,s) and (R,s) be the positions occurring
respectively in π and π

℘ at round zi, with a ∈ Ran(R). Since π
℘ is f℘-conform, the strategy f℘ suggests a marking

m℘ ∶ ℘(A×A)→ ℘(σR(s)) such that (σR(s),m℘) ⊧ ∆
℘(R,σC(s)). We use this assumption to obtain a marking

ma ∶ A→ ℘(σR(s)) as in proposition 2.22. We let ∃ choose ma from position (a,s) in π.
Analogously to the converse direction, we can show that ma is a legitimate move for ∃. Then either the match π

ends at the current round with ∀ stuck and ∃ winning, or ∀ is able to pick a next basic position. Then we can show
that condition (‡) can be maintained at round zi+1, by using proposition 2.22. If ∀ never gets stuck, the match π is
infinite. Let α be the A−stream induced by the sequence of states encountered along the play in π. In order to check
that ∃ wins π, the key observation is that α is a trace through the A℘−stream associated with the f℘-conform match
π
℘. Since f℘ is winning for ∃ in G℘, the trace α is good, implying that ∃ wins the corresponding match π. ◻

We observe that the non-deterministic automaton A℘ is not an MSO-automaton: the missing component is a
parity acceptance conditions replacing the condition NBTΩ. The second part of the proof of theorem 2.14 consists in
showing that we can transform A℘ into an equivalent non-deterministic MSO-automaton AP℘. The next proposition
shows how this can be done easily, provided that NBTΩ is an ω-regular language (definition 1.31).

Proposition 2.24 ([31]). Given an automaton Q = ⟨Q,qI ,∆Q,Acc⟩ with ∆Q of type Q×C→ SLatt(FBF+(Q)), if
Acc ⊆Qω is an ω-regular language then there is an effectively constructible non-deterministic MSO-automaton QP

such that Q ≡QP.

24

Proof sketch The argument is the same given in [31], proof of proposition 6.29. We confine ourself to a sketch of
the proof.

Let Q = ⟨Q,qI ,∆Q,Acc⟩ be an automaton with ∆ of type Q×C→ SLatt(FBF+(Q)). By assumption Acc is an
ω-regular language, meaning that there is a deterministic Q−stream automaton Z = ⟨Z,zI ,δZ ,ΩZ⟩ with L(Z) = Acc.
We define an operation Shiftz ∶ FBF+(Q)→ FBF+(Q×Z) as follows.

Shiftz(ϕ) ∶= ϕ[(q,δZ(z,q))/q ∣ q ∈Q]

Then we define an automaton Q⊙Z ∶= ⟨Q×Z,(qI ,zI),∆,Ω⟩ by putting

Ω(q,z) ∶= ΩZ(z),
∆((q,z),c) ∶= ⋁{Shiftz(ϕ) ∈ FBF+(Q×Z) ∣ ϕ is a disjunct of ∆Q(q,c)}.

It can be easily checked that ∆ is of type (Q×Z)×C→ Slatt(FBF+(Q×Z)), whence Q⊙Z is a non-deterministic
MSO-automaton. We let QP be the automaton Q⊙Z. The proof of the main statement is concluded by showing
that indeed Q ≡QP. ◻

The following proposition shows that the assumption of proposition 2.24 holds for A℘.

Proposition 2.25 ([33],[31]). Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton. The language NBTΩ is ω-regular.

Proof sketch The argument is the same as the one given in [31], proof of proposition 6.27. We confine ourself to a
sketch of the proof. Let A℘ = ⟨A℘,a℘I ,∆℘,NBTΩ⟩ be the refined powerset construction on A. In order to prove
the statement it suffices to define a non-deterministic A℘−stream automaton Z accepting exactly the A℘−streams
containing a bad trace. By closure properties of stream automata we can take a deterministic A℘−stream automaton
Z′ which is equivalent to Z and then take an automaton Z′ accepting the complement of L(Z′). The automaton Z′
will be again a deterministic A℘−stream automaton and it is immediate to see that it accepts exactly the infinite
A℘−streams where every trace is good.

For the definition of Z, we essentially rely on the parity of the original automaton A. More precisely, let zI /∈ A
be a state. We define an automaton Z = ⟨Z,zI ,∆Z ,ΩZ⟩ by putting

Z ∶= A∪{zI}

∆Z(a,R) ∶= { Ran(R) If a = zI
R[a] Otherwise

ΩZ(a) ∶= { 0 If a = zI
Ω(a)+1 Otherwise .

For the (easy) proof that L(Z) = L(A℘) we refer to [31], proposition 6.27. ◻

Now we are ready to prove the Simulation Theorem stated at the beginning of this section.

Proof of Theorem 2.14 Let A℘ be the refined powerset construction on A obtained as in 2.20. By proposition
2.25, we can apply the construction of proposition 2.24 to A℘. We obtain a non-deterministic MSO-automaton AP℘

such that the following holds.

A ≡ A℘ (proposition 2.23)

≡ AP℘ (proposition 2.24)

This concludes the proof of the theorem. ◻

2.4 From MSO-Formulae to MSO-Automata

The Simulation Theorem allows us to show the main result of this chapter, namely that MSO-automata
characterize MSO in the sense of (2.1).

Theorem 2.26 ([33]). For every ϕ ∈MSO, there is an effectively constructible MSO-automaton Aϕ such that

for any tree T, T ⊧ ϕ iff Aϕ accepts T.

25

The proof will proceed by induction on ϕ. The crux of the matter is the inductive case of the existential
quantifier, which is handled with a projection construction for MSO-automata. The hard part part of the proof,
namely that every MSO-automaton can be assumed to be non-deterministic, has been shown in section 2.3. Once
we are allowed to work under this assumption, the remaining part of the projection construction is relatively easy.
The next step is to define a closure operation on tree languages, corresponding to the semantics of MSO existential
quantification.

Definition 2.27. Given a tree T and a propositional letter p (not necessarily in P), we refer to the notion of
p-variant of T as defined in section 1.2. Recall that, since T is a C-labeled tree, then any p-variant Tp of T is a
℘(P∪{p})-labeled tree.

Let L be a tree language. The projection of L over p is the language ∃p.L defined as

∃p.L = {T ∣ there is a p-variant Tp of T such that Tp ∈L}.

Let C be a class of tree languages. C is closed under projection over p if, for any language L in C, also the language
∃p.L is in C. ⊲

Definition 2.28 (Projection Construction). Let A = ⟨A,aI ,∆,Ω⟩ be a non-deterministic MSO-automaton on alphabet
℘(P∪{p}). We define the automaton ∃p.A = ⟨A,aI ,∆

∃,Ω⟩ on alphabet C by putting

∆
∃(a,c) ∶= ∆(a,c)∨∆(a,c∪{p}).

The automaton ∃p.A is a non-deterministic MSO-automaton which we call the projection construction of A over p.
⊲

Proposition 2.29. Given a letter p and a non-deterministic MSO-automaton A on alphabet ℘(P∪{p}), let ∃p.A
be the projection construction of A over p, on alphabet C. The following holds.

L(∃p.A) = ∃p.L(A) (2.6)

Proof Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton on alphabet ℘(P∪{p}) and ∃p.A be the projection construction
of A over p. Given a tree T, we want to show that

∃p.A accepts T iff there is a p-variant Tp of T such that A accepts Tp.

(⇒) Let f be a winning strategy for ∃ in G∃ =A(∃p.A,T)@(aI ,sI). Since ∃p.A is non-deterministic, by
proposition 2.10, we can assume f to be functional. Let T f and π

f
2 ∶ Tf → T be respectively the tree representation

of f and its projection function defined according to remark 2.4. Since f is functional, we can assume π
f
2 to be 1-1.

This means that the inverse function of π
f
2 is well-defined. This is a function (π

f
2)−1 ∶ Ran(π

f
2)→ Tf mapping each

node s ∈ Ran(π
f
2) to a basic position (a,s) ∈ Tf . By definition of π

f
2 , the position (a,s) is unique for s, in the sense

that no other basic position with s as second component appears in T f . In other words, the fact that π
f
2 is 1-1 allows

us to assume the following property:

for each node s ∈ T , if s is visited along the play of some f -conform
match of G∃, then there is a unique state as ∈ A, such that f guarantees
that s will be only visited with ∃p.A in state as.

(†)

The idea is to let f itself suggest a p-variant Tp of T, by using for each node of T the information provided by
property (†). Given a node s ∈ Ran(π

f
2), let as ∈ A be the first projection of (as,s) = (π

f
2)−1(s). We define a set Xp

of nodes of T as follows.

Xp ∶= {s ∈ Ran(π
f
2) ∣ (σR(s), f (as,s)) ⊧ ∆(as,σC(s)∪{p})} (2.7)

Since the strategy f is winning, f (as,s) is a marking such that

(σR(s), f (as,s)) ⊧ ∆(a,σC(s))∨∆(a,σC(s)∪{p}).

Intuitively, Xp collects all nodes s ∈ Ran(π
f
2) whose label σC(s) is ‘considered as’ σC(s)∪{p} by f . We let Tp be

the p-variant of T induced by labeling with p exactly the nodes in Xp. The proof is completed by the showing the
following claim.

26

CLAIM 1. The strategy f is winning for ∃ in A(A,Tp)@(aI ,sI).

PROOF OF CLAIM The idea is to construct an f -conform match π of G =A(A,Tp)@(aI ,sI), while maintaining
an f -conform shadow match π

∃ of G∃. For each round z, we want that the same basic position (a,s) ∈ A×T is
visited both in π and π

∃.
Let us first show why ∃ is guaranteed to win π if this condition can be maintained. Since π

∃ is f -conform and f
is winning for ∃ in G∃, either ∀ gets stuck in π

∃ or π
∃ is infinite and the minimum parity occurring infinitely often

is even. If the former is the case, then it is easy to check that ∀ also gets stuck in π, because the same markings are
suggested to ∃ in both games. If the latter is the case, observe that the automaton ∃p.A has the same carrier A and
the same parity map Ω of A, meaning that also π is infinite and the minimum parity occurring infinitely often is
even. This suffices to prove that ∃ wins π and then f is winning for ∃ in G.

It remains to show that for each round we can maintain the same basic positions in π and π
∃. This is clearly

the case for the initial round, where we initialize both matches at position (aI ,sI). Since (aI ,sI) ∈Win∃(G∃), then
π
∃ is (the initial part of) an f -conform match, as requested. Inductively, suppose that we are at round zi and both

matches visit the same position (a,s). Let ma,s ∶ A→ ℘(σR(s)) be the marking suggested by f from position (a,s).
If we can prove that ma,s is a legitimate move for ∃ in π, then σR(s) is marked by ma,s both in π and in π

′, meaning
that we can maintain the same positions in the two matches at round zi+1.

Therefore the only thing that is left to show is that ma,s is a legitimate move for ∃ in π. Since f is winning in
G∃, then we have that

(σR(s),ma,s) ⊧ ∆(a,σC(s))∨∆(a,σC(s)∪{p}), (2.8)

where σC ∶ T →C is the labeling function of T. What we need to show is that

(σR(s),ma,s) ⊧ ∆(a,σp
C(s)), (2.9)

where σ
p
C ∶ T → ℘(P∪{p}) is the labeling function of Tp. For this purpose, we distinguish two cases.

1. First suppose that p ∈ σ
p
C(s). By definition of Tp we have that s ∈ Xp, where Xp is defined according to (2.7).

By definition of Xp the following holds:

(σR(s),ma,s) ⊧ ∆(a,σC(s)∪{p}). (2.10)

By definition of p-variant we have that σ
p
C agrees with σC on all propositional letters in P but p, meaning

that σ
p
C(s) = σC(s)∪{p}. Hence ∆(a,σp

C(s)) = ∆(a,σC(s)∪{p}) and (2.9) just follows from (2.10).

2. In the remaining case we have that p /∈ σ
p
C(s). By definition of Tp this means that s /∈ Xp. By inductive

hypothesis f is defined on (a,s), meaning that (a,s) is a node of T f and therefore s ∈ Ran(π
2
f). This means

that the reason why s is not in Xp according to (2.7) is that

(σR(s),ma,s) /⊧ ∆(a,σC(s)∪{p}). (2.11)

However, the marking ma,s suggested by f must be legitimate in G∃, meaning that it makes the other disjunct
of ∆

∃(a,σC(s)) true. Therefore
(σR(s),ma,s) ⊧ ∆(a,σC(s)). (2.12)

Since we are considering the case in which p /∈ σ
p
C(s), by definition of p-variant we have that that σ

p
C(s) =

σC(s). Hence ∆(a,σp
C(s)) = ∆(a,σC(s)) and (2.9) just follows from (2.12).

For each case we reached the conclusion that the marking ma,s is a legitimate choice for ∃ in G. This concludes the
proof of claim 1 and of direction (⇒). ∎

(⇐) Let Tp be a p-variant of T such that ∃ has a winning strategy f in A(A,Tp)@(aI ,sI). Using an argument
analogous to the one showing claim 1, it is easy to check that f is also winning for ∃ in A(∃p.A,T)@(aI ,sI).

◻

In the sequel we present two further constructions for MSO-automata. We will use them to handle respectively
the inductive case of disjunction and the inductive case of negation in the proof of theorem 2.26.

Proposition 2.30. Given MSO-automata A1 and A2, there is an effectively constructible MSO-automaton A1,2
such that

L(A1,2) = L(A1)∪L(A2).

27

Proof sketch The definition of A1,2 as the sum of A1 and A2 is given by a very standard construction of automata
theory. We refer to [11], lemma 16.5 for a more detailed proof and we confine ourselves to a sketch. Let
A1 = ⟨A1,a1

I ,∆1,Ω1⟩ and A2 = ⟨A2,a2
I ,∆2,Ω2⟩ be two MSO-automata. Let aI /∈ A1 ∪A2 be a state. We define the

MSO-automaton A1,2 = ⟨A1,2,aI ,∆1,2,Ω1,2⟩ by putting

A1,2 ∶= A1∪A2∪{aI}

∆(a,c) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆1(a,c) if a ∈ A1
∆2(a,c) if a ∈ A2
∆1(a1

I ,c)∨∆2(a2
I ,c) if a = aI

Ω1,2(a) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ω1(a) if a ∈ A1
Ω2(a) if a ∈ A2
0 if a = aI .

.

It is easy to check that, for each tree T,

A1,2 accepts T iff A1 accepts T or A2 accepts T.

◻

Proposition 2.31. Given an MSO-automaton A, there is an effectively constructible MSO-automaton A such that

L(A) = L(A).

Proof We refer to Appendix A for a proof of this statement. ◻

We have now all the ingredients to prove the main statement of this section.

Proof of Theorem 2.26 The proof is by induction on ϕ.

• If ϕ is of the form p ⊑ q, for p and q in P, then the automaton Aϕ is provided by example 2.6.

• If ϕ is of the form R(p,q), for p and q in P, then the automaton Aϕ is provided by example 2.5.

• If ϕ is of the form ¬ψ, by inductive hypothesis we have a weak MSO-automaton Aψ that is equivalent to
ψ. Let A¬ψ be the MSO-automaton obtained by applying proposition 2.31 to Aψ. The following derivation
shows that A¬ψ is equivalent to ¬ψ.

A¬ψ accepts T ⇔ Aψ does not accept T (proposition 2.31)
⇔ T /⊧ψ (inductive hypothesis)
⇔ T ⊧ ¬ψ (semantics of MSO)

• If ϕ is of the form ψ1∨ψ2, by inductive hypothesis we have MSO-automata Aψ1 and Aψ2 that are equivalent
respectively to ψ1 and ψ2. Let Aϕ be the MSO-automaton obtained by applying proposition 2.30 to Aψ1 and
Aψ2 . The following derivation shows that Aϕ is equivalent to ψ1∨ψ2.

Aϕ accepts T ⇔ Aψ1 accepts T or Aψ2 accepts T (proposition 2.30)
⇔ T ⊧ψ1 or T ⊧ψ2 (inductive hypothesis)
⇔ T ⊧ψ1∨ψ2 (semantics of MSO)

• If ϕ = ∃p.ψ, by inductive hypothesis we have an MSO-automaton Aψ that is equivalent to ψ. By theorem
2.14 there is a non-deterministic MSO-automaton AP℘

ψ which is equivalent to Aψ. Let ∃p.Aψ be the MSO-
automaton obtained from AP℘

ψ by proposition 2.29. The following derivation shows that ∃p.Aψ is equivalent
to ∃p.ψ.

∃p.Aψ accepts T ⇔ there is Xp ⊆T such that AP℘
ψ accepts T[p↦ Xp] (proposition 2.29)

⇔ there is Xp ⊆T such that Aψ accepts T[p↦ Xp] (theorem 2.14)
⇔ there is Xp ⊆T such that T[p↦ Xp] ⊧ψ (inductive hypothesis)
⇔ T ⊧ ∃p.ψ (semantics of MSO)

◻

Remark 2.32. The converse of theorem 2.26 is also provable: for every MSO-automaton A, there is a formula
ϕA ∈MSO that is true exactly in the trees that are accepted by A. We refer to [33] for a proof of this statement. ◂

28

2.5 Coda: Normal Form for Non-Deterministic MSO-Automata

We conclude this chapter with a normal form theorem, putting non-deterministic MSO-automata in a very
convenient shape for the theory that is developed in the sequel of this thesis. In order to motivate our statement, let
A be a non-deterministic MSO-automaton and T a tree. By proposition 2.10 we know that each surviving strategy
f for ∃ in A(A,T)@(aI ,sI) can be assumed to be functional: given a position (a,s) ∈ Dom(f), the marking m
suggested by f assigns at most one state b ∈ A to each node t ∈ σR(s). In this section we want to strengthen this
condition, by showing that m can be assumed to assign exactly one state b ∈ A to each node t ∈ σR(s). As before, the
idea is to enforce this property by refining the set of first-order sentences associated with the transition function ∆

of A. For this purpose, we introduce the notion of special basic form.

Definition 2.33 (Special basic form). Given a set A of unary predicates, let a1 . . .ak and c1 . . .c j be sequences of
elements of A, with j ≠ 0. A sentence ϕ ∈ FO+(A) is in special basic form if it is of shape

ϕ = ∃x1 . . .∃xk (diff (x̄)∧ ⋀
1≤i≤k

ai(xi)∧∀z (diff (x̄,z)→ ⋁
1≤l≤ j

cl(z)))

We denote with SBF+(A) the set of all sentences in FO+(A) which are in special basic form. ⊲

Sentences in special basic form are a particular case of sentences in functional basic form. In order to see that,
fix some ϕ in FBF+(A). By definition, for each positive A-type τ

+
S (x) occurring in ϕ, the set S is either empty or a

singleton. By saying that ϕ is in special basic form, we rule out the case in which S is empty. In other words, ϕ

does not have ‘holes’: it follows that, in each A-structure (X ,m) where ϕ is true, each element of X is marked with
at least one unary predicate from A according to m.

From the perspective of acceptance games, we can associate this situation with the property of a strategy for ∃
of being full.

Definition 2.34. Let A= ⟨A,aI ,∆,Ω⟩ be an MSO-automaton and T a tree. Let f be a strategy for ∃ inA(A,T)@(aI ,sI).
We say that f is full if, for each basic position (a,s) ∈Dom(f), the marking f (a,s) assigns to each node t ∈ σR(s)
at least one state b ∈ A. ⊲

Remark 2.35. Given a full surviving strategy f for ∃ in A(A,T)@(aI ,sI), we observe that all f -conform matches
are infinite. Indeed, player ∃ never gets stuck because f is surviving. Moreover, player ∀ does not get stuck neither:
since f is full, from each basic position (a,s) ∈ A×T that is visited along the play, the suggested marking m assigns
some state to each successor of s. Since T is a leafless tree, this marking always induces some pair (b,t) ∈ A×T
that is an admissible choice for player ∀.

We can visualize this property in terms of the tree representation T f of f . By the fact that f is full and surviving,
it is easy to see that each node of T is visited in some f -conform match. It follows that the projection function
π

f
2 ∶ Tf → T is onto. As we observed before, if f is also functional, then π

f
2 is also a 1-1 correspondence between

T f and T. This means that the property of f of being both full and functional corresponds to the property of π
f
2 of

being a bijection between T f and T. ◂

The following statement fixes the relation between sentences in special basic form and full and functional
strategies.

Proposition 2.36. Let A= ⟨A,aI ,∆,Ω⟩ be a non-deterministic MSO-automaton with ∆ of type A×C→SLatt(SBF+(A)).
Given a tree T, we can assume that each surviving strategy for ∃ in A(A,T)@(aI ,sI) is full and functional.

Proof Let f be a surviving strategy for ∃ in G =A(A,T)@(aI ,sI). Since A is non-deterministic, then by proposition
2.10 we can assume f to be functional. In order to see that f is also full, let (a,s) ∈ Dom(f) be a basic position
of G from which f suggests a marking m ∶ A→ ℘(σR(s)) that makes ∆(a,σC(s)) true in σR(s). By definition
∆(a,σC(s)) is a disjunction of sentences in special basic form, implying that there is some disjunct ϕ ∈ SBF+(A)
which is true in (σR(s),m). By the particular syntactic shape of ϕ, each node t in (σR(s),m) witnesses some
variable y, with b(y) a subformula occurring either in the existential or the universal part of ϕ, for some b ∈ A. This
means that m assigns the state b to the node t. Since t was an arbitrary node of σR(s), it follows that each node of
σR(s) is marked with some state according to m. Since (a,s) was an arbitrary position in Dom(f), it follows that f
is indeed a full strategy. ◻

The observations provided in remark 2.35 make full and functional strategies quite appealing. By proposition
2.36, we can assume each strategy for ∃ to be full and functional by bringing non-deterministic MSO-automata in a
specific normal form, as shown with the next statement.

29

Proposition 2.37. For each non-deterministic MSO-automaton A = ⟨A,aI ,∆,Ω⟩, there is an equivalent non-
deterministic MSO-automaton AF = ⟨AF ,aF

I ,∆
F ,ΩF⟩ with ∆

F of type AF ×C→ SLatt(SBF+(AF)).

In order to prove proposition 2.37, the idea is to let AF be an automaton based on the same carrier A of A, with
the addition of a state a⊺ /∈ A. Roughly, the transition function ∆

F of AF will be given by the sentences in functional
basic form which are associated with ∆, where each ‘hole’ has been filled with the new state a⊺. We want that a⊺
plays the role of a placeholder, in the sense that its presence is irrelevant for the acceptance game of AF . By this
observation we will be able to show A and AF are in fact equivalent.

As a preliminary step towards the construction of AF , we introduce a procedure transforming a sentence
ϕ ∈ FBF+(A) in functional basic form into a sentence in special basic form. This translation will depend on a given
unary predicate b. The idea is that each first-order variable y that is bound in ϕ is brought into the scope of at least
one unary predicate. If y is a variable that was not in the scope of any unary predicate in ϕ, then the subformula
b(y) is placed in the translation of ϕ.

Definition 2.38 (b-translation). Fix a set A of unary predicates and an unary predicate b (not necessarily in A). Let
ϕ ∈ FBF+(A) be a sentence in functional basic form, depending on sequences B1 . . .Bk and C1 . . .C j of subsets of A.
For each subset S in the sequence, we define the formula τ

b
S(x) as follows:

τ
b
S(x) ∶= { τS(x) If S ≠∅

b(x) Otherwise.

The sentence ϕ
b ∈ SBF+(A∪{b}) is defined as follows.

ϕ
b ∶= ∃x1 . . .xk (diff (x̄)∧ ⋀

1≤i≤k
τ

b
Bi
(xi)∧∀z (diff (x̄,z)→ ⋁

1≤l≤ j
τ

b
Cl
(z)))

In the particular case in which j = 0, the subformula ⋁1≤l≤ j τ
b
Cl
(z) is replaced with b(z). ⊲

Definition 2.39. Let A = ⟨A,aI ,∆,Ω⟩ be a non-deterministic MSO-automaton and a⊺ be a state that is not in A. We
define an automaton AF = ⟨AF ,aI ,∆

F ,ΩF⟩ by putting

AF ∶= A∪{a⊺}

∆
F(a,c) ∶= { ∀x a⊺(x) If a = a⊺

⋁{ϕ
a⊺ ∈ SBF+(AF) ∣ ϕ is a disjunct of ∆(a,c)} Otherwise

Ω
F(a) ∶= { 0 If a = a⊺

Ω(a) Otherwise .

For each disjunct ϕ ∈ FBF+(A) of ∆(a,c), the sentence ϕ
a⊺ is the a⊺-translation of ϕ according to definition 2.38.

It follows that the transition function ∆
F has type AF ×C→ SLatt(SBF+(AF)). The automaton AF is called the

completion of A. ⊲

Proposition 2.40. Let A be a non-deterministic MSO-automaton and AF its completion. The following holds.

A ≡ AF

Proof In order to show the two directions of the equivalence, we fix a tree T.
(⇒) Let f be a winning strategy for ∃ in G =A(A,T)@(aI ,sI). By proposition 2.13 we can assume f to be

minimal. We want to define a winning strategy f F for ∃ in the game GF =A(AF ,T)@(aI ,sI). The idea is that f F

will be constructed as a sort of ‘saturation’ of f : from a basic position (a,s), the marking mF suggested by f F

will extend the marking suggested by f by assigning the state a⊺ to every node of σR(s) that was left unmarked
according to f . By minimality of f , this means that there is a disjunct ϕ of ∆(a,σR(s)), such that every unmarked
node corresponds to a ‘hole’, i.e. an A-type τ

+
S (x) with S =∅, in ϕ. By this observation,it can be checked that mF

makes ϕ
a⊺ true in σR(s) and then it is a legitimate move for ∃ in GF . For the next basic position, we can always

assume that ∀ does not choose a position of the form (a⊺,t), because this is winning for ∃ by definition of AF . It
follows that we only need to consider f F -conform matches having the same positions of some f -conform match.

Now we proceed with the formal part of the proof. The strategy f F will be defined for each stage of the
construction of a match π

F in GF . While playing π
F , player ∃ maintains an f -conform shadow match π. Inductively,

we will make sure that either infinitely many basic positions associated with state a⊺ occur in π
F or ∃ can keep the

same basic positions for each round in π
F and π.

30

At the initial stage the match π
F only consists of the position (aI ,sI). We initialize a shadow match π from the

same position (aI ,sI). By assumption the position (aI ,sI) is winning for ∃ in G, meaning that π is (the initial part
of) an f -conform match. By inductive hypothesis suppose that we have constructed (the initial part of) the match
π

F , with rounds z0, . . . ,zi, and (the initial part of) an f -conform shadow match π, with rounds z0, . . . ,zi, such that
for each round j ≤ i the two matches have the same positions. Let (a,s) the basic position occurring in π

F at round
zi. By inductive hypothesis (a,s) also occurs in π at the same round. Let m ∶ A→ ℘(σR(s)) be the suggestion of f
from position (a,s). We denote with Um ⊆ σR(s) be the set defined as

Um ∶= {s ∈ σR(s) ∣ s /∈m(a) for all a ∈ A}.

We define a marking mF ∶ AF → ℘(σR(s)) by putting

mF(a) ∶= { Um If a = a⊺
m(a) Otherwise .

In the sequel we show two claims on f F .
CLAIM 2. The marking mF suggested by f F is a legitimate choice for ∃.

PROOF OF CLAIM By assumption m makes ∆(a,σC(s)) true in σR(s). By minimality of f , there is some disjunct
ϕ ∈ FBF+(A) of ∆(a,σC(s)) such that m is minimal among the markings that make ϕ true in σR(s). In order to
show that mF is a legitimate choice for ∃, it suffices to show that mF makes ϕ

a⊺ ∈ SBF+(AF) true. This can be
easily checked by minimality of m, definition of a⊺-translation and mF . ∎

CLAIM 3. Either the next basic position in π
F is winning for ∃ in GF or we can maintain the same basic positions

in π
F and π at round zi+1.

PROOF OF CLAIM Suppose that ∀ picks (b,t) as next position in π
F . If b = a⊺, then ∀ is doomed to lose the

match, because by definition of ∆
F(a⊺,σC(t)) all next rounds will be associated with basic positions with parity

Ω(a⊺) = 0. Therefore (b,t) is a winning position for ∃ in GF .
Otherwise, b ≠ a⊺ is a state of A and by definition of mF we have that t ∈ m(b). This means that (b,t) is a

legitimate choice for ∀ in π and we can keep the same basic positions one round further in the two matches. ∎

By claim 2 and 3, the strategy f F is surviving for ∃. By proposition 2.36, f F is full and then the match π
F

is infinite. By claim 3 it follows that either a winning position for ∃ is visited at some round in π
F , or the same

parities occur infinitely often in π
F and the f -conform shadow match π. Since f is a winning strategy for ∃ in G,

also in the latter case the match π
F is won by ∃.

(⇐) Let f F be a winning strategy for ∃ in GF =A(AF ,T)@(aI ,sI). We want to define a winning strategy f
for ∃ in G =A(A,T)@(aI ,sI). Suppose that (a,s) ∈ A×T is a basic position on which f F is defined, providing
a marking mF ∶ AF → ℘(σR(s)). The idea is to let the suggestion of f be the restriction of mF to a marking
m ∶ A→ ℘(σR(s)). Along the same line of reasoning used for direction (⇒), it is easy to check that, while playing
an f -conform match π of G, we can maintain an f F -conform shadow match π

℘ of GF , such that π and π
℘ have the

same basic positions and ∃ never gets stuck in π. ◻

We are now ready to supply the proof of our normal form theorem for non-deterministic MSO-automata.

Proof of proposition 2.37 Let A be a non-deterministic MSO-automaton. By proposition 2.40 the automaton A is
equivalent to its completion AF . By definition, AF is a non-deterministic MSO-automaton, with transition function
of type AF ×C→ SLatt(SBF+(AF)). ◻

Historical notes

Automata characterizing MSO on trees have been first introduced by Rabin [27]. Rabin’s results is restricted to
binary trees, but it can be easily extended to trees of k-bounded branching degree, for k a positive integer [23].

Automata characterizing MSO on trees of arbitrary branching degree have been introduced by Walukiewicz
[33]. He works with automata that are in fact equivalent to MSO-automata, providing results that are analogous to
the Simulation Theorem and the closure properties of section 2.4. Our presentation of MSO-automata - in particular,
the focus on the Simulation Theorem - follows the perspective of Venema [31]. We refer to [31], theorem 6.17, for a
result on µ-automata which is analogous to the Simulation Theorem. The idea of the refined powerset construction
also comes from the analysis of µ-automata given in [31], but the same motivation is already behind the Safra
construction for stream automata [29].

31

Chapter 3

Automata Characterization of WFMSO

In this chapter we work with a restricted class of MSO-automata, which we call weak MSO-automata. Intuitively,
an MSO-automaton is weak if we can impose a quasi-order on its states that is ‘respected’ by the transition function
and the parity map.

Definition 3.1. A weak MSO-automaton on alphabet C is a tuple A = ⟨A,⪯,aI ,∆,Ω⟩ where:

• ⟨A,aI ,∆,Ω⟩ is an MSO-automaton;

• the relation ⪯ ⊆ A×A is a quasi-order on A;

• ∆(a,c) is in FO+({b ∈ A ∣ a ⪯ b}) for every a ∈ A and c ∈C;

• for every a,b ∈ A if a ⪯ b and b ⪯ a then Ω(a) =Ω(b).

Let T be a tree. The acceptance game of A on T - notation A(A,T) - and its winning conditions are defined as
for MSO-automata, according to definition 2.1.

Remark 3.2. By definition, for each weak MSO-automaton A = ⟨A,⪯,aI ,∆,Ω⟩, the MSO-automaton A′ =
⟨A,aI ,∆,Ω⟩ is equivalent to A. ◂
Remark 3.3 ([25]). The weakness constraint simplifies the structure of the acceptance game for weak MSO-
automata. Let A = ⟨A,⪯,aI ,∆,Ω⟩ be a weak MSO-automaton and T a tree. Since ⪯ is a quasi-order, we can
partition A into equivalence classes by quotienting the symmetric closure of ⪯, which we denote with ≡⪯. Let π be
an infinite match of A(A,T)@(aI ,sI) , associated with basic positions

(aI ,sI),(a1,s1), . . . ,(an,sn),
By definition of ∆, for each i <ω we have that ai ⪯ ai+1. Since A is finite, there is some k <ω in which π stabilizes,
in the sense that for all j ≥ k we have that a j ⪯ a j+1 and a j+1 ⪯ a j. In other words, the match π is eventually trapped
into an equivalence class E of ≡⪯. According to definition 3.1, all states in E have the same parity. This means that
there is a unique parity n ∈ Ran(Ω) occurring infinitely often in π.

By this observation it follows that we can restrict Ω to a function Ω
′ ∶ A→ {0,1} without loss of generality. The

parity map Ω
′ is defined by putting Ω

′(a) = 0 if Ω(a) is even and Ω
′(a) = 1 otherwise, for each a ∈ A. It is easy to

check that A = ⟨A,⪯,aI ,∆,Ω⟩ and A′ = ⟨A,⪯,aI ,∆,Ω
′⟩ are equivalent. ◂

The main goal of this chapter is to characterize the expressive power of WFMSO in terms of weak MSO-automata,
in analogy with the case of MSO and MSO-automata. We want to show that for every formula ϕ ∈WFMSO we can
effectively construct a weak MSO-automaton which is equivalent to ϕ. The argument proceeds by induction on ϕ.
We focus on the inductive case of WFMSO existential quantification, which is the non-trivial part of the proof. For
this purpose, we define a closure operation on tree languages corresponding to the semantics of WFMSO existential
quantification.

Definition 3.4. Let T be a tree and p a propositional letter (not necessarily in P). We refer to the notion of
well-closed p-variant of T as defined in section 1.2. Recall that, since T is a C-labeled tree, any well-closed
p-variant Tp of T is a ℘(P∪{p})-labeled tree.

Let L be a tree language. The well-closed projection of L over p is the language ∃W p.L defined as

∃W p.L = {T ∣ there is a well-closed p-variant Tp of T such that Tp ∈L}.
Let C be a class of tree languages. C is closed under well-closed projection over p if, for any language L in C,

also the language ∃W p.L is in C. ⊲

33

3.1 The Two-Sorted Construction

Our goal is to provide a projection construction that, given a weak MSO-automaton A, provides a weak
MSO-automaton ∃W p.A recognizing ∃W p.L(A).

The idea is to proceed by analogy with the proof showing that the tree languages recognized by MSO-automata
are closed under projection. In the case of MSO-automata, we proved that the construction is correct by using in an
essential way the assumption that the starting automaton is non-deterministic. In the case of weak MSO-automata,
this passage requires a finer analysis.

Remark 3.5. As shown by theorem 2.14, every MSO-automaton can be assumed to be non-deterministic. However,
this is not the case once we restrict to weak MSO-automata. In order to see that, let A be an MSO-automaton.
We recapitulate the steps leading to the non-deterministic version of A. This is achieved by performing a refined
version of the powerset construction. A non-deterministic automaton A℘ equivalent to A is first constructed with a
non-parity acceptance condition. Through some further transformations we obtain an equivalent non-deterministic
automaton AP℘ with a parity acceptance condition.

Now suppose that the starting automaton A is weak with quasi-order ⪯. The weakness affects essentially
the parity acceptance condition of A, which however is not carried to the definition of A℘. Even if we define a
quasi-order ⪯P℘ on the macro-states of AP℘ on the base of ⪯, there is no way to guarantee that the parity acceptance
condition of AP℘ respects ⪯P℘. In other words, even if A is weak, the equivalent non-deterministic MSO automaton
AP℘ is generally not weak1. ◂

Because of remark 3.5 we cannot use the full power of non-determinism in the projection construction for weak
MSO-automata. However, in the sequel we show how a restricted version of non-determinism fits the best for our
purposes.

Let Q be a weak MSO-automaton, T a tree and f a winning strategy for ∃ in GQ =A(Q,T)@(aI ,sI). By
proposition 2.10 non-determinism corresponds to the strategy f being functional. The main idea is that we require
f to be functional only for a finite initial segment (i.e. a partial match) πF of each match f -conform π of GQ. This
amounts to say that Q behaves as a non-deterministic automaton as far as the match is played along πF . We call
this behavior the non-deterministic mode of Q. Through the remaining part of the match there is no requirement
on f being functional or Q behaving as a non-deterministic automaton. We say that in this part Q has entered the
alternating mode.

As we did in the previous chapter, it is convenient to draw the tree representation T f of f , which comes with a
projection function π

f
2 ∶ Tf → T according to remark 2.4. Each f -conform match of GQ is associated with some

backwards closed path of T f . Since f is not assumed to be functional, π
f
2 is generally not a 1-1 correspondence

between T f and T: for some node s ∈ T , there can possibly be more than one state a of Q such that (a,s) is a
node of T f . However, each f -conform match π has an initial segment πF where f is functional. The set of all πF s
forms a prefix W f of T f . The restriction of π

f
2 to W f is a 1-1 correspondence between W f and some well-founded

subtree W of T.
The intuition behind the projection construction is to build a p-variant of T by allowing nodes labeled with p to

be only in W. The resulting p-variant will be well-closed according to definition 3.4.

Figure 3.1: the initial segment πF of an f -conform match π induces a branch in the well-founded subtree W of T.

1The same phenomenon has been observed in a slightly different setting in [14], remark on theorem 4.1.

34

Definition 3.6. Let Q = ⟨Q,qI ,∆,Ω⟩ be an MSO-automaton such that Q = B1⊎B2 for two finite sets B1 and B2. We
say that Q is non-deterministic in B1 if the following condition holds.

• Let T be a tree and f a winning strategy for ∃ in A(Q,T)@(qI ,sI). Let T f and π
2
f ∶ Tf → T be respectively

the tree representation of f and its projection function as in remark 2.4. There exists a prefix Wf of T f such
that:

1. all nodes in Wf are of the form (q1,s) with q1 ∈ B1;

2. all nodes in Tf ∖Wf are of the form (q2,s) with q2 ∈ B2;

3. the restriction of the projection function π
f
2 to Wf is 1-1.

⊲

In analogy with the case of MSO-automata, we want to show that for every weak MSO-automaton A we can
canonically construct an equivalent weak MSO-automaton that is non-deterministic in some non-empty set of states
B. The idea is to take as set B the carrier A℘ of the refined powerset construction on A, as in definition 2.20. The
resulting automaton A2S is called two-sorted because it roughly consists of a copy of A℘ and a copy of A. Given a
tree T, we want that any match of A(A2S,T) is split in two parts:

1. for finitely many steps A2S plays a match of the acceptance game of A℘ on T;

2. at a certain stage A2S abandons the first match and plays a match of the acceptance game of A on T.

The first part corresponds to A2S being in the non-deterministic mode, whereas the second part corresponds to A2S

being in the alternating mode. In fact A℘ is a non-deterministic automaton, whereas A is generally not. The formal
definition of A2S will guarantee the correctness of this construction, in the sense that A2S turns out to be equivalent
to the original automaton A. Before going into the details of the construction of A2S, we informally explain its
components.

• The set of states of A2S includes both the original states of A and the macro-states of A℘.

• The quasi-order in A2S of the states of A is the same as in the original automaton A. In order to guarantee
that we can switch from the non-deterministic mode to the alternating mode in any stage of the simulation
of A℘, we put every state of A ‘above’ every macro-state, with respect to the quasi-order. The quasi-order
between macro-states themselves is defined as the flat order, because the transition of A℘ does not originally
have any order to respect.

• The initial state of A2S is the initial state of A℘ because we start every run with A2S in the non-deterministic
mode.

• The transition function of A2S is just the same of the original automaton A on the states of A. On the
macro-states of A℘ the transition function of A2S allows for continuing in the non-deterministic mode or
switching to the alternating mode and enter the simulation of A.

∆
2S(a,c) ∶= ∆(a,c)

∆
2S(R,c) ∶= ∆

℘(R,c)∨ ⋀
a∈Ran(R)

∆(a,c)

Observe that the match in the game for A always starts from a state a ∈ Ran(R), which is a winning position
if R was a winning position in the game for A℘, as shown in the proof of theorem 2.14. Intuitively, this
property guarantees that switching from the non-deterministic to the alternating mode does not alter the
winning conditions of a match.

• The parity map for A2S has the same value as the map of A on the states of the original automaton A. All
the macro-states of A℘ receive an odd parity. In this way we guarantee that every match that is won by ∃
eventually makes A2S switch from the non-deterministic mode to the alternating mode.

We are now ready to provide the formal definition of A2S.

35

Definition 3.7. Let A = ⟨A,≤,aI ,∆,Ω⟩ be a weak MSO-automaton and A℘ = ⟨A℘,a℘I ,∆℘,NBTΩ⟩ its refined
powerset construction as in definition 2.20. The weak MSO-automaton A2S = ⟨A2S,≤2S,a2S

I ,∆2S,Ω2S⟩ is defined as
follows.

A2S ∶= A∪A℘

≤2S ∶= ≤ ∪ (A℘×A) ∪ (A℘×A℘)
a2S

I ∶= a℘I
∆

2S(a,c) ∶= ∆(a,c)
∆

2S(R,c) ∶= ∆
℘(R,c)∨ ⋀

a∈Ran(R)
∆(a,c)

Ω
2S(a) ∶= Ω(a)

Ω
2S(R) ∶= 1

Here a stands for any state in A and R stands for any state in A℘. The automaton A2S is called the two-sorted
construction over A. ⊲

Proposition 3.8. Let A = ⟨A,aI ,∆,Ω⟩ be a weak MSO-automaton and A2S the two sorted construction on A. The
automaton A2S is non-deterministic in A℘.

Proof Let T be a tree and f a winning strategy for ∃ in G2S =A(A2S,T)@(qI ,sI). By proposition 2.13 we can
assume f to be minimal. Let T f = ⟨Tf ,(qI ,sI),R f ,Vf ⟩ and π

f
2 ∶ Tf → T be respectively the tree representation of

f and the projection function for Tf as in remark 2.4. We need to show that there is a prefix Wf of T f with the
properties described as in definition 3.6.

In order to define Wf , it suffices to provide a frontier BW of T f . For this purpose, consider an arbitrary branch
E in T f . By definition of T f , the branch E corresponds to the sequence of basic positions visited in an f -conform
match πE of G2S. The key observation is that, since f is winning and minimal, we can split E into an initial segment
where A2S is in the non-deterministic mode and the remaining part of E where A2S is in the alternating mode.

On the base of this observation, it is easy to see that there is a node (R,s) ∈ A℘×T along E with the following
properties:

• for each node (q,t) ∈ A2S×T in E such that (q,t)R⋆f (R,s), we have that q ∈ A℘;

• for each node (q,t) ∈ A2S×T in E such that (R,s)R+f (q,t), we have that q ∈ A.

We put E ∩BW ∶= {(R,s)}. Since E was an arbitrary branch of T f , this suffices to define a frontier BW of T f . We
let Wf be the prefix induced by the frontier BW , i.e.

Wf ∶= {(Q,t) ∈ Tf ∣ (Q,t)R⋆f (Q′,t′) for some (Q′,t′) ∈ BW}.

In order to prove the main statement, it remains to show that the restriction π
f
2↾W f

∶Wf → T of π
f
2 to Wf is 1-1.

Let W ⊆ T defined by putting W ∶= π
f
2[Wf]. Let f↾W denote the restriction of f to a strategy for ∃ in partial matches

of G2S which are played along nodes in W , that is, Dom(f↾W) =Dom(f)∩(A2S×W). By definition of T f and π
f
2 ,

in order to show that π
f
2↾W f

is 1-1, it suffices to show that f↾W is a functional strategy.

For this purpose, let π be an f↾W -conform partial match of G2S which is played along nodes in W , with basic
positions (a℘I ,sI),(R1,s1), . . . ,(Rk,sk). The key observation is that π can be also seen as an f↾W -conform partial
match of G℘ =A(A℘,T)@(a℘I ,sI). In order to see that, consider any round zi in π with i < k, associated with basic
position (Ri,si). It suffices to show that the marking mi suggested by f↾W makes ∆

℘(Ri,σC(si)) true in σR(si).
Since f is surviving, then f↾W is surviving in W and mi makes ∆

2S(Ri,σC(si)) true in σR(si). By definition of ∆
2S,

this means that mi makes either ∆
℘(Ri,σC(si)) or ⋀a∈Ran(R)∆(a,c) true in σR(si). By assumption we know that

mi assigns Ri+1 ∈ A℘ to the node si+1, because (Ri+1,si+1) is the next basic position in π. Since f↾W is minimal, this
means that mi makes ∆

℘(Ri,σC(si)) true in σR(si).
Therefore f↾W is a strategy for ∃ in G℘ which is surviving in W . By proposition 2.10, it follows that f↾W is a

functional strategy, whence the function π
f
2↾W f

is 1-1. ◻

In the sequel we show that the two-sorted construction produces an automaton A2S which is equivalent to the
starting automaton A.

36

Proposition 3.9. Let A = ⟨A,aI ,∆,Ω⟩ be a weak MSO-automaton and A2S the two sorted construction on A. For
each tree T, the automaton A2S accepts T if and only if A accepts T.

Proof (⇒) Let T be a tree, f 2S a winning strategy of ∃ in G2S =A(A2S,T)@(a℘I ,sI). We want to define a strategy
f that is winning for ∃ in G =A(A,T)@(aI ,sI). The key observation underlying the construction of f is that, for
each f 2S-conform match π

2S of G2S, there is a round z in which A2S enters the alternating mode: from that moment
on, A2S ‘behaves’ as A, and π

2S becomes in fact a match of G. Then we can simply let f be defined as f 2S for
all rounds after z. For the rounds preceding round z, A2S is in non-deterministic mode and ‘behaves’ as A℘. This
means that in this phase π

2S looks as match of the game A(A℘,T)@(a℘I ,sI). However, the equivalence between
A℘ and A provides us with a canonical way to construct the strategy f for those rounds before z, in terms of a
strategy for ∃ in A(A℘,T)@(a℘I ,sI).

Now we proceed with the formal part of the proof. The strategy f will be defined for each stage of the
construction of a match π in G. While playing π, player ∃ maintains an f 2S-conform shadow match π

2S. Inductively,
we will make sure that ∃ can keep the following condition for each round z in π and π

2S.

Either case 1 or case 2 holds for the current round z.

1. Case 1 The current basic position in π is of the form (a,s) ∈ A×T
and the current basic position in π

2S is of the form (R,s) ∈ A℘×T ,
with a ∈ Ran(R).

2. Case 2 Both π and π
2S are at the same basic position of the form

(a,s) ∈ A×T .

(‡)

Let us first show why ∃ is guaranteed to win π if she never gets stuck and condition (‡) is maintained for each
round that is played in π and π

2S. The case in which finitely many rounds are played corresponds to player ∀ getting
stuck in π. In the remaining case, suppose that infinitely many rounds are played in π and π

2S. We argue that there
is some round z in which a basic position of the form (b,t) ∈ A×T occurs in the f 2S-conform shadow match π

2S. If
this was not the case, by definition of ∆

2S, infinitely many positions of the form (R,t) ∈ A℘×T would occur in π
2S.

Then the unique parity n <ω occurring infinitely often along π
2S would be associated with a position of the form

(R,t) ∈ A℘×T . By definition of Ω
2S, the parity n is odd, contradicting the fact that f 2S is a winning strategy for ∃.

Therefore there is a round z <ω in which a basic position of the form (b,t) ∈ A×T occurs in π
2S. By definition

of ∆
2S, for all successive rounds zi+1,zi+2, . . . in which we maintain the match π

2S, only positions of the form
(d,r) ∈ A×T can occur in π

2S. Since the strategy f 2S is winning, then the unique parity m <ω occurring infinitely
often along the play associated with rounds zi,zi+1,zi+2, . . . is even. By condition (‡), rounds zi,zi+1,zi+2, . . . in π

have the same basic positions of rounds zi,zi+1,zi+2, . . . in π
2S. It follows that m is also the unique parity occurring

infinitely often along π, so ∃ wins π.

Now the goal is to define a strategy f for ∃ in π, so that the move suggested by f is always legitimate and ∃ can
maintain condition (‡) for each inductive step of the construction of π and π

2S. At the initial round the match π

consists only of the position (aI ,sI). We start the construction of the shadow match π
2S from position (a℘I ,sI). By

assumption (a℘I ,sI) ∈Win∃(G2S), so π
2S is in fact (the initial part of) an f 2S-conform shadow match. Since aI is in

Ran(a℘I), condition (‡) holds for the first stage of the construction.
Inductively, suppose that we have constructed (the initial part of) the match π, with rounds z0, . . . ,zi, and (the

initial part of) an f 2S-conform shadow match π
2S, with rounds z0, . . . ,zi, such that for each j ≤ i condition (‡) is

respected. Let (a,s) the basic position occurring in π at round zi. In order to define the value of f on (a,s), we
distinguish two cases.

1. First, suppose that position (a,s) occurs also in π
2S at round zi. Let m2S

a,s be the marking suggested by f 2S to
∃ from position (a,s) in π

2S. We let m2S
a,s be also the suggestion for ∃ from position (a,s) in π.

2. Otherwise, suppose that at round zi a position (R,s) occurs in π
2S with a ∈ Ran(R). Let m2S

R,s be the marking
suggested by f 2S to ∃ from position (R,s) in π

2S. We distinguish two further cases.

a) If (σR(s),m2S
R,s) ⊧⋀b∈Ran(R)∆(b,σC(s)), then ∃ picks the marking m2S

R,s.

b) If (σR(s),m2S
R,s) ⊧ ∆

℘(R,σC(s)), since a is in Ran(R) we can apply proposition 2.22 to get a marking
ma ∶ A→ ℘(σR(s)). We let ma be the choice of ∃ in π.

37

Observe that cases 2.a and 2.b are exhaustive because f 2S is winning, meaning that

(σR(s),m2S
R,s) ⊧ ∆

℘(R,σC(s))∨ ⋀
b∈Ran(R)

∆(b,σC(s)).

Also cases 1 and 2 are exhaustive because condition (‡) holds by inductive hypothesis. In order to complete the
proof, we need to show that the moves for ∃ prescribed by f are legitimate and allow to maintain condition (‡) for
one more round.
CLAIM 4. The move suggested by f from position (a,s) is legitimate.

PROOF OF CLAIM This clearly holds for case 1 of the definition of f . In order to prove the same for case 2.a,
the key observation is that by assumption a ∈ Ran(R). It follows that ∆(a,σC(s)) is one of the conjuncts of
⋀b∈Ran(R)∆(b,σC(s)), therefore

(σR(s),m2S
R,s) ⊧ ∆(a,σC(s)).

Concerning case 2.b, proposition 2.22 guarantees that (σR(s),ma) ⊧ ∆(a,s). ∎

CLAIM 5. If ∀ does not get stuck at round zi, then player ∃ can maintain condition (‡) at round zi+1.

PROOF OF CLAIM If f was defined according to case 1, then the set σR(s) is marked according to marking m2S
a,s

both in π and π
2S. Therefore any next basic position (b,t) chosen by ∀ in π

2S is also available in the shadow match
π

2S. By letting ∀ choose (b,t) in π
2S, we have the same basic positions in the two matches at round zi+1, so that

condition (‡) is maintained.
Otherwise, suppose that f was defined according to case 2.a. The same argument provided for case 1 applies.

In the remaining case, f suggested a marking m to ∃ according to case 2.b. Let (b,t) be the next basic position
chosen by ∀ in π. Proposition 2.22 guarantees that there is Q ∈ A℘ such that b ∈ Ran(Q) and t ∈m℘(Q). Therefore
the basic position (Q,t) is an available choice for ∀ in the shadow match π

2S. By letting ∀ choose (Q,t) in π
2S, we

are able to maintain condition (‡). ∎

The proof of the two claims completes the proof of the main statement.

(⇐) Given a winning strategy f for ∃ in G, we want to construct a winning strategy f 2S for ∃ in G2S. The
definition of f is provided for each stage of the construction of a match π

2S of G2S, while maintaining an f -conform
shadow match π of G.

The idea of the definition is to let A2S enter immediately the alternating mode. This means that we make
∃ play the very same strategy f in π

2S. From position (a℘I ,sI) in π
2S, the marking m suggested by f makes

∆(aI ,σC(sI)) true, which is just the formula ⋀a∈Ran(a℘I)∆(a,σC(sI)). Therefore (σR(sI),m) ⊧ ∆
2S(a℘I ,σC(sI)). It

is straightforward to check that from this round on the two matches have the same basic positions.
◻

3.2 From WFMSO to Weak MSO-Automata

We are now ready to show the main result of this section: the class of tree languages recognized by weak MSO-
automata is closed under well-closed projection. The argument is analogous to the one showing that MSO-automata
are closed under projection, but we use the two-sorted construction instead of the refined powerset construction.
The p-variant induced by the projection automaton will be guaranteed to be well-closed because all nodes labeled
with p are visited when the automaton is in non-deterministic mode.

Definition 3.10. Let A = ⟨A,≤,aI ,∆,Ω⟩ be a weak MSO-automaton on alphabet ℘(P∪{p}). Let A2S denote its
two-sorted construction. We define the automaton ∃W p.A = ⟨A2S,≤2S,a2S

I , ∆̃,Ω2S⟩ on alphabet C by putting

∆̃(a,c) ∶= ∆
2S(a,c)

∆̃(R,c) ∶= ∆
2S(R,c)∨∆

2S(R,c∪{p}).

The automaton ∃W p.A is called the two-sorted projection construction of A over p.

Remark 3.11. Given A and ∃W p.A as above, we observe that ∃W p.A is a weak MSO-automaton which is non-
deterministic in A℘ according to definition 3.6. In order to see that, the key observation is that ∃W p.A is defined
almost as A2S. Then the same argument provided in proposition 3.8 to show that A2S is non-deterministic in A℘

also holds for the case of ∃W p.A. ◂

38

Proposition 3.12. For each weak MSO-automaton A on alphabet ℘(P∪ {p}), let ∃W p.A be the two-sorted
projection construction of A over p, on alphabet C. The following holds.

L(∃W p.A) = ∃W p.L(A) (3.1)

Proof Let A = ⟨A,≤,aI ,∆,Ω⟩ be a weak MSO-automaton on alphabet ℘(P ∪ {p}) and ∃W p.A = ⟨A2S,≤2S

,a2S
I , ∆̃,Ω2S⟩ the two-sorted projection construction of A over p. We want to prove that, for any tree T:

∃W p.A accepts T iff there is a well-closed p-variant Tp of T such that A accepts Tp.

(⇒) Let T be a tree and f̃ a winning strategy of ∃ in G̃ =A(∃W p.A,T)@(a℘I ,sI). Our goal is to provide a
well-closed p-variant Tp of the tree T and a winning strategy for ∃ in G2S =A(A2S,Tp)@(a℘I ,sI). Then the proof
is completed by applying proposition 3.9.

The intuitions underlying the construction of a p-variant Tp are similar to the ones provided for the case of
MSO-automata - proposition 2.29. The essential difference is that we cannot assume the automaton ∃W p.A to
be non-deterministic. However, we can assume ∃W p.A to be non-deterministic in A℘, and this is exactly what is
needed.

By definition of ∃W p.A in terms of the two-sorted construction A2S, there is a well-founded subtree W of T
where ∃W p.A behaves as a non-deterministic automaton. Then we can use the information suggested by f̃ to label
with p the nodes in W, just as in the proof of proposition 2.29. Since W is well-founded, we are guaranteed that the
resulting p-variant Tp is well-closed. Since Tp has been defined on the base of the information suggested by f̃ , it is
not difficult to check that f̃ serves also as a winning strategy for ∃ in G2S.

In the sequel we give a proof of direction (⇒) following the intuitions described above. Let T f̃ be the tree

representation of f̃ and π
f̃
2 ∶ T f̃ → T the associated projection function. By remark 3.11, the automaton ∃W p.A is

non-deterministic in A℘, meaning that there is a prefix W f̃ of T f̃ with the properties described as in definition 3.6.

Just as we observed in the proof of proposition 2.29, since π
f̃
2 is 1-1 on W f̃ then for each node s ∈ π

f̃
2[W f̃] there is

a unique q ∈ A2S such that π
f̃
2(q,s) = s. By definition of W f̃ we know that q = R for some R ∈ A℘. Since such R is

unique for s, we use the notation Rs to indicate R. We use the map π
f̃
2 to define a subset Xp of T as follows.

Xp ∶= {s ∈ π
f̃
2[W f̃] ∣ (σR(s), f̃ (Rs,s)) ⊧ ∆

2S(Rs,σC(s)∪{p})} (3.2)

Observe that by definition Xp is a subset of π
f̃
2[W f̃]. Since W f̃ is a well-founded subtree of T f , then also π

f̃
2[W f̃]

is a well-founded subtree of T. It follows that Xp is in WC(T).
We denote with Tp the p-variant of T induced by Xp. By the fact that Xp is in WC(T), the tree Tp is in fact a

well-closed p-variant of T. In order to complete the proof of direction (⇒), we need to provide a winning strategy
for ∃ in G2S. In fact we claim that such strategy can be taken to be f̃ itself.

CLAIM 6. The strategy f̃ is winning for ∃ in G2S.

PROOF OF CLAIM In order to prove the claim, we construct an f̃ -conform match π
2S of G2S, while maintaining an

f̃ -conform shadow match π̃ of G̃. Inductively, we will make sure that ∃ never gets stuck in π
2S and she can keep the

same basic positions for each round zi that is played in π̃ and π
2S. We refer to this as condition (‡). Since ∃W p.A

and A2S have the same set of states and the same parity map, it is immediate to check that maintaining condition
(‡) along the whole play is enough to show that ∃ wins the match π

2S.
At the initial round the match π

2S consists only of the position (a℘I ,sI). We start the construction of an
f̃ -conform shadow match π̃ from the same position (a℘I ,sI). Inductively, let (q,s) ∈ A2S×T be the basic position
occurring both in π̃ and π

2S at round zi. By inductive hypothesis π̃ is f̃ -conform, meaning that f̃ suggests a marking
m ∶ A2S → ℘(σR(s)) that makes ∆̃(q,σC(s)) true in σR(s). In order to keep π

2S conform to the strategy f̃ , we
suggest the same marking to ∃ in π

2S. Then we need to check the following two statements:

1. the marking m is a legitimate choice for ∃ in π
2S;

2. condition (‡) can be maintained in the next round zi+1.

In order to show the first statement, we distinguish two cases.

39

a) If q is of the form a ∈ A, then the first property of W f̃ provided by definition 3.6 excludes that s is in W f̃ .
Therefore s is also not in Xp, and the label of s in Tp does not contain p. More formally, this means that

σ
p
C(s) = σC(s), (3.3)

where σ
p
C ∶ T → ℘(P∪{p}) is the labeling function of Tp and σC ∶ T →C the labeling function of T.

By assumption m makes ∆
2S(a,σC(s)) true in σR(s). By (3.3) the marking m also makes ∆

2S(a,σp
C(s)) true

in σR(s) and then it is an admissible choice for ∃ in π
2S.

b) Otherwise, suppose that q is of the form R ∈ A℘. By the second property of W f̃ provided by definition 3.6 we

know that (R,s) is a node in W f̃ . Since π
f̃
2 is 1-1 on W f̃ we also know that R is the unique state such that

(R,s) ∈W f̃ . At this point, we distinguish two further cases.

a) If the label of s in Tp does contain p, by definition s is in Xp. This means that

(σR(s),m) ⊧ ∆
2S(R,σC(s)∪{p}). (3.4)

By definition of σ
p
C the label σC(s)∪{p} is equal to σ

p
C(s). Therefore m makes ∆

2S(R,σp
C(s)) true in

(σR(s),m) and it is an admissible choice for ∃ in π
2S.

b) In the remaining case, the label of s in Tp does not contain p. This means that

(σR(s),m) /⊧ ∆
2S(R,σC(s)∪{p}). (3.5)

Since m is a winning position for ∃ in π̃, it follows that m makes the other disjunct of ∆̃(R,σC(s)) true,
i.e.

(σR(s),m) ⊧ ∆
2S(R,σC(s)). (3.6)

Since by assumption the label of s in Tp does not contain p, we are in the situation depicted in (3.3).
Therefore m makes ∆

2S(R,σp
C(s)) true in (σR(s),m) and it is an admissible choice for ∃ in π

2S.

It should be clear that the cases considered above exhaust the possibilities for the position (q,s). Therefore m
is an admissible choice for ∃ in π

2S. It remains to show the second statement, namely that condition (‡) can be
maintained in the next round zi+1. This is clear because the same marking is suggested to ∃ in π

2S and π̃. ∎

The proof of the claim together with proposition 3.9 completes the proof of direction (⇒).

(⇐) Let T be a tree and Tp a well-closed p-variant of T that is accepted by A. Let f be a winning strategy for
∃ in G =A(A,Tp)@(aI ,sI). We want to provide a winning strategy f̃ to ∃ in G̃ =A(∃W p.A,T)@(a℘I ,sI).

As a preliminary remark, observe that the automaton ∃W p.A is almost defined as A2S. Thus the argument we
are going to use to construct f̃ is somehow similar to the one provided for showing that A2S and A are equivalent,
in proposition 3.9.

As in direction (⇐) of proposition 3.9, we could be tempted to define f̃ simply as f . Intuitively, this would
have the effect of making ∃W p.A enter the alternating mode already at the first round of any f̃ -conform match of G̃.
Then, if the moves suggested by f̃ are always legitimate, any f̃ -conform match of G̃ would have the same basic
positions of an f -conform match of G.

The problem with this argument is indeed that the moves suggested by f are not generally legitimate. In order
to see that, suppose that s is a node whose label includes p in Tp. If (a,s) ∈Win∃(G) is a winning position for ∃
in G, then f would provide a marking ma,s such that (σR(s),ma,s) ⊧ ∆(a,σp

C(s)). However, since by assumption
σ

p
C(s) = σC(s)∪{p} is different from σC(s), then generally (σR(s),ma,s) /⊧∆(a,σC(s)). If the same position (a,s)

is visited in a match of G̃, player ∃ should come up with a marking that makes ∆(a,σC(s)) true. This means that
ma,s may not be a legitimate choice for her.

We are going to refine this argument such that it gives a correct proof of the statement. The underlying idea
of our construction is that f̃ is going to be defined as f only from positions of the form (a,s) ∈ A×T , where we
are guaranteed that the label of s in Tp does not include p, so that we can avoid the situation described above.
In fact this condition holds for any match of G̃ after finitely many rounds. The reason is that the p-variant Tp is
well-closed, meaning that all nodes with label including p are confined into a well-founded subtree Xp of T.

Therefore we are going to put f̃ equal to f as soon as a match of G̃ ‘crosses’ the frontier of Xp. Intuitively, this
moment coincides with ∃W p.A entering the alternating mode. For all the precedent rounds, we keep ∃W p.A in the
non-deterministic mode. All positions visited in this initial part will be of the form (R,s) ∈ A℘×T . A legitimate
move for ∃ from such position can make either ∆

2S(R,σC(s)) or ∆
2S(R,σC(s)∪{p}) true: intuitively, this means

40

that we are able to deal both with the case p ∈ σ
p(s) and p /∈ σ

p(s). The marking for ∃ from position (R,s) will be
suggested by f , passing through the equivalence between A and A℘ as we already observed in proposition 3.9.

On the base of these intuitions, we proceed with the formal details of the proof. In the sequel we say that a node
s ∈ T is p-free if T.s does not contain any node t such that p ∈ σ

p
C(t). The strategy f̃ will be defined for each stage

of the construction of a match π̃ in G̃. While playing π̃, player ∃ maintains a setM of f -conform shadow matches.
We indicate withMi the setM at round i. Inductively, we will make sure that ∃ can keep the following condition
for each round zi in π̃ and each match inMi.

Either case 1 or case 2 holds for the current round zi.

1. Case 1 The current basic position in π̃ is of the form (R,s) ∈A℘×T .
For each a ∈ Ran(R) there is an f -conform shadow match πa in
Mi at the same round zi, such that the current basic position in πa
is (a,s) ∈ A×T . Either the node s is not p-free or s has a sibling t
which is not p-free.

2. Case 2 The current basic position in π̃ is of the form (a,s) ∈ A×T ,
with s a p-free node. The setMi consists only of one f -conform
shadow match π, whose current basic position is (a,s).

(‡)

Let us first show why ∃ is guaranteed to win π̃ if she never gets stuck in π̃ and she can keep condition (‡) for
each round that is played in π̃ and the shadow matches inM. If ∀ gets stuck in π̃, then ∃ immediately wins the
match. Otherwise, π̃ is infinite and we argue that in finitely many steps a basic position of the form (b,t) ∈ A×T
occurs in π̃. If this was not the case, consider the branch B of T along which the match π̃ is played. By condition
(‡), there would be infinitely many nodes r in Tp such that σR(r) intersects B and some node in σR(r) is labeled
with p. This contradicts the assumption that Tp is a well-closed p-variant.

Therefore the shadow match π̃ arrives to a round zi, associated with basic position (b,t), where t is p-free.
By condition (‡) at the same round zi there is a unique f -conform shadow match π which is at the same basic
position (b,t). By definition of ∆̃, for all successive rounds zi+1,zi+2, . . . in which we maintain the match π̃, only
positions of the form (d,r) ∈ A×T can occur in π̃. By condition (‡) the same positions occur in π in the same
rounds. Observe that all nodes visited in rounds zi+1,zi+2, . . . are p-free since they are all elements of Tt and t
is p-free. Since the strategy f is winning, then the unique parity m < ω occurring infinitely often along the play
associated with rounds zi,zi+1,zi+2, . . . is even. It follows that m is also the unique parity occurring infinitely often
along the match π̃, meaning that it is won by ∃.

Now the goal is to define the strategy f̃ for ∃ in π̃, in such a way that the marking suggested by f̃ is always
legitimate and she can maintain condition (‡) for each round that is played in π̃ and the shadow matches inM.

First we consider the trivial case in which the p-variant Tp does not have any node whose label includes p.
Then Tp is just defined as T and it is straightforward to check that by putting f̃ equal to f player ∃ is going to win
the match π̃. The argument showing that follows the lines of the proof of direction (⇐) in proposition 3.9.

Therefore in the sequel we can assume that Tp contains at least one node whose label includes p, implying
that the node sI is not p-free. At the initial round, the match π̃ consists only of the position (a℘I ,sI). We start the
construction of a shadow match πaI from position (aI ,sI). By assumption (aI ,sI) ∈Win∃(G), so πaI is in fact (the
initial part of) an f -conform shadow match. We initializeM1 = {πaI}.

Since aI ∈ Ran(a℘I) and sI is not p-free then case 1 of condition (‡) holds for the first stage of the construction.
Inductively, suppose that we have constructed (the initial part of) the match π̃, with rounds z0, . . . ,zi. Also, we are
provided with a setMi, where each element of Mi is (the initial part of) an f -conform shadow match, with rounds
z0, . . . ,zi, such that for each j ≤ i condition (‡) is respected byM j and π̃. Let (q,s) ∈ A2S×T be the basic position
occurring in π̃ at round zi. In order to define the value of f̃ on (q,s), we distinguish two cases.

1. First, suppose that q = a for some a ∈ A. By case 2 of condition (‡) position (q,s) occurs also in π at round zi,
where π is the only f -conform shadow match we are maintaining inMi. Let ma,s be the marking suggested
by f to ∃ from position (a,s) in π. We let ma,s be also the suggestion for ∃ from position (a,s) in π.

2. Otherwise, we have that q = R for some R ∈ A℘. By case 1 of condition (‡) the set Mi contains one f -
conform shadow match πa at position (a,s) in the same round zi, for each a ∈ Ran(R). Let ma,s be the
marking suggested by f to ∃ from position (a,s) in πa. We distinguish two further cases.

41

a) If every t ∈ σR(s) is p-free, then we define m̃ ∶ A→ ℘(σR(s)) by putting

m̃ ∶ b ↦ ⋃
a∈Ran(R)

ma(b). (3.7)

We let m̃ be the choice of ∃ in π̃.

b) Otherwise, some t ∈ σR(s) is not p-free. In this case we define m̃ ∶ A℘ → ℘(σR(s)) as the marking
obtained by the set of markings {ma,s ∣ a ∈ Ran(R)} according to proposition 2.21. We let m̃ be the
choice of ∃ in π̃.

By definition of A2S the two cases considered above are exhaustive for q ∈ A2S.
In order to complete the proof, we need to show that the move suggested by f̃ is legitimate and allows to

maintain condition (‡) for one more round.
CLAIM 7. The move suggested by f̃ from position (q,s) is legitimate.

PROOF OF CLAIM If f̃ is defined according to case 1, then q = a for some a ∈ A and by assumption s is p-free.
This means that σC(s) = σ

p
C(s). Since f is winning we know that

(σR(s),ma,s) ⊧ ∆(a,σp
C(s)).

Then we also have that
(σR(s),ma,s) ⊧ ∆(a,σC(s)),

meaning that ma,s is a legitimate move for ∃.

Otherwise, suppose that f̃ is defined according to case 2.a. Then q = R for some R ∈ A℘. As a preliminary step,
we observe that for each a ∈ Ran(R) the sentence ∆(a,σC(s)) ∈ SLatt(BF+(A)) is a disjunction of sentences in
basic form. Therefore it enjoys the monotonicity property given in remark 1.24. By definition for each a ∈ Ran(R)
the marking m̃ as in (3.7) extends ma,s. Since by assumption

(σR(s),ma,s) ⊧ ∆(a,σp
C(s)),

then we also have that
(σR(s),m̃) ⊧ ∆(a,σp

C(s)).
Therefore

(σR(s),m̃) ⊧ ⋀
a∈Ran(R)

∆(a,σp
C(s)). (3.8)

By assumption we cannot guarantee that the node s is p-free. Thus we distinguish two cases.

a) If p ∈σ
p
C(s), then by definition of p-variant σ

p
C(s) =σC(s)∪{p}. This means that ∆(a,σp

C(s)) =∆(a,σC(s)∪
{p}), for each a ∈ Ran(R).

b) If p /∈ σ
p
C(s), then by definition of p-variant σ

p
C(s) = σC(s). This means that ∆(a,σp

C(s)) = ∆(a,σC(s)), for
each a ∈ Ran(R).

If we are in the first case, then
(σR(s),m̃) ⊧ ⋀

a∈Ran(R)
∆(a,σC(s)∪{p}).

Otherwise we are in the second case and

(σR(s),m̃) ⊧ ⋀
a∈Ran(R)

∆(a,σC(s)).

By definition of ∆̃(R,σC(s)) this is sufficient to show that m̃ is a legitimate choice for ∃.
The last case we need to consider is when f̃ is defined according to case 2.b. Also in this case q = R for some

R ∈ A℘. By the fact that f is winning we know that for each a ∈ Ran(R) the marking ma,s makes ∆(a,σp
C(s)) true in

σR(s). Therefore proposition 2.21 guarantees that

(σR(s),m̃) ⊧ ∆
℘(R,σp

C(s)). (3.9)

Just as in case 2.a, by definition of ∆̃(R,σC(s)) this suffices to show that m̃ is a legitimate choice for ∃.
∎

42

CLAIM 8. By playing according to f̃ , either player ∃ makes ∀ get stuck at round z or she can maintain condition
(‡) in round zi+1.

PROOF OF CLAIM If f was defined according to case 1, then the set σR(s) is marked according to marking ma,s
both in π and π̃, therefore any next basic position (b,t) chosen by ∀ in π̃ is also available in the shadow match π.
By letting ∀ choose (b,t) in π we have the same basic positions in the two matches at round zi+1. By definition, by
the fact that s is p-free it follows that also t ∈ σR(s) is p-free. Therefore case 2 of condition (‡) is respected.

Otherwise, suppose that f was defined according to case 2.a. By definition of m̃ for any next basic position
(b,t) chosen by ∀ in π̃ the same position is available for ∀ in the shadow match πa, for some a ∈ Ran(R). We select
one such πa and we dismiss all others shadow matches inMi, so that Mi+1 ∶= {πa}. We let ∀ choose (b,t) in πa.
Then π̃ and πa have the same basic position (b,t) occurring at round zi+1. By assumption of case 2.a the node t is
p-free. Therefore case 2 of condition (‡) is respected.

In the remaining case, f was defined according to case 2.b. Let (Q,t) ∈ A℘×T be the choice of ∀ in π̃ as next
basic position. Proposition 2.21 guarantees that for each b ∈ Ran(Q) there is some a ∈ Ran(R) such that t ∈ma(b).
Therefore for each b ∈ Ran(Q) we can select a match πa ∈Mi such that t ∈ma(b). We define πa,b as the match πa
extended with the movement given by ∀ choosing (b,t) as next basic position. We defineMi+1 to be the collection
of matches πa,b for all b ∈ Ran(Q).

Since we are in case 2.b of the definition of f , there is some node r ∈ σR(s) such that r is not p-free. Therefore
either t is not p-free or it has a sibling which is not p-free. Then it is immediate to check that (Q,t) andMi+1
respect case 1 of condition (‡). ∎

The proof of the two claims complete the proof of direction (⇐). ◻

As a corollary we obtain a characterization of the expressive power of WFMSO in terms of weak MSO-automata.

Theorem 3.13. For every ϕ ∈WFMSO, there is an effectively constructible weak MSO-automaton Aϕ such that

for any tree T, T ⊧ ϕ iff Aϕ accepts T.

Proof The proof is by induction on ϕ. Atomic and boolean cases are easily handled with the same argument
supplied for MSO and MSO-automata, reflecting the fact that the semantics of MSO and WFMSO coincides on
these cases. For the case of existential quantifier, we use instead proposition 3.12.

• For the atomic case, we have to consider formulae R(p,q) and p ⊑ q. The corresponding automata are AR(p,q)
and Ap⊑q, defined respectively as in example 2.5 and 2.6. It is easy to see that these two automata are in fact
weak MSO-automata, where the quasi-order is trivially the cartesian product of states A×A.

• If ϕ is of the form ¬ψ, by inductive hypothesis we have a weak MSO-automaton Aψ that is equivalent to
ψ. Let A¬ψ be the MSO-automaton obtained by applying proposition 2.31 to Aψ. By imposing the same
quasi-order of Aψ also on A¬ψ, we obtain a weak MSO-automaton accepting the same language of A¬ψ, that
is the complement of the language of Aψ by proposition 2.31.

• If ϕ =ψ1∨ψ2, let Aψ1 and Aψ2 be weak MSO-automata which are equivalent respectively to ψ1 and ψ2. Let
Aϕ be the MSO-automaton obtained by applying proposition 2.30 to Aψ1 and Aψ2 . It should be clear that Aϕ

can be turned into a weak MSO-automaton: in order to see that, recall that by proposition 2.30 the carrier of
Aϕ is A1∪A2∪{aI}, where Ai is the carrier of Aψi , for i ∈ {1,2}. Let ⪯i denote the quasi-order of Aψi . We
define the quasi-order ⪯ on Aϕ by putting

⪯ ∶= ⪯1 ∪ ⪯2 ∪({aI}×(A1∪A2)).

It is immediate to check that the addition of the quasi-order ⪯ yields a well-defined weak MSO-automaton
accepting the same language of Aϕ, which is, by proposition 2.30, the union of languages of Aψ1 and Aψ2 .

• If ϕ = ∃p.ψ, let Aψ be the weak MSO-automaton that is equivalent to ψ. Let ∃W p.Aψ be the weak MSO-
automaton obtained from Aψ by proposition 3.12. The following derivation shows that ∃W p.Aψ is equivalent
to ∃p.ψ.

∃W p.Aψ accepts T ⇔ there is Xp ∈WC(T) such that Aψ accepts T[p↦ Xp] (proposition 3.12)
⇔ there is Xp ∈WC(T) such that T[p↦ Xp] ⊧ψ (inductive hypothesis)
⇔ T ⊧ ∃p.ψ (semantics of WFMSO)

◻

43

Historical Notes

The version of weak MSO-automata working on binary trees are often called weak alternating tree automata
in the literature. They have been first introduced in [24] as the automata characterizing the expressive power of
WMSO on binary trees. The idea of an automaton with an ‘alternating mode’ and a ‘non-deterministic mode’,
which underlies the two-sorted construction, also comes from [24], proof of Lemma 1.

Our definition of weak MSO-automata is equivalent to the one provided in [14], definition 4.1. We refer to [25]
for an overview on the different characterizations of the weakness constraint for automata working on trees.

44

Chapter 4

Logical Characterization of Weak MSO-Automata

In this chapter we show the converse direction of theorem 3.13, namely that, for every weak MSO-automaton A,
there is a formula ϕA ∈WFMSO which is equivalent to A.

Let T be a tree. The idea is to construct ϕA in such a way that it expresses the existence of a winning strategy
f for ∃ in A(A,T)@(aI ,sI). This encoding goes smoothly if we can assume that f marks each node of T with
exactly one state of A.

For this purpose, by theorem 2.14 we can construct a non-deterministic MSO-automaton AP℘ which is equivalent
to A. However, as noticed in remark 3.5, the automaton AP℘ is not generally a weak MSO-automaton. This means
that different parities can occur infinitely often in the same match of A(AP℘,T). As we will see in the sequel,
we cannot give an account of the winning conditions of this acceptance game by referring only to well-founded
subtrees of T. The quantification of WFMSO is too restrictive and we need instead the full generality of MSO
quantifiers.

In the sequel we overcome this difficulty by showing that, because it is weak, A can be turned into an equivalent
non-deterministic MSO-automaton B where the parity map ΩB ∶ B→ω can be assumed to range only over {0,1}.
The acceptance game associated with B turns out to be essentially simpler than the one for arbitrary MSO-automata.
The states of B can be divided into accepting states - the ones with parity 0 - and rejecting states - the ones with
parity 1. It should be clear that ∃ wins a match if and only if at least one accepting state occurs infinitely often
along the play. This resembles a Büchi acceptance condition, and in fact there is an equivalent description of B as
an automaton where the acceptance condition is given by a set F of accepting states, instead of a parity map Ω. It
turns out that Büchi acceptance conditions can be described in terms of well-founded trees, so that we can express
them by means of WFMSO-formulae without requiring the full expressiveness of MSO quantifiers. This is the key
observation leading to the logical characterization of non-deterministic Büchi automata and weak MSO-automata.

4.1 From Weak MSO-Automata to Non-Deterministic Büchi Automata

Definition 4.1. A non-deterministic Büchi automaton (abbreviated NDB) is a non-deterministic MSO-automaton
B = ⟨B,bI ,∆,Ω⟩ where Ran(Ω) is a subset of {0,1}. ⊲

Remark 4.2. The name ‘Büchi’ for MSO-automata as in definition 4.1 is motivated by the fact that we can
reformulate their acceptance condition as a standard Büchi condition. More precisely, suppose that B = ⟨B,bI ,∆,F⟩
is a non-deterministic automaton where F is a subset of B. For a tree T, we define the winning conditions of
A(B,T) as follows:

⋆ player ∃ wins an infinite match in A(B,T) if and only if there is a state b ∈ F occurring infinitely often along
the play.

Now let ΩF ∶ B→ {0,1} be the characteristic function of F , given by putting ΩF(b) ∶= 0 if b ∈ F and ΩF(b) ∶= 1
otherwise, for each b ∈ B. It should be clear that B′ = ⟨B,bI ,∆,ΩF⟩ is a NDB automaton which is equivalent to B.

In the sequel, it will be convenient to adopt the presentation of NDB automata with an accepting set F , keeping
in mind that these are just MSO-automata of a particular kind. ◂

Remark 4.3. We observe that the normal form theorem for non-deterministic MSO-automata (proposition 2.37)
applies to NDB automata as well. Indeed, it is immediate to check that the completion of an NDB automaton is also
an NBD automaton. By this fact, we can always assume to work with NDB automata where the transition function
∆ ranges over disjunctions of sentences in special basic form. ◂

45

Definition 4.4 (Büchi powerset construction). Let A = ⟨A,aI ,∆,Ω⟩ be a weak MSO-automaton. By remark 3.3 we
can assume that Ran(Ω) is a subset of {0,1}. Let A℘ = ⟨A℘,a℘I ,∆℘,NBTΩ⟩ be the refined powerset construction
over A according to definition 2.20. We define an NDB automaton AB = ⟨A℘,a℘I ,∆℘,FΩ⟩ by putting

FΩ ∶= {R ∈ A℘ ∣ Ω(a) = 0 for all a ∈ Ran(R)}.

We say that AB is the Büchi powerset construction over A. ⊲

Proposition 4.5. Let A = ⟨A,aI ,∆,Ω⟩ be a weak MSO-automaton and AB = ⟨A℘,a℘I ,∆℘,FΩ⟩ the Büchi powerset
construction over A. We have that

A ≡AB.

Proof The main observation of the proof is that AB is almost defined as A℘: the equivalence between A℘ and AB

is easier to prove and in fact it suffices to show the claim, because A℘ is equivalent to A by proposition 2.23. In
order to show the two directions of A℘ ≡AB, we fix a tree T.

(⇒) Let f℘ be a winning strategy for ∃ in G℘ =A(A℘,T)@(a℘I ,sI). We claim that f℘ is also winning for ∃ in
GB =A(AB,T)@(a℘I ,sI). In order to show that, we first observe the following.

CLAIM 9. Every f℘-conform match of GB has the same basic positions of an f℘-conform match of G℘.

PROOF OF CLAIM This is clear by the fact that AB and A℘ are based on the same set of states, the same initial
state and the same transition function. ∎

The proof that f℘ is winning for ∃ in GB is completed by showing the following claim.

CLAIM 10. Let π
B be an f℘-conform infinite match of GB and ρ the infinite sequence a℘I ,R1, . . . ,Rn, . . . of states of

AB visited along the play. There is some R ∈ A℘ occurring infinitely often in ρ such that R is in FΩ.

PROOF OF CLAIM By claim 9 we have an f℘-conform infinite match π
℘ of G℘ with the same sequence of states

ρ =R0,R1, . . . ,Rn, . . . visited along the play. Since f℘ is winning for ∃ in G℘, all traces through ρ are good according
to definition 2.17. This means that every trace through ρ corresponds to a match of G =A(A,T)@(aI ,sI) that is
won by ∃. Let π be one such match associated with a trace through ρ. Since the automaton A is weak, exactly one
parity n ∈ Ran(Ω) occurs infinitely often along π, as explained in remark 3.3. By the fact that ∃ is the winner and
Ran(Ω) is a subset of {0,1}, this unique parity n must be 0.

Since π corresponds to an arbitrary trace through ρ, we have that after finitely many steps only positions with
parity 0 occur on each trace through ρ. This means that, for some k <ω, there is a state Rk ∈ A℘ occurring in ρ after
which all the states occurring in ρ belong to the set

F = {R ∈ A℘∣ Ω(a) = 0 for all a ∈ Ran(R)}.

Since FΩ is a finite set, there is at least one state Q ∈ FΩ occurring infinitely often along ρ. ∎

The proof of the claim completes the proof of direction (⇒).

(⇐) The argument showing this direction is completely analogous to the one showing direction (⇒), so we just
sketch the main steps. Given a winning strategy f B for ∃ in GB, the same strategy f B can be shown to be winning
for ∃ in G℘. The key observation is that, since f B is winning for ∃ in GB, for each infinite f B-conform match π

℘ of
G℘, there is some R ∈ FΩ occurring infinitely often along the play. Let ρ be the sequence of states R0,R1, . . . ,Rn, . . .
visited along the play in π

℘. Every trace α through ρ encounters some a ∈ Ran(R) infinitely often. By definition of
FΩ, this means that basic positions with parity 0 occur infinitely often in the match πα of G associated with α. It
follows that πα is won by ∃. Since α was an arbitrary trace through ρ, then every trace through ρ is good and ∃ also
wins π

℘. ◻

4.2 The Bounded Information Property

In this section we formalize two essential intuitions about non-deterministic Büchi automata:

1. checking whether a non-deterministic Büchi automaton B accepts a tree T reduces to check a condition on
prefixes of T (proposition 4.7);

46

2. checking whether the intersection of the languages of two non-deterministic Büchi automata is not empty
reduces to the construction of a finite sequence of well-founded trees with certain properties (proposition
4.9).

The idea is that a run of a non-deterministic Büchi automaton on a tree T can be split into several tasks
concerning well-founded subtrees (and prefixes, which are just a particular kind of well-founded subtrees) of T, and
there is never the need to consider T as a whole. We informally refer to this as the Bounded Information Property
of non-deterministic Büchi automata. Intuitively, this is the key property allowing to describe winning strategies for
non-deterministic Büchi automata by means of WFMSO-formulae - under certain conditions that we will see in the
sequel.

Definition 4.6. Let B = ⟨B,bI ,∆,F⟩ be a non-deterministic Büchi automaton and T a tree. Let f be a surviving
strategy for ∃ in A(B,T)@(bI ,sI). Let γ ≤ ω be an ordinal. A γ-accepting sequence for f over B and T is a
sequence (Ei)i<γ such that, for all i < γ:

1. Ei is a prefix of T;

2. Ft(Ei) < Ft(Ei+1);

3. for all s in the frontier of Ei, there is a unique a ∈ A such that (a,s) ∈Dom(f); in addition, a is in F .

⊲

Intuitively, for k <ω, a k-accepting sequence for a surviving strategy f witnesses the fact that f ‘behaves as’ a
winning strategy for ∃ in the prefix Ek of T. For each prefix Ei in the sequence, the condition that each s ∈ Ft(Ei) is
associated with a unique accepting state is motivated by the fact that f can be assumed to be full and functional, B
being non-deterministic.

Proposition 4.7. Let B = ⟨B,bI ,∆,F⟩ be a non-deterministic Büchi automaton and T a tree. The following are
equivalent.

• Player ∃ has a winning strategy in A(B,T)@(bI ,sI).

• Player ∃ has a surviving strategy f in A(B,T)@(bI ,sI) and there is an ω-accepting sequence for f over B
and T.

Proof (⇒) Let f be a winning strategy for ∃ in A(B,T)@(bI ,sI). By proposition 2.36 and remark 4.3, we can
assume f to be full and functional. Let T f the tree representation of f .

The idea of the proof is that the sequence (Ei)i<ω is easily definable on T f : since a branch of T f corresponds to
the sequence of basic positions visited along an f -conform match π, there are infinitely many positions occurring in
π of the form (b,t) with b ∈ F . We intersect π with each frontier in one of these positions. Then it is sufficient to
project this construction on the tree T to obtain an analogous construction as in the statement.

We provide the formal details following these intuitions. Given a branch S of T, since f is full there
is an f -conform match π that is played along S. Since f is winning, there are infinitely many positions
(a0,s0),(a1,s1),(a2,s2), . . . occurring along π such that each ai is in F . We can order these positions in a sequence
(ai,si)i<ω according to the round of π in which they occur, such that (ai,si) is visited in π before (ai+1,si+1). An
infinite sequence (si)i<ω of nodes is induced, such that siR+si+1 and all nodes in the sequence are in the branch S.
For each i <ω, we let Ei be the prefix of T induced by defining its frontier Ft(Ei) as follows:

⋆ for each branch S of T, let (si)i<ω be the associated sequence of nodes of S, given as above. We put
Ft(Ei)∩S = {si}.

By construction of (si)i<ω it is straightforward to check that (Ei)i<ω is an ω-accepting sequence for f over B and T.

(⇐) Let f be a surviving strategy for ∃ in GB =A(B,T)@(bI ,sI) and (Ei)i<ω an ω-accepting sequence for f
over B and T. We claim that f is in fact a winning strategy for ∃ in A(B,T)@(bI ,sI).

For this purpose, let π be an infinite f -conform match of GB. Let S be the branch of T on which π is played.
The branch S intersects the frontier Ft(Ei) of each well-founded subtree Ei from the sequence (Ei)i<ω, in a node
si ∈ S∩Ft(Ei). This induces a sequence (si)i<ω of nodes in S. By the fact that Ft(Ei) < Ft(Ei+1) for each i <ω, all
nodes in (si)i<ω are distinct, and furthermore for each i <ω there is a unique b ∈ B such that (b,si) ∈Dom(f) and
b ∈ F . This means that the match π played on S visits infinitely many basic positions associated with accepting
states of B. Therefore ∃ wins π. This suffices to show that f is a winning strategy for ∃ in GB. ◻

47

For non-deterministic Büchi automata B1 and B2 and a tree T ∈ L(B1)∩L(B2), let (G1
i)i<ω and (G2

i)i<ω be
ω-accepting sequences respectively for B1 and B2 on T. We introduce the notion of k-trap for B1 and B2. The idea
is that a k-trap is a finite sequence (Ei)i≤k witnessing the interleaving of sequences (G1

i)i<ω and (G2
i)i<ω up to k.

Definition 4.8. Let B1 = ⟨B1,b1
I ,∆1,F1⟩ and B2 = ⟨B2,b2

I ,∆2,F2⟩ be NDB automata and let T be a tree. Given some
fixed k <ω, let (Ei)i≤k be a sequence of prefixes of T such that E0 = {sI} and Ei ⊊ Ei+1 for all i ≤ k.

We say that T and (Ei)i≤k constitute a k-trap for B1 and B2 if there exist

1. a strategy f1 for ∃ in A(B1,T)@(b1
I ,sI) which is surviving in Ek,

2. a strategy f2 for ∃ in A(B2,T)@(b2
I ,sI) which is surviving in Ek,

3. a k-accepting sequence (G1
i)i≤k for f1 over B1 and T,

4. a k-accepting sequence (G2
i)i≤k for f2 over B2 and T,

such that, for all i < k, the following conditions hold:

• Ft(Ei) ≤ Ft(G1
i) < Ft(Ei+1);

• Ft(Ei) ≤ Ft(G2
i) < Ft(Ei+1).

We say that the strategies f1 and f2 witness the k-trap for B1 and B2.

Figure 4.1: initial part of a k-trap

Proposition 4.9 ([28]). Let B1 and B2 be NDB automata and let m be the product of the cardinalities of their
carriers. If there exists an m-trap for B1 and B2 then L(B1)∩L(B2) ≠∅.

Proof sketch A detailed proof of this result can be found in [28], proof of theorem 27. In the sequel we confine
ourselves to a sketch giving the idea of the argument.

Let B1 = ⟨B1,b1
I ,∆1,F1⟩ and B2 = ⟨B2,b2

I ,∆2,F2⟩ be NDB automata. Our initial assumption is that an m-trap for
B1 and B2 exists. Let T be the tree associated with the m-trap as in definition 4.8. The idea is that, for each pair of
states (b1,b2) in B1×B2, the m-trap gives to ∃:

• a subtree Tb1,b2 of T with root sI and a prefix Eb1,b2 of Tb1,b2 ;

• the information on how to play G1 =A(B1,Tb1,b2)@(b1,sI) and G2 =A(B2,Tb1,b2)@(b2,sI), in such a way
that along each match of Gn which is played in Eb1,b2 she never gets stuck and a basic position with an
accepting state b ∈ Fn occurs, for each n ∈ {1,2}.

Putting together infinitely many copies of those subtrees we can construct a tree Tω, whose membership in
L(B1)∩L(B2) is witnessed by patching together the strategies suggested by the m-trap.

For this purpose, we define a sequence of relations (Hi)i<ω, where each Hi is a subset of B1×B2. For the base
case, we set H0 = B1×B2. For the inductive step, we put (b1,b2) ∈Hi+1 if and only if the following conditions hold.

1. (b1,b2) ∈Hi.

48

2. There is a tree Tb1,b2 with root sI , prefixes Eb1,b2 , Gb1 and Gb2 of Tb1,b2 , strategies fb1 and fb2 for ∃
respectively in A(B1,Tb1,b2)@(b1,sI) and A(B2,Tb1,b2)@(b2,sI), such that the following holds.

a) The strategy fb1 is surviving for ∃ in Eb1,b2 .
b) The strategy fb2 is surviving for ∃ in Eb1,b2 .
c) Ft(Gb1) < Ft(Eb1,b2).
d) Ft(Gb2) < Ft(Eb1,b2).
e) For all s ∈ Ft(Gb1), there is a unique position (b′1,s) ∈ B1×Tb1,b2 such that (b′1,s) is a node of the tree

representation T fb1
of fb1 ; in addition, b′1 is in F1.

f) For all s ∈ Ft(Gb2), there is a unique position (b′2,s) ∈ B2×Tb1,b2 such that (b′2,s) is a node of the tree
representation T fb2

of fb2 ; in addition b′2 is in F2.

g) For all s ∈ Ft(Eb1,b2), there is a unique pair (b′1,b
′
2) such that (b′1,s) and (b′2,s) are nodes respectively

of T fb1
and T fb2

; in addition, (b′1,b
′
2) is in Hi.

Provided this construction, the proof of the main statement is reduced to the proof of the following two facts.

1. If there exists an m-trap for B1 and B2 then (b1
I ,b

2
I) is in Hm.

2. If (b1
I ,b

2
I) is in Hm then L(B1)∩L(B2) ≠∅.

We refer to [28] for a proof of the first fact, showing how the components witnessing (b1
I ,b

2
I) ∈ Hm are

already provided by our m-trap. Instead we focus on the second fact, which is proved by constructing a tree
Tω ∈ L(B1)∩L(B2), from the assumption that (b1

I ,b
2
I) ∈Hm. The key observation is that by definition the sequence

(Hn)n<ω stabilizes at m. This means that Hm = Hm+k for all k < ω, as can be shown by a simple combinatorial
argument, using the fact that m is the cardinality of B1 ×B2. Roughly, the argument goes as follows: given
(b1,b2) ∈Hm, there is a sequence (bi

1,b
i
2)i≤m of pairs, with (bi

1,b
i
2) ∈Hi for each i ≤m, which is determined by the

property of point 2.g of the definition of (Hi)i<ω. Since (bi
1,b

i
2)i≤m has m+1 elements, there is at least one pair

which is repeated, that is, (bl
1,b

l
2) = (b j

1,b
j
2), for some l, j with l < j <m+1. This means that we can suitably ‘plug’

(bn
1,b

n
2)n< j in place of (bn

1,b
n
2)n<l , to expand the sequence (bi

1,b
i
2)i≤m to length m+1+(j− l). This witnesses that

(b1,b2) was in fact a member of Hm+(j−l), and then we can repeat the argument.
Now we proceed with the construction of the tree Tω ∈ L(B1)∩L(B2). The idea is to provide Tω as the limit of

a sequence (Ti)i<ω of well-founded trees, with Ti a prefix of Ti+1 for each i <ω. Given n ∈ {1,2}, we also construct
the graph of a strategy f n

ω for ∃ in A(Bn,Tω) as the limit of a sequence (f n
i)i<ω, with the graph of f n

i strictly
contained in the graph of f n

i+1, for each i < ω. In the sequel we sketch the inductive construction of (Ti)i<ω and
(f n

i)i<ω.

• For the first element T0 in the sequence, we use the assumption that (b1
I ,b

2
I) is in Hm = Hm+1 to get a

tree Tb1
I ,b

2
I

with root sI , prefixes Eb1
I ,b

2
I
, Gb1

I
and Gb2

I
of Tb1

I ,b
2
I
, strategies fb1

I
and fb2

I
for ∃ respectively in

A(B1,Tb1
I ,b

2
I
)@(b1

I ,sI) and A(B2,Tb1
I ,b

2
I
)@(b2

I ,sI) with the properties given by definition of Hm+1. Then
we put T0 ∶= Eb1

I ,b
2
I
.

For n ∈ {1,2}, the strategy f n
1 is defined to be the restriction of fbn

I
to basic positions from Bn × (Eb1

I ,b
2
I
∖

Ft(Eb1
I ,b

2
I
)).

• The tree Ti+1 will be given as a well-founded extension of Ti. By inductive hypothesis each t ∈ Ft(Ti) is
associated with a pair (b1

t ,b
2
t) ∈ Hm. This also means that (b1

t ,b
2
t) is in Hm+1, and we can repeat the same

argument that we used for the base case to get a tree Tb1
t ,b

2
t

with root t, prefixes Eb1
t ,b

2
t
, Gb1

t
and Gb2

t
of

Tb1
t ,b

2
t
, strategies fb1

t
and fb2

t
for ∃ respectively in A(B1,Tb1

t ,b
2
t
)@(b1

t ,t) and A(B2,Tb1
t ,b

2
t
)@(b2

t ,t) with the
properties given by definition of Hm+1. We define Ti+1 by putting

Ti+1 = (Ti∖Ft(Ti))∪ ⋃
t∈Ft(Ti)

Eb1
t ,b

2
t
.

By construction Ti+1 yields a tree structure Ti+1, which is induced by Ti and Tb1
t ,b

2
t
.

For each n ∈ {1,2}, and t ∈ Ft(Ti), let f E
bn

t
denote the restriction of fbn

t
to basic positions from Bn×Eb1

t ,b
2
t
. the

strategy f n
i+1 is defined by putting

f n
i+1 = f n

i ∪ ⋃
t∈Ft(Ti)

f E
bn

t
,

49

Figure 4.2: construction of Ti+1.

where ∪ is the union of graphs of functions. In order to check that fi+1 is indeed a function, observe that by
inductive hypothesis f n

i is a function with domain Bn×(Ti∖Ft(Ti)) and each f E
bn

t
has domain Bn×Eb1

t ,b
2
t
. All

these strategies have disjoint domains by construction. It follows that also fi+1 is uniquely defined on each
basic position in its domain, which is just Bn×Ti+1 by definition of Ti+1.

Let r be a node in Ft(Ti+1). By construction we have that r is in Ft(Eb1
t ,b

2
t
) for some t ∈ Ft(Ti). Since t

is associated with the pair (b1
t ,b

2
t) ∈ Hm+1, then by definition of Hm+1 the node r is associated with a pair

(b1
r ,b

2
r) ∈Hm. This suffices to maintain the inductive hypothesis in the next stage i+2.

The proof is concluded by checking that for each n ∈ {1,2} the strategy f n
ω is winning for ∃ in Gω ∶=

A(Bn,Tω)@(bn
I ,e). For this purpose, the key observation is that an f n

ω-conform match πω of Gω can be seen as an
infinite sequence π1,π2, . . . ,πn of partial matches of Gω, where each πi is an f n

i -conform match played along the
well-founded subtree Ti of T. By definition of f n

i , along πi a basic position of the form (b,s) ∈ Bn×Ti is visited
with b ∈ Fn. This means that some b ∈ Fn is visited infinitely often in πω, which is then won by ∃. We refer to [28]
for further details. ◻

4.3 WFMSO-Formulae for Büchi Acceptance Conditions

In this section we introduce some auxiliary definitions of WFMSO-formulae, as a preparation for the logical
characterization of weak MSO-automata and NDB automata. For the sake of readability, we use the two-sorted
presentation of the monadic second-order language, as in remark 1.11. Recall that we indicate with x, y and z
variables for nodes, and with p and q variables for sets of nodes.

Definition 4.10 (y-parametrization). Let y be a first-order variable, B a set of unary predicates and ϕ ∈ SBF+(B) a
sentence in special basic form. We recall that by definition 2.33 the sentence ϕ is of shape

ϕ = ∃x1 . . .∃xk (diff (x̄)∧ ⋀
1≤i≤k

ai(xi)∧∀z (diff (x̄,z)→ ⋁
1≤l≤ j

bl(z)))

where each ai and b j is in B. We can assume without loss of generality that y does not occur in ϕ. The formula ϕy,B
is given as follows.

ϕy,B = ∃x1 . . .∃xk (⋀
1≤i≤k

yRxi∧diff (x̄)∧⋀
i≤k

ai(xi)∧∀z ((yRz∧diff (x̄,z))→ ⋁
1≤l≤ j

bl(z)))

⊲

The intuitive idea behind definition 4.10 is to bound the quantifiers of ϕ to the variable y. The formula ϕy,B
depends on the free variable y and unary predicates from B. We can see each unary predicate occurring in ϕy,B as a
set variable. Therefore ϕy,B is a well-formed formula of WFMSO according to definition 1.9.

Definition 4.11. Let B = ⟨B,bI ,∆,F⟩ be a NDB automaton and y a first-order variable. Fix some b ∈ B and c ∈C.
By definition ∆(b,c) ∈ SLatt(SBF+(B)) is a disjunction of sentences in special basic form. We let ∆y,B(b,c) be the
WFMSO-formula defined by putting

∆y,B(b,c) ∶= ⋁{ϕy,B ∈WFMSO ∣ ϕ is a disjunct of ∆(b,c)},

where, for each ϕ, the sentence ϕy,B is given as its y-parametrization. ⊲

50

Notation 4.12. Let p be a propositional letter and T a tree. We indicate with ∥p∥T the set of nodes of T on which p
is true, according to the labeling function σC ∶ T →C of T. For the sake of readability, we omit the subscript when
the tree T is clear from the context.

Definition 4.13. Let B = {b1, . . . ,bk} and P = {p1, . . . , p j} be two finite collection of set variables, representing
respectively the states of an NDB automaton and the propositional letters forming the labels of a C-labeled tree.

Let ∆ ∶B×C→SLatt(SBF+(B)) be a function. Intuitively, given (a,c) ∈B×C, the formula ∆(a,c) ∈SLatt(SBF+(B))
represents the value of the transition function of an NDB automaton on the state a and a node with label c.

We define a series of formulae of WFMSO, providing an informal explanation of their meaning. All valuations
are referred to a fixed tree T.

p ⊆ q ∶= ∀x (x ∈ p→ x ∈ q)
Unique(p,q) ∶= ∃x (x ∈ p∧x ∈ q∧∀y (y ∈ p∧y ∈ q→ y ≈ x))

The formula p ⊆ q simply states that the set of nodes ∥p∥ is included in the set of nodes ∥q∥. The formula
Unique(p,q) is true if the intersection of ∥p∥ and ∥q∥ is a singleton.

InCl(p) ∶= ∀x ∀y ((xRy∧y ∈ p)→ x ∈ p)
FoCl(p) ∶= ∀x (x ∈ p→ (∃y (xRy∧y ∈ p)))

Intuitively, the formula InCl(p) holds for a set of nodes ∥p∥ if it is backwards closed. Analogously, FoCl(P) holds
if ∥p∥ is frontwards closed.

xR⋆y ∶= ∀p ((InCl(p)∧y ∈ p)→ x ∈ p)
Root(x) ∶= ∀y (xR⋆y)

The relation R⋆ has the semantics of the reflexive and transitive closure of the successor relation between nodes.
Indeed, xR⋆y holds if every backwards closed set ∥p∥ that includes ∥y∥ also includes ∥x∥.

The formula Root(x) holds for any ∥x∥ which is an ancestor of any other node. For any tree T, the formula
Root(x) is true if and only if we take ∥x∥ to be the root sI .

Path(p) ∶= ∀x ∀y ((x ∈ p∧y ∈ p→ (xR⋆y∧∀z (xR⋆z∧ zR⋆y→ z ∈ p))∨(yR⋆x∧∀z (yR⋆z∧ zR⋆x→ z ∈ p))

Intuitively, Path(p) holds if ∥p∥ is a path. The condition we impose is that, for every two nodes ∥x∥ and ∥y∥ in
∥p∥, either ∥x∥ is an ancestor of ∥y∥ or ∥y∥ is an ancestor of ∥x∥, and all nodes in between are also in ∥p∥.

Branch(p) ∶= Path(p)∧ InCl(p)∧FoCl(p)
Front(p) ∶= ∀q (Branch(q)→Unique(p,q))

The formula Branch(p) holds if and only if the set of nodes ∥p∥ is a branch. Similarly, Front(p) expresses the
fact that ∥p∥ is a frontier.

Pfixz(p) ∶= ∃q (Front(q)∧∀x (x ∈ p↔ (zR⋆x∧∃y (y ∈ q∧xR⋆y))))

The formula Pfixz(p) depends on a variable z. It expresses the fact that ∥p∥ is a prefix of T.∥z∥ induced by ∥q∥,
where ∥q∥ is a frontier of T.

Statea,B(x) ∶= x ∈ a∧ ⋀
b∈B∖{a}

¬(x ∈ b)

PartB(p) ∶= ∀x (x ∈ p→ ⋁
a∈B

Statea,B(x))

The formula Statea,B(x) holds if a is the only set-variable among the ones in the collection B such that ∥x∥ ∈ ∥a∥.
The formula PartB(p) holds if the set ∥p∥ is partitioned according to the set-variables in B.

51

Labelc,C(x) ∶= ⋀
pi∈c

x ∈ pi∧ ⋀
pi/∈c

¬(x ∈ pi)

The formula Labelc,C(x) depends on a subset c of P and a first-order variable x. Intuitively, it expresses the fact
that, for every propositional letter pi ∈ c, the node ∥x∥ is in ∥pi∥, i.e. c is the label of ∥x∥.

1TransB,C(x) ∶= ⋁
a∈B
⋁
c∈C

((Statea,B(x)∧Labelc,C(x))→ ∆x,B(a,c))

The formula 1TransB,C(x) depends on B, C and a first-order variable x. We provide an automata-theoretic
reading of its meaning. Given a set variable a ∈ B and a finite collection c ∈C of set variables from P, suppose that
the node ∥x∥ has label c and is marked with ∥a∥. Then the formula expresses that player ∃ would not get stuck at the
basic position (a,∥x∥), because the successors of ∥x∥ are marked with states in B in such a way that ∆(a,c), seen as
a WFMSO-formula, is true in σR(∥x∥). The ‘relativization’ of ∆(a,c) to σR(∥x∥) is performed by transforming
∆(a,c) ∈ SLatt(SBF+(B)) into ∆x,B(a,c) ∈WFMSO as described in definition 4.11.

TransB,C(p) ∶= ∀x (x ∈ p→ (1TransB,C(x)))

The formula 1TransB,C(x) described a ‘good situation’ for ∃ in the specific case of a node ∥x∥. The formula
TransB,C(p) just expresses the fact that this holds for all nodes in ∥p∥.

SurvB,C(p) ∶= PartB(p)∧TransB,C(p)

Intuitively, for a suitable ∥p∥, if SurvB,P(p) holds then ∃ is guaranteed to have a legitimate move available from
every node in ∥p∥. Moreover, PartB(p) expresses that the surviving strategy for ∃ in ∥p∥ assigns a unique state
b ∈ B to each node of ∥p∥. ⊲

4.4 From Non-Deterministic Büchi Automata to WFMSO

We are now ready to prove the main result of this chapter.

Theorem 4.14. For any weak MSO-automaton A, there is a formula ϕ ∈WFMSO such that

for any tree T, T ⊧ ϕ iff A accepts T.

Before going into details, we gather some intuitions on the argument showing proposition 4.14. Let A be a
weak MSO-automaton and B an NDB automaton which is equivalent to A as in proposition 4.4. Since weak MSO-
automata are closed under complementation, we are also provided with a weak MSO-automaton A recognizing the
complement of L(A), and consequently an NDB automaton B which is equivalent to A.

The idea is to define a formula ϕB,B ∈ WFMSO that is true in a tree T if and only if B accepts T. Since B is
equivalent to A, this suffices to show that also the formula ϕB,B is equivalent to A.

Let m be the product of the cardinalities of B and B. The formula ϕB,B ∈WFMSO will express the existence of
a strategy f for ∃ and an m-accepting sequence (Ei)i≤m such that f is full, functional and surviving in Em. The key
observation is that the encoding of an m-accepting sequence (Ei)i≤m and the associated surviving strategy into a
formula only needs variables for well-closed sets of nodes. This means that the expressive power of WFMSO will
suffice.

Proposition 4.7 will help showing one direction of the equivalence, namely that, given a tree T and a winning
strategy f for ∃ in A(B,T), the formula ϕB,B is true in T.

For the converse direction, we use the automaton B accepting the complement of the language of B. The idea is
to suppose by way of contradiction that B accepts a tree T where ϕB,B is true. Then by proposition 4.7 there is an

ω-accepting sequence (Eδ
i)i<ω witnessing the fact that T is in L(B). The ω-accepting sequence (Eδ

i)i<ω contains
an m-accepting sequence (Eδ

i)i≤m. By the fact that ϕB,B is true, we also have an m-accepting sequence (Ei)i≤m.

Then we can show that the two sequences witness a trap for B and B as in definition 4.8. But by proposition 4.9 this
means that the intersection of L(B) and L(B) is non-empty, contradicting the fact that B accepts the complement
of L(B).

In the sequel we formalize the intuitions given above. The first step is to define the formula ϕB,B.

52

Definition 4.15. Let B and B be NDB-automata, with B = {b1, . . . ,bk} and F ⊆ B respectively the set of states and
of accepting states of B. For each b ∈ B, we define by induction a sequence of formulae Kb

i (x). Put Kb
0(x) ∶= ⊺. The

formula Kb
i+1(x) is given as follows.

Kb
i+1(x) ∶= ∀p ∃p′ ∃b1 . . .∃bk

⎛
⎝

Pfixx(p)→ (p ⊆ p′∧Pfixx(p′)∧SurvB,C(p′)∧

Stateb,B(x)∧(∀y (y ∈ Front(p′)→ (⋁
b′∈F

(Stateb′,B(y)∧Kb′
i (y))))))

⎞
⎠

Let m be the product of the cardinalities of the carriers of B and B. The formula ϕB,B ∈ WFMSO is defined by
putting

ϕB,B ∶= ∃y (Root(y)∧KbI
m (y)).

⊲

Observe that, for any k <ω, we have that Kb
k (x) ∈WFMSO. Given a tree T, we supply an intuitive reading of

the semantics of Kb
i+1(x):

• for each prefix ∥p∥ of T.∥x∥, there is a prefix ∥p′∥ of T.∥x∥ including ∥p∥, and a function mp ∶ B→ ℘(∥p∥),
such that ∃ has a full and functional strategy f in A(B,T.∥x∥)@(∥x∥,a), which is surviving in ∥p′∥ and has
the following properties:

– from each basic position (bs,s) ∈ T f , the strategy f suggests to ∃ the restriction of mp to a marking
mp,s ∶ B→ ℘(σR(s));

– for each node ∥y∥ on the frontier of ∥p′∥, the unique b′ ∈ B such that (b′,∥y∥) ∈T f is an accepting state
in F , and the formula Kb′

i (y) is true in T.

The next is the key lemma in the proof of theorem 4.14.

Proposition 4.16. Let B = ⟨B,bI ,∆,F⟩ and B = ⟨B,bI ,∆,F⟩ be NDB automata such that L(B) = L(B). Let ϕB,B ∈
WFMSO be constructed from B and B as in definition 4.15. For any C-labeled tree T, we have that

B accepts T iff T ⊧ ϕB,B.

Proof We fix B, B and T as in the statement. (⇒) Let f be a winning strategy for ∃ in G =A(B,T)@(bI ,sI). By
proposition 2.36 and remark 4.3, we can assume f to be full and functional. Let T f and π

f
2 ∶ Tf → T be respectively

the tree representation of f and the associated projection function. Since f is winning then we are provided with an
ω-accepting sequence (Ei)i<ω for f over B and T, according to proposition 4.7. Our goal is to show that T ⊧ ϕB,B.
In fact, it suffices to show the following statement.

CLAIM 11. For each i < ω, for each (b,s) ∈ B×T , if (b,s) is a winning position for ∃ in G, then T ⊧ Kb
i (x), with

∥x∥ = s.

PROOF OF CLAIM We proceed by induction on i. Since Kb
0(x) = ⊺, the base case is trivial. Inductively, let (b,s)

be a winning position for ∃ in G. We put ∥x∥ = s and we claim that T ⊧Kb
i+1(x). Following the syntactic shape of

Kb
i+1(x), we let ∥p∥ be an arbitrary prefix E of T.s. By definition of the sequence (Ei)i<ω, for each i <ω we have

that Ft(Ei) < Ft(Ei+1), implying that there is some prefix En in the sequence such that E ⊆ En. We pick En∩T.s as
the witness for the set-variable p′ in Kb

i+1(x).
We still need to provide witnesses for set-variables b1, . . . ,bk occurring in Kb

i+1(x). The idea is to let them be
suggested by the strategy f . Since f is full and functional, then the projection function π

f
2 ∶ Tf → T associated with

its tree representation T f is 1-1 and onto. For each b j in {b1, . . . ,bk}, we define its valuation by putting

∥b j∥ ∶= {s ∈ (En∩T.s) ∣ b j = bs}, (4.1)

where, for each s ∈ En, the state bs is the first member of the pair (bs,s) = (π
f
2)−1(s). Since En∩T.s is well-founded

then ∥b j∥ is well-closed, so that it is a legitimate witness for b j according to the semantics of WFMSO.
The subformula SurvB,C(p′) of Kb

i+1(x) holds because the strategy f is assumed to be full and winning for ∃, so
in particular it is full and surviving for ∃ in En∩T.s = ∥p′∥. Concerning the subformula Stateb,B(x), by assumption

53

(b,s) is a winning position for ∃. This means that b is the unique set-variable marking s = ∥x∥ according to (4.1), so
that Stateb,B(x) holds. It remains to show the statement

∀y (y ∈ Front(p′)→ (⋁
b∈F

Stateb,B(y)∧Kb
i (y))). (4.2)

For this purpose, let ∥y∥ be some node on the frontier of En = ∥p′∥. By (4.1) and the fact that f is full and functional,
there is a unique set-variable ∥b∥ marking ∥y∥, such that (b,∥y∥) is a node of T f . Therefore (b,∥y∥) is a winning
position for ∃ in G, and Kb

i (y) holds by inductive hypothesis. The fact that b is in F follows from properties of the
frontier of En as in definition 4.6. ∎

By applying claim 11 to the winning position (bI ,sI) we have that T ⊧KbI
n (x) for each n <ω, with x witnessed

by sI . Then in particular T ⊧ ∃x (Root(x)∧KbI
m (x)). This completes the proof of direction (⇒).

(⇐) By assumption ϕB,B is true in T. We need to show that T is accepted by B.

The idea of the proof is as follows. Suppose by way of contradiction that B does not accept T. Then the tree T is
accepted by B. Let f be the winning strategy of ∃ in A(B,T). By proposition 2.36 and remark 4.3, we can assume
f to be full and functional. Suppose that we can prove from the previous assumptions the existence of an m-trap for
B and B. Then by proposition 4.9 we have that L(B)∩L(B) ≠∅, contradicting the fact that L(B) = L(B).

In order to complete the proof of direction (⇐), it remains to verify the following claim.

CLAIM 12. There exists an m-trap for B and B.

PROOF OF CLAIM By definition 4.8, we have to to provide the following components:

1. a strictly increasing sequence (Ei)i≤m of prefixes of T, with E0 = {sI};

2. a strategy fB for ∃ in G =A(B,T)@(bI ,sI) which is surviving for ∃ in Em;

3. a strategy fB for ∃ in G =A(B,T)@(bI ,sI) which is surviving for ∃ in Em;

4. an m-accepting sequence (GB
i)i≤m for fB over B and T;

5. an m-accepting sequence (GB
i)i≤m for fB over B and T.

Moreover, (Ei)i≤m, (GB
i)i≤m and (GB

i)i≤m have to present the interleaving behavior described in definition 4.8.

We put the strategy f as witness for fB. By assumption f is a winning strategy for ∃ in G. Then, by proposition

4.7, we are also given with an ω-accepting sequence (E f
i)i<ω for f over B and T.

It remains to define the other components of the m-trap, which is what we do next. The idea is to define
the surviving strategy fB, the sequences (Ei)i≤m and (GB

i)i≤m by using the assumption that T ⊧ ϕB,B. The last

component, namely the sequence (GB
i)i≤m, will be defined from (E f

i)i<ω.

The construction of the strategy fB and the sequences (Ei)i≤m, (GB
i)i≤m and (GB

i)i≤m proceeds in stages, by
induction on i ≤m. In particular, fB will be defined as the last element fBm in a sequence of strategies (fBi)i≤m.

Given i ≤ m, the inductive hypothesis that we want to maintain along the construction can be expressed as
follows.

54

1. If i <m then Ft(Ei) ≤ Ft(GB
i) < Ft(Ei+1).

Otherwise i =m and Ft(Ei) ≤ Ft(GB
i).

2. If i <m then Ft(Ei) ≤ Ft(GB
i) < Ft(Ei+1).

Otherwise i =m and Ft(Ei) ≤ Ft(GB
i).

3. The sets Ei, GB
i GB

i are prefixes of T.

4. The function fBi is a strategy ∃ in G which is full, functional and
surviving in GB

i . If i ≥ 1, then fBi extends fBi−1.

5. For each node s ∈ Ft(GB
i), there is a unique bs ∈ B such that the

position (bs,s) is a node of the tree representation T f of f ; in

addition, bs is in F .

6. For each node s ∈ Ft(GB
i), there is a unique bs ∈ B such that the

formula Kbs
m−i(x) holds for s = ∥x∥. The position (bs,s) is a node

of the tree representation T fBi
of fBi ; in addition, bs is in F .

(‡)

Let us first show why the different components form an m-trap if condition (‡) can be maintained. By (‡.4) the
strategy fB = fBm for ∃ in G would be full, functional and surviving in GB

m. By (‡.1) we have that Ft(Em) ≤ Ft(GB
m),

meaning that fB is also surviving in Em, as requested by point 1 of the definition of m-trap (definition 4.8). For
fB = f , we know by assumption that f is full, functional and winning for ∃ in G. Since Em is a subset of T , then f B

is also surviving in Em, as requested by point 2 of definition 4.8.
For points 3 and 4 of definition 4.8, we have to check that (GB

i)i≤m and (GB
i)i≤m are m-accepting sequences

respectively for fB and fB. For this purpose, there are three conditions to check according to the definition of
accepting sequence (definition 4.6). The first condition is that (GB

i)i≤m and (GB
i)i≤m are sequences of prefixes,

which is given by (‡.3). The second condition, on the relation between frontiers of each GB
i , GB

i and Ei, is given by
(‡.1) and (‡.2). Concerning the third condition of definition 4.6, for each i ≤m, the requirements on Ft(GB

i) and
Ft(GB

i) are fulfilled by (‡.5) and (‡.6).
The last two points of definition 4.8, concerning the interleaving of the frontiers of (Ei)i≤m, (GB

i)i≤m and
(GB

i)i≤m, just correspond to (‡.1) and (‡.2). Therefore what we obtain is indeed an m-trap, provided that we are
able to maintain condition (‡).

Now we proceed with the inductive construction. For the base case, let E0 ∶= {sI}. We define the first element

GB
0 in the sequence (GB

i)i≤m as the smallest prefix in the sequence (E f
i)i<ω such that E0 ⊆ GB

0 , that is simply E f
0

because (E f
i)i<ω is monotone.

In order to define GB
0 , we observe that the unique witness for x in ∃x (Root(x)∧KbI

m (x)) must be sI . Then, by
putting E0 as the witness of the variable p in KbI

m (x), we are provided with a prefix GB
0 witnessing the variable p′ in

KbI
m (x). We let such GB

0 be the first element in the sequence (GB
i)i≤m.

In order to define the first surviving strategy fB0 in the sequence (fBi)i≤m, we fix valuations ∥p∥ = E0 and
∥p′∥ =GB

0 in the formula KbI
m (x) and we consider the witnesses for set-variables b1, . . . ,bk in KbI

m (x). By definition
of KbI

m (x), for each node s in GB
0 there is a unique bs ∈ {b1, . . . ,bk} such that s ∈ ∥bs∥. This yields a strategy fB0 for ∃

in G, which we define as follows:

1. fB0 is defined at the basic position (bI ,sI);

2. given a basic position (bs,s) ∈ B×GB
0 with s /∈ Ft(GB

0), we let fB0 suggest to ∃ a marking assigning bt to t, for
each t ∈ σR(s);

3. we leave fB0 undefined on all other basic positions from B×T .

55

To make the definition of fB0 more clear, observe that by construction the tree representation of fB0 is in bijective
correspondence with GB

0 . In other words, fB0 is a strategy for partial match of G which are played along nodes of
GB

0 .

Given prefixes GB
0 and GB

0 as above, we define E1 to be the smallest prefix of T such that Ft(GB
0) < Ft(E1) and

Ft(GB
0) < Ft(E1).

It remains to check that conditions 1−5 in (‡) hold for the base case. Condition (‡.1), (‡.2) and (‡.3) are
clear by construction of E0, GB

0 , GB
0 and E1. For condition (‡.4), by assumption we have that StatebI ,B(y) and

SurvB,P(p′) hold, being subformulae of KbI
m (x), with ∥p′∥ = GB

0 and ∥y∥ = sI . By construction of the strategy fB0 ,
this means that fB0 is full, functional and surviving for ∃ in GB

0 . Analogously, (‡.5) holds because the subformula of
KbI

m (x) given as in (4.2) is true, meaning that every node on the frontier of GB
0 is associated with a unique accepting

state of B according to fB0 . In order to fulfill condition (‡.6), we observe that, by definition of KbI
m (x), every node

s ∈ Ft(GB
0) is associated with a basic position (bs,s) ∈ B×T , such that bs ∈ F and Kbs

m−1(x) holds for s = ∥x∥.

Inductively, we consider the stage j < m of the construction. By inductive hypothesis, we are given with
sequences (Ei)i≤ j+1, (GB

i)i≤ j, (GB
i)i≤ j and a surviving strategy fBi for ∃ in GEi as in (‡).

For the definition of GB
j+1, as in the base case we let it be the smallest prefix in the sequence (E f

i)i<ω which
contains E j+1. For the definition of GB

j+1 and fBj+1, the key observation is that, by inductive hypothesis, for each
node s ∈ Ft(GB

j) we can make the following assumptions:

1. the formula Kbs
m− j(x) holds, with s = ∥x∥;

2. the position (bs,s) is a node of the tree representation of fBj .

We let T.s∩E j+1 be the witness for the set-variable p occurring in Kbs
m− j(x). Then by definition of Kbs

m− j(x) we

are provided with a prefix GB,s
j+1 of T.s witnessing the variable p′, such that T.s∩E j+1 ⊆GB,s

j+1. Also we are provided
with well-closed sets of nodes witnessing variables b1, . . . ,bk. Analogously to the base case, this yields a strategy
f B,s

j+1 for ∃ in G, which is defined as follows:

1. fBj+1 is defined at the basic position (bs,s);

2. for each basic position (bt ,t) ∈ B×GB,s
j+1 with t /∈ Ft(GB,s

j+1), we let fBj+1 suggest to ∃ a marking assigning br to
r, for each r ∈ σR(t).

3. we leave fBj+1 undefined on all other basic positions from B×T .

To make the definition of f B,s
j+1 more clear, observe that f B,s

j+1 is a strategy for ∃ in partial matches ofA(A,T)@(bs,s),

which is full, functional, surviving in GB,s
j+1 and marks each node t ∈ Ft(GB,s

j+1) with a unique state from F .

We define GB
j+1 by putting

GB
j+1 ∶=GB

j ∪ ⋃
s∈Ft(GB

j)
GB,s

j+1.

Since GB
j is a prefix of T and for each s ∈ Ft(GB

j) the set GB,s
j+1 is a prefix of T.s, we have that GB

j+1 is a prefix of T.
Next, we define f B

j+1 by putting

f B
j+1 ∶= f B

j ∪ ⋃
s∈Ft(GB

j)
f B,s

j+1,

where the union of strategies just means the union of their graphs. In order to check that f B
j+1 is indeed a function,

observe that by inductive hypothesis the domain of f B
j is B×(GB

j ∖Ft(GB
j)). By construction, for each s ∈ Ft(GB

j),
the domain of the strategy f B,s

j+1 is the union of (bs,s) and B×(GB,s
j+1 ∖(GB

j ∪Ft(GB,s
j+1))). Since (bs,s) ∈ Ft(GB

j),

then the domains of f B
j and each f B,s

j+1 are all disjoints. Therefore f B
j+1 is uniquely defined on each basic position in

its domain.
Given GB

j+1 and GB
j+1 as above, if j + 1 < m then we define E j+2 to be the smallest prefix of T such that

Ft(GB
j+1) < Ft(E j+2) and Ft(GB

j+1) < Ft(E j+2). The check that all conditions in (‡) hold for GB
j+1, f B

j+1 and EB
j+2

is completely analogous to the base case.

56

Figure 4.3: construction of GB
j+1.

We have just defined a strategy fB, sequences (Ei)i≤m, (GB
i)i≤m and (GB

i)i≤m, such that for each i ≤m condition
(‡) is respected. It follows that f and fB witness a trap for B and B according to definition 4.8. This concludes the
proof of the claim. ∎

The proof of claim 12 completes the proof of direction (⇐).
◻

We are now ready to supply a proof for the main statement.

Proof of theorem 4.14 Given a weak MSO-automaton A, let A be the weak MSO-automaton recognizing the
complement of A according to proposition 2.31. Let B and B be NDB-automata equivalent respectively to A and A,
as in definition 4.4. Consider the formula ϕB,B ∈WFMSO defined for B and B as in definition 4.15. By proposition
4.16 the formula ϕB,B is equivalent to B, meaning that it is also equivalent to A. ◻

As a corollary we obtain the following characterization of WFMSO.

Corollary 4.17. A tree language L is WFMSO-definable if and only if there are non-deterministic Büchi automata
B and B such that L = L(B) and L = L(B).

Proof Let ϕ ∈ WFMSO be a formula. By proposition 3.13 we can construct weak MSO-automata A and A
equivalent respectively to ϕ and to ¬ϕ. By proposition 4.17 we can also construct non-deterministic Büchi automata
B and B that are equivalent respectively to ϕ and to ¬ϕ.

Conversely, suppose that we have a tree language L and non-deterministic Büchi automata B and B recognizing
respectively L and its complement. By theorem 4.14 we can construct a formula ϕ ∈WFMSO that is equivalent to
B. ◻

Remark 4.18. Contrary to the case of weak MSO-automata, corollary 4.17 does not provide a full logical
characterization of NDB automata in terms of WFMSO. The reason is that the tree languages recognized by NDB
automata are not closed under complementation [28]. From this result it also follows that weak MSO-automata are
strictly weaker than NDB automata. ◂

Historical Notes

Non-deterministic Büchi automata are a generalization on arbitrarily branching trees of the ‘special automata’,
working on binary trees, which have been introduced by Rabin [28]. The whole construction leading to a logical
characterization of NDB-automata, including the notion of k-trap (definition 4.8) and the inductive definition of
Ka

i (x) (proposition 4.14), is essentially a (game-theoretic) generalization of Rabin’s argument showing how special
automata relate to WMSO-definable languages on binary trees [28].

57

Chapter 5

Expressivity Results

The previous part of this thesis was devoted to the characterization of MSO and WFMSO by means of automata.
Since the work of Rabin [27], the expressive power of these automata has been studied and compared on different
kinds of structures. In this chapter we use some of these results to investigate expressivity questions on the side of
logic. In particular, we are interested in comparing the expressive power of MSO, WFMSO and WMSO on different
classes of trees. The automata-theoretic perspective plays an essential role in revealing the precise nature of their
expressiveness, and how the landscape of logical definability changes by considering trees with different branching
degree.

A key result, underlying most of the theory developed in this chapter, is Rabin’s observation that there is a tree
language which is not accepted by any non-deterministic Büchi automaton [28].

Proposition 5.1 ([28]). Let TBin be the class of binary trees. Let LFp be the tree language defined by putting

T ∈LFp iff every path of T contains only finitely many nodes labeled with p. (5.1)

For any NDB automaton B, we have that

LFp∩TBin ≠ L(B)∩TBin.

Proof reference We refer to [28], section 3 and [11], theorem 8.6 for a proof of this result. ◻

In order to show the significance of this result, recall from the previous chapter that an essential feature of NDB
automata is the so-called bounded information property. Intuitively, if LFp was accepted by some NDB automaton,
that would mean that checking whether T ∈LFp amounts to check some property on well-founded subtrees of T.
Suppose by way of contradiction that this is the case for some NDB automaton B. It is possible to construct a tree
T, where the letter p occurs finitely many times on each path, but we can ‘reassemble’ well-founded subtrees of T
to obtain a tree T′ with a path where p occurs infinitely often. Since T is in LFp, then ∃ has a winning strategy
f in A(B,T)@(bI ,sI). However, by the fact that B is a NDB automaton, what f does is essentially to check the
presence of accepting states for infinitely many well-founded subtrees of T visited along the play. This means that
we can decompose f into a bundle of strategies for matches on well-founded subtrees of T. Since T′ has been
obtained by patching together well-founded subtrees of T, we can construct a strategy f ′ for ∃ inA(B,T′)@(bI ,sI)
out of the bundle, such that f ′ is winning because each strategy in the bundle allows ∃ to encounter an accepting
state of B. Then we have that T′ is in L(B). However, by construction it also holds that T′ /∈LFp, contradicting the
assumption that L(B) =LFp.

The informal argument that we just sketched shows that the tree property associated with LFp cannot be tested
on finite segments of paths (as an NDB automaton would do), but we need to store information on each path of T
taken as a whole. This is a key example showing why NDB automata are not suitable to capture properties on the
vertical dimension of trees, such as the one expressed by LFp.

Since every weak MSO-automaton can be turned into an equivalent NDB automaton (proposition 4.5), LFp is
also not accepted by any weak MSO-automaton. However, it is quite easy to define an MSO-automaton for LFp.

59

Remark 5.2. Let AFp = ⟨A,aI ,∆,Ω⟩ be the MSO-automaton defined by putting

A ∶= {a0,a1}
aI ∶= a0

∆(a0,c) ∶= ∀x (a0(x)∨a1(x))

∆(a1,c) ∶= { ∀x (a0(x)∨a1(x)) If p /∈ c
� Otherwise

Ω(a0) ∶= 1
Ω(a1) ∶= 2.

It is not hard to see that LFp = L(AFp). In order to check this, let T be a tree. We look at which strategies the
two players should follow in G =A(AFp,T)@(aI ,sI). Given any position (a,s) ∈ A×T , player ∃ should mark with
a0 each node t ∈ σR(s) which is labeled with p, and with a1 all the others. If there is a path S containing infinitely
many nodes labeled with p, player ∀ is allowed to keep any match of G on S. Then the minimum parity occurring
infinitely often along the play is 1 and ∃ looses. If T does not contain any such path S, then the only parity occurring
infinitely often is 2 and ∃ wins. By this argument it is clear that indeed LFp = L(AFp).

As a side observation, note that the automaton AFp has a parity map ranging over {1,2}. This can be seen as a
‘co-Büchi’ acceptance condition, because ∀ wins an infinite match if and only if some state with parity 1 occurs
infinitely often along the play. The essential difference with a Büchi condition is that, in case both an accepting and
a rejecting state occur infinitely often, the rejecting one prevails. ◂

On the base of these observations on the language LFp, we can relate the expressive power of weak MSO-
automata and MSO-automata.

Proposition 5.3 ([28]). The class of tree languages recognized by weak MSO-automata is strictly included in the
class of tree languages recognized by MSO-automata. The same result holds if we restrict to finitely branching
trees.

Proof The inclusion is immediate by the fact that every weak MSO-automaton is also an MSO-automaton, as
observed in remark 3.2. In order to check that the inclusion is strict, let LFp be a tree language defined as in (5.1).
By proposition 5.1 it follows that LFp is not definable by any weak MSO-automaton. However, by remark 5.2, the
language LFp is recognized by some MSO-automaton. The same result holds on finitely branching trees because
proposition 5.1 holds already on binary trees. ◻

5.1 The Finitely Branching Case

The result of proposition 5.3 suggests that the class of finitely branching trees is already a reliable benchmark to
study the expressive power of MSO and WFMSO. In fact, the branching degree is not relevant as far as properties
of the vertical dimension of trees are concerned.

The essential difference between the general setting and the setting of finitely branching trees concerns the
horizontal dimension of trees, which turns out to be essentially simpler to describe in the finitely branching case.
From the point of view of expressiveness, this amounts to a coarser distinction between tree properties. The key
example is given by notion of well-founded tree, which collapses by Kőnig’s Lemma to the one of finite tree in
the finitely branching case. By this observation, WMSO and WFMSO become indistinguishable logics on finitely
branching trees.

Remark 5.4. Recall the semantics of WMSO as in definition 1.10. We observe that WMSO and WFMSO are the
same logic on finitely branching trees. In order to see that, let ϕ be a formula written in the monadic second-order
language as in definition 1.9. We can easily verify by induction that ϕ defines the same tree language, either if we
interpret ϕ according to the semantics of WMSO or WFMSO. For the non-trivial case, let ϕ = ∃p.ψ. If we interpret
ϕ according to the semantics of WMSO, then we have that

T ⊧ ∃p.ψ iff Tp ⊧ψ for some finite p-variant Tp of T. (5.2)

Otherwise, if we interpret ϕ according to the semantics of WFMSO, then we have that

T ⊧ ∃p.ψ iff Tp ⊧ψ for some well-closed p-variant Tp of T. (5.3)

Now observe that, if T is a finitely branching tree, then by Kőnig’s Lemma a well-closed subset of T is just a finite
subset of T. This means that (5.2) and (5.3) express equivalent conditions on finitely branching trees. ◂

60

Since WMSO and WFMSO are the same logic from the finitely branching point of view, we can exploit the
automata-theoretic perspective we introduced for WFMSO to derive expressivity results also for WMSO.

Proposition 5.5. On finitely branching trees, the class of WMSO-definable tree languages is strictly included in
the class of MSO-definable tree languages.

Proof By proposition 5.3 and remark 2.32 it suffices to show that, on finitely branching trees, the class of
WMSO-definable tree languages is included in the class of tree languages recognized by weak MSO-automata.

For this purpose, let ϕ ∈WMSO be a formula. By remark 5.4 there is a formula ϕ
′ ∈WFMSO which is equivalent

to ϕ on finitely branching trees. By theorem 4.14, there is a weak MSO-automaton A which is equivalent to ϕ
′.

Then clearly A is also equivalent to ϕ
′ on finitely branching trees. ◻

5.2 The Arbitrarily Branching Case

As we observed, the restriction to finitely branching trees essentially affects the horizontal dimension of trees,
making it sufficiently coarse to identify WMSO-expressivity and WFMSO-expressivity. Both these logics turn out
to be essentially weaker than MSO in expressing properties of the vertical dimension on trees, such as the language
LFp presented in proposition 5.1. Since this is the only ‘relevant’ dimension of the finitely branching case, WFMSO
and WMSO are strictly weaker than MSO on finitely branching trees, as shown in proposition 5.5.

In this section we observe how this landscape of connections between WMSO, WFMSO and MSO is affected
by considering the more general setting of trees with arbitrary branching degree.

The first observation is that the relation between WFMSO and MSO remains unaltered.

Proposition 5.6. The class of WFMSO-definable tree languages is strictly included in the class of MSO-definable
tree languages.

Proof This is an immediate consequence of proposition 5.3, theorem 4.14 and remark 2.32. ◻

The weakness of WFMSO on the vertical dimension is somehow reflected by the semantics of WFMSO
quantifiers: a well-closed set of nodes is limited on the vertical dimension, being included in a well-founded tree.
However, it has no limitations of cardinality on the horizontal dimension, meaning that MSO-quantification and
WFMSO-quantification do not differ much in this respect.

The deeper reason underlying this observation is that MSO itself is a rather coarse logic, once it comes to
specify properties on the horizontal dimension of trees. In fact, MSO cannot even distinguish between trees with
finite or infinite branching degree. We indicate this phenomenon as the Finite Branching Property of MSO. Its
significance is best explained through the automata-theoretic perspective, as shown by the next proposition.

Proposition 5.7 (Finite Branching Property). Let A be an MSO-automaton. If L(A) is non-empty then there is
a finitely branching tree T in L(A).

Proof Let A = ⟨A,aI ,∆,Ω⟩ be an MSO-automaton and T a tree that is accepted by A. By proposition 2.14 we
can assume A to be non-deterministic. Let f be a winning strategy for ∃ in G =A(A,T)@(aI ,sI), which we can
assume to be full and functional by proposition 2.36 and 2.36. Let T f and π

f
2 ∶ Tf → T be respectively the tree

representation of f and its projection function. As observed in remark 2.35, since f is full and functional then π
f
2 is

1-1 and onto.

The main idea of the proof is that we can prune T f until we get a finitely branching subtree T′f of T f . We can
do it in such a way that T′f is the tree representation of a winning strategy for ∃ in G′ =A(A,T′)@(aI ,sI), with T′

a finitely branching subtree of T induced by T′f itself. This implies that T′ is in L(A).

We proceed with the formal part of the proof. We define a tree T′f by induction as follows:

1. The root of T′f is the root of T f , i.e. the position (aI ,sI).

2. Suppose that (a,s) is a node of T′f of height i. By inductive hypothesis the position (a,s) is also a node of
T f of height i, and the label of (a,s) in T′f is the label of (a,s) in T f .

Let m f ∶ A→ ℘σR(s) be the marking provided by f from position (a,s) and ϕ ∈ SBF+(A) be a disjunct of
∆(a,σC(s)) ∈ SLatt(SBF+(A)), such that (σR(s),m) ⊧ ϕ. Let Sϕ = {t1, . . . ,tk} be the set of nodes in σR(s)
witnessing the existential part of ϕ. If Sϕ is empty, that is, k = 0, then at least we know that there is a node
t∀ ∈ σR(s) witnessing the universal part of ϕ. In this case, we let {(b∀,t∀)} be the set of successors of (a,s)

61

in T′f , where b∀ is such that t is in m(b∀). Otherwise, Sϕ is non-empty and we define the successors of (a,s)
in T′f to be the elements of the following set.

{(b,t) ∣ t ∈m(b)∩Sϕ} (5.4)

Observe that this is a finite subset of {(b,t) ∣ t ∈m(b)}. It follows that each successor of (a,s) in T′f is also a
successor of (a,s) in T f and we can maintain our inductive hypothesis at height i+1.

It should be clear by construction that T′f is a finitely branching subtree of T f . Let T′ be the subtree of T
obtained by projecting T′f on T, that is, its carrier T ′ is given as π

f
2[T ′

f] . Since T′f is finitely branching then also
T′ is finitely branching. The proof of the main statement is completed by showing the following claim.

CLAIM 13. The tree T′ is accepted by A.

PROOF OF CLAIM The key observation of the proof is that T′f is the tree representation of a winning strategy f ′ for
∃ in G′. The strategy f ′ is defined from each basic position (a,s) ∈ A×T ′ occurring in T′f as a node. The marking
suggested by ∃ from position (a,s) is uniquely defined by (5.4). The proof of claim is completed by showing that:

1. f ′ is a full and surviving strategy for ∃ in G′;

2. f ′ is a winning strategy for ∃ in G′.

In order to prove the first fact, recall that by assumption f is full and surviving strategy for ∃ in G. By
construction f ′ suggests the same markings of f on all basic positions in G′, meaning that it is full in G′. Given a
position (a,s) ∈ Tf ′ , let σ

′
R(s) be the set of successors of s in T′ and m′ the marking suggested by f ′ from position

(a,s). By definition of f ′ in terms of T′f , there is a disjunct ϕ ∈ SBF+(A) of ∆(a,σC(s)) such that:

a) if ϕ only consists of an universal part, the A-structure (σ
′
R(s),m′) has a unique element, witnessing the

universal part of ϕ;

b) otherwise, ϕ has a non-empty existential part; in this case, by definition (σ
′
R(s),m′) contains exactly the

witnesses for the existential part of ϕ, meaning that it also verifies (vacuously) the universal part of ϕ.

In any of the two cases, m′ makes ϕ true in σ
′
R(s), implying that it is a legitimate move for ∃. It follows that f ′ is a

surviving strategy for ∃ in G′.
In order to prove the second fact, let π be an infinite f ′-conform match of G′, with basic positions

Bπ ∶= (aI ,sI),(a1,s1), . . . ,(an,sn),

By definition of f ′, the sequence Bπ is just a branch of T′f . By construction, T′f is a finitely branching subtree of
T f with the same root. Therefore Bπ is also a branch of T f , meaning that there is an f -conform match of G with
the same basic positions. By assumption the strategy f is winning for ∃ in G. It follows that the minimum parity
occurring along π is even. Therefore ∃ wins the match π. ∎

The proof of the claim 5.2 completes the proof of the main statement.
◻

The Finite Branching Property qualifies MSO as a logic which is not very expressive on the horizontal dimension
of trees. This aspect is not revealed if we restrict to finitely branching trees. In the same way, the precise nature of
WMSO expressiveness is disclosed only if we take trees with arbitrary branching degree into account. As we will
show in the sequel, it turns out that WMSO does not have the Finite Branching Property, being able to distinguish
between trees with finite and infinite branching degree. It follows that WMSO is essentially stronger than MSO in
expressing properties of the horizontal dimension of trees.

Proposition 5.8. The class of WMSO-definable tree languages and the class of MSO-definable tree languages are
incomparable.

Proof By proposition 5.5 there is a tree language which is MSO-definable but not WMSO-definable. For the
converse direction, consider the language LNfb defined by putting

T ∈LNfb iff the tree T is not finitely branching. (5.5)

62

Let χNfb be a WMSO-formula defined by putting

χNfb ∶= ∃x ¬∃p ∀y (xRy→ y ∈ p). (5.6)

Intuitively, χNfb says that there is a node ∥x∥ such that no finite set ∥p∥ can contain all the successors of ∥x∥. It is
easy to see that the tree language LNfb is defined by χNfb.

Suppose by way of contradiction that LNfb is MSO-definable. By proposition 2.26 there is an MSO-automaton
A such that L(A) =LNfb. Since we are considering trees with arbitrary branching degree, the language L(A) is not
empty. Then, by proposition 5.7, there is a finitely branching tree T′ in L(A). This also means that T′ is in LNfb,
contradicting the definition of LNfb as in (5.5). Therefore the language LNfb is not MSO-definable. ◻

Proposition 5.8 does not only state the incomparability of MSO and WMSO, but also reveals the nature of their
relation. The two logics are in some sense orthogonal: MSO is weaker than WMSO on the horizontal dimension,
while WMSO is weaker than MSO on the vertical dimension on trees.

In the sequel we bring further our investigation by comparing the expressive power of WMSO and WFMSO. As
a preliminary observation, it is immediate that WFMSO is weaker than WMSO on the horizontal dimension, being
a fragment of MSO. The orthogonal question, namely how WFMSO and WMSO relate on the vertical dimension,
requires a finer analysis. What we have seen so far is that both WMSO and WFMSO are weaker than MSO on
this respect. What we are going to show is that WFMSO is still stronger than WMSO on the vertical dimension,
implying that the two logics have incomparable expressive power.

5.3 A Janin-Walukiewicz Theorem for WFMSO

Janin and Walukiewicz [16] have shown that the bisimulation-invariant fragment of MSO is as expressive as
the modal µ-calculus (µMC) on trees. In this section we consider the same question for the bisimulation-invariant
fragment of WFMSO. It turns out that WFMSO is still weaker than MSO on this respect, being as expressive as
the alternation-free fragment of the modal µ-calculus (AFMC). This outcome is coherent with the perspective on
WFMSO and weak MSO-automata that we have suggested throughout this thesis. Indeed, there is a tight connection
between fixpoint operators of the µ-calculus and parities occurring infinitely often in parity games [34]. The absence
of alternation in formulae from AFMC intuitively corresponds to at most one parity occurring infinitely often along
infinite matches of a parity game, which is exactly the property of weak MSO-automata described in remark 3.3.

Theorem 5.9. Let L a tree language that is closed under bisimulation. The following are equivalent.

1. The language L is AFMC-definable.

2. The language L is WFMSO-definable.

For proving this result, once again we use an automata-theoretic argument. Roughly, the idea is that automata
for AFMC are the weak counterpart of automata for µMC, just as automata for WFMSO are the weak version of
MSO-automata. Then, the same argument, used by Janin and Walukiewicz [16] to show that automata for µMC and
MSO have the same expressive power modulo bisimulation, can be restricted to show an analogous result for the
weak counterparts.

For this purpose, the main observation is that automata for µMC and for MSO are the same class of automata,
modulo a certain transformation on the first-order sentences associated with the transition function. Since every
formula of µMC is bisimulation invariant, the first-order language associated with the transition of the corresponding
automata should reflect this invariance at the level of the successors of a given node. This language cannot be
FO+(A), because the equality symbol = allows for sentences which count the number of elements, such as

ϕTwo ∶= ∃x1 ∃x2 (x1 ≠ x2∧∀z ((z ≠ x1∧ z ≠ x2)→ �)).

We can define an MSO-automaton corresponding to the property that each node in a tree has exactly two successors,
by using ϕTwo in the transition function. This is an example of a tree language which is MSO-definable but not
bisimulation-invariant, meaning that it is not µMC-definable.

In the sequel we introduce a translation, which we call ∇-translation, transforming sentences in special basic
form into sentences of FO+(A) without equality. The set of sentences which are ∇-translations of some sentence in
special basic form will provide the first-order language associated with the automata for µMC.

63

Definition 5.10 (∇-translation). Given a set A of unary predicates, let ϕ ∈ SBF+(A) be a sentence in special basic
form of shape

ϕ = ∃x1 . . .∃xk (diff (x̄)∧ ⋀
1≤i≤k

ai(xi)∧∀z (diff (x̄,z)→ ⋁
1≤l≤ j

bl(z))).

We define ϕ
∇ by putting

ϕ
∇ ∶= ∃x1 . . .∃xk (⋀

1≤i≤k
ai(xi)∧∀z ⋁

1≤l≤ j
bl(z)).

We denote with SBF∇(A) the set {ϕ
∇ ∣ ϕ ∈ SBF+(A)}. ⊲

The modal µ-calculus is characterized by a class of automata which are defined as non-deterministic MSO-
automata but for the transition function, which ranges over sentences from SLatt(SBF∇(A)) instead of SLatt(SBF+(A))
[15]. If we restrict to the alternation-free fragment, then a weaker version of these automata suffices [20]. We use
the name modal non-deterministic Büchi automata to emphasize their connection with non-deterministic Büchi
automata as we introduced with definition 4.1.

Definition 5.11 ([20]). A modal non-deterministic Büchi automaton on alphabet C is an MSO-automaton B =
⟨B,bI ,∆,Ω⟩ with ∆ of type B×C→ SLatt(SBF∇(B)) and Ω of type B→ {0,1}. ⊲

In [20] an automata characterization for AFMC in terms of modal non-deterministic Büchi automata is provided.

Proposition 5.12 ([20]). Let L be a tree language. The following are equivalent.

• There exists ϕ ∈ AFMC such that L = ∥ϕ∥.

• There are modal non-deterministic Büchi automata B∇ and B∇C such that L = L(B∇) and L =L(B∇C).

Proof Reference We refer to [20] for a proof of the statement. Direction (1⇒ 2) follows from theorem 6, 4 and 5
in [20]. Direction (2⇒ 1) follows from theorem 2 and 3 in [20]. ◻

We introduce a translation between NDB automata and modal NDB automata. Let B be a NDB automaton. In
analogy with Janin and Walukiewicz’s argument, we are going to show that, if L(B) is closed under bisimulation,
then the modal NDB automaton B∇ that we obtain from B through the translation is such that B ≡B∇. This is the
content of proposition 5.14.

Definition 5.13. Let B = ⟨B,bI ,∆,Ω⟩ be an NDB automaton. We define an automaton B∇ = ⟨B,bI ,∆
∇,Ω⟩ by

putting

∆
∇(a,c) ∶= ⋁{ϕ

∇ ∣ ϕ is a disjunct of ∆(a,c)}.

By definition 5.10 the transition function ∆
∇ has type B×C→ Slatt(SBF∇(B)), meaning that B∇ is a modal NDB

automaton. ⊲

Proposition 5.14. Let B be an NDB automaton and B∇ the modal NDB automaton constructed from B as in
definition 5.11. If L(B) is closed under bisimulation, then B ≡B∇.

Proof The argument is the same used in [15], proof of Lemma 12. Let B = ⟨B,bI ,∆,Ω⟩ and B∇ = ⟨B,bI ,∆
∇,Ω⟩ be

given as in the statement and suppose that L(B) is closed under bisimulation. Given a tree T, we want to show that

B accepts T iff B∇ accepts T. (5.7)

Let Tω be the ω-expansion of T, given as in definition 1.6. By remark 1.7, we know that T and Tω are bisimilar.
This means that, in order to show (5.7), it suffices to show that

B accepts Tω iff B∇ accepts T. (5.8)

(⇒) Suppose that B accepts Tω and let f be a winning strategy for ∃ in G =A(B,Tω)@(aI ,(sI ,0)). We want to
define a strategy f∇ that is winning for ∃ in G∇ =A(B,T)@(aI ,sI). As usual, f∇ is provided for each stage of the
construction of a match π

∇ of G∇, while playing in parallel an f -conform shadow match π of G. For each round z
that is played in π and π

∇, we want to maintain the following relation between the two matches.

64

For some a ∈ A, s ∈ T and i <ω, the current basic positions in π
∇ and π

are respectively (a,s) and (a,(s, i)).
(‡)

Condition (‡) holds at the initial round, where we initialize π and π
∇ respectively at position (aI ,(sI ,0)) and

(aI ,sI). Inductively, suppose that we are given at round zi with basic positions respectively (a,(s, i)) and (a,s)
in π and π

∇, for some i < ω. By assumption we are provided with a marking m ∶ A→ ℘(σ
ω
R(s, i)) that makes

∆(a,σω

C(s, i)) true in σ
ω
R(s, i). We define a marking m∇ ∶ A→ ℘(σR(s)) by putting

t ∈m∇(a) iff (t, i) ∈m(a)

for each t ∈ T , i <ω and a ∈ A. We let m∇ be the choice of ∃ from position (a,s) in π
∇. If m∇ is a legitimate move

for ∃, then it is clear that condition (‡) can be maintained at round zi+1: any next basic position (b,t) ∈ A×T picked
by ∀ in π

∇ corresponds to an admissible move (b,(t, i)) ∈ A×(T ×ω) for ∀ in π, for any i <ω.
Thus it remains to show that m∇ is a legitimate choice for ∃, that is,

(σR(s),m∇) ⊧ ∆
∇(a,σC(s)). (5.9)

For this purpose, suppose that ϕ ∈ SBF+(B) is a disjunct of ∆(a,σω

C(s, i)), depending on sequences of states
a1 . . .ak,b1 . . .b j of B, such that (σ

ω
R(s, i),m)⊧ψ. By definition of ∆

∇, the sentence ϕ
∇ is a disjunct of ∆

∇(a,σω

C(s, i)).
By definition σC(s) = σ

ω

C(s, i), that is, the label of (s, i) in Tω is just the label of s in T. It follows that ϕ
∇ is a

disjunct of ∆
∇(a,σC(s)). In order to show (5.9), it suffices to show that

(σR(s),m∇) ⊧ ϕ
∇.

By the syntactic shape of ϕ, we have k nodes (t1,n1), . . . ,(tk,nk) in σR(s, i) witnessing the variables x1, . . . ,xk in
the existential part of ϕ. This means that m assigns ai to (ti,ni), for each i with 1 ≤ i ≤ k. By definition m∇ assigns
ai to ti, for each i with 1 ≤ i ≤ k. This means that t1, . . . ,tk are witnesses for variables x1, . . . ,xk occurring in the
existential part of ϕ

∇. It remains to consider the condition given by the universal part of ϕ
∇, that is, to each node

t ∈ σR(s) is assigned some state b ∈ {b1, . . . ,b j} according to m∇. For this purpose, take t ∈ σR(s) and any natural
number n different from n1, . . . ,nk. By the syntactic shape of ϕ, the node (t,n) is a witness for the variable z in the
universal part of ϕ. Therefore m assigns to (t,n) some state b ∈ {b1, . . . ,b j}, implying that t is in m∇(b). Since t
was an arbitrary node of σR(s), this shows that indeed (σR(s),m) ⊧ ∀z ⋁l≤ j bl(z) and completes the proof of (5.9).

We have shown that condition (‡) can be maintained for each round that is played in the two matches. In order
to show that ∃ wins π

∇, first suppose that π
∇ is a finite match. Since the suggestion of f∇ is always legitimate, this

means that ∀ gets stuck and ∃ wins. Otherwise, π and π
∇ are infinite and by condition (‡) the same states from B

are visited along the play. Since B and B∇ have the same parity map, the minimum parity occurring infinitely often
in π and π

∇ is the same. By the fact that f is a winning strategy for ∃ in G and π is f -conform, this suffices to show
that ∃ wins π

∇.

(⇐) Let f∇ be a winning strategy for ∃ in G∇ =A(B,T)@(aI ,sI). We define a strategy f for each stage of
the construction of some match π of G, while playing in parallel an f -conform shadow match π

∇ of G∇. For
each round z that is played in π and π

∇, we want to maintain the same condition (‡) that we used in showing the
converse direction.

At the initial round, position (aI ,(sI ,0)) occurs in π and we initialize π
∇ at position (aI ,sI). Inductively,

suppose that we are given at round zi with basic positions respectively (a,(s, i)) and (a,s) in π and π
∇, for some

i <ω. By assumption we are provided with a marking m∇ ∶ A→ ℘(σ
ω
R(s)) that makes ∆

∇(a,σC(s)) true in σR(s).
We define a marking m ∶ A→ ℘(σR(s, i)) by putting

(t, i) ∈m(a) iff t ∈m∇(a).

We let m be the choice of ∃ in π. In order to see that m is a legitimate move, let ψ be a disjunct of ∆
∇(a,σC(s)) that

is true in (σR(s),m∇). By definition of ∆
∇ we know that ψ is equal to ϕ

∇, for some disjunct ϕ of ∆(a,σC(s)) =
∆(a,σω

C(s, i)). In order to show that m is legitimate, it suffices to show that ϕ is true in (σ
ω
R(s, i),m). For this

purpose, let t1, . . . ,tk be (not necessarily distinct) elements of σR(s) witnessing variables x1, . . . ,xk of ϕ
∇, that is,

for each i with 1 ≤ i ≤ k, we have that ti ∈m(ai). By definition of m∇, nodes (t1,1), . . . ,(tk,k) are k distinct elements
of σ

ω
R(s, i) such that, for each i with 1 ≤ 1 ≤ k, we have that (ti, i) ∈m(ai). It follows that they witness the existential

part of ϕ. For the universal part of ϕ, consider any node (t,n) ∈ σ
ω
R(s, i) which is different from (t1,1), . . . ,(tk,k).

By definition of ϕ
∇ the node t ∈ σR(s) witnesses the universal part of ϕ

∇, that is, for some l with 1 ≤ l ≤ j, we
have that t ∈ m∇(bl). Then, by definition of m, the node (t,n) is in m(bl) and witnesses the universal part of ϕ.
Therefore ϕ is true in (σ

ω
R(s, i),m) and m is a legitimate move for ∃ in π.

65

Using the same argument of the converse direction, we can show that condition (‡) is maintained at round zi+1
and ∃ wins π.

◻

Proposition 5.14 provides the key result to prove that AFMC is at least as expressive as the bisimulation-invariant
fragment of WFMSO. This is one direction of theorem 5.9. For the converse direction, we need to show that the
bisimulation-invariant fragment of WFMSO is not weaker than AFMC. This is in fact the easy direction of theorem
5.9, being a corollary of the automata-theoretic characterization of AFMC provided in [20].

Proposition 5.15 ([20]). Let ϕ ∈ AFMC be a sentence. There is a weak MSO-automaton Aϕ such that ϕ is
equivalent to Aϕ.

Proof reference In [20], theorem 3, it is shown that a class of automata called symmetric weak alternating
automata characterizes AFMC. It is easy to check that symmetric weak alternating automata are just a particular
case of weak MSO-automata, where the transition function ∆ ranges over sentences from FO+(A) without the
equality symbol =. ◻

We are now ready to prove the main result of this section.

Proof of theorem 5.9 Let L be a tree language that is closed under bisimulation. The direction (1⇒ 2) follows
by proposition 5.15 and theorem 4.14. The proof of direction (2⇒ 1) is given by the following derivation.

there is ϕ1 ∈WFMSO such that ∥ϕ1∥ =L ⇔ (closure of WFMSO under negation)

there are ϕ1,ϕ2 ∈WFMSO such that ∥ϕ1∥ =L and ∥ϕ2∥ =L ⇔ (theorem 4.14)

there are NDB automata B1,B2 such that L(B1) =L and L(B2) =L ⇒ (proposition 5.14)

there are modal NDB automata B∇1 ,B
∇
2 such that L(B∇1) =L and L(B∇2) =L ⇔ (proposition 5.12)

there is ϕ1 ∈ AFMC such that ∥ϕ1∥ =L

◻

As a corollary of theorem 5.9, we obtain an incomparability result for WFMSO and WMSO. We can see this as
a strengthening of proposition 5.8, WFMSO being weaker than MSO.

Corollary 5.16. The class of WMSO-definable tree languages and the class of WFMSO-definable tree languages
are incomparable.

Proof By the same argument used for proposition 5.8, the language LNfb defined as in (5.5) is WMSO-definable
but not WFMSO-definable. For the converse direction, consider the sentence χWf ∈ AFMC defined by putting

χWf = µq.(◻q∨ p).

Intuitively, χWf holds in a tree T if and only if on each branch of T there is a node labeled with p. By proposition
5.9 the tree language ∥χWf ∥ is WFMSO-definable. In order to see that ∥χWf ∥ is not WMSO-definable, recall the
prefix topology on trees, defined as in section 1.6. By proposition 1.20 the tree language ∥χWf ∥ is not a Borel set of
this topology. However, by proposition 1.19, only the Borel tree languages are WMSO-definable. This means that
∥χWf ∥ is not WMSO-definable. ◻

Historical Notes

To the best of our knowledge, the result that weak MSO-automata characterize WMSO on finitely branching
trees is folklore, just as the incomparability result of proposition 5.8. The former statement is mentioned in [14],
section 4.3, whereas the latter statement is mentioned in [9], remark 1.8.

Modal correspondence theory is the comparative study of expressiveness of modal languages and classical
languages (such as first-order logic) on transition systems. Perhaps the most important contribution in this area is
van Benthem’s Bisimulation Theorem stating that modal logic is the bisimulation-invariant fragment of first-order
logic [30]. Another landmark result is Janin and Walukiewicz’s theorem stating that the modal µ-calculus is the
bisimulation-invariant fragment of MSO [16].

We refer to Kupferman and Vardi [18], [20] for the automata-theoretic characterization of AFMC on trees of
arbitrary branching degree. For the case of binary trees, an algebraic approach has been proposed [1] [2] to relate
the expressive power of AFMC, WMSO and weak automata. For an overview on automata for modal fixpoint logics
we refer to [34] and [31].

66

Conclusions

We recapitulate what we consider the main contributions of this thesis. In the second and third chapter we
rephrase the existing results on MSO-automata and weak MSO-automata in a unified framework. We emphasize the
role of the simulation theorem and the two-sorted construction in providing a guidance to compare the expressive
power of MSO-automata, weak MSO-automata and the corresponding logics. For this purpose, we introduce and
reformulate many concepts that were implicit or differently expressed in the theory of tree automata, such as the
tree representation of a strategy, the notions of minimal, full and functional strategy, the completion construction
for MSO-automata, the two-sorted construction and the Büchi powerset construction for weak MSO-automata.
An analogous contribution is also provided in the fourth chapter, where we reformulate Rabin’s constructions
for non-deterministic Büchi automata in a game-theoretic fashion, generalizing the associated results from the
binary case to the arbitrarily branching case. In Appendix A we also present a game-theoretic perspective on the
complement construction for MSO-automata. Our proof of the complementation lemma is based on the observation
that acceptance games for MSO-automata are essentially asymmetric, assigning a prominent role to player ∃. We
show that acceptance games can be equivalently defined in a completely symmetric way, and also asymmetric on
the side of player ∀. We believe that this perspective on acceptance games brings useful insights on the concept of
alternation, which is central in the theory of tree automata [24] [11].

On the connection between automata and logic, our main contribution is the logical characterization of weak
MSO-automata on trees of arbitrary branching degree. For this purpose we introduce a new variant of MSO which
we call well-founded monadic second-order logic (WFMSO). In the third chapter we prove that, for each formula
ϕ ∈ WFMSO, there is a weak MSO-automaton which is equivalent on trees of arbitrary branching degree. In the
fourth chapter we show the converse direction, namely that each tree language which is recognized by some
weak MSO-automaton is also defined by some WFMSO-formula. The proof passes through non-deterministic
Büchi automata, that generalize Rabin’s ‘special automata’ [28] working on binary trees. We give a second
characterization for WFMSO in connection with this class of automata: a tree language L is WFMSO-definable if
and only if both L and its complement are recognized by non-deterministic Büchi automata. This can be seen as a
generalization of an analogous result of Rabin for WMSO on binary trees [28].

We believe that the fifth chapter provides a quite broad overview of the expressivity results connecting MSO,
WMSO and WFMSO which are disseminated in the literature. Some (apparently) folklore results, such as the
Finite Branching Property and the incomparability between MSO and WMSO, are disclosed and their consequences
investigated. In particular, we emphasize the difference between properties on the horizontal and vertical dimension
of trees. We believe that this perspective provides a guidance in understanding and comparing the expressing power
of different monadic second-order logics.

Another main contribution is the modal characterization of the bisimulation-invariant fragment of WFMSO,
which is proven to be as expressive as the alternation-free fragment of the modal µ-calculus. This result somehow
completes the net of correspondences between WFMSO and MSO, the bisimulation-invariant fragment of MSO
being as expressive as the modal µ-calculus [16]. As a corollary, we obtain the result that WFMSO and WMSO
have incomparable expressive power on trees. This can be seen as a strengthening of the incomparability result for
MSO and WMSO, WFMSO being a fragment of MSO.

Logic Corresponding automata Bisimulation-invariant fragment
MSO MSO-automata µMC
WFMSO weak MSO-automata AFMC
WMSO ? ?

Table 5.1: overview of the characterization results on arbitrarily branching trees.

67

Future Work

The main theme of our work has been the understanding of the expressive power of weak MSO-automata
on trees of arbitrary branching degree. This was motivated by the observation that weak MSO-automata do not
characterize WMSO on this class of structures. Thus a natural continuation would be to provide a different class
of automata, which characterizes WMSO on trees of arbitrary branching degree. The crux of the matter is to
understand how to define these automata, in such a way that their expressive power is incomparable with respect to
MSO-automata. They should be able to express those specifications concerning the horizontal dimension of trees,
which are WMSO-definable but not MSO-definable. This also means to avoid the finite branching property: then a
problem arises, for all the projection constructions that we considered so far are tightly connected to such property.
Therefore, in order to give a projection construction corresponding to WMSO-quantification, essentially different
methods should be proposed.

A second line of research concerns the bisimulation-invariant fragment of WMSO. This investigation is
motivated by the fact that all WMSO-definable tree languages are Borel [9]. If the bisimulation-invariant fragment
of WMSO is strictly weaker than the modal µ-calculus, then it would correspond to a sort of ‘Borelian’ fragment,
providing a better understanding of the topological complexity of modal fixpoint logics. In fact there are reasons to
believe that this is the case. To the best of our knowledge, all examples of tree languages that are WMSO-definable
but not MSO-definable are not bisimulation closed. As an example, consider the language of finitely branching
trees: each finitely branching tree is bisimilar to its ω-expansion, which is not finitely branching. This motivates the
conjecture that the bisimulation-fragment of WMSO ‘collapses inside’ the bisimulation-invariant fragment of MSO,
that is the modal µ-calculus. In fact, we hypothesize that it is even included in the alternation-free fragment of the
modal µ-calculus, for the intuitive reason that WMSO is not stronger than WFMSO in expressing properties on the
vertical dimension of trees. Analogously to other characterization results, we believe that this question should be
tackled from an automata-theoretic perspective. The aforementioned automata characterization of WMSO would
probably be a decisive step towards the proof of the conjecture.

Figure 5.1: overview of the relations between classes of definable tree languages (the position of WMSO∩MSO-
definable tree languages is conjectural).

As a conclusive remark, we observe that all results that we obtained concern leafless trees. We believe that it is
not too harmful to extend the same results taking also trees with leaves into account. The idea is that a C-labeled
tree T with leaves can be represented as a leafless ℘(P∪{r})-labeled tree T′, where all the nodes of the original tree
are labeled in T′ with a propositional letter r /∈ P. Then each formula ϕ of the monadic second-order language on P
can be translated into a formula ϕ

′ on P∪{r}, such that ∥ϕ∥P and ∥ϕ
′∥P∪{r} are the same tree language modulo the

translation of trees with leaves into leafless trees.

Acknowledgements

My sincere thanks go to my supervisors Alessandro Facchini and Yde Venema, both providing constant support
and helpful suggestions throughout this thesis project. I want to thank Alessandro for introducing me to the
intriguing problem of the automata characterization of WMSO, and his guidance (even on Skype) and great patience
in examining my several attempts to tackle it. I am also grateful to Yde: his perspective on MSO-automata was

68

essential for my understanding of the topic, and his sharp comments stimulated me to improve the clarity of my
ideas and the way to present them.

69

Appendix A

Symmetric and ∀-Asymmetric Acceptance Games

In this appendix we want to show a complementation lemma for MSO-automata.

Proposition A.1. Given an MSO-automaton A, there is an effectively constructible MSO-automaton A such that

L(A) = L(A).

The idea is to use a game-theoretical argument. Given an MSO-automaton A, we want to define an automaton
A, with the same carrier A of A, such that for each tree T, basic position (a,s) ∈ A×T , the following holds:

(a,s) is a winning position for ∃ in A(A,T) iff (a,s) is a winning position for ∀ in A(A,T). (A.1)

The main problem with this argument is to prove that a basic position is winning for ∀. We should define a
strategy for ∀ which can face any legitimate marking that ∃ could pick at each round. This is trickier than dealing
with strategies for ∃, because ∃’s choice of a marking always comes first in a round, and her move is a more
‘complicated’ object to handle than ∀’s move. In fact the acceptance game has an asymmetric definition, assigning
a prominent role to player ∃.

The key idea is to make our task easier by creating another asymmetric version of the acceptance game, which
privileges ∀. At each round we want ∀ to pick first a marking, and ∃ answer by picking a basic position. If we can
prove that such version of the acceptance game is in fact equivalent to the standard one, then it becomes relatively
easy to define an automaton A accepting the complement language of A. Indeed a winning strategy f for ∃ in G
becomes a legal strategy for ∀ in the ∀-asymmetric version of the acceptance game. If we can enforce condition
(A.1), then f is also winning for ∀ and makes A reject T.

A.1 Equivalence between Acceptance Games

In this section we introduce ∀-asymmetric acceptance games and prove that they are equivalent to the standard
acceptance games (table 2.1). As an intermediate step, we introduce a third version of the acceptance game, which
we call symmetric because similar roles are assigned to the two players.

Definition A.2. Let A be an MSO-automaton and T a tree. We let nA denote the natural number Max(Ω[A]).

• The ∀-asymmetric acceptance game of A on T - notation A∀(A,T) - is defined according to the rules of
table A.1.

Position Player Admissible moves Parity
(a,s) ∈ A×S ∀ {m ∶ A→ ℘(σR(s))∣(σR(s),m) /⊧ ∆(a,σv(s))} Ω(a)
m ∶ A→ ℘(σR(s)) ∃ {(b,t) ∣ t ∈ (σR(s)∖m(b))} nA

Table A.1: ∀-asymmetric acceptance game for MSO automata

• For each node t of T, let ct be a constant which is interpreted on t in T. We denote with FO+
T (A) the language

of sentences from FO+(A) where constants from {ct ∣ t ∈ T} can occur in place of individual variables. Given
a formula ϕ, we denote with ϕ[ct/x] the formula obtained by substituting each free occurrence of x in ϕ with
ct . The symmetric acceptance game of A on T - notation Asym(A,T) - is defined according to the rules of
table A.2.

71

Position Player Admissible moves Parity
(a,s) ∈ A×S - {(∆(a,σC(s)),s)} Ω(a)
(ψ1∨ψ2,s) ∃ {(ψ1,s),(ψ2,s)} nA
(ψ1∧ψ2,s) ∀ {(ψ1,s),(ψ2,s)} nA
(∃x.ϕ,s) ∃ {(ϕ[ct/x],s) ∣ t ∈ σR(s)} nA
(∀x.ϕ,s) ∀ {(ϕ[ct/x],s) ∣ t ∈ σR(s)} nA
(ct1 ≈ ct2 ,s) and t1 ≠ t2 ∃ ∅ nA
(ct1 ≈ ct2 ,s) and t1 = t2 ∀ ∅ nA
(ct1 /≈ ct2 ,s) and t1 = t2 ∃ ∅ nA
(ct1 /≈ ct2 ,s) and t1 ≠ t2 ∀ ∅ nA
(�,s) ∃ ∅ nA
(⊺,s) ∀ ∅ nA
(a(ct),s) - {(a,t)} nA

Table A.2: Symmetric acceptance game for MSO automata

The basic positions of A∀(A,T) and Asym(A,T) are the same of A(A,T). We call a position (ϕ,s) ∈
(FO+

T (A))×T atomic if ϕ is of the form ct1 ≈ ct2 , ct1 /≈ ct2 or a(ct) for some a ∈A and t ∈σR(s). Winning conditions
for ∀ and ∃ in A∀(A,T) and Asym(A,T) are standardly defined in terms of the parities occurring along the play. ⊲

The idea of ∀-asymmetric acceptance games is that at each round ∀ assigns states b ∈ A to nodes t ∈ σR(s) in
such a way that continuing the match from a position (b,t) leads to a rejecting run of A on T. For this reason, ∃
will pick the next basic position among the ones that are not induced by ∀’s marking. Dually with respect to the
case of standard acceptance games, ∀ will try to assign as many states as possible to each node, so that less basic
positions are available choices for ∃.

The idea of symmetric acceptance games is that at each round ∃ and ∀ play a little sub-game, following the
syntactic shape of the sentence ∆(a,σC(s)) ∈ FO+(A) associated with the transition function. In fact this sub-game
closely resembles the evaluation game providing the standard game semantics to first-order logic [12]. Observe
that the cases for atomic positions in table A.2 are exhaustive, because ∆(a,σC(s)) is a sentence. This means that
all first-order variables appearing in ∆(a,σC(s)) are bound and the two players replace all of them with individual
constants before the match arrives to an atomic position.

Proposition A.3. Let A be an MSO-automaton and T a tree. The following are equivalent.

1. Player ∃ has a winning strategy in G =A(A,T)@(aI ,sI).

2. Player ∃ has a winning strategy in Gsym =Asym(A,T)@(aI ,sI).

3. Player ∃ has a winning strategy in G∀ =A∀(A,T)@(aI ,sI).

Proof (1⇒ 2) Suppose that ∃ has a winning strategy f in G. We define a strategy f ′ for ∃ in Gsym, by induction
on the construction of a match π

′ of Gsym, while maintaining an f -conform shadow match π of G. For each round
that is played in π

′ and π, we want that either ∀ gets stuck in π
′ or the same basic position in π

′ and π can be
maintained for the next round. This is the case for the initial round, where we initialize both matches at position
(aI ,sI). Inductively, suppose that we are at round zi with the same basic position (a,s) ∈ A×T occurring both in π

′

and π. Since π is f -conform, the strategy f suggests a marking m ∶ A→ ℘(σR(s)) that makes ∆(a,σC(s)) true. We
want to define how ∃ should play in π

′ at round zi, in such a way that she can maintain the following condition for
each position (ϕ,s) ∈ FO+

T (A) encountered in round zi.

The marking m makes ϕ true in σR(s). (†)

Condition (†) is true for position (∆(a,σC(s)),s) because m is suggested by the winning strategy f . Intuitively,
this was the initial position of the sub-game of round zi. For each non-atomic position (ϕ,s) ∈ FO+

T (A)×T that is
encountered while playing the sub-game, we distinguish the following cases.

• If ϕ =ψ1∧ψ2, then position (ψ1∧ψ2,s) belongs to ∀. Let i ∈ {1,2} be such that (ψi,s) is the next position
picked by ∀. By inductive hypothesis ψ1∧ψ2 is a sentence in FO+

T (A) such that m makes ψ1∧ψ2 true in
σR(s). It follows that m makes ψi true in σR(s).

72

• If ϕ = ψ1 ∨ψ2, then position (ψ1 ∨ψ2,s) belongs to ∃. By inductive hypothesis ψ1 ∨ψ2 is a sentence in
FO+

T (A) such that m makes ψ1∨ψ2 true in σR(s). It follows that, for some i ∈ {1,2}, the marking m makes
ψi true in σR(s). We let ∃ pick (ψi,s) as next position in round z.

• If ϕ = ∃x.ψ, then position (∃x.ψ,s) belongs to ∃. By inductive hypothesis ∃x.ψ is a sentence in FO+
T (A) such

that m makes ∃x.ψ true in σR(s). It follows that, for some node t ∈ σR(s), the marking m makes ψ[ct/x] true
in σR(s). We let ∃ pick (ψ[ct/x],s) as next position in round z.

• If ϕ = ∀x.ψ, then position (∀x.ψ,s) belongs to ∀. Let t ∈ σR(s) be a node such that (ψ[ct/x],s) is the next
position picked by ∀. By inductive hypothesis ∀x.ψ is a sentence in FO+

T (A) such that m makes ∀x.ψ true in
σR(s). It follows that the marking m makes ψ[ct/x] true in σR(s).

It is immediate to check that the above strategy allows ∃ to maintain condition (†) through round zi in π
′. This

means that we arrive at some atomic position of the sub-game of round zi, which is associated with an atomic
subformula of (∆(a,σC(s)),s). If it is of the form (ct1 ≈ ct2 ,s) or (ct1 /≈ ct2 ,s), then by condition (†) player ∀ gets
stuck. Otherwise, the sub-game arrives to a position of the form (b(ct),s). By definition of Gsym, (b,t) ∈ A×T
is the next basic position in π

′, associated with round zi+1. By condition (†), the marking m makes b(ct) true in
σR(s), meaning that t is in m(b). Therefore (b,t) is an admissible choice for ∀ in π and we let it be the next basic
position associated with round zi+1 in π.

In order to see that ∃ wins π
′, observe that the move suggested by f ′ is always legitime. Then either ∀ gets

stuck at some round, or π
′ and π are both infinite matches, with the same parities occurring along the play. Since π

is f -conform and f is winning for ∃ in G, this suffices to show that the minimum parity occurring infinitely often in
π
′ is even and then ∃ wins π

′.

(2⇒ 1) Suppose that ∃ has a winning strategy f ′ in Gsym. We define a strategy f for ∃ in G, by induction on the
construction of a match π of G, while maintaining an f ′-conform shadow match π

′ of Gsym. We want f to be such
that, for each round that is played in π and π

′, either player ∀ gets stuck in π, or it is always possible to maintain
the same basic position in π and π

′ for the next round.
For the base case, we initialize both π and π

′ at position (aI ,sI). Inductively, suppose that we are at round zi
with the same basic position (a,s) ∈ A×T occurring in π

′ and π. We want to suggest a marking m ∶ A→ ℘(σR(s))
to ∃ in π, on the base of how she plays in the sub-game associated with round zi+1 in π

′. The key observation is
that this sub-game resembles an evaluation game on the sentence ∆(a,σC(s)), for which we consider the possible
outcomes. By playing according to f ′, player ∃ is guaranteed to not get stuck in the sub-game. Depending on how
∀ plays, an atomic position of the form (ct1 ≈ ct2 ,s), (ct1 /≈ ct2 ,s) or (b(ct),s) is reached. In any of the former two
cases, by definition of Gsym one of the two players gets stuck. Since this player cannot be ∃, then it is ∀, meaning
that the relation between t1 and t2 is the one depicted respectively by ct1 ≈ ct2 and ct1 /≈ ct2 . Intuitively, the truth
of ct1 ≈ ct2 and ct1 /≈ ct2 does not depend from which unary predicates mark t1 and t2. This means that, for the
purpose of giving our marking m, we just need to focus on the remaining case, namely the (f ′-conform) plays of
the sub-game in which an atomic position of the form (b(ct),s) is reached. This motivates the following definition
of m.

⋆ For each t ∈ σR(s), let At, f ′ ⊆ A be defined by putting

b ∈ At, f ′ iff (b,t) occurs in some f ′-conform match π
′
t extending π

′. (A.2)

⋆ For each b ∈ A, we define m ∶ A→ ℘(σR(s)) by putting

m(b) ∶= {t ∈ σR(s) ∣ b ∈ At, f ′}.

Following the intuition given above, it can be easily verified that m makes ∆(a,σC(s)) true in σR(s), meaning
that it is a a legitimate move for ∃ in π. If m(b) = ∅ for all b ∈ A, then ∀ gets stuck and ∃ wins the match π.
Otherwise, suppose that ∀ picks (b,t) ∈ A×T as next basic position in π. Since t is in m(b), then by definition of m
there is an f -conform match π

′
t extending π

′ where the position (b,t) occurs. We let ∃ and ∀ play in the sub-game
of round zi according to the prescription of π

′
t . In this way, we make the shadow match π

′ coincide with π
′
t for the

first i+1 rounds. By assumption, π
′
t is f ′-conform and position (b,t) occurs at round zi+1.

It follows that, for each round that is played in π, either ∀ gets stuck or we can maintain the same basic positions
in π and π

′ in the next round. This suffices to show that ∃ wins π.

(2⇒ 3) By contraposition, we want to show that if there is no winning strategy for ∃ in G∀, then there is no
winning strategy for ∃ also in Gsym. Since parity games are determined (theorem 1.29), it suffices to show that if ∀
has a winning strategy f in G∀, then he has a winning strategy f ′ in Gsym. The argument showing this statement

73

works dually with respect to the one given for direction (1⇒ 2) and we confine ourselves to a sketch. We define the
strategy f ′ for ∀ by induction on the construction of a match π

′ of Gsym, while maintaining an f -conform shadow
match π of G∀. For each round that is played in π and π

′, we want that either ∃ gets stuck in π
′ or the same basic

position can be maintained in π and π
′ for the next round. This suffices to show that ∀ wins π

′.
For this purpose, we standardly initialize π

′ and π at the same initial position (aI ,sI). Inductively, let z be
a round where the same basic position (a,s) ∈ A×T occurs both in π and π

′. Since π is f -conform, a marking
m is suggested to player ∀ which makes ∆(a,σC(s)) false in σR(s). Analogously to direction (1⇒ 2), we can
tell ∀ how to play in π

′ the sub-game associated with ∆(a,σC(s)), in such a way that the following condition is
maintained for each position (ϕ,s) ∈ FO+

T (A) occurring at round z.

The marking m makes ϕ false in σR(s). (†)

If the sub-game of round zi in π
′ reaches an atomic position (ct1 ≈ ct2 ,s) or (ct1 /≈ ct2 ,s), by condition (†) we

have respectively that t1 ≠ t2 and t1 = t2, implying that player ∃ gets stuck in π
′. In the remaining case, the sub-game

of round z in π
′ reaches a position of the form (b(ct),s). By condition (†), the sentence b(ct) is false in (σR(s),m),

meaning that t is not in m(b). It follows that (b,t) is an admissible choice for player ∃ in π and we can maintain
the same basic position in π and π

′ for the next round.
(3⇒ 2) As we observed in the proof of direction (2⇒ 3), by contraposition and determinacy of parity games,

it suffices to show that, if ∀ has a winning strategy f ′ in Gsym, then he has a winning strategy f in G∀. The argument
works dually with respect to the one provided for direction (2⇒ 1) and we confine ourselves to a sketch. The
strategy f is defined by induction on the construction of a match π of G∀, while maintaining an f ′-conform shadow
match π

′ of Gsym. We want the strategy f be such that either the same basic positions can be maintained in the two
matches or ∃ gets stuck at some round in π.

For this purpose, we standardly initialize π
′ and π at the same initial position (aI ,sI). Inductively, let z be a

round where the same basic position (a,s) ∈ A×T occurs both in π and π
′. We suggest a marking m ∶ A→ ℘(σR(s))

to ∀ in π as follows.

⋆ For each t ∈ σR(s), let At, f ′ ⊆ A be defined as in (A.2). For each b ∈ A, we define m ∶ A→ ℘(σR(s)) by putting

m(b) ∶= {t ∈ σR(s) ∣ b /∈ At, f ′}.

Dually with respect to direction (2⇒ 1), in order to show that m makes ∆(a,σC(s)) false in σR(s), the key
observation is that the sub-game at round z in π

′ resembles an evaluation game on ∆(a,σC(s)), where we know by
assumption that player ∀ does not get stuck.

If m(b) = σR(s) for all b ∈ A, then ∃ gets stuck in π at round zi and ∀ immediately wins. Otherwise, suppose
that player ∃ chooses a next basic position (b,t) in π. Then t is not in m(b) by definition of G∀ and b is in At, f ′ by
definition of m. As for direction (2⇒ 1), this suffices to show that we can make ∃ and ∀ play the sub-game of
round zi in π

′, in such a way that ∃’s movements follow the suggestions of f ′ and the basic position (b,t) occurs in
π
′ at round zi+1. ◻

A.2 A Complementation Lemma for MSO-Automata

In this section we use the equivalence between standard and ∀-symmetric acceptance games to show that the
tree languages recognized by MSO-automata are closed under complementation.

Definition A.4. Let ϕ ∈ For+(A) be a formula. The dual ϕ
δ ∈ FO+(A) of ϕ is defined by induction as follows.

(a(x))δ ∶= a(x)
(⊺)δ ∶= �
(�)δ ∶= ⊺
(x ≈ y)δ ∶= x /≈ y

(x /≈ y)δ ∶= x ≈ y

(ϕ∧ψ)δ ∶= (ϕ)δ∨(ψ)δ

(ϕ∨ψ)δ ∶= (ϕ)δ∧(ψ)δ

∀x.ψ ∶= ∃x.(ψ)δ

∃x.ψ ∶= ∀x.(ψ)δ

74

Let X be a set and m ∶ A→ ℘(X) a marking. The dual mδ ∶ A→ ℘(X) of m is defined by putting

mδ(a) ∶= X ∖m(a)

for each a ∈ A. ⊲

The following property of the dual transformation is immediate by definition A.4.

Proposition A.5. Let ϕ ∈FO+(A) be a sentence, X a set and m ∶A→℘(X) a marking. The following are equivalent.

1. (X ,m) ⊧ ϕ.

2. (X ,mδ) /⊧ ϕ
δ.

We have now all the ingredients to prove the complementation lemma for MSO-automata.

Proof of proposition A.1 Let A= ⟨A,aI ,∆,Ω⟩ be an MSO-automaton. Define an MSO-automaton A= ⟨A,aI ,∆
δ,Ωδ⟩

by putting Ω
δ(a) ∶=Ω(a)+1 and ∆

δ(a,c) ∶= (∆(a,c))δ for each a ∈ A and c ∈C. Let T be a tree. We want to show
that

A accepts T iff A does not accept T.

By proposition A.3 and determinacy of parity games, it suffices to prove that ∃ has a winning strategy in G∃ =
A(A,T) if and only if ∀ has a winning strategy in G∀ =A∀(A,T).

(⇒) Suppose that ∃ has a winning strategy f∃ in G∃. We define a strategy f∀ for ∀ in G∀, by induction on the
construction of a match π∀ of G∀, while maintaining an f∃-conform shadow match π∃ of G∃. For each round z that
is played in π∀ and π∃, we want maintain the same basic position in the two matches.

At the initial round we initialize the two matches from position (aI ,sI). Inductively, suppose that we are at
round zi and the same basic position (a,s) ∈ A×T occurs in π∀ and π∃. Let m∃ ∶ A→ ℘(σR(s)) be the suggestion of
f ∃ from position (a,s) in π∃. We let m∀ ∶= (m∃)δ be the suggestion of f∀ from position (a,s) in π∀. By proposition
A.5, the marking m∀ makes (∆(a,σC(s)))δ = ∆

δ(a,σC(s)) false in σR(s), meaning that it is a legitimate move for
∀ in π∀. At this point we distinguish two cases.

1. If m∃ made ∀ get stuck in π∃, it means that m∃(b) = ∅ for all b ∈ A. Then, by definition, m∀(b) = σR(s)
for all b ∈ A. By definition of G∀, no move is available for ∃ and she gets stuck in the match π∀, which is
immediately won by ∀.

2. Otherwise, let (b,t) be the next position picked by ∃ in π∀. By definition of G∀ the node t is not in m∀(b).
By definition of m∀, this means that t is in m∃(b). Therefore (b,t) is a legitimate move for ∀ in π∃ and we
let (b,t) be the next basic position in π∃. In this way the same basic positions are maintained in the two
matches at round zi+1.

By construction, either the two matches π∀ and π∃ end in the same round, respectively with player ∃ and player
∀ getting stuck, or they are both infinite. In the latter case, by the fact that π∃ is f∃-conform and f∃ is winning for ∃,
the minimum parity n occurring infinitely often in π∃ in even. By definition of Ω

δ, the minimum parity occurring
infinitely often in π∀ is n+1, which is odd. Therefore ∀ wins π∀.

(⇐) The same argument provided for direction (⇒) works dually for the converse direction. ◻

75

Bibliography

[1] ARNOLD, A. Logical definability of fixed points. Theor. Comput. Sci. 61 (1988), 289–297.

[2] ARNOLD, A., AND NIWINSKI, D. Fixed point characterization of weak monadic logic definable sets of trees.
In Tree Automata and Languages. 1992, pp. 159–188.

[3] BLACKBURN, P., RIJKE, M. D., AND VENEMA, Y. Modal logic. Cambridge University Press, Cambridge
England New York, 2001.

[4] BRADFIELD, J. The modal µ-calculus alternation hierarchy is strict. In CONCUR ’96: Concurrency Theory,
U. Montanari and V. Sassone, Eds., vol. 1119 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 1996, pp. 233–246.

[5] DAVEY, B. A., AND PRIESTLEY, H. A. Introduction to Lattices and Order (2. ed.). Cambridge University
Press, 2002.

[6] EMERSON, E. A. Temporal and modal logic. In Handbook of Theoretical Computer Science (1995), Elsevier,
pp. 995–1072.

[7] EMERSON, E. A., AND JUTLA, C. S. Tree automata, µ-calculus and determinacy (extended abstract). In
FOCS (1991), pp. 368–377.

[8] EMERSON, E. A., AND LEI, C.-L. Efficient model checking in fragments of the propositional µ-calculus
(extended abstract). In LICS (1986), pp. 267–278.

[9] FACCHINI, A. A Study on the Expressive Power of Some Fragments of the Modal µ-Calculus. PhD thesis,
University of Lausanne and University of Bordeaux 1.

[10] FONTAINE, G. Modal fixpoint logic: some model-theoretic questions. PhD thesis, ILLC (University of
Amsterdam), 2010.

[11] GRÄDEL, E., THOMAS, W., AND WILKE, T., Eds. Automata, Logics, and Infinite Games: A Guide to
Current Research (2002), vol. 2500 of Lecture Notes in Computer Science, Springer.

[12] HINTIKKA, J. Game-theoretical semantics: Insights and prospects. In The Game of Language, J. Hintikka
and J. Kulas, Eds. D. Reidel Publishing Company, 1983, pp. 1–31.

[13] HODGES, W. Model theory. Cambridge University Press, Cambridge England New York, 1993.

[14] JANIN, D., AND LENZI, G. On the relationship between monadic and weak monadic second order logic on
arbitrary trees, with applications to the µ-calculus. Fundam. Inform. 61, 3-4 (2004), 247–265.

[15] JANIN, D., AND WALUKIEWICZ, I. Automata for the modal µ-calculus and related results. In MFCS (1995),
pp. 552–562.

[16] JANIN, D., AND WALUKIEWICZ, I. On the expressive completeness of the propositional µ-calculus with
respect to monadic second order logic. In Proceedings of the 7th International Conference on Concurrency
Theory (London, UK, 1996), CONCUR ’96, Springer-Verlag, pp. 263–277.

[17] JECH, T. Set theory, Second Edition. Perspectives in Mathematical Logic. Springer, 1997.

[18] KUPFERMAN, O., AND VARDI, M. Y. On bounded specifications. In LPAR (2001), pp. 24–38.

[19] KUPFERMAN, O., AND VARDI, M. Y. Weak alternating automata are not that weak. ACM Trans. Comput.
Logic 2, 3 (July 2001), 408–429.

77

[20] KUPFERMAN, O., AND VARDI, M. Y. Π2∩Σ2 ≡ AFMC. In ICALP (2003), pp. 697–713.

[21] KUPFERMAN, O., VARDI, M. Y., AND WOLPER, P. An automata-theoretic approach to branching-time
model checking. J. ACM 47, 2 (Mar. 2000), 312–360.

[22] MOSTOWSKI, A. Games with forbidden positions. Tech. Rep. 78, University of Gdansk, 1991.

[23] MOSTOWSKI, A. W. Hierarchies of weak automata and weak monadic formulas. Theor. Comput. Sci. 83, 2
(1991), 323–335.

[24] MULLER, D. E., SAOUDI, A., AND SCHUPP, P. E. Alternating automata, the weak monadic theory of trees
and its complexity. Theor. Comput. Sci. 97, 2 (1992), 233–244.

[25] NEUMANN, J., SZEPIETOWSKI, A., AND WALUKIEWICZ, I. Complexity of weak acceptance conditions in
tree automata. Inf. Process. Lett. 84, 4 (2002), 181–187.

[26] PNUELI, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations
of Computer Science (Washington, DC, USA, 1977), SFCS ’77, IEEE Computer Society, pp. 46–57.

[27] RABIN, M. O. Decidability of second-order theories and automata on infinite trees. BULLETIN of the
American Mathematical Society 74 (July 1968), 1025–1029.

[28] RABIN, M. O. Weakly definable relations and special automata. In Proceedings of the Symposium on
Mathematical Logic and Foundations of Set Theory (SMLFST’70) (1970), Y. Bar-Hillel, Ed., North-Holland,
pp. 1–23.

[29] SAFRA, S. On the complexity of ω-automata. In Proceedings of the 29th Annual Symposium on Foundations
of Computer Science (Washington, DC, USA, 1988), SFCS ’88, IEEE Computer Society, pp. 319–327.

[30] VAN BENTHEM, J. Modal Correspondence Theory. PhD thesis, Universiteit van Amsterdam, 1977.

[31] VENEMA, Y. Lectures on the modal µ-calculus. Lecture Notes, Institute for Logic, Language and Computation,
University of Amsterdam, 2008.

[32] WALUKIEWICZ, I. An extension of Rabin’s tree theorem to tree-like structures.

[33] WALUKIEWICZ, I. Monadic second order logic on tree-like structures. In STACS (1996), pp. 401–413.

[34] WILKE, T. Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc. Math. Belg 8 (2001).

78

