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Abstract

This thesis is located in the field of provability and interpretability logic, where
modal logic is used in the study of formal systems of arithmetic. The central
notion of this thesis is that of interpretability. The notion of interpretability can be
seen as a tool for comparing axiomatic theories. Intuitively, if a theory T interprets
a theory S , T is at least as strong as S. The modal logic ILM captures exactly what
Peano Arithemtic (PA) can prove about interpretability between finite extensions
of itself. As it turns out, finite extensions of PA form a lattice under the relation
of interpretability, i.e. any two theories have an infimum and a supremum in the
interpretability ordering. The supremum in this lattice is the main subject of study
in this thesis.

We will extend the logic ILM with a binary operator for the supremum, and explore
the possibilities of having a modal semantics for the resulting system ILMS. For
that purpose, the supremum will be studied both from the arithmetical as well as
from the modal perspective. First, we will see that the exact content of the logic
ILMS depends on the formula that is chosen as the arithmetical representative of
the supremum. This is different from ILM, where the meaning of the modal symbols
is fixed from the outset. Proceeding to the modal side, we establish an important
negative result: there can be no structural characterization of ILM–models that
validate the defining axiom for the supremum. This precludes the possibility of
having a relational semantics for the system ILMS — at least one that would extend
the usual semantics for ILM. Finally, we examine an elegant but unfortunately
failed attempt to find a relational semantics for a particular representative of the
supremum.
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CHAPTER 1

Introduction

Wenn man aber einmal mit Logik beginnt, wo ein
Gedanke von selbst aus dem vorhergehenden folgt,
weiß man zum Schluß nie, wie das endet.

(Robert Musil, “Der Mann ohne Eigenschaften”)

The central notion of this thesis is that of interpretability. The notion of inter-
pretability can be used to compare formal theories. Intuitively, a theory T is at
least as strong as a theory S if T interprets S; we write T � S. Clearly, T is at
least as strong as S if T proves all theorems of S. However we would also want to
compare theories whose languages are different. For example, we want to be able to
compare a system in the language of arithmetic with a system in the language of set
theory. In this situation, the idea of a translation arises naturally. Roughly, an in-
terpretation of S in T is a structure-preserving1 translation from the language of S
into the language of T . The translation should have the property that if a sentence
A is a theorem of S, then the translation of A is a theorem of T . Interpretations
can be used to yield relative consistency proofs, or to prove the undecidability of
certain theories (see [TMR53]).

Equipped with the notion of interpretability, we can ask questions like:

i. Given theories T and S s.t. T �S, is there a different theory U with T �U�S ?

ii. Are there theories T and S with T 6� S and S 6� T ?

iii. Given theories T and S, is there a theory U with T � U , S � U , and s.t. for
any U ′ with T � U ′, S � U ′, we have that U � U ′ ?

iv. Given theories T and S, is there a theory U with U � T , U � S, and s.t. for
any U ′ with U ′ � T , U ′ � S, we have that U ′ � U ?

The relation of interpretability is a preorder on theories. The equivalence classes
of the induced equivalence relation — the relation of mutual interpretability —
are called degrees (of interpretability). Questions i-iv can thus be seen as questions
about the structure of the degrees under the relation of interpretability. Is it dense?
Are there incomparable elements? Is it a lattice?

1“Structure preserving” means that the translation should commute with the propositional con-
nectives. For example, we want ⊥ to be translated as ⊥.
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1. BACKGROUND 2

Assuming that the theories we consider have a certain strength, all the above ques-
tions have an affirmative answer2. According to iii and iv, the degrees of inter-
pretability form a lattice. It is the supremum in this lattice that this thesis is
mainly about.

1. Background

Our main object of study is the supremum in the lattice (VPA,�), where VPA

is the set of degrees of finite extensions of Peano Arithmetic (PA). This lattice
was first studied by Švejdar in [Šve78]. However, instead of being interested in
the supremum in this lattice per se, we are interested in what is provable about
it in PA. This thesis contributes to the research programme of provability and
interpretability logic, where modal logic is used to study what formal systems of
arithmetic can prove about their own metamathematical properties.

This research programme has been rather successful. The modal system GL, named
after Gödel and Löb, captures exactly what a sufficiently strong formal system
can prove about provability in itself. Extending GL with a binary modality �

for interpretability yields an elegant modal system IL, all of whose theorems are
provable interpretability principles for any reasonable arithmetical theory. The
modal system ILM is a result of adding to IL the axiom M (Montagna’s principle)
(A�B)→ (A∧2C)�(B∧2C). The logic ILM captures exactly what an essentially
reflexive theory — such as PA — can prove about interpretability between its finite
extensions. Adding to IL the axiom P (the persistence principle) A�B → 2(A�B),
we get the logic ILP which captures exactly what a finitely axiomatizable theory3

can prove about interpretability between its finite extensions.

The goal of this thesis is to study the system ILMS, which is the result of adding to
ILM a binary operator ? for the supremum, plus axiom S, the defining axiom for
?:

(C �A) ∧ (C �B)↔ C � (A?B).

As in the case of GL and ILM, the ultimate reason for having a system like ILMS is to
use it for finding out what is and what is not provable in PA about the supremum in
the lattice (VPA,�). For this, arithmetical soundness and completeness is needed.
The proofs of the latter for GL and ILM depend on these systems being modally
complete w.r.t. a certain class of frames. A natural first step to make is thus to
find some nicely describable class of frames, and prove modal completeness of ILMS
w.r.t. this class of frames. For this, we would want to extend the modal semantics
for ILM to a modal semantics for ILMS. The main result of this thesis is that even
this first step is not possible — at least not in the way we would expect it to be
possible in the best of all worlds.

2On the other hand, it is an interesting fact that all naturally occurring theories in the literature
have turned out to be linearly ordered under the relation of interpretability. Harvey Friedman
calls this “perhaps the most intriguing, thought provoking, fundamental, and deep phenomenon

in the whole of the foundations of mathematics” [Fri07, p 37].
3To be more precise, such a finitely axiomatizable theory is also required to extend I∆0+SUPEXP
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2. Overview

The reader of this thesis is assumed to be familiar with basic facts about lattices,
and the fundamentals of modal logic. Also some knowledge of Gödel’s Incomplete-
ness Theorems is useful, though not necessary. Given this assumption, the second
chapter contains the preliminaries for the rest of this thesis. It gives an introduction
to the field of provability and interpretability logic, where modal logic is used in the
study of formal systems of arithmetic. We describe the methodology used in this
discipline, explain the main results, and provide necessary background concerning
arithmetical as well as modal matters. We introduce the systems GL, IL, ILM, and
ILP. The final part of Chapter 2 introduces the lattice of degrees of interpretability.
We focus on the lattice (VPA,�), and discuss some issues concerning the supremum
in this lattice.

The next three chapters present original research on the supremum in the lattice
(VPA,�). The goal of this research is to lay the ground for the logic ILMS, i.e. ILM
plus axiom S for the supremum operator ?.

Chapter 3 deals with the arithmetical side of the supremum. We will present some
methodological considerations concerning the intended arithmetical meaning of the
modal symbol ?. The intended meaning of ? is of course an arithmetical supremum;
however there are different ways for the supremum to be represented in PA. We call
a representative of the supremum in PA an implementation. As it turns out, the
choice of an implementation does matter from the perspective of the logic ILMS.
This is different from GL and IL, where the arithmetical meanings of the modal
symbols 2 and � are fixed from the outset. Chapter 3 studies in more detail two
possible arithmetical meanings of the modal symbol ?, i.e. two implementations.
We call them Švejdar’s implementation and Visser’s implementation respectively.
We also establish a principle about the supremum which is true but nevertheless
unprovable in PA — regardless of which implementation we choose to represent the
supremum.

Chapters 4 and 5 deal with the modal side of the supremum. Chapter 4 examines
the possibility of having a modal semantics for the minimal logic ILMS, extending
ILM only by axiom S for ?. For this, we have to specify what we mean by having
a modal semantics in the first place. In the context of modal logic, the ideal would
be to find a structural condition determining the truth value of formulas of the
form A? B in an ILM–model. Also having a structural characterization of frames
satisfying axiom S would be desirable. For this, we determine certain minimal
structural conditions that an ILM–model should satisfy if it is to validate axiom S.
The main result of Chapter 4 is that the ILM–frames are too “narrow” in order to
satisfy these conditions. Hence it is impossible to give a structural characterization
of ILM–frames satisfying axiom S. As a consequence, we cannot have a nice modal
semantics for ILMS. We then turn to a very weak notion of modal semantics, where
the only thing we require from an ILMS–model is that it validates axiom S. We
prove completeness w.r.t. this notion of semantics for a very simple case, explaining
also why the strategy used in the proof cannot be extended to the general case.

In Chapter 5, we will try to forget about the negative result of the previous chapter.
This chapter contains an attempt to find a relational semantics for the system
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ILMS, where the intended meaning of the symbol ? is Visser’s implementation of
the supremum. Although wrong at the end (by the negative result of the previous
chapter), this relational semantics is an elegant system on its own. Furthermore
the match between what is valid in the semantics and what is provable in PA about
Visser’s implementation goes a surprisingly long way.

3. Genesis

We end this section by saying a few words about the origin of this thesis. The
supremum in the lattice (VPA,�) was not our original object of interest. Instead,
we wanted to study the supremum in the lattice (F,�), where F is the set of
degrees of finite theories. The structure (F,�) was studied by Harvey Friedman in
[Fri07]. He shows that (F,�) is a distributive lattice, that it contains incomparable
elements, and that it is dense.

Our initial goal was to devise a modal logic where Friedman’s density argument for
the lattice (F,�) could be formalized. Since the argument is about finite theories,
our desired logic would have been an extension of ILP. Examining Friedman’s
argument, it is clear that the language of interpretability logic alone is not sufficient
for expressing it. Apart from the concept of a supremum, the argument uses witness
comparisons, and the theory of a natural number. As a first step, we wanted to
extend the modal system ILP with a supremum operator. However already this first
step turned out to be more difficult than expected. The way Friedman constructs
the supremum of given sentences A and B is not obviously suitable to be subject
to a modal treatment. It is an open question whether a reasonable arithmetical
counterpart for the modal symbol ? exists for finitely axiomatizable theories. As
a result of Švejdar’s investigations ([Šve78]), such a counterpart is available for
essentially reflexive theories such as PA, and hence we turned our attention to the
latter instead.



CHAPTER 2

Preliminaries

In this thesis, modal logic is used to study formal systems of arithmetic. We want
to extend a system of interpretability logic with a binary connective whose intended
meaning is an “arithmetical supremum”. In order to do that, a solid knowledge
of both arithmetical and modal matters is needed. This chapter introduces both
the arithmetical and the modal preliminaries, as well as the connection between
the two, thus laying the ground for the rest of this thesis. Section 1 deals with
provability logic, and Section 2 with its extension interpretability logic, extending
which in turn is the main goal of this thesis. Section 3 introduces the lattice of
interpretability. The supremum in this lattice is the main object of study in this
thesis — it is the arithmetical object that we would want to capture with the tools
of modal logic.

1. Provability Logic

This section introduces the modal system GL, also known as provability logic, and
its relation to sufficiently strong theories of arithmetic.

1.1. Formal systems of arithmetic. The language of arithmetic is the lan-
guage of 0, S (successor), +, and ×. We write x < y as an abbreviation for
∃z (x+Sz = y). We define for each n ∈ N a term n of the language of arithmetic by
letting 0 = 0, and n+ 1 = Sn. Terms of the form n are called numerals. A formula
A is said to be bounded if all quantifiers occurring in A are of the form ∀x < t or
∃x < t, where t is a term not containing x.

If Γ is a set of arithmetical formulas closed under subformulas and substitution
of terms, then IΓ is the theory containing basic facts about 0, S, +, and ×, plus
induction restricted to Γ. The basic axioms are:

i. 0 is not in the range of the S function

ii. S is injective

iii. recursive definitions of the operations + and ×

The weakest arithmetical theory considered in this thesis is the theory EA (elemen-
tary arithmetic) aka I∆0+EXP, where EXP states that the exponentiation function
is total, and ∆0 is the set of bounded formulas. EA is known to be finitely axiom-
atizable (Theorem V.5.6 in [HP91]). Although Gödel’s Incompleteness Theorems
apply also to weaker theories than EA (e.g. Robinson arithmetic Q, or Buss’ S1

2), EA
is the weakest theory that naturally occurs in the literature whose provability logic
is known to be GL. Our choice is thus motivated by the modal logical perspective.

5
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Another advantage of EA is that it turns out to be much stronger than its super-
ficial weakness (compared to e.g. the full theory of Peano Arithmetic) might lead
one to expect. In fact, Harvey Friedman has made the conjecture (in [FoM]) that
every theorem published in the Annals of Mathematics whose statement involves
only finitary mathematical objects can be proved in EA.

The set ∆0 of bounded formulas is also denoted by Σ0 and Π0. We define the sets
Σn and Πn for all n ∈ N.

Definition 1. Let m ≥ 0. A formula is Σn+1 if it is of the form ∃z0 . . . ,∃zmA,
with A a Πn-formula. A formula is Πn+1 if it is of the form ∀z0 . . . ,∀ zmA, with A
a Σn-formula. A formula is ∆n if it is both Σn and Πn.

We shall also say that a formula is Σn (Πn) if it is equivalent to a Σn- (Πn-) formula
in the theory T we are considering.

Definition 2. A theory T is reflexive if it proves the consistency of each of its
finite subtheories. A theory T is essentially reflexive if all its finite extensions in
the same language are reflexive.

The theory PA (Peano arithmetic) contains the basic facts about 0, S, +, and ×,
plus induction for all formulas. PA can be seen1 as the theory EA+

⋃
n∈ω IΣn. It is

known that for each n > 0, IΣn is finitely axiomatizable, and that PA is essentially
reflexive. For proofs of these facts, see Theorems I.2.52 and III.2.35 in [HP91].
Note that as a consequence of the Second Incompleteness Theorem, no reflexive
theory can be finitely axiomatized.

1.2. Incompleteness. Until the end of this subsection, let T ⊇ EA be a
Σ1-sound (hence also consistent) recursively axiomatizable theory in the language
of arithmetic. Having the above properties, T is strong enough to be subject to
Gödel’s Incompleteness Theorems. By the First Incompleteness Theorem, there is
a sentence G s.t. 0T G and 0T ¬G. We say that G is independent from T . By the
Second Incompleteness Theorem, 0T ConT , where ConT is a formalized statement
of T ’s consistency.

An essential ingredient of Gödel’s proof is the idea of arithmetization, i.e. the
coding of syntactical objects as natural numbers. This is done in such a way
that the basic properties of the syntactical objects (e.g. being a formula, an axiom,
or a proof) become computationally simple predicates of the codes. Similarly,
basic functions on the syntactical objects (e.g. logical connectives, or substituting
a term into a formula) become computationally simple functions on the codes.
When A is a formula, we write pAq for the code (also: gödelnumber) of A. Thus,
whereas by default T is seen as proving statements about natural numbers, it
can now be interpreted as proving statements about its own syntax. The coding
should be computationally simple so as to ensure that the basic facts concerning T ’s
syntax are provable in T . For our purpose, computationally simple functions will be
the Kalmar elementary functions. The Kalmar elementary functions are primitive
recursive functions whose growth is bounded by iterations of the exponentiation
function. See [Ros84] for a number of equivalent characterizations of Kalmar

1We will adopt this perspective in Chapter 3.
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elementary functions. As usual, a relation R is said to be Kalmar elementary if its
characteristic function is Kalmar elementary.

Definition 3. We say that a formula AR numerates a relation R in T if for all
n0, . . . , nk,

N � R(n0, . . . , nk) ⇔ `T AR(n0, . . . nk).

A formula AR is said to binumerate R in T if in addition,

N 2 R(n0, . . . , nk) ⇒ `T ¬AR(n0, . . . nk).

A function f is provably recursive if there is a formula Af binumerating the graph
of f , and furthermore `T ∀x0 . . . , xm∃!y Af (x0, . . . , xm, y).

Theorem 4. For every Kalmar elementary relation R, there is a ∆0-formula that
binumerates R in EA. The provably recursive functions of EA are exactly the Kalmar
elementary functions.

For a proof that Kalmar elementary functions are provably recursive in EA, see
[Avi03]. Using Theorem 4, we can assume that T is equipped with function and
relation symbols for all Kalmar elementary functions and relations. The computa-
tional simplicity of the coding ensures that the set of codes of theorems is Kalmar
elementary. Hence by Theorem 4 there is a ∆0-formula PrfT (x, y) that binumerates
the axioms of T in T , i.e. for all m and A:

m codes a T -proof of A ⇔ `T PrfT (m, pAq)(1)

m does not code a T -proof of A ⇔ `T ¬PrfT (m, pAq)(2)

A formula PrfT (x, y) as above is said to be a proof predicate of T . The formula
PrT (y) := ∃xPrfT (x, y) then numerates the theorems of T , i.e.

(3) ϕ is provable in T ⇔ `T PrT (pAq).

For the direction from right to left, the assumption of Σ1-soundness of T is needed.
A formula PrT (y) satisfying (3) is said to be a provability predicate of T . The
condition in (3) states that PrT is extensionally correct2 w.r.t. theoremhood in T .
Note that since PrfT (x, y) is ∆0, the formula PrT (y) is Σ1.

Another key idea of Gödel’s proof is that of diagonalization. Gödel constructed
a formula G with `T G ↔ ¬PrfT (pGq). We say that G is a fixed point of the
formula ¬PrfT (x). Carnap ([Car34]) was the first to isolate the general Fixed
Point Theorem as an independent statement from Gödel’s proof. According to the
general version of the Fixed Point Theorem, any formula of arithmetic has a fixed
point.

Lemma 1.1 (Gödel-Carnap Fixed Point Lemma). Let A(x0 . . . , xn) be a formula
whose free variables are exactly x0, . . . , xn. Then there is a formula B(x1, . . . , xn)
whose free variables are exactly x1, . . . , xn, and s.t

(4) `T B(x1, . . . , xn)↔ A(pB(v1, . . . , vn)q, x1, . . . , xn).

We say that ` B(x1, . . . , xn) is a fixed point of A(x0 . . . , xn).

2Apart from the “natural” provability predicate, there are many strange predicates that satisfy

condition (3). An example is the Rosser provability predicate. Informally, a formula is Rosser
provable if it has a proof (in the usual sense), and there is no smaller (in terms of gödelnumbers)

proof of its negation. See also footnote 3.
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For a proof, see [Smo85], or [Boo93].

Definition 5. Let T be a theory and PrT (y) a provability predicate of T . A
Gödel-sentence of T (w.r.t. PrT ) is a sentence G which is a fixed point of ¬PrT (y)
in the sense of Lemma 1.1, i.e. `T G↔ ¬PrT (pGq).

Using the fact that the formula PrT (y) is extensionally correct, i.e. that it satisfies
(3) above, it is easy to see that G must be independent of T .

Theorem 6 (The First Incompleteness Theorem). Let G be a Gödel-sentence of
T . Then 0T G and 0T ¬G.

For the natural way of defining the formula3 PrT (y), the following holds:

1. `T A ⇒ `T PrT (pAq)

2. `T (PrT (pA→ Bq) ∧ PrT (pAq))→ PrT (pBq)

3. `T PrT (pAq)→ PrT (pPrT (A)q)

The formulas A and B above are also allowed to contain free variables. Properties
1 - 3 are referred to as the Hilbert-Bernays-Löb derivability conditions. Note that 1
is just one direction of the property in (3), and 2 the formalized version of modus
ponens. Property 3 follows from the fact that for any Σ1-formula S (possibly
containing free variables), `T S → PrT (pSq). This property is often referred to as
provable Σ1-completeness.

Theorem 7 (The Second Incompleteness Theorem). Let PrT (y) be a provability
predicate of T satisfying the Hilbert-Bernays-Löb derivability conditions. Then

0 ¬PrT (p⊥q),

i.e. T does not prove (the formalized statement of) its own consistency.

Proof. Using the fact that PrT (y) satisfies the Hilbert-Bernays-Löb derivabil-
ity conditions, it is not hard to show that `T G ↔ ¬PrT (p⊥q). Hence using the
First Incompleteness Theorem, ¬PrT (p⊥q) must be independent from T . 2

As seen above, a sentence asserting its own unprovability in T is independent of
T . In 1952, Leon Henkin asked what can be said about sentences asserting their
own provability. Henkin’s question was answered by Martin Hugo Löb in [Löb55].
Löb showed that for any formula A, if `T PrT (pAq) → A, then already `T A.
This result is referred to as Löb’s Theorem. Also the formalized version of Löb’s
Theorem holds.

Theorem 8 (Formalized Löb’s Theorem).

`T PrT (pPrT (pAq)→ Aq)→ PrT (pAq).

3There are extensionally correct provability predicates which do not satisfy properties 2 and 3.
See [Fef60] for a discussion of how different (extensionally correct) choices of the predicate PrT (y)

affect which properties of PrT (y) are provable in T .
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For a proof, see Chapter 3 of [Boo93]. According to Löb’s Theorem, a sentence
asserting its own provability is provable. In fact, T proves PrT (pAq) → A only in
the trivial case when it already proves A. Note that in the case the axioms of T
are true in N, we do believe PrT (pAq)→ A to be true (in N) for every A.

Löb’s Theorem tells us something about the (un)provability in T of simple sentences
containing the provability predicate. It is natural to ask which other such sentences
are provable in T — is there a way to characterize all such sentences? Looking at
the form of the Hilbert-Bernays-Löb derivability conditions, one recognizes the rule
of necessitation, the K-axiom, and the transitivity axiom familiar from modal logic.
Also the formalized Löb’s Theorem seems apt for being viewed as a modal principle.
This motivates the idea of using propositional modal logic to study what T can
prove about PrT (y). We will give an overview of the successes of this programme
below.

1.3. The modal system GL. We assume basic knowledge of modal logic, in
particular the system K and its modal semantics. An introduction to modal logic,
as well as an accessible treatment of the material presented in this section can be
found in [Boo93].

Definition 9. The modal logic GL (named after Gödel and Löb) is K plus the
principle4 2(2A→ A)→ 2A.

The principle 2(2A→ A)→ 2A is also known as the Löb axiom. It is the modal
counterpart of the formalized version of Löb’s Theorem. The following lemma
was first proven by Dick de Jongh. It shows that the (modal counterparts of the)
Hilbert-Bernays-Löb derivability conditions are provable in GL.

Lemma 1.2. `GL 2A→ 22A

The system GL has a Kripke semantics. A relation R is said to be converse well-
founded if for every set X 6= ∅ there is an element x ∈ X s.t. there is no y ∈ X
with xRy; i.o.w. if there are no infinite ascending sequences x0Rx1Rx2 . . .. It turns
out that GL characterizes Kripke frames whose accessibility relation R is transitive
and converse well-founded. The modal completeness of GL w.r.t. transitive converse
well-founded frames was proved by Krister Segerberg in [Seg71]. In fact, Segerberg
proved that GL is even modally complete w.r.t the more restricted class of finite
transitive irreflexive trees.

Theorem 10 (Modal Completeness of GL). Let K be the class of frames that are
transitive irreflexive finite trees. Then GL ` A ⇔ ∀F [F ∈ K ⇒ F  A].

An important result concerning GL is the Fixed Point Theorem, proved indepen-
dently by Dick de Jongh and Giovanni Sambin. We say that a propositional letter
p is modalized in A if all its occurrences in A are under the scope of a 2.

Theorem 11 (Fixed Point Theorem for GL). Let p be modalized in A(p). There is
a formula D containing the same propositional letters as A(p) but not containing p
s.t.

4A principle is just a rule with an empty antecedent.
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i. `GL D ↔ A(D)

ii. `GL [(p↔ A(p)) ∧2(p↔ A(p))]→ [(p↔ D) ∧2(p↔ D)]

A sentence D with the above properties is called the fixed point of A(p). An
algorithm for calculating fixed points in GL is presented e.g. in [Smo77]. Applying
this algorithm to the sentence ¬2p (where p is modalized), we get as a fixed point
¬2⊥. Thus `GL ¬2⊥ ↔ ¬2¬2⊥, and

`GL [(p↔ ¬2p) ∧2(p↔ ¬2p)]→ (p↔ ¬2⊥).

This should remind the reader of the situation in arithmetic, where the Gödel-
sentence G (i.e. the fixed point of ¬PrT (y)) turned out to be equivalent to the
consistency statement of T , whose modal counterpart is the sentence ¬2⊥.

1.4. GL and arithmetic. In order to make precise the idea of GL describing
what an arithmetical theory T can prove about its own provability predicate, we
need to translate sentences of the modal language to sentences in the language of
arithmetic.

Definition 12. A realization ∗ is a function from the propositional letters of the
modal language to sentences in the language of arithmetic. The domain of a real-
ization is extended to all formulas of the modal language by requiring:

i. (⊥)∗ = ⊥

ii. (A→ B)∗ = A? → B∗

iii. (2A)∗ := PrT (pA∗q).

Using the notion of a realization, we can make precise the idea of GL being the logic
of the provability predicate of a sufficiently strong arithmetical theory.

Definition 13. A modal formula A is a provability principle of a theory T if for
all realizations ∗, `T A∗. The provability logic of a theory T , we write PrL(T ), is a
logic that generates exactly the provability principles of T .

Theorem 14 (Arithmetical Soundness and Completeness of GL). Let T ⊇ EA be
recursively axiomatizable and Σ1-sound. Then PrL(T ) = GL.

For the direction GL ⊆ PrL(T ) (arithmetical soundness), one has to check that
the axioms and rules of GL are provable in T under all realizations. But these are
just the Hilbert-Bernays-Löb derivability conditions plus the formalized version of
Löb’s rule introduced in Section 1.2. The proof of the other direction PrL(T ) ⊆ GL
(arithmetical completeness), for T = PA, is due to Robert Solovay ([Sol76]). Dick
de Jongh, Marc Jumelet and Franco Montagna ([dJJM91]) extended the result to
weaker theories, in particular to EA.

We will from now on write 2TA or even just 2A (if T is fixed or clear from the
context) instead PrT (pAq). Similarly, we will write 3TA instead of ¬PrT ((p¬Aq)).
The sentence 3TA is the arithmetization of the assertion thatA is consistent with T .
If T is sufficiently strong in the sense of Theorem 14, we will refer to the principles
of GL when reasoning about what is provable in T about PrT (pAq). Depending on
the context, 2A can thus denote either an arithmetical or a modal formula. We
are sure that no confusion will arise from this.
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2. Interpretability Logic

2.1. The notion of interpretability. The notion of interpretability we are
interested in was first introduced and carefully studied by Tarski, Mostowski, and
Robinson in [TMR53]. It can be seen as a rigorous definition of what it means
for a theory T to be at least as strong as a theory S, i.e. as a tool for comparing
theories.

As an example, consider PA and Zermelo-Fraenkel set theory ZF. It is common
knowledge among logicians that ZF is stronger than PA. But what does this mean
exactly? How can we compare a theory about numbers to a theory about sets? In
general, how can we compare theories if their languages are different? A natural
solution is to translate from one language into the other. Although the language of
ZF is not the language of arithmetic, ZF can still talk about the natural numbers,
since it can talk about finite ordinals. We want to have a translation from formulas
in the language of arithmetic to formulas in the language of set theory, such that
for every formula provable in PA, its translation turns out to be provable in ZF.
Of course, there have to be some restrictions. For example, we have to exclude the
possibility of “cheating” by mapping every formula to a tautology. Furthermore, it
is clear that we also need a domain function, as ZF can talk about much more than
just its natural numbers (i.e. the finite ordinals). Thus if ∀xϕ is a sentence in the
language in arithmetic, then the translation should restrict the universal quantifier
to the finite ordinals. Otherwise ZF will not even be able to prove the simplest
truths about natural numbers, such as every number different from 0 having a
predecessor. For an extensive treatment of interpretability between PA and ZF, see
[KW07].

We will now give a precise definition of interpretability. An even more precise
definition can be found in [Vis98a]. For simplicity, we assume that our theories
are formulated in a purely relational way. Although this is certainly not the case
for theories in the language of arithmetic, the assumption does not restrict us in
any essential way — function symbols can be replaced by relation symbols by a
well-known algorithm.

Definition 15. Let S and T be first order theories. An interpretation j of S in T
is a tuple 〈δ, τ〉, where δ is a formula in the language of T with one free variable,
and τ is a map from relation symbols R (including identity) in the language of S
to formulas Rτ in the language of T . We require the number of free variables in
Rτ to be equal to the arity of R. We extend τ to a translation from formulas in
the language of S to formulas in the language of T by requiring:

i. (R(x))τ = Rτ (x)

ii. (A→ B)τ = Aτ → Bτ

iii. ⊥τ = ⊥

iv. (∀xA)τ = ∀x (δ(x)→ Aτ )

Finally, we require that `T ∃x δ(x), and `T Aτ for all axioms A of S.
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We write j : T � S if j is an interpretation of S in T . We write T � S if there is
an interpretation of S in T . We often also write τ for the interpretation 〈δ, τ〉. If
T �S and S�T , we write T ≡ S and say that T and S are mutually interpretable.

From a semantic perspective, an interpretation j : T � S is a way of uniformly
defining a model of S inside a given model of T . Using the example from above:
given a model of ZF, the set of finite ordinals of this model can be seen as a model
of PA. The semantic perspective is made precise by the following definition.

Definition 16. Let τ be an interpretation of S in T . Let M � T . Then Mτ is
defined as:

i. dom(Mτ ) := {a ∈ dom(M) | M � δ(a)} / ∼, where a ∼ b :⇔M � a =τ b.

ii. If α0, . . . , αn ∈ dom(Mτ ), let Mτ � R(α0 . . . αn) :⇔ M � Rτ (a0 . . . an), for
some a0 ∈ α1, . . . , a0 ∈ αn.

If Mτ is obtained in this way from M, we call it an internal model of M.

In [TMR53], interpretations are used to show undecidability of certain theories.
We say that S is essentially undecidable if any consistent extension S′ of S is
undecidable. Suppose that S is essentially undecidable. Then if T � S, we can
conclude that also T is undecidable. Another application of interpretations are
relative consistency results. Suppose that T � S and T is consistent. Let M � T .
Using definition 16, we can construct inside M a model Mτ with Mτ � S. Hence
also S must be consistent.

As is usually the case with modal-logically inspired work on interpretability, we
will study interpretability between finite extensions of a given base theory. Apart
from technical reasons (which will be explained below), such an approach is quite
natural, as one is often interested in how additional axioms influence the strength of
some base theory. For example, think about adding the Continuum Hypothesis or
its negation to ZFC. If T is our base theory, we shall write A�T B for T+A�T+B.
If T is fixed or clear from the context, we will just write A�B.

2.2. Formalized interpretability. Just as in GL we want to model what a
sufficiently strong and Σ1-sound theory T can prove about provability in itself, in
interpretability logic we are interested in what such a T can prove about inter-
pretability between its finite extensions. For the purposes of interpretability logic,
sufficiently strong will mean containing IΣ1. We could also work in a weaker theory,
however in that case two different notions of interpretability (see [Joo04]) would
have to be distinguished. To keep things simple, we will thus require all our theories
to contain5 IΣ1.

We can think of formalized interpretability as the following sentence (see [Joo98]):

(5) A�T B :⇔ ∃τ [2T (A→ Bτ ) ∧ ∀y (AxT (y)→ 2T (A→ yτ ))]

5The two different notions of interpretability are provably equivalent already in the weaker theory
EA+BΣ1, i.e. EA plus Σ1-collection. See Chapter 7 of [Kay91] for information about the collection

axioms.
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Above, T is a theory containing IΣ1, 2T is a provability predicate of T , and AxT (y)
is a formula binumerating6 the axioms of T in T . τ is a (code for) for the interpre-
tation, i.e. it is (the code of) a tuple 〈δ, τ〉 as in definition 15. Indeed, the above
formula follows very closely the informal definition of interpretability. Note that
the complexity of this formula is much higher than that of 2T — it is Σ3. Hence
we cannot expect it to be extensionally correct like the provability predicate, i.e.
to have for all A, B

A�T B ⇔ `T A�T B.

The sentence on the left hand side is the informal statement that T +A interprets
T +B, whereas the sentence on the right hand side is the statement formalized in
T , i.e. the formula in (5). Thus we use the symbol �T for both formal and informal
interpretability. We are certain that the intended meaning is always clear from the
context.

2.3. Arithmetical principles for interpretability. Let T ⊇ IΣ1. We will
list some valid principles concerning interpretability over T as base theory. All these
principles are verifiable in T (in fact, it is for the verifiability that we require T ⊇ IΣ1

– see also footnote 5 above). For a proof, see [Vis91], or [Joo04]. For principle
4 below, also [Fef60]. In order to get good intuitions about these principles, it is
useful to look at them from the semantic perspective of definition 16.

1. `T A→ B ⇒ A�T B. In the case that `T A→ B, we can use some tautology
(e.g. x = x) as the domain formula δ, and the identity function as the translation
τ . It is easy to check that this choice satisfies the conditions of definition 15.

2. (A�T B, B �T C) ⇒ A�T C. For this, it suffices to check that the composi-
tion of interpretations is again an interpretation. This principle expresses that
interpretability is transitive.

3. A �T C, B �T C ⇒ A ∨ B � C. This principle expresses that we can de-
fine interpretations by case distinctions. Suppose that the fact that A �T C is
witnessed by the interpretation 〈δ1, τ1〉, and the fact that B �T C by the inter-
pretation 〈δ2, τ2〉. We can then define a third interpretation 〈δ3, τ3〉 by letting:
δ3(x) := (A→ δ1(x)) ∧ (¬A→ δ2(x)), and similarly for the translation τ3.

4. A �T B ⇒ if T + A is consistent, then T + B is consistent. The formalized
version of this is: A �T B → (3TA → 3TB). This principle reflects the fact
that interpretability yields relative consistency statements.

5. 3TA�T A. This principle reflects the fact that Henkin’s completeness proof can
be formalized in T . The analogy is more apparent from the semantic perspective:
if a modelM satisfies the statement of A’s consistency, thenM has an internal
model of A. Although this result already appears in [Wan51], the first fully
formalized proof is due to Feferman ([Fef60]). See also [Hen11] for an accessible
exposition.

We also have that if A is consistent, then A 6�T 3TA. This uses the formalized
version of principle 4 above, and the Second Incompleteness Theorem. We refer to
this principle as the Interpretability version of the Second Incompleteness Theorem.

6As explained in Section 1.2 this means: ϕ is an axiom of T iff `T AxT (pϕq).



2. INTERPRETABILITY LOGIC 14

If our base theory is finitely axiomatizable and Σ1-sound, another principle holds.
Namely, if A�T B, then `T A�T B. To see this, note that if T is finite, then the
sentence

2T (A→ Bτ ) ∧ ∀y (AxT (y)→ 2T (A→ yτ ))

can be replaced by the Σ1-sentence 2T (A→ Cτ ), where C is the conjunction of all
axioms of T+B. Hence if A�T B, then `T A�T B, because T is Σ1-complete (since
T is an extension of IΣ1, even provable Σ1-completeness holds.). The formalized
version of this principle, i.e. A �T B → 2T (A �T B), is the so-called persistence
principle P.

2.4. Interpretability over PA. In this section, we will see what can be said
about A �T B if T = PA (in fact, the results hold for any essentially reflexive
theory). Let 2n denote the provability predicate of a finite subtheory Tn of PA
with7 PA =

⋃
n∈ω Tn. The following characterization of interpretability over PA is

referred to as the Orey-Hàjek characterization (see [Ore61], [Háj71],and [Háj72]).

Theorem 17 (The Orey-Hájek characterization). The following are equivalent:

1. A�PA B

2. for all n, `PA A→ 3nB

3. if C is Π1 and `PA B → C, then `PA A→ C (A is Π1-conservative over B)

In fact, all this can be verified in IΣ1.

For a proof (especially of the verifiability in IΣ1), see also [Joo04].

We use Theorem 17 to show that the following principle is valid for interpretability
over PA. If S is Σ1, then

(6) A�PA B ⇒ (A ∧ S) �PA (B ∧ S).

Proof. Assume A �PA B. By the Orey-Hájek characterization, A is Π1-
conservative over B. It suffices to show that if S is Σ1, then A∧S is Π1-conservative
over B ∧ S. So let P be Π1 and suppose that B ∧ S → P . Then B → (¬S ∨ P ).
Since ¬S∨P is Π1, we have that A→ (¬S∨P ) (since A is Π1-conservative over B),
i.e. A ∧ S → P , which is what we wanted to show. The proof uses the Orey-Hájek
characterization and simple predicate logic, and can thus be verified in IΣ1. 2

2.5. Interpretability logics. Like provability, interpretability can be studied
by means of modal logic. This can be done by extending the basic modal language
by a binary modality � for interpretability. Thus, apart from informal and formal
interpretability, � will now also denote a modal symbol.

In order to make precise the idea of formal interpretability being the intended
meaning of �, we have to extend the notion of an arithmetical realization to modal
formulas of the form A � B. In the light of this, it makes sense that we have
insisted on working with interpretability between sentential extensions of a given
base theory. It is unclear how one should translate propositional letters to whole
theories. For example, if p is mapped to PA, then what should ¬p be mapped to?

7For example, we could take Tn = IΣn.
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Hence we will always fix some base theory T . The sentence p � q of the modal
language will then be mapped to the arithmetical sentence T + p∗ � T + q∗, where
∗ is a realization as defined as in Section 1.4.

Definition 18. Let T be a base theory. An arithmetical realization ∗ for an
interpretability logic is an arithmetical realization for GL extended by the clause:

(A�B)∗ = A∗ �T B
∗,

where �T on the right hand side is formalized interpretability as in (5).

The formulas of interpretability logic are defined as follows:

(7) FIL ::= ⊥ | Prop | (FIL → FIL) | 2FIL | (FIL � FIL)

Prop is always either a countable or finite set of proposition letters p, q, r, p0, . . .. We
employ the usual definitions of the logical operators ¬,∨,∧, and ↔, and write 3A
for ¬2¬A. We shall omit brackets that are superfluous according to the following
reading conventions. The operators 2, �, and ¬ bind equally strong. They bind
stronger than the equally strong binding ∧ and ∨ which in turn bind stronger than
�. The weakest (weaker than �) binding connectives are→ and↔. Hence we shall
write A� B → A ∧ 2C � B ∧ 2C instead of (A� B) → ((A ∧ 2C) � (B ∧ 2C)).
We also write A ≡ B for A�B ∧B �A. We say that a formula is a 2-formula or
a �-formula if its principal connective is 2 or � respectively.

We will now introduce the basic interpretability logic IL.

Definition 19. The logic IL is the smallest logic containing the tautologies of
propositional logic, closed under modus ponens, necessitation, and the following
principles:

L1 2(A→ B)→ (2A→ 2B)

L2 2A→ 22A

L3 2(2A→ A)→ 2A

J1 2(A→ B)→ A�B

J2 (A�B) ∧ (B � C)→ (A� C)

J3 (A� C) ∧ (B � C)→ (A ∨B) � C

J4 A�B → (3A→ 3B)

J5 3A�A

Principles L1 − L3 are just the principles of GL. Principles J1 − J5 correspond to
the valid principles 1-5 of interpretability introduced in Section 2.3.

Lemma 2.1. The following are provable in IL.

i. 2A↔ ¬A�⊥

ii. A� (A ∧2¬A)

iii. ⊥�A

iv. A ∨3A�A
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Proof. For i note that 2A→ 2(¬A→ ⊥) and use J2. For the other direction
use J4. According to i we can view 2A as an abbreviation for ¬A�⊥. For ii note
that A� (A∧2¬A)∨ (A∧3A), whence it suffices to show that A∧3A�A∧2¬A.
By J5 it is sufficient to show that A ∧ 3A � 3(A ∧ 2¬A). But this follows by J4
since by L3 we have 3A→ 3(A ∧2¬A). For iii use J1, and for iv J5 and J3. 2

As for GL, there is a Fixed Point Theorem for IL. We say that p is modalized in
A(p) if all occurrences of p occur in the scope of a 2 or a �.

Theorem 20 (Fixed Point Theorem for IL). Let A(p) be modalized in p. Then
there is a unique (modulo provable equivalence) formula B containing the same
propositional letters as A(p) but not containing p s.t.

`IL B ↔ A(B).

For a proof, see [dJV91].

2.6. Interpretability logics and arithmetic. As in the case of GL, we will
make precise the idea of an interpretability logic characterizing what a sufficiently
strong theory can prove about interpretability between its finite extensions.

Definition 21. A modal formula A is an interpretability principle of a theory T
if for all realizations ∗, T ` A∗. The interpretability logic of a theory T , we write
IL(T ), is a logic that generates all interpretability principles of T .

The logic IL is arithmetically sound w.r.t. a wide range of theories.

Theorem 22 (Arithmetical Soundness of IL). If T ⊇ IΣ1, then IL ⊆ IL(T )

To prove Theorem 22, one just needs to show that the valid principles of Section
2.4 can be verified in T . As mentioned above, this can be done if T ⊇ IΣ1.

IL is not arithmetically complete w.r.t. any class of theories. In order to get arith-
metical completeness, we have to add specialized principles to IL. As it turns out,
we have different interpretability logics for different classes of theories.

Definition 23. The logic ILP is IL plus the persistency principle P.

P : A�B → 2(A�B)

As we showed at the end of Section 2.3, the persistence principle is valid if our base
theory T is finitely axiomatized.

Definition 24. The logic ILM is IL plus Montagna’s principle M.

M : A�B → A ∧2C �B ∧2C

Montagna’s principle is the modal counterpart of interpretability principle (6) in-
troduced in Section 2.4. We saw that it is valid if our base theory T is essentially
reflexive. Since in the language of modal logic we cannot talk about Σ1-sentences,
we take as a representative 2-formulas (remember that the intended interpretation
of 2, i.e. the provability predicate, is a Σ1-formula).
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Albert Visser [Vis90] proved that if T ⊇ IΣ1 is Σ1-sound and finitely axiomatiz-
able, then IL(T ) = ILP (we say that ILP is arithmetically complete w.r.t. finitely
axiomatizable theories). Alessandro Berarducci ([Ber90]) and Volodya Shavrukov
([Sha88]) proved independently that if T is essentially reflexive, then IL(T ) = ILM
(we say that ILP is arithmetically complete w.r.t. essentially reflexive theories).
Rineke Verbrugge ([Ver93]) proved that ILM is also the logic of feasible8 inter-
pretability over PA.

2.7. Semantics for interpretability logics. As in the case of GL, the arith-
metical completeness results for ILP and ILM use that these logics are modally
complete w.r.t. to a certain class of frames. A modal semantics for interpretability
logics was discovered by Frank Veltman.

Definition 25. An IL–frame is a tuple 〈W,R, S〉, where W is a non-empty count-
able set of nodes, R is a binary relation on W , and S a set of binary relations on
W , indexed by the elements of W . The R and S relations satisfy the following
requirements:

1. R is conversely well-founded

2. xRyRz ⇒ xRz

3. ySxz ⇒ xRy and xRz

4. xRy ⇒ ySxy

5. xRyRz ⇒ ySxz

6. xSwySwz ⇒ xSwz

We write ySz to mean that for some w, ySwz. We will sometimes represent S as a
ternary relation, writing 〈x, y, z〉 for ySxz.

Definition 26. An IL–model is a quadruple 〈W,R, S,〉, where 〈W,R, S〉 is an
IL–frame, and  is a forcing relation on 〈W,R, S〉 satisfying the usual clauses (with
R as the accessibility relation for 2), together with

x  A�B ⇔ ∀y (xRy  A⇒ ∃z (ySxz  B)) .

Definition 27. An IL-frame 〈W,R, S〉 is an ILP–frame if it satisfies the following
additional condition:

(8) wRuRx ∧ xSwz ⇒ xSuz

We will refer to (8) as the ILP–frame condition.

Definition 28. An IL–frame 〈W,R, S〉 is an ILM–frame if it satisfies the following
additional condition:

(9) xSwyRz ⇒ xRz

We will refer to (9) as the ILM–frame condition.

8In feasible interpretability, the complexity of the proofs associated to the interpretation is
bounded by a P-Time computable function.
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It is easy to verify that the principles P and M characterize the class of ILP–frames
and the class of ILM–frames respectively.

Modal completeness results for ILP and ILM were obtained by Frank Veltman and
Dick de Jongh ([dJV90]).

Theorem 29. `ILP A⇔ for all ILP–frames F ,F � A

Theorem 30. `ILM A⇔ for all ILM–frames F ,F � A

Joost Joosten ([Joo98] and [Joo04]) has proved modal completeness of ILM using
the construction method. An overview of this proof is given in Section 3.1 of
Chapter 4, and a thorough proof in the appendix.

3. Degrees of Interpretability

The relation � of interpretability is a preorder (i.e. it is transitive and reflexive).
Consider the induced equivalence relation ≡ of mutual interpretability. Its equiv-
alence classes are called degrees (of interpretability). If T is a theory, we denote
by [T ] the degree of T . The relation � induces a partial ordering among degrees:
[T ] � [S]⇔ T � S. Let K be a class of theories, and let DegK be the set of degrees
of theories in K. In this section we are concerned with the structure (DegK,�).
For example, is it a lattice? Is it dense? Are there incomparable elements?

3.1. Lattices of Interpretability. Questions like the ones above were asked
and answered by Švejdar in [Šve78]. This was before the field of interpretabil-
ity logics existed, and thus Švejdar was interested in facts about the structure
(DegK,�), not the verifiability of these facts in some formal theory.

The theories considered by Švejdar are of the form T +A, where T is a fixed base
theory, and A is a sentence in the language of T . If T is our base theory, we write
VT for the set of degrees of finite extensions of T . If [T + A] is an element of VT ,
we will often just write [A] instead of [T +A].

It is easy to see that the structure (VT ,�) is a lower semilattice. The degree of
all sentences provable in T (we write [>]) is a minimum element of (VT ,�), and
the degree of all sentences refutable in T (we write [⊥]) is a maximum element9

of VT . We say that a degree [A] is consistent if [A] 6= [⊥]. If T is required to
have a certain strength10, then the ordering � on VT is dense, and for every degree
[A] 6= [>], [⊥], there are degrees incomparable with [A]. Švejdar shows that if T
is essentially reflexive and Σ1–sound, then the structure (VT ,�) is a distributive
lattice, where no element apart from [>] and [⊥] has a complement.

Lindström ([Lin79]) studies the structure (DT ,�), where DT is the set of degrees
of all extensions of an essentially reflexive theory T . He shows that (VT ,�) and
(DT ,�) are isomorphic. The proof uses that for any extension S of T , there is a
sentence AS s.t. S ≡ T +AS .

9Compared to the Lindenbaum-Tarski algebra of the theory T with [⊥] as minimum and [>] as

maximum element, the lattice (VT ,�) is upside down. We shall try to not let this confuse us.
10Švejdar requires T to be a consistent extension of Q in a finite language.
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Harvey Friedman ([Fri07]) deals with the degrees obtained by restricting � to finite
theories (i.o.w. to single sentences). Let F be the set of degrees of all finite theories.
Friedman shows that the structure (F,�) is a distributive lattice with [⊥] (the
degree of all refutable sentences) as the maximum element. The minimum element
is the degree of all sentences with a finite model. The lattice (F,�) is dense, and
for every degree [A] 6= [>], [⊥], there are degrees incomparable with [A].

3.2. Infimum and Supremum in a Lattice of Interpretability. Fix a
theory T with IL ⊆ IL(T ). We consider the structure (VT ,�T ), writing [A] for
[T +A], and � for �T . We will first show that (VT ,�) is a lower semilattice.

Definition 31. The infimum of [A] and [B] in (VT ,�) is the degree of a theory
A>B with the following properties:

1. A� C,B � C ⇒ A>B � C

2. A�A>B, B �A>B

It is easy to see that one can always take A ∨ B for A > B. We just need to be
able to define definitions by cases (for 1), and have provability as a special case of
interpretability (for 2). As argued in Section 2.3, this is indeed the case for the
interpretations we are working with. Since IL ⊆ IL(T ), and the principles above are
principles of IL, the fact that A∨B is the infimum of A and B is actually verifiable
in T , i.e. we have that

`T A� C ∧B � C → A ∨B � C,

and

`T (A� (A ∨B)) ∧ (B � (A ∨B)).

Definition 32. The supremum of [A] and [B] in (VT ,�) is the degree of a theory
A?B with the following properties:

1. C �A,C �B ⇒ C �A?B

2. A?B �A, A?B �B

Note that the second requirement in the above definition is equivalent to the re-
quirement: C � A ? B ⇒ C � A,C � B. Assume A ? B � A and A ? B � B. If
C � A ? B, then by transitivity of �, C � A and C � B. For the other direction,
assume that C � A ? B ⇒ C � A ∧ C � B. Since A ? B � A ? B by reflexivity,
it follows that A ? B � A and A ? B � B. Hence we can define A ? B also as a
sentence satisfying C �A,C �B ⇔ C �A?B. From now on, we will use both of
the definitions interchangeably.

The solution for the infimum might inspire one to try taking A ∧ B for A ? B.
It is clear that in this way we get an upper bound for A and B, since obviously
A ∧ B � A, and A ∧ B � B. As we will see below, A ∧ B is not necessarily a least
upper bound, i.e. there are theories in lower degrees than A∧B which still interpret
both A and B. In particular, we usually want the supremum of A and ¬A to be
consistent. In order to find the supremum in the lattice (VT ,�), we need to know
more about the theory T . Below, we will show how to find suprema in (VT ,�) if
T is essentially reflexive or finitely axiomatizable.
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3.3. Supremum in (VPA,�). Instead of focusing on (VT ,�) for any essen-
tially reflexive T , we will be working with PA. The results also hold for any other
Σ1-sound theory satisfying full induction. We will first prove that A ∧ B is not
always a least upper bound of [A] and [B] in (VPA,�). This is a consequence of the
following Theorem, proven by Švejdar in [Šve78]. It states that if [A] and [B] are
both consistent, then so is their supremum.

Theorem 33. Let [A], [B] 6= [⊥]. Then [3A ∧ 3B] � [A] and [3A ∧ 3B] � [B].
Furthermore [3A ∧3B] 6= [⊥].

Proof. We use principles of IL to reason about (VPA,�). By J5, 3A�A. Using
J1 and J2, it is easy to see that 3A ∧3B �A, and similarly 3A ∧3B �B. Thus
3A ∧3B is an upper bound for A and B. To see that it is consistent, assume for
contradiction that `PA 2¬A ∨2¬B. By Σ1-soundness, N � 2¬A ∨2¬B. Suppose
w.l.o.g. that N � 2¬A. By decoding, we get a PA-proof of ¬A, contradicting the
assumption that [A] 6= [⊥]. 2

Since IL ⊆ IL(PA), we can use principles of IL in the proof. However, note that in
this case we need more, i.e. Σ1-soundness, hence it is not obvious that this property
of (VPA,�) can be verified in PA. As we will see in Chapter 3, it is in fact outside
the scope of facts verifiable in PA.

Corollary 34. No degree in (VPA,�) apart from [>] and [⊥] has a complement.

Proof. Suppose for contradiction that [A] 6= [>], [⊥] has a complement [B].
This means that [A ? B] = [⊥], and [A ∨ B] = [>]. We cannot have [B] = [⊥],
otherwise [A ∨ B] = [A], contradicting that [A] 6= [>]. But if [B] 6= [⊥], then by
Theorem 33 [A?B] 6= [⊥], contradiction. 2

Now let A be some sentence independent of PA, e.g. the Gödel-sentence. Then
both A and ¬A are consistent, hence A? ¬A has to be consistent, thus we cannot
simply take A ∧ ¬A as A ? ¬A. However, also the upper bound established in
Theorem 33 is too high. We obviously want that [> ? >] = [>]. But according
to the interpretability version of the Second Incompleteness Theorem, > 6� 3>,
hence we cannot take [3>] as [>?>].

Thus the supremum of A and B has to be weaker than 3A∧3B. A useful hint to
the right direction comes from the Orey-Hájek characterization of interpretability.
We know that C � A and C � B iff C `PA (3nA ∧3nB) for all n ∈ N. Using the
Orey-Hájek characterization and the fact that C `PA 3nC for all C and n, due to
essential reflexivity, we see that it would be sufficient for the sentence A ? B to
satisfy for all n,

`PA 3nA ∧3nB ↔ 3n(A?B).(10)

With this insight, finding the supremum of given degrees [A] and [B] in (DPA,�)
becomes easy — i.o.w. it becomes easy finding an infinite theory in the degree
of A ? B. Just let A ? B := {3nA ∧3nB | n ∈ N}. This theory is clearly not
finite, hence not exactly what we are looking for (since we are interested in the
structure (VPA,�)). Of course, by Lindström’s proof that (VPA,�) and (DPA,�) are
isomorphic, there exists some finite theory in the degree of {3nA ∧3nB | n ∈ N},
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and we could be done here. However Švejdar offers a more direct construction of
the supremum, by “compressing” the infinite information contained in the above
set into a sentence.

Let PrPA�n be the provability predicate of the theory axiomatized by axioms of
PA whose gödelnumber is less than n. It is clear that for each n ∈ N, PrPA�n is

the provability predicate of a finite theory. As usual, we write ConPA�n(pθq) as

an abbreviation for ¬PrPA↑n(p¬θq). Given sentences A and B, Švejdar takes the

formula ∀x (ConPA�x(z)→ ConPA�x(pAq)∧ConPA�x(pBq)) with one free variable z,
and then applies the Gödel Fixed Point Lemma to obtain a sentence θ s.t.

`PA θ ↔ ∀x (ConPA�x(pθq)→ ConPA�x(pAq) ∧ ConPA�x(pBq)).

By the Orey-Hájek characterization, one can then show that θ � A, θ � B, and if
C�A and C�B, then C�θ. Thus we can take θ as A?B. We will give a proof of
this in the next chapter. We will also show that this proof can be formalized in PA,
hence PA verifies that VPA is a lattice. We will refer to the supremum constructed
by Švejdar as Švejdar’s supremum. In the next chapter, we will show that there
are other ways of uniformly choosing a representative in the degree of [A?B] than
the one introduced by Švejdar.

3.4. Supremum in (F,�). We finish this chapter by saying a few words
about the supremum in the lattice of finite theories. We have seen that finding a
representative from the degree of the supremum in (VPA,�) makes heavy use of
the Orey-Hájek characterization peculiar to essentially reflexive theories. Dealing
with the suprema in finite theories requires a different kind of toolkit. In [Fri07],
A?B is taken to be the sentence ∃xy ((Rx∧¬Ry)∧ (AR∧B¬R)), where R is some
new relation symbol, and AR is obtained from A by relativizing all predicates of
A to R; similarly for B¬R. This guarantees that A ? B is consistent whenever A
and B are. The basic idea is to take the conjunction of A and B, but make their
languages disjoint, to prevent any “clashes” from occurring.

In order to study the lattice of finite theories modally, i.e. using ILP, we have to
work with extensions of some finite base theory which is sufficiently strong for ILP.
Otherwise we cannot even be sure that ILP is the interpretability logic of all the
theories comprising the lattice. Thus we would be considering a substructure of
(F,�), namely (VT ,�), where T is a finitely axiomatized theory containing IΣ1.
By the same arguments as above (using arithmetical soundness of IL), we know
that T verifies that (VT ,�) is a lower semilattice.

However, it is not clear that T also verifies that any two degrees in (VT ,�) have
a supremum. In fact, we do not even know how to express the supremum in the
language of T . The problem is that Friedman’s construction is not directly suitable
for carrying over to a modal context. It is unclear how to implement in modal logic
a procedure of making the languages disjoint. For the modal logical perspective,
it would be convenient to have a sentence A ? B in the language of T which is
verifiably in T in the degree of the supremum of A and B. Unfortunately, it is an
open question whether such a sentence exists (see [Šve78]). Hence it is unclear
how one should proceed in order to extend ILP with a supremum operator.



CHAPTER 3

Uniform Suprema in Arithmetic

This chapter deals with the arithmetical side of the supremum. The research we
present is preparatory work for extending the modal system ILM with a supremum
operator ?, and finding a modal semantics for the resulting system ILMS. Apart
from ILM, the logic ILMS contains the defining equation for ?, i.e. the axiom S:
(C � A) ∧ (C � B) ↔ C � A ? B. The intended meaning of the modal symbol ?
is a (formalized) supremum operator in the lattice1 (VPA,�). As in the case of the
modal symbols 2 and �, the precise arithmetical meaning of ? will be fixed via
the notion of an arithmetical realization. We would thus need to extend the notion
of an arithmetical realization for ILM by a clause of the form

(11) (A?B)∗ = θA∗B∗

where θA∗B∗ is verifiably in PA a supremum of A∗ and B∗, i.e. for all C,

(12) `PA (C �A∗) ∧ (C �B∗)↔ C � θA∗B∗ .

Given sentences A∗ and B∗, the procedure for finding the sentence θA∗B∗ should of
course be as simple as possible. The most elegant option would be to have a formula
σ(x, y) with two free variables s.t. we can simply put (A ? B)∗ = σ(pA∗q, pB∗q).
This is how arithmetical realizations deal with our other modal symbols 2 and �.
The formula σ(x, y) would be a uniform (in A and B) way of finding a verifiable
supremum ofA andB in the lattice (VPA,�). A formula σ(x, y) with such properties
is called an implementation2 of the supremum in PA. As we will see below, not all
implementations of the supremum in PA are provably equivalent. This means that
if σ(x, y) and τ(x, y) are implementations, we do not necessarily have for all A and
B that `PA σ(pAq, pBq)↔ τ(pAq, pBq).

Section 1 below introduces the notion of an implementation. We discuss possible
properties of implementations, as well as methodological points concerning the no-
tion of an arithmetical realization for ILMS. Section 2 contains the preliminaries
for constructing well-behaved implementations of the supremum in PA. Two such
implementations — Švejdar’s implementation and Visser’s implementation — are
then studied in more detail in sections 4 and 5. As this thesis is the first treatment
of the system ILMS, the material contained in this chapter is mostly new. Excep-
tions are Section 2, and some (important) results in Section 4. Throughout this
chapter, ` will denote provability in PA.

1Remember from Section 3 of Chapter 2 that (VPA,�) is the lattice of finite extensions of PA
under the relation of interpretability.
2In principle, we could also allow as implementations computable functions which, given as input
sentences A∗ and B∗ of arithmetic, produce a sentence θA∗B∗ as in (12) above. However, since

we have at our disposal formulas σ(x, y) that do the job, we shall not bother ourselves with a
more complicated notion of an implementation here.
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1. Implementations of the Supremum in PA

The system ILMS would allow us to study in a modal-logical setting what is provable
in PA about the lattice (VPA,�). For example, we might wonder whether PA proves
that (VPA,�) is distributive and dense, and that the supremum of consistent degrees
is always consistent. To begin with, we want PA to verify that (VPA,�) is indeed a
lattice, i.e. that any two elements have an infimum and a supremum.

Recall from Section 3.2 of Chapter 2 that the case of the infimum is easy. Reasoning
in IL (using in particular axiom J3), we see that A∨B is verifiably in PA an infimum
of A and B, i.e. for all A,B,C

(13) ` (A� C) ∧ (B � C)↔ A ∨B � C.

Rember also that when it comes to the supremum, we have to be more clever. What
we need is made explicit by the notion of an implementation of the supremum in
PA.

Definition 35. An implementation of the supremum in PA is a formula σ(x, y)
s.t. for all A,B,C,

(14) ` (C �A) ∧ (C �B)↔ C � σ(pAq, pBq).

Examples of implementations will be given later in this chapter. For now, we will
just assume that a formula σ(x, y) with the required properties can be found. We
will from now on write σ(A,B) instead of σ(pAq, pBq).

Equipped with an implementation of the supremum, we can investigate what is
provable about it in PA. By arithmetical soundness of ILM, we know that apart
from the defining equation (14), all its consequences in ILM have to be provable. In
a way, this is not much. For any choice of A and B, (14) only fixes the degree of the
sentence σ(A,B) — its behaviour w.r.t. the more fine-grained provability properties
is left undetermined. As an example, note that if σ(x, y) is an implementation, we
do not necessarily have

(15) ` σ(A,B)↔ σ(B,A)

for all A and B. The only thing guaranteed by (14) is that ` σ(A,B) ≡ σ(B,A).
For the same reason, we do not necessarily have

(16) ` A↔ σ(A,A).

An implementation satisfying (15) or (16) is said to be commutative or idempotent
respectively. Similarly for other possible properties like distributivity3 or associa-
tivity. Further important properties are extensionality and monotonicity.

Definition 36. A implementation σ(x, y) is extensional if for all A,A′,B,B′,

` 2(A↔ A′) ∧2(B ↔ B′)→ 2(σ(A,B)↔ σ(A′, B′)).

An implementation σ(x, y) is monotone if for all A,A′,B,B′,

` 2(A→ A′) ∧2(B → B′)→ 2(σ(A,B)→ σ(A′, B′)).

3An implementation σ(x, y) can be said to have a property such as distributivity in two ways.

If we have ` σ(A,B ∨ C) ↔ σ(A,B) ∨ σ(A,C) for all A,B and C, we say that the implemen-
tation is distributive w.r.t. provability. If ` σ(A,B ∨ C) ≡ σ(A,B) ∨ σ(A,C), we say that the

implementation is distributive w.r.t. interpretability. Similarly for other possible properties.
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1.1. Closure properties of implementations. Let σ(x, y) be an imple-
mentation. If we want to show that a formula τ(x, y) is also an implementation,
it clearly suffices to show that for all A and B, τ(A,B) is (verifiably in PA) in the
same degree as σ(A,B), i.e. ` τ(A,B) ≡ σ(A,B). We will use this observation to
show how new implementations can be generated from given ones.

First,we can obtain a new implementation by “iterating” an old one, i.e. letting
τ0(x, y) := σ(σ(x, y), y), τ1(x, y) := σ(σ(x, y), σ(x, y)), and so on. It is clear that
this process of “iterating” does not change the degree of the resulting sentence —
and this is all that matters for being a supremum. A second way to obtain new
implementations is to define them by case distinction. Suppose that we have two
implementations σ(x, y) and σ′(x, y). Let A(x, y) be some formula. We can then
define a new implementation τ(x, y) by letting

τ(x, y) := (A(x, y)→ σ(x, y)) ∧ (¬A(x, y)→ σ′(x, y)).

As an example, given an implementation σ(x, y), we could define an implementation
τ(x, y) s.t. for all A, τ(A,A) = A, and if B 6= A then τ(A,B) = σ(A,B). In general,
such an implementation is not extensional. In fact, even the informal version of
extensionality can fail, i.e. it is possible that ` A ↔ B, but 0 τ(C,A) ↔ τ(C,B).
To see this, note that if ` (A↔ B)∧A 6= B, then by definition τ(A,B) = σ(A,B),
but on the other hand τ(A,A) = A.

We can also find new implementations by using the closure properties of the de-
grees. If σ1(x, y) and σ2(x, y) are implementations, then clearly for all A and B,
` σ1(A,B) ≡ σ2(A,B). But then also ` σ1(A,B) ∨ σ2(A,B) ≡ σ1(A,B), since
σ1(A,B) ∨ σ2(A,B) is (verifiably in PA) the infimum of σ1(A,B) and σ2(A,B)
in (VPA,�). It follows that σ1(x, y) ∨ σ2(x, y) is also an implementation, i.e. im-
plementations are closed under disjunction4. As a consequence, each implementa-
tion has a commutative version. If σ(x, y) is not commutative, we can just take
σ′(x, y) := σ(x, y) ∨ σ(y, x), which is clearly commutative. Two further closure
properties of the degrees can be found by recalling that `IL A ≡ A ∧ 2¬A and
`IL A ≡ A∨3A (see Lemma 2.1 in Chapter 2). Hence if σ(x, y) is an implementa-
tion, then so are τ(x, y) := σ(x, y) ∧2¬σ(x, y), and τ ′(x, y) := σ(x, y) ∨3σ(x, y).

1.2. Arithmetical realizations for ILMS. The potential multitude of imple-
mentations gives us some freedom in choosing the intended arithmetical meaning of
the symbol ? in ILMS. While the provability properties of an implementation are
in some sense irrelevant (after all, it is behaviour w.r.t. interpretability that deter-
mines whether a sentence is a supremum), the latter will inevitably play a role in
our modal system ILMS. We have to know how strong the system ILMS should be.
For example, should we have that `ILMS A?B ↔ B?A, or that `ILMS A?A↔ A?

As suggested by the discussion above, the answer to these questions depends on
which implementation of the supremum we choose as the intended meaning of ?.
For example, if we allow any implementation, A ? B ↔ B ? A should certainly

4If A ≡ A′ then we do not necessarily have that ` A ∧ A′ ≡ A. We see a concrete example in
Section 5.3 below where Orey-sentences are introduced. It follows that implementations are not

closed under conjunction.
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not5 be a theorem of ILMS. But we might also want to consider commutative
implementations only, in which case A?B ↔ B?A should obviously be a theorem
of ILMS.

Arithmetical realizations for ILMS should therefore be conceived of as arithmetical
realizations for ILM that have an implementation of the supremum as a parameter.
Write ∗(σ) for the arithmetical realization ∗ parametrized by the implementation
σ(x, y). Before formulating arithmetical soundness and completeness for the system
ILMS, one has to fix a set I of implementations. Arithmetical completeness and
soundness can then be formulated as follows:

`ILMS A ⇔ ∀ realizations ∗, ∀σ ∈ I, `PA A
∗(σ).

By choosing as I the set of all implementations, we get a minimal logic for the
supremum. This logic would be quite weak. For example, for the reasons given
above neither A?B ↔ B?A nor A↔ A?A should be a theorem of the minimal
logic. The minimal logic will be studied Chapter 4. Alternatively, we could choose
I = {σ(x, y)}, aiming to find a logic that captures what is provable in PA about the
specific implementation σ(x, y). This strategy is employed in Chapter 5, where we
explore the possibility of having a modal semantics for a specific implementation of
the supremum. A middle way is to consider any implementation satisfying certain
properties, e.g. by letting I to be the set of all implementations that are extensional.

2. Arithmetical Preliminaries

In order to find well-behaved implementations of the supremum in PA, we will make
use of a “stratified” notion of provability. We will view provability in PA as being
split up into provability in a sequence {Tn}n∈ω of finitely axiomatized theories. We
also require the Tn’s to extend each other, i.e. we want that if `Tm

A, then `Tn
A

for all n > m.

In his classical paper [Fef60], Feferman uses this perspective on provability to
construct an intensionally abnormal but extensionally correct provability predicate
PrF (x) s.t.

` ¬PrF (p⊥q),
seemingly contradicting Gödel’s Second Incompleteness Theorem6. The stratifica-
tion applied by Feferman is

(17) Tn = the theory axiomatized by the axioms of PA of gödelnumber ≤ n.
Under this choice, it is clear that the Tn’s are finitely axiomatizable, increasing in
strength, and PA =

⋃
n∈ω Tn. But not much more can be said. The exact content

of Tn and its relation to other theories in the sequence will depend on arbitrary
details of coding. Indeed, having more control over the stratification sequence

5Given an implementation σ(x, y), we can find a non-commutative version of it by defining a new
implementation by case distinction. As an example, consider the implementation τ(x, y) defined

as τ(x, y) := (x ≤ y → σ(x, y) ∧ 2¬σ(x, y)) ∧ (y < x → σ(x, y) ∨ 3σ(x, y)). If τ(x, y) would be
commutative w.r.t. provability, we would have for all x, y that 3σ(x, y) → 2¬σ(x, y), which is
clearly not the case.
6The solution to the seeming paradox is that one has to be more careful when formulating the Sec-
ond Incompleteness Theorem — it does not apply to provability predicates which are intensionally
abnormal such as PrF (x).
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will sometimes allow us to prove stronger results. This influence of the choice of
stratification was first studied by Smoryński in [Smo89], inspired by McAloon’s
work on Rosser-like sentences for ZF ([McA75]). We will now introduce Rosser
sentences, explaining how stronger results about them can be proved when using a
more elaborate stratification sequence than the one in (17).

2.1. Rosser sentences. Rosser-sentences were introduced by Barkley Rosser
in [Ros36]. Rosser-sentences are like Gödel-sentences, in that they are independent
of PA. Their advantage over the latter is that the proof of their independence from
PA does not need the assumption of Σ1-soundness.

Let Prf(x, y) be a proof predicate of PA (see Section 1.2 of Chapter 2). Thus
` Prf(p, n) if and only if p codes a proof of the formula coded by n. A Rosser
sentence is a sentence R (guaranteed to exist by the Gödel Fixed Point Theorem)
with the property

(18) ` R↔ ∀x (Prf(x, pRq)→ ∃y < xPrf(y, p¬Rq))

Given in this way, two Rosser sentences will not necessarily be provably equivalent,
thus the situation is different from Gödel-sentences which can be proven to be
unique. This failure of uniqueness has been studied in [GS79].

Smoryński ([Smo89]) uses the idea of stratified provability to obtain Rosser-like
sentences which are unique up to provable equivalence. Informally, the original
Rosser sentence says: “If there is a proof of me, there is a smaller proof of my
negation” (the “smaller” here refers to the codes of the proofs). Instead, Smoryński
considers a sentence saying: “If there is a proof of me, there is an earlier proof of
my negation”. The notion of “earlier” here is made precise by the concept of
stratified provability. The Rosser-like sentence constructed by Smoryński says: “If
I am provable in some theory Tn, then my negation is provable in a theory Tm with
m < n.”

We introduce some notation for expressing Smoryński’s Rosser-like sentence. Let
{Tn}n∈ω be a sequence of finitely axiomatized theories with Tn+1 extending Tn, and
PA =

⋃
n∈ω Tn. Write `n for provability in Tn, and 2n for the provability predicate

of Tn. Smoryński’s Rosser-like sentence is a sentence ρ (guaranteed to exist by the
Gödel Fixed Point Theorem) with the property

(19) ` ρ↔ ∀x (2xρ→ ∃y < x2y¬ρ).

In order to prove the uniqueness of ρ, a more elaborate choice of stratification than
in (17) is needed. Smoryński uses:

(20) Tn = IΣn+1.

Equivalently, one could use

(21) T0 := EA, Tn+1 := IΣn+1.

Recall from Section 1.1 of Chapter 2 that IΣn is the theory PA with induction
restricted to Σn-formulas. The advantage of this choice is that the Tn’s provably
grow in strength — for each n, IΣn+1 proves uniform Πn+2-reflection for IΣn. This
means that for all A(y) ∈ Πn+2,

`n+1 ∀y (2nA(y)→ A(y)).
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For a proof of this fact, see e.g. [Sie85] or [Ono87]. Since a consistency statement
for Tn is just the reflection principle for ⊥ (i.e. 2n⊥ → ⊥), it follows that Tn+1

proves the consistency of Tn.

It is shown that under this choice of stratification, the Rosser-like sentence ρ in (19)
is unique up to provable equivalence. In [Sha94], Shavrukov shows that uniqueness
can fail under a different choice of stratification sequence.

Background and information about the choice in (21) is provided in [SA12], where
Shavrukov and Visser use it to prove uniform density for the Lindenbaum algebra
of PA. In [Sha94], Shavrukov uses the stratification sequence in (21) to construct
a joint provability logic for the standard provability predicate and the Feferman
provability predicate.

Our uniform implementations of the supremum turn out to be similar to Smoryński’s
Rosser-like sentences. In order to formulate them in the first place, we need some
notion of stratified provability. In order to prove their uniqueness and extension-
ality, an elaborate choice of stratification — as in (20) or (21) — seems to be
needed.

2.2. Elaborate stratifications. We introduce the features which from now
on any stratification {Tn}n∈ω of PA is assumed to possess. As before, let `n denote
provability in Tn, and 2n the provability predicate of Tn. First, we require the Tn’s
to be finitely axiomatizable and contain EA, whence we can be sure that GL is the
provability logic of all Tn. Furthermore, we require

1. PA =
⋃
n∈ω Tn

2. Tn ⊆ Tn+1,

3. `n+1 ∀y [A ∈ Πn+2 → (2nA(y)→ A(y))].

In fact, we need properties 1 - 3 to be verifiable in T1, i.e. we want T1 to prove:

i. 2A↔ ∃x2xA

ii. 2xA ∧ x < y → 2yA

iii. 2x+1(A ∈ Πx+2 → ∀y (2xA(y)→ A(y)))

In ii and iii, x and y are free variables, i.e. they range also over nonstandard
elements. It follows from i and ii that `1 3A ↔ ∀x3xA, and `1 20A ↔ ∀x2xA.
In practice, we will not bother with the complexity of the sentence7 A for which
we want reflection. In the end, we are interested in provability in PA, thus we can
always choose a level which is “high” enough for having reflection for A. We will
refer to property ii as monotonicity8, and to property iii as reflection.

One way to get the above properties is to choose a stratification sequence as in
(21). As mentioned in Section 1.1 of Chapter 2, both EA and IΣn+1 (for all n)

7In the proofs below we will never use reflection for formulas containing free variables. Thus
sentential reflection would suffice for our purposes, and we could also choose a stratification that

grows more slowly than the one in (21).
8It will always be clear from the context whether monotonicity has the meaning specified here,
or the one introduced in the previous section where it refers to a possible property of an imple-

mentation.
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are finitely axiomatizable. It is clear that we will have EA ⊆ Tn for all n. That
properties i and ii hold is immediate from the definitions. The proof of property
iii can be traced down to the proof of Corollary 4.4. of [Sie85], or Exercise 10.8 of
[Kay91].

In the rest of this chapter, we will just refer to the axioms of GL to justify steps
in the proofs in PA and in Tn (thus applying the arithmetical soundness of GL).
We will write 2 and 2x for the provability predicates of PA and Tx respectively.
Accordingly, we also write 3A instead of ¬2¬A, and 3xA instead of ¬2x¬A. By
property ii, 3xA implies 3yA for all y ≤ x, and by property iii we have that
`1 2x+1(A ∈ Σx+1 → (A→ 3xA)).

3. A True but Unprovable Principle for the Supremum

Before we go on to study the specific implementations of the supremum, we present
a result that holds for all implementations but is nevertheless not obtainable by
using only the axioms of ILMS.

Recall Theorem 33 from Chapter 2. If A and B are both consistent, then so is their
supremum in the lattice (VPA,�). We now ask whether this fact is verifiable inside
PA, i.e. whether for all A and B, and for all implementations σ(x, y),

(22) ` 3A ∧3B → 3σ(A,B).

The answer to this question turns out to be strongly negative: in fact there is no
implementation for which (22) is provable. We will show this by giving a counterex-
ample to (22) that works for any implementation. Until the end of this subsection,
we will write A?B for the sentence σ(A,B) (where σ(x, y) is an implementation).

The only property of the supremum that we use is given by the Orey-Hájek char-
acterization. Since A ? B � A, A ? B proves all Π1-consequences of A, thus in
particular it proves A if A is Π1 itself. Hence for A, B in Π1, ` A?B → (A ∧B),
and by necessitation also ` 2(A?B → A ∧B). Note that for Π1-sentences A and
B, this means that A ∧ B and A ? B are in the same degree (this fact was also
pointed out by Švejdar in [Šve78]).

We will use Rosser sentences to construct a counterexample to (22). Let R be the
negation of the Rosser sentence in (18). Thus R is s.t.

(23) ` R↔ ∃x (Prf(x, p¬Rq) ∧ ∀y < x¬Prf(y, pRq)).

Let R⊥ (R opposite) be the sentence

(24) ∃x (Prf(x, pRq) ∧ ∀y ≤ x¬Prf(y, p¬Rq)).

It is easy to see that R and R⊥ are both Σ1. Note also that R and R⊥ have the
following properties:

1. ` 2R→ R ∨R⊥ and ` 2R⊥ → R ∨R⊥

2. ` R ∨R⊥ ↔ 2⊥

3. ` 2R↔ 2⊥ and ` 2R⊥ ↔ 2⊥
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For 1, note that ` R⊥ → ¬R, whence also ` 2(R⊥ → ¬R). One direction of 2
follows immediately from 1. For the other direction, we use that R and R⊥ are Σ1

whence ` R → 2R and ` R⊥ → 2R⊥ (and thus also ` R⊥ → 2¬R) by provable
Σ1-completeness. On the other hand, by the properties of R and R⊥ also R→ 2¬R
and R⊥ → 2R. Combining all these facts, it is easy to see that ` R ∨ R⊥ → 2⊥.
The non-trivial directions of 3 follow from 1 and 2.

Lemma 3.1. ` 3(¬R? ¬R⊥)→ ¬22⊥

Proof. By contraposition. We will show that ` 22⊥ → 2¬ (¬R? ¬R⊥).

We have 22⊥ → 2(R ∨ R⊥) by property 2 above and necessitation. By Π1-
conservativity (since ¬R and ¬R⊥ are Π1), we have

` 2(¬R? ¬R⊥ → ¬R ∧ ¬R⊥),

whence

` 2(R ∨R⊥ → ¬ (¬R? ¬R⊥)).

Using propositional logic and L1, we are done. 2

By property 3 of R and R⊥, we have also

(25) ` 3¬R ∧3¬R⊥ ↔ ¬2⊥.

We now have enough tools to give a counterexample to (22).

Theorem 37. There are A and B with 0 3A ∧3B → 3(A?B).

Proof. Take ¬R for A and ¬R⊥ for B. Suppose for contradiction that

` 3¬R ∧3¬R⊥ → 3(¬R? ¬R⊥).

By Lemma 3.1 and (25), this implies that ` ¬2⊥ → ¬22⊥, i.e. ` 22⊥ → 2⊥
and so by Löb’s Theorem ` 2⊥, contradiction. 2

Thus PA does not verify that the supremum of two consistent degrees in the lattice
(VPA,�) is always consistent — regardless of which implementation of the supre-
mum we choose to represent the supremum in PA.

4. Švejdar’s Implementation of the Supremum

This section deals with an implementation of the supremum in PA that is based on
Švejdar’s supremum. Recall (section 3.3 of Chapter 2) that Švejdar’s supremum of
given sentences A and B is found by applying the Gödel Fixed Point Theorem to
find a sentence θ with

(26) ` θ ↔ ∀x (ConPA�x(pθq)→ ConPA�x(pAq) ∧ ConPA�x(pBq)).

Remember that PrPA�n(x) is the provability predicate of the theory axiomatized by

axioms of PA whose gödelnumber is less than n, and that we write ConPA�n(pAq) for

¬PrPA�n(p¬Aq). Note that in order to express (the right hand side of) θ, a simple

stratification sequence as in (17) above is used. We will reformulate Švejdar’s
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supremum using the more elaborate choice of a stratification sequence, as well as
the notation introduced in Section 2.2. Thus instead of (26) we will write

(27) ` θ ↔ ∀x (3xθ → 3xA ∧3xB),

thinking of 2x as the provability predicate of Tx, where {Tn}n∈ω is a stratification
sequence as in Section 2.2.

4.1. Švejdar’s supremum as an implementation. In order to extract an
implementation out of Švejdar’s construction of the supremum, two things have to
be accomplished. First, we need Švejdar’s supremum to be verifiable in PA. If θ is
as above, we need that

(28) ` (C �A) ∧ (C �B)↔ C � θ.

Remember that since Švejdar’s aim was to find out what is true about the lattice
(VPA,�), he did not need to worry about his supremum being verifiable in PA.
Second, we need to show that there is a formula σ(x, y) s.t. for all A and B, σ(A,B)
is the sentence θ with ` θ ↔ ∀x (3xθ → 3xA ∧3xB). Švejdar’s construction does
not immediately offer us a formula σ(x, y) with the required properties. Švejdar
supremum is produced by first constructing a formula containing (the gödelnumbers
of) A and B, and then applying the Fixed Point Theorem to get a fixed point of
this formula. We will first show that such a formula σ(x, y) can be found, and then
that for all A and B, the sentence σ(A,B) is verifiably in PA a supremum of A and
B.

Using the general version of the Fixed Point Theorem given in Section 1.2 of Chapter
2, we can turn Švejdar’s construction into a formula σ(x, y) with the required
properties. Let Sub(x, y, z) be the function representing9 the substitution function
in EA. Thus for all m, n, and A,

`0 Sub(pA(u, v)q,m, n) = pA(m,n)q,

and by necessitation

(29) `0 20(Sub(pA(u, v)q,m, n) = pA(m,n)q).

Consider the formula

(30) A(w, y, z) := ∀x (3x Sub(w, y, z)→ 3xy ∧3xz).

We apply the Gödel-Carnap Fixed Point Theorem (Theorem 1.1) to find a fixed
point σ(y, z) of A(w, y, z). Thus we have

(31) ` σ(y, z)↔ ∀x (3x Sub(pσ(u, v)q, y, z)→ 3xy ∧3xz).

Substituting pAq and pBq for the free variables, we get

(32) ` σ(pAq, pBq)↔ ∀x (3x Sub(pσ(u, v)q, pAq, pBq)→ 3xpAq ∧3xpBq),

which by (29) becomes

(33) ` σ(pAq, pBq)↔ ∀x (3x pσ(pAq, pBq)q→ 3xpAq ∧3xpBq).

Using our sloppy notation:

(34) ` σ(A,B)↔ ∀x (3x σ(A,B)→ 3xA ∧3xB).

9Recall from Section 1.2 of Chapter 2 that we assume to have function symbols for all Kalmar
elementary functions available in EA.
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Thus the sentence σ(A,B) has exactly the properties of Švejdar’s supremum. We
will from now on write (A u B) for the sentence σ(A,B) in (34). The symbol u
should remind you of the universal quantifier on the right hand side of σ(A,B).
We have the convention that u binds equally strong as ∧ and ∨, thus we shall e.g.
write A uB → A instead of (A uB)→ A.

We will now show that for any A and B, A uB is verifiably in PA in the degree of
the supremum of A and B.

Theorem 38. For all C, ` (C �A) ∧ (C �B)↔ C �A uB.

Proof. We will give an informal proof, a version of which can be found in
[Šve78]. Using the verifiability of the Orey-Hájek characterization and the prop-
erties of our elaborate stratification sequence, it is easy to see that the proof can
be verified in PA. Recall that A uB is a sentence s.t.

` A uB ↔ ∀x (3x(A uB)→ 3xA ∧3xB).

We will first show that AuB �A and AuB �B. By essential reflexivity we have
AuB ` 3n(AuB) for all n ∈ N, whence also AuB ` 3nA∧3nB by the properties
of A u B. By the Orey-Hájek characterization of interpretability, A u B � A and
A uB �B.

For the other direction, assume C �A and C �B . We will show that

C ∧ ¬(A uB) �A uB.
Since clearly C∧(AuB)�AuB, using an interpretation defined by case distinction
we get C ∧ ((AuB)∨¬(AuB))�AuB, i.e. C�AuB. So consider C ∧¬(AuB).
¬(A uB) is the sentence

∃x (3x(A uB) ∧ (2x¬A ∨2x¬B)).

As we have assumed C�A and C�B, by the Orey-Hájek characterization we have
for all n ∈ N,

(35) C ` 3nA ∧3nB.

Fix n ∈ N. It follows from (35) that

C ` ∀x (3x(A uB) ∧ (2x¬A ∨2x¬B)→ x > n),

whence,

C ∧ ¬(A uB) ` ∃x ((3x(A uB) ∧ (2x¬A ∨2x¬B)) ∧ x > n).

In particular,
C ∧ ¬(A uB) ` ∃x (3x(A uB) ∧ x > n),

and so by monotonicity,

C ∧ ¬(A uB) ` 3n(A uB).

Thus C ∧ ¬(A uB) �A uB follows by the Orey-Hájek characterization. 2

Remark 39. Using the properties of the elaborate stratification, the direction from
left to right can also be proved by showing that for all n,

`n+1 3nA ∧3nB → 3n(A uB)

and applying the Orey-Hájek characterization.
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As a consequence of Theorem 38, the formula σ(y, z) in (31) is indeed an implemen-
tation of the supremum in the sense of definition 35. We call this implementation
Švejdar’s implementation.

4.2. Properties of Švejdar’s implementation. We will now examine some
properties of Švejdar’s implementation.

According to the next theorem, Švejdar’s implementation is distributive w.r.t. in-
terpretability.

Theorem 40 (Distributivity of u). ` A u (B ∨ C) ≡ (A u B) ∨ (A u C), and
` A ∨ (B u C) ≡ (A ∨B) u (A ∨ C).

Proof. We will present an informal proof similar10 to the one given by Švejdar
in [Šve78]. Observing the reasoning used in the proof, it is clear that it can be
formalized in PA.

We only need to show that ` A u (B ∨ C) ≡ (A u B) ∨ (A u C) as the other
distributivity law follows from this one by using principles available in IL. Using
the latter, we can also establish that the direction (AuB)∨ (AuC)�Au (B ∨C)
automatically holds in any lattice. Hence the only thing we need to show is that
A u (B ∨ C) � (A uB) ∨ (A u C).

Let θ be A u (B ∨ C), i.e. ` θ ↔ ∀x (3xθ → 3xA ∧3x(B ∨ C)).

Let σ be A uB, i.e. ` σ ↔ ∀x (3xσ → 3xA ∧3xB).

Let τ be A u C, i.e. ` τ ↔ ∀x (3xτ → 3xA ∧3xC).

Let n0 be great enough so that all the above fixed point equations are proven in
Tn0

. We will show that for all n ≥ n0, θ `n+1 3n(σ ∨ τ). It follows that for all n,
θ `PA 3n(σ ∨ τ), whence by the Orey-Hájek characterization θ� σ ∨ τ . Fix n ≥ n0

and argue in Tn+1. Assume θ. By reflection, 3nθ, and hence by properties of θ,

(36) 3nA ∧3n(B ∨ C).

Suppose for contradiction that 2n¬(σ∨θ). By propositional logic and distributivity
of 2 over ∧, we get 2n¬σ and 2n¬τ . Since we are reasoning in Tn+1, we get ¬σ
and ¬τ by reflection. By the properties of σ and τ , we have:

(37) ∃x (3xσ ∧ (2x¬A ∨2x¬B)),

(38) ∃x (3xτ ∧ (2x¬A ∨2x¬C)).

Since we had assumed 2n¬τ and 2n¬σ, the witnesses for the existential sentences
in (37) and (38) have to be smaller than n (using monotonicity). So there are some
k, l < n with 3kσ ∧ (2k¬A ∨ 2k¬B) and 3lτ ∧ (2l¬A ∨ 2l¬C). Suppose w.l.o.g.
that k > l. By monotonicity, it follows that (2k¬A∨2k¬B) and (2k¬A∨2k¬C).
By propositional logic and the distributivity of 2 over ∧,

(39) 2k¬A ∨2k(¬B ∧ ¬C).

By monotonicity, this implies 2n¬A ∨2n(¬B ∧ ¬C), contradicting (36). 2

10The proof below differs slightly from Švejdar’s, as we will make use of the properties of our
elaborate stratification sequence, and the latter was not used by Švejdar.
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Open Question 41. Do we have ` A u (B ∨ C) ↔ (A u B) ∨ (A u C)? I.e. is
Švejdar’s implementation distributive w.r.t. provability?

According to the next theorem, Švejdar’s implementation is extensional.

Theorem 42 (Extensionality of u). For all A and B,

` 2(A↔ A′) ∧2(B ↔ B′)→ 2(A uB ↔ A′ uB′).

In order to prove Theorem 42, we will first prove a lemma.

Lemma 4.1. Let n > 0 and `n θ ↔ ∀x (3xθ → 3xA ∧3xB). Then

`n+1 θ ↔ ((3nA ∧3nB) ∧ ∀x > n (3xθ → 3xA ∧3xB)).

Proof. Reason in Tn+1. Assume θ. Then ∀x (3xθ → 3xA ∧3xB), and thus
in particular ∀x > n (3xθ → 3xA ∧3xB). We also have θ → 3nθ (by reflection).
Thus by the properties of θ, 3nA and 3nB. For the other direction, note that by
monotonicity, 3nA∧3nB → ∀x ≤ n (3xA∧3xB). The result follows by combining
this with the other conjunct ∀x > n (3xθ → 3xA ∧3xB). 2

We will now prove Theorem 42. As before, we give an informal proof which is
easily seen to be verifiable in PA. Unlike Theorems 38 and 40, the result stated by
Theorem 42 is new11, and its proof makes essential use of our elaborate stratification
sequence.

Proof. Let n be s.t.

i. `n A↔ A′, `n B ↔ B′

ii. `n θ ↔ ∀x (3xθ → (3xA ∧3xB)), `n σ ↔ ∀x (3xσ → (3xA
′ ∧3xB

′))

We will show that `n+1 θ ↔ σ.

Note first that since `n A ↔ A′, by necessitation (here we use that GL is the
provability logic of Tn) `n 2n(A↔ A′), by monotonicity `n+1 ∀x ≥ n2x(A↔ A′),
and thus

(40) `n+1 ∀x ≥ n (3xA↔ 3xA
′).

Similarly, we get

(41) `n+1 ∀x ≥ n (3xB ↔ 3xB
′).

We will now show that

`n+1 2n+1(θ ↔ σ)→ (θ ↔ σ).

Then `n+1 θ ↔ σ follows by Löb’s Theorem for Tn+1. Reason in Tn+1. Assume
2n+1(θ ↔ σ) and θ. By Lemma 4.1, it suffices to show

(3nA
′ ∧3nB

′) ∧ ∀x > n (3xσ → 3xA
′ ∧3xB

′).

11Keep in mind that properties like extensionality were not investigated by Švejdar, as he was

only interested in the properties of the supremum w.r.t. interpretability. Our goal of extending
the logic ILM with a supremum operator obliges us to be acquainted also with the provability

properties of a supremum.
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Also by Lemma 4.1, we get (3nA ∧ 3nB) ∧ ∀x > n (3xθ → 3xA ∧ 3xB) from θ.
From the first conjunct, we get (3nA

′ ∧ 3nB
′) using (40) and (41). So let x > n

and 3xσ. By the assumption 2n+1(θ ↔ σ), we get 3xθ, whence 3xA∧3xB. Since
x ≥ n, 3xA

′ ∧3xB
′ follows by (40) and (41). The other direction is similar. 2

The next theorem is an immediate consequence of the proof of Theorem 42 — only
the fixed point properties of AuB and A′uB′, not their construction by the Fixed
Point Theorem.

Theorem 43 (Uniqueness of u). Suppose that ` θ ↔ ∀x (3xθ → 3xA∧3xB) and
` σ ↔ ∀x (3xσ → 3xA ∧3xB). Then ` θ ↔ σ.

According to Theorem 43, the solution to the fixed point equation

∀x (3xY → 3xA ∧3xB)

is unique up to provable equivalence.

It is an immediate consequence of Theorem 43 that Švejdar’s implementation is
commutative w.r.t. provability, i.e. that for all A and B, ` A uB ↔ B uA.

Open Question 44. Is Švejdar’s implementation monotone?

We will now prove a theorem concerning the suprema of 2-formulas under Švejdar’s
implementation. As we will see, all such suprema are provably equivalent to >. In
a way, this is not surprising. Note that according to Lemma 2.1 of Chapter 2, we
have that > � 2⊥. Since for all A, 2⊥ → 2A, 2⊥ � 2A, and hence by J2 also
>�2A. Of course, having that > → 2A is still stronger than the latter.

Theorem 45. For all A and B, ` 2A u2B.

To prove Theorem 45, we will first prove a lemma.

Lemma 4.2. ` ∀x (2x¬2C ↔ 2x⊥).

Proof. The direction from right to left is clear. For the other direction:

` 2x¬2 C

→ 2x¬2xC (monotonicity)

→ 2x(2xC → ⊥)

→ 2x(2x⊥ → ⊥) (since 2x⊥ → 2xC)

→ 2x⊥ (Löb’s Theorem) 2

We will now give a proof of Theorem 45.

Proof. By contraposition, 2A u2B is the sentence θ s.t.

` θ ↔ ∀x ((2x¬2A ∨2x¬2B)→ 2x¬θ)
By Lemma 4.2 and propositional logic,

` (2x¬2A ∨2x¬2B)↔ 2x⊥.
It follows that

` θ ↔ ∀x (2x⊥ → 2x¬θ),
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Since ` ∀x (2x⊥ → 2x¬θ), it follows that ` θ ↔ >, 2

We will now list some facts concerning Švejdar’s implementation.

Fact 46. ` > u > ↔ >. This follows by Theorem 43 and the observation that >
is a solution to the equation ∀x (3xY → 3x>).

The following fact establishes a weak versions of monotonicity for u.

Fact 47. If `0 A→ C, then ` A uA↔ A u C.

Proof. Since `0 A→ C, also `0 20(A→ C) by necessitation for T0.

Let θ be A uA, i.e. ` θ ↔ ∀x (3xθ → 3xA).

Let σ be A u C, i.e. ` σ ↔ ∀x (3xσ → 3xA ∧3xC).

Let n be great enough so that the above fixed point equations are proven in Tn. We
will show that `n 2n(θ ↔ σ)→ (θ ↔ σ). Then `n θ ↔ σ follows by applying Löb’s
Theorem for Tn. Argue in Tn. Assume 2n(θ ↔ σ) ∧ θ. We want to show that σ.
So assume that 3xσ. If x < n, then the assumption θ implies 3xθ, using reflection.
If x ≥ n, then we get 3xθ by the assumption 2n(θ ↔ σ) and monotonicity. Thus
in both cases, 3xθ. Using the assumption θ and the fixed point version of θ, we
get 3xA. We want to show that also 3xC. But if 2x¬C, then also 2x¬A by
monotonicity and the assumption that 20(A → C). Hence we have shown that
3xA∧3xC, and we can conclude σ. The other direction is similar but easier, since
we do not need to use the assumption `0 A→ C. 2

Open Question 48. Does Švejdar’s implementation have an explicit form?

A possible strategy for finding an explicit form for Švejdar’s implementation is to
ignore the first order structure of the equation ∀x (3xY → 3xA∧3xB), and apply
the algorithm for calculating explicit fixed points in GL. Ignoring the universal
quantifier, A u B has the form: p ↔ (3p → q). Applying the algorithm yields
p ↔ (3> → q). So a conjecture for the explicit from of A u B would be the
sentence ∀x (3x> → 3xA ∧ 3xB). But we haven’t been able to prove or refute
that this sentence is (verifiably) in the same degree as A uB.

4.3. A puzzling result. This subsection discusses a property of fixed points
of the form ∀x (3xY → 3xA), which stands in stark contrast to the nice behaviour
of fixed points expressible in the language of GL.

Note that in fact 46, >, which is equivalent to a fixed point of the equation
∀x (3xY → 3x>), is itself a fixed point of this equation. However this is not
the case in general, i.e. it is possible that i, ii and iii below all hold at the same
time.

i. ` θ ↔ ∀x (3xθ → 3xA)

ii. ` σ ↔ θ

iii. 0 σ ↔ ∀x (3xσ → 3xA)
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I.o.w. it is possible that although σ is equivalent to a fixed point of the equation
∀x (3xY → 3xA), it is not itself a fixed point of that equation. This is illustrated
by the following example.

Example 49. Note first that if ` θ ↔ ∀x (3xθ → 3x⊥), then ` ⊥ ↔ θ.

To see this, note that ` 20>, whence by monotonicity ` ∀x2x>, i.e. ` ∀x¬3x⊥. It
follows by propositional logic that if ` θ ↔ ∀x (3xθ → 3x⊥), then ` θ ↔ ∀x¬3xθ,
i.e. ` θ ↔ ∀x2x¬θ, and ` θ ↔ 20¬θ by monotonicity. Since ` 20¬θ → ¬θ by
reflection, it follows that ` θ ↔ ⊥.

But clearly, 0 ⊥ ↔ ∀x (3x⊥ → 3x⊥) (because the right hand side is equivalent
to >). Hence while ⊥ is provably equivalent to any fixed point of the equation
∀x (3xY → 3x⊥), it can itself never be a fixed point of this equation.

Thus the fixed point equation ∀x (3xY → 3xA) differs from the ones that can be
expressed in the language of GL. In GL, it is a consequence of the Fixed Point
Theorem (see Section 1.3 of Chapter 2) that any sentence equivalent to a fixed
point of an equation is itself a fixed point of this equation (see also [Boo93]).

Let `n θ ↔ ∀x (3xθ → 3xA ∧ 3xB) and `n σ ↔ θ. While — as shown above —
we do not in general have that ` σ ↔ ∀x (3xσ → 3xA ∧3xB), we can prove that
σ is a fixed point of another formula, namely the version of θ given in Lemma 4.1.
According to Lemma 4.1, we have that

(42) `n+1 θ ↔ (3nA ∧3nB) ∧ ∀x > n (3xθ → 3xA ∧3xB).

What we can show is that σ is a fixed point of the equation in (42), i.e. that

(43) `n+1 σ ↔ (3nA ∧3nB) ∧ ∀x > n (3xσ → 3xA ∧3xB).

Proof. Since `n σ ↔ θ, we have that `n 2n(σ ↔ θ) by necessitation for Tn,
and thus `n ∀x ≥ n2x(σ ↔ θ) by monotonicity, whence also

(44) `n+1 ∀x ≥ n (3xσ ↔ 3xθ).

Using (44), we see that

(45) `n+1 ∀x ≥ n [(3xθ → 3xA ∧3xB)↔ (3xσ → 3xA ∧3xB)]

It is now easy to see that (43) holds:

`n+1 σ ↔ θ (assumption)

↔ (3nA ∧3nB) ∧ ∀x > n (3xθ → 3xA ∧3xB) (42)

↔ (3nA ∧3nB) ∧ ∀x > n (3xσ → 3xA ∧3xB) (45)
2

Using (43), it is clear that ` σ → ∀x (3xσ → 3xA ∧ 3xB), however the other
direction does not hold in general.
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5. Visser’s Implementation of the Supremum

This section explores an alternative way of implementing the supremum in PA,
discovered by Albert Visser. The discovery was inspired by work on a joint pa-
per ([SA12]) with Volodya Shavrukov; some of the crucial ingredients are already
present [Sha94]. As we will see, Visser’s implementation is to a certain extent dual
to Švejdar’s implementation.

Given sentences A and B, Visser’s supremum is found by using the Gödel Fixed
Point Theorem to obtain a sentence θ with the property that

(46) ` θ ↔ ∀x (2xθ → 2x¬A ∨2x¬B).

If θ is as above, the sentence ¬θ is verifiably in PA in the degree of the supremum
of A and B. This will be proven below. Note that whereas A u B was universal
sentence, under Visser’s implementation the supremum of A and B is an existential
sentence.

5.1. Visser’s supremum as an implementation. Just like Švejdar’s supre-
mum, Visser’s supremum can be turned into an implementation by using the general
version of the Gödel-Carnap Fixed Point Theorem. The procedure for doing that
is exactly like the one presented in Section 4.1. Hence we can assume that we have
a formula θ(y, z) s.t. for all A and B,

` θ(A,B)↔ ∀x (2xθ(A,B)→ 2x¬A ∨2x¬B).

We will show that for all A and B, the sentence ¬θ(A,B) is verifiably in PA in the
degree of the supremum of A and B, and hence ¬θ(y, z) is an implementation of
the supremum in PA, in the sense of definition 35. We will write (A f B) for the
sentence ¬θ(A,B), where θ(A,B) is as above. We shall omit parentheses according
to the convention that f binds equally strong as ∨ and ∧. To prove that AfB is
a supremum of A and B, we will use Lemma 5.1 and Theorem 50 below.

Lemma 5.1. Let `n θ ↔ ∀x (2xθ → 2x¬A ∨2x¬B). Then

`n ∀x ≥ n2x(∀y < x (2yθ → 2y¬A ∨2y¬B)).

Proof. By necessitation,

(47) `n 2n(θ ↔ ∀x (2xθ → 2x¬A ∨2x¬B)),

whence we can use θ and ∀x (2xθ → 2x¬A∨2x¬B) interchangeably in 2x if x ≥ n.

`n x ≥ n→ 2x∀y < x (2yθ → θ) (reflection)

→ 2x∀y < x (2yθ → ∀z(2zθ → 2z¬A ∨2z¬B)) (fixed point version of θ)

→ 2x∀y < x (2yθ → 2y¬A ∨2y¬B)
2

Theorem 50. Let `n θ ↔ ∀x (2xθ → 2x¬A ∨2x¬B). Then

`n ∀x ≥ n (2xθ ↔ 2x(2x¬A ∨2x¬B)).
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Proof.

`n x ≥ n→ (2xθ → 2x∀y (2yθ → 2y¬A ∨2y¬B)) (fixed point version of θ)

→ 2x(2xθ → 2x¬A ∨2x¬B) (instantiating ∀)
→ (2x2xθ → 2x(2x¬A ∨2x¬B)) (K-axiom)

→ 2x(2x¬A ∨2x¬B) (since 2xθ → 2x2xθ)

→ 2x∀y ≥ x (2y¬A ∨2y¬B) (monotonicity)

→ 2x∀y ≥ x (2yθ → 2y¬A ∨2y¬B)

→ 2x∀y (2yθ → 2y¬A ∨2y¬B) (Lemma 5.1)

→ 2xθ (fixed point version of θ)

We have shown that `n ∀x ≥ n (2xθ ↔ 2x(2x¬A ∨2x¬B)). 2

Theorem 51. For all C, ` (C �A) ∧ (C �B)↔ C �AfB.

Proof. We will give an informal proof. Using the properties of our elaborate
stratification sequence and the verifiability of the Orey-Hájek characterization in
PA, it is straightforward to see that the proof can be verified in PA. Write θ for
¬(AfB). Then θ has the property that

(48) ` θ ↔ ∀x (2xθ → 2x¬A ∨2x¬B)

Let n be great enough so that (48) is proven in Tn. By Theorem 50, we have

`n ∀x ≥ n (2xθ ↔ 2x(2x¬A ∨2x¬B)),

whence by monotonicity also

`n+1 ∀x ≥ n (2xθ ↔ 2x(2x¬A ∨2x¬B)).

In particular,

`n+1 2nθ ↔ 2n(2n¬A ∨2n¬B).

We note that

`n+1 2n(2n¬A ∨2n¬B)↔ (2n¬A ∨2n¬B).

The direction from right to left uses provable Σ1-completeness; the other direction
follows by reflection. Thus we have `n+1 2nθ ↔ (2n¬A ∨ 2n¬B), whence by
contraposition (remember that θ was the sentence ¬(AfB))

(49) `n+1 3n(AfB)↔ (3nA ∧3nB).

Using (49) and the Orey-Hájek characterization, it is easy to see that

(C �A) ∧ (C �B)⇔ C �AfB. 2

5.2. Properties of Visser’s implementation. Using Theorem 50, we see
that a fixed point of the equation ∀x (2xY → 2x¬A∨2x¬B) is provably equivalent
to a “stratified” reflection principle for (2x¬A ∨2x¬B).

Theorem 52 (Explicit version of f). Let `n θ ↔ ∀x (2xθ → 2x¬A ∨ 2x¬B).
Then `n θ ↔ ∀x (2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B).
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Proof. Assume `n θ ↔ ∀x (2xθ → 2x¬A ∨2x¬B). By Theorem 50,

(50) `n θ ↔ ∀x ≥ n (2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B).

On the other hand, we have by reflection

(51) `n θ ↔ ∀x < n (2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B).

Combining (50) and (51), we see that

`n θ ↔ ∀x (2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B). 2

According to Theorem 53, the explicit version provided by Theorem 52 satisfies an
analogue of Theorem 50. According to Corollary 54, it is also a fixed point of the
equation ∀x (2xY → 2x¬A ∨2x¬B).

Theorem 53. Let σ := ∀x (2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B).
Then `1 ∀x (2xσ ↔ 2x(2x¬A ∨2x¬B)).

Proof.

`1 2xσ → 2x∀y (2y(2y¬A ∨2y¬B)→ 2y¬A ∨2y¬B)(52)

→ 2x(2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B)(53)

→ 2x(2x¬A ∨2x¬B)(54)

→ 2x∀y ≥ x (2y¬A ∨2y¬B)(55)

→ 2x∀y ≥ x (2y(2y¬A ∨2y¬B)→ 2y¬A ∨2y¬B) ∧(56)

2x∀y < x (2y(2y¬A ∨2y¬B)→ 2y¬A ∨2y¬B)(57)

→ 2x∀y (2y(2y¬A ∨2y¬B)→ 2y¬A ∨2y¬B)(58)

→ 2xσ(59)

Step (54) uses formalized Löb’s Theorem, step (55) monotonicity, step (56) the
previous step together with propositional logic, and step (57) reflection. 2

Corollary 54. Let σ := ∀x (2x(2x¬A ∨2xB)→ 2x¬A ∨2x¬B).
Then ` σ ↔ ∀x (2xσ → 2x¬A ∨2x¬B).

Proof. Immediate from Theorem 53. 2

Using Corollary 54 and the proof12 of Theorem 51, we see that we have a direct
proof of the fact that the sentence

(60) ∃x (2x(2xA ∨2xB) ∧ (3xA ∧3xB))

is a supremum of A and B. From now on, if we write A f B, we mean either the
fixed point version of AfB, i.e. the sentence τ with

(61) ` τ ↔ ∃x (2x¬τ ∧ (3xA ∧3xB))

or the explicit form, i.e. the sentence in (60). Note that by Corollary 54, the
sentence in (60) is also a sentence τ as in (61).

The appearance of the explicit form of Visser’s implementation is in some sense not
surprising. Ignoring the first order structure of the fixed point version of ¬(AfB)

12To prove that a sentence τ is a supremum of A and B, we only used that the negation of τ is a
solution to the fixed point equation ∀x (2xY → 2x¬A ∨ 2x¬B).
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we see that it has the form p↔ (2p→ q). Applying the algorithm for calculating
explicit fixed points in GL, we get that p ↔ (2q → q), in agreement with the
propositional structure of the actual explicit form provided by Theorem 52.

Hence the equation ∀x (2xY → 2x¬A∨2x¬B) is “well-behaved” in the sense that
it has an explicit fixed point in accordance to the calculations done in GL. One
could expect that also other properties of the tame fixed point equations expressible
in the language of GL can be transferred. In particular, one might wonder whether
the puzzling result of section 4.3 has an analogue for Visser’s implementation. I.e.
do we have that if ` θ ↔ ∀x (2xθ → 2x¬A ∨ 2x¬B) and ` σ ↔ θ, then also
` σ ↔ ∀x (2xσ → 2x¬A ∨ 2x¬B)? According to Corollary 54, this is indeed
the case for σ = ∀x (2x(2x¬A ∨ 2xB) → 2x¬A ∨ 2x¬B). However, the proof of
Theorem 53 (which is used to establish Corollary 54) uses the special properties of
σ, i.e. that it has the form of a particular reflection principle. For the general case,
we can only show something weaker13.

Theorem 55. Let `n θ ↔ ∀x (2xθ → 2x¬A) and `n σ ↔ θ. Then

`n σ ↔ ∀x ≥ n (2xσ → 2x¬A).

Proof. Since `n σ ↔ θ, also `n 2n(σ ↔ θ) by necessitation for Tn. We
reason in Tn. Assume σ. Then also θ by assumption. Let x ≥ n and 2xσ. Then
also 2xθ, and by the assumption θ it follows that 2x¬A. For the other direction,
assume that ∀x ≥ n (2xσ → 2x¬A). Since we have `n σ ↔ θ, in order to show
that σ it suffices to show that θ, i.e. ∀x (2xθ → 2x¬A). So assume 2xθ. If x < n
we get θ by reflection, and hence 2x¬A by properties of θ. If x ≥ n we get 2xσ,
whence 2x¬A follows from the assumption that ∀x ≥ n (2xσ → 2x¬A). 2

We will now prove that Visser’s implementation is extensional.

Theorem 56 (Extensionality of f). For all A and B,

` 2(A↔ A′) ∧2(B ↔ B′)→ 2(AfB ↔ A′ fB′).

Proof. We will give an informal proof. Using the properties of our elaborate
stratification sequence and the verifiability of the Orey-Hájek characterization, for-
malizing the proof is a straightforward procedure. Let `n A↔ A′ and `n B ↔ B′.
We will show that `n A f B ↔ A′ f B′ by using the explicit version of Visser’s
implementation. So let

i. θ := ∀x (2x(2x¬A ∨2x¬B)→ 2x¬A ∨2x¬B)

ii. σ := ∀x (2x(2x¬A′ ∨2x¬B′)→ 2x¬A′ ∨2x¬B′),

We will show that `n θ ↔ σ, whence the desired result follows by contraposition.

Since `n A↔ A′, we have `n 2n(A↔ A′) and `n 2n2n(A↔ A′) by necessitation.
Similarly for B and B′. By monotonicity, we get:

(62) `n ∀x ≥ n2x(A↔ A′) and `n ∀x ≥ n2x(B ↔ B′)

13In GL, we have that `GL 2(p↔ B(p))↔ 2(p↔ H), where H is the explicit fixed point provided

by the Fixed Point Theorem for GL. Viewing B(Y ) as the equation ∀x (2xY → 2x¬A), we do
have the direction from left to right (since we have an explicit fixed point). It is the direction

from right to left which we cannot prove in general.
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(63) `n ∀x ≥ n2x2x(A↔ A′) and `n ∀x ≥ n2x2x(B ↔ A′)

Reason in Tn. Assume θ and 2x(2x¬A′ ∨ 2x¬B′). If x < n, then by reflection,
we have that (2x¬A′ ∨ 2x¬B′). If x ≥ n, then using (63), 2x(2x¬A′ ∨ 2x¬B′)
implies 2x(2x¬A∨2x¬B). Since we assumed θ, this implies (2x¬A∨2x¬B), and
thus (2x¬A′ ∨ 2x¬B′) by (62). We can conclude θ → σ. The other direction is
similar. 2

5.3. Properties of >f>. This section deals with the properties of the sen-
tence >f>. We will first show that >f> is an Orey-sentence.

A sentence O is said to be an Orey-sentence (for PA) if both > � O and > � ¬O.
Thus if O is an Orey-sentence, then neither O nor its negation add interpretability
strength to PA. It is clear that if O is an Orey-sentence, then so is ¬O. Note also
that an Orey-sentence must be independent from PA.

The first Orey-sentences for PA were obtained by Orey ([Ore61]). Švejdar ([Šve78])
constructs an Orey-sentence for PA by using the Gödel Fixed Point Theorem to find
a sentence θ s.t.

(64) ` θ ↔ ∀x (3xθ → 3x¬θ).

Using the Orey-Hájek characterization and the properties of our elaborate strati-
fication sequence14, it is easy to see that θ � ¬θ and ¬θ � θ. Reasoning in IL, it
follows that also >� θ and >� ¬θ.

We will now show that >f> is an Orey-sentence. Consider the fixed-point version
of ¬(>f>), i.e. the sentence σ with ` σ ↔ ∀x (2xσ → 2x⊥). Note that

` ∀x (2xσ → 2x⊥)↔ ∀x (2xσ → 2x¬σ)

whence by contraposition,

` ∀x (2xσ → 2x⊥)↔ ∀x (3xσ → 3x¬σ).

The sentence on the right-hand side is Švejdar’s Orey-sentence. Hence also ¬(>f>)
and >f> are Orey-sentences.

In [Vis89], it is shown that >f> is an Orey-sentence by showing that it is a Gödel-
sentence for the Feferman provability predicate15, and that any Gödel-sentence for
the Feferman provability predicate is an Orey-sentence.

We will now show that the suprema of all 2-formulas under Visser’s implementation
are equivalent to >f>, and hence also Orey-sentences.

Theorem 57. For all A and B, ` 2Af2B ↔ >f>.

Proof. We use the explicit form, and consider the sentence ¬(2Af2B), i.e.

(65) ∀x (2x(2x¬2A ∨2x¬2B)→ 2x¬2A ∨2x¬2B).

14As before, Švejdar uses the stratification sequence where Tn is the subtheory of PA axiomatized

by axioms of gödelnumbers < n.
15The Feferman provability predicate is informally defined as: PrF (A) if there exists some x s.t.

Tx is consistent and `x A.
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By Lemma 4.2 we have for all C,

` 2x¬2C ↔ 2x⊥,

hence

` (2x¬2A ∨2x¬2B)↔ 2x⊥,
and thus also

` 2x(2x¬2A ∨2x¬2B)↔ 2x2x⊥.
It follows that the sentence in (65) is equivalent to

∀x (2x2x⊥ → 2x⊥),

which is the explicit version of ¬(>f>). 2

5.4. Other properties of f. We will now examine some further properties
of Visser’s implementation. First, it is clear that Visser’s implementation is com-
mutative w.r.t. provability, i.e. that for all A and B, ` AfB ↔ B fA.

As for distributivity w.r.t. interpretability, it would — as in the case of Švejdar’s
implementation (see Section 4.2) — suffice to show that

` Af (B ∨ C) � (AfB) ∨ (Af C).

According to the next theorem, we even have this direction of distributivity w.r.t.
provability.

Theorem 58. ` Af (B ∨ C)→ (AfB) ∨ (Af C).

Proof. We show this by contraposition, using the explicit form of Visser’s
implementation. Assume ¬(AfB) and ¬(Af C), i.e.

∀x (2x(2x¬A ∨2x¬B)→ (2x¬A ∨2x¬B))

and

∀x (2x(2x¬A ∨2x¬C)→ (2x¬A ∨2x¬C)).

We want to show that

∀x (2x(2x¬A ∨2x(¬B ∧ ¬C))→ (2x¬A ∨2x(¬B ∧ ¬C))).

` 2x(2x¬A ∨2x(¬B ∧ ¬C))

→ 2x(2x¬A ∨ (2x¬B ∧2x¬C)) (distributivity of 2 over ∧)

→ 2x((2x¬A ∨2x¬B) ∧ (2x¬A ∨2x¬C)) (distributivity of ∨ over ∧)

→ 2x(2x¬A ∨2x¬B) ∧2x(2x¬A ∨2x¬C) (distributivity of 2 over ∧)

→ (2x¬A ∨2x¬B) ∧ (2x¬A ∨2x¬C) (by assumption)

→ (2x¬A ∨ (2x¬B ∧2x¬C) (distributivity of ∨ over ∧)

→ (2x¬A ∨2x(¬B ∧ ¬C) (distributivity of 2 over ∧) 2

Corollary 59. ` Af (B ∨ C) � (AfB) ∨ (Af C)

Proof. Immediate from Theorem 58 by the principle J1 of IL. 2
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It is natural to ask whether also the other directions of distributivity are provable
for Visser’s implementation, e.g. do we have that

` (AfB) ∨ (Af C)→ Af (B ∨ C)?

The only thing we could prove is the following fact, which can be seen as an ap-
proximation of the other non-trivial direction of distributivity. Hence, somewhat
curiously exactly the trivial directions of distributivity do not seem to hold w.r.t.
provability.

Fact 60. ` (A ∨B)f (A ∨ C)→ (AfA) ∨ (B f C).

Proof. We show this by contraposition, using the explicit form of Visser’s
implementation. Assume ¬(AfA) and ¬(B f C), i.e.

∀x (2x2x¬A→ 2x¬A)

and

∀x (2x(2x¬B ∨2x¬C)→ (2x¬B ∨2x¬C)).

We want to show that

∀x (2x(2x(¬A ∧ ¬B) ∨2x(¬A ∧ ¬C))→ (2x(¬A ∧ ¬B) ∨2x(¬A ∧ ¬C))).

` 2x(2x(¬A ∧ ¬B) ∨2x(¬A ∧ ¬C))

→ 2x((2x¬A ∧2x¬B) ∨ (2x¬A ∧2x¬C)) (distributivity of 2 over ∧)

→ 2x(2x¬A ∧ (2x¬B ∨2x¬C)) (distributivity of ∨ over ∧
→ 2x2x¬A ∧2x(2x¬B ∨2x¬C) (distributivity of 2 over ∧)

→ 2x¬A ∧ (2x¬B ∨2x¬C) (by assumption)

→ (2x¬A ∧2x¬B) ∨ (2x¬A ∧2x¬C) (distributivity of ∨ over ∧)

→ 2x(¬A ∧ ¬B) ∨2x(¬A ∧ ¬C) (distributivity of 2 over ∧) 2

The next theorem allows us to show that Visser’s implementation is not monotone.
It will also play an important role in our attempt of developing a modal semantics
for Visser’s implementation (see Chapter 5).

Theorem 61.

0 ((>f>)f (>f>))→ (>f>) ∨3(>f>)

Proof. Suppose for contradiction that

` ((>f>)f (>f>))→ (>f>) ∨3(>f>),

whence by contraposition,

(66) ` ¬(>f>) ∧2¬(>f>)→ ¬((>f>)f (>f>)).

Throughout this proof, we use the explicit form of Visser’s implementation. Note
the following:

i. Since ` > � (> f >) and ` (> f >) � >, we have that ` 3> ↔ 3(> f >)
(using IL), thus ` 2¬(>f>)↔ 2⊥.

ii. By Theorem 53 we have that ` ∀x (2x¬(>f>)↔ 2x2x⊥) .
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iii. ¬((>f>)f (>f>)) is the sentence

∀x (2x2x¬(>f>)→ 2x¬(>f>)).

By ii this is equivalent to ∀x (2x2x2x⊥ → 2x2x⊥).

It follows from the above that if (66) holds, then

(67) ` ∀x (2x2x⊥ → 2x⊥) ∧2⊥ → ∀x (2x2x2x⊥ → 2x2x⊥).

Suppose that (67) is proven in Tn. Using reflection, we have in Tn that (67) implies

∀x > n (2x2x⊥ → 2x⊥) ∧2⊥ → ((2n2n⊥ → 2n⊥)→ (2n2n2n⊥ → 2n2n⊥)).

Note that 2n2n2n⊥ implies 2x2n2n⊥ for x > n by monotonicity, whence by
applying reflection twice, 2x⊥. Hence the antecedent ∀x > n (2x2x⊥ → 2x⊥) ∧
2⊥ follows from 2n2n2n⊥, so we have

`n 2n2n2n⊥ → ((2n2n⊥ → 2n⊥)→ (2n2n2n⊥ → 2n2n⊥)).

By propositional logic,

`n 2n2n2n⊥ → (2n2n⊥ ∨2n⊥).

Since `n 2n⊥ → 2n2n⊥, it follows by propositional logic that

`n 2n2n2n⊥ → 2n2n⊥.
By Löb’s Theorem for Tn, we get

`n 2n2n⊥,
which is a contradiction. 2

Corollary 62. f is not monotone, i.e. it is possible that

i. ` A→ B, but

ii. 0 C fA→ C fB

Proof. Suppose for contradiction that f is monotone. It follows that for any
A, ` AfA→ >f>. In particular,

` (>f>)f (>f>)→ >f>,
i.e.

` ¬(>f>)→ ¬((>f>)f (>f>)),

contradicting Theorem 61. 2

According to Fact 63, we have a weak version of monotonicity for Visser’s imple-
mentation.

Fact 63. If `0 A→ C, then ` AfA↔ Af C.

Proof. We will use the explicit form and show by contraposition that

`∀x (2x(2x¬A ∨2x¬C)→ (2x¬A ∨2x¬C))

↔ ∀x (2x2x¬A→ 2x¬A).

The result follows immediately once we note that since `0 20(¬C → ¬A), we have

` (2x¬A ∨2x¬C)↔ 2x¬A,
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whence also
` 2x(2x¬A ∨2x¬C)↔ 2x2x¬A. 2

6. Table of Properties of u and f

We finish this chapter by giving a comparative summary of the properties of our
two implementations. “Distributivity (≡)” and “Distributivity (↔)” stand for dis-
tributivity w.r.t. interpretability and provability respectively. “Weak monotonicity”
stands for the property that if `0 A→ C, then ` A?A↔ A? C.

Table 1. Properties of the two implementations.

Švejdar’s u Visser’s f

Commutativity (↔) X X
Distributivity (≡) X X
Distributivity (↔) ? partly

Extensionality X X
Monotonicity ? 7

Weak Monotonicity X X
>?> equivalent to > Orey-sentence

2A? 2B equivalent to > u> equivalent to >f>
Explicit form ? X



CHAPTER 4

Semantics for ILMS

Let ILMS be the system ILM plus the axiom S: (C�A)∧(C�B)↔ C�A?B. Since
ILMS is an extension of ILM (as a theory), it is natural to ask whether it can be seen
as such also from the semantic point of view. In other words, can we extend the
semantics for ILM to a semantics for ILMS? Answering this question is the main goal
of this chapter. Section 1 introduces the system ILMS. In Section 2, we will try to
find a structural characterization of ILM–models validating axiom S. The possibility
of such a characterization is excluded in Section 4, thus defeating all hope of finding
a relational semantics for ILMS. Section 3 explores the possibility of having a weaker
notion of semantics for ILMS. In Section 5, we obtain modal completeness of ILMS
w.r.t. this notion of semantics, in the simple case where the underlying frames have
depth 2. In Section 6 we obtain an arithmetical completeness result for a very
restricted set of formulas.

1. The Logic ILMS

This section introduces the system ILMS – the minimal logic for the supremum
operator. The formulas of ILMS are defined as follows:

(68) FILMS ::= ⊥ | Prop | (FIL → FIL) | 2FIL | (FIL � FIL) | (FIL ? FIL)

We have the convention that ? binds equally strong as ∧ and ∨. Thus we shall
write A?B �A instead of (A?B)�A, and A?B → A instead of (A?B)→ A.
We say at that a formula of ILMS is a ?–formula if ? is its main connective.

Definition 64. The logic ILMS is ILM plus the axiom S:

(C �A) ∧ (C �B)↔ C �A?B

Lemma 1.1. The following are provable in ILMS:

1. 2¬(⊥?A)

2. 3(A?B)→ 3A ∧3B

3. 3A↔ 3(A?A)

4. 3(A?A)↔ 3(A? (A ∨B))

5. 3(3A ∧3B)→ 3(A?B)

Proof. For 1 we have ⊥?⊥�A by axiom S, whence by J4 3(⊥?A)→ 3⊥.
Since 3⊥ → ⊥, it follows that 3(⊥ ? A) → ⊥, i.e. 2¬(⊥ ? A). Items 2, 3 and 4
follow similarly by using axioms S and J4. For 5 we use that by J5, 3A � A. By
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J1, 3A ∧ 3B � 3A, whence by J2 3A ∧ 3B � A. Similarly, 3A ∧ 3B � B. By
axiom S, 3A ∧3B �A?B, and 5 follows by J4. 2

Recall that according to Theorem 33 the sentence 3A∧3B → 3(A?B) is true, and
according to Theorem 37 it is not provable in ILMS. In the context of GL, we get a
logic that proves all true sentences by simply taking all theorems of GL, adding the
reflection principle 2A → A (or by contraposition, A → 3A) and allowing modus
ponens as the only rule of inference. The resulting system GLS is the provability
logic of sentences that are true (in the standard model)1. One might wonder whether
the same strategy gives all true sentences for the system ILMS. Item 5 in Lemma
1.1 suggests that this could indeed be the case. By reflection principle, we have
3A ∧3B → 3(3A ∧3B), whence using 5, we get 3A ∧3B → 3(A?B).

2. Axiom S and Structural Properties of Models

In this section, we will try to find a structural characterization of ILM–frames or
ILM–models validating axiom S. As the possibility of such a characterization will
be ruled out in Section 4 below, the reader should not get too attached to the
material presented in this section. Instead, it should be seen as preliminary to the
negative result of Section 4.2, and as an illustration for how the natural strategies
for finding a modal semantics break down in the case of ILMS.

2.1. Minimal conditions. When encountering a new axiom in the context
of modal logic, it is natural to ask whether it characterizes some nicely describable
class of frames. We will now try to answer this question for the axiom S. However,
as we do not have any conditions for a node to satisfy a formula of the form A?B
(to investigate whether such conditions can be found is the purpose of the current
chapter!), we will not arrive at fully fledged frame conditions. Instead, we will
obtain certain minimal structural conditions that are sufficient for an ILM–model
to validate axiom S.

Let K be the class of ILM–frames. Since we want our hypothetical ILMS–frames
also to satisfy ILM, our question is whether there is some reasonable class K? of
frames with K? ⊆ K, and such that

F ∈ K? ⇒ F  S.

Without having a structural truth condition for ?–formulas, it is not clear how one
should proceed to investigate the other direction of frame characterizability. In this
section, as well as in Chapter 5, we shall only be concerned with the direction of
frame characterizability depicted above2. So let M be an ILM–model. We will see
what structural characteristics M should possess in order for us to conclude that
axiom S is valid in M.

First, consider the direction of S which says that (A?B�A)∧(A?B�B). Suppose
that M, x  A ? B for some x ∈ M. Using the semantics for �, we see that for

1For more about the system GLS, see [Boo93].
2Under some circumstances, this might be the only direction we need. Suppose that we have a

class of frames K? with F ∈ K? ⇒ F  S, but F  S ⇒ F ∈ K′ for some K′ 6= K?, where of
course K? ⊂ K′. Now if there is no modal formula that is valid in K? but not in K′, we might

still get soundness and completeness of ILMS w.r.t. the smaller class K? of frames.
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any w s.t. wRx, there should be y, y′ with xSwy  A and xSwy
′  B. Thus we get

the first minimal condition:

(69) x  A?B ⇒ ∀w[wRx⇒ ∃y, y′(xSwy  A ∧ xSwy
′  B)].

Suppose that we are able to find a condition C(A,B) for a node x in a model
to satisfy the formula A ? B. Then the first minimal condition would become: if
x � C(A,B), then for all w with wRx, there are y, y′ with xSwy  A and xSwy

′  B.

For the other direction of axiom S, let w  (C � A) ∧ (C � B), and let x be s.t.
wRx  C. Then we have y, y′ with xSwy  A and xSwy

′  B. We want to
conclude that there is some z with xSwz and z  A? B. Thus we get the second
minimal condition3:

(70) xSwy  A ∧ xSwy′  B ⇒ ∃z(xSwz  A?B).

Using our hypothetical condition C(A,B) again, (70) becomes: if xSwy  A and
xSwy

′  B, then there exists z with xSwz and z � C(A,B).

IfM is an ILM–model satisfying the minimal conditions (69) and (70), then clearly
M � S. We would want to find a condition C with two free variables, and such that
if M is an ILM–model and we define for all x ∈M,

M, x  A?B :⇔ x � C(A,B),

then M satisfies the minimal conditions (69) and (70) above. It would follow that
M  S, and thus we would have a notion of an ILMS–model (i.e. an ILM–model
where the truth values of ?–formulas are defined using the condition C). In the
following, we will look more closely at what such a condition C could be.

2.2. Relational semantics. In the context of modal logic, it is natural to
expect the condition C(A,B) to mention the truth of A and B at nodes bearing a
certain (fixed) relation to x in the underlying frame of the model M. In this way,
the truth value of A ? B at x is completely determined by the truth values of A
and B at nodes that stand in the relevant relation to x. If we are able to find such
a condition C, we say that we have a relational semantics for ?. The semantics for
2 and for � is relational in this sense.

The only thing we require from C is that it only uses the relations of the underlying
frame of the model. These could be R- or S-relations. However, we also allow
new relations to be added to ILM–frames in order to deal with the new connective
?. We will see in Chapter 5 how such a freedom could in principle be used to get
a relational semantics for ILMS. We explore a semantics that arises when adding
to the ILM–frames a new relation Q, and using it to define the truth values of
?–formulas.

Given a condition C as described above, the minimal conditions from Section 2.1
can be transformed into actual frame conditions. The first one would say that if
x stands in the specified relation to nodes y and y′, then for all w with wRx, we
have that xSwy and xSwy

′. The second one would say that if xSwy and xSwy
′,

then there is some z with xSwz, and z stands in the specified relation to y and y′.

3See Section 4.1 for a discussion of the argument by which the second minimal condition is
obtained.
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An ILMS–frame could then be defined as an ILM–frame satisfying the above frame
conditions. By definition, any model on an ILMS–frame would validate axiom S.

A relational semantics would thus give us more than just the notion of an ILMS–
model — it would allow us to point out a class of frames such that any model
whose underlying frame is from this class is automatically a model of ILMS. To
establish such a strong connection between structure and validity of formulas is of
course the desired outcome in a modal-logical context. However, we can also lower
our ambitions and require a less strong connection between structure and validity.
This brings us to set semantics.

2.3. Set semantics. In set semantics, the extension4 of A?B in a modelM
is the output of a function f? given as inputs the extensions of A and B inM. Let
[C]M denote the extension of C in M. So the condition C(A,B) would become:
being an element of f?([A]M, [B]M). I.o.w. we would have:

(71) M, x  A?B :⇔ x ∈ f?([A]M, [B]M).

Whereas in relational semantics, the truth value of A ? B at x depended on the
truth values of A and B at nodes bearing a certain relation to x, in set semantics
it depends on the truth values of A and B at all nodes in the model.

Let M be an ILM–model where truth values of ?–formulas are defined as in (71).
In order to guarantee thatM satisfies all instances of axiom S, the function f? has
to satisfy certain properties in M. These properties are in fact just the minimal
conditions of Section 2.1, translated into the terminology of set semantics.

i. if x ∈ f?(Y, Y ′), then for all w s.t. wRx, there are y ∈ Y and y′ ∈ Y ′ with
xSwy and xSwy

′.

ii. if xSwy and xSwy
′ for some y ∈ Y , y′ ∈ Y ′, there is some z with xSwz and

z ∈ f?(Y, Y ′).

It is easy to see that if M is an ILM–model where the truth values of ?–formulas
are determined through a function f? satisfying the above properties in M, then
M  S. Unlike in relational semantics, where the validity of S on a model can be
guaranteed by structural properties of the underlying frame, in set semantics it can
only be guaranteed by structural properties of the model itself.

3. Modest Modal Semantics

Both relational and set semantics would give us a uniform way of defining the truth
values of ?–formulas in an ILM–model. If the model also satisfies the minimal
conditions (69) and (70) above, it will automatically validate axiom S. Both of
these approaches depend on us being able to find ILM–frames where the minimal
conditions can be satisfied. We will show in Section 4 that the second minimal
condition (70) cannot be successfully incorporated into ILM–frames, thus precluding
the possibility of having either relational or set semantics for ?. If we still want to
have a semantics for ILMS, we have to find some weaker notion of an ILMS–model.
We will be modest: we only require an ILMS–model to validate axiom S.

4The extension of a formula A in a model M is the set of nodes in M where A is true.
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Definition 65. An ILMS–model is an ILM–modelM where each instance of axiom
S is forced at each node. If D is a set of formulas, then an ILMS–model restricted
to D is an ILM–model M validating (C � A) ∧ (C � B) ↔ C � A ? B for all
C,A,B, (A?B) ∈ D.

If D is fixed or arbitrary, we also say restricted ILMS–model instead of ILMS–model
restricted to D. If D is finite, we can obtain an ILMS–model restricted to D by
using the modal completeness of ILM. The idea is to treat the ?–formulas in D as
new atoms, making sure that the model validates all instances of axiom S involving
only formulas from D (as specified in Definition 65 above). Thus we obtain a model
of ILM validating finitely many instances of axiom S. Now, the question is whether
such a model can be extended to an ILMS–model as defined above, i.e. whether we
can make all instances of S true at all nodes of M.

The above method was used by Guaspari and Solovay ([GS79]) to prove modal
completeness for the system R−. A simplified proof was given by de Jongh in
[dJ87]. The system R− is GL plus witness comparison5 A � B for 2–formulas
A and B. The behaviour of the witness comparison formulas is constrained by
certain “order axioms”. The models for R− have no structural condition C of the
form: x  A ≺ B ⇔ x � C(A,B). Instead, it is only required that each instance of
the order axioms is forced at each node. In the proof of modal completeness, one
first uses the modal completeness of GL to obtain a model validating order axioms
involving only formulas from some finite set. After that, it is shown that such a
restricted model can be extended to a model for the whole language, by proving a
so-called extension lemma.

We will use the same strategy to obtain ILMS–models. However, we will only be
able to prove an extension lemma for models of depth 2. This will be done in
Section 5 below. Section 3.2 spells out how the modal completeness of ILM can be
used to obtain restricted ILMS–models. As a preliminary, we will give an overview
of the modal completeness proof of ILM by the construction method. A thorough
exposition of this proof is given in the appendix.

3.1. Modal completeness of ILM. Let K be the class of ILM–frames. As
usual in completeness proofs, the modal completeness of ILM is proved by contra-
position. Given a sentence A with 0ILM A, we will find an ILM–model M with
M 1 A.

We will follow the proof by construction method, as presented in [GJ10]. The main
idea of the proof is as follows. If 0ILM A, there is a maximal–ILM–consistent set Γ
with ¬A ∈ Γ. We will build an ILM–frame F , where every node x is labeled6 with
a maximal–ILM–consistent set ν(x). We start with a node w and ν(w) = Γ; w will

5For a a Σ1-sentence ∃xϕ(x) its witness is a number n with N � ϕ(n). If A and B are Σ1-sentences,

we write A � B to express that the smallest witness for A is smaller than the smallest witness
for B. Thus a Rosser sentence for PA can be seen as a sentence R with `PA R ↔ 2¬R � 2R
(remember that 2A is a Σ1–formula).
6We cannot identify nodes with the maximal consistent sets, as the latter might need to occur

at several places in the model. This is related to ILM–models having a complicated notion of a

bisimulation, with no obvious notion of a minimal bisimilar model. This means that bisimilar or
modally equivalent nodes cannot be always identified. We will see an example of this in Section

4. See [Vis98b] for a definition of bisimilarity for IL–models.
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be the root of F . F will be built step by step, using the information contained in
the maximal consistent sets labeling the nodes. Finally, F is transformed into a
model M by defining a valuation on F as: M, x  p :⇔ p ∈ ν(x).

We want to build F in such a way that the harmony between truth in M and
membership in the maximal consistent sets labeling the nodes extends to a larger
set than just the propositional formulas. Our goal is to have for all x,

(72) M, x  A :⇔ A ∈ ν(x),

as then we could conclude that M, w  ¬A. and M would be our required coun-
termodel to A. In order to ensure (72), it suffices to have a certain adequate set D
containing A s.t. for all B ∈ D, x ∈M,

(73) M, x  B ⇔ B ∈ ν(x).

We call the equivalence in (73) a truth lemma w.r.t. D.

Digression 66. Since ILM is not compact7, we cannot in general expect to get a
truth lemma w.r.t. the entire language. Hence we will only require (73) to hold w.r.t.
an adequate set D which is big enough to allow inductive reasoning when proving
the truth lemma, but small enough to block the incompactness phenomenon. For
this, it suffices if D is finite, and closed under subformulas and single negations.

For later purposes, it is convenient if our adequate set D is also closed under boolean
operations. Upon this requirement, D is of course not actually finite. However,
closing off under boolean operations only adds a finite number of formulas which
are not logically equivalent to formulas already in D, so that D will only contain
finitely many formulas up to logical equivalence. Such a set is “finite enough” for
the purposes of blocking the incompactness phenomenon mentioned above. We will
from now on often say that our adequate set is finite, even though in reality it only
contains finitely many formulas up to logical equivalence.

Let D be an adequate set containing A. When constructing F , we will ensure:

1. a truth lemma holds in F w.r.t. D

2. F is an ILM–frame

The idea of the construction is to approximate the truth lemma by eliminating
so-called problems and deficiencies in F . Let w be the root of F as above, and
suppose that ¬(B � C) ∈ D ∩ ν(w). For the truth lemma to hold, there has to be
some x with wRx, s.t. B ∈ ν(x) and for all z with xSwz, ¬C ∈ ν(z). If such an
x does not exist, we say that ¬(B � C) is a problem in w. In order to eliminate
this problem, we add to F an R-successor x of w with the required properties. The
“tricky” part is to ensure that at no later stage in the construction, there will be
a z with xSwz  C, as this could ruin the truth of ¬(B � C) at w. This will be
taken care of by using the notion of a C-critical cone above w. This C-critical
cone contains x, and any z with xSwz. In order to have the truth lemma, we have
to guarantee that if z is in the C-critical cone above w, then z  ¬C. In general,

7In fact, compactness already fails for GL. This means that there exist maximal–GL–consistent
sets which cannot be satisfied on a transitive conversely well-founded frame. The proof is by Fine

and Rautenberg, and is treated in Chapter 7 of [Boo93].
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there can be nothing Sw-above x that would demand for an Sw-transition to a node
satisfying C.

Now suppose that B � D ∈ D ∩ ν(w). For the truth lemma to hold, every R-
successor x of w with B ∈ ν(x) has to have an Sw-successor z with D ∈ ν(z). If
this is not the case, we say that B�D is a deficiency in w. In order to eliminate a
deficiency, we add to F a node z with the required properties. It is clear that once
a deficiency in w has been eliminated, it cannot reoccur.

When eliminating a problem or a deficiency in w, we introduce new R-successors
of w, thus potentially generating many new deficiencies in w. Moreover, each node
that we add to F potentially contains new problems and deficiencies itself. For
the truth lemma to hold, all these problems and deficiencies have to be eliminated
eventually.

F will be constructed as the union of an infinite chain of ILM–frames {Fn}n∈ω.
Each Fn contains a deficiency or a problem less than its predecessor, thus with
each Fn we can claim to be closer to the truth lemma (w.r.t. D). In order to make
sure that each Fn is an ILM–frame, Fn itself is also constructed as the union of
an infinite chain {Gi}i∈ω, where each Gi is closer to being an ILM–frame than the
previous one. In [Joo98] it is shown that with some care in the construction, we can
even guarantee that the constructed frame F is finite. A more thorough exposition
of the proof of the modal completeness of ILM by the construction method is given
in the appendix.

3.2. Restricted modal completeness of ILMS. We will now explain how
the modal completeness of ILM can be used to get modal completeness of ILMS
w.r.t. restricted ILMS–frames.

Suppose that 0ILMS A. Let D be the smallest set containing A closed under sub-
formulas and boolean operations. Let C0 . . . , Cn be the ?–formulas of D, and let
p1, . . . , pn be distinct atoms not occurring in D. We translate the formulas in D
into formulas of ILM: to every B ∈ D, we associate a B? in the language of ILM
s.t. B is the result of substituting Ci for pi throughout B?, with 0 ≤ i ≤ n.

Let Ψ? be the set of ILM–formulas consisting of all formulas of the form B? ∧2B?,
where B is (C � A) ∧ (C � B) ↔ C � A ? B with C,A,B, (A ? B) ∈ D. We say
that B is an instance of axiom S involving only formulas in D. Note that since D
is finite, also Ψ? must be finite8.

Since 0ILMS A, it follows that 0ILM

∧
Ψ? → A?. Then suppose that there is an

ILM–proof of
∧

Ψ? → A?. Let Ψ be the result of replacing B? ∧ 2B? in Ψ? by
B ∧ 2B. Then `ILMS

∧
Ψ → A, since ILMS has the same proof rules available as

ILM, and it satisfies the substitution rule B(pi)/B(Ci). But clearly, `ILMS

∧
Ψ,

since S is an axiom scheme in ILMS, and ILMS has the rule of necessitation. Hence
`ILMS A, contradiction. By modal completeness for ILM, there is a finite ILM–model
M? s.t.

∧
Ψ? ∧ ¬A? is true at the root of M?. We turn M? into a model M for

8In the case that D is not actually finite, but only has finitely many equivalence classes of formulas
up to logical equivalence, we can just take B?∧2B?, where B is a representative of its equivalence

class in D.
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the language of ILMS by defining, for all B ∈ D,

(74) M, x  B :⇔M?, x  B?

The forcing inM andM? agrees on ILM–formulas. Since w 
∧

Ψ, every instance
of axiom S involving only formulas from D is valid in M. To conclude, we have
shown that if 0ILMS A, then there is a restricted ILMS–model M with M 1 A.

3.3. Restricted arithmetical completeness of ILMS. LetM be an ILMS–
model restricted to an adequate set D. M can be seen as just an ILM–model —
think of the modelM? above, where instead of ?–formulas we have just new atoms
satisfying certain properties w.r.t. interpretability. Hence we can apply to M the
arithmetical completeness of ILM, obtaining a restricted version of arithmetical
completeness for ILMS. Let us illustrate this with an example.

Suppose that the unprovable9 sentence A of ILMS we are interested in is >?>. In
order to apply modal completeness of ILM, we take an adequate set D containing
>?> that is closed under subformulas and single negations (we forget about the
boolean combinations for the moment). Our adequate set D will be rather simple:
D = {>,⊥,>?>,¬(>?>)}. We now have to consider all instances of axiom
S involving only formulas from D. It is easy to see that the only one of them
which is not provable10 in ILM is ¬(> ? >) � (> ? >). Let p be the proposition
letter that we use as a representative for > ? > in the context of ILM. Applying
the modal completeness proof for ILM as described above, we get a finite ILM–
model where the sentence (¬p � p) ∧ 2(¬p � p) ∧ ¬p is forced at the root w.
Using the arithmetical completeness of ILM, we get an arithmetical realization ∗
s.t. 0PA (¬p∗ � p∗) ∧2(¬p∗ � p∗)→ p∗.

Remember that the propositional letter p was our representative, in the context
of ILM, of the ILMS–formula > ? >. Now it is a valid question to ask whether
the arithmetical sentence p∗ obtained via the arithmetical completeness of ILM is
in fact in the same degree as > ? >. It is not obvious why this should be the
case. The real supremum of A and B has the property that for all sentences C,
(C � A) ∧ (C � B) → C � A ? B. However, in our restricted ILMS–model only
finitely many such sentences C are taken into account. Thus it might happen that
the realization ∗ from the arithmetical completeness proof gives us as (A?B)∗ an
arithmetical sentence which is strictly above11 the real supremum of A and B in
the lattice of interpretability.

In our example, p∗ will actually be in the degree of the real supremum >?>. This
is because `IL ¬p � p → > � p (using J3), whence by arithmetical soundness of
ILM, `PA ¬p∗ � p∗ ∧ 2(¬p∗ � p∗) → > � p∗. Since `IL p � > for all p, again by
arithmetical soundness, `PA ¬p∗ � p∗ ∧ 2(¬p∗ � p∗) → > ≡ p∗. Thus PA proves
that the arithmetical representative of > ? > obtained by using the arithmetical
completeness of ILM is indeed in the same degree as >?>, i.e. in the degree of >.
Whether this is always the case is a question for future research.

9Since > ? > is an Orey sentence under Visser’s implementation (see Section 5.3 of Chapter 3),
it cannot be provable in ILMS.
10The other ones are all of the form A�A, A�>, ⊥�A, or just tautologies.
11Since D is required to be closed under subformulas, we will always take A?B�A and A?B�B
into account, hence (A?B)∗ cannot be lower than the real supremum.
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3.4. Need for an extension lemma. Given the negative result of Section
4.2, the best we can hope for is that if 0ILMS A, there is an ILM–model M where
axiom S is valid and A is false, i.e. an ILMS–model in the sense of Definition 65.
Above, we showed that if 0ILMS A, there is an an ILM–model where A false, and
finitely many instances of axiom S are valid, i.e. a restricted ILMS–model. If we
could show that such a restricted ILMS–model can be extended to a proper ILMS–
model, we would have completeness of ILMS w.r.t. the modest modal semantics.
For this purpose, we would need to prove that any ILMS–model restricted to D
can be extended to a model where all12 instances of axiom S are valid. This is the
so-called extension lemma. Guaspari and Solovay ([GS79]) use such an extension
lemma to prove modal completeness for the system R−.

In order get an idea what an extension lemma has to achieve, suppose that our
adequate set contains the formulas A?B and F ?G. Since the method described
in Section 3.2 treats these formulas as atoms, their truth values will be defined
everywhere in the modelM obtained by using the modal completeness of ILM. As
a consequence, the forcing of the formulas 2(A ? B) and (A ? B) � (F ? G) is
determined everywhere in the model, too. But if 2(A?B) ? (A?B�F ?G) was
not an element of D, its forcing in M is undefined. After defining it, truth values
of more 2– and �–formulas become defined, and thus we have to take care of their
suprema in turn.

If we are able to show that the truth values of all ?–formulas can be defined
eventually, such that the axiom S is valid in the resulting model, we say that we
have an extension lemma. In Section 5, we will prove an extension lemma for
restricted ILMS–models whose root satisfies 22⊥.

4. The Impossibility of a Structural Characterization

In this section, we will show that the second minimal condition from Section 2.1
cannot be successfully incorporated into ILM–frames, thus ruling out the possibility
of having a relational or set semantics for ILMS.

4.1. A closer look at the second minimal condition. Let us recall how
the second minimal condition (70) in Section 2.1 was obtained. We assumed that
w  (C � A) ∧ (C � B), and wanted to see what would allow us to conclude that
w  C � A ? B. So we took an x with wRx  C, whence the assumption gave
us y and y′ with xSwy  A and xSwy

′  B. We wanted to have some z with
xSwz  A?B. Thus we formulated our minimal condition as:

xSwy  A ∧ xSwy′  B ⇒ ∃z(xSwz  A?B).

But note that in our argument we had assumed that w  (C � A) ∧ (C � B) and
x  C, whereas this assumption does not figure in the minimal requirement we
obtained. So shouldn’t the real minimal requirement be instead:

(75) w  (C �A) ∧ (C �B) ∧ x  C ⇒ ∃z(xSwz  A?B)?

12By all, we here mean all instances in the language of the finitely many propositional letters
contained in our adequate set D.
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But this “condition” is not informative — it merely rephrases axiom S in terms of
the semantics for �. It is not the kind of structural condition we are looking for.

Let us see what could go wrong as a result of us disregarding the initial assumptions
of the argument. Suppose there are x, y and y′ with xSwy  A and xSwy

′  B.
Suppose further that there is no C with w  (C � A) ∧ (C � B) and x  C. In
this situation, the second minimal condition requires something that is not really
necessary — axiom S could be valid even if there would be no z with xSwz and
z  A ? B. As we will see, this unnecessary requirement on behalf of the second
minimal condition can in fact lead to an inconsistent situation on an ILM–model.

On the other hand, the way we arrived at the second minimal condition is standard
for obtaining frame conditions in modal logic. So why does it lead us astray here?
Let us see under which conditions it would have been alright for us to have “for-
getten” the assumptions w  C �A ∧C �B and wRx  C. Suppose that there is
some sentence E that uniquely defines x in the model, in the sense that for all y,
y  E ⇔ y = x. Now if xSwy  A and xSwy

′  B, then using the semantics of �,
w  E � A ∧ E � B. Hence to guarantee the validity of S, we would indeed need
some z with xSwz  A?B.

As we will see, the situation where the second minimal condition leads us into
trouble is indeed one where two “essentially different” nodes in a model satisfy
exactly the same sets of formulas. If the models we are dealing with are image finite,
i.e. if for every w, the set {x | wRx} is finite, then according to the Hennessy-Milner
Theorem for interpretability logics (see [dJ04]), such nodes are also bisimilar. Now,
in a normal modal-logical context, bisimilar nodes can always be identified, because
of the existence of a minimal bisimilar model. This means that given a model M,
we can always find a model M′ where all bisimilar states of M are identified. As
a consequence, every node of M′ is uniquely characterized by the set of formulas
it satisfies. If moreover, M′ is assumed to be finite, then each node in M′ is
uniquely defined by some formula. Hence if all that would hold for our models, the
argumentation leading us to the second minimal condition would have been sound.

However, as mentioned in footnote 6 above, in IL–models one cannot in general
identify two nodes that are bisimilar or satisfy the same sets of formulas. This is
the reason why the standard modal-logical route to frame conditions fails in the
case of ILMS. We will now see a concrete example of this.

4.2. Counterexample to the second minimal condition. In this section,
we construct an ILMS–model (as in Definition 65.) which cannot be required to
satisfy the second minimal condition. This shows that the latter is indeed too
strong, as speculated above.

Theorem 67. There exists an ILMS-consistent set X of sentences such that no
ILM-model satisfying X can satisfy the second minimal condition (70).

Proof. Consider the following set of formulas:

X = {¬(p� s),¬(p� q), r ? s� q, p� r, p� q ∨ s,22⊥}
Let D be the smallest set containing X closed under subformulas and boolean
combinations. We will use the method of Section 3.2 to get an ILMS–model M
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restricted to D, where all formulas in X are true at the root w. In Section 5, we
will show that (since 22⊥ ∈ X ),M can be extended to an ILMS–modelM′, i.e. we
can make all instances of S valid on M. We will first go through the construction
of M step by step.

In order for ¬(p � s) to be true at w, there has to be a node u with13 wRsu  p,
and u is in the s-critical cone above w. Thus if w  E � s, then u′  ¬E for any
u′ with uSwu

′. In particular, u′  ¬s, u′  ¬(r ? s), and u′  ¬(r ∧ s). Thus14:

w

u: p,¬q,¬r,¬s

Rs

Sentences p� r and p� q ∨ s are now deficiencies in w w.r.t. u. These deficiencies
are eliminated by adding a node v with uSwv  r ∧ q. The deficiency caused by
p� q ∨ s needs to be eliminated by a node containing q, as every node Sw-above u
has to satisfy ¬s. We are only free to choose the value of p. Thus:

w

u: p,¬q,¬r,¬s

v: ¬p, q, r,¬s

Rs

Sw

In order for ¬(p� q) to be true at w, there has to be a node x with wRqx  p, and
x is in the q-critical cone above w. Thus if w  E� q and xSwx

′, we have x′  ¬E.
In particular x′  ¬q, x′  ¬(r ? s), and x′  ¬(r ∧ s). Thus:

13We write wRsu to indicate that R leads into an s-critical cone above w.
14We will not indicate the truth value of r ? s, as it fill be false at every x that is R-above w.
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w

u: p,¬q,¬r,¬s

v: ¬p, q, r,¬s

x: p,¬q,¬r,¬s

Rs

Sw

Rq

Sentences p � r and p � q ∨ s are now deficiencies in w w.r.t. x. To eliminate the
deficiency caused by p� r, we add a node y  r. Since y  ¬(r∧ s), we have to put
y  ¬s. Thus in order to eliminate the deficiency caused by p� q∨ s, another node
y′ has to be added. Since y′ is in a q-critical area, the deficiency p � q ∨ s needs
to be eliminated by adding a node that satisfies s. Since y′  ¬(r ∧ s), we have
y′  ¬r. Again, we are free to choose the value of p. We get the following model:

w

u: p,¬q,¬r,¬s

v: ¬p, q, r,¬s

x: p,¬q,¬r,¬s

y: ¬p,¬q, r,¬s y’: ¬p,¬q,¬r, s

Rs

Sw

Rq

Sw
Sw
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We will now check that M is indeed an ILMS–model restricted to D, i.e. that all
instances of axiom S involving only formulas from D are satisfied15 inM. Since for
x 6= w, x  2⊥, it suffices to check that every such instance of S is true at w. Since
r?s is the only ?formula in D, we only have to check that w  (r?s�r)∧(r?s�s),
and if C ∈ D, then w  (C � r) ∧ (C � s)→ C � r ? s.

Since r?s is false everywhere R-above w, it is clear that w  (r?s�r)∧(r?s�s).
For the other direction, we will show that there is no C ∈ D with w  C� r∧C�s
and w  3C. But if w  C� r∧C� s and w  2¬C, then clearly w  C�A?B.
Note that x is the only node inM that has Sw-access to an r-node and an s-node16.
Hence if there is a C with the above properties, then we must have that x  C.
However, u and x make true exactly the same formulas of D. Thus if x  C, also
u  C. But the assumption that w  C � s contradicts u being in the s-critical
cone above w.

In the next section, we will show that M can be extended to a proper ILMS–
model, i.e. we can make all instances of axiom S (in the language containing the
propositional letters p, q, r and s) true at w. We will take this result as given for
now. As a preparation for the proof, notice that it will be crucial to guarantee that
x and u always satisfy exactly the same sentences. Then suppose that we define for
some formula A?B that x  (A?B) and u  ¬(A?B). If now furthermore x is the
only node R-above w where A?B is defined to be true, then A?B� r∧A?B� s
will be suddenly true at w. In order to validate axiom S, we need some z with
xSwz  r ? s. However, x is in the q-critical area above w, whence for all x′ with
xSwx

′, we need that x′  ¬(r ? s) (since w  r ? s� q). If no new subsets of the
model become definable during the process of extendingM to an ILMS–model, this
problem will not arise.

Finally, we will explain why the above model is a counterexample to the second
minimal condition of Section 2.1. The second minimal condition is not satisfied
in M. We have that xSwy  r and xSwy

′  s, however there is no z such that
xSwz  r ? s. In fact, the second minimal condition must fail in any ILM–model
where the sentences ¬(p� q), p� r, p� s ∨ q, and r ? s� q are true at a point w.
Necessarily, in such a model we will have the following situation:

w

x: p

y: r y’: s

Rq

Sw
Sw

15Remember from Section 3 that an instance of S is said to involve only formulas from D if it is

of the form (C �A) ∧ (C �B)↔ C � (A?B) with A,B,C, (A?B) ∈ D.
16By an r-node we of course mean just a node where r is true.
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There are y and y′ s.t. xSwy  r and xSwy
′  s. However, there cannot be any z

with xSwz  r ? s. Since w  r ? s � q, this would require a Sw-transition from
z to a q-node, contradicting the fact that z (like all Sw-successors of x) is in the
q-critical area above w.

To conclude, we have shown (taking the result of the next section for granted) that
there is an ILMS–model M with the property that if we require M to satisfy the
second minimal condition (70) then M will become inconsistent. 2

5. Quest for an Extension Lemma

In this section, we will prove an extension lemma for models of depth 2. After that,
we will give an example illustrating why the strategy used in this proof cannot be
directly adapted to the more general case.

5.1. A small extension lemma. In this section, we will show that if the
restricted ILMS–model obtained by modal completeness of ILM (as described in
Section 3.2) has depth at most 2, then we can indeed extend it to a full ILMS–
model. Recall from Section 3 that an ILMS–model restricted to D is an ILM–model
that validates (C �A) ∧ (C �B)↔ C � (A?B) for all A,B,C, (A?B) ∈ D.

Remember that a set D of formulas is adequate if it finite, and closed under sub-
formulas and single negations. Recall from the discussion in Section 3.1 that we
can also require D to be closed under boolean operations. All that matters is that
D contains only finitely many formulas up to provable equivalence. Throughout
this section, we will thus require our adequate set D to be closed under boolean
operations.

Lemma 5.1 (Extension lemma for models of depth 2). Let D be an adequate set
closed under boolean operations. Let (M, w) be a finite rooted ILMS–model restricted
to D, and let M, w  22⊥. Then M can be extended to an ILMS–model.

We will first explain the intuitive idea behind the proof, introducing some termi-
nology on the way. The simplicity of M is essential to the proof. If x 6= w, then
x  2⊥. It follows that any boolean combination of 2– and �–formulas is true at
x, and in particular any instance of axiom S. Thus we only need to ensure that
w  S. We will guarantee this in an infinite process, extending M to an ILMS–
modelMS in stages. At stage t+ 1, we define truth values for formulas of the form
A?B, with A,B ∈ St. Once the forcing of a formula has been defined, it will not
be changed at a later stage. The forcing of ?–formulas at w can be arbitrary, for
example we can make all of them true at w. In the proof, we will just focus on the
truth values of ?–formulas at nodes x 6= w.

If x, y 6= w, we say that x and y are indistinguishable at stage t if there is no
C ∈ St with x  C and y  ¬C. It is clear that ∼t is an equivalence relation.
We write [x]∼t

for the equivalence class of x under ∼t. If it is not the case that
x ∼t y, we say that x and y are distinguishable at stage t. We say that a set
X of nodes is definable (at stage t) if there is some formula C (∈ St) s.t. for all
x, x ∈ X ⇔ x  C. In the process of extending M to an ILMS–model, we will
guarantee that no new subsets of M become definable, i.o.w. that every definable
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subset of MS is already definable by a formula in D. In the light of our discussion
in the end Section 4.2, it is desirable not to have new definable subsets, as these
might require more supremum formulas to be true at certain nodes (in particular,
supremum formulas whose forcing has already been defined).

If S is a set of formulas, then by S+ we denote the closure of S under boolean
operations, 2, and �. Note that if the truth values of formulas in S are defined ev-
erywhere in a model, then also the truth values of formulas in S+ are automatically
defined everywhere. We are now ready to prove Lemma 5.1.

Proof. Let S0 := D+, and St+1 := (St ∪ {A?B | A,B ∈ St})+.

At stage t + 1, we define simultaneously the forcing of all A ? B with A,B ∈ St.
So let A,B ∈ St.

1. If there are A′, B′ with w  2(A↔ A′)∧2(B ↔ B′), and the forcing of A′?B′

has already been defined at a previous stage, define w  2(A ? B ↔ A′ ? B′).
Since x 6= w implies that wRx, A ? B will then have the same extension as
A′ ?B′ at all nodes x 6= w. As a consequence, once the value of >?> has been
defined, and if A and B are positive boolean combinations of 2– and �–formulas
with A?B /∈ D, we will have w  2(>?> ↔ A?B).

2. If there are no A′, B′ as above, define x  A?B (for x 6= w) if

(76) for all x with x ∼t x′, there are y, y′ with x′Swy  A and x′Swy
′  B.

Otherwise, let x  ¬(A ? B). Note that since ∼t is reflexive, if x fulfills the
requirement in (76), then there must be y and y′ with xSwy  A and xSwy

′  B.

Let MS be the resulting model, where the forcing of all ?–formulas has been
defined. Note that according to clause 1 above, all newly defined ?–formulas in
the model will satisfy extensionality, i.e. if A? B /∈ D, then 2(A ↔ A′) ∧ 2(B ↔
B′)→ 2(A?B ↔ A′?B′) is valid inMS. Hence if also the forcing of ?–formulas
from D was extensional in M, ? will be extensional in MS.

Before showing that MS  S, it is convenient to show that no new subsets of
M\{w} become definable in the course of the process.

Remark 68. Let X ( M\{w}, and suppose that X is closed under ∼t. Then
there is some E ∈ D s.t. for all x, x ∈ X ⇔ x  E.

Since M is finite, it suffices to show that for any [x]∼t
, there is some E ∈ D s.t.

for all y, y ∈ [x]∼t
⇔ y  E. Then if X = {[x1]∼t

, . . . , [xn]∼t
}, we can take as

E the disjunction17 of the formulas in D defining [x1]∼t
. . . [xn]∼t

. Note that then
E ∈ D, since D is closed under boolean operations. We will now prove the claim
by induction on t.

For the base case, let t = 0. Since all 2– and �–formulas are true at all x with wRx,
[x]∼0 is uniquely characterized by a boolean combination of propositional letters
and ?–formulas in D. Since there are finitely many of those, and D is closed under
boolean operations, it is clear that there is some E ∈ D that defines [x]∼0

. For the
inductive step, assume that there is some E ∈ D with y ∈ [x]∼t

⇔ y  E. We
will show that [x]∼t

= [x]∼t+1
, whence E also defines [x]∼t+1

. If [x]∼t
6= [x]∼t+1

,

17For this, we need D to only contain finitely many formulas up to provable equivalence.
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then there must be some C whose truth value was defined at stage t+ 1, and such
that C can distinguish between members of [x]∼t . Clearly, C cannot be a boolean
combination of 2– and �–formulas. But C also cannot be of the form A?B, since
by the procedure of defining the forcing of A ? B, it is either true at all y with
y ∈ [x]∼t

, or at none of them. Hence such a C cannot exist, and [x]∼t
= [x]∼t+1

.

It follows that for any C, there is some E ∈ D s.t. MS, w  2(C ↔ E). Given C,
let X := {w 6= x ∈M | x  C}, and let t be the stage where the forcing of C was
defined. Note that X is closed under ∼t. By what was shown above, there is some
E ∈ D with x ∈ X ⇔ x  E. But then clearly MS, w  2(C ↔ E).

We will now prove that MS  S. As mentioned above, it suffices to show that
MS, w  S. So fix ILMS–formulas A,B and C. We need to show that

MS, w  (C �A) ∧ (C �B)↔ C �A?B.

Using the remark above, let E ∈ D be s.t. w  2(E ↔ C). It is easy to see that
it suffices to show: MS, w  (E � A) ∧ (E � B)↔ E � A? B. Let t be the stage
where the forcing of A?B was defined. We will prove the claim by induction on t.

If t = 0, then A ? B ∈ D. By closure properties of D, also A,B ∈ D. Since also
E ∈ D, we haveMS, w  (E �A)∧ (E �B)↔ E �A?B by the assumption that
M is an ILMS–model restricted to D.

For the inductive step, assume that the value of A?B was defined at stage t+ 1.
In case there were A′ and B′ with w  2(A ↔ A′) ∧ (B ↔ B′), we defined
w  (A?B)↔ (A′?B′) (according to clause 1 of the process). Since by induction
assumption,MS, w  (E�A′)∧ (E�B′)↔ E�A′?B′, we clearly also have that
MS, w  (E �A) ∧ (E �B)↔ E �A?B.

If there were no A′, B′ as above, the forcing of A ? B in the model was defined
according to condition (76). We will show the two directions of S separately. Let
w  (E �A)∧ (E �B) and wRx  E (with E ∈ D as above). Then there are y, y′

with xSwy  A and xSwy
′  B. We want to show that A ? B was defined to be

true at x at stage t+ 1 — since xSwx, this will be sufficient for our purpose. So let
x ∼t x′. Since18 E ∈ D, also x′  E. Since w  (E � A) ∧ (E �B), we have some
z, z′ with x′Swz  A and x′Swz

′  B. Thus x fulfills the condition (76) above, and
thus A ? B was indeed defined to be true at x. For the other direction of S, we
want to show thatMS, w  (A?B�A)∧ (A?B�B). So let wRx  A?B. Since
A? B was defined to be true at x, x fulfills condition (76), whence there must be
y and y′ with xSwy  A and xSwy

′  B, and we are done. 2

5.2. Models of depth > 2. We will show how the method used in the proof
of Lemma 5.1 can fail in case of frames of depth > 2. Consider the following set of
sentences:

X = {p� q, p� r, q ? q � q,3¬(p� q)}
Let D be the smallest set containing X closed under subformulas and boolean
combinations. As before we use the method of Section 3.2 to get an ILMS–model
M restricted to D where all formulas in X are true at the root w. Since q ? q is

18Note that if E would be a formula whose truth value was defined at some later stage t+ k, we
would not be able to make this inference.
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the only ?–formula in D, it is the only ?–formula whose forcing is defined in M.
M might look as follows19:

w

x: ¬(p� q)

y: p

z: q u: q ? qz’: r

R

Rqx

Sw

Sw

Sw

Sw

Consider the formula q ? r whose forcing is initially undefined in the model. If
we were to follow the strategy of the previous section in defining its truth value,
the only node where we could make it true is y, as it is the only node that has
S-access to a q-node and an r-node (assuming that q and r are only true at z and
z′ respectively). However, supposing that we define y  q? r, we would need some
v with ySxv  q, if axiom S were to be valid at x (since xRy and q?r�q). However
this contradicts the fact that y and all its Sx-successors are in the q-critical cone
above x. Hence we cannot make q ? r true at y.

On the other hand, since w  (p� q)∧ (p� r) and wRy  p, there has to be some v
with ySwv  q?r (if S is to be valid). But in order to have w  (q?r�r)∧(q?r�q),
this v has to furthermore have the property that vSwz and vSwz

′ (again, assuming
that q and r are only true at z and z′ respectively). Except for y, there is no such
node in the above model.

As a consequence, we cannot have an extension lemma as in the previous, where we
just take an existing ILMS–model restricted to D and, without making any changes
in the underlying structure of the model, define the forcing of all ?–formulas.
Whether an alternative route exists in the general case remains a question for
future research.

6. Arithmetical Completeness for a Simple Language

In this section, we give an arithmetical completeness result for ILM w.r.t. a very re-
stricted set of formulas, namely the formulas constructed from a single propositional
letter using only ?. An important consequence of the result is that all formulas in

19We only indicate the forcing of formulas which are important for the example. We write xRq
xy

to indicate that y is in the q-critical cone above x.
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this simple language are arithmetically independent. To be more precise, there is
an arithmetical implementation under which any two formulas of this language are
even mutually inconsistent. This is already enough to establish that the arithmeti-
cal suprema are in general not idempotent (w.r.t. provability) or extensional. This
section presupposes knowledge of the arithmetical completeness proof of ILM. This
proof was found independently by Alessandro Berarducci ([Ber90]) and Volodya
Shavrukov ([Sha88]).

Let {Ai}0≤i∈ω be an enumeration of all ILMS–formulas constructed from a single
propositional letter p using only ?. We assume that A0 = p. Consider the rooted
ILM-frame F = 〈W,R, {S1}〉 with W = N\ {0}, 1Ri for all i > 1, and iS1j for all
i, j > 1. Since S1 is the only S-relation in F , we will from now on write just iSj
instead of iS1j. We define a forcing relation on F by letting20 x  Ai :⇔ x = i+ 2.
Thus p is true only at node 2, A1 is true only at node 3, and so on. Let M be the
resulting model. Using that M has depth 2, and that all nodes R-above 1 have
access to all other nodes R-above 1, it is easy to see that axiom S is valid in M.

By the Berarducci-Shavrukov Arithmetical Completeness Theorem for ILM,M can
be embedded in PA. Let ∗ be the arithmetical realization that we obtain in the
proof. Then we have that p∗ = (` = 2), and in general21 A∗i = (` = (i+ 2)). I.o.w.
the sentence Ai is represented in arithmetic as the sentence ` = (i+ 2).

Since iSj for all i, j > 1, by the arithmetical completeness proof we get for all i
and j that `PA ` = (i+ 2) ≡ ` = (j + 2). This means that all sentences ` = i for
i > 1 are in the same interpretability degree. As a consequence, if Ak = Ai ? Aj ,
then the sentence ` = (k+ 2) (the arithmetical representative of Ak) is in the same
degree as the real supremum22 of A∗i and A∗j , i.e. of ` = (i+ 2) and ` = (j + 2).

Thus we can define an implementation ? of the supremum in PA as follows:
B ? C := B f C, unless B and C are of the form ` = (i + 2) and ` = (j + 2) re-
spectively for some i, j ∈ N. In that case, take B?C to be the sentence ` = (k+ 2)
for the k for which Ak = Ai ?Aj .

By the properties of the sentences ` = i, we have that ` ` = (i+ 2)→ ` 6= (j + 2)
if i 6= j. It follows that if i 6= j, then 0 ` = (i + 2) → ` = (j + 2), i.e. 0 A∗i → A∗j .
Thus all formulas in the small language are arithmetically independent. Note that
the implementation ? defined above is certainly not extensional. For example, if
` A ↔ (` = i) but A 6= (` = i), and ` B ↔ (` = j) but B 6= (` = j), then it
is clear that not necessarily `PA A ? B ↔ (` = i) ? (` = j). In order to obtain
independence results for extensional implementations, a more elaborate procedure
is therefore needed.

20Note that just as in Section 3.2, the ?-formulas are treated as atoms.
21The sentence ` = i+ 2 can be said to “represent” the node i+ 2 of the modelM in arithmetic.

Since Ai is only true at i+ 2, Ai and i+ 2 are represented by the same arithmetical sentence.
22See the discussion in Section 3.3



CHAPTER 5

A Relational Semantics for f

As a disclaimer, we admit that the negative result of Theorem 67 has a nullifying
effect on the results presented in this chapter. We will introduce a relational se-
mantics for Visser’s implementation f, even though we have already established
the existence of such a semantics as an impossibility. There are two reasons why
we chose to present the semantics nevertheless. First, it is an interesting system of
modal semantics on its own. It can cope with the failure of monotonicity of Visser’s
implementation, and furthermore the truth condition for f–formulas is intuitively
“in tune” with f being a supremum operator. Second, the match between what is
valid in the semantics and what is provable in PA about f goes a surprisingly long
way (although as we will see in the end of this chapter, it does not go all the way).
In fact, the semantics has been fruitful for discovering new arithmetical principles
for f. The main idea behind the semantics is due to Frank Veltman.

1. Introducing the Semantics

Recall from Section 5 of Chapter 3 Visser’s implementation f of the supremum in
PA. Given sentences A and B of PA, AfB was defined as the sentence σ with the
property that

`PA σ ↔ ∃x(2x¬σ ∧ (3xA ∧3xB)).

Alternatively, using the explicit form for f, A f B can be seen as the sentence
∃x(2x(2xA∨2xB)∧(3xA∧3xB)). Throughout this chapter, the intended meaning
of the modal symbol ? is Visser’s implementation f. To be more precise, by an
arithmetical realization for ILMS we will in this chapter mean a realization for ILM,
plus the clause1:

(AfB)∗ = ∃x(2x(2xA
∗ ∨2xB

∗) ∧ (3xA
∗ ∧3xB

∗)).

For the sake of clarity, we will write f instead of ? for the modal supremum symbol,
and denote the resulting system by ILMSf. Hence, the system ILMSf contains ILM,
plus axiom S for f:

(77) (C �A) ∧ (C �B)↔ C � (AfB).

We have seen in Section 5 of Chapter 3, and will see below, that PA proves more
about f than just (77). As a consequence, we will have to add more axioms to
the system ILMSf if we want to use it for capturing the arithmetical behaviour of
f. We shall not be concerned with the axiomatization of ILMSf here. Instead,
we will try to find a relational semantics for this system. The goal is to have the
validities of the semantics (w.r.t. f) match exactly what is provable in PA about

1Note how the existence of an explicit form is convenient when defining arithmetical realizations.

64
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f. We will now introduce our most successful candidate for such a semantics. We
define the truth values of f–formulas by using a new relation Q, which we will add
to ILM–frames.

Definition 69. Let F be an ILM–frame with an additional relation Q. If M is a
model on F , then for all x ∈M,

x  AfB :⇔
1. ∃y, y′[xQy  A ∧ xQy′  B]

2. ∀x′[xRx′ ⇒ ¬∃u, u′(x′Qu  A ∧ x′Qu′  B)]

There are two requirements that a node needs to satisfy in order to make true
the formula A f B. First, it needs to Q-see an A-node and a B-node. Second, it
cannot have an R-successor that also Q-sees an A-node and a B-node. We will refer
to these two requirements as the first and the second truth condition (for A f B)
respectively. Note that the second truth condition requires x to be R-maximal in
the set of nodes that Q-see an A-node and a B-node. Given that it is a supremum
operator that we are trying to model, this is a rather appealing feature to have.

Definition 70. An ILMSf–frame is a quadruple {W,R, {Sx | x ∈W} , Q}, where
{W,R, {Sx | x ∈W}} is an ILM–frame, and

i. if xQy, then xSwy for every w with wRx

ii. if xSwy and xSwy
′, there is z with xSwz, zQy and zQy′

iii. R ⊆ Q

iv. Q is converse well-founded

Note that i and ii in Definition 70 are the frame-conditional equivalents of the
minimal conditions discussed in Section 2.1 of Chapter 4. Since we showed that
ILM–frames cannot in general be required to satisfy the second minimal condition,
the definition of ILMSf–frames (and thereby the whole current approach) is ill-
founded. We will suppress this issue while exploring the features of our semantics
for f.

We will first show that axiom S is valid on ILMSf–frames.

Lemma 1.1. Let Kf be the class of ILMSf–frames. If F ∈ Kf, then2 F  S.

Proof. Suppose that F ∈ Kf, M is a model on F , and w ∈ M. To see that
w  (AfB�A)∧ (AfB�B), let wRx  AfB. By the first truth condition for
AfB, there are y, y′ with xQy  A and xQy′  B. By property i of ILMSf–frames,
also xSwy and xSwy

′. For the other direction of S, let w  (C �A)∧ (C �B), and
wRx  C. Then there are y, y′ with xSwy  A and xSwy

′  B. By property ii of
ILMSf–frames, there is some z with xSwz, zQy and zQy′. Then z satisfies the first
truth condition for A f B. If it also satisfies the second one, we are done. If not,
then there must be z′, u, and u′ with zRz′, z′Qu  A, and z′Qu′  B. Since R is
converse well-founded, we can choose an R-maximal z′ with this property. Then

2Due to the complexity of the truth condition for f–formulas, the other direction of frame char-
acterizability cannot be seen to hold so easily (see also footnote 2 in Chapter 4).
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clearly z′ fulfills both the first and the second minimal condition, so z′  A f B.
We now have wRxSwzRz

′, and hence also xSwz
′, which is what we wanted. 2

We only used properties i and ii of ILMSf–frames in the above proof. The purpose
of requirements iii and iv will be explained later in this chapter.

In the above proof, verifying (AfB �A)∧ (AfB �B) was a simple consequence
of property i of ILMSf–frames. Verifying the other direction of S is more involved.
After assuming w  (C�A)∧(C�B) and wRx  C, we need to find a node z′ with
xSwz

′  AfB. Property ii of ILMSf–frames only gives us a node z with xSwz that
satisfies the first truth condition for AfB. Hence at this point we need to be able to
argue as follows: if z satisfies the first truth condition for A f B, but nevertheless
z 1 A f B, then there is some z′ with zSwz

′  A f B (since by transitivity of
Sw then also xSwz

′). Now it might seem that the requirement of R-maximality
in the truth definition for A f B is too strong, as it allows us to conclude that
even zRz′  A f B. So why not require S-maximality in the truth definition for
f–formulas? Note that in order to conclude the existence of z′, we had to use the
converse well-foundedness of R. Since we cannot in general assume the S-relation
to be converse well-founded, this is where the argument would break down were we
to require S-maximality instead of R-maximality. Later in this chapter, we will see
more evidence for why the relation w.r.t. which we require maximality in the truth
definition for f–formulas should be the R-relation.

2. Coping with Non-Monotonicity

As we saw in Section 5 of Chapter 3, Visser’s implementation is not monotone, i.e.
we do not have for all A and B,

`PA 2(A→ A′) ∧2(B → B′)→ 2(AfB → A′ fB′).

If we want an exact match between what is provable in PA about f and what is
valid in our semantics, our semantics should also be able to falsify

(78) 2(A→ A′) ∧2(B → B′)→ 2(AfB → A′ fB′).

Our intricate truth condition for A f B allows us to find a countermodel to (78).
Unlike when proving Lemma 1.1, in this countermodel we make essential use of the
second truth condition for f.

The model below falsifies 2(q → r) → 2((p f q) → (p f r)). In particular,
w  2(q → r), but w  3((p f q) ∧ ¬(p f r)), since x  (p f q) ∧ ¬(p f r). We
have x  (p f q), as x has Q-access to a p-node (i.e. y′) and a q-node (i.e. y), and
the only R-successor of x does not have Q-access to a q-node. The assumption
that w  2(q → r) only implies that if x  p f q, then x satisfies the first truth
condition for p f r (as the q-node that it Q-sees is also an r-node). However, it
does not satisfy the second truth condition for p f r. This is because xRz, and z
has Q-access to a p-node and an r-node.
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w

x: pf q

y: q, ry’: p, ¬q

z: pf r

u: r, ¬qu’: p, ¬q
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The counterexample to the provability of (78) in PA was that we had:

0PA (>f>)f (>f>)→ >f>

Thus we should also be able to find a counterexample to this on our frames. In
the model below, there is no z with yQz, whence y  ¬(A f B) for all A,B.
Since x has no R-successors, the second truth condition for > f > cannot fail at
x, whence x  > f >. Consequently, w � ¬(> f >) (since wRx). However,
w  (>f>)f (>f>), since wQx  >f> (here we use that R ⊆ Q), and there
is no z with xQz  >f> (since the only node Q-seen by x is y).

w

x

y

R

Q

3. Other Properties of ILMSf–Frames

We will now explain why the ILMSf–frames were assumed to have properties iii
and iv (in Definition 70). For this, we also have to go back to the arithmetical side
and see what is provable about Visser’s implementation in PA.

An immediate consequence of our truth definition for f is that our semantics val-
idates A f B → 2¬(A f B) for all A and B. Fortunately, this is also provable
in PA.

Fact 71. `PA AfB → 2¬(AfB).
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Proof. Using the fixed point version of f, ¬(AfB) is the sentence θ with the
property that `PA θ ↔ ∀x(2xθ → 2x¬A∨2x¬B). We will show by contraposition
`PA 3(A f B) → ¬(A f B), i.e. that ` ¬2θ → θ. So suppose that 3(A f B),
i.e. ¬2θ, where θ is as above. By monotonicity (in our chosen stratification of
provability, see Section 2 of Chapter 3), we have ∀x¬2xθ, whence by propositional
logic ∀x(2xθ → (2x¬A ∨2x¬B)), i.e. θ. 2

Remember from Section 1 Chapter 4 that `ILMS 2¬(A f B) → 2(2¬A ∨ 2¬B).
Combining this with Fact 71, we see that our semantics should validate for all A
and B, A f B → 2(2¬A ∨ 2¬B). It is easy to see that for this to hold, we have
to require that R ⊆ Q.

We now turn to property iv of ILMSf–frames: the converse well-foundedness of Q.
In GL, the need for the converse well-foundedness of R is due to the validity of
Löb’s Theorem in arithmetic. Similarly, the need for the converse well-foundedness
of Q on ILMSf–frames is triggered by a “Löb-like” principle that holds for f in PA.
According to Löb’s theorem, if `PA 2A → A, then already `PA A. The Löb-like
principle for f is: if `PA A → A f A, then `PA ¬A. Like Löb’s Theorem, this can
be formalized inside PA.

Fact 72. `PA 2(A→ AfA)→ 2¬A.

Proof. We will use the explicit version of Visser’s implementation to show
something stronger: `PA 2x(A→ AfA)→ 2x¬A.

`PA2x(A→ AfA)

→ 2x(A→ ∃y(2y2y¬A ∧3yA)) (def. of f)

→ 2x(A→ ∃y ≥ x(2y2y¬A ∧3yA)) (reflection)

→ 2x(A→ ∃y ≥ x3yA)

→ 2x(∀y ≥ x2y¬A→ ¬A)

→ 2x(2x¬A→ ¬A) (monotonicity)

→ 2x¬A (Löb’s Theorem) 2

By contraposition, ` 3A→ 3(A ∧ ¬(Af A)). Note that since `ILMSf A� Af A,
also `ILMSf 3A → 3(A f A) by axiom J4 of ILM. Thus if we add Fact 72 as an
axiom to ILMSf, then

(79) `ILMSf 3A→ 3(AfA) ∧3¬(AfA).

From the point of view of modal semantics, this means that every point with
an R-successor has at least two R-successors. From the point of view of arith-
metic, (79) is in fact a good property for a provability logic to have. The sentence
3(AfA) ∧3¬(AfA) is the formalization of the assertion A f A is independent
from PA. Substituting > for A, we get that

(80) `ILMSf ¬2⊥ → ¬2(>f>) ∧ ¬2¬(>f>).

Remember that > f > is an Orey sentence, and as such independent from PA.
Thus the sentence in (80) just expresses that if PA is consistent, then the Orey-
sentence > f > is independent from PA. The fact that this is provable in ILMSf

signifies an increase in expressive power over ILM. There is no sentence B of ILM



3. OTHER PROPERTIES OF ILMSf–FRAMES 69

s.t. `ILM ¬2⊥ → ¬2B ∧ ¬2¬B, as can be easily checked by using the soundness
of ILM w.r.t. its modal semantics.

We will now show that if Q is converse well-founded, then the Löb-like principle for
f is guaranteed to be valid.

Lemma 3.1. . If F ∈ Kf, then F  3A → 3(A ∧ ¬(A f A)). (Where Kf is the
class of ILMSf–frames as above).

Proof. Let F ∈ Kf, and let M be a model on F with M, w  3A. Then
there is some x with wRx  A. Consider the set3 X := {y | xQtry  A}. If
X = ∅, then there is no y with xQy  A, whence certainly x  ¬(A f A), and
w  3(A ∧ ¬(AfA)). If X 6= ∅, then by the converse well-foundedness of Q, X
has a Q-maximal element y. Since y ∈ X , we have that xQtry, whence also xSwy
by properties of Q and transitivity of Sw. But then also wRy. Thus in order to
show that w  3(A∧¬(AfA)), it suffices to show that y  A∧¬(AfA). We have
y  A by the fact that y ∈ X . Now if yQy′, then y′ /∈ X by Q-maximality of y. But
clearly xQtry′, hence the reason that y′ is not in X must be that y′ 1 A, whence y
does not fulfill the first truth condition for AfA, so certainly y  ¬(AfA). 2

We will now discuss some further properties of our semantics. It is easy to check
that our semantics validates the extensionality of f, i.e. that ILMSf–frames validate

2(A↔ A′) ∧2(B ↔ B′)→ 2(AfB ↔ A′ fB′).

Recall from Section 5.4 of Chapter 3 that two directions of (almost) distributivity
were provable in PA for Visser’s supremum f:

1. C f (A ∨B)→ (C fA) ∨ (C fB)

2. (C ∨A)f (C ∨B)→ (C f C) ∨ (AfB)

As it turns out, these are exactly the directions of distributivity which are valid on
ILMSf–frames. We will show this for 1. The proof for the validity of 2. is similar.
Let w  C f (A ∨ B). By the first truth condition, there are y, y′ with wQy  C
and wQy′  A ∨ B. Suppose w.l.o.g. that y′  A. Then w fulfills the first truth
condition for C f A. To see that it also fulfills the second, suppose that there are
x, u and u′ with wRx, xQu  C and xQu′  A. But then x fulfills the first truth
condition for Cf(A∨B), contradicting that Cf(A∨B) was true at w. To see that
the other direction fails, we need to show that (w.l.o.g.) C f A → (C f (A ∨ B))
is not valid in the semantics. Note that C f A → (C f (A ∨ B)) would be valid
in the semantics if the semantics could not cope with the failure of monotonicity
(since A→ A∨B). In fact, the countermodel to C fA→ (C f (A∨B)) is almost
the same as the countermodel to monotonicity of f in Section 2.

Combining Fact 71 with 2 above, we get (C∨A)f(C∨B)→ 2¬(CfC)∨2¬(AfB).
However, as we will first see in arithmetic, something stronger holds:

Fact 73. ` (C ∨A)f (C ∨B)→ 2¬(C f C) ∧2¬(AfB)

3By Qtr, we denote the transitive closure of Q.
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Proof.

`(C ∨A)f (C ∨B)

→ ∃x(2x(2x(¬C ∧ ¬A) ∨2x(¬C ∧ ¬B))∧
(3x(C ∨A) ∧3x(C ∨B))) (def. of f)

→ ∃x2x(2x(¬C ∧ ¬A) ∨2x(¬C ∧ ¬B)) (propositional logic)

→ ∃x2x((2x¬C ∧2x¬A) ∨ (2x¬C ∧2x¬B)) (distributivity of 2 over ∧)

→ ∃x2x(2x¬C ∧ (2x¬A ∨2x¬B)) (distributivity of ∨ over ∧)

→ ∃x(2x2x¬C ∧2x(2x¬A ∨2x¬B)) (distributivity of 2 over ∧)

→ ∃x2x2x¬C ∧ ∃x2x(2x¬A ∨2x¬B) (predicate logic)

According to Theorem 53 we have for all x, and for all A and B (using the explicit
form of f):

`PA 2x¬(AfB)↔ 2x(2x¬A ∨2x¬B).

Hence `PA 2x2x¬C → 2x¬(C f C), and `PA 2x(2x¬A ∨2x¬B)→ 2x¬(AfB),
Now `PA 2x¬(C f C)→ 2¬(C f C) and `PA 2x¬(AfB)→ 2¬(AfB). 2

It is easy that Fact 73 is valid on ILMSf–frames. If x  3(A f B), then x
cannot satisfy the second truth condition for (C ∨ A) f (C ∨ B), so certainly
x 1 (C ∨A)f (C ∨B).

According to Theorem 37, PA does not in general verify that the supremum of two
consistent theories is consistent, i.e. we do not have for all A,B:

`PA 3A ∧3B → 3(AfB).

The following fact can be seen as PA’s way to approximate this unprovable truth.

Fact 74. `PA 3A ∧3B → (AfB) ∨3(AfB).

Proof. We argue in PA. Assume 3A∧3B and ¬(AfB), i.e. (using the fixed
point version of f) the sentence θ with θ ↔ ∀x(2xθ → 2x¬A ∨ 2x¬B). Suppose
for contradiction that 2θ (i.e. 2¬(AfB)). Then there is some x with 2xθ. By the
assumption that θ and the properties of θ, we get 2x¬A∨2x¬B, i.e. 2¬A∨2¬B,
contradicting the assumption that 3A ∧3B. 2

To see that Fact 74 is valid on ILMSf–frames, note that if w  3A ∧3B, then w
satisfies the first truth condition for A ? B. For this, we need that R ⊆ Q. So if
w  ¬(AfB), then it must be that w does not satisfy the second truth condition
for A f B. But then there are x, u and, u′ with wRx, xQy  A, and xQy′  B.
Since R is converse well-founded, we can take the maximal x with this property.
But then x  A f B, whence w  3(A f B). Note that in order to verify this
principle, we really have to consider R-maximal worlds in the truth definition for
f–formulas.

The following fact is an immediate consequence of Fact 74 (by contraposition, taking
> for A and B), thus it holds both in PA and in the semantics.

Fact 75. ¬(>f>)∧2¬(>f>)→ 2⊥. In particular, for any A and B, we have
¬(>f>) ∧2¬(>f>)→ 2¬(AfB).
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As a consequence of our truth definition for f, if some node x satisfies >f>, and
y is an R-successor of x, then all f–formulas have to be false at y. Otherwise,
x would not satisfy the second truth condition for > f >. In modal terms, this
becomes >f> → 2¬(AfB). Indeed, this turns out to be verifiable in PA.

Fact 76. `PA >f> → 2¬(AfB) for any A,B.

Proof. We argue in PA. Assume >f>, i.e. ∃x(2x2x⊥∧3x>). In particular
∃x2x2x⊥. We will show that 2x¬(AfB), i.e. (using the explicit form of f)

2x∀y(2y(2y¬A ∨2y¬B)→ (2y¬A ∨2y¬B)).

Since 2x2x⊥, by monotonicity 2x∀y ≥ x2y⊥, whence 2x∀y ≥ x(2y¬A ∨2x¬B).
By propositional logic, we get

(81) 2x∀y ≥ x(2y(2y¬A ∨2y¬B)→ (2y¬A ∨2y¬B)).

By reflection,

(82) 2x∀y < x(2y(2y¬A ∨2y¬B)→ (2y¬A ∨2y¬B)).

Combining (81) and (82), we get

2x∀y(2y(2y¬A ∨2y¬B)→ (2y¬A ∨2y¬B)),

which is what we wanted to show. 2

4. A Problem

As we saw, the validity of ¬(>f>) ∧2¬(>f>)→ 2¬(AfB) in ILMSf–frames
matches what is provable in PA about f. But the antecedent of this implication
has another important consequence on ILMSf–frames. If x  ¬(> f >) and x 
2¬(>f>), then the reason why x does not make >f> true must be that it does
not satisfy the first truth condition for > f >. Since if x satisfies the first truth
condition for >f> but nevertheless x 1 >f>, then it must be that x  3(>f>).
But if x does not satisfy the first truth condition for >f>, then it clearly cannot
satisfy the first truth condition for any formula AfB. Thus

(83) ¬(>f>) ∧2¬(>f>)→ ¬(AfB)

is valid on ILMSf–frames. Unfortunately, the arithmetic counterpart of (83) cannot
be verified in PA. According to Theorem 61,

(84) 0PA ¬(>f>) ∧2¬(>f>)→ ¬((>f>)f (>f>)).

Trying to change the semantics so that it would be able to falsify (83) gets us into
a vicious circle. The reasoning that lead us to conclude the validity of (83) on
ILMSf–frames (i.e. the reasoning which we would want to block) also allowed us
to conclude the validity of some of the above principles. In particular, in order to
establish the validity of Fact 74 we had to argue as follows: if x satisfies the first
truth condition for A f B but nevertheless x � ¬(A f B), then x  3(A f B).
However if (83) is to be false at a node x, then since x  A f B, x will satisfy
the first truth condition for > f >, however we are not allowed to conclude that
x  3(> f>). Even if our attempts at fixing the situation would succeed, by the
results of the previous chapter a relational semantics for f is impossible in any
case, thus we will better leave this castle in the air at this point.



CHAPTER 6

Conclusions and Future Research

To conclude, we will summarize what has been achieved in this thesis, and point
out some open questions as well as directions for future research.

1. Summary

In this thesis, we investigated the supremum in the lattice of degrees of finite
extensions of PA, i.e. the lattice (VPA,�). Our goal was to extend the system
ILM — the interpretability logic of PA — with a new modality ? whose intended
arithmetical meaning is the supremum in (VPA,�), and find a modal semantics for
the resulting system ILMS. The system ILMS contains ILM plus the defining axiom
for ?: (C �A) ∧ (C �B)↔ C �A?B.

We studied the supremum from the arithmetical (Chapter 3) as well as from the
modal (Chapters 4 an Chapter 5) perspective. Our research did not yield a straight-
forward fulfillment of the original goal. Instead, the most important result of this
thesis is negative in nature: there is no structural characterization of ILM–frames
which satisfy the defining axiom for ?. We only proved modal completeness of the
logic ILMS w.r.t. a quite modest notion of semantics, and for a very simple case. As
for the arithmetical side of the supremum, we have established that the notion of
an arithmetical realization for ILMS is more involved than that for ILM or for GL.
Most notably, the properties of the logic ILMS depend on the implementation, i.e.
the intended arithmetical meaning of ?. Two such implementations — Švejdar’s
implementation and Visser’s implementation — were studied in Chapter 3. We es-
tablished that the arithmetical language needed to express these implementations
is significantly more complex than the arithmetical language corresponding to the
language of GL.

To conclude, our contribution is not one that involves clear and expected solu-
tions to well-defined problems — in fact, several results in this thesis have been
unexpected, and even surprising. Instead, we have pointed out important method-
ological considerations, and narrowed down the horizon of possibilities concerning
the system ILMS. With this, we hope to have prepared the ground for future
investigations of the supremum.

2. Questions for Future Research

This section lists a number of unanswered questions that we touched upon through-
out the thesis, as well as possible directions for future research.

72
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2.1. Arithmetic.

1. Let T ⊇ I∆0 + SUPEXP be a finitely axiomatizable theory. Let A and B be
sentences in the language of T . Is there a sentence A? B in the language of T
with the property that for all C,

`T (C �T A) ∧ (C �T B)↔ C �T A?B?

A positive answer to this question brings us in a good position for trying to
extend the logic ILP with a supremum operator. See the discussion in Section
3.4 of Chapter 2. This question was listed as an open question already by Švejdar
in [Šve78].

2. Devise a modal logic for Friedman’s density argument for the lattice (F,�). As
explained in Section 3 of Chapter 1, this question was the starting point for the
research presented in this thesis. A positive answer to question 1 would be helpful
for this purpose. If a positive answer can not be found, then devising a logic for
Friedman’s density argument would require a conceptually novel approach. For
a start, we would have to figure out how the procedure of making the languages
disjoint could be represented in a modal setting. Again, see the discussion in
Section 3.4 of Chapter 2.

3. Does Švejdar’s implementation have an explicit form? As pointed out in Section
4.2 of Chapter 3, the strategy of using the fixed point algorithm for GL to find
an explicit fixed point does not seem to work for Švejdar’s implementation.

4. Is Švejdar’s implementation u distributive w.r.t. provability? Also, is it associa-
tive or idempotent w.r.t. provability? Some of these properties were discussed
in Section 4.2 of Chapter 3. The same questions can be asked for Visser’s im-
plementation f. At least — due to existence of the explicit form — we could
prove (almost) two directions of distributivity for f. In general, it seems to be
rather difficult to prove properties of the implementations w.r.t. provability.

5. Is there an analogue of the “puzzling result” of Section 4.3 for Visser’s imple-
mentation? We were not able to show in general that if a sentence σ is equivalent
to the fixed point version of f, then it is itself a fixed point of the fixed point
version of f. We can only prove something weaker (see Theorem 55). However,
we do not have a concrete counterexample, as we do in the case of Švejdar’s
implementation.

6. Does PA prove density of (VPA,�) under one (or both) of the implementations
studied in this thesis?

7. Can there be an implementation of the supremum in PA that is monotone?
According to Corollary 62, Visser’s implementation is not monotone. We feel
that it is unlikely that Švejdar’s implementation is monotone, although we do
not have a counterexample. Thus, maybe it is in the nature of implementations
to be monotone?

8. A possible way to study fixed point phenomena concerning our implementations
(i.e. Švejdar’s implementation and Visser’s implementation) would be to use
modal logic. This approach has been successful for Rosser sentences (see [GS79],
and also [Smo85]). In order to express our implementations, we would need to
have a modal language with 2, 4, and ∀, where ∀ means ∀x, 4 means 2x, and
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x is a fixed variable. As usual, ∃A would be an abbreviation for ¬∀¬A, and OA
for ¬4¬A. Possibly, the language should be even richer. Using the Orey-Hájek
characterization, we can define interpretability in this language as

A�B :⇔ ∀2(A→ OB).

Visser’s implementation could be defined as

∃ [4(4¬A ∨4¬B) ∧ (OA ∧ OB)].

A fragment of this language has already been investigated by Franco Montagna
in [Mon87]. We would want to answer the following questions concerning this
language:

a) When do fixed point equations have an explicit fixed point? Can the explicit
fixed point always be calculated according to the GL-algorithm?

b) Under which conditions are fixed points unique and extensional?

c) When do we have that if σ is equivalent to a fixed point of A(Y ), then σ is
itself a fixed point of A(Y )?

2.2. Modal logic.

1. Is ILMS complete w.r.t. the modest modal semantics? In Section 5.1 of Chapter
4, we proved modal completeness of ILMS w.r.t. the modest modal semantics for
a very simple case.

2. According to Theorem 67, there cannot be a relational semantics for the system
ILMS that would extend the usual semantics for ILM. But could there be some
other notion of relational semantics for ILMS, i.e. one that would not extend the
usual semantics for ILM?

3. As explained in Section 3.3 of Chapter 4, the arithmetical completeness of ILM
gives us a restricted version of arithmetical completeness for ILMS. If A?B has
a truth value in an ILM–model, we obtain an arithmetical representative of the
sentence A?B. We saw that it some cases, this sentence is the real supremum
of (the arithmetical representatives of) A and B. But is this always the case?

4. While the semantics presented in Chapter 5 has a good match with Visser’s
implementation, the match is not perfect (see Section 4 of Chapter 5). Is there a
way to modify Visser’s implementation, or the semantics, in order to overcome
this imperfection?

5. Is ILMS really the minimal logic for the supremum? It is possible that there is
some property which is provable in PA for all implementations, but is still not a
theorem of ILMS. In this case, ILMS would only be minimal in the modal, not
in the arithmetical sense.



APPENDIX A

Modal Completeness of ILM by the Construction
Method

We will prove modal completeness of the system ILM. We will follow the proof by
construction method, as presented in [GJ10]. For a short overview of the proof,
see Section 3.1 of Chapter 4.

1. The System ILM (Remainder)

Recall from Section 2.5 of Chapter 2 that the logic ILM is IL plus Montagna’s
principle M: A�B → A∧2C �B ∧2C. For convenience, we will repeat here the
definition of an ILM-frame.

Definition 77. An ILM-frame is a tuple 〈W,R, S〉, where W is a non-empty count-
able set of nodes, R is a binary relation on W , and S a set of binary relations on
W , indexed by the elements of W . The R and S relations satisfy the following
requirements:

1. R is converse well-founded

2. xRyRz ⇒ xRz

3. ySxz ⇒ xRy and xRz

4. xRy ⇒ ySxy

5. xRyRz ⇒ ySxz

6. xSwySwz ⇒ xSwz

7. xSwyRz ⇒ xRz

Remember that item 7 corresponds to axiom M. An ILM–model is a model whose
underlying frame is an ILM–frame.

Definition 78. A set Γ is ILM–consistent if Γ 0ILM ⊥. An ILM–consistent set Γ is
maximal–ILM–consistent if for all A, either A ∈ Γ or ¬A ∈ Γ.

From now on, we will often just say “consistent” and “maximal consistent” instead
of “ILM-consistent” and “maximal-ILM-consistent” respectively.

Lemma 1.1. Every consistent set can be extended to a maximal consistent one.

Proof. This is just Lindenbaum’s Lemma for ILM. 2
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2. Modal Completeness: Introduction

Let K be the class of ILM–frames. As usual in completeness proofs, the modal
completeness of ILM is proved by contraposition. Given a sentence A s.t. 0ILM A,
we will find an ILM-model M with M 1 A.

The general idea of the proof is as follows. If 0ILM A, there is a maximal–ILM–
consistent set Γ with ¬A ∈ Γ. We will build an ILM-frame F , where every node x
is labeled with a maximal–ILM–consistent set ν(x). We start with a node w and
ν(w) = Γ; w will be the root of F . F will be built step by step, using the information
contained in the maximal consistent sets labeling the nodes. Finally, F will be
transformed into a modelM by defining a valuation on F as: M, x  p :⇔ p ∈ ν(x).

We want to build F in such a way that the harmony between truth in M and
membership in the maximal consistent sets labeling the nodes extends to a larger
set than just the propositional formulas. In particular, we want to be able to
conclude that M, w  ¬A on the basis that ¬A ∈ ν(w).

Definition 79. A set D of formulas is adequate if it is finite1, and closed under
subformulas and single negations.

Let D be an adequate set containing A. If M is defined as above, our goal is to
have

(85) M, x  B ⇔ B ∈ ν(x).

We call the equivalence in (85) a truth lemma w.r.t. D. When constructing F , we
thus need to ensure:

1. a truth lemma holds in F w.r.t. D

2. F is an ILM–frame

F will be constructed as the union of an infinite chain of ILM–frames {Fn}n∈ω.
With each Fn, we come closer to the truth lemma (w.r.t. D). In order to make
sure that each Fn is an ILM–frame, Fn itself is also constructed as the union of
an infinite chain {Gi}i∈ω, where each Gi is closer to being an ILM–frame than the
previous one.

3. Preparing the Construction

This section introduces the tools we will need for our construction. In modal
completeness proofs, the nodes of the countermodel are often taken to be maximal
consistent sets. However, in the context of interpretability logic it is sometimes
necessary to use the same maximal consistent set in different places of the model.
Therefore we will not identify a node x with a maximal consistent set, but rather
label it with a maximal consistent set ν(x). We will also label some R transitions
with formulas: if xRy and ν(〈x, y〉) = B, then y leads into a B-critical cone above
x (the notion of a B-critical cone will be defined below).

1It is not necessary for D to be actually finite; it is also sufficient if it contains only finitely many
formulas up to provable equivalence. See the discussion in Section 3.1 of Chapter 2.
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Definition 80. A labeled frame is a quadruple 〈W,R, S, ν〉. Here W is a non-
empty set of worlds, R a binary relation on W , and S a set of binary relations on
W indexed by elements of W . The function ν assigns to each x ∈ W a maximal
ILM–consistent set of sentences ν(x). To some pairs 〈x, y〉 with xRy, ν assigns a
formula ν(〈x, y〉).

If ν(〈x, y〉) = B, we will write xRBy. Thus an RB transition is just an R transition
labeled by the formula B. Note that a labeled frame F does not have to be an
ILM–frame, or even an IL–frame.

When defining relations R and S between nodes x and y of the frame, we want the
maximal consistent sets ν(x) and ν(y) to be related in a coherent way. For this
purpose, we will define the following relations between maximal consistent.

Definition 81. Let Γ and ∆ be maximal ILM–consistent sets.

i. Γ ≺ ∆ := 2A ∈ ∆⇒ A,2A ∈ ∆, and there is some E ∈ D s.t. 2E ∈ ∆\Γ

ii. Γ ≺B ∆ := A�B ∈ Γ⇒ ¬A2¬A ∈ ∆ and there is some E ∈ D s.t. 2E ∈ ∆\Γ

iii. Γ ⊆2 ∆ := 2A ∈ Γ⇒ 2A ∈ ∆

Note that if Γ ≺B ∆, then also Γ ≺ ∆. Furthermore, Γ ≺B ∆ ≺ ∆′ implies
Γ ≺B ∆′. We will refer to ≺ as the successor relation, and to ≺B as the B-critical
successor relation.

The following definition helps us to enforce the truth lemma for formulas of the
form ¬(A� B). If x  ¬(A� B), there has to be some y s.t. xRy  A and for all
z, if ySxz, then z 1 B. The B-critical cone above x contains all nodes which are
Sx-accessible from y. All of them have to be B-critical successors of x.

Definition 82. Let x be a node in a labeled frame. The B-critical cone above x, we
write CBx , contains y with xRBy, and is closed under R, Sx and R◦Str transitions2.
The generalized B-cone above x, we write GBx , contains CBx , and is closed under R
and Sw (for arbitrary w) transitions.

The above definition is redundant for IL–frames, where closure under R transitions
follows from closure under Sx transitions. However, we want to use the notion of
B-critical cones also in the context of frames which are not IL–frames. Demanding
closure under R, Sx and R ◦ Str transitions is motivated by the fact that in an
ILM–frame, all Sx transitions will then remain inside CBx . Consequently, if we want
to ensure that x  ¬(A � B), then CBx will be a “good” place for having an R
successor y of x with y  A — given that we can guarantee that all labels in CBx
contain ¬B, and not B.

Note that since CBx ⊆ GBx by definition, GBx ∩ GCx = ∅ implies CBx ∩ CCx = ∅ for all B
and C.

The notion of adequacy will help us to guarantee that the labels of nodes related
via an R or S transition are coherently related themselves. Clauses iii and iv help
us to enforce the truth lemma for formulas of the form ¬(A � B). All frames we
construct will be adequate in this sense.

2If S is a relation, we write Str for the transitive closure of S. The ◦ is the composition operator
for relations, i.e. xR ◦ Sy means that there is some w s.t. xSwRy.
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Definition 83. An adequate frame is a labeled frame with the following properties:

i. xRy ⇒ ν(x) ≺ ν(y)

ii. ySxz ⇒ ν(y) ⊆2 ν(z)

iii. y ∈ CBx ⇒ ν(x) ≺B ν(y)

iv. A 6= B ⇒ GAx ∩ GBx = ∅

The notions of problems and deficiencies allow us to approximate the truth lemma
step by step. Whenever we eliminate a D-problem or a D-deficiency, we get closer
to the truth lemma w.r.t. D. If the set D is clear or fixed, we will just speak of
problems and deficiencies.

Definition 84. A D-problem is a pair 〈x,¬(A � B)〉 s.t. ¬(A � B) ∈ ν(x) ∩ D,
but there is no y ∈ CBx s.t. A ∈ ν(y).

Definition 85. A D-deficiency is a triple 〈x, y, C�D〉 s.t xRy, C�D ∈ ν(x)∩D,
C ∈ ν(y) ∩ D, but for no z s.t. ySxz we have D ∈ ν(z).

4. Overview

This section gives an overview of the construction. Let A be a sentence s.t. 0ILM A,
let Γ be a maximal consistent set containing ¬A, and let D be the smallest adequate
set containing ¬A. Define a labeled frame F0 := 〈{w} ∅, {∅} , 〈w,Γ〉〉 Note that F0

is adequate. We will now extend F0 to an adequate ILM–frame F containing no
problems or deficiencies. It is easy to see that then the truth lemma holds on F .

Lemma 4.1. Let 〈W,R, S, ν〉 be an adequate labeled frame. Let M be the model
induced by letting M, x  p :⇔ p ∈ ν(x). Then a truth lemma holds in M w.r.t. D
iff there are no D-problems or D-deficiencies in F .

Proof. Immediate. The only non-trivial part of the truth lemma could be
reformulated as “there are no problems or deficiencies”. 2

As said above, we will construct F as the limit of a possibly infinite chain {Fn}n∈ω,
of ILM–frames. Furthermore, we require each Fn to be adequate. Fix an ordering
on the set P of possible D-problems and -deficiencies in current and future worlds3.
When going from Fn to Fn+1, we will eliminate the problem or deficiency in Fn
which is minimal w.r.t. this ordering, guaranteeing that it will not recur in the
future. By construction F :=

⋃
n∈ω Fn, does not contain problems or deficiencies.

Apart from eliminating problems and deficiencies, we have to guarantee that each
Fn is an ILM–frame. As we will see, a problem or deficiency in Fn is eliminated by
adding to Fn a new node together with an appropriate label, as well as a new R or
a new S relation. E.g. to eliminate the problem 〈a,¬(A�B)〉, we add to W a new
node b with aRb, A ∈ ν(b), and b ∈ CBa . The resulting frame G is not necessarily
an ILM–frame. For example, wRa does not imply wRb in G, i.e. the R relation is
not transitive. In order to come back to an adequate ILM–frame Fn+1, we have to
close off under the frame conditions of ILM.

3We will not bother with the exact technical details here.
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For this, we will first show that even though G is not an adequate ILM–frame, it is
“close enough”. The meaning of “close enough” here is captured in the notion of a
quasi–ILM–frame, which will be defined in the next section. Second, we will show
that every frame which is “close enough” to being an adequate ILM–frame can in
fact be extended to an adequate ILM–frame. This extension of G will be the Fn+1

that we are looking for.

5. Quasi–Frames

Definition 86. An adequate frame G = 〈W,R, S, ν〉 is a quasi–ILM–frame (or just
quasi–frame) if the following properties hold:

i. R is converse well-founded

ii. ySxz ⇒ xRy and xRz

iii. Rtr ◦ Str is converse well-founded

Lemma 5.1. Let G0 = 〈W,R, S, ν〉 be a quasi–frame. There is an adequate frame
Fn+1 extending G.

Proof. We will construct Fn+1 as the union of an infinite chain of quasi–
frames {Gj}j∈ω. We define an imperfection on a quasi frame Gj to be a tuple γ

having one of the following forms:

i. γ = 〈0, a, b, c〉 with Gj � aRbRc but Gj 2 aRc

ii. γ = 〈1, a, b, 〉 with Gj � aRb but Gj 2 bSab

iii. γ = 〈2, a, b, c, d〉 with Gj � bSacSad but Gj 2 bSad

iv. γ = 〈3, a, b, c〉 with Gj � aRbRc but Gj 2 bSac

v. γ = 〈4, a, b, c, d〉 with Gj � bSacRd but Gj 2 bRd

Thus an imperfection on Gj is just a violation of an ILM–frame condition on Gj .
Imperfections will be eliminated step by step. Each Gj in the chain will have
at least one imperfection less than its predecessor, and the union Fn+1 will have
no imperfections at all. Fix some ordering of the imperfections4. To go from
Gj = 〈Wj , Rj , Sj , ν〉 to Gj+1, we choose the least imperfection γ in the ordering.
Depending on the form of γ, Gj+1 will be defined as:

i. 〈Wj , Rj ∪ {a, c} , Sj , ν〉

ii. 〈Wj , Rj , Sj ∪ {a, b, b} , ν〉

iii. 〈Wj , Rj , Sj ∪ {a, b, d} , ν〉

iv. 〈Wj , Rj ∪ {a, c} , Sj ∪ {a, b, c} , ν〉

v. 〈Wj , Rj ∪ {b, d} , Sj , ν〉

4New imperfections will arise during the process. For example, when we set aRc in case i, we
will have a new imperfection since Gj+1 2 cSac. We will also add the new imperfections to the

ordering. We will not bother with the technical details here.
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The proof is by induction. It has to be established that in all cases, Gj+1 will
remain a quasi–frame. Thus we have to check that Gj+1 is adequate, and satisfies
the conditions of Definition 86. In total, 35 cases have to be checked, but most of
them are straightforward. We will illustrate the general strategy behind the proofs
with a few examples.

Suppose that Gj+1 is defined by case v, i.e. Gj+1 = 〈Wj , Rj ∪ {b, d} , Sj , ν〉.

We will show that R is converse well-founded. Suppose that there is an infinite
sequence s.t. Gj+1 � z1Rz2R . . .. Replace every occurrence of bRd in the sequence
by bSacRd and leave the rest unchanged. If there are infinitely many Sa transitions
in the new sequence, we get a contradiction to the assumption that Rtr ◦ Str is
converse well-founded on Gj . If not, we get a contradiction to the assumption that
R is converse well-founded on Gj .

For adequacy, we have to check (among other things) that y ∈ CBx ⇒ ν(x) ≺B ν(y),
and that if A 6= B, then CBx 6= CAx . We will instead prove that the critical and
generalized cones of Gj and Gj+1 are the same5. Suppose Gj+1 � y ∈ CBx . Then
there are z1 . . . , zm s.t. Gj+1 � xRBz1(Sx∪R∪(R◦Str))z2 . . . zm(Sx∪R∪(R◦Str))y.
We transform z1 . . . , zm into a new sequence w1 . . . , wn by replacing each occurrence
of bRd by bSacRd. Thus b(R ◦ Str)d. We leave the rest of the sequence unchanged.
Clearly, Gj � xRBw1(Sx ∪ R ∪ (R ◦ Str))w2 . . . wn(Sx ∪ R ∪ (R ◦ Str))y, whence
Gj � y ∈ CBx . A similar proof strategy works for showing that the generalized cones
remain unchanged.

In the end, we also have to make sure that Fn+1 :=
⋃
j∈ω Gj is an adequate ILM–

frame.

By construction, Fn+1 has no imperfections, so it satisfies the corresponding ILM–
frame conditions. Furthermore, it is clear that the conditions on adequacy are
preserved under unions of chains. The only non-obvious thing is the converse well-
foundedness of R. To prove that, we show that for all j,

Gj � xRy ⇒ G0 � x(Rtr ◦ Str,refl)try.

We will first show how this gives us the desired result. Suppose for contradiction
that Fn+1 � x1Rx2Rx3 . . .. Each of the R relations in the chain was defined at
some Gj . By the above claim, we can reduce each of them to an (Rtr ◦ Str,refl)tr

relation in G0. So we get an infinite chain {yi}i∈ω s.t.

G0 � y0S
tr,refly1R

try2S
tr,refly3R

try4S
tr,refl . . .

If there are infinitely many Str transitions in this sequence, we get a contradiction
to the converse well-foundedness of Rtr ◦ Str on G0. If not, we get a contradiction
to the converse well-foundedness of R on G0.

The claim Gj � xRy ⇒ G0 � x(Rtr ◦ Str,refl)try is proven by induction on j. The
proof is straightforward, once we note that we have to prove the stronger claim:
Gj � xRy ∨ xSzy ⇒ G0 � x(Rtr ◦ Str,refl)try.

This finishes the proof of Lemma 5.1. 2

5In fact, the critical and generalized cones will remain unchanged throughout the whole process
of building Fn+1. In all cases, the process might at most shorten the path that a node has to take

to enter into a critical or generalized cone.
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6. Elimination of Problems and Deficiencies

In this section, we explain how to eliminate problems and deficiencies in an adequate
ILM–frame Fn. This is done by adding new nodes and relations to Fn. We show
that appropriate labels can be found for the new nodes, and that the resulting
frame G is a quasi–frame.

Recall that a problem in Fn is a a pair 〈a,¬(A�B)〉 s.t. ¬(A�B) ∈ ν(a)∩D, but
there is no y ∈ CBa s.t. A ∈ ν(y). In order to eliminate this problem, we will add
a new world b to Fn, with b ∈ CBa and A ∈ ν(b). As b ∈ CBa , and as we want the
resulting frame to be adequate, we have to make sure that ν(a) ≺B ν(b). Corollary
88 of Theorem 87 shows that an appropriate label can be found for b.

Theorem 87. Let Γ be a maximal ILM–consistent set s.t. ¬(A�B) ∈ Γ. Let C be
s.t. C �B ∈ Γ. Then the set {¬C,2¬C,A,2¬A} is consistent.

Proof. Suppose for contradiction that (¬C ∧2¬C) ∧ (A ∧2¬A) ` ⊥. Then

A ∧2¬A ` C ∨3C

` A ∧2¬A→ C ∨3C

` 2(A ∧2¬A→ C ∨3C) (necessitation)

` A ∧2¬A� C ∨3C (J1)

` A ∧2¬A� C (J5, J3)

` A� C (lemma 2.1)

Thus A� C ∈ Γ. Since C �B in Γ, by J2 also A�B ∈ Γ, contradiction. 2

Corollary 88. Let Γ be a maximal ILM–consistent set s.t. ¬(A � B) ∈ Γ. Then
there exists a maximal ILM–consistent set ∆ s.t. Γ ≺B ∆ and A, 2¬A ∈ ∆.

Proof. We want ∆ to be a maximal consistent extension of

S := {¬C,2¬C | C �B ∈ Γ} ∪ {A,2¬A} .

The first set guarantees the first half of the definition for Γ ≺B ∆. For the other
half, note that 2¬A /∈ Γ. By Lemma 2.1, 2¬A ∈ Γ would imply A � ⊥ ∈ Γ, and
thus also (as ⊥ � B ∈ Γ) A � B ∈ Γ by J2. Suppose for contradiction that S is
inconsistent. By compactness, there is k s.t.

(¬C1 ∧ . . . ∧ ¬Ck) ∧ (2¬C1 ∧ . . . ∧2¬Ck) ∧ (A ∧2¬A) ` ⊥.

Since 2 commutes with ∧, we get

(¬C1 ∧ . . . ∧ ¬Ck) ∧2(¬C1 ∧ . . . ∧ ¬Ck) ∧ (A ∧2¬A) ` ⊥,

and thus

(A ∧2¬A) ` (C1 ∨ . . . ∨ Ck) ∨3(C1 ∨ . . . ∨ Ck).

Let C =: C1 ∨ . . .∨Ck. Since for all i ≤ k, Ci�B ∈ Γ, by J3 C�B ∈ Γ . But then

(¬C ∧2¬C) ∧ (A ∧2¬A) ` ⊥

contradicting Theorem 87. 2
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Recall that a deficiency in Fn is a triple 〈a, b, C �D〉 s.t aRb, C �D ∈ ν(a) ∩ D,
C ∈ ν(b)∩D, but for no z s.t. bSaz we have D ∈ ν(z). To eliminate this deficiency,
we will add a new node c to Fn with D ∈ ν(c) and bSac. As we want the resulting
frame to be adequate, we need to make sure that ν(b) ⊆2 ν(c), and that if b ∈ CBx
for some B and x, then ν(x) ≺B ν(c). Corollary 90 of the following theorem shows
that an appropriate label can be found for c.

Theorem 89. Let Γ be a maximal ILM–consistent set s.t. C � D ∈ Γ, and let ∆
be s.t. Γ ≺B ∆ and C ∈ ∆. There exists a maximal ILM–consistent set ∆′ with
Γ ≺B ∆′ and D,2¬D ∈ ∆′.

Proof. If ¬(D�B) ∈ Γ, then by Corollary 88 there is a ∆′ s.t. Γ ≺B ∆′ and
D,2¬D ∈ ∆′. If ¬(D �B) /∈ Γ, then by maximal consistency D �B ∈ Γ, whence
also C �B ∈ Γ by J2. But then Γ ≺B ∆ implies ¬C,2¬C ∈ ∆, contradiction. 2

Corollary 90. Let Γ and ∆ be maximal ILM–consistent sets s.t. Γ ≺B ∆, C�D ∈
Γ, and C ∈ ∆. There exists a maximal ILM–consistent set ∆′ s.t. Γ ≺B ∆′,
D,2¬D ∈ ∆′ and ∆ ⊆2 ∆′.

Proof. We show that for any 2E ∈ ∆, there is a ∆′ with Γ ≺B ∆′ and
D,2¬D, 2E ∈ ∆′. The desired result follows by compactness, and by commutation
of boxes and conjunctions (as the proof of Corollary 88.). As C � D ∈ Γ and Γ
is maximal ILM–consistent, also C ∧ 2E � D ∧ 2E ∈ Γ. Clearly, we have that
C ∧ 2E ∈ ∆. By Corollary 88, we find a ∆′ s.t. Γ ≺B ∆′, D,2E,2(¬D ∨ ¬2E).
But already in GL, we have that (D ∧ 2E ∧ 2(¬D ∨ ¬2E)) → 2¬D (using that
2E → 22E). Hence also 2¬D ∈ ∆′ as required. 2

We will now show how a problem or a deficiency in Fn can be eliminated in such a
way as to yield a quasi–ILM–frame G. As said before, we will always eliminate the
smallest element of P which is indeed a problem or a deficiency in F .

Problems. Suppose that the least element of P which is indeed a problem or
deficiency in Fn is a problem 〈a,¬(A�B)〉. Using Corollary 88, we find a maximal
consistent set ∆ s.t. ν(a) ≺B ∆ and A,2¬A ∈ ∆. Fix some b /∈W and define

G = 〈W ∪ {b} , R ∪ {〈a, b〉} , S, ν ∪ {〈b,∆〉〈〈a, b〉, B〉}〉.

We now have to check that G is a quasi–ILM–frame, i.e. that it is adequate, and
satisfies the conditions of Definition 86.

We will prove here the only case where some work has to be done. For adequacy,
we have to show that G � y ∈ CEx ⇒ G � ν(x) ≺E ν(y). So suppose that
G � y ∈ CEx . We only need to consider the case where y = b, as in all other cases
Fn � y ∈ CEx ⇔ G � y ∈ CEx . In case x = a and E = B, we get the property by
the choice of ν(b). So suppose that x 6= a. If a ∈ CEx , then we have ν(x) ≺E ν(a)
by adequacy of Fn. Since ν(a) ≺ ν(b), this implies ν(x) ≺E ν(b). In case a /∈ CEx ,
there must be some w ∈ CEx s.t. wStra. By adequacy6 of Fn, ν(w) ⊆2 ν(a). Thus
ν(x) ≺E ν(w) ⊆2 ν(a) ≺ ν(b). It is easy to see that then also ν(x) ≺E ν(b).

6Note that the adequacy condition ySxw → y ⊆2 w, implies that yStrw ⇒ ν(y) ⊆2 ν(z).
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Deficiencies. Suppose that the least element of P which is indeed a problem
or deficiency in Fn is a deficiency 〈a, b, C � D〉. Define B to be the formula s.t.
b ∈ CBa . If B does not exist, take B to be ⊥. If B exists, it must be unique since
Fn is adequate. Also by adequacy of Fn, we have that ν(a) ≺B ν(b). By Corollary
90 we find a ∆′ s.t. ν(a) ≺B ∆′, D,2¬D ∈ ∆′, and ν(b) ⊆2 ∆′. Fix some c /∈ W
and define

G = 〈W ∪ {c} , R ∪ {〈a, c〉} , S ∪ {〈a, b, c〉} , ν ∪ {〈c,∆′〉}〉
We again have to check that G is a quasi–ILM–frame.

Checking that G � y ∈ CEx ⇒ G � ν(x) ≺E ν(y) is similar as in the case where we
eliminated a problem. The only additional way how C would get into CEx is via the
Sa transition from b, however then by definition of CEx we have that x = a and thus
E = B by the choice of B.

To see that A 6= B ⇒ GAx ∩GAx = ∅, note that for y ∈W , Fi � y ∈ GAx ⇔ G � y ∈ CAx .
Thus we only have to consider the possibility that c ∈ GAx ∩GBx . Then we must have
that a ∈ GAx or b ∈ GAx , and a ∈ GBx or b ∈ GBx . The only problematic case is when
(w.l.o.g.) a ∈ GAx and b ∈ GBx . But since aRb and GAx is closed under R transitions,
this implies that also b ∈ GAx , thus by adequacy of Fn we must have that A = B.

7. Rounding up

We have seen that if we have a problem (deficiency) on an adequate frame Fn, then
there is an adequate frame Fn+1 extending Fn and not containing that problem
(deficiency). Thus we can construct a chain of adequate frames {Fn}n∈ω, s.t. each

Fn will contain less deficiencies or problems than its predecessor7. We define F0

as in Section 4. It is clear that F0 is an adequate ILM–frame. We will now show
that all problems and deficiencies are eliminated permanently. Then it is clear that
F :=

⋃
n∈ω Fn does not contain any problems or deficiencies, whence the truth-

lemma w.r.t. D holds on F .

It is easy to see that deficiencies, once eliminated, do not recur (because of their
∀∃-nature). With problems, we have to do more work. Suppose that a problem
〈a,¬(A�B)〉 has been eliminated from Fn, i.e. we added some b ∈ CBa with A ∈ ν(b).
Let m ≥ n. If bSax in Fm, we have by definition that x ∈ CBa . By adequacy of Fm,
we get that ν(a) ≺B ν(x), whence ¬B ∈ ν(x).

What is left to show is that F is an adequate frame. It is clear that the conditions
for adequacy are preserved under taking unions of chains. The same applies for all
ILM–frame conditions except for converse well-foundedness of R. To see that R is
converse well-founded on F , note that if Fn � x1Rx2Rx3 . . . Rxm, then by adequacy
x1 ≺ x2 ≺ . . . ≺ xm. But if xi ≺ xj , there is some E ∈ D s.t. 2D ∈ ν(xj)\ν(xi).
Thus we must have that m ≤ |D|. Io.w. the lengths of R-sequences in Fn are
bounded by |D|, which is finite. Hence also the lengths of R-sequences in F are
bounded by |D|. Thus F is an ILM–frame where a truth lemma holds w.r.t. D, and
we are done with the proof.

7If Fn contains no problems or deficiencies, we define Fn+1 = Fn.
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