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Abstract

The Ehrenfeucht-Fräıssé Game is very useful in studying separation
and equivalence results in logic. The usual finite Ehrenfeucht-Fräıssé
Game EFn characterizes separation in first order logic Lωω. The infi-
nite Ehrenfeucht-Fräıssé Game EFω and the Dynamic Ehrenfeucht-Fräıssé
Game EFDα characterize separation in L∞ω, the logic with arbitrary con-
junctions and disjunctions of formulas. The logic Lω1ω is the extension
of first order logic with countable conjunctions and disjunctions of formu-
las. It is the most immediate, and perhaps the most important infinitary
logic. However, there is no Ehrenfeucht-Fräıssé Game in the literature
that characterizes separation in Lω1ω.

In this thesis we introduce an Ehrenfeucht-Fräıssé Game for the logic
Lω1ω. This game is based on a game for propositional and first order logic
introduced by Hella and Väänänen. Unlike the usual Ehrenfeucht-Fräıssé
Games which are modeled solely after the behavior of quantifiers, this
new game also takes into account the behavior of boolean connectives in
logic. We prove the adequacy theorem for this game. In the final part of
the thesis we apply this game to prove complexity results about infinite
binary strings.
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1 Why Do We Want an Ehrenfeucht-Fräıssé Game
for Lω1ω?

There is a close connection between logic and games. Three central concepts in
logic: truth, consistency and separation are characterized respectively by three
types of games. Let L be a vocabulary, M be an L-structure1 and T be an
L-theory . The Semantic Game SG(M, T ) deals with the concept of truth. It
aims to determine whether a set of L-sentences T is true in a model M. The
Model Existence Game MEG(T, L) deals with the concept of consistency. It
tackles the question whether a given set of L-sentences T is consistent, in the
sense that it has a model, or equivalently in the sense that it is impossible to
derive a contradiction syntactically from this set of sentences. The Ehrenfeucht-
Fräıssé Game EF(A,B) deals with the concept of separation. We say that we
can separate two models A and B if there exists a sentence that is true in one
model and false in another. Separation can also be considered in terms of the
more familiar concept of equivalence: to say that two models can be separated
by a sentence in a certain language, is just another way of saying that these two
model are not equivalent in this language. Each of these three games involves
two players: one trying to assert that the concept at issue (truth, consistency
or separation) is true of the situation, and the other trying to challenge this as-
sertion. These three games characterize the corresponding concepts in the sense
that in each case, the affirmation of the concept is equivalent to the existence
of a winning strategy of one player.

The Semantic Game, the Model Existence Game, and the Ehrenfeucht-
Fräıssé Game are closely linked to each other. There is a sense in saying that
they are essentially three variants of just one basic game. This basic game is
modeled after our understanding of the nature of quantifiers in logic. The Model
Existence Game MEG(T, L) is like SG(M, φ) with the model M missing. The
Ehrenfeucht-Fräıssé Game EF(A,B) is like SG(A, T ) and SG(B, T ) with the
theory T missing. The three games form an organic unity which we may call
the Strategic Balance of Logic (see Figure 1). For a detailed survey of this topic,
see Väänänen’s book [23].

The prime example for the Strategic Balance is first order logic. For the
precise definition of the Semantic Game, the Model Existence Game and the
Ehrenfeucht-Fräıssé Game for first order logic, the reader is again referred to
[23]. In first order logic the three games characterize the three corresponding
concepts neatly. Moreover, the diagram in Figure 1 is commutative in the sense
that a winning strategy in one game can be transferred into a winning strategy
in another game.

The Semantic Game characterizes the notion of truth in first order logic.
The idea of interpreting the quantifiers in terms of moves in a game, as in the
Semantic Game, is due to Henkin [10].

Theorem 1 (Semantic Game). Suppose L is a vocabulary, T a set of first order

1In this paper we use the terms ‘model’ and ‘structure’ interchangeably.
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Figure 1: Strategic Balance for First Order Logic

L-sentences and M an L-structure. Then the following are equivalent:

1. M |= T .

2. Player II has a winning strategy in SG(M, T ).

The Model Existence Game characterizes the notion of consistency in first
order logic. The Model Existence Game is a game-theoretic rendering of the
method of semantic tableaux of Beth [2, 3]. The following theorem proves the
‘left leg’ of the balance, namely the marriage of truth and consistency.

Theorem 2 (Model Existence Game). Suppose L is a countable vocabulary and
T a set of first order L-sentences. Then the following are equivalent:

1. There is an L-structure M such that M |= T .

2. Player II has a winning strategy in MEG(T, L).

The Ehrenfeucht-Fräıssé Game characterizes the notion of separation in first
order logic. The Ehrenfeucht-Fräıssé Game is first formulated by Ehrenfeucht
in [4] and [5], whose idea is based on the work of Fräıssé [6]. The next theorem
proves the ‘right leg’ of the balance, namely the marriage of truth and separa-
tion. For L-structures A, B and a natural number n, let A ≡nLωω

B denote that
A and B satisfy the same first order L-sentences up to quantifier rank n.

Theorem 3 (Ehrenfeucht-Fräıssé Game). Suppose L is a relational vocabulary.
Suppose A and B are L-structures and n ∈ N . The following are equivalent:
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1. A ≡nLωω
B.

2. Player II has a winning strategy in EFn(A|L′ ,B|L′) for all finite L′ ⊆ L.

The presence of function symbols will make the Ehrenfeucht-Fräıssé Game
more involved. As a way out we may consider a variant of the game tailored
for unnested formulas. Every formula can be converted to a logically equiva-
lent unnested formula at the price of raising its quantifier rank. An analogous
equivalence result holds for this variant of the game and unnested formulas. For
details, see Chapter 3 in [11]. For the sake of clarity, in this paper we always
restrict our attention to relational structures when we consider separation and
the Ehrenfeucht-Fräıssé Game.

Given its success in first order logic, a natural motive is to extend the Strate-
gic Balance to a wider range of logics. In this paper we focus on the logic Lω1ω,
the extension of first order logic with countable conjunctions and disjunctions
of formulas. The logic Lω1ω is, perhaps, the most important infinitary logic.
We ask the question: does the Strategic Balance hold for the logic Lω1ω?

With respect to the ‘left leg’ of the balance—the connection between the
Semantic Game and the Model Existence Game, that is—the answer is a clear
‘yes’. The Semantic Game for first order logic extends to infinitary logic natu-
rally (see Chapter 7 in [23]).

Theorem 4. Suppose L is a vocabulary, T a set of L-sentences in Lω1ω and
M an L-structure. Then the following are equivalent:

1. M |= T .

2. Player II has a winning strategy in SG(M, T ).

The Model Existence Game for first order logic can also be modified to a
Model Existence Game for Lω1ω (see Chapter 8 in [23]). Theorem 1 finds the
following analogue in the context of Lω1ω.

Theorem 5 (Model Existence Theorem for Lω1ω). Suppose L is a countable
vocabulary and φ is an L-sentence of Lω1ω. The following are equivalent:

1. There is an L-structure M such that M |= φ.

2. Player II has a winning strategy in MEG(φ,L).

The Model Existence Theorem is essential to the model theory of Lω1ω. We
may say that it more or less takes the role of the Compactness theorem, which is
the corner stone of first order model theory but unfortunately fails for infinitary
logic. In particular, the Model Existence Theorem can be used to prove the
Interpolation Theorem for Lω1ω. For details, we refer again to [23].

Let us now consider the other leg of the balance, namely the connection
between truth and separation. There is no straightforward extension of the
Ehrenfeucht-Fräıssé Game to Lω1ω like in the case of the Semantic Game and
the Model Existence Game. The problem of finding an Ehrenfeucht-Fräıssé
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Game that characterizes separation in Lω1ω, rather than in L∞ω up to a fixed
quantifier rank, has been open since the 70s. This has been open even for
propositional Lω1ω. Figure 2 shows the Strategic Balance for Lω1ω with the
‘right leg’ missing.
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Figure 2: Strategic Balance for Lω1ω

In this thesis we fill in the missing connection between truth and separation
in the Strategic Balance of Lω1ω. The text is divided as follows. We start our
quest with a quick survey of the mathematical concept of game and the infinitary
logic Lω1ω in Section 2. In Section 3 we look at the ‘usual’ Ehrenfeucht-Fräıssé
Games. The usual Ehrenfeucht-Fräıssé Games characterize separation in first
order logic Lωω and in the infinitary logic L∞ω. The logic Lω1ω falls in the
gap between Lωω and L∞ω. The reason that the usual Ehrenfeucht-Fräıssé
Games fail to characterize separation in Lω1ω is, as we have indicated, that
these games reflect our understanding of the nature of quantifiers in logic. But
in order to characterize separation in the logic Lω1ω, where the ‘boolean size’
of a formula is also at issue, the game needs to take into account not only the
behaviour of quantifiers, but also of boolean connectives. Based on this idea
and a game introduced by Hella and Väänänen in [9], we introduce in Section
4 an Ehrenfeucht-Fräıssé Game for Lω1ω. We prove the adequacy theorem for
this new game (Theorem 23), which is the main result of this thesis. In Section
5 we apply this new game to prove a complexity result about infinite binary
strings (Theorem 36). This is the first propositional complexity result for Lω1ω.
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2 Preliminaries

2.1 The Mathematical Concept of Game

Everyone has an intuitive notion of game. When we think of a game, the first
idea that comes to mind is that of playing the game as an act. As an example,
consider the game of chess. The game of chess involves two players. They take
turns to make their moves. The possible moves of the players are given by a
set of explicitly stated rules. A player may choose, among the possible moves,
the next move that she makes using her intelligence and the information she
has about the history and the current situation of the game. The winner is
determined by a set of explicit winning conditions. If a player has a plan that
guarantees her to win no matter how the other participant of the game plays, we
say that she has a winning strategy. The games that we encounter in logic are
very much like chess, the difference being that now the two players do not play
with pieces on a chessboard but rather with models and formulas, and the goal
is not to checkmate the opponent but to assert or to refute a logical property.
In game-theoretic terms, the games that we deal with in this paper, together
with the game of chess, fall under the category zero-sum two-person games of
perfect information.

The game-approach in logic owes much of its intuitive appeal to the picture of
playing the game as an interactive act. However, an ‘act’ is not a mathematical
concept. In order to reason rigorously about games, it is important to formulate
the relevant notions about games in a mathematically precise way. In this
section we give an overview of the mathematical details of zero-sum two-person
games of perfect information. This will give us a uniform framework to deal
with the various games in this paper.

Let us fix two players I and II. As a convention we always refer to player I as
‘he’ and player II as ‘she’. Let A be an arbitrary set. We may compare it to the
set of all possible configurations on a chess board. We also introduce a measure
for the length of a game. For the moment, let a natural number n ∈ N be such
a measure. A play of one of the players is any sequence x = (x0, . . . , xn−1) of
elements of A. A sequence

(x̄, ȳ) = (x0, y0, . . . , xn−1, yn−1)

of elements of A is called a play of the game.
Let W be a subset of A2n. The game Gn(A,W ) is defined as follows:

Player II wins the play (x̄, ȳ) if (x0, y0, . . . , xn−1, yn−1) ∈W .
Player I wins the play (x̄, ȳ) if (x0, y0, . . . , xn−1, yn−1) /∈W .

Note that in the set W we incorporate both the ‘rules’ and the ‘winning
conditions’ of the game in the ordinary sense. If a player does not, or could not
play according to the rules, then he or she loses immediately.

A strategy of player I is a sequence

σ = (σ0, . . . , σn−1)
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of functions σi : Ai → A. We say that player I has used the strategy σ in the
play (x̄, ȳ) if

x0 = σ0

and for all 0 < i < n:
xi = σi(y0, . . . , yn−1).

The strategy σ of player I is a winning strategy if every play where I has used σ
is a win for him. The concept of strategy and winning strategy can be defined
similarly for player II.

A position of the game Gn(A,W ) is any initial segment

p = (x0, y0, . . . , xi−1, yi−1)

of a play (x̄, ȳ), where i ≤ n. A strategy for player I in position p = (x0, y0, . . . , xi−1, yi−1)
is a sequence

σ = (σ0, . . . , σn−i−1)

of functions σj : Aj → A. The concept of using the strategy σ after position p
and winning strategy in position p are defined analogously. We say that p is a
winning position for player I if he has a winning strategy at this position.

One characteristic feature of the game Gn(A,W ) is that at the end of the
play there is always exactly one winner. There is no room for a draw. The
next theorem tells us that, moreover, the winner is already determined at the
beginning of the game.

Definition 1. A game is called determined if one of the players has a winning
strategy. Otherwise the game is non-determined.

Theorem 6 (Zermelo). If A is any set, n a natural number, and W ⊆ A2n,
then the game Gn(A,W ) is determined.

To prove this theorem we need the following lemma.

Lemma 7 (Survival Lemma). Consider the game Gn(A,W ). If player I does
not have a winning strategy in position p = (x0, y0, . . . , xi−1, yi−1), then for
every xi ∈ A there is yi ∈ A such that player I does not have a winning strategy
in position p′ = (x0, y0, . . . , xi, yi).

Proof. The main idea of the proof is backward induction. Suppose to the con-
trary that in position p, there exists xi ∈ A such that for any y ∈ A, player I
has a winning strategy σy in the remaining game. We claim that player I has
a winning strategy in p: he first plays xi, and then depending on which y ∈ A
player II plays, he chooses to follow the strategy σy in the rest of the game.
Clearly this strategy will win the game for him. This is a contradiction with the
assumption that player I does not have a winning strategy in position p.

Proof of the theorem. Suppose player I does not have a winning strategy at the
beginning. Then player II makes sure she stays in the game by repeated use
of the Survival Lemma. After n rounds the game terminates and player I still
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does not have a winning strategy. This means that player II has won the game
and player I has lost. What we have described above is a winning strategy for
II.

Our interest is not limited to games with finitely many rounds. Consider
the variant of the game Gn(A,W ) where the measure for the length of game is
not a natural number but the first infinite ordinal ω. This game goes on for
infinitely many rounds. The infinite game Gω(A,W ) consists of a set A and a
set W ⊆ AN of infinite sequences of elements of A.

A play of the game Gω(A,W ) is an infinite sequence:

(x̄, ȳ) = (x0, y0, x1, y1, . . .).

A play of one of the players is likewise any infinite sequence x̄ = (x0, x1, . . .) of
elements of A.

The play (x̄, ȳ) is a win for player II if

(x0, y0, x1, y1, . . .) ∈W

and otherwise a win for player I.
A position in the game Gω(A,W ) is any initial segment

p = (x0, y0, . . . , xi−1, yi−1)

of a play (x̄, ȳ). The notions of strategy, winning strategy, using a strategy
etc. are likewise defined for this game.

Given an infinite game Gω(A,W ), we can restrict it to an n-round game
Gn(A,W ) by declaring that a play in Gn(A,W ) is a win for player I if any infinite
sequence extending it is a win for him in the game Gω(A,W ). In a sense, we
can think of the game Gω(A,W ) as the limit of the finite games Gn(A,W ) as
n goes to infinity. In general, the outcome of the finite games does not tell us
much about the outcome of the infinite game—it can happen that player I has
a winning strategy in none of the games Gn(A,W ), yet he does have a winning
strategy in Gω(A,W ). However there is an important class of games where the
outcome of the finite games tell us all we need about the infinite game. They
are what we call closed games and open games.

A subset W of AN is open2 if

(x0, y0, x1, y1, . . .) ∈W

implies the existence of n ∈ N such that

(x0, y0, . . . , xn−1, yn−1, x
′
n, y
′
n, x
′
n+1, y

′
n+1, . . .) ∈W

for all x′n, y
′
n, x
′
n+1, y

′
n+1, . . . ∈ A. A subset W is closed if its complement is

open. We say that the game Gω(A,W ) is closed (or open) if the set W is. If
player I wins a play (x̄, ȳ) in a closed game Gω(A,W ) he must have essentially

2The collection of open sets is a topology on AN, hence the name.
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already won it at a finite stage, in the sense that in such a play if I manages to
keep playing smartly up to a certain point, then whatever he does afterwards
will not spoil his victory.

In this paper we are particularly interested in closed games. An important
reason is that determinacy results for finite games carry over to closed (and
open) infinite games.

Lemma 8 (Infinite Survival Lemma). Consider the game Gω(A,W ). If player
I does not have a winning strategy in position p = (x0, y0, . . . , xi−1, yi−1), then
for every xi ∈ A there is yi ∈ A such that player I does not have a winning
strategy in position p′ = (x0, y0, . . . , xi, yi).

Proof. The proof is virtually the same as that of the finite Survival Lemma.

With the Infinite Survival Lemma we can prove the following theorem of
Gale and Stewart [7].

Theorem 9 (Gale-Stewart). If A is any set and W ⊆ AN is open or closed,
then the game Gω(A,W ) is determined.

Proof. Suppose W is closed and player I does not have a winning strategy at
the beginning. We define the following strategy for player II. At each step she
makes sure that player I does not have a winning strategy in the remaining
game by repeated use of the Infinite Survival Lemma. In other words she plays
by ‘hanging on’ in the game. Suppose

(x̄, ȳ) = (x0, y0, x1, y1, . . .)

is a play where player II has used this strategy. We claim that (x̄, ȳ) is a win for
II. Suppose otherwise. Since the game is closed, player I must have a winning
strategy at some finite stage. More precisely, there exists a natural number
n ∈ N such that

(x0, y0, . . . , xn−1, yn−1, x
′
n, y
′
n, x
′
n+1, y

′
n+1, . . .) ∈W

for all x′n, y
′
n, x
′
n+1, y

′
n+1, . . . ∈ A. This means that any strategy is a winning

strategy for I in the position (x0, y0, . . . , xn−1, yn−1). This is in contradiction
with our assumption.

The proof for the case where W is open is similar.

The games that we encounter in the rest of this paper are either Gn(A,W )
or Gω(A,W ) for some A and W . Sometimes we may present a game in a more
intuitive way by describing its rules and winning conditions, without mentioning
explicitly the sets A and W . However, we claim that such a game can always
be formulated in this mathematically precise form if needed. The games in this
paper are all determined.
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2.2 The Infinitary Logic Lω1ω

Traditionally, symbolic logic has been associated with the study of finite formal
expressions which are, at least in principle, capable of actually being written
out in primitive notation on a piece of paper. The classical first order predicate
logic is one eminent example. However, the fact that first order formulas can be
identified with natural numbers (via ‘Gödel numbering’) and hence with finite
sets, suggests the possibility of fashioning abstract languages some of whose
formulas would be naturally identified as infinite sets. On the other hand,
certain limitations of finitary logic call for the extension of logic with infinitary
expressions. One main defect of first order logic is that it is usually inadequate
for expressing mathematical concepts that involve explicitly or implicitly the
notion of the infinite, which abound in mainstream mathematics.

Infinitary languages were first introduced in propositional calculus in Scott
and Tarski [20] and in predicate logic in Tarski [22], both in the year 1958.
Karp’s 1964 book [13] is an early book on infinitary languages. In this book
Karp introduced the following notation for infinitary languages. Let κ and λ be
cardinals numbers. Let Lκλ denote the logic with conjunctions and disjunctions
over index sets of cardinality less than κ, and quantification of sets of variables
of cardinality less than λ. All of the logics that we need to consider for our
purpose admit only formulas with finite strings of quantifiers, therefore λ = ω
throughout this paper. In this notation Lωω is just first order logic. We also
denote by L∞ω the logic with conjunctions and disjunctions over arbitrary index
sets.

In this paper we are mainly concerned with the logic Lω1ω, which adds to first
order logic countable conjunctions and disjunctions of formulas. The first wave
of results about the logic Lω1ω came around the year 1963. The Completeness
Theorem for Lω1ω, as well as for other infinitary languages (but in a weaker
form), was proved by Karp [13] in 1964. The Interpolation Theorem for Lω1ω

was proved by Lopez-Escobar [17] in 1965 and Scott’s Isomorphism Theorem
for Lω1ω by Scott [19] in 1965. In this section we give a quick survey of the
results from these early pioneers of infinitary logic.

Let L be a vocabulary, and let x1, x2, . . . denote variables. The terms of
Lω1ω are defined in the usual way. The formulas of Lω1ω are defined as follows.

Definition 2. We define the class of all formulas of Lω1ω inductively.

1. If t1 and t2 are terms, then t1 = t2 is a formula.

2. If R is an n-place relational symbol and t1, . . . , tn are terms, then Rt1 . . . tn
is a formula.

3. If φ is a formula, then so is ¬φ.

4. If φ and ψ are formulas, then so is φ ∨ ψ.

5. If φ and ψ are formulas, then so is φ ∧ ψ.

11



6. If I is a countable set and for every i ∈ I, φi is a formula, then so is∨
i∈I φi.

7. If I is a countable set and for every i ∈ I, φi is a formula, then so is∧
i∈I φi.

8. If φ is a formula and xn a variable, then ∃xnφ is a formula.

9. If φ is a formula and xn a variable, then ∀xnφ is a formula.

We use → and ↔ as abbreviations for implication and equivalence in the
usual way. Substitution for L-formulas in Lω1ω is also defined as usual. The
truth definition for Lω1ω is standard.

The logic Lω1ω has a complete proof calculus by adding to first order logic
an introduction rule for infinite conjunction and disjunction. The following ax-
iomatization is given essentially in Keisler’s book [15], with slight modification.
We first introduce some convenient notation. Given a formula φ of Lω1ω, the
formula φ¬, obtained by ‘moving a negation inside’, is defined inductively as
follows:

1. If φ is atomic, then φ¬ is ¬φ.

2. If φ is (¬ψ), then φ¬ is ψ.

3. If φ is ψ ∨ θ, then φ¬ is ¬ψ ∧ ¬θ.

4. If φ is ψ ∧ θ, then φ¬ is ¬ψ ∨ ¬θ.

5. If φ is
∨
i∈ω φi, then φ¬ is

∧
i∈ω ¬φi.

6. If φ is
∧
i∈ω φi, then φ¬ is

∨
i∈ω ¬φi.

7. If φ is ∀xnψ, then φ¬ is ∃xn¬ψ.

8. If φ is ∃xnψ, then φ¬ is ∀xn¬ψ.

LOGICAL AXIOMS FOR Lω1ω:

1. Every instance of a tautology of finitary propositional logic is an axiom.

2. (¬φ)↔ (φ¬).

3. φ1 ∧ φ2 → φi, i = 1, 2.

4.
∧
i∈ω φi → φn, n ∈ ω.

5. ∀xφ(x, ȳ)→ φ(t, ȳ), where t is a term.

6. x = x.

7. x = y → y = x.

8. φ(x, ȳ) ∧ t = x→ φ(t, ȳ).

12



INFERENCE RULES FOR Lω1ω:

1. From ψ,ψ → φ, infer φ.

2. From ψ → φ(x, ȳ), infer ψ → ∀xφ(x, ȳ), where x does not occur free in φ.

3. From the sequence ψ → φi, i ∈ ω, infer ψ → ∧
i∈ω φi.

As a consequence of the last rule, the notion of a proof in Lω1ω has to be
generalized to include proofs of countable length. We say that a formula φ is
a theorem of Lω1ω, denoted by `Lω1ω

φ, if there exists a countable sequence of
formulas 〈φα|α ≤ β〉 such that φβ = φ and for each α ≤ β, φα is either an axiom
of Lω1ω or is inferred from earlier formulas φγ , γ < α by an inference rule. It is
easy to see that the set of theorems of Lω1ω is the least set of formulas in Lω1ω

which contains all the axioms and is closed under the inference rules. Denote
by � φ the semantic validity of φ as usual. The following completeness result is
due to Karp [13].

Theorem 10 (The Completeness Theorem for Lω1ω). If φ is a sentence of
Lω1ω, then `Lω1ω φ if and only if � φ.

In the logic Lω1ω we are able to express many familiar mathematical concepts
which are undefinable in first order logic.

Example 1. Let L be the language of abelian groups. An abelian group G is
a torsion group if and only if

G |= ∀x
∨
n∈ω

x+ . . .+ x︸ ︷︷ ︸
n

= 0.

Example 2. Let L be the language of graphs, with relation symbol E denoting
the edge relation. Let 3

φ0(x0, x1) = (x0 = x1)

φn+1(x0, x1) = ∃x2
(
x0Ex2 ∧ ∃x0

(
x0 = x2 ∧ φn(x0, x1)

))
.

A graph G is connected if and only if

G |= ∀x0∀x1
( ∨
n∈ω

φn(x0, x1)
)
.

3Note that φn is written in this way so that we use only three variables x0, x1 and x2. If
we do not care how many variables are used, we can also define φn inductively as follows

φ′n+1(x0, x1) = ∃xn+2

(
x0Exn+2 ∧ φn(xn+2, x1)

)
.
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Example 3. Let L be the language of linear orders. For any ordinal α, well-
ordering of type α is definable by a sentence in L∞ω. When α is a countable
ordinal this sentence is in Lω1ω. Let

θ0(x0) = ¬∃x1(x1 < x0)

θα(x0) = ∀x1
(
x1 < x0 ↔ ∃x0

(
x0 = x1 ∧

∨
β<α

θβ(x0)
))
.

In a linear order (M,<), the formula θα(x0) has the intended meaning that the
initial segment {x ∈M|x < x0} has order type α. Let

φα =
(
∀x0

∨
β<α

θβ(x0)
)
∧
( ∧
β<α

∃x0θβ(x0)
)
.

It can be proved by transfinite induction on α that for any linear order (M,<),
we have

(M,<) |= φα ⇐⇒ (M,<) ∼= (α,<).

Note that when α is a countable ordinal, the sentence φα is in Lω1ω. This is
not the case when α is uncountable.

A countable well-ordering α can be characterized up to isomorphism by the
Lω1ω sentence φα. The following theorem of Scott [19] shows that this result
can be generalized to every countable structure.

Theorem 11 (Scott Isomorphism Theorem). Let L be a countable vocabulary
and M be a countable L-structure. There exists an L-sentence σM in Lω1ω,
called the Scott sentence of M, such that for every countable L-structure M′

M′ |= σM ⇐⇒M′ ∼=M.

In the above theorem the requirement of L being countable cannot be dis-
pensed with. It is not reasonable to hope that the theorem remains true when
L is an uncountable vocabulary. For an almost trivial example, consider the
language L0 = 〈Pα, α < ω1〉 with uncountably many predicate symbols. Let
M be an L0 structure with domain the singleton set {∅}. We claim that there
is no Lω1ω sentence φ that characterizes M up to isomorphism. Let φ be any
L-sentence in Lω1ω that is true in M. It is easy to see that φ only involves
countably many predicate symbols. Let α0 < ω1 be such that Pα0

does not
appear in φ. Let M′ be the L0 structure with domain {∅}, and

PM
′

α =

{
PMα if α 6= α0,
{∅} \ PMα0

if α = α0.

It is clear that M′ |= φ, yet M 6∼=M′.
Another important result in the model theory of Lω1ω is the following the-

orem of Karp [14]. Let M = (M,<) and M′ = (M ′, <′) be partially ordered
sets, their product M×M′ is the partially ordered set (M ×M ′, <∗) where

(x, x′) < (y, y′)⇐⇒ x′ <′ y′ or (x′ = y′ and x < y).

14



Considering an ordinal δ as the well-ordered set (δ,<), we have the following
result.

Theorem 12 (Karp). Suppose an ordinal δ satisfies the condition

α < δ =⇒ ωα < δ (1)

and M is any linear order with a first element. Then

δ ≡δ δ ×M.

This theorem can be used to prove the undefinability of well-ordering in L∞ω
(for details, see [14]). Intuitively, the formula∨

α∈Ord
φα

defines the class of well orderings. The problem is that Ord is not a set but
a proper class, therefore this sentence is not in L∞ω. By the same technique
we can prove that the class of countable well-orderings cannot be defined by an
Lω1ω sentence. We will come back to this topic in Section 4.

3 What Should an Ehrenfeucht-Fräıssé Game
for Lω1ω Look Like?

We may say that there are a broader meaning and a narrower meaning of the
term ‘Ehrenfeucht-Fräıssé Game’. The narrower notion of Ehrenfeucht-Fräıssé
Game refers to a particular game in predicate logic. Depending on the length of
the play, this game has three variants EFn, EFω and EFDα—they are what we
call the ‘usual’ Ehrenfeucht-Fräıssé Games. The basic idea behind these games
is the following. Given two structures A and B, we want to decide how ‘similar’
these two structures are. For this purpose we invite two mathematicians I and
II to argue over this issue. I claims that there is an intrinsic structural difference
between the two structures. II claims that the two structures are essentially
similar. In each round I tries to justify himself by calling one more element of
one of the structures into question. II responds by picking an element from the
other structure which is similar to the element that I has just picked. The trick
of the game is that I and II only argue over a small piece of the pair of structures
at a time. On the other hand, the broader notion of Ehrenfeucht-Fräıssé Game
refers to a general technique to determine whether two structures are equivalent
(also known as the back-and-forth technique).

In this section we survey Ehrenfeucht-Fräıssé Game in the narrower sense,
namely the three usual Ehrenfeucht-Fräıssé Games. The games EFn, EFω and
EFDα characterize a hierarchy of equivalence relations. They provide important
information about the question when two structures can be separated in the
logic Lω1ω. However, the usual Ehrenfeucht-Fräıssé Games do not thoroughly
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solve the question of separation for Lω1ω. Equivalence in the logic Lω1ω does
not properly identify with any level of the hierarchy. An analysis of the reason
behind this failure will give us some clue what the ‘right’ Ehrenfeucht-Fräıssé
Game for Lω1ω should look like. The new game that we are going to introduce
will be an Ehrenfeucht-Fräıssé Game in the broader sense: the game is played
in the spirit of Ehrenfeucht-Fräıssé Game, but the mechanism of the game will
be substantially different from the usual Ehrenfeucht-Fräıssé Games.

Definition 3. Suppose L is a relational vocabulary andM,M′ are L-structures.
A partial mapping π : M →M ′ is a partial isomorphism if it is an isomorphism
between M � dom(π) and M′ � ran(π).

Definition 4. Suppose L is a relational vocabulary andM,M′ are L-structures.
Suppose also that the domains M,M ′ of the two structures are disjoint. The
Ehrenfeucht-Fräıssé Game EFn(M,M′) is the game Gn(M ∪M ′,Wn(M,M′)),
where Wn(M,M′) ⊆ (M ∪M ′)2n is the set of

p = (x0, y0, . . . , xn−1, yn−1)

such that:

1. For all i < n : xi ∈M ⇐⇒ yi ∈M ′.

2. If we denote

vi =

{
xi if xi ∈M
yi if yi ∈M v′i =

{
xi if xi ∈M ′
yi if yi ∈M ′,

then
fp = {(v0, v′0), . . . , (vn−1, v

′
n−1)}

is a partial isomorphism M→M′.

Definition 5. Suppose L is a relational vocabulary andM,M′ are L-structures
such that M ∩M ′ = ∅. The infinite game EFω(M,M′) is the game Gω(M ∪
M ′,Wω(M,M′)), where Wω(M,M′) is the set of p = (x0, y0, x1, y1, . . .) such
that for all n ∈ N we have (x0, y0, . . . , xn−1, yn−1) ∈ Wn(M,M′). The set
Wn(M,M′) is as defined in Definition 4.

Note that EFω(M,M′) is a closed game. The set (M ∪M ′)N \Wω(M,M′)
is open. For suppose p = (x0, y0, x1, y1, . . .) /∈Wω(M,M′), then for some n ∈ N
we have (x0, y0, . . . , xn−1, yn−1) /∈Wn(M,M′). It follows that

(x0, y0, . . . , xn−1, yn−1, x
′
n, y
′
n, x
′
n+1, y

′
n+1, . . .) /∈Wω(M,M′)

for all x′n, y
′
n, x
′
n+1, y

′
n+1, . . . ∈M∪M ′. By the Gale-Stewart Theorem, the game

EFω(M,M′) is determined.

Definition 6. Let L be a relational vocabulary and M,M′ L-structures such
that M∩M ′ = ∅. Let α be an ordinal. The Dynamic Ehrenfeucht-Fräıssé Game
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EFDα(M,M′) is the game Gω(M×α∪M ′,Wω,α(M,M′)), whereWω,α(M,M′)
is the set of

p = ((x0, α0), y0, . . . , (xn−1, αn−1), yn−1)

such that:

1. For all i < n : xi ∈M ⇐⇒ yi ∈M ′.

2. α > α0 > . . . > αn−1 = 0.

3. If we denote

vi =

{
xi if xi ∈M
yi if yi ∈M v′i =

{
xi if xi ∈M ′
yi if yi ∈M ′,

then
fp = {(v0, v′0), . . . , (vn−1, v

′
n−1)}

is a partial isomorphism M→M′.

Note the slight abuse of notation in the above definition. Strictly speaking a
play in the game Gω(M ∪M ′∪α,Wω,α(M,M′)) should be an infinite sequence.
Here we may regard

p = ((x0, α0), y0, . . . , (xn−1, αn−1), yn−1)

as representing the infinite sequence beginning with p and followed by constant
elements and 0’s

((x0, α0), y0, . . . , (xn−1, αn−1), yn−1, (xn−1, 0), yn−1, . . .).

In other words, we think of the moves after the first n rounds in the play p as
dummy moves. They make no real difference to the outcome of the game. The
game EFDα(M,M′) is closed.

The three games EFn, EFω and EFDα are played according to essentially
the same set of rules. In each round player I picks an element from M or
M′. Player II responds with an element in the other structure. The rule is
that II has to make sure all the finite segments of the play stand in partial
isomorphisms. If II fails to meet the requirement, she loses. If she manages to
meet the requirement until the game ends, she wins.

The difference among the three games lies in the way that the length of the
game is measured. The game EFn lasts for n rounds. The game EFω lasts for
ω rounds. The case for the game EFDα is more subtle. The length of the game
is measured by an ordinal α. Each position

p = ((x0, α0), y0, . . . , (xn−1, αn−1), yn−1)

in the game is associated with an ordinal αn−1. We call it the rank of the
position. In each round the rank of the position goes down. But it is up to
player I to decide how the rank goes down. He can change his mind as the
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game proceeds, hence the name ‘dynamic’. In each move, I picks in addition to
an element an ordinal that is smaller than the current rank. We may think of
the rank as the ‘resources’ that player I possesses. To make every move he has
to ‘spend’ some resources. His objective is to win the game, namely to force II
into a position where she is unable to continue, before he uses up his resources.
Note that the game EFDα is not a game of length α.

When α is a finite ordinal n, the game EFDn(M,M′) is essentially the
same as the game EFn(M,M′). A moment’s reflection shows that I has a
winning strategy in EFDn(M,M′) if and only if he has a winning strategy in
EFn(M,M′). Let us now consider the case where α is an infinite ordinal. Since
the ordinals are well-founded, every play of the game is finitely long. However
there is no finite upper-bound to the length of the plays. In this sense we
say that this game is potentially infinite. The game EFDα(M,M′) is easier
for I to play than any EFn(M,M′) (when α is infinite), but still harder than
EFω(M,M′).

The following are some straightforward properties of the game EFDα.

Lemma 13. If player II has a winning strategy in EFDα(M,M′) and β ≤ α,
then she has a winning strategy in EFDβ(M,M′).

Proof. II pretends to be playing the longer game EFDα(M,M′). The winning
strategy in this game would also win the shorter game EFDβ(M,M′) for her.

Lemma 14. If α is a limit ordinal and player II has a winning strategy in the
game EFDβ(M,M′) for each β < α, then II has a wining strategy in the game
EFDα(M,M′).

Proof. Suppose I plays α0 < α in his opening move. Now II pretends that
they are actually playing the game EFDα0+1(M,M′). By assumption she has
a winning strategy in this game. Since α0 is arbitrary, player II has a winning
strategy in the game EFDα(M,M′).

In particular, II has a winning strategy in EFDω(M,M′) if and only if she
has a winning strategy in every finite game EFDn(M,M′), n ∈ N.

Definition 7. The quantifier rank , denoted by qr(φ), of a formula φ in Lω1ω is
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defined inductively as follows:

qr(φ) = 0 if φ is atomic

qr(¬φ) = qr(φ)

qr(φ ∧ ψ) = max(qr(φ), qr(ψ))

qr(φ ∨ ψ) = max(qr(φ), qr(ψ))

qr(
∧
i∈ω

φi) = sup
i∈ω

qr(φi)

qr(
∨
i∈ω

φi) = sup
i∈ω

qr(φi)

qr(∃xφ) = qr(φ) + 1

qr(∀xφ) = qr(φ) + 1.

(2)

Recall that the game EFn(M,M′) characterizes equivalence in first order
logic (Theorem 3). The games EFω and EFDα characterize equivalence in the
infinitary logic L∞ω, the extension of first order logic with arbitrary conjunctions
and disjunctions. Let L be a vocabulary. Suppose A and B are L-structures.
Let A ≡α B denote that A and B satisfy the same L-sentences in L∞ω up
to quantifier rank α. Let A ≡∞ω B denote that A and B satisfy the same L-
sentences in L∞ω. The game EFω gives a ‘global’ characterization of equivalence
in L∞ω:

Theorem 15 (Karp). Let L be a relational vocabulary and A,B L-structures.
Then the following are equivalent:

1. A ≡∞ω B.

2. Player II has a winning strategy in EFω(A,B).

Proof. (1=⇒2) Suppose A ≡∞ω B. We describe the following strategy for player
II. In each round, she makes sure that the position

(x̄, ȳ) = (x0, y0, . . . , xn−1, yn−1)

satisfies
(A, x̄) ≡∞ω (B, ȳ). (3)

If this strategy is attainable, it is a winning strategy for II: condition (2) guar-
antees that x̄ 7→ ȳ is a partial isomorphism from A to B. It remains to show
that this strategy can indeed be attained by player II.

We prove it by induction on n. Suppose the game is in position (ā, b̄) and
condition (3) is satisfied:

(A, ā) ≡∞ω (B, b̄). (4)

Suppose I plays c ∈ A for the next move. II wants to find an element d ∈ B
such that

(A, āc) ≡∞ω (B, b̄d). (5)
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Suppose to the contrary that there is no such element. Then for every element
d ∈ B, there is an L-formula φd(x̄, y) in L∞ω such that

A |= φd(ā, c)

B |= ¬φd(b̄, d).

Take the conjunction Φ(x̄, y) =
∧
d∈B φd(x̄, y). It is a formula in L∞ω. We have

A |= ∃yΦ(ā, y) (6)

B |= ¬∃yΦ(b̄, y). (7)

A contradiction with condition (4). Therefore there must be an element d ∈ B
that satisfies (4). Let II play that element. Thus she has managed to maintain
condition (3) for one more round. The case where I plays an element c ∈ B is
similar.

(2=⇒1) We claim that if (ā, b̄) is a winning position for II in the game
EFω(A,B), then (A, ā) ≡∞ω (B, b̄). We prove the claim by induction on the
complexity of the formula. The atomic case and the boolean cases are straight-
forward. The only non-trivial case is with the quantifiers.

Suppose the claim is true for formulas of quantifier rank up to α. Let φ(x̄) =
∃yψ(x̄, y), where qr(ψ) = α and A |= φ(ā). Then there is c ∈ A such that

A |= ψ(ā, c).

Imagine I continues the game from position (ā, b̄) by playing c ∈ A. By assump-
tion II has a winning strategy in the remaining game. Suppose the strategy tells
her to play d ∈ B. Then (āc, b̄d) is also a winning position for II. By the induc-
tion hypothesis, we have

B |= ψ(b̄, d).

Therefore
B |= ∃yψ(b̄, y).

And hence the claim.

The game EFDα gives a ‘local’ characterization of equivalence in L∞ω:

Theorem 16 (Karp). Let L be a relational vocabulary, A and B be L-structures
and α be an ordinal number. Then the following are equivalent:

1. A ≡α B.

2. Player II has a winning strategy in EFDα(A,B).

Proof. The proof of this theorem is very similar to the previous one. For both
directions we prove the assertion by induction on α. For details, the reader is
referred to Section 7.3 in [23].
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The game EFDω1(A,B) is of particular interest to us. Note that II has
a winning strategy in this game if and only if she has a winning strategy in
EFDα(A,B) for all countable ordinals α < ω1. Observe the following connection
between L∞ω and Lω1ω.

Proposition 17. Let L be a relational vocabulary. For any L-formula φ ∈ L∞ω,
if φ ∈ Lω1ω then qr(φ) < ω1.

Proof. ω1 is closed under successor and countable union. If φ ∈ Lω1ω then the
quantifier rank of φ is bounded to be a countable ordinal.

Combined with this fact, the game EFDω1
(A,B) gives us important infor-

mation about the question of separation in the language Lω1ω.

Proposition 18. Let L be a relational vocabulary and A,B L-structures. If
player II has a winning strategy in EFDω1

(A,B), then there is no L-formula
φ ∈ Lω1ω separating A and B.

Proof. If there is an Lω1ω formula separating A and B, it would be of countable
quantifier rank. Since player II has a winning strategy in EFDω1

(A,B), she
wins EFDα(A,B) for any countable ordinal α. Hence there cannot be a formula
of countable quantifier rank separating A and B. A contradiction.

A good illustration of the use of this proposition is the following example in
[16].

Example 4. Let κ and λ be two uncountable cardinals (viewed as linear orders).
Then we have

1. κ 6≡∞ω λ.

2. κ ≡ω1ω λ.

To prove that 1 is true, it suffices to consider the Scott sentence σκ of κ4.
It is an L∞ω sentence. It is easy to see that κ |= σκ and λ 6|= σκ. As for 2, we
resort to Karp’s result in Theorem 12. Without loss of generality, assume that
κ > λ. The uncountable cardinal κ satisfies condition (1) in the premise of the
theorem. Moreover, we have that λ×κ = κ. Therefore by Theorem 12, we have

λ ≡λ λ× κ ≡λ κ.

Hence in particular
λ ≡ω1 κ.

It follows from Proposition 18 that there is no Lω1ω sentence separating κ and
λ.

This example shows that the question of separation in Lω1ω is genuinely
different from separation in L∞ω. Given two uncountable cardinals, there is an
L∞ω sentence separating the two structures. No such sentence exists in Lω1ω.

4For the Scott sentence of uncountable structures, see Chapter 7 in [23]
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Example 5. For another example, consider countable well-orderings. Recall
that well-ordering of type α is definable by a sentence θα (Example 3). When
α is a countable ordinal, θα is an Lω1ω sentence. Therefore the class C of all
countable well-orderings is definable by the following sentence:

θ =
∨
α<ω1

θα.

However, the sentence θ has an uncountable disjunction and is therefore not in
Lω1ω. A natural question is: Is there an Lω1ω sentence defining the class C of
all countable ordinals?

The answer is negative. Suppose to the contrary that there is an Lω1ω

sentence φ defining C. Let qr(φ) = α. Let γ = supn∈ω αn, where α0 = α and
αn+1 = ωαn for n ≥ 0. Since ω1 is regular, γ < ω1. The ordinal γ satisfies
condition (1). Hence by Theorem 12 , we have that

γ ≡γ γ × ω1.

Since the quantifier rank of φ is less than γ, we have that

γ × ω1 |= φ.

But γ × ω1 is not a countable well-ordering.

The usual Ehrenfeucht-Fräıssé Games EFn, EFω and EFDα provide in a
sense lower bounds and upper bounds for the question of separation in Lω1ω.
Consider two structures A and B. If A 6≡ B, then A is ‘too unsimilar’ to B and
it is not interesting from the point of view of Lω1ω. If A ≡∞ω B, then A is ‘too
similar’ to B and it is not interesting either. The above result tells us that if
A ≡ω1

B, then there is no Lω1ω formula separating A and B. Therefore all the
excitement concentrates in the interval between A ≡ B and A ≡ω1

B. In other
words, we are mainly interested in the case where the Scott watershed5 of A
and B is a countable ordinal.

When we are lucky enough, the usual Ehrenfeucht-Fräıssé Games solve the
question of separation in Lω1ω, as we have seen in the two examples above.
However this is not the case in general. The usual Ehrenfeucht-Fräıssé Games
are games for quantifiers. A winning strategy of I corresponds to a separation
formula. The games give information about the quantifier rank of the separation
formula, but they do not directly give information about the ‘boolean size’ of
the formula. Therefore we may end up with knowing the existence of a formula
in L∞ω separating two structures, possibly up to a certain quantifier rank, but
with EF and EFD we may have no access to knowing whether this formula
is in Lω1ω. In Example 4 and Example 5 we are lucky in the sense that the
game EFD restricted to countable ranks brings a constraint on the boolean
size of a separation formula via a constraint on its quantifier rank. But the
problem is that there are L∞ω sentences with a low quantifier rank and a rather

5For the definition of Scott watershed, see page 147 in [23].
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Figure 3: Hierarchy of equivalence relations.

big boolean size. In particular, the usual Ehrenfeucht-Fräıssé Games do not
answer the question whether two structures can be separated by a quantifier-
free Lω1ω formula, yet elimination of quantifiers in favor of connectives is the
oldest application of infinitary logic6.

Example 6. Let L = 〈P, {cn|n ∈ N}〉 be the language with one predicate
symbol and countably many constant symbols. For any subset A ⊆ N, let
(N, A) denote the L-structure with P interpreted as A and constant symbol cn
interpreted as the natural number n. Let A = {(N, A)|A ⊆ N} be the class of
such structures.

Let
φA =

∧
n∈ω

PnA

where

PnA =

{
P (cn) if n ∈ A,
¬P (cn) if n /∈ A.

If S ⊆ P(N), let

ΦS =
∨
A∈S

φA.

The sentence ΦS defines the class of structures AS = {(N, A)|A ∈ S} within A.
The sentence ΦS has quantifier rank 0. But when S is an uncountable subset
of P(N), the sentence ΦS has uncountable size.

In fact, there are only 2ℵ0 many L-sentences in Lω1ω, but there are 22
ℵ0

many S ⊆ P(N). Therefore there must exist some S ⊆ P(N) such that the class
AS cannot be defined by an Lω1ω sentence. Since all the ΦS ’s are quantifier
free, the usual Ehrenfeucht-Fräıssé Games cannot help us in deciding for which
subsets S the class AS is Lω1ω-definable in A and for which it is not.

6According to Barwise [1], Charles Peirce thought of quantifiers as infinite conjunctions
or disjunctions, and this was picked up by Löwenheim, Wittgenstein and others, and used in
proof theory by Novikoff already in the 1940s.
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Figure 4: A game tree

If the above example can be seen as a factual analysis of the deficiency of
the usual Ehrenfeucht-Fräıssé Games applied to the logic Lω1ω, here we also
offer a conceptual analysis. In the game EFDα(A,B), a winning strategy of I
corresponds to a separation formula of A and B. But how does this correspon-
dence work? In other words, given a winning strategy of I, how do we find a
separation formula? Let us consider the following example.

Example 7. Suppose L = 〈P1, P2〉. Let A = {a}, PA1 = PA2 = {a}. Let
B = {b, c}, PB1 = {b} and PB2 = {c}.

There is a straightforward winning strategy for I in EFD1(A,B). He begins
by playing a ∈ A. If II plays b, I wins by pointing out that A |= P2(a)
and B |= ¬P2(b). If II plays c, I wins by pointing out that A |= P1(a) and
B |= ¬P1(c). This can be visualized by the game tree in Figure 4. Let (A,B) |= φ
be the shorthand for A |= φ and B |= ¬φ.

The separation formula corresponding to this strategy of I’s is obviously
∀x(P1(x) ∧ P2(x)). We have

A |= ∀x(P1(x) ∧ P2(x)) B |= ¬∀x(P1(x) ∧ P2(x)).

The point is that any single play in the game cannot give I this separation
formula. To get this formula, I has to survey the entire game tree (in this case,
both branches). This task he does ‘effortlessly’. The game EFD assumes a kind
of omniscience of player I: he is able to know the outcome of all possible plays
without actually playing them one by one. Technically, this is related to the fact
that the rank of the game does not go down when the players move from a pair of
structures corresponding to a conjunction to a pair of structures corresponding
to a conjunct. We may say that boolean connectives are ‘transparent’ to the
game EFD. In fact, in proofs about the game EFD the boolean cases are almost
always trivial.

In the new game that we are going to define, life will not be as easy for
player I. In order to survey the outcome of different branches, he now has to
play. Technically this means that the rank of the game goes down when the
players move from a pair of structures corresponding to a conjunction to a pair
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of structures corresponding to a conjunct. In this way the boolean size of a
formula is taken into consideration. Moreover, the new game has the advantage
of being defined on classes of structures. This game is at the same time a game
for propositional logic. All this talk might seem vague to the reader. We will
make it precise in the next section.

4 An Ehrenfeucht-Fräıssé Game for Lω1ω

4.1 A Game for First Order Logic

Hella and Väänänen introduced a game for propositional and first order logic in
[9]. This game measures a first order formula not according to its quantifier rank,
but according to its size. This game will be the blueprint of our Ehrenfeucht-
Fräıssé Game for Lω1ω.

We need some notation. Our vocabulary is relational. Throughout this
section we assume formulas to be in negation normal form. The universe of a
structure A is denoted by A, of B by B. We use xj , j ∈ N to denote variables.
A variable assignment for a structure A is a finite partial mapping α : N→ A.
The finite domain of α is denoted by dom(α).

We consider classes A of structures (A, α), where A is a model and α is a
variable assignment. We assume that whenever (A, α), (B, β) ∈ A, then A and
B have the same vocabulary, and α and β have the same domain, which we
denote by dom(A). If α is an assignment on A, a ∈ A and j ∈ N, then α(a/j) is
the assignment that maps j to a and agrees with α otherwise. If F is a choice
function on A, namely that F is a function defined on A such that F (A, α) ∈ A
for all (A, α) ∈ A, then A(F/j) is defined as {(A, α(F (A, α)/j)|(A, α) ∈ A}.
Finally, A(?/j) = {(A, α(a/j))|(A, α) ∈ A, a ∈ A)}.

Let A and B be classes of structures of a relational vocabulary. Assume
further that dom(A) =dom(B), and φ is a formula such that j ∈ dom(A) for all
free variables in φ. We say that φ separates the classes A and B, denoted by
(A,B) |= φ, if (A, α) |= φ for all (A, α) ∈ A and (B, β) 6|= φ for all (B, β) ∈ B.

Definition 8. Let L be a relational vocabulary and A, B classes of L-structures.
Let n be a positive integer. The game EFBn(A,B) has two players. The number
n is called the rank of the game. The positions in the game are of the form
(Am,Bm, rm) where Am,Bm are classes of L-structures and rm ∈ N. The
game begins from position (A,B, n). Suppose the position after m moves is
(Am,Bm, rm). There are the following possibilities for the next move in the
game.

Left splitting move: Player I first chooses positive numbers u and v such
that u + v = rm. Then I represents A as a union C ∪D. Now the game
continues from the position (C,Bm, u) or from the position (D,Bm, v),
and player II can choose which.

Right splitting move: Player II first chooses positive numbers u and v such
that u + v = rm. Then I represents B as a union C ∪D. Now the game
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continues from the position (Am,C, u) or from the position (Am,D, v), and
player II can choose which.

Left supplementing move: Player I picks an element from each structure
(A, α) ∈ Am. More precisely, I chooses a natural number j and a choice
function F for Am. Then the game continues from the position
(Am(F/j),Bm(?/j), rm − 1).

Right supplementing move: Player I picks an element from each structure
(B, β) ∈ Bm. More precisely, I chooses a natural number j and a choice
function F for Bm. Then the game continues from the position
(Am(?/j),Bm(F/j), rm − 1).

The game ends in a position (Am,Bm, rm) and player I wins if there is an
atomic or a negated atomic formula φ such that (Am,Bm) |= φ. Player II wins
the game if they reach a position (Am,Bm, rm) such that rm = 1 and I does
not win in this position.

We have defined the game EFBn(A,B) by describing the rules and winning
positions of the game. We can convert this definition into the form of Gω(A,W ),
but the latter would be more obscure. This game is closed, and therefore deter-
mined by the Gale-Stewart Theorem.

We define the following measure of the size of a formula.

Definition 9. The size, denoted by s(φ), of a formula φ in first order logic is
defined inductively as follows:

s(φ) = 1 if φ is an atomic or negated atomic formula

s(φ ∧ ψ) = s(φ) + s(ψ)

s(φ ∨ ψ) = s(φ) + s(ψ)

s(∃xφ) = s(φ) + 1

s(∀xφ) = s(φ) + 1.

Note that the size of a first order formula is a natural number. The size of
a formula is always bigger or equal to its quantifier rank.

The game EFBn characterizes separation in first order logic up to size n:

Theorem 19 (Hella-Väänänen). Let L be a relational vocabulary, A and B
classes of L-structures, and n be a positive integer. Then the following are
equivalent.

1. Player I has a winning strategy in the game EFBn(A,B).

2. There is a first order L-formula of size ≤ n such that (A,B) |= φ.

Proof. We prove the theorem by induction on n. The case where n = 1 follows
directly from the definition of the game. Suppose 1 and 2 are equivalent for all
k < n. Now consider k = n.
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(1 ⇒ 2) Suppose I has a winning strategy in the game EFBn(A,B). We
look at his first move in this strategy. Depending on which type of move it is,
there are the following four cases.

Case 1. Player I first makes a left splitting move. He represents A as a
union C∪D. He chooses natural numbers u and v such that u+v = n. Now since
this is a winning strategy, both (C,B, u) and (D,B, v) are winning positions for
I. By the induction hypothesis, there are formulas ψ and θ such that s(ψ) ≤ u,
s(θ) ≤ v, (C,B) |= ψ and (D,B) |= θ. Let φ be the formula ψ ∨ θ. Then we
have that s(φ) = s(ψ) + s(θ) ≤ u+ v = n, and that (A,B) |= φ.

Case 2. Player I first makes a right splitting move. He represents B as
a union C ∪ D. He chooses natural numbers u and v such that u + v = n.
Now since this is a winning strategy, both (A,C, u) and (A,D, v) are winning
positions for I. By the induction hypothesis, there are formulas ψ and θ such
that s(ψ) ≤ u, s(θ) ≤ v, (A,C) |= ψ and (A,D) |= θ. Let φ be the formula ψ∧θ.
Then we have that s(φ) = s(ψ) + s(θ) ≤ u+ v = n, and that (A,B) |= φ.

Case 3. Player I first makes a left supplementing move. He chooses a
natural number j and a choice function F for A. The game continues from
the position (A(F/j),B(?/j), n − 1). Since this is a winning strategy for I,
the position (A(F/j),B(?/j), n − 1) is a winning position for him too. By
the induction hypothesis, there is a formula ψ such that s(ψ) ≤ n − 1, and
(A(F/j),B(?/j)) |= ψ. Let φ be the formula ∃xjψ. Then we have that s(φ) =
s(ψ) + 1 ≤ n, and that (A,B) |= φ.

Case 4. Player I first makes a right supplementing move. He chooses a
natural number j and a choice function F for B. The game continues from
the position (A(?/j),B(F/j), n − 1). Since this is a winning strategy for I,
the position (A(?/j),B(F/j), n − 1) is a winning position for him too. By
the induction hypothesis, there is a formula ψ such that s(ψ) ≤ n − 1, and
(A(?/j),B(F/j)) |= ψ. Let φ be the formula ∀xjψ. Then we have that s(φ) =
s(ψ) + 1 ≤ n, and that (A,B) |= φ.

Now for the converse direction (2⇒ 1). Suppose there is a first order formula
φ with size ≤ n such that (A,B) |= φ. Depending on the shape of φ, there are
the following possibilities.

Case 1. φ is an atomic formula. By definition I wins the game EFB1(A,B).
Case 2. φ is ψ ∨ θ. Let C be the class of structures (A, α) ∈ A such that

(A, α) |= ψ, D be the class of structures (A, α) ∈ A such that (A, α) |= θ. Since
(A, α) |= φ for all (A, α) ∈ A, we have A = C ∪D. Moreover since (B, β) 6|= φ
for all (B, β) ∈ B, we have (C,B) |= ψ and (D,B) |= θ. Finally, as s(φ) ≤ n,
there are numbers u and v such that s(ψ) ≤ u, s(θ) ≤ v, and u + v = n.
By the induction hypothesis, I has a winning strategy in both (C,B, u) and
(D,B, v). Therefore he has a winning strategy in the position (A,B, n) by first
making a left splitting move, and then follow the winning strategy in (C,B, u)
or (D,B, v).

Case 3. φ is ψ ∧ θ. Let C be the class of structures (B, β) ∈ B such that
(B, β) 6|= ψ, D be the class of structures (B, β) ∈ B such that (B, β) 6|= θ. Since
(B, α) 6|= φ for all (B, β) ∈ B, we have B = C ∪D. Moreover since (A, α) |= φ
for all (A, α) ∈ A, we have (A,C) |= ψ and (A,D) |= θ. Finally, as s(φ) ≤ n,
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there are numbers u and v such that s(ψ) ≤ u, s(θ) ≤ v, and u+ v = n. By the
induction hypothesis, I has a winning strategy in both (A,C, u) and (A,D, v).
Therefore he has a winning strategy at (A,B, n) by first making a right splitting
move, and then follow the winning strategy at (C,B, u) or (D,B, v).

Case 4. φ is ∃xjψ. Since (A, α) |= φ for all (A, α) ∈ A, there is a choice
function F for A such that (A, α(F (A, α)/j)) |= ψ for all (A, α) ∈ A. Thus
(A, α∗) |= ψ for all (A, α∗) ∈ A(F/j). On the other hand, we have that
(B, β∗) 6|= ψ for all (B, β∗) ∈ B(?/j). Therefore (A(F/j),B(?/j)) |= ψ.
By the induction hypothesis, player I has a winning strategy in the position
(A(F/j),B(?/j), s(ψ)). Note that s(φ) = s(ψ)+1. Hence I has a winning strat-
egy in the position (A,B, s(φ)) by first making a left supplementing move, and
then follow the winning strategy in (A(F/j),B(?/j), s(ψ)).

Case 5. φ is ∀xjψ. Since (B, β) 6|= φ for all (B, β) ∈ B, there is a
choice function F for B such that (B, β(F (B, β)/j)) 6|= ψ for all (B, β) ∈ B.
Thus (B, β∗) 6|= ψ for all (B, β∗) ∈ B(F/j). On the other hand, we have
that (A, α∗) |= ψ for all (A, α∗) ∈ A(?/j). Therefore (A(?/j),B(F/j)) |= ψ.
By the induction hypothesis, player I has a winning strategy in the position
(A(?/j),B(F/j), s(ψ)). Note that s(φ) = s(ψ)+1. Hence I has a winning strat-
egy in (A,B, s(φ)) by first making a right supplementing move, and then follow
the winning strategy in (A(?/j),B(F/j), s(ψ)).

It can be clearly seen from the above proof that the four kinds of moves in the
game EFB correspond to four kinds of formula forming operations in first order
logic: left splitting move to disjunction, right splitting move to conjunction,
left supplementing move to existential quantification and right supplementing
move to universal quantification. This correspondence enables us to consider
various restrictions of the full game EFBn. These games characterize separation
in various fragments of first order logic. The following results can be found in
[9].

Corollary 20. Let EFBPn (A,B) be the restriction of the game EFBn(A,B)
where player I can only make splitting moves, but no supplementing moves.
Then the following are equivalent.

1. Player I has a winning strategy in the game EFBPn (A,B).

2. There is a quantifier-free L-formula of size ≤ n such that (A,B) |= φ.

The game EFBPn (A,B) is a essentially game for propositional logic.

Corollary 21. Let EFB∃n(A,B) be the restriction of the game EFBn(A,B)
where player I cannot make right supplementing moves. Then the following are
equivalent.

1. Player I has a winning strategy in the game EFB∃n(A,B).

2. There is an existential L-formula of size ≤ n such that (A,B) |= φ.
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In Section 5 we will give an application of the game EFB∃n in describing the
length of linear orders. Further applications of these games can be found in
[9]. Results include a proof using EFBPn that the minimal size of propositional
formula defining the parity of binary strings of length n is n2.

4.2 Extending the Game to Lω1ω

We are now in a position to define an Ehrenfeucht-Fräıssé Game for the logic
Lω1ω. This game will be a proper extension of the game EFBn(A,B). We
introduce a new type of moves into the game to account for infinite conjunctions
and disjunctions of formulas in Lω1ω. In short, in the game EFBn(A,B) player
I can split a class of structures into two pieces; he now also has the option to
split it into countably many pieces.

The way that the rank of the game is measured needs to be modified ac-
cordingly. In the new game the rank needs no longer to be a natural number,
instead it can be any countable ordinal. Here we encounter the interesting phe-
nomenon that the arithmetic of infinite ordinals behaves rather differently from
the arithmetic of finite ordinals. To name a few, addition of finite ordinals is
always commutative, which is not the case for infinite ordinals; addition of finite
non-zero ordinals is always strictly monotonic, in the sense that the sum of two
non-zero finite ordinals is strictly greater than any one of the summands, which
is in general not true for infinite ordinals. For these reasons, we find the usual ad-
dition of ordinals not suitable for measuring the rank of an Ehrenfeucht-Fräıssé
Game for Lω1ω or for measuring the size of infinitary formulas.

We need another way to add up infinite ordinals. The operation that we
turn to is the natural sum of ordinals. Recall that every ordinal can be written
in Cantor normal form (for details, see Chapter 2 in [12]).

Theorem 22. Every ordinal γ > 0 can be represented uniquely in the form

γ = ωα1 · k1 + . . .+ ωαn · kn

where n ≥ 1, γ ≥ α1 > . . . > αn, and k1, . . . , kn are non-zero natural numbers.

Using the Cantor normal form, one can define the natural sum of ordinals.

Definition 10. Let γ1 and γ2 be ordinals. One can represent γ1 and γ2 uniquely
in the form

γ1 = ωα1 · k1 + . . .+ ωαn · kn
γ2 = ωα1 · j1 + . . .+ ωαn · jn

where α1 > . . . > αn is a sequence of ordinals, k1, . . . , kn and j1, . . . , jn are
natural numbers satisfying ki + ji > 0 for all i. Define the natural sum, also
called the Hessenberg sum of γ1 and γ2, denoted by γ1#γ2, of γ1 and γ2 as

γ1#γ2 = ωα1 · (k1 + j1) + . . .+ ωαn · (kn + jn).
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The natural sum of finite ordinals is just their usual ordinal sum. As soon as
we step into the realm of infinite ordinals, the natural sum and the usual sum
part ways. The natural sum is always greater or equal to the usual sum, but it
may be greater. Consider the case γ1 = 1 and γ2 = ω. We have

γ1 + γ2 = 1 + ω = ω,

while
γ1#γ2 = ω + 1.

The natural sum of ordinals enjoys a group of desirable properties. It is
commutative and associative. Moreover, the natural sum of non-zero ordinals
is strictly monotonic. Given ordinals γ1, γ2 > 0, we always have γ1#γ2 > γ1
and γ1#γ2 > γ2.

We also introduce the natural sum of a countable sequence of ordinals.

Definition 11. Let {γi|i ∈ ω} be a sequence of ordinals. Let Sn denote the
natural sum of the first n items in the sequence

Sn = γ0# . . .#γn−1.

Define the infinite natural sum, denoted by
∑#
i∈ω γi, of the sequence {γi|i ∈ ω}

as
#∑
i∈ω

γi = sup
n∈N

Sn.

The infinite natural sum is invariant under permutations of the summands,
so we may say it is commutative in a generalized sense. More precisely, if p is a
permutation of ω, we have

#∑
i∈ω

γi =

#∑
i∈ω

γp(i).

To see that this is true, it suffices to realize that any finite natural sum Sn of
the sequence {γi|i ∈ ω} is subsumed by some finite natural sum of the sequence
{γp(i)|i ∈ ω}, and vice versa.

The infinite natural sum of non-zero ordinals is also strictly monotonic.
Given a sequence {γi|i ∈ ω} of non-zero ordinals, we have that

∑#
i∈ω γi >

γi, i ∈ ω. This property is important for our purposes.
We can now define an Ehrenfeucht-Fräıssé Game for the logic Lω1ω.

Definition 12. Let L be a relational vocabulary and A, B classes of L-structures.
Let α be a countable ordinal. The game EFBα(A,B) has two players. The
number α is called the rank of the game. The positions in the game are of the
form (Am,Bm, γ) where Am,Bm are classes of L-structures and γ is an ordinal.
The game begins from position (A,B, α). Suppose the position after m moves
is (Am,Bm, γ). There are the following possibilities for the next move in the
game.
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Finite left splitting move: Player I first chooses non-zero ordinals γ1 and γ2
such that γ1#γ2 ≤ γ. Then I represents Am as a union C ∪ D. Now
the game continues from the position (C,Bm, γ1) or from the position
(D,Bm, γ2), and player II can choose which.

Finite right splitting move: Player I first chooses non-zero ordinals γ1 and
γ2 such that γ1#γ2 ≤ γ. Then I represents Bm as a union C ∪D. Now
the game continues from the position (Am,C, γ1) or from the position
(Am,D, γ2), and player II can choose which.

Infinite left splitting move: Player I first chooses a sequence of non-zero
ordinals {γi|i ∈ ω} such that

∑#
i∈ω γi ≤ γ. Then I represents Am as a

countable union
⋃
i∈ω Ci of L-structures. Now the game continues from

the position (Ci,Bm, γi) for some i ∈ ω, and player II can choose which.

Infinite right splitting move: Player I first chooses a sequence of non-zero
ordinals {γi|i ∈ ω} such that

∑#
i∈ω γi ≤ γ. Then I represents Bm as a

countable union
⋃
i∈ωDi of L-structures. Now the game continues from

the position (Am,Di, γi) for some i ∈ ω, and player II can choose which.

Left supplementing move: Player I picks an element from each structure
(A, α) ∈ Am. More precisely, I chooses a natural number j and a choice
function F for Am. He also chooses an ordinal β < γ. Then the game
continues from the position (Am(F/j),Bm(?/j), β).

Right supplementing move: Player I picks an element from each structure
(B, β) ∈ Bm. More precisely, I chooses a natural number j and a choice
function F for Bm. He also chooses an ordinal β < γ. Then the game
continues from the position (Am(?/j),Bm(F/j), β).

The game ends in a position (Am,Bm, γ) and player I wins if there is an atomic
or a negated atomic formula φ such that (Am,Bm) |= φ. Player II wins the
game if they reach a position (Am,Bm, γ) such that γ = 1 and I does not win
in this position.

Note that when α is a finite ordinal, I cannot play infinite splitting moves.
Therefore the game EFBα restricted to finite ranks is essentially the same as
the game EFBn introduced in the Section 4.1. This is the reason why we keep
the name EFB for the new game. It is easy to see that EFBα(A,B) is a closed
game. It is therefore determined by the Gale-Stewart Theorem.

We extend the definition of the size of a formula to include formulas in Lω1ω.
Assume that all formulas are in negation normal form.

Definition 13. The size, denoted by s(φ), of a formula φ in Lω1ω is defined
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inductively as follows:

s(φ) = 1 if φ is an atomic or negated atomic formula

s(φ ∧ ψ) = s(φ)#s(ψ)

s(φ ∨ ψ) = s(φ)#s(ψ)

s(∃xφ) = s(φ) + 1

s(∀xφ) = s(φ) + 1

s(
∧
i∈ω

φi) =

#∑
i∈ω

s(φi)

s(
∨
i∈ω

φi) =

#∑
i∈ω

s(φi).

The size of an Lω1ω formula is a countable ordinal.

The properties of the natural sum of ordinals pass on to properties of the
measurement of size for Lω1ω formulas. When restricted to first order formulas,
this measurement of size coincides with the measurement in Definition 9. This
measurement is strictly monotonic, in the sense that the size of a formula is
always strictly greater than its proper subformulas. This measurement is also
invariant under permutations of conjuncts and disjuncts, in both the finite and
infinite cases. More precisely, for formulas φ and ψ we always have s(φ ∨ ψ) =
s(ψ ∨ φ). For a sequence of formulas φi, i ∈ ω and a permutation p of ω, we
always have

s
( ∨
i∈ω

φi

)
= s
( ∨
i∈ω

φp(i)

)
.

However this measurement of size is not invariant under logical equivalence in
general.

One last remark before we proceed to prove the adequacy theorem of the
game EFBα. It might seem ad hoc to the reader that we treat finite conjunc-
tions/disjunctions and infinite ones as different types of operations: in the game
we have different rules for finite and infinite splitting moves, and in the mea-
surement of the size of formulas finite and infinite conjunctions/disjunctions are
treated as different cases. We claim that this is a price that has to be paid,
given that we want to measure the size of infinitary formulas meaningfully. The
usual approach in infinitary logic takes countable conjunction and disjunction as
primitive operations in Lω1ω. Finite conjunction and disjunction are considered
as abbreviations. Let φ and ψ be two formulas. The disjunction φ ∨ ψ is taken
as a shorthand for

φ ∨ ψ ∨ ⊥ ∨ ⊥ ∨ . . . (8)

This convention runs into trouble when we consider the size of the formula.
Suppose φ and ψ are atomic formulas. Intuitively the formula φ∨ψ should have
size 2. In any case its size should be a finite number. On the other hand, formula
(8) has infinite size under any reasonable measurement of size. More precisely,
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we consider a measurement of the size of Lω1ω formulas to be reasonable if (1)
it is an extension of the measurement of first order formulas in Definition 9,
(2) it is monotonic. It is easy to see that if a measurement s satisfies these two
conditions, then formula (8) has infinite size under this measurement. Therefore
the formula φ∨ψ should not be identified with formula (8), but rather be treated
differently.

The game EFBα characterizes separation in Lω1ω up to size α. The following
theorem is the central result in this paper.

Theorem 23 (Adequacy Theorem for EFBα). Let L be a relational vocabulary,
A and B classes of L-structures, and α a countable ordinal. Then the following
are equivalent.

1. Player I has a winning strategy in the game EFBα(A,B).

2. There is an L-formula φ in Lω1ω of size ≤ α such that (A,B) |= φ.

Proof. The strategy in proving this theorem is very much similar to Theorem
19. We prove the claim by induction on the rank of the game α. Again, when
α = 1 the proposition is obvious. Suppose the proposition is true for all ordinals
γ < α. Now consider the case γ = α.

(1=⇒ 2) Suppose I has a winning strategy in the game EFBn(A,B). We
look at the first move in this strategy. Depending on which type of move it is,
there are the following cases.

Case 1. Player I first makes a finite left splitting move. He represents A as
a union C ∪D. He chooses non-zero ordinals γ1 and γ2 such that γ1#γ2 ≤ γ.
Now since this is a winning strategy, both (C,B, γ1) and (D,B, γ2) are winning
positions for I. Note that both γ1 and γ2 are strictly smaller than γ. By the
induction hypothesis, there are L-formulas ψ and θ in Lω1ω such that s(ψ) ≤ γ1,
s(θ) ≤ γ2, (C,B) |= ψ and (D,B) |= θ. Let φ be the formula ψ ∨ θ. Then we
have that s(φ) = s(ψ)#s(θ) = γ1#γ2 ≤ γ, and that (A,B) |= φ.

Case 2. Player I first makes a finite right splitting move. He represents B
as a union C∪D. He chooses non-zero ordinals γ1 and γ2 such that γ1#γ2 ≤ γ.
Now since this is a winning strategy, both (A,C, γ1) and (A,D, γ2) are winning
positions for I. Note that both γ1 and γ2 are strictly smaller than γ. By the
induction hypothesis, there are formulas ψ and θ such that s(ψ) ≤ γ1, s(θ) ≤ γ2,
(A,C) |= ψ and (A,D) |= θ. Let φ be the formula ψ ∧ θ. Then we have that
s(φ) = s(ψ)#s(θ) ≤ γ1#γ2 ≤ γ, and that (A,B) |= φ.

Case 3. Player I first makes an infinite left splitting move. He represents
A as a union

⋃
i∈ω Ci. He chooses ordinals {γi|i ∈ ω} such that

∑#
i∈ω γi ≤ γ.

Note that every γi is strictly smaller than γ. Now since this is a winning
strategy, for every i ∈ ω (Ci,B, γi) is a winning position for him. By the
induction hypothesis, there are L-formulas φi in Lω1ω such that s(φi) ≤ γi and
(Ci,B) |= φi for all i ∈ ω. Let φ be the formula

∨
i∈ω φi. It is an Lω1ω formula.

We have that s(φ) =
∑#
i∈ω s(φi) =

∑#
i∈ω γi ≤ γ, and that (A,B) |= φ.

Case 4. Player I first makes an infinite right splitting move. He represents B
as a union

⋃
i∈ω Ci. He chooses ordinals {γi|i ∈ ω} such that

∑#
i∈ω γi ≤ γ. Note
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that every γi is strictly smaller than γ. Now since this is a winning strategy, for
every i ∈ ω (A,Ci, γi) is a winning position for him. By the induction hypothesis,
there are L-formulas φi in Lω1ω such that s(φi) ≤ γi and (A,Ci) |= φi for all
i ∈ ω. Let φ be the formula

∧
i∈ω φi. It is an Lω1ω formula. We have that

s(φ) =
∑#
i∈ω s(φi) =

∑#
i∈ω γi ≤ γ, and that (A,B) |= φ.

Case 5. Player I first makes a left supplementing move. He chooses a
natural number j and a choice function F for A. He also chooses an ordinal
β < γ. The game continues from (A(F/j),B(?/j), β). Since this is a winning
strategy for I, the position (A(F/j),B(?/j), β) is a winning position for him
too. By the induction hypothesis, there is a formula ψ such that s(ψ) ≤ β,
and (A(F/j),B(?/j)) |= ψ. Let φ be the formula ∃xjψ. Then we have that
s(φ) = s(ψ) + 1 ≤ β + 1 ≤ α, and that (A,B) |= φ.

Case 6. Player I first makes a right supplementing move. He chooses a
natural number j and a choice function F for B. He also chooses an ordinal
β < γ. The game continues from (A(?/j),B(F/j), β). Since this is a winning
strategy for I, the position (A(?/j),B(F/j), β) is a winning position for him
too. By the induction hypothesis, there is a formula ψ such that s(ψ) ≤ β,
and (A(?/j),B(F/j)) |= ψ. Let φ be the formula ∀xjψ. Then we have that
s(φ) = s(ψ) + 1 ≤ β + 1 ≤ α, and that (A,B) |= φ.

Now for the converse direction (2 =⇒ 1). Suppose there is an Lω1ω formula
φ of size ≤ α such that (A,B) |= φ. Depending on the shape of φ, there are the
following possibilities. Note that the game EFBα is perfectly symmetric with
respect to left and right. Therefore in what follows we omit the proof of several
cases when their duals have already been proven.

Case 1. φ is an atomic formula. By definition player I wins the game
EFB1(A,B).

Case 2. φ is ψ ∨ θ. Let C be the class of structures (A, α) ∈ A such that
(A, α) |= ψ, D be the class of structures (A, α) ∈ A such that (A, α) |= θ. Since
(A, α) |= φ for all (A, α) ∈ A, we have A = C ∪D. Moreover since (B, β) 6|= φ
for all (B, β) ∈ B, we have (C,B) |= ψ and (D,B) |= θ. Finally, as s(φ) ≤ γ,
there are ordinals γ1 and γ2 such that s(ψ) ≤ γ1, s(θ) ≤ γ2, and γ1#γ2 ≤ γ.
By the induction hypothesis, I has a winning strategy in both (C,B, γ1) and
(D,B, γ2). Therefore he has a winning strategy in (A,B, γ) by first making a
finite left splitting move, and then follow the winning strategy in (C,B, γ1) or
(D,B, γ2).

Case 3. φ is ψ ∧ θ. This case is completely dual to Case 2. We omit the
details of the argument.

Case 4. φ is
∨
i∈ω φi. For each i, let Ci be the class of structures (A, α) ∈ A

such that (A, α) |= φi. Since (A, α) |= φ for all (A, α) ∈ A, we have A =
⋃
i∈ω Ci.

Moreover since (B, β) 6|= φ for all (B, β) ∈ B, we have (Ci,B) |= φi for every
i. Finally, as s(φ) ≤ γ, there are ordinals {γi|i ∈ ω} such that s(φi) ≤ γi and∑#
i∈ω γi ≤ γ. By the induction hypothesis, I has a winning strategy in both

(Ci,B, γi) for every i. Therefore he has a winning strategy in (A,B, γ) by first
making an infinite left splitting move, and then follow the winning strategy in
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some (Ci,B, γi).
Case 5. φ is

∧
i∈ω φi. This case is dual to Case 4.

Case 6. φ is ∃xjψ. Since (A, α) |= φ for all (A, α) ∈ A, there is a choice
function F for A such that (A, α(F (A, α)/j)) |= ψ. Thus (A, α∗) |= ψ for
all (A, α∗) ∈ A(F/j). On the other hand, we have that (B, β∗) 6|= ψ for all
(B, β∗) ∈ B(?/j). Therefore (A(F/j),B(?/j)) |= ψ. By the induction hy-
pothesis, player I has a winning strategy in (A(F/j),B(?/j), s(ψ)). Note that
s(φ) = s(ψ) + 1. Hence I has a winning strategy in (A,B, γ) by first making a
left supplementing move, chooses the ordinal s(ψ) < s(φ) ≤ γ and then follow
the winning strategy in (A(F/j),B(?/j), s(ψ)).

Case 7. φ is ∀xjψ. This case is dual to Case 6.

With this theorem we complete the missing leg in the Strategic Balance of
Lω1ω.

In practice, we can make the game easier for I to play by discarding some of
the structures at hand. Given two classes of L-structures A and A′, let A ⊆ A′

denote that every structure in A is contained in A′. The following result will be
useful in applications of the game.

Corollary 24. Let A,A′,B,B′ be classes of L-structures and α be a countable
ordinal. Suppose A′ ⊆ A and B′ ⊆ B. If player I has a winning strategy in
EFBα(A,B), then he also has a winning strategy in EFBα(A′,B′).

Proof. Suppose I has a winning strategy in EFBα(A,B). By Theorem 23, there
is a formula φ with s(φ) ≤ α such that (A,B) |= φ. Since A′ ⊆ A and B′ ⊆ B,
we also have that (A′,B′) |= φ. By Theorem 23 again, I has a winning strategy
in EFBα(A′,B′).

Like in the case of the finite game EFBn, we are also interested in various
restrictions of the full game EFBα. These games correspond to fragments of the
logic Lω1ω.

Corollary 25. Let EFBPα (A,B) be the restriction of the game EFBα(A,B)
where player I can only make finite and infinite splitting moves, but no supple-
menting moves. Then the following are equivalent.

1. Player I has a winning strategy in the game EFBPα (A,B).

2. There is a quantifier-free Lω1ω formula φ of size ≤ α such that (A,B) |= φ.

The game EFBPα is essentially a game for propositional logic with countable
conjunctions and disjunctions. In the final part of this paper we will give an
application of this game.

5 Applications

The game EFB is useful in answering the following type of questions.
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Question Given a property P of structures, what is the size of the smallest
formula in L∗ defining P?

Depending on the situation, the logic L∗ may vary: propositional, first order,
existential, Lω1ω, etc. In this section we look at some of these applications. We
first prove, using the game EFB∃n(A,B), that the minimal size of an existential
formula defining the property ‘a linear order has length at least n’ is 2n − 1.
This proof is contained in [9]. We then proceed to give some applications of the
propositional fragment of the new infinite game EFBα. Throughout this section
we assume formulas to be in negation normal form.

5.1 The Existential Complexity of the Length of Linear
Order

For the first application, consider the property that the length of a linear order
is at least n, for n a natural number. Let us denote this property by Pn. The
property Pn is expressible in first order logic. Moreover, suppose φ is a first
order formula defining this property, then φ is preserved under embeddings of
structures. By  Loś-Tarski Theorem ([18], [21]), φ is logically equivalent to an
existential formula. Henceforth we focus on existential formulas. We ask the
question: What is the minimal existential formula defining this property?

The answer to this question depends on how we interpret the meaning of
‘minimal’. If we take it to mean minimal in terms of quantifier rank, then the
answer is well-known. There is a formula of logarithm quantifier rank expressing
property Pn. Let

A0(x, y) = x < y

Ak+1(x, y) = ∃z(Ak(x, z) ∧Ak(z, y) ∧ x < z ∧ z < y).

The formula Ak(x, y) has quantifier rank k. It has the meaning in a linear order
(M,<) that the interval (x, y] contains at least 2k elements. Given a natural
number n, represent n− 1 as the sum of powers of 2:

n− 1 = 2k1 + . . .+ 2km

where k1, . . . , km ∈ N, k1 > . . . > km ≥ 0. Note that this representation is
unique. Let ψn(x0) be the formula

ψn(x0) = ∃z1
(
x0 < z1 ∧Ak1(x0, z1) ∧ ∃z2

(
z1 < z2 ∧Ak2(z1, z2)

∧ . . . ∃zm
(
zm−1 < zm ∧Akm(zm−1, zm)

)
. . .

))
.

The formula ψn(x0) says that there are at least n− 1 elements above x0 in the
linear order. Let θn = ∃x0ψn(x0). For any linear order (M,<), we have

(M,<) |= θn ⇐⇒ the length of (M,<) is at least n.
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That is to say, θn defines property Pn.
The formula θn has quantifier rank dlog(n−1)e+1. Note that dlog(n)e+1 ≥

dlog(n−1)e+1 ≥ dlog(n)e. With a clever use of the Ehrenfeucht-Fräıssé Game,
it can be shown that this result cannot be essentially improved (for details, see
[8]). No formula of quantifier rank less than dlog(n)e can define the property
Pn .

On the other hand, if we consider the minimal formula in terms of size that
defines the property Pn, the problem becomes quite different. To get started,
let us calculate the size of the formula θn. An easy induction shows that the
formula Ak(x, y) has size 4 · 2k − 3 in the sense of Definition 9. We have

s(θn) = 1 +m+m+ s(Ak1) + . . .+ s(Akm)

= 1 + 2m+ 4(2k1 + . . .+ 2km)− 3m

= 1−m+ 4(n− 1)

= 4n−m− 3

≥ 3n− 3.

We claim that although the formula θn is minimal in terms of quantifier rank,
it is not minimal in terms of size. The following formula also defines property
Pn:

φn = ∃x1 . . . ∃xn(x1 < . . . < xn).

It is easy to see that φn has size 2n−1. When n > 2, we have that s(φn) < s(ψn).
In the rest of this section we show that the formula φn is indeed minimal in size
in defining property Pn.

In order to prove this claim, we use the game EFB∃n. Let A0 = {(A, ∅)},
where A is a linear order of length n, and let B0 = {(B, ∅)}, where B is a linear
order of length n− 1. Our aim is to show that player II has a winning strategy
in the game EFB∃m(A0,B0) for any m < 2n − 1. If so, the claim would then
follow from Corollary 21.

The idea of the proof is the following. We define a measure N for the
‘distance from separation’ between A and B. In the starting position (A0,B0)
the distance count is 2n − 1. We prove that in every move of the game the
rank of the position always goes down faster than the distance count N does.
Therefore in every game of rank less than 2n − 1, there is still distance from
separation left when the rank of the game runs up. This means that player II
has a winning strategy.

Let us make this idea more precise. Consider a position (A,B, u) in the game
EFB∃m(A0,B0). Since in the existential game no right supplementing move can
be made, A always consists of a single structure (A, α). Let a1 < . . . al be the
elements in ran(α), and let a0 and al+1 be the least and the largest element
in A, respectively. We say that a variable assignment β in B is acceptable
if dom(α)=dom(β), and the mapping α(j) 7→ β(j), j ∈ dom(α) preserves the
relation ≤. More exactly, there are elements b1 ≤ . . . ≤ bl such that ran(β) =
{b1, . . . , bl} and for all i ∈ {1, . . . , l} and all j ∈ dom(α)

α(j) = ai ⇐⇒ β(j) = bi. (9)
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We say that an assignment β is nice with respect to α if it is acceptable and
in addition |{i ≤ l : d(ai, ai+1) 6= d(bi, bi+1)}| = 1, where d(x, y) is the distance
between x and y in the given linear order, and b0 and bl+1 are the least and
largest element in B, respectively. We define the ‘distance from defect’ of β to
be δ(β) = d(bi, bi+1), where i ≤ l is the unique index such that d(ai, ai+1 6=
d(bi, bi+1). We denote this index by i(β). Note that d(bi, bi+1) = d(ai, ai+1)− 1
for i = i(β). Intuitively, an assignment β is nice if the distance between adjacent
elements in ran(β) differs from the distance between corresponding elements
in ran(α) at exactly one place. The function i(β) denotes this place and the
function δ(β) denotes this distance.

Given the singleton set A = {(A, α)} and B a set of structures of the form
(B, β), we define the niceness measure of B to be

N(B) =
∑
β∈N

(2δ(β) + 1),

where N is the set of all nice variable assignments β such that (B, β) ∈ B.
Whenever the niceness measure is non-zero, B cannot be separated from A

by an atomic formula.

Lemma 26. If N(B) > 1, then there is no atomic formula φ such that (A,B) |=
φ or (A,B) |= ¬φ.

Proof. Suppose N(B) > 1, then either there is a nice assignment β ∈ N
such that δ(β) ≥ 1, or there are two distinct assignments β, β′ ∈ N . Con-
sider first the former case. Let β be such an assignment. There are elements
a1, . . . , al, b1, . . . , bl such that ran(α) = {a1, . . . , al}, ran(β) = {b1, . . . , bl},
a1 < . . . < al and b1 ≤ . . . ≤ bl. The only place that d(ai, ai+1) may differ
from d(bi, bi+1) is at i = i(β). Since δ(β) ≥ 1, we have that d(bi, bi+1) ≥ 1.
Therefore in fact b1 < . . . < bl. If follows from condition 9 that (A, α) and
(B, β) satisfy the same atomic formulas. Hence no atomic formula separates A
and B.

Now assume there are two distinct assignments β, β′ ∈ N . There are ele-
ments a1, . . . , al, b1, . . . , bl, b

′
1, . . . , b

′
n such that ran(α) = {a1, . . . , al}, ran(β) =

{b1, . . . , bl}, ran(β′) = {b′1, . . . , b′l}, a1 < . . . < al, b1 ≤ . . . ≤ bl and b′1 ≤ . . . ≤
b′l. The fact that β and β′ are different assignments implies that i(β) 6= i(β′).
Hence for any i, j ≤ l, we have either (ai < aj ⇐⇒ bi < bj) or (ai < aj ⇐⇒
b′i < b′j). It follows from condition (9) that no atomic formula separates A from
B.

Lemma 27. (a) If B = C ∪D, then N(C) +N(D) ≥ N(B).
(b) If A′ = A(F/j) and B′ = B(?/j), then N(B′) ≥ N(B)− 1.

Proof. (a) Suppose B = C ∪ D. Let NB denote the set of nice assignments
such that (B, β) ∈ B, NC of that in C and ND of that in D. We have that
NB ⊆ NC ∪ND. Hence

N(B) =
∑
β∈NB

(2δ(β)+1) ≤
∑
β∈NC

(2δ(β)+1)+
∑
β∈ND

(2δ(β)+1) = N(C)+N(D).
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(b) Let N and N ′ be the sets of nice assignments such that (B, β) is in B
and B’, respectively. Let ran(α) = {a1, . . . , al} with a1 < . . . < al, and let a0
and al+1 be the least and the largest element in A, respectively. For any nice
assignment β, let ran(β) = {b1, . . . , bl} with b1 ≤ . . . ≤ bl. Furthermore we
denote F (A, α) by c. We distinguish between the following cases.

Assume that c = ak for some 0 ≤ k ≤ l + 1. It is easy to see that for any
assignment β, β ∈ N if and only if β(bk/j) ∈ N ′. Moreover δ(β) = δ(β(bk/j)).
Note also that if β 6= β′, then β(bk/j) 6= β′(bk/j). Hence we conclude that
N(β′) ≥ N(β).

Assume that c falls in the gap between ah and ah+1 for some 0 ≤ h ≤ l. Let
β be a nice assignment in N . If i(β) 6= h, then d(bh, bh+1) = d(ah, ah+1), hence
there is an element bh < d < bh+1 such that d(bh, d) = d(ch, c) and d(d, bh+1) =
d(c, ch+1). Clearly β(d/j) ∈ N ′, moreover we have δ(β(d/j)) = δ(β).

On the other hand, it may happen that i(β) = h. Note that there is exactly
one such assignment β, let us denote it by βh. Now d(bh, bh+1) = d(ah, ah+1)−1.
There are elements d and e such that d(bh, d) = d(ah, c) − 1, d(d, bh+1) =
d(c, ah+1), d(bh, e) = d(ah, c) and d(e, bh+1) = d(c, ah+1)− 1. Let β′ = βh(d/j)
and β′′ = βh(e/j). Then β, β′ ∈ N ′, and we have

δ(β′) + δ(β′′) = d(bh, d) + d(e, bh+1) = d(ah, ah+1)− 2 = δ(βh)− 1.

Hence

(2δ(β′) + 1) + (2δ(β′′) + 1) = 2(δ(βh)− 1) + 2 = (2δ(βh) + 1)− 1.

Therefore we have

N(B′) =
∑
β′∈N ′

(2δ(β′)+1) =
∑

β∈N ′\{bh}
(2δ(β)+1)+((2δ(βh)+1)−1) = N(B)−1.

Lemma 28. If m < N(B), then player II has a winning strategy in EFB∃m(A0,B0).

Proof. We prove this by induction on m. The case m = 1 follows directly from
Lemma 26. Now suppose the claim is true for all k < m. We play the game
EFB∃m(A,B). Since the game is existential, he cannot make right supplementing
moves, therefore A is always a singleton set. Since A is a singleton set, there is
no point for I to make a left splitting move. He is left with two options. Let us
look at them in turn.

Assume I first makes a right splitting move. He splits B into C and D, he
chooses numbers u and v such that u + v = m. Since u + v = m < N(B) ≤
N(C) + N(D), we have either u < N(C) or v < N(D). By the induction
hypothesis, player II has a winning strategy either in the position (A,C, u) or in
the position (A,D, v). Let her choose this piece and apply the winning strategy
in the rest of the match. She wins this game.

Assume I first makes a left supplementing move. He picks a choice function
F on A. The game continues from the position (A(F/j),B(?/j),m − 1)). Let
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us denote B(?/j) by B′. By Lemma 27, we have that m − 1 < N(B) − 1 =
N(B′) − 1. By the induction hypothesis, player II has a winning strategy in
the remaining game.

With these lemmas we can now prove the claim at the beginning of this
section. Consider the sets A0 = {(A, ∅)} and B0 = {(B, ∅)}. Clearly δ(∅) =
n = 1, therefore N(B0) = 2n − 1. By Lemma 28 player II has a winning
strategy in the game EFB∃m(A0,B0) for all m < 2n − 1. We may now apply
Corollary 21 to establish the following result.

Proposition 29 (Hella-Väänänen). If φ is an existential first order sentence
expressing the property that the length of a linear order is at least n, then the
size of φ is at least 2n− 1.

5.2 The Propositional Complexity of Finiteness

In this section we give an application of the propositional fragment EFBPα of
the new game EFBα. Let us recall Example 6 in Section 3. Here we consider
a special case of this example. Let A be the class of structures (N, A), A ⊂ N.
Let S be the following subset of P(N):

S = {A ⊆ N|A is finite}.

Consider the class of structures

AS = {(N, A)|A ∈ S}

and its complement in A

BS = {(N, A)|A /∈ S}.

The classes of structures AS and BS are separated by the following sentence

ΦS =
∨
A∈S

φA,

where
φA =

∧
n∈ω

PnA

PnA =

{
P (cn) if n ∈ A,
¬P (cn) if n /∈ A.

In other words, the sentence ΦS defines the property ‘P is a finite set’ in A.
Since S is a countable set, the sentence ΦS is in Lω1ω. Each sentence φA has
size ω. The sentence ΦS has size

s(ΦS) =

#∑
A∈S

s(φA) = sup
n∈ω

ω · n = ω · ω.
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Note that ΦS is a quantifier-free formula. A natural question is: Is ΦS the
minimal quantifier-free formula separating AS and BS? With the help of the
game EFBPα , we can give an affirmative answer to this question.

To make the notation easier, we translate the problem into another language.
In what follows we identify a structure (N, A) with the characteristic function
hA ∈ 2ω of A:

hA(n) =

{
1 if n ∈ A
0 if n /∈ A.

A function hA ∈ 2ω is an infinite binary string . In the context of binary strings,
the class AS is identified with the class

{h ∈ 2ω|h−1(1) is finite}
and BS with the class

{h ∈ 2ω|h−1(1) is infinite}.
Let 2<ω denote the set of partial functions ω → 2 with a finite domain. For
an infinite binary string h ∈ 2ω, we call a finite binary string g ∈ 2<ω a finite
segment of h if g ⊂ h. In such a case we also say that h agrees with g and h
extends g. In the rest of this section we consider the game EFBPα played on
classes of infinite binary strings.

In an infinite splitting move, player I splits A (or B) into infinitely many
pieces. We say that an infinite splitting move is a proper infinite splitting move
if there are infinitely many pieces that are non-empty. If player I splits A (or B)
into infinitely many pieces among which only finitely many are non-empty, we
call it a degenerate infinite splitting move. Strange as it seems, there is nothing
in the rules that forbids I playing in this way. A degenerate infinite splitting
move is closer in nature to a finite series of finite splitting moves. Henceforth
we refer to both a degenerate infinite splitting move and a finite series of finite
splitting moves also as a finite splitting move, as long as ambiguity does not
arise.

Theorem 30. Player II has a winning strategy in EFBPα (AS ,BS) for all α <
ω · ω.

Let α be an ordinal less than ω · ω. We describe the following strategy for
player II in the game EFBPα (AS ,BS). Note that in this game only splitting
moves can be played, not supplementing moves.

Player II’s strategy: Let (A,B, γ) denote a game position. In each round,
player II makes sure that

∃f ∈ 2<ω

(
∀h ∈ A(h ⊃ f)∧

∀h ∈ B(h ⊃ f)∧

∀g ∈ 2<ω
(
g ⊃ f →

(
∃h ∈ A(h ⊃ g) ∧ ∃h′ ∈ B(h′ ⊃ g)

)))
.

(10)
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She maintains this strategy until she sees an opportunity to finish off the game
directly.

Intuitively, condition (10) says that at any stage of the game, we can al-
ways find a finite segment f such that all structures in A and B agree with
f . Moreover, for any finite extension g of f , there are structure h and h′ in A
and B respectively that agree with g. We will specify later what counts as an
opportunity for II to win the game directly.

There are several things that we need to prove in order to establish Theorem
30.

Lemma 31. Condition (10) is true in the starting position (AS ,BS , α).

Proof. Let f be the empty function.

Lemma 32. If condition (10) is true in position (A,B, γ), then no atomic
formula separates A and B.

Proof. There is an atomic formula separating A and B if and only if there
exists g ∈ 2<ω such that |dom(g)| = 1, g ⊂ h for all h ∈ A, and g 6⊂ h′ for all
h′ ∈ B. We claim that condition (10) guarantees that this situation does not
occur. There are the following three possibilities, let us consider them one by
one. Firstly, if g ⊂ f , then by condition (10) all structures in A and B agree
with g. Secondly, if g disagrees with f , namely if dom(g)⊆dom(f) yet g 6⊂ f ,
then by condition (10) again all structures in A and B disagree with g. Finally,
suppose dom(g) ∩ dom(f) = ∅. The finite segment g ∪ f is an extension of f .
Therefore by condition (10) there are h ∈ A and h′ ∈ B that agree with g ∪ f
respectively. In particular they agree with g.

Lemma 33. If player I makes a finite splitting move in the generalized sense,
namely if player I makes a usual finite splitting move or a degenerate infinite
splitting move, player II can maintain condition (10) to the next round.

Proof. Suppose the game is in position (A,B, γ) and condition (10) holds. Sup-
pose player I makes a finite left splitting move in the generalized sense. He rep-
resents A as a union A1 ∪ . . .∪An of n pieces. He also picks ordinals γ1, . . . , γn.
We claim that there must exist a finite segment f ′ ⊃ f and a piece Ak such that

∀g ∈ 2<ω
(
g ⊃ f ′ → ∃h ∈ Ak(h ⊃ g)

)
. (11)

Suppose this is not the case for A1, . . . ,An−1. Then we have

∀f ′ ⊃ f∃g ∈ 2<ω
(
g ⊃ f ∧ ∀h ∈ 2ω(h ⊃ g → h /∈ Ai)

)
(12)

for i = 1, . . . , n− 1. Now let f ′ = f , apply condition (12) to A1:

∃g1 ⊃ f∀h ∈ 2ω
(
h ⊃ g1 → h /∈ A1

)
.
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This means that

∃g1 ⊃ f∀h ∈ 2ω
(

(h ⊃ g1 ∧ h ∈ A)→ h ∈ A2 ∪ . . . ∪ An

)
.

Now let f ′ = g1, apply condition (12) to A2:

∃g2 ⊃ g1∀h ∈ 2ω
(

(h ⊃ g2 ∧ h ∈ A)→ h ∈ A3 ∪ . . . ∪ An

)
.

Iterate this process, we get

∃gn−1 ⊃ gn−2∀h ∈ 2ω
(

(h ⊃ gn−1 ∧ h ∈ A)→ h ∈ An

)
.

This means that condition (11) is true for An when we take gn−1 for f ′. There-
fore the previous claim is true.

Now let player II pick this piece Ak and the corresponding ordinal γk. What
remains to be done is a cosmetic surgery on Ak and B. We throw away the
structures that do not agree with f ′. Let

A′ = {h ∈ Ak|h ⊃ f ′}

and let
B′ = {h′ ∈ B|h′ ⊃ f ′}.

By Corollary 24, this can always be done. If II has a winning strategy in this
new position, she also has one in the old position. It is easy to check that
condition (10) holds for A′ and B′. Let the game continue from the position
(A′,B′, γk).

The case where I plays a finite right splitting move is similar.

Lemma 34. Suppose condition (10) is true in position (A,B, γ) with γ < ω ·ω.
If player I makes a proper infinite splitting move, then player II has a winning
strategy in the rest of the game.

Proof. Suppose the game is in position (A,B, γ) and condition (10) is true.
Suppose player I makes a proper infinite splitting move. He represents A as a
union

⋃
i∈ω Ai, in which there are infinitely many non-empty pieces. He also

chooses ordinals γi, i ∈ ω such that
∑#
i∈ω γi ≤ γ < ω · ω. Note that there can

only be finitely many i ∈ ω such that γi is an infinite ordinal, for otherwise the
natural sum

∑#
i∈ω γi would be greater or equal to ω ·ω, which is a contradiction.

On the other hand there are infinitely many i ∈ ω such that Ai is non-empty.
Therefore there must exist k ∈ ω such that Ak is non-empty and γk is finite.

If this situation occurs, we ask player II to jump out of the the strategy
prescribed above and go on to win the game directly. Let player II pick this
piece Ak and γk. The game continues from the position (Ak,B, γk). Apply
Corollary 24 again and suppose Ak consists of a single structure hA. Note that
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since γk is a finite number, in the rest of the game I can only make finite right
splitting moves.

Suppose I makes a finite right splitting move. He represents B as a union
B1 ∪ . . . ∪Bn of n pieces. For any natural number m, let hm be the function
such that hm agrees with hA on the first m elements of ω, and that hm(j) = 1
for j > m. It is clear that the function hm is in B. In other words, we have

∀m ∈ ω ∃hm ∈ B(hm � m = hA � m). (13)

Among the n pieces B1, . . . ,Bn, there must be one piece Bl that contains hm
for infinitely many m ∈ ω. Let player II pick this piece Bl. She uses the same
strategy if I makes another finite right splitting move. She makes sure that at
any stage of the remaining game, the piece Bk at hand always contain hm for
infinitely many m ∈ ω. This guarantees that no atomic formula separates Ak
and B. Player II wins the game when the rank runs up.

Now we are in a position to prove Theorem 30. If player II sees an opportu-
nity as in Lemma 34, she goes on to win the game as described in the lemma.
If she doesn’t, she hangs on in the game by maintaining condition (10). This
keeps her away from losing. The game terminates after finitely many rounds,
and II will eventually prevail.

Theorem 35. If φ is an quantifier-free L-formula in Lω1ω separating AS and
BS, then the size of φ is at least ω · ω.

Proof. The claim follows immediately from Corollary 25 and Theorem 30.

Note however that if quantifiers are allowed, then AS and BS can be sepa-
rated by a much smaller formula:

θ =
∨
n∈ω
∃x1 . . . ∃xn∀y

(
P (y)→ y = x1 ∨ . . . ∨ y = xn

)
.

This formula has size ω only.
The result in Theorem 35 can be generalized to a wider range of properties.

The only place in the above proof where we use the exact construction of AS
and BS is in Lemma 31, namely in showing that condition (10) is satisfied in
the initial position. Everything else follows from condition (10) itself, and we
no longer need to care about what exactly AS and BS are. Let us consider all
properties that validate Lemma 31.

Definition 14. Let P ⊆ 2ω be a property of infinite binary strings. We say
that P is dense if for all g ∈ 2<ω, there is h ∈ P that extends g.

Note that ‘f has finitely many zeros’ (AS) and ‘f has infinitely many zeros’
(BS) are both dense properties. Theorem 35 holds for all dense properties.

Theorem 36. Let P1 and P2 be two dense properties of infinite binary strings
in 2ω. If φ is an quantifier-free L-formula in Lω1ω separating P1 and P2, then
the size of φ is at least ω · ω.
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Proof. It follows from the definition of dense properties that Lemma 31 holds for
P1 and P2. The rest of the proof is verbatim the same as the proof of Theorem
35.

Examples of dense properties of infinite binary strings include the following.

Example 8. 1. P1 = {f ∈ 2ω|f−1(1) is finite} ‘f has finitely many ones’.

P2 = {f ∈ 2ω|f−1(0) is finite} ‘f ’ has finitely many zeros’.

2. P1 = {f ∈ 2ω||f−1(1)| is an odd number} ‘f has an odd number of ones’.

P2 = {f ∈ 2ω||f−1(1)| is an even number} ‘f ’ has an even number of
ones’.

By Theorem 36, none of these pairs of properties can be separated by an
Lω1ω sentence of size less than ω · ω.

What we have presented above is an application of the game EFBα to the
quantifier-free fragment of predicate logic Lω1ω. This story can equally be told
in pure propositional logic with countable conjunctions and disjunctions. Let
L be the propositional language with countably many propositional variables
pi, i ∈ ω. Let LPω1ω denote the propositional logic with countable conjunctions
and disjunctions of formulas. For an infinite binary string f ∈ 2ω, we say that
f |= pi if f(i) = 1 and f 6|= pi if f(i) = 0. The satisfaction relation for boolean
connectives is defined as usual. For two classes of infinite binary strings A, B
and a propositional formula φ, we say that φ separates A and B, denoted by
(A,B) |= φ, if f |= φ for all f ∈ A and g 6|= φ for all g ∈ B. The size of an LPω1ω

formula is defined as in Definition 13, disregarding the clauses for quantifiers.
The results that we have proved in this section can be easily translated into the
propositional language LPω1ω.

Theorem 37. Let P1 and P2 be two dense properties of infinite binary strings
in 2ω. If φ is a propositional L-formula in LPω1ω separating P1 and P2, then the
size of φ is at least ω · ω.

6 Conclusions and Further Questions

In this thesis we introduced an Ehrenfeucht-Fräıssé Game for the infinitary
logic Lω1ω. Let us recall the position from which we started this quest. The
usual Ehrenfeucht-Fräıssé Games fail to characterize separation in Lω1ω. The
reason is that, we claim, the usual Ehrenfeucht-Fräıssé Games only reflect our
understanding of the behavior of quantifiers in logic. Consequently the usual
Ehrenfeucht-Fräıssé Games most naturally characterize separation in the logic
L∞ω, where there is basically no constraint on the boolean size of formulas.

In the logic Lω1ω the situation is different. The logic Lω1ω is defined not
only by reference to countability of the quantifier rank but also by reference to
the countability of conjunctions and disjunctions in the formula. Based on a
game for propositional and first order logic in [9], we defined a new Ehrenfeucht-
Fräıssé Game EFBα for Lω1ω. The supplementing moves in this game can be
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seen as the heritage of the usual Ehrenfeucht-Fräıssé Games. The splitting
moves are an innovation, aiming at reflecting the nature of boolean connectives.
Correspondingly, we introduced a measure of the size of Lω1ω formulas. We
proved that the game EFBα characterizes separation in Lω1ω up to size α.

Moreover, we also want to show that the game EFBα is indeed useful. In
fact, if we define a game just for the sake of proving an adequacy theorem for
this game, it would not be of much value. Games are supposed to help us
solving problems in logic. The complexity result about infinite binary strings in
Section 5.2 is an application of the propositional fragment of EFBα. This is the
first propositional complexity result for Lω1ω. An interesting topic for future
research would be to search for applications of the full game. It would be also
interesting to get higher propositional complexity results for Lω1ω, e.g. on the
level of ω3.
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