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Abstract

Semantics of counterfactuals is normally developed according to the prin-
ciple of similarity, and the key point is to specify the notion of relative
similarity. It can be seen in specific examples that causation plays a crucial
role in determining the independence of particular facts and thus also in the
measure of relative similarity.

Counterfactual account of causation is briefly reviewed. Some counterex-
amples are provided to illuminate its inherent difficulty, which justifies the
proposal that causation underlies the semantics of counterfactuals rather
than the converse.

Event calculus is introduced in order to facilitate discussions on causation
and the semantics of counterfactuals. Two notions of causation are defined
formally under the framework of event calculus by making use of timing.

Given the mechanism of identification of causation, the semantics of
counterfactuals is defined in terms of relative similarity. It’s argued that the
examples about duchess that are used to support the proposal of epistemic
reading actually don’t work. The example about Kennedy is also analyzed
without appealing to epistemic reading.
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1 Introduction

Counterfactual conditionals (for short, counterfactuals) are conditionals whose antecedents
are false, or equivalently, contrary to reality. They can be of various syntactic forms,
for example

(1) If I were you, I would have a break first.

(2) If Jack had received the mail, he would have replied you.

As long as the speaker isn’t speaking to himself, he cannot be the listener, and it
implies that the antecedent of sentence (1) is false. To let sentence (2) qualify as a
counterfactual, it would have to be the case the Jack hadn’t received the mail. So coun-
terfactuals don’t describe the state of affairs of the actual world, at least not directly;
instead, they are about those possible situations or worlds where their antecedents hold.

Counterfactuals are widely known to be semantically vague since it often happens
that people feel hard to reach an agreement on the truth of a counterfactual. The
following sentence may well be a good illustration.

(3) If kangaroos had no tail, they would topple over.

It has been figured out by zoologists that kangaroos’s tails are crucial for their body
balance, therefore lots of people would like to think sentence (3) is true. On the other
hand, almost all mammals have got their own ways to keep body balance through
millions of years of evolution. Then it’s also reasonable to conjecture that kangaroos
would have evolved in such a way that they could avoid toppling over even if without
tails.

Despite the vagueness surrounding counterfactuals, Lewis believes that it’s possible
to give a clear account of the truth conditions of them ([7], p.1). Stalnaker [13] and
Lewis [7] propose the truth condition of counterfactuals in terms of relative similarity
between possible worlds

∙ A counterfactual conditional is true at an evaluation world w if its consequent
holds at all those possible worlds where the antecedent holds and which are most
similar (or equivalently, closest) to w.

This proposal, which can be called the principle of similarity, is usually adopted as
the fundamental principle underlying the semantics of counterfactuals at least by those
who are working under the framework of possible world semantics. The main point to
be settled in the semantics of counterfactuals based on the principle of similarity, as can
be seen, is the similarity at issue. Once there is a specific standard of similarity between
possible worlds, it would be straightforward to identify those worlds determining the
truth of counterfactuals.

The most naive execution of the principle of similarity might be as follows. Denote
each counterfactual as ' ↪→  where ' is the antecedent and  is the consequent.
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(i) Each possible world is identified as a function assigning i ∈ {0, 1} to each atomic
sentence, or equivalently, a possible world is a maximal consistent set of ⟨p, i⟩
where p is an atomic sentence and i ∈ {0, 1}.

(ii) Let w be the actual world, relative similarity relation <w is determined merely
by the membership between possible worlds’s intersections with w, that is, given
two possible worlds w′ and w′′, we say w′ is more similar to w than w′′ is
(formally, w′ <w w

′′) iff w′′ ∩ w ⊊ w′ ∩ w.

(iii) Thus, a closest [']-world w′ is such that ' holds at w′ and there is no world w′′

such that w′′ ∈ ['] and w′′ <w w
′1.

This execution often gives rise to counterintuitive predictions in analysis of specific
examples. Consider the following situation:

A glass was put on the table. Yesterday, it fell to the ground. The
ground under the table was very hard and the glass was fragile, so the glass
broke.

Then, shall we accept the following counterfactual?

(4) If the glass hadn’t fallen to the ground, it would have been broken.

Intuitively, we wouldn’t; however, if we pursue the extreme similarity between the
actual world and counterfactual worlds and thus follow the naive semantics of coun-
terfactuals, we will just abandon the proposition that the glass fell to the ground and
suppose the contrary of it without abandoning the proposition that the glass was bro-
ken. The counterfactual world would be highly similar to the actual one except that
they differ in the issue if the glass fell to the ground. Despite the extreme similarity
on the surface, we will feel uncomfortable if we have to accept (4) according to this
selection of ‘closest’ counterfactual world.

How can we imagine that the glass would have been broken even if it hadn’t fallen to
the ground? To fill this gap, one might need to put some other event e (which doesn’t
happen in the actual world; otherwise we would have to modify the original situation
described above) into the counterfactual world and make it responsible for the glass’s
being broken. Thus, apart from the event e, it needs to be supposed that e caused the
glass’s break. Obviously, it would be even more eccentric if the glass broke without any
cause.

It doesn’t accord with people’s normal reasoning patterns if backup causes can be
added into the situation at issue in such a free way; otherwise, counterfactual reasoning
would be about questions how to maintain some particular facts if something actual

1Stalnaker [13] stipulates that there is a unique closest [']-world given the evaluation world and the
antecedent '. However, numerous examples show that there can be more than one closest [']-world,
which is also justified by the theories proposed by Lewis [7], Veltman [17], etc.
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had been different, but what people actual do in counterfactual reasoning is inquiring
what would (have to) have happened if something actual had been different.

Another undesirable consequence of the naive semantics is, the actual world and
all closest counterfactuals worlds agree on the truth value of the consequent as long as
the antecedent and the consequent are logically independent, that is, the truth of the
antecedent and that of the consequent are determined by two disjoint sets of atomic
sentences. This consequence is in no way acceptable since it would imply that no
connection between the antecedent and the consequent except by sharing determining
atomic sentences.

It seems that something important is missed in the comparison of the similarity
between those antecedent-worlds and the actual one. Actually, the glass broke because
it fell to the ground. To make the counterfactual assumption ‘If the glass hadn’t fallen
to the ground ’, it would be more natural if we abandon the proposition that the glass
broke. By analysis of more examples, we are likely to get the following conclusion:

‘In other words, similarity of particular fact is important, but only for
facts that do not depend on other facts. Facts stand and fall together. In
making a counterfactual assumption, we are prepared to give up everything
that depends on something that we must give up to maintain consistency.
But we want to keep in as many independent facts as we can.’ ([17], p.
164-165)

Then it is of particular interest and importance to specify the nature of the depen-
dence between facts. It is stated in Schulz [12] that dependence/independence of facts
is determined by causation, in other words, independent facts are exactly those which
don’t have causes in the situation at issue. This point could be supported by analysis
of numerous examples, since the truth of a counterfactual can be known when enough
information about causation is available.

The example above is a simple but good illustration. The glass’s break is caused
by its falling to the ground and is thus dependent on the latter fact, so the former is
abandoned when it’s supposed counterfactually that the glass didn’t fall to the ground.

A more complicated example is about neuron networks. Each arrow represents a
stimulant signal while a blob at the end of a line represents an inhibitory signal. Shaded
circles represent neurons that fire. Every successive neuron fires if and only if it receives
a stimulant signal without being inhibited. Initially, neither neuron 2 nor 3 is inhibited.

Neuron 2 fires because it’s stimulated by the signal from neuron 1. Neuron 4 inhibits
neuron 3 from firing and thus protects neuron 2 from being inhibited, which is also in a
sense a cause of neuron 2’s firing. Then if neuron 4 hadn’t fired, neither would neuron
2 have.

The task of constructing and motivating the semantics of counterfactuals is divided
as follows.
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Figure 1

Section 2: The counterfactual account of causation proposed by Lewis and a series
of improvements made by advocates of this approach are introduced. But it can be
seen in many counterexamples that there is a gap between the differentiating power and
the big complication of causal structures. Considering the intimate relations between
causation and counterfactuals, this observation justifies the semantics of counterfactuals
formulated in terms of causation.

Section 3: A version of event calculus is proposed to facilitate discussions on
causation and semantics of counterfactuals. The focus of the event calculus here is on
semantic derivation, in which the operation of completion provides information about
law-like correlations between atomic facts. Moreover, for the basis of event calculus in
physics, some further constraints are imposed to force the finiteness of changes.

Section 4: Following Hall’s proposal, two notions of causation are formally defined
whose main difference is about the qualification of absence as causal relata. Timing plays
a crucial role in identification of causation. It is pointed out that linguistic expressions
of causation involves pragmatic factors and is thus different from causal history.

Section 5: The semantics of counterfactuals is given on the basis of causal identi-
fication. It is proposed that the notion of causation underlying the semantics is causal
contribution. The relative similarity relation is defined in terms of inclusion of overlap
with the basis of the model in question. Schulz’s theory of epistemic reading of condi-
tionals is briefly reviewed and it’s argued that this theory is likely to sacrifice belief’s
basis in reality. The example about Kennedy that is used to support epistemic reading
shows that there is an asymmetry between the weight of normal atomic facts and that
of the source X of contingency in comparison of relative similarity.

2 Counterfactual account of causation

Lewis [6] proposes his influential theory of causation in terms of counterfactuals in which
counterfactuals are stipulated to be more primitive than causation is. Specifically, Lewis
aims at an account of the semantics of those causal claims of the form ‘c is a cause of
c’. Under Lewis’s stipulation, the truth conditions of counterfactuals are presupposed
to be prior to causation. For two events c and e, c is said to depend causally on e iff
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both of the following two counterfactuals are true

(5) if c were to occur, so would e;

(6) if c were not to occur, neither would e.

In the opinion of Lewis, causation is not the same as but can be implied by coun-
terfactual dependence among actual events. For actual events c and e, c is a cause of
e iff there is a finite chain c, d1, . . . , dn, e of actual events such that each event except
for c depends causally on the one immediately before it. Since c is actual, the closest
world where c occurs is just the actual world itself. For e is also an actual event, it
holds trivially that if c were to occur, so would e. Therefore, the finite chain leading
from c to e in Lewis’s definition of causation just needs to be such that (6) holds for
every pair of adjacent events.

This original proposal is certainly far from being satisfactory even in the eyesight
of those theorists who support it. One of the most perspicuous problem is resulted
from backtracking counterfactuals. Suppose that e causes c, the worlds most similar
to the actual world where c doesn’t occur are those in which e doesn’t either. More
generally, regardless the possibility of disabling conditions, the closest worlds where the
effect doesn’t occur are those in which the cause doesn’t, either. Then it follows by
definition that sentence (6) is true, which implies that c is a cause of e. However, it has
been assumed that e causes c rather than the converse.

One of most efficient solutions to the reverse between causes and effects is to syntac-
tically preclude backtracking counterfactuals. Specifically, Lewis [8] states that back-
tracking counterfactuals should be of special syntactic form as follows, if they can be
true

∙ if it had been the case that  , it would have to have been the case that '.

With this restriction, (6) wouldn’t hold if e is a cause of c since e must temporally
precede c. Nevertheless, restricting counterfactuals to the family of non-backtracking
ones, counterfactual analysts remain far from completing a counterfactual account of
causation because a series of particular causal structures still pose thorny problems for
them. One of the most famous difficulties troubling counterfactual analysis is about
preemption.

It often happens that more than one cause is sufficient to bring about a particular
effect though only one of them actually does. Suppose there are two events c1 and c2
both of which can lead to event e, but it’s c1 that actually causes e while c2 doesn’t.

Following Lewis’s definition of causal dependence, e depends on neither c1 nor c2
since either e1 or c2 would cause e in case the other were absent. The absence of causal
dependence between c’s and e inhibits us from identifying c1 as a cause of e if we follow
Lewis’s original version of counterfactual account.
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Lewis’s strategy of coping with this type of difficulties starts with the completion
of the causal chain leading from c1 to e. Without loss of generality, suppose the causal
chain is c1, d1, . . . , dn, e, then it is claimed that each event in this chain depends causally
on the one immediately before it. The objection is: if dn had been absent, c1 would
have been absent and thus c2 would have caused e. His reply to this objection can be
mainly divided into two steps.

(a) Even if dn hadn’t occurred, c1, d1, . . . , dn−1 would have occurred;

(b) Regardless of the absence of dn, c1 would still have interfered with c2. As a
result, c2 failed to cause e and thus e is also absent.

Step (a) is an alternative way to express the restriction of counterfactuals to the family
of non-backtracking ones, namely, in making the counterfactual assumption that an
event d hadn’t occurred, all facts about events occurring earlier than d are fixed. This
stipulation might well be reasonable for those who accept Lewis’s claim that backtrack-
ing counterfactuals should be of special syntactic forms since only non-backtracking
counterfactual reasoning is working here.

However, it’s extremely hard to give a justification for step (b) if not impossible. In
those counterfactual worlds where c1 happens and fails to cause dn in such a way that
the causal chain is cut off after dn−1, c1 would probably have lost the power to interfere
with c2.

An example cited in lots of articles on causation is about two kids who threw stones
to a bottle. Suzy threw a stone to the bottle first and then Billy did. Suzy’s stone
shattered the bottle, so the actual cause of the bottle’s shatter is Suzy’s throw rather
than Billy’s. So the reason why Billy’s throw didn’t cause the bottle’s shatter is that
Suzy’s throw had already shattered the bottle, and that’s exactly how Billy’s throw was
preempted by Suzy’s from shattering the bottle. This observation indicates that Billy’s
throw would no longer be preempted by Suzy’s as long as Suzy’s throw fails to shatter
the bottle.

It’s possible to imagine some backup interfering factor which would have made Billy’s
throw fail to shatter the bottle, but this strategy is rather poor for the same reason as
that why we reject the naive semantics of counterfactuals.

There are a series of efforts into saving counterfactuals from the threats posed by
preemptions. Among those replies, one that has drawn wide attention is made by
focusing on timing of effects, for instance, Paul [10]. Specifically, for two actual events c
and e, we say that c is a cause of e iff one of the following holds under the counterfactual
assumption that c hadn’t occurred

(a) e wouldn’t have occurred;

(b) e would have occurred at some time later than the time when it actually oc-
curred.
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For the example about bottle shatter, it does work. In the closest worlds where
Suzy’s throw is absent, the bottle’s shatter would happen latter than it actually does
though the bottle couldn’t avoid being shattered. But the elimination of problems is just
an illusion since the causal structure can be designed more elaborately to remove the
temporal difference between actual causes and backups. A simple instance is provided
by Collins, Hall and Paul [4].

Figure 2

Every time neuron 1 fires, one signal is received by neuron 2 which inhibits its firing
even though it’s stimulated by the signal from neuron 3, and the other signal from
neuron 1 is received by neuron 4 which stimulates neuron 4 to fire. The actual case
of the neuron networks is illustrated by the left half of Figure 2. Suppose the neuron
network is structured so well that had neuron 1 not fired, the signal from neuron 2
would have been received by neuron 4 at exactly the same time as the signal from
neuron 1 actually does. What’s more, there is no difference in the temporal length
between neuron 4 receiving the signal from either neuron 1 or neuron 2 and its firing.

Then, the actions of neurons in the closest possible world where neuron 1 hadn’t
fired can be illustrated by the right half of Figure 2. Under the absence of neuron 1’s
firing, the signal from neuron 3 succeeded in stimulating neuron 2 which caused neuron
4 to fire. For the temporal coincidence between neuron 4’s actual firing and that in
the counterfactual worlds, the further constraint imposed on the timing of the effect
doesn’t help us identify the causation between the signal from neuron 1 and the firing
of neuron 4.

Another attempt to rescue counterfactual analysis from the threat of preemption is
provided by Lewis [9] which can be briefly formulated as follows

∙ causes can make substantially more notable differences to the way in which effects
occur than non-causes can.

Applied to the example about bottle’s shattering, the bottle would have been shattered
by Suzy’s stone in a different way if Suzy had thrown the stone in a somewhat different
manner while holding Billy’s throw fixed, e.g. Suzy aimed at the neck rather than
the body of bottle. On the contrary, even if Billy had thrown the stone in a different
manner, there would have been very little difference in the way that the bottle shattered.
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Then the contrast between the alterations to bottle’s shattering effected respectively by
adjustments of Suzy’s throw and those of Billy’s throw, according to Lewis’s proposal,
is sufficient for the conclusion that Suzy’s throw is a cause of the bottle’s shattering
while Billy’s isn’t.

It’s obvious that causes often have stronger power to influence the way that effects
occur than non-causes do. But it’s not always the case. Suppose that the bottle to be
shattered is entirely surrounded by a special gravity field such that any stone getting
into it would be shot toward the body of bottle with the same momentum, which would
eliminate all differences in the manner of bottle’s shattering that would have been made
by alterations of Suzy’s throw if without the existence of the special gravity field. Then
Suzy’s throw would no longer own advantages over Billy’s throw in influencing the way
that the bottle is shattered.

It’s rather hard to refute counterfactual analysis of causation in such few pages, but
it might well have been shown that there is a gap between the somehow poor differenti-
ating power of counterfactuals and the huge complication of possible causal structures.
Specifically, the counterfactual approach usually distinguish causes from non-causes by
the comparison between their potential to make differences in the presence/absence of
effects or the manners that effects occur, but it’s probable that some elaborate causal
structures can be provided in which the differences concerning effects resulted from
causes and non-causes are trickily removed.

On the contrary, given a specific causal structure, the truth of a specific counterfac-
tual concerning the causal structure at issue can usually be evaluated specifically, as is
to be seen in Section 5. Therefore, it is likely to be reasonable to regard causation as
more primitive than counterfactuals are.

3 Event calculus

To conduct more efficient discussions on causation and counterfactuals, we’d better
employ formal tools by which our ideas could be illuminated, examined and justified in
a more specific way.

A version of event calculus is proposed by van Lambalgen [15] to shed light on the
importance of planning to natural language semantics. This version of event calculus, as
would be seen, is a very fine-grained framework for characterizations of occurrences of
events and changes of properties which are exactly what underlie analysis of causation
and counterfactuals. Despite that planning is not the focus of the discussions here,
event calculus would greatly facilitate the keen capturing of causation.
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3.1 Primitives and axiomatization

Formally, event calculus requires a first-order logic with more abundant primitives while
a standard first-order logic has a single domain of individuals.

∘ real numbers, by which we could represent time and variable quantities such as
distance, energy level, volume, etc;

∘ fluent types, possibly with parameters ranging over real numbers, can represent
ascriptions of properties to individuals at particular time;

∘ event types, when with fixed time, mark the beginning and end of properties.

There are three disjoint domains for the three sorts of primitives above respectively,
ℝ for real numbers, De for event types and Df for fluent types. Real numbers have the
normal structure ⟨ℝ, <; +,×, 0, 1⟩. It should be noted that the real structure here is
characterized by Zermelo-Fraenkel set theory of reals rather than the first-order theory
of reals. Properties, expressed by fluents, are primitive rather than interpreted as
its extension. The legitimacy of this stipulation can be justified by a series of basic
observations, for instance, two distinct properties can share the same extension.

Fluent types can be parameterized, for instance, the volume of water in a pool, which
can be noted as vol(x) where x is a variable over real numbers. In the process of filling
water into the pool, the volume of water in the pool is changing continuously before the
pool is full, so there would need to be predicates marking the initiation as well as the
termination of the continuous change. An appropriate argument of the predicate is the
abstract fluent vol() for at least two reasons

(i) although vol(u) and vol(u′) are two different fluent types as long as u ∕= u′,
it’s the case that both of them represent the volume of water in the pool;

(ii) it’s more succinct to use fluent types with parameters; otherwise, to mark
the initiation of a continuous change, we would probably have to use the set of
all fluent types without parameters which represent the volume of water in the
pool, as an argument of the predicate.

The three sorts of primitives serve as arguments of predicates in event calculus,
and most predicates involve not only event types or fluent types but also real numbers
which represent time or more specifically, time point at issue. The event calculus aims
at giving an account of causation with its basis in physics (van Lambalgen [15], p. 43),
so timing is crucial. In each particular causal chain, what is involved are those event
tokens and fluent tokens each of which can be given by assigning a specific time point
to an event/fluent type.

Among the predicates of event calculus, there needs to be one expressing that an
event happens (or equivalently, occurs) and another expressing that an object has a
particular property
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∘ Happens(e, t) / Hap(e, t)

∘ HoldsAt(f, t) / Hol(f, t)

In natural language, events can have durations, but in event calculus those events
with durations are decomposed into (i) instantaneous events, (ii) fluents and (iii) changes
of fluents. For example, an event of crossing a street is composed of the event of starting
to move, the state of being moving, the continuous change of distance from the start
point and the event of reaching the other side of the street, etc.

The two predicates can be related with each other in such a way that an fluent f is
initiated or terminated by an event e

∘ Initiates(e, f, t) / Ini(e, f, t)

∘ Terminates(e, f, t) / Ter(e, f, t)

What is expressed by Ini(e, f, t) is f will start to hold immediately after time t if e
happens, that is, f is initiated by e at t if Hap(e, t)∧Ini(e, f, t). Dually, f is terminated
by e if Hap(e, t) ∧ Ter(e, f, t).

Moreover, causation can also be due to a continuous force, for instance, heating and
boiling a pot of water, the change of distance as a result of continuous moving, etc.

∘ Trajectory(f, t, f ′, d) / Tra(f, t, f ′, d)

∘ Releases(e, f, t) / Rel(e, f, t)

∘ Fixes(e, f, t) / Fix(e, f, t)

Tra(f, t, f ′, d) expresses that if the fluent f holds between time t and t + d (more
strictly, during the open interval (t, t+ d)), then f ′ will start to hold at t+ d. f ′ often
has a parameter over reals, e.g. the volume of water in a pool, the temperature of water,
the distance of movement.

Rel expresses the initiation of continuous changes of fluents such that those changes
continue without the happening of events. For example, moving can cause continuous
changes of distance. Generally, Rel(e, f, t) says that f will start to change continuously if
e happens at t. As is argued by van Lambalgen [15], Rel is necessary for the consistency
between the two types of causes corresponding to Ini and Tra respectively.

‘Cause as instantaneous change leads to one form of inertia: after the
occurrence of the event marking the change, properties will not change value
until the occurrence of the next event. This however conflicts with the
intended notion of continuous change, where variable quantities may change
their values without concomitant occurrences of events.’ ([15], p. 44)

Dually, Hap(e, t) ∧ Fix(e, f, t) implies that the continuous change of f will stop at
t.

Moreover, a fluent can hold initially for we are usually considering the causal history
during a period of finite length.
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∘ Initially(f) / Ini(f)

A so-called principle of inertia consists in the foundation of event calculus: no
change of fluents occur without cause. In other words, no spontaneous change of fluent
occur ([15], p. 42). It follows that a fluent holds as long as no interfering event happens
after it’s initiated.

∘ Clipped(t, f, t′) / Cli(t, f, t′)

∘ Declipped(t, f, t′) / Dec(t, f, t′)

Cli(t, f, t′) expresses that there is no terminating event or continuous change of f be-
tween time t and t′. Dually, Dec(t, f, t′) expresses that there is no initiating event or
fluent between t and t′.

Fixing De and Df , not all atomic formulas built from the elements of them are of
importance; instead, it’s often the case that only part of them matter. For instance, we
seldom consider if a collision between two balls can terminate the influence of gravity
though there are lots of situations where we think of both the collision between two
balls and the influence of gravity. Denote the set of atomic formulas at in question by
Dom. Note that all atomic formulas in Dom are built from those elements of De and
Df and real variables, and no variable over events or fluents occur in any element of
Dom.

The axioms of the event calculus given here are developed based on those in [15].
These axioms will hopefully apply to a wider range of examples2. All variables over
real numbers are supposed to be universally quantified and all event or fluent types are
arbitrary elements of De and Df .

AXIOM 1 Inl(f)→ Hol(f, 0)

AXIOM 2 Hol(f, t) ∧ t < t′ ∧ ¬Cli(t, f, t′)→ Hol(f, t′)

AXIOM 3 Hap(e, t) ∧ Ini(e, f, t) ∧ t < t′ ∧ ¬Cli(t, f, t′)→ Hol(f, t′)

AXIOM 4 ∀s(t < s < t+ d→ Hol(f ′, s)) ∧ Tra(f ′, t, f, d)→ Hol(f, t+ d)

AXIOM 5 Hap(e, t) ∧ Ter(e, f, t) ∧ t < t′ ∧ ¬Dec(t, f, t′)→ ¬Hol(f, t′)
AXIOM 6 (t ≤ s < t′ ∧Hap(e, s) ∧ Ter(e, f, s)) ∨ (s < t′ ∧Hap(e, s) ∧Rel(e, f, s) ∧

t < t′ ∧ ¬(
⋁

Fix(e′,f,r)∈Dom ∃r(s < r ≤ t ∧ Hap(e′, r) ∧ Fix(e′, f, r)))) →
Cli(t, f, t′)

AXIOM 7 (t ≤ s < t′∧Hap(e, s)∧ Ini(e, f, s))∨ (t < s+d ≤ t′∧∀r(s < r < s+d→
Hol(f ′, r)) ∧ Tra(f ′, s, f, d))→ Dec(t, f, t′)

2Axiom 4 in [15] presupposes that any continuous influence, as a cause, must be initiated by an
event. However, it’s also possible that the continuous influence is itself the effect of another fluent, so
the AXIOM 4 above is of a stronger and more general form.
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Axiom 1 holds as a consequence of the interpretation of Inl. Axiom 2 formulates
the principle of inertia. Axiom 3 says that a fluent f holds at t′ if f is initiated by an
event e at t and no interfering factor occurs between t and t′, that is, ¬Cli(t, f, t′), then
f will also holds at t′. Dually, we have Axiom 5. Axiom 4 is similar to Axiom 3 except
that Axiom 4 characterizes a fluent f initiated by another fluent f ′. Axiom 6 defines
the predicate Cli: both terminating events and continuous changes of f can interfere
with the state that f holds, while Axiom 7 defines Dec.

3.2 The semantic derivation

Similar to other logical theories, it’s also a crucial issue in event calculus to specify the
mechanism of deriving all the consequences from a family of specific premises. Different
from [15], we will be concentrated on semantic derivations only.

Definition 3.1. An atomic fact is an atomic sentence gained by replacing all of the
variables in a possibly negated atomic formula by constants.

Definition 3.2. A state S(t) at time t is a first order formula built from

(1) literals of the form (¬)Hol(f, t), for t fixed and possibly different f ;

(2) formulas in the language of the structure ⟨ℝ, <,+,×, 0, 1⟩.

A causal law is a sentence of one of the following forms

(1) S(t)→ Ini(e, f, t) or Ini(e, f, t)

(2) S(t)→ Ter(e, f, t) or Ter(e, f, t)

(3) S(t)→ Hap(e, t)

(4) S(t, d)→ Tra(f, t, f ′, d) or Tra(f, t, f ′, d)

(5) S(t)→ Rel(e, f, t) or Rel(e, f, t)

(6) S(t)→ Fix(e, f, t) or Fix(e, f, t)

where S(t) (more generally S(t, d)) is a state at time t and all event types and fluent
types involved are constants rather than variables.

A causal law of the form S(t) → Ini(e, f, t) expresses that under circumstances
where S(t) is satisfied, the event e can initiate the fluent f at t. Intuitively, the truth
value of Ini(e, f, t) is uniquely determined by the relevant properties at time t, so in
application S(t) is assumed to be about the truth of those components (¬)Hol(f, t)
with the fixed t. Similarly for Ter, Hap, Rel and Fix. As for Tra, it expresses the
initiating effect of a continuous influence which holds during (t, t+ d), so S(t, d) should
be about the truth values of those fluents involved in S(t, d) during (t, t+ d).

Atomic facts of the forms (¬)Ini(e, f, t), (¬)Ter(e, f, t), (¬)Tra(f, t, f ′, d), (¬)Rel(e, f, t)
and (¬)Fix(e, f, t) express law-like facts, e.g. Ini(e, f, t) expresses that if e happens at
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t, f will start to hold immediately after t (but not at t). It’s possible that these facts
are unconditional in the situation at issue which is formally represented as causal laws
with empty antecedents. This doesn’t always mean the causal law does have the uni-
versal validity, instead, its unconditional form is usually attained in idealized reasoning
process, for example, when an object is in uniform linear motion, its distance from the
start point is proportional to the length of time.

Definition 3.3. A root ℛ is a pair ⟨FP , LC⟩ where FP is a set of atomic facts of the
form (¬)Inl(f), (¬)Hap(e, t) or (¬)Hol(f, t) and LC is a set of causal laws.

FP consists of particular facts which are of only three possible forms. Atomic
facts of the form (¬)Ini(e, f, t), (¬)Ter(e, f, t), (¬)Tra(f, t, f ′, d), (¬)Rel(e, f, t) or
(¬)Fix(e, f, t) don’t qualify as particular facts since they express law-like facts. More-
over, atomic facts of the form Cli(t, f, t′) or Dec(t, f, t′) are absolutely determined by
other atomic facts between t and t′, and specifically, they are just about the existence
of interfering/initiating factors of f .

Definition 3.4. Given the domains De, Df and Dom and a root ℛ = ⟨FP , LC⟩,
the completion Comp(ℛ) of ℛ is the pair ⟨FP , LD⟩ where LD is the set of definitions
determined by the domains and LC

3.

(i) For each atomic formula p of the form Ini(e, f, t), Ter(e, f, t), Tra(f, t, f ′, d),
Rel(e, f, t) or Fix(e, f, t),

(a) if there is � → p ∈ LC , then pick all such �i, the definition Def(p) of p is⋁
i �i ↔ p;

(b) if p ∈ LC , then Def(p) = p4.

(ii) For Hap(e, t),

(a) if there is � → Hap(e, t) ∈ LC , then pick all such �i, the definition
Def(Hap(e, t)) of Hap(e, t) is

⋁
i �i ↔ Hap(e, t);

(b) if there is no � → Hap(e, t) ∈ LC , then Def(Hap(e, t)) is undefined.

3Every variable in a definition is supposed to be universally quantified, but in the following formal-
izations, universal quantifies are omitted.

4� → p and p can’t both belong to LC since a causal law shouldn’t be both conditional and uncon-
ditional in the same situation
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(iii) Fix f ∈ Df , let

TerClie(t, t
′) = ∃s(t ≤ s < t′ ∧Hap(e, s) ∧ Ter(e, f, s))

RelClie(t, t
′) = ∃s(s < t′ ∧Hap(e, s) ∧Rel(e, f, s)) ∧ t < t′∧

¬(
⋁

Fix(e′,f,r)∈Dom

∃r(s < r ≤ t ∧Hap(e′, r) ∧ Fix(e′, f, r)))

IniDece(t, t
′) = ∃s(t ≤ s < t′ ∧Hap(e, s) ∧ Ini(e, f, s))

TraDecf ′(t, t′) = ∃r∃d(∀s(r < s < r + d→ Hol(f ′, s)) ∧ Tra(f ′, r, f, d) ∧ t < r + d ≤ t′)
InlHolf (t) = Inl(f) ∧ ¬Cli(0, f, t)
IniHole(t) = ∃t′(Hap(e, t′) ∧ Ini(e, f, t′) ∧ t′ < t ∧ ¬Cli(t′, f, t))
TraHolf ′(t) = ∃t′∃d(∀s(t′ < s < t′ + d→ Hol(f ′, s)) ∧ Tra(f ′, t′, f, d) ∧ t ≥ t′ + d∧

¬Cli(t′ + d, f, t))

Then we have

Def(Cli(t, f, t′)) = (
⋁

Ter(e,f,t)∈Dom

TerClie(t, t
′)) ∨ (

⋁
Rel(e,f,t)∈Dom

RelClie(t, t
′))

↔ Cli(t, f, t′)

Def(Dec(t, f, t′)) = (
⋁

Ini(e,f,t)∈Dom

IniDece(t, t
′)) ∨ (

⋁
Tra(f ′,t′,f,d)

TraDecf ′)

↔ Dec(t, f, t′)

Def(Hol(f, t)) = InlHolf (t) ∨ (
⋁

Ini(e,f,t)∈Dom

IniHole(t)) ∨ (
⋁

Tra(f ′,t′,f,d)∈Dom

TraHolf ′(t))

↔ Hol(f, t)

The definition of each form of atomic formula is intuitive. For instance, Cli(t, f, t′)
holds if (i) there is an event e happening and terminating f between t and t′ or (ii)
there is temporal overlap between (t, t′) and a continuous change of f . Similarly for
Dec(t, f, t′). Hol(f, t) holds if (i) f holds initially; (ii) f is initiated by some event or
(iii) f is initiated by another fluent.

The crucial step in constructing the definition of an atomic formula is bi-conditionalization.
The intuition underlying such an operation is that causal reasoning is usually conducted
in a somehow closed world. Particularly, it can be summarized as follows

(a) the truth of each atomic formula is determined by a limited set of fluents or
events;

(b) if all causes (if there are) fail to force a particular effect, this effect will not
occur.
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To satisfy (a), it would have to be the case that both De and Df are of finite
cardinalities if each maximal family of fluent types which differ only in their parameters
is counted as one.

(b) expresses a version of negation as failure ([16], p. 33). If without a world’s
being closed, causal reasoning would be extremely hard to conduct since the subject
would always need to consider what would happen if an event or a fluent is caused by
an unknown force. But extension of domains and causal laws are permissible when the
subject acquires or retrieves more factors relevant to the situation in question.

Analogously, it ought to be stipulated that for all atomic formulas p ∈ Dom of the
form Ini(e, f, t), Ter(e, f, t), Tra(f, t, f ′, d), Rel(e, f, t) or Fix(e, f, t), there is a causal
law in LC with the consequent p; otherwise, it would be assumed that p doesn’t hold
at any time in question since there is no evidence forcing its truth and thus deserves no
attention.

Completion provides law-like correlations between each atomic formulas and those
directly related to it, so it doesn’t apply to elements of FP since they are particular facts
which hold specifically without application of laws. The division between particular
facts and laws is crucial to the semantics of counterfactuals, which is to be introduced
briefly in Section 5.

3.3 Finiteness of changes

If the causal reasoning at issue does have its basis in physics, then it should be assumed
that each event happens only finitely many times during a period of finite length. To
force the finiteness of occurrences of events, the following two constraints are imposed
which say that for each open interval (t, t′) of finite length, if an event e happens during
(t, t′), then there is an earliest time and a latest time when e happens.

(1a) ∃s(t < s < t′ ∧ Hap(e, s)) → ∃t′′(t < t′′ < t′ ∧ Hap(e, t′′) ∧ ¬∃s′(t < s′ <
t′′ ∧Hap(e, s′)))

(1b) ∃s(t < s < t′ ∧ Hap(e, s)) → ∃t′′(t < t′′ < t′ ∧ Hap(e, t′′) ∧ ¬∃s′(t′′ < s′ <
t′ ∧Hap(e, s′)))

Lemma 3.1. Given arbitrary t1, t2 ∈ ℝ and e ∈ De, for all models ℳ of Constraint
(1a) and (1b) it holds that ∣{t ∈ (t1, t2) ∣ ℳ ∣= Hap(e, t)}∣ is finite.

Proof. Suppose that there are infinitely many t ∈ (t1, t2) such thatℳ ∣= Hap(e, t). We
construct a sequence �i∈ℕ as follows. By Constraint (1a), there is a minimal t ∈ (t1, t2)
such that ℳ ∣= Hap(e, t), let �0 = t. Applying Constraint (1a) again and again, let
�i+1 be the minimal t ∈ (�i, t2) such thatℳ ∣= Hap(e, t). For all i ∈ ℕ, let Si = (t1, �i).

Claim 1 : there is u ∈ (t1, t2) such that u ∕∈
∪

i∈ℕ Si.
By Constraint (1b), there is a maximal t3 ∈ (t1, t2) with ℳ ∣= Hap(e, t3). Pick an

arbitrary u ∈ (t3, t2), it holds that there is no t ∈ (u, t2) such that ℳ ∣= Hap(e, t).
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On the other hand, by definition of Si, for all s ∈
∪

i∈ℕ Si, there is n ∈ ℕ such that
s ∈ (t1, �n). It follows that u ∕∈

∪
i∈ℕ Si.

Let v be the greatest lower bound of X = {t ∈ (t1, t2) ∣ t ∕∈
∪

i∈ℕ Si}, then for all
t ∈ (t1, v) we have t ∈

∪
i∈ℕ Si.

Claim 2 : v ∕∈
∪

i∈ℕ Si.
Otherwise, suppose that v ∈

∪
i∈ℕ Si, then there is n ∈ ℕ such that v ∈ Sn, which

implies that v ∈ (t1, �n). So, for all t ∈ (v, �n) we have t ∈ Sn and thus t ∈
∪

i∈ℕ Si.
Pick an arbitrary v′ ∈ (v, �n), it isn’t hard to see that v′ is also a lower bound of X,
contradicting the assumption that v is the greatest lower bound.

Since for all t ∈ (t1, v) we have t ∈
∪

i∈ℕ Si, there is no maximal t ∈ (t1, v) with
ℳ ∣= Hap(e, t), which contradicts (1b). Otherwise, suppose that s is the maximal
element. Since for all t ∈ (t1, v) we have t ∈

∪
i∈ℕ Si, there is n ∈ ℕ such that s ∈ Sn,

so it holds that v ∈ (s, �n] ⊆ (t1, �n+1) = Sn+1 ⊆
∪

i∈ℕ Si because of the maximality of
s and the infinity of the sequence �i∈ℕ, contradicting Claim 2.

Thus, the supposition made at the beginning of the proof can’t hold.

Similarly, it should also hold that the time when a fluent holds during a period of
finitely length can be divided into finitely many intervals, which could be forced by the
following two constraints.

Let �(f, t) = ∃f ′∃s∃d(∀t′(s < t′ < s+ d→ Hol(f, t′)) ∧ Tra(f ′, s, f, d) ∧ t = s+ d)

(2a) ∃t(t1 < t < t2 ∧ Hol(f, t)) → ∃s′(t1 < s′ < t2 ∧ �(f, s′) ∧ ¬∃r(t1 < r <
s′ ∧ �(f, r)))

(2b) ∃t(t1 < t < t2 ∧ Hol(f, t)) → ∃s′(t1 < s′ < t2 ∧ �(f, s′) ∧ ¬∃r(s′ < r <
t2 ∧ �(f, r)))

Since it is stipulated that De is of finite cardinality and it has been proved above
that each event (type) occurs finitely many times during each interval of finite length,
it holds that each fluent (type) is initiated and terminated by events only finitely many
times during each finitely long interval. (2a) and (2b) guarantees that each fluent is
initiated by continuous forces for only finitely many times during each finitely long
interval. Thus we have the following lemma.

Lemma 3.2. Given the finite domains De, Df and Dom and a root ℛ = ⟨FP , LC⟩, for
arbitrary (t1, t2) ⊆ ℝ and all models ℳ of Comp(ℛ), (1a), (1b), (2a) and (2b) and all
f ∈ Df , it holds that {t ∈ (t1, t2) ∣ ℳ ∣= Hol(f, t)} equals a finite union of intervals of
the form (r, s] or [r, s].

Proof. Omitted.
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Then, given the domains and a root ℛ = ⟨FP , LC⟩, what is of interest is the family
of atomic facts entailed by FP ∪LD ∪ {(1a), (1b), (2a), (2b)}, that is, those atomic facts
p such that

FP ∪ LD ∪ {(1a), (1b), (2a), (2b)} ∣= p

where the entailment ∣= is only with respect to those models with the normal structure
of reals.

3.4 An example

Fill a pool of volume v by a tap with speed 1, the tap was turned off automatically
when the bottle is full. It is assumed that the tap is turned on only once (at time 0)
during [0, u] where u > v. The volume of water in the pool at each instant during [0, u]
can be specified.

De = {on, off}, Df = {flow, vol(x)},
Dom = {Hap(on, t), Hap(off, t), Hol(flow, t), Hol(vol(x), t), Ini(on, flow, t),

Ter(off, flow, t), Rel(on, vol(), t), Fix(off, vol(), t), Tra(flow, t, vol(x), d), Cli(t, f low, t′),
Cli(t, vol(x), t)}.

Considering that not all atomic sentences gained by replacing the variables in ele-
ments of Dom are of importance, there should be a domain AT of atomic sentences.
Here, AT contains those atomic facts given by fixing the variables in the elements of
Dom in such a way that {t, t′} ⊆ [0, u], {d, t + d} ⊆ (0, u], t ≤ t′, x ∈ [0, v], which will
be evaluated. Some atomic facts are of no importance even if they are given by fixing
the real variables in the elements of Dom, for instance, we don’t consider the question
when it holds that the water in the pool is of volume larger than v since the volume
the whole pool is only v.

The root ℛ = ⟨FP , LC⟩ where

FP = {Inl(vol(0)),¬Inl(flow), Hap(on, 0)} ∪ {¬Hap(on, t) ∣ t ∈ (0, u]}

and LC consists of the following causal laws:

∙ ¬Hol(flow, t)→ Ini(on, flow, t)

∙ Hol(flow, t)→ Ter(off, flow, t)

∙ ¬Hol(flow, t) ∧Hol(vol(y), t) ∧ y < v → Rel(on, vol(), t)5

∙ Hol(flow, t)→ Fix(off, vol(), t)

∙ Hol(vol(y), t) ∧ y + d ≤ v → Tra(flow, t, vol(y + d), d)

∙ Hol(vol(v), t) ∧Hol(flow, t)→ Hap(off, t)

5This causal law indicates that the real variables involving in a state shouldn’t be limited to those
representing time; instead, real variables can also be parameters of fluent types which are also universally
quantified in the completion of a root.
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The definitions of the six atomic formulas are then straightforward. Moreover, we have

∙ Def(Cli(t, f low, t′)) = ∃s(t ≤ s < t′∧Hap(off, s)∧Ter(off, flow, s))↔ Cli(t, f low, t′)

∙ Def(Cli(t, vol(y), t′)) = ∃s(s < t′∧Rel(on, vol(), s)∧Hap(on, s)∧ t < t′∧¬∃r(s <
r ≤ t ∧Hap(off, r) ∧ Fix(off, vol(), r)))↔ Cli(t, vol(y), t′)

∙ Def(Hol(flow, t)) = ∃t′(Hap(on, flow, t′) ∧ t′ < t ∧ ¬Cli(t′, f, t)) ∨ (Inl(flow) ∧
¬Cli(0, f low, t))↔ Hol(flow, t)

∙ Def(Hol(vol(y), t)) = ∃t′∃d(∀s(t′ < s < t′+d→ Hol(flow, s))∧Tra(flow, t′, vol(y), d)∧
t ≥ t′+d∧¬Cli(t′+d, vol(y), t))∨(Inl(vol(y))∧¬Cli(0, vol(y), t))↔ Hol(vol(y), t)

The following constraint is also added for this story

Hol(vol(x), t) ∧Hol(vol(y), t)→ x = y

which is named as integrity constraint in [15] and contributes to a complete structure
of events and fluents. Denote this integrity constraint by Ic. Ic says that the volume
of the water in the pool is of a unique value at each instant. Let P = FP ∪ LD ∪
{(1a), (1b), (2a), (2b), Ic}, we can fix a unique model satisfying P.

By the definition of Def(Cli), it holds trivially that

P ∣= {¬Cli(t, f low, t) ∣ t ∈ [0, u]} ∪ {¬Cli(t, vol(x), t) ∣ t ∈ [0, u] ∧ x ∈ [0, v]}

By Def(Hol(flow, t)), we have P ∣= ¬Hol(flow, 0).

Step by step:
P ∣= Hol(vol(0), 0), Ini(on, flow, 0), ¬Ter(off, flow, 0), ¬Fix(off, vol(), 0),

P ∣= {Tra(flow, 0, vol(d), d) ∣ d ∈ (0, v]} ∪ {Rel(on, vol(), 0)}.

By constraint (1a), if e happens during (0, v), then there must be a minimal t ∈ (0, v)
such that we have Hap(e, t). On the other hand, if no t ∈ (t1, t2) could be such a minimal
element, then it must be the case that e never happens during (0, v).

For an arbitrary model ℳ of P, suppose the minimal element is v′ ∈ (0, v), that is,

ℳ ∣= {Hap(off, v′)} ∪ {¬Hap(off, t) ∣ t ∈ (0, v′)}

then it follows that

ℳ ∣= {¬Cli(0, f low, s) ∣ s ∈ (0, v′]} ∪ {Hol(vol(v), v′)}

and then
ℳ ∣= {Hol(flow, s) ∣ s ∈ (0, v′]}

by Def(Hol(vol(x), t)) we have

ℳ ∣= Hol(vol(v′), v′)
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contradicting the integrity constraint Hol(vol(x), t) ∧ Hol(vol(y), t) → x = y, which
implies there is no such minimal element and thus ℳ ∣= {¬Hap(off, t) ∣ t ∈ (0, v)}.

Since ℳ is arbitrary, it holds that

P ∣= {¬Hap(off, t) ∣ t ∈ (0, v)}

which implies that

P ∣= {¬Cli(t, f low, t′) ∣ (t, t′) ⊆ (0, v)} ∪ {Cli(t, vol(y), t′) ∣ t < v ∧ t < t′ ∧ y ∈ [0, v]}

and so
P ∣= {Hol(flow, t) ∣ t ∈ (0, v]}

P ∣={Hol(vol(t), t) ∣ t ∈ (0, v]} ∪ {Ter(off, flow, t) ∣ t ∈ (0, v]}∪
{¬Ini(on, flow, t) ∣ t ∈ (0, v]} ∪ {Fix(off, vol(), t) ∣ t ∈ (0, v]}
{¬Rel(on, vol(), t) ∣ t ∈ (0, v]}

Then we have

P ∣= {Hap(off, v)} ∪ {Tra(flow, t, vol(x), d) ∣ t+ d = x ∈ (0, v]}

and it follows that

P ∣= {Cli(t, f low, t′) ∣ v ∈ [t, t′) ⊆ [0, u]} ∪ {¬Cli(t, vol(y), t′) ∣ v ≤ t ≤ t′ ∧ y ∈ [0, v]}

by Def(Hol(vol(x), t) and Def(Hol(flow, t)), we can attain the result we are usually
most interested in

P ∣= {Hol(vol(v), t) ∣ t ∈ [v, u]} ∪ {¬Hol(flow, t) ∣ t ∈ (v, u]}

To complete the model, we have further that

P ∣={¬Ter(off, flow, t) ∣ t ∈ (v, u]} ∪ {Ini(on, flow, t) ∣ t ∈ (v, u]}∪
{¬Rel(on, vol(), t) ∣ t ∈ (v, u]} ∪ {¬Fix(off, vol(), t) ∣ t ∈ (v, u]}∪
{¬Hap(off, t) ∣ t ∈ (v, u]}

and then

P ∣={¬Cli(t, f low, t′) ∣ t ∈ (v, u]}

By Ic,

P ∣= {¬Hol(vol(x), t) ∣ x ∕= t ∈ [0, v] ∨ (x ∕= v ∧ t ∈ (v, u])}
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and by Def(Tra(flow, t, vol(x), d))

P ∣= {¬Tra(flow, t, vol(x), d) ∣ x ∕= t+ d} ∪ {¬Hap(off, 0)}

When we want to specify the truth value of an atomic fact p with temporal index
other than 0, there are always infinitely many intermediate atomic facts lying between
p and those atomic facts with index 0 because of the particular structure of reals. No
step-by-step operation has been found which can derive all facts from the initial states
and events of the situation in question. This issue is worth intense attention in future
studies. Currently, the semantic derivation has to appeal to (1a), (1b), (2a) and (2b),
as is illustrated by the example above.

4 Identification of actual causes

Given a structure of events and fluents, it is often a very controversial issue which
events and fluents are the causes of another event or fluent. Causation is an abstract
relation between events and fluents and covers numerous types of influence, for example,
transformations of momentum and energy caused by collisions between objects, heating
raises the temperature of a pot of water, etc.

To see part of the complication of the problem about identification of actual causes,
we could have a look at Figure 1 again. The firing of neuron 4 doesn’t enter the causal
chain of the neuron 2’s firing, since the former just inhibits the disabling factor of the
latter. On the other hand, no one could deny that neuron 4’s firing is necessary for
the the firing of neuron 2. When one is asked, why does neuron 2 succeed in firing
even in the situation where neuron 5 fires, he would probably answer, because neuron 1
fires which stimulates neuron 2, and neuron 3 fires which protects neuron 2 from being
inhibited, in other words, neuron 4 contributes to the absence of disabling condition of
neuron 2’s firing. Then, can neuron 4’s firing be counted as a cause of neuron 2’s firing?

Speaking more generally, the difficulty of identification of actual causes is often due
to the disputation over the qualification of absence as causes and effects.

On one hand, absence is the non-existence of some event or fluent. As Lewis ex-
plained

‘Absences are not events. they are not anything : Where an absence is,
there is nothing relevant there at all. Absences are bogus entities.’ ([9],
p.100)

which implies that absences are nothing and it doesn’t make sense to distinguish an
absence from another. Otherwise, to differentiate two absences, or more generally, two
arbitrary entities, there should be some property which can be ascribed to one of them
but not the other. However, absence is non-existence in which no property can be found.
For instance, it’s weird to talk about the difference between absence of juice and that
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of coffee. Causation is thought to hold between distinct events or fluents ([9], p. 78),
so there cannot be causation involving absences for they are nothing, and admitting
causation involving absences will inevitably lead to causation between two absences.

On the other hand, we can say that the light remains on because it hasn’t been
turned off and more generally, a fluent holds because it hasn’t been terminated. Also,
absence of drinking water causes thirst.

To solve this sort of puzzles, Hall [3] comes up with the idea that there are two
concepts of causation. According to the first notion of causation, neuron 2 is produced
and neuron 3, 4 and 5 are not involved in the production. According to the second
notion of causation, all factors relevant to neuron 2’s firing are taken into account,
among which only neuron 1 and 3 contribute positively to the firing of neuron 2, though
in quite different manners.

Even if out of the actual causal chain of the expected effect, those contributing to
the prevention of interfering factors are also important. For instance, when designing
an experiment, chemists not only think about the chain of reactions producing the
target substance but also try their best to employ some other reactions to preclude all
those interfering substances. The target substance is attained because chemists also
conducted the latter ones.

4.1 Causal production

Following the terminology proposed by Hall [3], the first notion of causation is called
production, and more specifically, causal production or productive causation. It’s not
easy to define the notion of causal production precisely. In specific situations, the
identification of causes of a particular effect can also be a very hard work and inevitably
limited by human cognition and technologies.

An attribute of productive causation is, each pair of cause and effect are connected
through a chain of exchange of substance and transformation of energy. Transforma-
tion of energy doesn’t necessarily involve (visible) contact, for example, it can happen
through magnetic fields or gravity fields. In a wider sense, people’s will, desire and
determination can also be involved in causal chains, which is crucial to ethics. Another
attribute of productive causation is temporal precedence, that is, causes must precede
their effects.

The identification of causation under event calculus is conducted as a version of
reductionist approach. Typically, a reductionist approach attempts to reduce facts
about causation to two sorts of facts, (1) facts about what happens, or briefly, categorical
facts and (2) facts about the laws that govern the happening of categorical facts, i.e.
nomological facts ([4], p. 12). Then, the core task in causal identification is to specify
which causal laws, among all causal laws in question, capture the mode or manner in
which changes actually happen, since there are often more than one causal law according
to which a particular change can occur. For example, both Suzy’s throw and Billy’s
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are sufficient for shattering the bottle while only one of them is the actual cause of the
bottle’s shattering.

The main objections to reductionist approaches usually aim at showing that the
facts taken into account by reductionists are often insufficient to fix the causal facts at
issue. A common version of those objections could be as follows.

The only causal law concerned is: whenever event e happens, it causes
one and only one among e′ and e′′. Moreover, some cause, which we have
almost no idea about, can also give rise to e′ and it’s a similar case for e′′.
Suppose at some particular moment, e happens and immediately later both
e′ and e′′ are observed to happen. By the causal law, either e′ or e′′ is caused
by e, but it can’t be both, so one of them is caused by unknown cause. Given
these nomological facts and categorical facts, it’s still unsure if e caused e′

or e′′.

This type of attack can hardly harm the value and plausibility of reductionist ap-
proaches since these objections implicitly impose excessive requirements on the power
of each particular reductionism, i.e. causal facts should be fixed even when we have
only a very limited class of causal laws and categorical facts.

But actually, the hesitation between e′ and e′′ can naturally be ascribed to the
incompleteness of causal laws, that is, we need to further specify the mechanism of the
occurrences of e′ and e′′ given e, through which we will be able to capture the factors
determining if e′ or e′′ follows from e. Then we would have at least two causal laws
relevant to the judgment here rather than only one, for instance,

(i) under the condition f holds, e causes e′ while

(ii) under the condition that f doesn’t hold, e causes e′′.

Event calculus is born to be an ideal framework for the formal analysis of causal
production for a series of reasons, e.g. temporal continuity is of fundamental impor-
tance in event calculus which facilitates and is often necessary for the specification of
causation, and specifically, the temporal location of an effect is immediately after its
direct causes without any gap.

Definition 4.1. Given domains De of events, Df of fluents, Dom of atomic formulas
and AT of atomic facts, a rootℛ = ⟨FP , LC⟩ with the completion Comp(ℛ) = ⟨FP , LD⟩.
Let P = FP ∪ LD ∪ {(1a), (1b), (2a), (2b)}, M = {(¬)p ∣ p ∈ AT ∧ P ∣= (¬)p},
FE = {p ∈ M ∣ p is of the form Hap(e, t) or Hol(f, t)}, the causal production 99K is
the intersection of

(a) FE × FE and

(b) the transitive closure TC(≻) of ≻.
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where the binary relation ≻⊊ M ×M is defined as follows. For p, p′ ∈ M , we say p is
a productive cause of p′ or p participates in the causal production of p′ if p 99K p′.

Although 99K holds only between atomic facts of the form Hap(e, t) or Hol(f, t), ≻
also involves atomic facts of other forms since they are auxiliary and necessary.

(1) For p(t, d) ∈ {Hap(e, t), Ini(e, f, t), T er(e, f, t), T ra(f, t, f ′, d), Rel(e, f, t), F ix(e, f, t)}
with definition

Def(p(t, d)) =
⋁
i

�i ↔ p(t, d)

let p(t0, d0) be the atomic fact given by substituting constants t0 and d0 for the variables
t and d in p(t, d).

Then it holds that
Hol(f, t1) ≻ p(t0, d0)

if there is i such that P ∣= �i(t0, d0) and �i(t0, d0) ∣= Hol(f, t1).

(2) For Hol(f, t) with

Def(Hol(f, t)) = InlHolf (t) ∨ (
⋁

Ini(e,f,t′)∈Dom

IniHole(t)) ∨ (
⋁

Tra(f ′,t′,f,d)∈Dom

TraHolf ′(t))

↔ Hol(f, t)

such that Hol(f, t0) ∈M ,

(2.1) if P ∣= IniHole(t0) for some Ini(e, f, t′) ∈ Dom, then pick the t1 witnessing
the existential quantifier in IniHole, we have

Hap(e, t1) ≻ Hol(f, t0)
Ini(e, f, t1) ≻ Hol(f, t0)

(2.2) if P ∣= TraHolf ′(t0) for some Tra(f ′, t′, f, d) ∈ Dom, then pick the t1, d0
witnessing the existential quantifiers in TraHolf ′ , we have

Hol(f ′, t2) ≻ Hol(f, t0)

for all t2 such that t1 < t2 < t1 + d0, and

Tra(f ′, t1, f, d0) ≻ Hol(f, t0)

.

Clause (2) can be interpreted as follows. If a fluent f is initiated by an event e or
another fluent f ′ at time t′ which is earlier than t, and no interfering factor occurs
between t′ and t, then f is caused by e/f ′. The absence of interfering factor precludes
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any other initiation of f between t′ and t which guarantees that e/f ′ must be an actual
cause of f under the principle of inertia. No initiation of f between t and t′ can happen
because of f holds all the time during that period.

≻ actually covers several types of relations, for example, in clause (2.1) of Definition
4.1, Hap(e, t1) ≻ Hol(f, t0) represents that e serves as an initiating event of f while
Ini(e, f, t1) ≻ Hol(f, t0) connects f ’s initiation to those enabling conditions.
≻ also holds between atomic facts of the same temporal index, so it is a relation be-

tween different aspects of fluents. For each p ∈ {Ini(e, f, t), Ter(e, f, t), Tra(f, t, f ′, d),
Rel(e, f, t), Fix(e, f, t)}, if there is a causal law with the consequent p, then the truth
of p at each instant is determined by those fluents’s (which constitute the antecedent
of the causal laws with consequent p) truth at the same instant or during the period
(t, t+d). A plausible interpretation of those p’s is, they represent the functional aspects
of the fluents involved in the antecedents of causal laws.

For example, a causal law of the form S(t)→ Ini(e, f, t) expresses that at any time t
when state S(t) holds, event e can initiate the fluent f ; or briefly, the state S(t) enables
e to initiate f , as long as e happens at time t. One often characterizes a situation
by specifying which fluents hold in the situation and which don’t, e.g. there is a high
concentration of carbon monoxide in the room; but he can also do it by describing the
changes that can occur, e.g. the room is very dangerous since a spark can trigger a
fierce explosion in it.

Since the purpose here is identifying those actual causes of particular effects, we
don’t need to distinguish the different roles formally that the actual causes play. What
is important is that causal laws and particular facts tell us that they do participate in
the productions of those particular effects according to axioms and causal laws.

For all p ∈ {Hol(f, t), Hap(e, t), Ini(e, f, t), T er(e, f, t), T ra(f, t, f ′, d), Rel(e, f, t),
Fix(e, f, t)}, ¬p is never an argument of ≻. This stipulation will be natural if Axiom
3, 4 and 5 are thought of as exhausting all patterns of causal production, since ¬p
just expresses the absence of a property, an event or potential for changes. Production
is a vivid name for this notion of causation. Absence can in no means participate in
causal production since productions, if interpreted literally, are transformations from
(existent) entities to (existent) entities.

To apply the definition of causal production to the account of neuron networks, the
mechanism of a neuron’s stimulation and firing should be specified. A relatively simple
but very probable mechanism is as follows,

(i) the neuron of energy 0 (unexcited state) receives the stimulus from preceding
neurons, which initiates the continuous raising of energy level of the neuron at
speed 1;

(ii) the continuous raising of energy level leads to the excited state (energy d) of the
neuron after a period of length d;
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(iii) the neuron, if uninhibited, fires immediately when it goes into the excited state.

Signals from some neurons can be inhibitory for others. So a neuron may receive
two kinds of signals, namely, stimulus and inℎibition. Moreover, there is also a process
between a neuron’s firing and its target neuron’s receiving the signal. So there are two
fluents passing and progress(x) characterizing the progress of passing a signal to the
target neuron with speed v and x ∈ [0, 1].

To avoid the confusion of events/fluents of different neurons, we mark each fluent
and each event by subscripts.

∙ fires⟨i⟩ expresses that neuron i fires;

∙ energy⟨i⟩(x) expresses neuron i is of energy x, and similarly for inℎibited, uninℎibited
and raising6;

∙ stimulus⟨i∣j⟩ expresses the event that neuron i’s stimulant signal is received by
neuron j, and similarly for inℎibition and passing.

Formally, we have the following causal laws for all successive neurons i

(1) Hol(energy⟨i⟩(x), t)∧x < d∧¬Hol(raising⟨i⟩, t)→ Ini(stimulus⟨j∣i⟩, raising⟨i⟩, t)

(2) Hol(energy⟨i⟩(x), t) ∧ x+ u ≤ d→ Tra(raising⟨i⟩, t, excited⟨i⟩, x+ u)

(3) Hol(uninℎibited⟨i⟩, t)→ Ini(inℎibition⟨j∣i⟩, inℎibited⟨i⟩, t)

(4) Hol(uninℎibited⟨i⟩, t)→ Ter(inℎibition⟨j∣i⟩, uninℎibited⟨i⟩, t)

(5) Hol(energy⟨i⟩(d), t)∧Hol(raising⟨i⟩, t)∧Hol(uninℎibited⟨i⟩, t)→ Hap(fires⟨i⟩, t)

There are also some less general causal laws which apply only locally in Figure 1

∙ ¬Hol(passing⟨1∣2⟩, t)→ Ini(fires⟨1⟩, passing⟨1∣2⟩, t)

∙ ¬Hol(passing⟨1∣2⟩, t)→ Rel(fires⟨1⟩, progress⟨1∣2⟩(), t)

∙ progress⟨1∣2⟩(x) ∧ x+ vd′ ≤ 1→ Tra(passing⟨1∣2⟩, t, progress⟨1∣2⟩(x+ vd′), d′)

∙ Hol(progress⟨1∣2⟩(1), t) ∧Hol(passing⟨1∣2⟩, t)→ Hap(stimulus⟨1∣2⟩, t)

For the initial states of passing signals, we have ¬Inl(passing) ∧ Inl(progress(0)).
With the three causal laws above, it can be confirmed straightforwardly that the fol-
lowing hold

∘ {Hap(fires⟨1⟩, 0), Ini(fires⟨1⟩, passing⟨1∣2⟩, 0)} ≻ Hol(passing⟨1∣2⟩, t) for all t ∈
(0, 1v ]

∘ Hol(progress⟨1∣2⟩(0), 0) ≻ Tra(passing⟨1∣2⟩, 0, progress⟨1∣2⟩(1), 1v )

6inℎibited and uninℎibited express the two exclusive states of neurons, and uninℎibited doesn’t
represent absence, instead, it represents a particular state as inℎibited does
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∘ Tra(passing⟨1∣2⟩, 0, progress⟨1∣2⟩(1), 1v ) ≻ Hol(progress⟨1∣2⟩(1), 1v ) and

Hol(passing⟨1∣2⟩, t) ≻ Hol(progress⟨1∣2⟩(1), 1v ) for all t ∈ (0, 1v ]

∘ Hol(progress⟨1∣2⟩(1), 1v ) ≻ Hap(stimulus⟨1∣2⟩, 1v )

which collectively imply that

Hap(fires⟨1⟩, 0) 99K Hap(stimulus⟨1∣2⟩,
1

v
)

Informally, the stimulus received by neuron 2 is productively caused by the firing of
neuron 1.

For all successive neurons, i.e. 2 and 3 in Figure 1, it holds that Inl(energy(0)) ∧
Inl(uninℎibited). As for initial neurons, i.e. 1, 3 and 5, neither their states nor their
events are of interest until they fire.

Maybe the causal laws above are not sufficient for a complete story about the neu-
ron’s raising of energy level, but they can meet the need of discussion here since what
interests theorists are only the process beginning with receiving signals, ending with
going into excited state and possibly also with firing and the target neuron’s receiving
the signal.

Continuing the analysis of the causal production of neuron 2’s firing, causal laws (1)
- (4) enable us to figure out that the following hold,

∘ {Hap(stimulus⟨1∣2⟩, 0), Ini(stimulus⟨1∣2⟩, raising⟨2⟩, 0)} ≻ Hol(raising⟨2⟩, t) for all
t ∈ (0, d]

∘ Hol(energy⟨2⟩(0), 0) ≻ Tra(raising⟨2⟩, 0, excited⟨2⟩, d)

∘ {Hol(raising⟨2⟩, t), T ra(raising⟨2⟩, 0, energy⟨2⟩(d), d)} ≻ Hol(energy⟨2⟩(d), d) for
all t ∈ (0, d]

∘ {Hol(energy⟨2⟩(d), d), Hol(raising⟨2⟩, d), Hol(uninℎibited⟨2⟩, d)} ≻ Hap(fires⟨2⟩, d)

which imply that

Hap(stimulus⟨1∣2⟩, 0) 99K Hap(fires⟨2⟩, d)

The initial time point 0 here is the time when the stimulant signal from neuron 1 is
received by neuron 2, so when fixing the initial time point as above, we have

Hap(stimulus⟨1∣2⟩,
1

v
) 99K Hap(fires⟨2⟩, d+

1

v
)

and thus

Hap(fires⟨1⟩, 0) 99K Hap(fires⟨2⟩, d+
1

v
)
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Since the only path for productive causation between neuron 3’s and neuron 2’s (ab-
sence of) firings, if there is, necessarily involves Hap(inℎibition⟨3∣2⟩, t) and in the Figure
1 we have ¬Hap(inℎibition⟨3∣2⟩, t) for all t, there is no productive causation between
neuron 3 and neuron 2 and thus not between neuron 4/5 and neuron 2 in the actual
situation at issue.

4.2 Causal Contribution

Different from Hall’s proposal, the causation other than causal production is named
as causal contribution rather than dependence. The strategy of identification of causal
contribution is similar to that of causal production. The main difference between causal
contribution and causal production is that absence can also be relata of causation.

As a consequence, double prevention can be a contribution to a particular effect but
may well be irrelevant to its production. The absence of interfering factor is expressed
by atomic facts of the form ¬Cli(t, f, t′). ¬Cli(t, f, t′) connects the causal chain to
those events and fluents protecting f from being terminated while ¬Dec(t, f, t′) lets us
figure out those which prevent f from holding, so ¬Cli(t, f, t′) and ¬Dec(t, f, t′) are of
importance to the identification of causal contributions even if those events and fluents
determining them never participate in the causal production of f .

Definition 4.2. Given domains De of events, Df of fluents, Dom of atomic formulas
and AT of atomic facts, a rootℛ = ⟨FP , LC⟩ with the completion Comp(ℛ) = ⟨FP , LD⟩.
Let M = {(¬)p ∣ p ∈ AT ∧ P ∣= (¬)p}, FE+ = {(¬)p ∈ M ∣ p is of the form Hap(e, t)
or Hol(f, t)}, the causal contribution ↷ is the intersection of

(a) FE+ × FE+ and

(b) the transitive closure TC(⊳) of ⊳.

where ⊳ ⊊M ×M is defined as follows. For (¬)p, (¬)p′ ∈M , we say (¬)p is a contrib-
utory cause of (¬)p′ or (¬)p causally contributes to (¬)p′ if (¬)p↷ (¬)p′.

(1) For p(t, d) ∈ {Hap(e, t), Ini(e, f, t), T er(e, f, t), T ra(f, t, f ′, d), Rel(e, f, t), F ix(e, f, t)}
with definition

Def(p(t, d)) =
⋁
i

�i ↔ p(t, d)

let p(t0, d0) be the atomic fact given by substituting constants t0 and d0 for the variables
t and d in p(t, d).

(1.1) We have
(¬)Hol(f, t1) ⊳ p(t0, d0)

if there is i such that P ∣= �i(t0, d0) and �i(t0, d0) ∣= (¬)Hol(f, t1).
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(1.2) It holds that
(¬)Hol(f, t0) ⊳ ¬p(t0, d0)

if P ∣= (¬
⋁

i �i(t0, d0)) ∧ (¬)Hol(f, t1) and �i(t0, d0) ∣= (¬)Hol(f, t1) for some
i where

(¬)Hol(f, t1) =

{
¬Hol(f, t1) if (¬)Hol(f, t1) = Hol(f, t1)

Hol(f, t1) otherwise

When a fluent is involved in the antecedent of a causal law, its absence can be (a)
an enabling condition of a change, e.g. absence of other planes enables a plane to take
off and land, or (b) a disabling condition of a change, e.g. the absence of oxygen can
prevent wood from being on fire.

The sub-definitions of negative atomic facts are likely to provide more information
about contributions than others do since for each positive atomic fact there is normally
a unique causal chain ending with it while we have to preclude all possible causal chains
leading to a positive atomic fact if its negation holds.

As an example, for Def(Ini(e, f, t)) =
⋁

i �i ↔ Ini(e, f, t), when ¬Ini(e, f, t) holds,
that is, no mode of enabling e to initiate f holds, any fluent or absence of fluent falsifying
a �i contributes to the absence of the potential of e to initiate f , which is captured by
clause (1.2) of Definition 4.2.

(2) For Hol(f, t) ∈ Dom such that Hol(f, t0) ∈M ,

(2.1) if P ∣= InlHolf (t0), then

¬Cli(0, f, t0) ⊳ Hol(f, t0)

(2.2) if P ∣= IniHole(t0) for some Ini(e, f, t′) ∈ Dom, then pick the t1 witnessing
the existential quantifier in IniHole(t), we have

Hap(e, t1) ⊳ Hol(f, t0)

Ini(e, f, t1) ⊳ Hol(f, t0)

¬Cli(t1, f, t0) ⊳ Hol(f, t0)

(2.3) if P ∣= TraHolf ′(t0) for some Tra(f ′, t′, f, d) ∈ Dom, then pick the t1, d0
witnessing the existential quantifiers in TraHolf ′ , we have

Hol(f ′, t2) ⊳ Hol(f, t0)

for all t2 such that t1 < t2 < t1 + d0, and

Tra(f ′, t1, f, d0) ⊳ Hol(f, t0)

¬Cli(t1 + d0, f, t0) ⊳ Hol(f, t0)
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(3) For Hol(f, t) ∈ Dom such that ¬Hol(f, t0) ∈M ,

(3.1) if P ∣= ¬Hol(f, t) for all t ∈ [0, t0], then

¬Dec(0, f, t0) ⊳ ¬Hol(f, t0)

(3.2) if there is t1 ∈ ℝ, Hap(e, t), T er(e, f, t) ∈ Dom such that P ∣= Hap(e, t1) ∧
Ter(e, f, t1) ∧ ¬Hol(f, t2) for all t2 ∈ (t1, t0], then we have

Hap(e, t1) ⊳ ¬Hol(f, t0)
Ter(e, f, t1) ⊳ ¬Hol(f, t0)

¬Dec(t1, f, t0) ⊳ ¬Hol(f, t0)

(3.3) if there is t1 ∈ ℝ, Hap(e, t), Rel(e, f, t) ∈ Dom such that

(a) P ∣= Hap(e, t1) ∧Rel(e, f, t1)
(b) there is a maximal t2 ∈ (t1, t0) such that P ∣= Hol(f, t2) and
(c) for no t3 ∈ (t1, t2] there are Hap(e′, t), F ix(e′, f, t) ∈ Dom with P ∣=

Hap(e′, t3) ∧ Fix(e′, f, t3),

then we say

Hap(e, t1) ⊳ ¬Hol(f, t0)
Rel(e, f, t1) ⊳ ¬Hol(f, t0)

¬Dec(t2, f, t0) ⊳ ¬Hol(f, t0)

Moreover, for all t′ ∈ (t1, t2] and Fix(e′, f, t) ∈ Dom, we have (i)

¬Fix(e′, f, t′) ⊳ ¬Hol(f, t0)

if P ∣= ¬Fix(e′, f, t′) and (ii)

¬Hap(e′, t′) ⊳ ¬Hol(f, t0)

if P ∣= Fix(e′, f, t′) ∧ ¬Hap(e′, t′).

The factors contributing to absence of fluents include not only those inhibitory ones
but also those which terminate fluents. When it’s asked why a fluent doesn’t hold at a
particular time, it can be reasonably answered that because it was terminated at some
earlier time and failed to be initiated again since then.

When the absence of an event is thought of as a cause, it normally marks the absence
of a change e.g. initiation, termination, release or fixing of a fluent. The absence of a
fluent can also mark the absence of the initiation of a fluent if the former serves as an
argument of Tra.
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Timing is even more important to identification of causal contribution, for instance,
in the inquiry on the absence of a fluent f at time t0 (formally, ¬Hol(f, t0)) resulted
from a continuous change, it suffices to be the case that the continuous change is going
on at the last instant t2 when f holds, and in detail, the continuous change starts before
t2 and doesn’t stop before t2, as is represented by clause (3.3) of Definition 4.2. Again,
those factors inhibiting the stop of the continuous change and those prevent f from
being initiated between t2 and t0, also contribute to the absence of f at t0.

(4) For ¬Cli(t0, f, t1) ∈M

(4.1) for all t2 ∈ [t0, t1) and all Ter(e, f, t) ∈ Dom, it holds that (i)

¬Ter(e, f, t2) ⊳ ¬Cli(t0, f, t1)

if P ∣= ¬Ter(e, f, t2), and (ii)

¬Hap(e, t2) ⊳ ¬Cli(t0, f, t1)

if P ∣= Ter(e, f, t2) ∧ ¬Hap(e, t2);
(4.2) for Rel(e, f, t) ∈ Dom,

(a) if there is t2 ∈ [0, t0] such that P ∣= Hap(e, t2) ∧ Fix(e, f, t2) for some
Fix(e, f, t) ∈ Dom, then pick the maximal t2 ∈ [0, t0], it holds that

Hap(e, t2) ⊳ ¬Cli(t0, f, t1)
Fix(e, f, t2) ⊳ ¬Cli(t0, f, t1)

Moreover, for all t′ ∈ (t2, t1) and all Rel(e′, f, t) ∈ Dom, we have (i)

¬Rel(e′, f, t′) ⊳ ¬Cli(t0, f, t1)

if P ∣= ¬Rel(e′, f, t′), and (ii)

¬Hap(e′, t′) ⊳ ¬Cli(t0, f, t1)

if P ∣= Rel(e′, f, t′) ∧ ¬Hap(e′, t′).
(b) if there is no t2 ∈ [0, t0] such that P ∣= Hap(e, t2)∧Fix(e, f, t2), then for

all t′ ∈ [0, t1) and all Rel(e′, f, t) ∈ Dom, we have (i)

¬Rel(e′, f, t′) ⊳ ¬Cli(t0, f, t1)

if P ∣= ¬Rel(e′, f, t′), and (ii)

¬Hap(e′, t′) ⊳ ¬Cli(t0, f, t1)

if P ∣= Rel(e′, f, t′) ∧ ¬Hap(e′, t′).
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For ¬Cli(t0, f, t1), if there is a continuous change started before t0, then the stop
of the last continuous change (at time t2) before t0 also contributes to the absence
of interfering factors of f , and those preventing the start of continuous changes of f
between t2 and t1 make contributions, too, as is represented by clause (4.2, a) of Defini-
tion 4.2. Clause (4.2, b) characterizes the case where no continuous change is stopped,
which implies that no continuous change starts before t0 under the assumption that
¬Cli(t0, f, t1). This case is simpler since only those preventing the start of continuous
changes of f between 0 and t1 make contributions.

The case of ¬Dec(t0, f, t1) is somehow simpler in which it just needs to be guaranteed
that f can be initiated at no instant between t0 and t1.

(5) For ¬Dec(t0, f, t1) ∈M

(5.1) for all t2 ∈ [t0, t1) and all Ini(e, f, t) ∈ Dom, it holds that (i)

¬Ini(e, f, t2) ⊳ ¬Cli(t0, f, t1)

if P ∣= ¬Ini(e, t2), and (ii)

¬Hap(e, t2) ⊳ ¬Dec(t0, f, t1)

if P ∣= Ini(e, f, t2) ∧ ¬Hap(e, t2);
(5.2) for all Tra(f ′, t, f, d) ∈ Dom, all t2 ∈ [0, t1), d0 ∈ ℝ+ such that t2+d0 ∈ (t0, t1],

we have

(a)
¬Tra(f ′, t2, f, d0) ⊳ ¬Dec(t0, f, t1)

if P ∣= ¬Tra(f ′, t2, f, d0);
(b)

¬Hol(f ′, t′) ⊳ ¬Dec(t0, f, t1)

for all t′ ∈ (t2, t2 +d) such that P ∣= ¬Hol(f ′, t′) if P ∣= Tra(f ′, t2, f, d0).

When an event e with Ini(e, f, t) ∈ Dom fails to initiate f at an instant t2, there
are two possibilities which are represented by (i) and (ii) of Clause 5.1. The first possi-
bility is such that Ini(e, f, t2) doesn’t hold, then the only the atomic fact ¬Ini(e, f, t2),
which expresses that there is no potential or enabling condition for the initiation of f ,
contributes to the absence of initiation of f . In this case, even if e doesn’t happen at
t2, formally, ¬Hap(e, t2), it won’t be thought of as contributing to the absence of f ’s
initiation since it’s preempted by the absence of potential for the initiation of f . For
example, it’s weird to say that absence of spark contributes to the absence of fire in a
bottle of pure water, since in pure water there is no enabling condition for the initiation
of fire. Similarly for absence of termination, trajectory, release and fixing.

Applying the framework to the analysis of causal contribution in Figure 1, we have
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∙ ¬Cli(0, uninℎibited⟨2⟩, r + d) ⊳ Hol(uninℎibited⟨2⟩, r + d) where it holds that
Hap(stimulus⟨1∣2⟩, r)

∙ ¬Hap(inℎibition⟨3∣2⟩, t) ⊳ ¬Cli(0, uninℎibited⟨2⟩, r + d) for all t ∈ [0, r + d) since it
holds that Ter(uninℎibited⟨2⟩, inℎibition⟨3∣2⟩, t)

∙ ¬Hap(fires⟨3⟩, t− d′) ↷ ¬Hap(inℎibition⟨3∣2⟩, t) for for all t ∈ [d′, r+ d), where d′

is the time for passing the signal between neuron 3 and 2

∙ Hol(inℎibited⟨3⟩, t−d′)⊳¬Hap(fires⟨3⟩, t−d′) for t ∈ (t′+d′, r+d) where it holds
that Hap(inℎibition⟨4∣3⟩, t

′)

∙ Hap(inℎibition⟨4∣3⟩, t
′) ⊳ Hol(inℎibited⟨3⟩, t− d′)

∙ Hap(fires⟨4⟩, t
′ − d′′) ↷ Hap(inℎibition⟨4∣3⟩, t

′) where d′′ is the length of the time
of passing signal between neuron 4 and 3.

It follows that

Hap(fires⟨4⟩, t
′ − d′′) ↷ Hol(uninℎibited⟨2⟩, d)

Similar to the analysis of causal production, we have

Hol(uninℎibited⟨2⟩, r + d) ↷ Hap(fires⟨2⟩, r + d)

and thus it holds that

Hap(fires⟨4⟩, t
′ − d′′) ↷ Hap(fires⟨2⟩, r + d)

which expresses that neuron 4’s firing contributes to that of neuron 2.

4.3 A constraint on the formulation of causal laws

There needs to be some further constraints on the formulation of causal laws involved
in the mechanism of causal identification. An example is illustrated by the figure below,
water flows out if and only if switch 1 and at least one of 2 and 3 are on.

When all three switches are on, water doesn’t flow through switch 3 since it’s much
higher than switch 2. In this situation, suppose additionally that switch 2 and 3 are
initially on while 1 is off, and one switches 1 on at time t1, it’s obvious that switch 3
doesn’t produce or contribute to this initiation of water flow since water doesn’t flow
through switch 3 or force water to flow through switch 2. This intuition would contradict
the formal identification of causation, if there is a causal law

Hol(on3, t) ∧ ¬Hol(on1, t)→ Ini(turnon1, f low, t)

since this causal law will lead to the claim that bothHol(on3, t1) ≻ Ini(turnon1, f low, t1)
and Hol(on3, t1) ⊳ Ini(turnon1, f low, t1) hold.

33



Some further constraint could be imposed on the causal laws formulated in the
system, namely, each atomic fact of the form (¬)Hol(f, t) entailed by the antecedent
of every causal law of the form S(t)→ Ini(e, f, t) does feature in the causal history of
the f ’s initiation whenever the antecedent S(t) and Hap(e, t) are satisfied. Similarly
for Ter, Tra, Fix and Rel. So the causal law above doesn’t meet this requirement;
instead, we employ the following one

Hol(on3, t) ∧ ¬Hol(on1, t) ∧ ¬Hol(on2, t)→ Ini(turnon1, f low, t)

which implies that for switch 3 to contribute to the initiation of water flow, switch 2
should be off. Moreover, we have the causal law

¬Hol(on1, t) ∧Hol(on2, t)→ Ini(turnon1, f low, t)

which indicates that even when both switch 2 and switch 3 are on, there is no causation
between the initiation of water flow by turning switch 1 on and switch 3’s being on.

This constraint shouldn’t be accused of begging the question of causal identification,
since it’s often the case that people needs to know not only the sufficient causes of a
particular effect but also under what kinds of circumstances some particular causes will
actually contribute to the effect. What we propose here is just to encode this type of
further knowledge into the causal laws in our system.

What’s more, each causal law represents a particular mode of effecting its conse-
quent, so the antecedents of causal laws with the same consequent should be pairwise
exclusive. Otherwise, if there is a situation satisfying the antecedents of two causal laws
with the same consequent, we would have have to admit that the effect (token) at a
particular time is caused in two different modes.

4.4 Linguistic expression of causation

Given the further constraint, in the situation where only switch 3 is initially on, a claim
following from the formalizations is that switch 2’s being off also produce and contribute

34



to the initiation of water flow if switch 1 is turned on. It’s obvious that switch 2’s being
off does participated in the production of the particular mode of the initiation of water
flow by forcing water to flow through switch 3. However, it’s still somehow weird to
say that water flows out because switch 2 is off. Switch 3’s being on, but not switch
2’s being off, is thought of as a cause of water flow since water flows through switch 3
rather than switch 2 though it’s switch 2’s being off that forces this particular route of
water flow.

Another widely discussed example is about a persistent doctor and his unfortunate
patient can be cited to illustrate the influence of pragmatic factors.

The patient was dying and medical instruments showed that the patient
couldn’t remain alive after ten minutes. But the doctor didn’t give up. He
succeeded in saving the patient. However, because of serious disease, the
patient died a few days later.

The patient’s actual death lies at the end of its complicated causal chain where the
doctor’s effort in cure played an important role, since otherwise the patient’s death
would be earlier than it actually was. Nevertheless, no one is able to accuse the doctor
of causing the patient’s death, nor anyone could say that the patient died because the
doctor saved him earlier without giving rise to strong objections from lots of listeners.
The former perspective is typically about what Hall [3] calls production where there
could be processes towards the contrary of the end of the causal chain and some events,
such as the cure, which delay the occurrence of the result.

Moreover, though the birth of the patient is a necessary component in the causal
chain of his illness and death, almost no one would like to say that his birth is a cause
of his illness and death or he died because he was born.

A plausible explanation is that the causal expression in natural language is influenced
by pragmatic factors, while the notion of causal contribution defined above is history-
based, that is, p ↷ q says that p contributes to the particular history of the fact q.
Among those contributories of a particular effect, some are such that people are often
reluctant to say that the effect occurs because of these contributories, for various reasons
one of which is that people often use expressions of causation in natural language to
represent accountability ([14], p. 85). This point could be illustrated by the example
about the doctor and his patient.

Linguistic expressions of causation is not the focus here as long as we notice the dif-
ference between causal production/contribution and linguistic expressions of causation,
since the aim is the mechanism of identification of causation which should be exhaustive
in order to ground the semantics of counterfactuals.
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5 The semantics of counterfactuals

5.1 The semantics

The definitions of causal production 99K and causal contribution ↷ can be defined more
generally over each fixed model of P when P isn’t sufficient for determining a unique
full model for those atomic facts of AT .

The independence of particular facts are determined by causal contribution rather
than causal production. As can be seen in Definition 4.1 and 4.2, causal contribu-
tion is an extension of causal production if regardless of pragmatic considerations
concerning linguistic representations of causation. The difference between the two
notions causation is crucial for counterfactual reasoning. For example, we can have
¬Cli(t1, f, t2)⊳Hol(f, t2) if we have Hol(f, t) for all t ∈ [t1, t2] but never ¬Cli(t1, f, t2) ≻
Hol(f, t2). If it has been the case that Cli(t1, f, t2), then we have to abandon Hol(f, t2)
first though it may be forced by backup causes later.

Definition 5.1. Given the domains and a rootℛ = ⟨FP , LC⟩ with completion Comp(ℛ) =
⟨FP , LD⟩, the family IC of integrity constraints which contains (1a), (1b), (2a) and (2b),
and a model ℳ of P = FP ∪LD ∪ IC for AT . Let M = {(¬)p ∣ p ∈ AT ∧ℳ ∣= (¬)p}.
An atomic fact (¬)p ∈M is causally independent if (1) p is of the form Inl(f) or (2) p
is of the form Hap(e, t) and there is no (¬)q ∈M with (¬)q ↷ (¬)p.

The basis Bℳ of ℳ consists of exactly those causally independent elements of M .

It could be concluded that an atomic fact (¬)p ∈ M is causally independent if (i)
p is of them form Inl(f) or (ii) p is of the form Hap(e, t) and there is no causal law
with the consequent Hap(e, t), sinceℳ is a model of P. Intuitively, Bℳ consists of the
causally independent particular facts.

As has been pointed out, atomic facts (¬)q of the form (¬)Ini(e, f, t), (¬)Ter(e, f, t),
(¬)Tra(f, t, f ′, d), (¬)Rel(e, f, t), (¬)Fix(e, f, t) express law-like facts and thus should
have their causal laws (possibly with empty antecedent) in LC . If the causal law defining
q has empty antecedent, then q holds universally as a law throughout the time in
question and is encoded in LC . If the causal has non-empty antecedent, then (¬)q ∈ℳ
must be dependent on other atomic facts according to Definition 4.2. In both cases,
(¬)q doesn’t qualify as an element of Bℳ.

Atomic facts (¬)q of the form (¬)Cli(t, f, t′) or (¬)Dec(t, f, t′) depend on f -relevant
events and fluents (if there are), i.e. those which can initiate, release, terminate or fix
f , so these (¬)q is in no means independent. If there is no event taken into account
which can terminate or release f , formally, Dom contains no Ter(e, f, t) or Rel(e, f, t),
then the definition of Cli(t, f, t′) would be⋁

∅ ↔ Cli(t, f, t′)
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and thus ¬Cli(t, f, t′) holds universally like a law, which is encoded as the absence of
Ter(e, f, t) and Rel(e, f, t) in Dom and doesn’t need to be represented as (independent)
particular facts.

Atomic facts (¬)q of the form (¬)Hol(f, t) aren’t independent facts. Considering
the principle of inertia, there are two possibilities. (i) If it’s the case that (¬)Hol(f, t)
holds since time 0, then it depends on the absence of f -relevant events and fluents. (ii)
If q is initiated, terminated or released, (¬)q isn’t independent, either.

Definition 5.2. Given the domains, a root ℛ = ⟨FP , LC⟩, the family IC of integrity
constraints which contains (1a), (1b), (2a) and (2b), and a model ℳ of P = FP ∪
LD ∪ IC, a subset F of AT+ is R&IC-consistent if there is no p ∈ AT such that
F ∪ LD ∪ IC ∣= p ∧ ¬p7.

A R&IC-consistent subset F of AT+ is ℛ-basic if for all (¬)p ∈ F , either (i) p is
of the form Inl(f) or (ii) p is of the form Hap(e, t) and there is no causal law with the
consequent Hap(e, t). The relative similarity relation <ℳ over ℛ-basic sets is defined
as follows.

Given two ℛ-basic sets F and F ′, F is more similar to ℳ than F ′ is (formally,
F <ℳ F ′) iff the following holds

(Bℳ − F ) ∪ (F −Bℳ) ⊊ (Bℳ − F ′) ∪ (F ′ −Bℳ)

Definition 5.3. Given the domains, a root and a model as above, a counterfactual
' ↪→  holds at ℳ (notation: ℳ ∣= ' ↪→  ) iff for all ℛ-basic F such that (i)
F ∪LD ∪ IC ∣= ' and (ii) there is no ℛ-basic F ′ with F ′ ∪LD ∪ IC ∣= ' and F ′ <ℳ F ,
it holds that F ∪ LD ∪ IC ∣=  .

As can be seen in the definitions, with fixed domains, there is no violation of causal
laws or definitions in counterfactual reasoning. This stipulation is developed from the
widely accepted principle proposed by Lewis [8]

‘It is of the first importance to avoid big, widespread, diverse violations
of law.’

There are violations of laws in conditional or causal reasoning, but violations are
usually accompanied with acquisition or retrieval of more interfering factors and thus
extension of domains and causal laws. The intimate connection between the likelihood of
violating laws and the retrieval of disabling conditions has been justified experimentally
by Cummins [2]. When the factors involved in a causal structure are fixed and the
causal laws at issue are formulated in complete forms, that is, in the forms where all
disabling conditions are taken into account, causal laws shouldn’t be violated.

As an example, apply this definition to Figure 1. The mechanism of energy level’s
raising applies to successive neurons, i.e. neuron 2 and 3 only, since the situation at issue

7AT+ = {(¬)p ∣ p ∈ AT}
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doesn’t contain any information about the signals that neuron 1, 4 or 5 receives and thus
it doesn’t make sense to talk about their mechanisms of energy raising. Therefore, there
is no causal law with the consequent Hap(fires⟨i⟩, t) for i ∈ {1, 4, 5}. The independent
facts in the situation include

∘ neuron 2 and 3 are initially uninhibited;

∘ neuron 2 and 3 are initially of energy 0;

∘ neuron 1, 4 and 5 fire (once respectively).

The time points at which the neurons fire are in particular relations but these
relations are often neglected in discussions

(i) neuron 4’s firing should be early enough so that neuron 3 is inhibited before
going into excited state;

(ii) neuron 5’s firing should be early enough in order to stimulate neuron 3 to inhibit
neuron 2 before it goes into excited state if neuron 4 doesn’t fire.

To judge the truth value of the counterfactual if neuron 4 hadn’t fired, neither would
neuron 2 have, we can keep all independent facts listed above except that neuron 4 fires
(at some particular time t0), and add the fact that ¬Hap(fires⟨4⟩, t0). This modification
of the basis is necessary; otherwise, it can’t be the case that neuron 4 hadn’t fired. It
follows that it’s the unique minimal modification to satisfy the antecedent if neuron 4
hadn’t fired. Then it holds that neuron 2 wouldn’t have fired, as can be checked.

5.2 Allowing for vagueness

An example about King Ludwig has been widely discussed by theorists working on
semantics of counterfactuals (e.g. [5] and [17]).

King Ludwig often spends his holiday at his castle. Whenever the flag
is up and the lights are on, King Ludwig is in the castle. Currently, the flag
is down, the lights are on and the King is not in the castle.

Kratzer [5] attempts to defend the truth of the following counterfactual

(7) If the flag were up, then the king would be in the castle.

for which she has to eliminate the possibility that the lights are off and the king is away
under the counterfactual assumption that the flag were up while this possibility is kept
by Veltman [17].

What is agreed by all parties is, it’s a non-accidental or lawlike generalization that
whenever the flag is up and the lights are on, King Ludwig is in the castle. In the theory
developed above, it could be represented as an integrity constraint.
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It might be proposed that this lawlike generalization should be interpreted causally
and decomposed into a group of causal laws. But there is almost no information about
the causal mechanism of this lawlike generalization provided in the story. Any further
detail added by analysts is likely to restrict the story to a particular version among the
numerous possible ones, for instance, it’s hard to specify if the states of the flag and the
lights are determined by the king’s activity, or the converse, or neither of them holds.
Therefore, the most plausible way to represent the story at issue is such that the states
of the three parties are causally independent of each other.

The analysis under event calculus can contain the following primitives.

∘ De = {raise, lower, turnon, turnoff, return, leave}
∘ Df = {up, down, on, off, in, away}
∘ Dom = {Hap(e, t) ∣ e ∈ De} ∪ {Hol(f, t) ∣ f ∈ Df}∪ {Ini(raise, up, t),
Ter(raise, down, t), Ini(lower, down, t), Ter(lower, up, t), Ini(turnon, on, t),
Ter(turnon, off, t), Ini(turnoff, off, t), Ter(turnoff, on, t), Ini(return, in, t),
Ter(return, away, t), Ini(leave, away, t), Ter(leave, in, t)}

Assume that the period at issue is [0, t0] where t0 is the current time, so

AT = {Hap(e, t) ∣ e ∈ De∧t ∈ [0, t0]}∪{Hol(f, t) ∣ f ∈ Df∧t ∈ [0, t0]}∪{Inl(f) ∣ f ∈ Df}

The root ℛ = ⟨FP , LC⟩ where FP = {¬Hap(e, t) ∣ e ∈ De, t ∈ [0, t0]}∪ {Inl(on),
¬Inl(off), Inl(down), ¬Inl(up), Inl(away), ¬Inl(in)} and LC contains the following
causal laws

∙ Hol(down, t)→ Ini(raise, up, t)

∙ Hol(down, t)→ Ter(raise, down, t)

∙ Hol(up, t)→ Ini(lower, down, t)

∙ Hol(up, t)→ Ter(lower, up, t)

∙ Hol(off, t)→ Ini(turnon, on, t)

∙ Hol(off, t)→ Ter(turnon, off, t)

∙ Hol(on, t)→ Ini(turnoff, off, t)

∙ Hol(on, t)→ Ter(turnoff, on, t)

∙ Hol(in, t)→ Ini(leave, away, t)

∙ Hol(in, t)→ Ter(leave, in, t)

∙ Hol(away, t)→ Ini(return, in, t)

∙ Hol(away, t)→ Ter(return, away, t)

The definitions of atomic formulas follows immediately and thus so does Comp(ℛ).

The family IC consists of the following integrity constraints apart from (1a), (1b),
(2a) and (2b)
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(i) Hol(up, t) ∧Hol(on, t)→ Hol(in, t)

(ii) ¬(Hol(up, t) ∧Hol(down, t))
(iii) ¬(Hol(on, t) ∧Hol(off, t))
(iv) ¬(Hol(in, t) ∧Hol(away, t))

Kratzer wants to defend the truth of the counterfactual Hol(up, t0) ↪→ Hol(in, t0).
The model ℳ representing the situation at issue is such that no change occurs, and
Hol(on, t), Hol(down, t) and Hol(away, t) are true for all t ∈ [0, t0]. By definitions, the
basis B equals FP . Pick t1, t2 ∈ (0, t0) with t1 < t2, let

F = (FP −{¬Hap(turnoff, t1),¬Hap(raise, t2)})∪{Hap(turnoff, t1), Hap(raise, t2)}

It could be seen that F isℛ-basic, F∪LD∪IC ∣= Hol(up, t0), and there is noℛ-basic F ′

such that F ′ ∪LD ∪ IC ∣= Hol(up, t0) and F ′ <ℳ F . Since F ∪LD ∪ IC ∕∣= Hol(in, t0),
it follows that F ∪ LD ∪ IC ∕∣= Hol(up, t0) ↪→ Hol(in, t0).

This result accords with that gained in [17] and contradicts what is proposed by
Kratzer [5]. If the analysis is made merely based on the original version of the story,
then it seems that no convincing argument or intuition has been provided for the truth
of (7) which requires that the state of lights wouldn’t change under the counterfactual
assumption that the flag were up.

What is likely to make us a bit unease in the formal analysis of the story about King
Ludwig is, there could be some deeper causal relations between the states of the lights
and the flag and the activity of King Ludwig which haven’t been able to be specified,
e.g. the former are somehow determined by the later. However, the current story only
enables us to represent the three parties as almost independent of each other except
that they conform to the integrity constraint (i).

It’s logically possible that further details, if supplemented, would force the truth of
(7). But if fixing merely the original version of the story, we have no way to preclude the
possibility that the lights are off and the king remains away. Given partial information,
the semantics should allows for the vagueness consisting in the situation rather than
eliminate it artificially.

The same case holds for the counterfactual assumption about kangaroos. Since there
is no information about the mechanism of kangaroos’s evolution in the past millions of
years, it can’t be determined that if they would have developed some other way to keep
their body balance if they hadn’t got tails.

5.3 Epistemic reading of counterfactuals

Given the somehow complicated formalization above, there still seem to be a gap be-
tween its formal prediction and people’s intuitions about some particular examples
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which is worth big attention of anyone who aims at a better understanding of counter-
factuals. Lots of theorists argue that there are two readings of conditionals, namely,
epistemic reading and ontic reading. Schulz interpret the two readings as follows.

‘The epistemic reading is based on belief revision. It is used for condi-
tionals that make statements about what one would conclude upon learning
that the antecedent is true. It reasons about what you would believe, if you
learned - hypothetically - that the antecedent is true.

. . . ontic reading of conditionals . . . is applied if the conditional is inter-
preted as describing the consequences for the course of history it would have,
if the antecedent is true.’ ([11], p. 127)

The ontic reading of conditionals is analyzed based on the principle of similarity
with respect to causal dependence, as is discussed above, while the epistemic reading,
according to Schulz’s proposal, deserves a quite different treatment.

A widely discussed example is about a murder ([17], p. 11; [11], p. 129).

The duchess was murdered, and the task of finding out the murder has
been assigned to a detective. Currently, the gardener and the butler are the
only ones left as suspects. Then the detective believes that

(8) If the butler didn’t kill the duchess, the gardener did.

Suppose that after a few days of investigation, the detective found sufficient
evidence showing that the butler committed the murder while the gardener
is innocent. At that moment, would the detective believe the following
sentence?

(9) If the butler hadn’t killed the duchess, the gardener would have.

The domains are as follows

De = {butl, gard}
Df = {alive, dead}

Dom = {Inl(alive), Inl(dead), Hol(alive, t), Hol(dead, t), Ini(butl, dead, t),

T er(butl, alive, t), Ini(gard, dead, t), T er(butl, alive, t)}

where butl is short for the butler killed the duchess, gard for the gardener killed the
duchess, alive for the duchess was alive and dead for the duchess was dead.

The family LC of causal causal laws at issue consists of the following ones

∙ Hol(alive, t)→ Ter(butl, alive, t)

∙ Hol(alive, t)→ Ini(butl, dead, t)

∙ Hol(alive, t)→ Ter(gard, alive, t)
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∙ Hol(alive, t)→ Ini(gard, dead, t)

Without loss of generality, assume that the murder happened at t1 and currently the
time is t0. Then the basis

B = {Inl(alive),¬Inl(dead), Hap(butl, t1)} ∪ {¬Hap(butl, t) ∣ t ∈ [0, t1) ∪ (t1, t0]}
∪ {¬Hap(gard, t) ∣ t ∈ [0, t0]}

To accommodate the antecedent if the butler hadn’t killed the duchess, a necessary opera-
tion on the basis is abandoning the atomic fact Hap(butl, t1) and adding ¬Hap(butl, t1),
formally, let

B′ = (B − {Hap(butl, t1)}) ∪ {¬Hap(butl, t1)}
and this operation is sufficient for making the counterfactual assumption. Since for no
t ∈ [0, t0] it holds that B′ ∪ LD ∣= Hap(gard, t), (9) is false.

To accept (9), it would have to be supposed that there is a conspiracy according to
which the gardener serves as a backup of the butler, that is, the gardener would kill the
duchess in case the butler failed to make it. But the fact is, there is no such conspiracy
or it hasn’t been discovered by the detective if there is, so nothing could support him
to believe that the gardener would have killed the duchess in case the butler hadn’t.

However, it might still be insisted that there is a reading under which (9) is true, i.e.
epistemic reading. The formalizations in [17] and [11] are given in terms of propositional
language. Let butl and gard be short for the same expressions as above and ducℎ be
short for the duchess was alive. The general law at issue is butl ∨ gard → ducℎ. After
observing that the duchess was killed and restricting the range of suspects to the butler
and the gardener, the butler believes that ducℎ∧(butl∨gard). Further evidence enables
him to believe that ducℎ ∧ butl. Making the counterfactual assumption that the butler
hadn’t killed the duchess (formally, ¬butl), the belief in gard is forced by the assumption
¬butl plus that butl ∨ gard, in other words, while the belief that butl is abandoned, it
remains believed that butl ∨ gard.

Why is the belief that butl ∨ gard kept under the counterfactual assumption that
¬butl? There are different accounts for this keep. Veltman proposes that this keep
is actually some implicit reference to previous epistemic state ([17], p. 12). Then it
seems that the subject is making some correction rather than counterfactual assump-
tion. When making a correction, the subject only needs to abandon those beliefs which
are definitely falsified while others are kept. In the example at issue, even if there is
convincing evidence against the belief that the butler killed the duchess, it might not
falsify the belief that the butler and the gardener are the only suspects.

A consequence of this interpretation of epistemic reading is, epistemic reading is
rather hard to communicate since it depends on the epistemic state of the subject as
well as the process of update of epistemic states ([11], p. 129). Then, even for those
who share the same epistemic states, they could disagree on the truth value the same
counterfactual under epistemic reading.
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Schulz [11] claims that Veltman misunderstands epistemic reading of conditionals
since in her opinion, the reference to previous epistemic states isn’t an essential property
of epistemic reading. To illustrate this point, she comes up with a slightly modified
version of the story about murder ([11], p. 130).

The duchess was murdered last night. The detective is supposed to find
out the murder. Finger prints of the butler are found all over the crime
scene, so the detective interrogates the butler and the butler confesses the
murder, which makes the detective believe that the butler killed the duchess
while the gardener has nothing to do with the criminal. Later, the lab
reports that no lock of the house is broken. Besides the duchess, only the
butler and the gardener have the keys to the house. In this situation, would
the detective believe that (9) holds?

Schulz thinks that the detective would believe (9) in the modified version of story
though there is no previous state where (8) holds. Nevertheless, someone else could
still have the intuition that the detective wouldn’t believe (9). It doesn’t help much if
the two sides are engaged in a disputation merely by appealing to intuitions they don’t
share.

Schulz proposes her formalization of epistemic reading in terms of belief state under
the framework of premise semantics. Mainly, a belief state S is a pair ⟨ℬ, U⟩ where ℬ
is a finite set of sentences of propositional language which are built from propositional
letters, negations and conjunctions, and U is a set of possible worlds such that ℬ is
satisfiable in U . A possible world is identified with a function whose domain is the
family of propositional letters in question and whose range is {0, 1}. ℬ is called the
basis of S, which is stipulated to contain exactly those sentences for which the subject
has gained independent external evidence ([11], p. 132). U is called the universe
and contains those possible worlds satisfying the general laws acquired by the subject;
alternatively, it can be said that the general laws are encoded in the universe of belief
state.

Given a counterfactual ' ↪→  , a subject in belief state S believes that ' ↪→  if
and only if he believes  when he (hypothetically) learns '. The hypothetical belief
state after the subject learns that ' is determined by the following criteria

∘ no general law is violated;

∘ the subject believes that ';

∘ the belief revision is minimal.

Specifically, the hypothetical belief state is represented by the <S-minimal elements
of ['] ∩ U where <S is the relative similarity relation defined as follows: for w,w′ ∈
[']∩U , w < w′ iff for all � ∈ ℬ, if � holds at w′ then also at w, and the converse doesn’t
hold.
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Applying this semantics to the story about murder, the belief state S = ⟨ℬ, U⟩ where
ℬ = {ducℎ, butl ∨ gard, butl} and U consists of those worlds satisfying butl ∨ gard →
ducℎ. Different from the version of premise semantics proposed by Veltman [17], the
basis ℬ is a set of sentences of propositional language which don’t have to be logically
independent of each other, e.g. butl∨gard and butl. As has been stated, the elements of
basis are those sentences for which the subject has gained evidence. Since the detective
have evidence for butl ∨ gard and butl respectively, both of them belong to ℬ.

To make the counterfactual assumption ¬butl, the detective would have to abandon
the sentence butl while ducℎ and butl ∨ gard are kept according to the minimality of
belief revision. Considering that ¬butl, it could be concluded that gard and thus (9)
holds under epistemic reading.The key point in this formal analysis is that butl ∨ gard
is kept in the subject’s making counterfactual assumption.

Given Schulz’s arguments and explanations for the semantics, this keep may well
be problematic. The elements of ℬ is justified by their evidence respectively. Since
the subject of belief states is presupposed to be rational, without which it would be
extremely difficulty to give a formal representation of his interpretation and use of
language, he should also suppose that (i) there is some convincing hypothetical evidence
for which he would hypothetically believe that ¬butl when making the counterfactual
assumption, e.g. the butler has never accessed the crime scene or he was sleeping when
the duchess was murdered, and additionally, (ii) the evidence justifying the detective’s
belief that butl, namely, finger prints and confession of the butler, can’t remain in the
counterfactual worlds. But these revisions are likely to preclude the happening of the
murder, so the duchess may be alive.

Although the detective could imagine that the butler employed some tricks by which
he killed the duchess without entering her room, which would probably serve as evidence
for his innocence and make the detective believe that the gardener is left as the only
suspect. But it will involve the extension of the situation at issue and the fact that the
butler didn’t employ the trick in the actual world. Then, the evidence for the butler’s
guilt, e.g. his finger prints and confession, depends on the event that he killed the
duchess and the fact that he didn’t employ any effective trick. As a consequence, when
the detective supposes counterfactually that there is no evidence for the butler’s guilt
and instead there is evidence for his innocence, it might be equally probable either that
he employed some trick or that the event of kill didn’t happen.

More generally, there is often some dependence (most probably, causal dependence)
between evidence justifying different beliefs. However, Schulz seems to implicitly assume
that evidence for different sentences in ℬ is independent of each other, or the subject
of belief states doesn’t need to consider the evidence for the hypothetical belief when
making counterfactual assumption. Either of the two possible assumptions underlying
Schulz’s semantics of epistemic reading is likely to deprive belief’s basis in reality, which
would bring belief into the danger of becoming illusion.
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Therefore, even if there does exist an epistemic reading of counterfactuals, it seems
that its mechanism of meaning is still rather vague which makes it hard to communicate.

5.4 Situations with contingent factors

There is another controversial example about Kennedy’s death which is similar to the
duchess example.

There was a conspiracy against Kennedy. According to this conspiracy,
Oswald was the first one to shoot Kennedy. By accident, Oswald succeeded
in killing Kennedy. To guarantee that Kennedy couldn’t survive, there was
another assassin Aswald who serves as a backup of Oswald. Aswald is such a
skillful assassin that he never fails in his tasks. But considering that anyone
who killed the president can hardly escape and the boss doesn’t want to
sacrifice him if it’s unnecessary, Aswald is only assigned the task of shooting
Kennedy in case Oswald missed the target. Then the following sentence
holds

(10) If Oswald hadn’t killed Kennedy, Aswald would have.

At the first glance, the truth of (10) is dubious. Oswald’s shot is resulted from
the conspiracy against Kennedy, though only by accident, which implies that this shot
isn’t independent while it’s independent that there is a conspiracy. It follows that a
minimal revision of independent facts is abandoning the fact that there is a conspiracy
and adding its negation. With this revision, neither assassin would have killed Kennedy
and thus (10) doesn’t hold.

Schulz [11] avoids the problem by precluding the proposition about the existence
of conspiracy from the set of atomic propositions and thus the conspiracy is taken
for granted, then it is a causal law that Aswald would fire in case Oswald missed the
target. Nevertheless, it hasn’t been explained well why the conspiracy could be taken
as granted. Since the story, when told in [11], also mentions the existence of conspiracy
which is obviously crucial to the death of Kennedy, the soundness of analysis would be
unjustified if the crucial fact is taken as granted without being well motivated.

The point is likely to be, Oswald killed Kennedy by accident, that is, although
Oswald’s kill is caused by the conspiracy against Kennedy, there is some contingent
and usually also complicated factor (denoted by X) determining the success of this
assassination. Lots of factors are widely known to be important to snipe, e.g. speed
and direction of wind, humidity level.

This complicated causal structure of relevant factors are usually far beyond the
capture of most people, so this structure is usually summarized as a collective factor,
which is named as X here. X can’t be neglected or taken as fixed, since it can make a
difference between the actual world and those counterfactual worlds, and particularly,
it underlies the contingency of Oswald’s success.
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In event calculus, X can be represented as a special fluent such that X doesn’t
belong to Df , which implies that X doesn’t need to satisfy the principle of inertia since
the axioms of event calculus, as is stated above, are only given respect to the domains
De and Df ; instead, if X holds at t, i.e. the truth of Hol(X, t), is absolutely inde-
pendent and contingent. Formally, no atomic formula of the form Inl(X), Ini(e,X, t),
Ter(e,X, t), Tra(f, t,X, d), Rel(e,X, t) or Fix(e,X, d) belongs to Dom and Def(X) is
always undefined. A causal law involving X is normally of the form

S(t) ∧Hol(X, t)→ p(t)

Moreover, X can influence the result of Oswald’s shot in a subtle way, for instance,
a little difference in wind direction can lead to the difference between Oswald’s success
and failure. More generally, under the framework of event calculus, the collective factor
X contained in the antecedent of a causal law can usually be assumed to have the power
to influence the truth value of the consequent in a subtle way. This assumption can be
justified as follows. Suppose the subject has learned that X cannot influence p(t) in a
subtle way, then this acquisition would normally requires that the subject has learned
a specific range within which any change of X doesn’t affect the truth of p(t). There
are two possibilities when S(t) and p(t) are fixed.

(i) Within this range, p(t) is necessarily true, then a causal law without X should
be added

S(t) ∧ S′(t)→ p(t)

such that S′(t) represents the truth of some fluents involved in X under which
no change of X can affect the truth of p(t). Moreover, the causal law involving
X is modified as

S(t) ∧ ¬S′(t) ∧Hol(X, t)→ p(t)

that is, only under the condition that S(t) ∧ ¬S′(t), the truth of p(t) bears the
contingency brought by X.

(ii) within this range, p(t) is necessarily false, then the causal law involving X is
modified as

S(t) ∧ ¬S′(t) ∧Hol(X)→ p(t)

Take a modified version of the example about Jones’s hat as an illustration ([17],
[11]).

Jones has such a disposition. At time t0 of every day, he decides if he
wears his hat. The bad weather at t0 invariably induces him to wear his hat
while fine weather doesn’t influences his decision, that is, whether he puts
on his hat or not is random.
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In this situation, X probably represents the collective effect of Jones’s mood, tight-
ness of his schedule (whether he is in a hurry), Jones’s willingness to put his hat on, etc.
It seems that he puts on his hat randomly when the weather is good because he makes
different decisions even when almost no notable change is observed. Instead, a tiny
difference in his mood or willingness is likely to be sufficient for his making a different
decision. Then the causal law acquired by the subject is

∙ Hol(bad, t) ∧ t = t0 → Hap(puton, t)

∙ Hol(fine, t) ∧Hol(X, t) ∧ t = t0 → Hap(puton, t)

Suppose later the subject finds that when the weather is fine, Jones’s being happy
also invariably makes him wear his hat. Then the second causal law is replaced by two
new ones

∙ Hol(fine, t) ∧Hol(ℎappy, t) ∧ t = t0 → Hap(puton, t)

∙ Hol(fine, t) ∧ ¬Hol(ℎappy, t) ∧Hol(X, t) ∧ t = t0 → Hpa(puton, t)

Given that X influences p(t) in a subtle way, the necessary change accompanied
with the hypothetical revision of the truth of Hol(X, t) is extremely small, though
often without specific representation in the mind of the subject. Then, compared with
other standard atomic facts in question, namely, those contained in AT+, Hol(X, t) is
assumed to be of a notably lower weight in the measure of relative similarity between
possible worlds.

To accommodate the collective factor X in the formalizations developed above which
serves as the source of contingency, the relation of relative similarity is to be re-defined.
Let

ATX = AT ∪ {Hol(X, t) ∣ t ∈ T}
AT+

X = {(¬)p ∣ p ∈ ATX}

where T is the temporal interval during which the truth of Hol(X, t) is of importance.
There can be more than one X in question since several atomic facts can be determined
by contingent factors which are independent of each other. As an illustration, we just
discuss the case of a single X.

Definition 5.4. Given the domains and a root ℛ = ⟨FP , LC⟩ with the completion
Comp(ℛ) = ⟨FP , LD⟩, the family IC of integrity constraints which contains (1a), (1b),
(2a) and (2b), and a model ℳ of P = FP ∪ LD ∪ IC for AT . Let M = {(¬)p ∈
AT+

X ∣ ℳ ∣= (¬)p}. An atomic fact (¬)p ∈ M is causally independent if one of the
following holds

(1) p is of the form Inl(f)

(2) p is of the form Hap(e, t) and there is no (¬)q ∈M with (¬)q ↷ (¬)p;
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(3) p is of the form Hol(X, t).

The basis Bℳ of ℳ consists of exactly those causally independent elements of M .

Definition 5.5. Given the domains, a root ℛ = ⟨FP , LC⟩, the family IC of integrity
constraints which contains (1a), (1b), (2a) and (2b), and a model ℳ of P = FP ∪
LD ∪ IC, a subset F of AT+

X is R&IC-consistent if there is no p ∈ ATX such that
F ∪ LD ∪ IC ∣= p ∧ ¬p.

A R&IC-consistent subset F of AT+
X is ℛ-basic if for all (¬)p ∈ F , one of the

following holds:

(i) p is of the form Inl(f);

(ii) p is of the form Hap(e, t) and there is no causal law with the consequent
Hap(e, t);

(iii) p is of the form Hol(X, t).

The relative similarity relation <ℳ over ℛ-basic sets is defined as follows: given
two ℛ-basic sets F and F ′, F <ℳ F ′ iff one of the following holds

(a) ((Bℳ − F ) ∪ (F −Bℳ)) ∩AT+ ⊊ ((Bℳ − F ′) ∪ (F ′ −Bℳ)) ∩AT+

(b) ((Bℳ−F )∪ (F −Bℳ))∩AT+ = ((Bℳ−F ′)∪ (F ′−Bℳ))∩AT+ and ((Bℳ−
F ) ∪ (F −Bℳ)) ∩ (AT+

X −AT+) ⊊ ((Bℳ − F ′) ∪ (F ′ −Bℳ)) ∩ (AT+
X −AT+)

Apply this revised semantics to Kennedy’s example. Assume that the period in
question is [0, t0] where the two assassins received the command from boss at 0 and
then get ready. The conspiracy is simplified as the command received by the Oswald
and Aswald since there is a correlation between the former and the later, that is, the
later is a necessary consequence of the former and the later wouldn’t have happened
if without the former. Moreover, at time t1, Kennedy starts to move (without loss
of generality, assume the movement is linear and at speed 1). When Kennedy moves
to distance d1, it comes into Oswald’s range of fire and Oswald fires immediately. If
Kennedy survives Oswald’s short, Aswald would fire and kill him when he moves to
distance d2 such that t1 + d2 ∈ (t1 + d1, t0].

The domains are as follows

De = {receive,Ofire,Afire, start}
Df = {Oready,Aready, alive, dead,moving, distance(x)}

Dom = {Inl(alive), Inl(dead), Inl(Oready), Inl(Aready), Inl(moving), Hap(receive, t),

Hap(Ofire, t), Hap(Afire, t), Hap(start, t), Ini(receive,Oready, t),

Ini(receive,Aready, t), T er(Ofire, alive, t), Ini(Ofire, dead, t), T er(Afire, alive, t),

Ini(Afire, dead, t), Ini(start,moving, t), Inl(distance(x)), T ra(moving, t, distance(x), d),

Rel(start, distance(), t), Cli(t, alive, t′), Cli(t, distance(x), t′), Cli(t, Oready, t′)

Cli(t, Aready, t′), Cli(t,moving, t′), Cli(t, dead, t′)}
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where receive is short for The assassins receive the command and the others are such
that

Ofire for Oswald fires

Afire for Aswald fires

start for Kennedy starts to move

Oready for Oswald is ready for shooting

Aready for Aswald is ready for shooting

alive for Kennedy is alive

dead for Kennedy is dead

moving for Kennedy is moving linearly at speed 1

distance(x) for The distance of Kennedy’s movement is x
LC contains the following causal laws

∙ ¬Hol(Oready, t)→ Ini(receive,Oready, t)

∙ ¬Hol(Aready, t)→ Ini(receive,Oready, t)

∙ ¬Hol(moving, t)→ Ini(start,moving, t)

∙ ¬Hol(moving, t)→ Rel(start, distance(), t)

∙ Hol(distance(x), t)→ Tra(moving, t, distance(x+ d), d)

∙ Hol(alive, t) ∧Hol(X, t)→ Ter(Ofire, alive, t)

∙ Hol(alive, t) ∧Hol(X, t)→ Ini(Ofire, dead, t)

∙ Hol(alive, t) ∧Hol(Oready, t) ∧Hol(distance(d1), t)→ Hap(Ofires, t)

∙ Hol(alive, t)→ Ter(Afire, alive, t)

∙ Hol(alive, t)→ Ini(Afire, dead, t)

∙ Hol(alive, t) ∧Hol(Aready, t) ∧Hol(distance(d2), t)→ Hap(Afires, t)

The completion can be spelled out in a routine way and thus omitted here. X holds
at time t1 + d1, which grounds the success of Oswald’s shooting. But no information is
available about the truth value of Hol(X, t) for all t ∈ [0, t1 +d1)∪ (t1 +d1, t0], so there
is no unique model representing the story. Pick an arbitraryℳ of them, the basis Bℳ
consists of the following atomic facts by definition.

{¬Inl(Oready),¬Inl(Aready), Inl(alive),¬Inl(dead),¬Inl(moving), Inl(distance(0))

Hap(receive, 0), Hap(start, t1), Hol(X, t1 + d1)}∪
{¬Hap(receive, t) ∣ t ∈ (0, t1]} ∪ {¬Hap(start, t) ∣ t ∈ [0, t1) ∪ (t1, t0]}

and those (¬)Hol(X, t) for t ∈ [0, t1 + d1) ∪ (t1 + d1, t0]. The integrity constraint apart
from (1a), (1b), (2a) and (2b) is

Hol(distance(x), t) ∧Hol(distance(y), t)→ x = y
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Various modifications of Bℳ are sufficient for the counterfactual assumption if Os-
wald hadn’t killed Kennedy (formally, ¬(Hap(Ofire, t) ∧ Ini(Ofire, dead, t)) for all
t ∈ [0, t0]), e.g. Kennedy doesn’t start to move or the assassins haven’t received the
command. Any modification involving the change of atomic facts other than those of the
form (¬)Hol(X, t) will be less similar toℳ, and mere modifications of (¬)Hol(X, t) will
necessarily concerns (¬)Hol(X, t1 + d1). Actually, if those independent particular facts
not of the form (¬)Hol(X, t) are fixed, only (¬)Hol(X, t1+d1) can influence the success
or failure of Oswald because Kennedy reaches distance d1 precisely at time t1 + d1. It
follows that the unique minimal modification of Bℳ is abandoning Hol(X, t1 + d1) and
adding its negation ¬Hol(X, t1 + d1). Let

B′ = Bℳ − {Hol(X, t1 + d1)} ∪ {¬Hol(X, t1 + d1)}

it could be checked routinely that

B′ ∪ LD ∪ IC ∣= Hap(Afire, t1 + d2) ∧ Ini(Afire, dead, t1 + d2)

that is, Aswald would have killed Kennedy at time t1 + d2.

6 Conclusion

Though complicated, causation can be specified on the basis of the acquisition of causal
laws and particular facts by making use of information about timing. Event calculus
serves as a pretty fine-grained framework for this task. Given the mechanism of identi-
fication of causation, the semantics of counterfactuals has been formulated under event
calculus. With sufficient details about the causal structure underlying each situation,
the semantics can be used to determine the truth value of counterfactuals precisely, e.g.
those about neuron networks; while with merely partial information, the semantics can
also preserve the vagueness which does exist in practical counterfactual reasoning, e.g.
those about people’s daily activities.

On the contrary, it has also been shown that there is probably a gap between the
poor differentiating power of counterfactuals and the complication of causal structures,
which permanently threaten the soundness of counterfactual analysis of causation.

Given the contrast between the two approaches, it can be concluded that it’s cau-
sation that underlies the semantics of causation rather than the converse.
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