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Abstract

In conventional preference aggregation, usually the result of aggregating multiple
preferences is a single preference. Thus, the preference of the majority is seen as
the aggregated preference of the whole society. But often, members of a society
have many different tastes and these tastes are partly recognizable from their pref-
erences. There are many applications in which having more than one preference
as the aggregation of the input preferences is more useful (or necessary). Another
aspect of such applications is that the agents may not have a preference ordering
consisting of all candidates (this is not actually feasible when there is a very large
number of candidates, e.g., all music or movies on a huge database), and they
would only be required to submit partial preferences on the set of candidates.

In this thesis we suggest a new approach in computational social choice to
have more than one preference as the aggregated preference of the society. We
present a model to extract these aggregated preferences (we call them trends)
from incomplete ordinal preferences. Furthermore, we introduce a number of
axiomatic properties to evaluate this new model and use them to investigate the
properties of our proposed methods for this model.
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Chapter 1

Introduction

1.1 Motivation

The aggregating of preferences in a society is one of the main concerns in the
social choice context. But in a society with diverse tendencies, it is not very clear
what the collective choice is and how we can obtain it.

Nowadays in many applications (especially in the world of the Internet, online
voting, and huge amounts of data) there are many instances in which the number
of candidates are very high and also the number of voters is large. Ranking web
pages, videos, songs, movies, books, ... are some common examples of such voting
or ranking systems.

For example, think of an online system for ranking/rating a general database
of movies or music. Despite the diversity of both movies or music and people
all around the world and all the various types of productions and different tastes
of individuals, the classical methods of aggregating preferences would mix all
of these and produce a single ranking as the social aggregated preference. If
they want to produce more than one ranking, they usually do not really use a
different social preference aggregation method, but use a preprocessing phase to
do the task. The most common solution of this problem, in classical methods,
is categorizing items with respect to their genres, language, geographical and
chronological parameters, etc., and then for each of these categories, producing a
single ranking. But this would not solve the problem properly. In this approach,
first the categories have to be defined and items have to be assigned to them
(manually or automatically), and this is not an easy or clear procedure.

When this is done manually, which is still the case for most real-world ap-
plications (like attributed genres for movie and music), besides being a manual
procedure, there are other problems as well. Assigning an (or a set of) attribute(s)
to an entity is not always clear-cut. There are usually marginal cases where the
appropriate attribute is disputed. Another problem is that when the set of al-
ternatives (or individuals in some cases) is partitioned, the inter-relations of the
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2 Chapter 1. Introduction

different parts are lost.
For automated categorizing, there has been lots of research on clustering and

segmentation [15], but the issues mentioned for manual categorizing still remain.
Another related body of research is recommender systems [16, 22, 26]. Specif-

ically, collaborative filtering deals with finding users with similar tastes for each
user [25, 12]. The assumption in this approach is that if two agents have a similar
preference on a set of alternatives, then they probably also have similar interests
on other alternatives. Based on this assumption, the system recommends new
items to the user, using the choices of the other matched user(s) [11].

Although, this approach addresses part of the problem we raised in the begin-
ning, there are some significant differences. Recommender systems and collabo-
rative filtering are mostly designed as a user-based system, i.e., they aim to find
a (number of) relevant choice(s) for each user based on the previous choices of
the user. But in the social choice context, we usually look for collective choices
or preferences.

Another issue is that in collaborative filtering, the methods are mostly based
on a kind of partitioning (of the users based on their taste, or sometimes of
the items, based on a similar set of corresponding users). This would still have
the disadvantage we mentioned before, that is, that it only considers similar
users (items) for each user (item). This is also the case, when methods do not
really partition but use the data of the neighbors of each entity and again do
not consider the useful information outside of its vicinity. Another important
point is, for example, if there are two users which have the same taste on half
of their choices but the rest of their choices are completely different, they are
not considered similar in most cases and their strong agreement on half of their
choices are totally ignored.

There are also some works on the relation of collaborative filtering and social
choice theory [18].

If the number of candidates (alternatives) is large, it is not possible to get the
complete preference from each voter. So we will only get a preference on a subset
of alternatives for each voter (most likely on the most important ones for him,
but not necessarily). This issue is addressed for combinatorial domains [6], but
not for the general case.

So, in summary, these kinds of systems cause some particular issues, mainly
because of the diversity of the voters’ preferences and the high number of alterna-
tives; which is not well explored in the preference aggregation and computational
social choice context.

One of these important issues that has not been investigated very well, or
not considered at all (as far as we know), in the social choice context is: When
there are many voters and many alternatives, it is natural to imagine some groups
of voters in which the voters in each group have roughly similar preferences (at
least on a part of their preferences) and different from the rest of the society’s
preferences (group of voters with similar taste).
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So maybe it would be more rational and useful to report more than one
aggregated preference (maybe with a score for each) as the result, in contrast
to the classic methods that just concentrate all the preferences in one social
preference.

For this issue, in our model, we have a preference (or scores) on a subset
of alternatives for each voter. The subset that each voter chooses to report his
opinion on depends on something like:

• the order of the alternatives that are the most important for him (not
necessarily the most preferable ones, like in bipolar preferences [2]);

• alternatives he knows or remembers at that time (because of the huge
amount of candidates, it is not possible for voters to know or remember
or even check all the alternatives);

• there are no clear differences between some alternatives for a voter so he
does not report anything about them;

• some limitations have been imposed on the ballots due to voting rules,
implementation constraints, communication restrictions, etc . . . .

As the output, we extract a number of aggregated preferences (trends), maybe
with a score for each that shows the reliability or popularity of that result. The
number of trends in the result can be determined by a constant number (report
that many trends with highest scores) or by a constant threshold (report all trends
with higher score than the threshold) or just all of the trends with their scores.

We have developed a model that attempts to address these issues. The model
could be defined in more general settings, as we explain below, but here we will
present it in a setting that is closer to classic preference aggregation systems.

We can assume different models for systems of obtaining trends as a result of
aggregating different preferences.

There are different possible ways of expressing preferences by voters and also
for aggregation of these preferences as the result. In the first step, there are two
general ways for expressing preferences:

• Describing the preference by ordering candidates with respect to each other
(Ranked voting systems / Ordinal).

• Assigning each candidate a score that indicates the amount it is favored
(Rated voting systems / Cardinal).

It is clear that every cardinal preference profile can easily be converted into
an ordinal one, by just ordering the candidates by their scores. In this thesis, as
in most conventional preference aggregation methods, we only deal with ordinal
preferences (both for the input and output).

Some of the most common variants of ordinary preference aggregation systems,
based on the assumptions about expressing input preferences, are:
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• All voters report their total order on the complete list of candidates and
the result is in the same format, i.e., a total order of all candidates. (This
may be considered as the most desirable way of preference aggregating if it
would be practically feasible.)

• There is a particular number, say k, k < m (number of candidates), that
each voter should report a total order on the exact (at most) k best candi-
dates in his/her view. In this case the rest of the candidates in each reported
preference are assumed to be less preferable for that voter and we do not
have any more information about the voter’s preference for them.

• It is also possible to relax the assumption of reporting the order on the most
preferable candidates of each voter, so voters can report their order on the
exact (at most) k candidates from any part of their virtually total order of
all the candidates (e.g., the k−1 best and the single worst candidates). The
result usually has the same format (order of k most aggregated preferable
candidates) or a total order of all the candidates.

• There is no restriction on the number of candidates that are compared
by each voter. This means that each voter can report his/her preference
among as many candidates as he/she wishes. Therefore, the amount of data
acquired in this case is very dependent on the individual voters’ profiles. So
it is attempted to obtain as complete an order on the candidates as possible.

The first case, is the most prevailing one in the social choice context. Other
than complete preferences, most common variants of the systems which are stud-
ied in the field are partial order preferences and incomplete total orders. In most
studies, the incomplete total orders are considered to be as the second case, i.e.,
they assume that the unmentioned alternatives are the least preferable ones and
with this assumption they usually build up an order on the complete set of alter-
natives (this is often a partial order since the rest of the alternatives are supposed
to be indifferent among themselves).

In our proposed model, we consider the general case in which the individuals’
preferences are total orders on arbitrary subsets of alternatives.

So the system gets an incomplete ordinal preference from each voter and gives
a number of incomplete orders of candidates as trends. We call this a Trend
Aggregation Procedure (TAP).

To simplify the data from the input preferences and decrease the computa-
tional complexity of the algorithm, we may convert this data to its atomic parts
(e.g., a set of weights for candidates or a set of weighted pairwise comparisons).
In the TAPs studied in this paper, we only deal with the conversion to a set of
weighted pairwise comparisons, and call this conversion the decomposition pro-
cess. The reverse process, i.e., converting this data into a preference on a subset
of candidates, is called a composition process.
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Although there are some works on aggregation of preferences with partial
orders (for example [20]), it seems that the concepts of having more than one
aggregated preference as the result and considering the relation of the alternatives
from input preferences are new. Finding possible and necessary winners [19] can
be seen as one of the closest concepts to our idea, since it proposes more than one
winner as the result. But they are only alternative winners and not aggregated
preferences. Maybe we can see it as a very special case of our method, i.e., we
can design some settings for the model which results in the top candidates of the
output trends being possible or necessary winners.

There are also some works on aggregating preferences in multi-issue domains
like [8, 14] which are somewhat related to our work since they consider multiple is-
sues (attributes) for the alternatives; but these attributes are fixed and predefined
in their model and the model’s result is still a single aggregation.

1.2 Toward the Model

Here, when we talk about the “relation” between candidates, we roughly refer
to the implicit relation expressed by comparing a set of candidates in a voter’s
preference. For example, when an individual expresses his preference on a number
of alternatives, we can assume that the alternatives have one or more aspects in
common that enabled the voter to compare them with each other. This is also
the case when we put a subset of alternatives in an output preference (trend).

In conventional preference aggregation, the goal is to find an order for the set
of inputs which are preferences of different individuals that are usually uniform
(e.g., a total order on the set of candidates, as assumed in the seminal work of
Arrow [1]).

Also, relations between candidates in the view of the voters are not taken into
account in conventional methods of preference aggregation. This may come from
the assumption that each voter reports a complete order, so the relation does not
have a meaning in such a case; or when we want to obtain just one total preference,
then the relation is not very important. These facts make it easy to work with
the input preferences, since we do not need to care about the relation between
the candidates, beyond pairwise orders, in each reported preference. Thus, in
most cases, we can just decompose each preference (a total order) to its primitive
pairwise orders and aggregate these pairwise orders using the desired method.

But when we have a large number of both candidates and voters with very
different properties and attitudes, the concept of “relation” becomes crucial, es-
pecially when the number of candidates is so large that no voter knows all the
candidates or wants/is able to compare all the candidates with each other. This
will be more important when we want to find trends in the preferences of vot-
ers and report more than one aggregated preference as the result. Therefore we
cannot use previous methods anymore, i.e., we can not ignore the relations and
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decompose input preferences freely. On the other hand, the order of candidates is
important as well, so we cannot use partitioning and clustering methods. There-
for one of the main concerns here is to find a way for aggregating preferences
while considering their relations.

In our model, we want to obtain a number of trends rather than one social
preference. So in addition to specifying a number of orders on the set of alterna-
tives, it is important for them to have a kind of reasonable relation. To explain
this, first notice that when we have, for example, an order on the set of {A,B,C}
like A ≻ B ≻ C, it, in fact, means that A ≻ B, B ≻ C and A ≻ C. But in
our model these two different ways of expressing the order between these alter-
natives have an important difference. In the first one, in addition to specifying
an order on them, it determines that there is some sort of relation between these
three alternatives. However in the second case where there are three independent
comparisons between the three alternatives, they can potentially come from three
different voters. Thus, despite the fact that these three together are equivalent
to the first order from the ordering aspect, we can not consider them as related
alternatives as we can in the first case. So we try to distinguish these two different
expressions in our method.

Let us use an example to explain our idea and give a better understanding of
the kinds of problems we are facing here.

Example 1.1. Consider a system with 15 alternatives (for example, movies)
a, b, c, d, e, f, g, h, q, r, s, t, x, y, z; and 10 voters v1, ..., v10. Let the voters’ ballots
be as follows:

v1 : a ≻ b ≻ c ≻ d ≻ h,
v2 : a ≻ g ≻ c ≻ d,
v3 : b ≻ c ≻ d ≻ e ≻ f,
v4 : c ≻ a ≻ d ≻ g ≻ f,
v5 : f ≻ g ≻ h,
v6 : q ≻ r ≻ s ≻ t,
v7 : r ≻ q ≻ t,
v8 : t ≻ s ≻ q ≻ r,
v9 : x ≻ y ≻ z,
v10 : a ≻ q ≻ x,

An interpretation of this preference profile might be as follows:
There is a restriction on the maximum number of alternatives that each can-

didate can report its order on; this number is 5. v1 knows and remembers all
the candidates. It prefers a the most and then b, c and d are the most preferred
alternatives and h is the worst alternative; e, f, g are less important and the rest
are totally indifferent for this voter. So it prefers to report h at the end of its
order rather than one of e, f or g.
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v2 just knows a, g, c, d and has a clear preference on them as reported. The
rest have a mixture of these reasons to report their preferences on the set of
alternatives as they did.

Another observation on this preference profile is that we can consider some sort
of relations on the members of these three sets of alternatives: A = {a, b, c, d, e, f, g, h},
B = {q, r, s, t} and C = {x, y, z}. We can see that except for v10, all other voters’
preferences are in a subset of one of these sets. We can interpret this as alter-
natives having three different general genres: A,B,C. Each voter v1, ..., v9 is a
fan of one of these genres or has comparisons just on members of one genre; and
voter v10 compares one alternative from each genre (e.g., the best of each genre
for it).

Now to get a better understanding of our proposed problem, assume these
different situations:

• There are 100 voters exactly like each of v1, ..., v5 and 10 for each of the rest
of the types:

In this situation almost all conventional methods of aggregating preferences
(which have a single aggregated preference as the result), will result in a
preference in which all the alternatives of genre A are on the top. It would
be more problematic if the method only reports preferences on a subset of
alternatives that it considers as the best. In this case, the result will probably
consist of a subset of alternatives in genre A, and there is no information
about the other genres, even their best candidates.

So the result does not represent a part of society (fans of genres B and C)
or is useless for them.

• There are 100 voters of each type except for v10 that has just 10 voters:

This case will result in a social preference which is a mixture of the different
genres. So it is somehow useless again since it has mixed the alternatives
of different genres and the genres are not recognizable anymore.

• There are 100 voters of type v10 and 10 for each of the rest of the types.

Here we will have the same problem and the aggregated preference will con-
sist of just the best of each genre.

1.3 Intuition

Here we will present a few simple situations to illustrate the concept and give
some insight into the problem and then use them to intuitively obtain a number
of properties that should hold in our method.

For each aggregated preference (trend), we can assume a value which repre-
sents one or a mixture of the concepts of the strength, popularity or reliability of
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that trend as an aggregated preference. We denote this value (score) of a trend
P by v(P ).

When we compare two scenarios of voting with two sets of voters’ preferences,
the desired values for some of the trends are compared. Note that, theoretically,
any complete order of any subset of candidates can be seen as an aggregated
preference (even with a value of zero, though we usually do not consider them as
aggregated preferences). Here, in most cases, we do not mind which ones should
be reported as aggregated preferences for the result, and just compare the values
of some specific aggregated preferences.

In a very specific case in which the set of individuals consists of groups of
voters with the exact same preferences, the concept of a trend is clearer. In
particular, if these preferences are on the disjoint subsets of alternatives with
the same size, there should not be any debate on the selection of trends (e.g., a
society in which each individual’s preference is one of the three types of v5, v7 or
v9 in the previous example). The preferences with different sizes might cause a
dispute about considering priority for preferences with greater length. But with
this assumption, the only parameter that makes a priority for a preference would
be the size of the group of voters which the preference represents.

Any other situation can raise difficulty, from both conceptual and compu-
tational aspects. As we mentioned, even if there are disjoint preferences with
different lengths, the question is do we want to give advantage to longer prefer-
ences, and if yes, in what sense? For example, if we have 32 voters of type v1, 35
voter of type v7 and 33 of type v9, is a trend of type v1 is a better representative
of the community or v7? That is, we have v(v7) ≥ v(v9). Now, where should we
put v(v1) in this inequality?

If we drop the restriction of disjoint preferences, not only does the concept
of a trend get complicated, but we will have difficulties in the computational
part of the problem. In the previous cases, the process was easy. There were a
few disjoint preferences and we only needed to count the number of occurrences
of each preference as an individuals’ votes. But if this is not the case, that is,
the diversity of the preferences are high and so the individuals’ preferences are
not limited to a few preferences, it is almost impossible or meaningless to count
identical preferences.

So, to be able to aggregate data from different preferences, we need to decom-
pose the preferences into smaller entities that make it possible to do calculations.
In general, in conventional methods, there are three main approaches for doing
calculations on the preferences (we will see instances for each of these cases in
the next chapter):

• Assign a score to each alternative in each preference and then do the calcu-
lation on these scores. This is usually called positional scoring.

• Compute the results of the pairwise elections for each pair of alternatives
from the preferences; then use these results for the rest of the calculations.
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• Define a sort of distance between two preferences and then do the calcula-
tions based on this distance and using the complete preferences.

In general, methods of the first type (positional scoring methods) are com-
putationally easier and faster than the other methods. But they usually have
drawbacks with regards to theoretical properties. This is due to the fact that
these methods ignore the relative relations of the alternatives and project the
information of each preference for each candidate to only one score.

The second type of methods, the most common ones, consist of a variety of
different methods. Depending on how the data from the pairwise elections are
being used, these methods can be computationally easy or hard. These meth-
ods preserve more information from each preference than the positional scoring
methods. But, while they hold the relative preference of each pair, they ignore
the position of the alternatives (and also relative position for each pair) in the
preferences, which is partly considered in the positional scoring methods.

The third class of methods preserve all the information of the preferences since
they do not transform the preferences to other forms of data. Although this is
a great advantage, its drawback is that it makes these methods computationally
difficult. Another problem, which is the case for most of the methods of all of
these three classes, but is more serious for the third type, is that these methods
strongly rely on uniform (complete) orders. That is, they are hardly applicable
for preferences with different lengths.

Thus, as a result, we need to decompose preferences to be able to perform
calculations (specially when the preferences are incomplete orders). This is also
crucial from the computational complexity point of view. But, at the same time,
we want to preserve information as much as possible so we can preserve a trace
of the relations between the alternatives.

Now, we explain our idea on a couple of basic situations. First, let us take
another look at the case of a preference on the set of {A,B,C}. As we said, we
want to have a distinction between a preference p : A ≻ B ≻ C, and the three
preferences q1 : A ≻ B, q2 : B ≻ C, and q3 : A ≻ C together. We show the score
of aggregated preferences in a society with only one input of p with vp, and for
the case of three preferences q1, q2 and q3 we use vq. From what we said about
the concepts of trends and relations, we have:

vp(A ≻ B ≻ C) ≥ vq(A ≻ B ≻ C).

This is because of the assumption that, in our model, these two different ways
of expressing the order between these alternatives have an important difference.
Also, since the alternatives in the first case have more correlation, the preference
would have more support for a trend on them. On the other hand, we do not
want to prevent the three independent preferences from building a trend when
they posses all the parts of the trend; which is in fact the main point of our
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model: to gather the scattered pieces of information among the different input
preferences. So, we only want to assign a lower score in the second case.

We use the following observation to make this distinction. In the first case,
since the three alternatives are related (occur in the same preference), we have
transitivity; i.e., from A ≻ B and B ≻ C, we can imply that A ≻ C. The implicit
assumption in transitivity is, when one prefers A to B and B to C, it also prefers
A to C at least as much as it preferred A to B (or B to C). This is an important
piece of information which is lost in the second case, in which all the three pairs
have the same status. Considering this fact, it is more plausible that A is more
preferable than C for the voter of the first case rather than the one in the second
case who said A ≻ C. Note that it is not clear that A is less preferable than C for
the second voter just because there is no other candidate in its preference profile
and it could be even the opposite. But the point is, from these data, it is more
plausible to be so. That is:

vp(A ≻ C) ≥ vq(A ≻ C)

The arguable question in our model for this example is: what can we say
about the score of A ≻ B in each of these two scenarios and their comparison?
On one hand we can say that since the voter in the first scenario has specified
its preference on more candidates, its ordering is more reliable; but on the other
hand, one may say that since the voter in the second scenario only compares A
and B, it means that just these two candidates were important for it and so it
is more precise (or they could be potentially the best and worst choices for that
voter, while in the first case there is at least one more alternative worse than B).

So the question of choosing between these interpretations mostly depends
on our intuition and the properties and applications of our problem in practice,
unless one of these entails some unwanted properties or has a conflict with other
primitive properties. For now, we will not consider neither of these interpretations
and treat them equally. That is, in this example we have:

vp(A ≻ B) = vq(A ≻ B)

On the basis of these observations, we propose our method. First, like in
many conventional preference aggregation methods, we decompose the input pref-
erences into pairwise comparisons. However, unlike for conventional methods, in
the process of decomposition we also consider the relative position of the two
alternatives. That is, instead of assigning a constant value to each occurrence of
a pair in a preference, we also consider the distance of the two alternatives in each
input preference and assign a higher value to the more distant pairs. This value,
we can say, represents the “amount” or “intensity” of a preference for those two
alternatives in the view of the voter.

Note that, e.g., in the preference A ≻ B ≻ C, it is reasonable to say that
A is preferred over C more than it is preferred over B, and also more than B is



1.3. Intuition 11

preferred over C. However, it is not always true to say that A is preferred to B
exactly twice as much as the other two preferences.

From this viewpoint, we can also think that it is plausible for A to be more
preferable to C in A ≻ B ≻ C than when the reported preference is A ≻ C ≻ B,
but not necessarily.

Hence, we do not necessarily use the distance of a pair itself as the value
to assign to the pair; but use a non-decreasing function on this distance, which
can be a better approximation for this concept of intensity of the preference (the
distance itself is a special case).

At this stage, we can use these values to aggregate the information of all input
preferences. For each ordered pair (i.e., one for A ≻ B and one for B ≻ A), we
add up the values of their pairwise comparisons from all input preferences.

Now the problem is how to combine these fragments of data in a way to
obtain relevant total orders on the subsets of candidates, i.e., aggregated pref-
erences. The main difference from the classical preference aggregation methods
which decompose the input preferences is that here we want to obtain more than
one collective preference and these collective preferences could be on a subset of
the alternatives rather than on all of them. So, the classical methods could hardly
work here. In this phase, we merge pairwise orders to get chains of ordered pref-
erences while trying to retrieve the relations of the candidates that we preserved
in the decomposition phase.

To do this, let us take a look at the simple case of A ≻ B ≻ C again. Since we
decomposed it into the three pairwise comparisons A ≻ B, B ≻ C and A ≻ C,
it is natural to do the reverse procedure and merge these three pairs into a total
order on them. Notice that, here we do not have transitivity, that is, from A ≻ B
and B ≻ C we can not conclude that A ≻ C; although it may be the case for
each individual’s preference. So we may not have as much supportive data for
A ≻ C as we have for A ≻ B and B ≻ C, and also, in most cases, we do not have
the same supportive data for the last two.

Therefore, for these three candidates, and more particularly for these three
pairwise comparisons, we have three independent values coming from the sum-
mation of their corresponding weights. Let us call these three values a, b, and c
corresponding to A ≻ B, B ≻ C and A ≻ C respectively. Now we want to assign
a value to the aggregated preference of A ≻ B ≻ C, based on these values. The
most confident thing that we can do is to consider each of these three with the
value of d = min{a, b, c} instead of their own value. Then we have three segments
of the aggregated preference (trend) of A ≻ B ≻ C with the same supportive
value and so we can say that there is such a trend in the preferences of the voters
and assign this value (or a corresponding value) to this trend.

We can also think of other alternatives for assigning a value to such a trend.
For example, maybe the summation or multiplication of the values of the basic
pairwise comparisons of each trend could be a good alternative in some cases. In
addition, since we will have different trends with different lengths in our model,
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perhaps considering the length of the trends in computing the value can be ben-
eficial or even necessary in these two cases. So we may use the average of these
values (arithmetic or geometric mean) as the score of each trend.

Furthermore, since we use the distances of pairwise comparisons in the decom-
position phase, it is more reasonable to combine them using the reverse of the
same procedure we used to decompose them. For example, consider again A ≻ B,
B ≻ C, and A ≻ C, with the corresponding values a, b, and c, respectively. We
should divide c by the value that we would use if we wanted to assign a score
to the pairwise comparison of A ≻ C in preference A ≻ B ≻ C. So, for each
possible trend, we use (the minimum or average of) these values (for all pairwise
comparisons of that trend) to assign a score to that trend. We report all of these
trends with their corresponding scores or select a number of them to represent
the most important trends in the society.

1.3.1 Chapter overview

We will discuss the details of this method in this thesis. In this thesis, our
focus is on the theoretical aspect of this problem. So, we only define trends
and methods for assigning scores to them formally; and we will not present a
particular algorithm for producing the trends.

In the next chapter, we will have a short review of classic social choice theory.
We focus mostly on the different methods of voting and preference aggregation
to see what the common methods in these fields are. We also present some of the
most important axiomatic properties (criteria) which are introduced to evaluate
different aggregation methods. We will generalize some of these axioms later to
evaluate our proposed model.

In Chapter 3, we formally introduce our model. First, we present a gen-
eral framework for trend aggregation procedures. Then we explain our method
formally. We will also present three more methods which satisfy a particular
property. Finally, we suggest a number of filters to refine the huge number of the
output trends of the model.

In Chapter 4, we investigate the properties of the model. We present a number
of axiomatic properties, which are either the generalization of classic axioms in
our framework or totally new axioms based on the new aspects of this framework.
We choose a number of major variants of the methods that we proposed, and for
each of the properties, we will check in which methods the properties hold and in
which methods they do not.

In the last chapter, we summarize what we have done. We will also have a
discussion of our results. As we said, we will not present any algorithm in this
thesis; so we will not have any result about the computational complexity of the
problem. However, we will have a brief discussion about the size of the problem
and the potential complexity of any trend-producing algorithm. At the end, we
will present a number of suggestions for possible future work.



Chapter 2

Voting and Preference Aggregation
Procedures

In this chapter we will introduce (classic) voting and preference aggregation pro-
cedures. It will consists of their theoretical aspects such as their properties. We
will particularly use some of these properties later and try to investigate whether
they or their modified versions hold in our model.

Most of the content of this chapter can be found in most introductory books
on social choice and voting theory. A few references are [3, 4, 5].

2.1 Voting Systems

A voting system consists of a set of individuals or voters, a set of alternatives or
candidates and a voting procedure which describes how to vote and how to count
the votes to aggregate the individuals’ preferences and obtain a collective decision
or social choice.

Voters might be people of a society or virtual agents such as websites in the
World Wide Web.

Candidates can also represent different entities, e.g., the set of candidates
could be a subset of the voters (ordinary elections), or a disjoint set of individuals
of the same type or of a completely different type (e.g., a referendum).

In some contexts, “voting systems” may refer to a general set of systems that
also contains preference aggregation. In the context of voting theory, however,
we usually consider a distinction between systems that only aim to choose one
or more candidates, which are called voting systems, and preference aggregation
systems, which look for rank of all or a subset of the candidates. The goal of a
voting system might be to elect one or more candidates.

Considering the above, there are two remaining questions: “How to vote?”
and “How to count the votes?”. A voting procedure defines the format of an
acceptable vote or ballot that are called admissible ballots or valid ballots ; and a
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method for aggregating these ballots to obtain a winner or the winners.

2.1.1 Notation and Basic Definitions

Here we only deal with finite sets of voters and candidates. Let V = {v1, ..., vn}
be the set of voters and X = {c1, ..., cm} the set of alternatives (candidates). We
may refer to voters just by their index, i.e., i for voter vi. In this case the set of
voters will be denoted by N = {1, 2, ..., n}.

Each voter can cast a valid ballot. The set of valid ballots is determined by
the voting procedure. If the ballot of voter i is di, for all voters i = 1, ..., n, the
n-tuple d = (d1, d2, ..., dn) is the ballot response profile.

Assume each voter i has a preference that is a weak order %i on X ; %i is
transitive and complete, i.e.:

- ∀x, y, z ∈ X : x %i y ∧ y %i z ⇒ x %i z (Transitive)

- ∀x, y ∈ X : x %i y ∨ y %i x (Complete)

x %i y means voter i prefers x to y or is indifferent between these two. If i
prefers x to y, it is denoted by x ≻i y and called a strict preference. Indifference
between x and y for voter i is denoted by x ∼i y.

Since the indifference relation is reflexive, symmetric, and transitive, it is an
equivalence relation. So ∼i partitions X into r indifference classes X1, ...,Xr. For
each x and y in different classes, exactly one of these is true: x ≻i y or y ≻i x.

If for all x, y ∈ X : x ∼i y ⇔ x = y, then %i is equivalent to ≻i and is
called a linear order or strict ranking and x1 ≻i x2 ≻i ... ≻i xm is abbreviated as
x1x2...xm.

In most cases the assumption is that the voters’ preferences are a linear order.
From now on, we assume that the preferences of all voters are linear orders of all
the candidates and the voters cast the exact same order as their ballots. So, we
use the terms of preference and ballot for a voter interchangeably.

We denote the set of strict linear orders on set of X as:

L(X ) := {≻|≻ is a strict linear order on X}

Since all the preferences are strict, there is no more indifference relations and
so we only use the strict preference relations (≻).

The set of preferences of all voters (an n-tuple v = (≻1,≻2, ...,≻n)) of linear
orders on X , one for each voter) is a voter preference profile.

The set of all possible ballot response profiles for the set of voters X is L(X )n,
and each of its members is a ballot response profile d = (d1, d2, ..., dn), di ∈ L(X )
for each voter.
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If i’s ballot (di) prefers x to y, it is denoted by xdiy. If xdiy for all di in
d = (d1, ..., dn) ∈ L(X )n (i.e., x is preferred to y in all ballots); we say that x
dominates y, or xdy.

Let d = (d1, ..., di, ..., dn) and d′i be an admissible ballot; then (d−i, d
′
i) =

(d1, ..., d
′
i, ..., dn) is a ballot response profile, obtained by replacing di by d′i in d.

Let di and d′i be two admissible ballots for a voter i, and let x be an arbitrary
candidate. We say that x has got advantage or is raised in voter i’s ballot (d′i)
compared to di and denote it as d′i >x di (d

′
i is better for x than di), if the position

of x in d′i is better (higher) than in di.
If d = (d1, ..., dn) and d′ = (d′1, ..., d

′
n) are two ballot response profiles, and

d′i >x di for all i = 1, ..., n, we write d′ >x d.
If d = (d1, ..., dn) is a ballot response profile and A ⊆ X is a subset of voters,

we use d|A for the ballot response profile of voters in A. So if |A| = j, d|A is a
j-tuple.

2.1.2 Social Choice Functions

A voting rule or social choice function (SCF) is a function that for each input
profile produces an outcome as the winner(s) of the election or collective choice
of the society. To be precise, in the literature there is often a distinction between
voting rules and social choice functions. That is, in SCFs an extra set is defined
as the feasible set of alternatives for the possible winners of the procedure. In
this respect, voting rules are special cases of SCFs.

Here we restrict ourselves to the voting rule definition. The aim of an election
can either be finding a single candidate (the winner) or a set of k candidates.
In both cases, the procedure may calculate the (set of) winners directly or first
produce a ranking on the alternatives and then select the top (k) candidate(s) as
the winner(s).

Although for most voting procedures there exist tie and a complete voting
system should have a solution for such situations, here we ignore the tie-breaking
issue and assume that the procedures only produce a set of exact number of can-
didates as desired. Such a procedure is called resolute or decisive, and procedures
with ties are called irresolute.

Definition 2.1 (Social choice function). Let n be the number of voters and X
the set of candidates. A social choice function is a mapping from the set of all
possible profiles (linear orders) to the family of non-empty subsets of X ,i.e.,

F : L(X )n → 2X/{∅}.

Sometimes, in the literature, a distinction considered between the terms “vot-
ing procedure” and “voting rule”, in which voting rules are specifically the resolute
voting procedures with a single winner. In this sense, the term voting correspon-
dence is used for the irresolute procedures. However, we may use the terms voting
rule and voting procedure interchangeably in the absence of tie.
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When k is the number of desired winners of the procedure, the function F is
called a choose-k voting procedure. For example procedures which aim to elect
one candidate are choose-1 rules.

Definition 2.2 (Choose-k voting procedure). A choose-k voting procedure is a
social choice function in which the outcome is a set of k winning alternatives,
that is,

F : L(X )n → {X ⊆ X : |X| = k}.

Here, since we ignore ties, we defined F to have exactly k members (rather
than ≥ k in the more general case). In case of dealing with tie-breaking, we may
let F be such that |F (d)| ≥ k. In particular, the formal definition of choose-1
voting procedures (voting rules) is as follows:

Definition 2.3 (Voting rule). A choose-1 voting rule is a social choice function
in which the outcome is a single winning alternative, that is,

F : L(X )n → X .

2.2 Voting Procedures

In this section, we introduce a few common voting procedures. In general, voting
procedures can be categorized based on the type of their voters’ ballots. In this
regard, there are two main types of voting procedures. The nonranked voting
systems and the ranked voting systems. In nonranked voting systems, voters
express their opinions by only specifying which candidates they vote for. In this
sense, each voter can indicate two levels of distinction among the alternatives,
namely, voted and unvoted alternatives. In ranked voting systems, voters are
capable of expressing their preferences with more than two levels of support for the
candidates. The ballots of these types are usually linear orders (strict rankings) on
a subset of the alternatives (in a more general setting, the ballots could be partial
orders). The ballots can be restricted by a specific number as the maximum
length of ballot (number of alternatives in the input rankings) or the maximum
number of levels of distinctions a vote can express.

Another major type of ballots are scoring ballots. In scoring ballots, the
voters can express their preferences by scores they assign to the alternatives.
Strict rankings can be considered as a special case of scoring ballots.

However, as we have fixed it before, here we consider that all the ballots are
linear orders on the set of candidates.

Although, as mentioned before, for almost all of the coming procedures there
exist tie and a complete voting system should have a solution for such situations,
here we ignore the tie-breaking issue.
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Also, notice that some of these procedures may not completely conform with
the formal definition of the voting rules we presented before or the assumption
we have about the preferences of the voters.

Most of these procedures have been designed to elect one candidate, but many
of them also work for multi-winner elections.

2.2.1 Plurality Rule

The simplest and most obvious type of social choice function is the Plurality rule,
in which each voter submits the name of only one of the candidates and the
winner is the candidate receiving most votes.

The number of votes each candidate receives (number of votes with the can-
didate on the top), is called the plurality score. This is the most common method
for elections in practice. For elections with only two candidates, it is the unique
reasonable and flawless procedure. Although it is an appropriate procedure for
two candidates, in general cases it receives some criticism:

- It completely ignores the preferences on all candidates behind the most
favorite one for each voter.

- The fact that the voters have no way to express their opinion for more than
one candidate causes the votes to be divided between similar candidates.

- This can also causes a voter to vote for another candidate, rather than its
most preferred candidate, when it thinks its favorite candidate has little
chance to win.

2.2.2 Majority rule

The majority rule can be considered as a special case of the plurality rule. In
the majority rule, the winner is a candidate who receives a majority of votes.
When the needed majority is “more than half of the voters”, it is called simple
majority. If blank votes are not allowed, the majority rule and the plurality rule
are equivalent for the case of two candidates.

2.2.3 Plurality with Run-Off

This is similar to the plurality rule, but if there is no candidate receiving at least
a specific ratio of the total votes (usually half of the votes), the winner will be
elected in a second round. The two candidates with most votes in the first round
will go to the second round and the winner will be chosen by plurality (majority)
rule between them.
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2.2.4 Anti-plurality Rule

The anti-plurality rule is like the plurality rule, with the difference that each voter,
instead of voting only for the most desirable candidate, votes for all candidates
except the least desirable one. This method is also called veto rule.

2.2.5 Approval Voting

In approval voting each voter can vote for as many candidates as it wants, and the
winner is the candidate who gets the most votes. So a ballot may consist of any
subset of X with size 0, 1, ... or m−1 (size m, i.e., voting for X , is practically like
voting for none). In other words, each voter indicates the candidates it approves
and the candidate who is approved by the most voters will be elected.

Approval voting is theoretically popular and extensively analyzed due to its
simplicity and properties, and is fairly popular in practice, specially in some
professional societies, such as the American Mathematical Society (AMS), for
electing their committees.

A couple of important points about approval voting:

- In contrast to plurality voting, there is no need to strategically not vote for
the favorite candidate even when it has a very low chance of winning.

- Despite its simplicity (in terms of both understanding the rules for voters
and also communicating and expressing them), it has the capacity of get-
ting more information from voters than procedures like plurality voting (of
course not the complete preference ordering).

2.2.6 k-Approval Rule

The special case of approval voting (or the extension of the plurality rule) to
elect one (or k) candidate(s) is called k-Approval : each voter votes for exactly
(at most) k candidates and the candidate receiving the most votes is the winner.

2.2.7 Borda Rule

The Borda rule was proposed by Jean-Charles de Borda in 1770 [9]. It receives
the full preferences of the voters, so each voter submits a complete ranking of
all m candidates. Then, for each ranked list of voters, the Borda rule assigns
points 0, 1, ...,m − 1 to the m candidates in each ranking, respectively from the
last member of the list to the first one. So the most preferred candidate of each
voter receives m − 1 from that ballot and the least preferred one gets 0. The
sum of these points from all voters’ ballots for each candidate is called its Borda
count, and the candidate with the highest Borda count wins.
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2.2.8 Positional Scoring Rules

A positional scoring rule is defined by a scoring vector s = ⟨s1, ..., sm⟩ with
s1 ≥ s2 ≥ ... ≥ sm. Each voter’s ballot is a full ranking of all candidates.
Candidates receive points according to their position in each ranking. For each
voter’s ballot, the candidate in the ith position gets si points; and the sum of
these points for each candidate is its score. The candidate with the highest score
wins.

Positional scoring is the natural generalization of the Borda rule. The Borda
rule is a positional scoring with si = m − i (i.e., scoring vector of ⟨m − 1,m −
2, ..., 1, 0⟩).

Also, the plurality rule can be seen as a very special case of the positional
scoring rule where all scores are 0 except for the first one, and s1 = 1 (i.e.,
scoring vector: ⟨1, 0, ..., 0⟩).

Likewise, the veto rule is a positional scoring rule such that all scores are 1
except for the last one, which has score 0 (i.e., scoring vector: ⟨1, ..., 1, 0⟩).

2.2.9 Single Transferable vote

The Single Transferable vote (STV) is a voting rule that works as follows: each
voter has a preference on the candidates, and there is a quota attributed to the
election. In each round, the plurality scores of the remaining candidates are
calculated. If any of the candidates reaches the quota, that candidate is the
winner. Otherwise, the candidate with the least plurality score is eliminated and
the process is repeated. In the next round, the votes of this eliminated candidate
transfer to the remainder of the candidates.

If there is no quota attributed to a single-winner election, for m voters, the
rule consists of m− 1 rounds and the winner is the only remaining candidate in
the last round.

Usually, STV is considered as a voting rule for multi-winner elections; and
the special case of single-winner elections is called instant-runoff voting (IRV) or
alternative vote (AV).

2.2.10 Condorcet Method

A Condorcet candidate (Condorcet winner) of an election is the candidate who
wins every pairwise majority comparison against the other candidates [7]. Such a
candidate does not always exist. When an election method selects the Condorcet
candidate whenever it exists, the method is called a Condorcet method. So, Con-
dorcet methods are a class of different voting rules, a few of which we will explain
separately.
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2.2.11 Copeland Rule

In the Copeland rule, for each candidate the number of wins and loses in pairwise
majority contests is calculated and the difference of these two numbers for each
candidate is considered as its score, which is called the Copeland score. The
candidate with the highest score is the winner.

This voting procedure does not necessarily need the complete preference or-
dering of voters. For example, the input ballots could be an ordering on a subset
of candidates for each voter.

Note that if there is no tie in pairwise comparisons, then the candidate with
the highest score always has the highest number of wins. But when there is a tie
in pairwise comparisons, the candidate with the highest number of wins might
not be the winner.

It is easy to see that the Copeland rule elects the Condorcet candidate when
it exists.

2.2.12 Minimax Rule

The minimax rule which is also known as the Simpson-Kramer method is a Con-
dorcet method. In this method, like in the Copeland method, pairwise elections
are considered. But, unlike the Copeland method, which only counts the win/lose
results of the pairwise elections, here the magnitude of the win/lose are also taken
into the account. That is, for each pairwise election, the difference of the votes
in favor of one candidate and the votes against that candidate are counted. Now,
for each candidate, the score of the worst result is considered and the winner is
the candidate with the minimum value for this score.

2.2.13 Bucklin Rule

The Bucklin rule can be considered as an extension of the plurality rule. First,
like plurality, the number of votes each candidate receives from the first choice of
voters is counted. If any candidate receives the majority of votes, the candidate
is the winner. Otherwise, the procedure continues by counting two best choices
of each voter as their votes. Now, if any candidate gets the majority of votes (i.e.,
it is the first or second choice for more than half of the voters), that candidate
wins. If not, the procedure continues with the top three choices, and so on.

In any level, if more than one candidate pass the threshold, usually the can-
didate with highest votes in that round is considered as the winner.

2.2.14 Dodgson Rule

In 1876 [10], Dodgson (better known as Lewis Carroll) proposed a ranked voting
rule which is a Condorcet method. The main idea of Dodgson’s method is finding
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the candidate which needs the least changes in the votes to become the Condorcet
candidate. The number of needed changes in this method is calculated as follows
(note that as it is a ranked voting rule, the assumption is that the ballots are
in the form of a linear order). For each candidate, the minimum number of
exchanges of adjacent candidates in the voters’ ballots that makes the candidate
a Condorcet winner is considered as the distance of that candidate from being
the Condorcet winner. The candidate with the lowest distance in this regard is
the winner of the Dodgson rule.

2.2.15 Kemeny Rule

The Kemeny rule [13] was originally designed for preference aggregation, but it
can also be used as a voting rule. The Kemeny method, as a preference aggre-
gation rule, finds a collective preference for a set of preferences. The method
defines a distance (the Kemeny distance) between two preferences (orderings) as
the number of pairs where their relative ranking in two orderings are different.
With this definition of the distance between two preferences, the Kemeny dis-
tance of an ordering and the profile of n preferences is defined as the sum of the
distance of the ordering from each voter’s preference in the profile. Now, the
method chooses the ranking, among all possible rankings, which has the mini-
mum distance from the profile. This ranking is the collective preference of the
Kemeny method, which is called the Kemeny consensus.

When the Kemeny method is used as a voting rule, the top candidate of a
Kemeny consensus is considered as a winner of the election and is called the
Kemeny winner.

2.2.16 Young Rule

The main idea of Young’s rule [28] is similar to the Dodgson rule, but, instead of
the number of exchanges, the distance of a candidate from being the Condorcet
winner is defined as the minimum number of voters whose removal makes the
candidate a Condorcet winner and the candidate with the lowest distance is the
winner.

2.3 Axiomatic Properties

In general, there is no “complete” or “proper” voting system. In fact, for more
than two candidates, there are many cases where it is not clear what should be
selected as the social choice. In fact, Arrow showed [1] that there is no voting rule
for more than two candidates which satisfies a few simple intuitive criteria. As a
result, it is usually not easy to say that voting system A is better than B. Also,
the appropriateness of a voting system depends on the context and area it will be
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applied in, so different voting systems may be suitable for different applications.
So, in order to be able to compare or evaluate different voting systems, many
intuitive or useful properties have been proposed. Here we will review some of
these criteria.

2.3.1 Anonymity

A voting procedure is anonymous if all voters are treated equally and the names
of the voters do not matter, i.e., exchanging the ballots of any two voters does
not affect the election’s outcome.

Definition 2.4. Let ρ be a permutation on the set {1, ..., n}. If d = (d1, ..., dn)
is in L(X )n, and ρd, defined as ρd = (dρ(1), ..., dρ(n)), then ρd is also in L(X )n.
F is anonymous if for all d ∈ L(X )n and all permutations ρ on {1, ..., n}:

F (ρd) = F (d).

Most voting procedures that we will deal with are anonymous (with the no tie-
breaking assumption mentioned before). Examples of voting procedures failing
anonymity are when there is a specific voter (e.g., a chairperson) who is the
tie-breaker or if the voters’ ballots have different weights.

2.3.2 Neutrality

A voting procedure is neutral if all candidates are treated equally and the names
of the candidates do not matter; i.e., exchanging the name of any two candidates
x and y in the ballots of all voters changes the outcome of the election accordingly
(If x was elected at first, now y should be elected, and vice versa; and if some
other candidate different from x and y was elected, it should still be elected).

Definition 2.5. Let σ be a permutation on the set of candidates. If for d =
(d1, ..., dn) ∈ L(X ), σ(d) is defined as σ(d) = (σ(d1), ..., σ(dn)), and σ(Y ) =
{σ(y) : y ∈ Y } for every Y ⊆ X ; then σ(d) ∈ L(X )n and σ(Y ) ⊆ X . F is neutral
if for all d ∈ L(X )n and all permutations σ on X :

F (σ(d)) = σ(F (d)).

Like anonymity, neutrality holds for most voting procedures we will discuss.
Examples of failing neutrality is when in the case of tie, the incumbent candidate
or the first candidate in some deterministic order (e.g., in lexicographic order) get
advantage; or even more, if defeating the incumbent candidate needs more votes
than the incumbent needs itself.
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2.3.3 Pareto Optimality

In the simple case of choose-1 voting procedures, the Pareto principle can be
defined as follows: A voting procedure satisfies the (weak) Pareto principle, if for
each two candidates x and y, if x is preferred over y unanimously, then y cannot
win the election.

In general a voting procedure is Pareto optimal or satisfies the Pareto prin-
ciple, if when a dominated candidate is in the choice set, then every candidate
that dominates it is also in the choice set.

Definition 2.6. F is Pareto optimal, if for all x, y ∈ X and d ∈ L(X )n:

xdy ∧ y ∈ F (d) ⇒ x ∈ F (d).

2.3.4 Monotonicity

A voting procedure is monotonic if raising a winner candidate’s place in a voter’s
ballot never causes it to not win anymore.

Definition 2.7. F is monotonic if for any candidate x and ballot response profile
d, ∀i : 1, ..., n, d′i ∈ L(X )n:

x ∈ F (d) : d′i >x di ⇒ x ∈ F (d−i, d
′
i).

2.3.5 Condorcet Criterion

The Condorcet winner is a candidate that beats every other candidate in a pair-
wise comparison. There is no guarantee to have a Condorcet winner in all cases,
but if it exists, it will be unique.

A voting procedure satisfies the Condorcet principle if it elects the Condorcet
winner whenever it exists.

Similarly, the Condorcet loser is a candidate that is beaten by every other
candidate in a pairwise comparison. Like the Condorcet winner, the Condorcet
loser is unique if it exists.

Sometimes, alongside checking if a voting procedure is electing the Condorcet
winner, it is also checked that the procedure doesn’t elect the Condorcet loser.

2.3.6 Consistency

A voting procedure is consistent if when the set of voters is divided arbitrarily
into two or more subsets and the procedure is run on each of them separately, if
all of these separate elections have the same winner then an election on the entire
set of candidates entails that same result too.

Definition 2.8. F is consistent if for any partition of V to r subsets V1, V2, ..., Vr:
F (d|V1) = F (d|V2) = ... = F (d|Vr) ⇒ F (d) = F (d|V1).
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2.3.7 Homogeneity

The homogeneity criterion says that replicating all votes (voters) uniformly does
not affect the result of the election. That is, if a candidate wins in an election,
the same candidate must win if for each voter in the previous situation there are
k voters with a similar vote. Most voting rules satisfy homogeneity.

2.3.8 Non-Imposition

One of the very natural properties for a voting rule to be “fair” is that all candi-
dates must have the chance of being a winner. That is, for any candidate, there
must be a profile that yields to that candidate winning. This criterion is called
non-imposition. Almost all of the (non-dictatorial) conventional voting methods
satisfy non-imposition.

2.3.9 Participation

One of the well-known paradoxes in social choice theory is the no show paradox.
The no show paradox happens when a favorable choice of a voter is already in the
outcome of the election without his vote, but by adding that vote, the outcome
becomes less favorable for the voter. In this regard, the participation criterion
has been defined. A voting procedure has the participation property, if the no
show paradox does not happen for that procedure. The practical result of this
criterion is that when a voting rule satisfies participation then voting honestly is
always better than not voting.

Voting methods such as plurality, approval and the Borda rule satisfy the
participation criterion. All Condorcet methods fail to satisfy participation [17].

2.3.10 Reversal symmetry

The reversal symmetry property has been proposed by Saari [23] as a criterion
for single-winner methods. It says that if all the votes (preferences) are reversed,
then the result should be reversed. In particular, in a single-winner election, the
strict winner should not still be the winner if the votes are reversed. So, if reversal
symmetry does not hold in a single-winner election, it means that there exists a
candidate that is both the socially best and worst candidate simultaneously.

Most voting methods satisfy the reversal symmetry property and this is usu-
ally easy to check. However, many of the voting rules with more than one round
such as instant-runoff fail this criterion. Other voting rules that fail the criterion
are methods which use only the top preference of each voter, like plurality. Also,
it is easy to see that when a method does not satisfy the Condorcet loser criterion,
it may fail reversal symmetry too.
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2.3.11 Independence of Irrelevant Alternatives

One of the main criteria that Arrow considered in his famous impossibility the-
orem is Independence of Irrelevant Alternatives (IIA) [1]. The criterion requires
that if the relative situation of two candidates are the same in two profiles, their
relative situation in the social outcome should be the same. That is, if two can-
didates have the same relative rankings in the two profiles, and one of them wins
under the first profile, the other candidates should not win under the second
profile.

Although it seems to be an easy criterion for voting methods and an intuitively
necessary requirement for any ordinary voting rule, it is a strong requirement and
is violated in most voting methods.

2.4 Preference Aggregation

In the previous sections the focus was on voting systems which result in one
candidate or a subset of the candidates as the winner. Systems that not only
elect k alternatives as the winners, but also obtain a collective ranking of them
are called preference aggregation systems.

The function that aggregates preferences to a collective preference is called a
social welfare function (SWF). It is also called a social preference function, or in
short preference function (PF).

Most voting systems can be considered as a special case of preference functions.
That is, the winner(s) of a voting system is the best candidate(s) (top choice(s)
in the social ranking) in its corresponding preference function.

Consequently, most of the basic voting procedures can easily be extended to
preference functions and their axioms can be generalized for a preference function.

We will introduce the modified version of some of these procedures and prop-
erties below.

2.4.1 Notation and Basic Definitions

In the context of social welfare functions, we mostly use the terms agents for voters
and alternatives for candidates; although we may use both terms interchangeably.
Most of the definitions and notations are the same or similar to their counterparts
in voting systems and so we do not repeat all of them here.

Let V = {v1, ..., vn} be the set of agents (voters) and let X = {c1, ..., cm} be
the set of alternatives (candidates). There might be restrictions on the way that
voters can express their preferences. For example, forcing reported preferences
to be strict, or reporting preference only on a number of candidate rather than
all of them. But here, as before, we assume that voters’ preferences are linear
orders. So, the set of admissible ballots for the set of alternatives X is L(X ).
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The n-tuple d = (d1, d2, ..., dn) which is di ∈ L(X ) for all voters i = 1, ..., n, is the
ballot response profile.

Definition 2.9 (Social welfare function). For the set of alternatives X and n
voters, a social welfare function aggregates n preferences (linear order) into a
collective preference (linear order). That is,

F : L(X )n → L(X ).

2.4.2 Preference Aggregation Procedures

In this section we introduce some basic preference aggregation procedures. In
fact most of these procedures are just an extension of their corresponding voting
methods. There are three main approaches for the extension of a voting rule to
a preference aggregation method.

- If the voting method first finds a specific linear order of the alternatives and
then gives the top alternative of that ordering as the winner, we simply use
that ordering as the social preference.

- If the voting method assigns a score to all alternatives and then selects the
one with highest (lowest) score as the winner, we can use these scores to
rank the rest of the alternatives.

- In other cases, we can put the winner of the voting system as the top
member of the social ranking and then run the same voting rule on the rest
of the alternatives and put the new winner as the second member of the
ranking and repeat this procedure to produce a complete ranking of the
alternatives.

Since voting rules have been primarily designed for real-world voting, some
voting systems have a non-ranked input rather than ranking on the alternatives
which is expected for preference aggregation procedures. This shows that we
can extract social rankings even from non-ranked input. (Note that non-ranked
ballots are also actually a sort of ranking, e.g., a single vote for an alternative v1
is equivalent to the weak order: v1 ≻ v2 ∼ ... ∼ vn.)

Likewise, most of the axiomatic properties for voting systems can be adapted
for preference aggregation. Hence we do not repeat them here.
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The Model

In this chapter we introduce our model in a formal manner. Most of the following
concepts and definitions could be defined more generally, that is in a way that
covers preferences represented by other means, like cardinal preferences (utility
functions). However, as is usual in abstract social choice theory, we just consider
ordinal preferences.

3.1 Notation and Basic Definitions

Let N = {1, 2, ..., n} be a finite set of n voters (individuals) and set X =
{c1, c2, ..., cm} a finite set of candidates (alternatives).

A strict linear order ≻ on a set S is a binary relation on S that is irreflexive,
transitive, and complete. Each voter expresses a preference by providing a strict
linear order on a subset of X . A profile, R, is the set of such preferences of all the
voters. Our goal is to produce, for each input profile, a set of (weighted) trends
which are aggregations of voter preferences. Trends are also strict linear orders
on subsets of X .

For the set of alternatives X , we denote the set of strict linear orders on
subsets of X as L(X ):

L(X ) := {(S,≻) | S ⊆ X and ≻ is a strict linear order on S}

We usually denote the members of L(X ) as tuples (cπ1 , ..., cπk
), which means

cπ1 ≻ ... ≻ cπk
.

Definition 3.1 (Preferences). A preference is an element of L(X ).

If a voter wants to provide more than one linear order, we can add virtual
voters for the extra preferences and assign each of the preferences to one vir-
tual voter. So, we can assume that each voter has only one linear order as its
preference.

27
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We denote the preference of voter i as pi. We also write a ≻i b for a and b in
X when a comes before b in pi, i.e., when voter i prefers a to b. We use S(p) for
the set of candidates (a subset of X ) compared in the preference p and l(p) for
the number of these candidates or, in other words, the length of the preference p.
So, for p = (cπ1 , ..., cπk

), S(p) = {cπ1 , ..., cπk
} ⊆ X and l(p) = |S(p)| = k.

In our model, an outcome is a set of preferences instead of just one aggregated
preference. We call each of these preferences a trend. So, a trend is just a
preference, which is part of the outcome and in fact is an aggregated preference
obtained from input preferences. We often also assign a value to each trend
which determines its reliability or popularity or any other concept that explains
its strength. In this case we call it a weighted trend.

Definition 3.2 (Trends). A trend is an aggregated preference, i.e., an element
of L(X ). A weighted trend is an element of L(X )× R.

We usually write trends in the same way as preferences but with capital letters,
e.g., Pi. When it causes no confusion, we may also refer to a weighted trend as
simply a “trend”. If P is a weighted trend, v(P ) is its weight.

So the output of this model (a set of aggregated trends) is expressed as
P = {P1, P2, ..., Pl} if trends are not weighted, and for weighted trends: Pw =
{(P1, v(P1)), ..., (Pl, v(Pl))}. In general, it is not necessary for the sets of candi-
dates of different trends in P to be disjoint; they can even be equal as long as
their orders are not the same.

Let p1 and p2 be two preferences. We say p1 is a subpreference of p2 (and p2
is a superpreference of p1), if p1 can be obtained from p2 by just dropping some
candidates from it.

Definition 3.3 (Subpreference). p1 is a subpreference of p2 which we write as
p1 ⊑ p2, iff:

∀c1, c2 ∈ S(p1), c1 ≻p1 c2 ⇒ c1 ≻p2 c2.

If p1 ⊑ p2 and p1 ̸= p2 we call p1 a proper subpreference of p2 and write
p1 @ p2. We also can say that p1 can be deduced from p2 and write it as, p2 |= p1.

By the definition we have: p1 ⊑ p2 ⇒ S(p1) ⊆ S(p2).
For weighted preferences, we say a preference p1 is a weighted subpreference of

p2 if it does not have a greater weight than p2 in addition to being a subpreference
of it.

Definition 3.4 (Weighted subpreference). Let p1 and p2 be two weighted pref-
erences. p1 is a weighted subpreference of p2 which we write as p1 ⊑w p2, iff:
p1 ⊑ p2 and v(p1) ≤ v(p2).

p1 @w p2 if p1 ⊑w p2 but p1 ̸= p2 or v(p1) ̸= v(p2).
Again we can say that p1 can be deduced from p2 and write it as, p2 |= p1.
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3.2 Formal Framework

A Trend Aggregation Procedure (TAP) is a procedure which takes the preferences
of voters and extracts a number of preferences, which are the social trends, from
these inputs. In the most general setting, the input preferences could be expressed
in many different ways (ordinal or cardinal, total or partial, etc.), and for the
general framework of TAPs we need not impose any restriction on them. Similarly,
trends can be in different formats (ordinal or cardinal, weighted or non-weighted,
etc.). However, for the remainder of this thesis, we shall assume that preferences
and trends are linear order, as defined above.

Definition 3.5 (Trend aggregation procedure). A trend aggregation procedure
(TAP) is a function F mapping any profile of preferences to a set of of trends:

F : L(X )n → 2L(X )

If the system reports weighted trends we call it a Weighted Trend Aggregation
Procedure (WTAP).

Definition 3.6 (Weighted trend aggregation procedure). A WTAP is a TAP F
with the addition of a weight for each trend. That is,

F : L(X )n → RL(X )

Another possible extension of TAPs is adding a total order on the set of the
output trends instead of assigning a score to each of them. It is clear that each
WTAP can be interpreted as this type of trend aggregating system.

When we deal with a number of total orders as input preferences, usually
we need to break these lengthy orders into basic data. This is mainly due to
computational aspects, but it is not only for implementation purposes. Even in
theory, most procedures defined for aggregating preferences do not work with the
whole orders in the process of aggregation, since it is not easy to define operations
on the long orders. So they transform inputs to a number of smaller pieces of
data in the first step (of course with the cost of losing some data in most cases).
For example, in the Borda rule or any other scoring rule, the whole order of
each voter’s preference reduces to a score for each candidate in that order; or
in Copeland’s method, first each input preference is reduced to a set of pairwise
comparisons between the candidates.

We call a method that uses this scheme for aggregating preferences a two-phase
trend aggregation procedure, which means the procedure consists of a phase —we
call it decomposition— of converting preferences to a set of basic relations and a
phase of computing aggregated preference(s) from these data (composition).

In any two-phase procedure, we call the set of converted data which is the
output of the decomposition phase and the input for the composition phase, the
intermediary set. This is the set of all relations that are admissible to be both
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the output of the first phase and the input for the second phase. Usually there is
an intermediary domain set, I(X ), which characterizes the form of the members
of an intermediatory set. In this case, the intermediatory set is a (weighted)
powerset of an intermediatory domain, e.g., 2I(X ) or RI(X ) when it is weighted.

Definition 3.7 (Two-phase trend aggregation procedure). A trend aggregation
procedure is two-phase if it results from consecutive runs of a composition phase
after a decomposition in which the output of the decomposition phase is the input
of the composition phase. That is, if I(X ) is an intermediary domain set, D and
C are the two functions that stand for decomposition and composition such that:

D : L(X )n −→ RI(X );

and

C : RI(X ) −→ RL(X ).

The intermediary relations are usually the pairwise comparisons or a function
which assigns a score to every candidate in each input preference. If we limit the
intermediary relations to score-assigning functions, we call it a 0-degree two-phase
procedure; and if it is limited to only pairwise comparisons of the candidates, we
call it 1-degree two-phase procedure.

For example, among the conventional voting systems, we can consider the
positional scoring methods like the Borda count as 0-degree two-phase procedures
and the majority ranking methods like the Condorcet methods as 1-degree two-
phase procedures.

Definition 3.8. A 0-degree two-phase procedure is a two-phase procedure where
its intermediary domain set I is: I(X ) = X . A 1-degree two-phase procedure is
a two-phase procedure where its intermediary domain set I is: I(X ) = X 2

In this thesis we mostly focus on “1-degree two-phase WTAPs”.

3.3 Methods

Up to here we introduced a general framework for our model, particularly a family
of TAPs which we call 1-degree two-phase weighted trend aggregation procedures.
As we have already defined, a TAP of this type consists of two phases, namely
decomposition and composition. Now to complete the details of our proposed
method, we present our proposal for this part of the model. We propose a general
class of methods for each of the decomposition and composition phases.
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3.3.1 Decomposition

When we talk about relations here, we mean the implicit relation each voter
conveys by reporting a preference on a subset of candidates. We assume there
was some sort of relation among the members of each of these partial preferences
which caused them to occur in a single preference.

We need a sort of decomposition method that makes it possible to add up
data, but also preserves the relations to some extent.

Since we are dealing with 1-degree TAPs our only option to handle this is
choosing reasonable pairwise comparisons and assigning appropriate weights to
them. So each input preference with length k (i.e., a total order on a subset of
candidates consisting of k members), should be decomposed into the

(
k
2

)
pair-

wise comparisons it consists of, as in most conventional preference aggregation
methods based on pairwise comparisons. Although the method that we will use
to compose these fragments of data is pivotal to retain the relations, reasonably
assigned weights can also play an important role in this regard.

In fact, as we will see later, if we want to consider all possible trends in our
method as output trends, the weights play no role in shaping the trends, they
only affect the weights of trends. However, if we want to select a subset of trends
for output, then these weights would have a determining role in deciding which
trends should be reported, and of course, with what weight. So, if we do not want
to consider weights and are not selecting a subset of the trends we can assign a
constant weight (simply 1) to all pairwise comparisons.

To explain the idea of our proposal, let us start with a basic case. When we
have A ≻ B ≻ C, if we can talk about something like the amount of preference, it
is reasonable to say that the amount of preferring A to C is more than preferring
it to B and also B to C; but it is not always true to say this amount is exactly
equal to sum of the values of the other two. From this viewpoint, we can also
think that it is plausible for A to be more preferable to C in A ≻ B ≻ C than
when the reported preference is a single comparison between them (i.e., A ≻ C).
It may even be so in the case of, for example, A ≻ C ≻ B, but not necessarily.

So it seems reasonable to assign higher weights to the pairwise comparisons of
more distant pairs in the preferences in the decomposition phase. To this end, we
use an increasing (or non-decreasing) function that assigns a value to the pairs
based on their distance in the preference they are contained in.

Definition 3.9. The distance of two members ci and cj of a preference p, which
we denote it as dp(ci, cj), is the difference in their place in p. That is,

dp(ci, cj) = |{x ∈ S(p)|ci ≻p x ≻p cj}|+ 1.

So, in brief, for a reported preference on k candidates (k ≤ m , m is the
number of total candidates):

c1 ≻ c2 ≻ · · · ≻ ci ≻ · · · ≻ cj ≻ · · · ≻ ck;
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we can assign a weight to the pairwise comparison of ci ≻ cj by using g(l), where
l = dp(ci, cj) and g is an increasing (or non-decreasing) function.

We may impose other properties on the function g in addition to monotonicity
to obtain extra properties in the results, but for the general case we just consider
g to be a non-decreasing function from Z to R in which g(x) = 0 for all x ≤ 0.

Now, after assigning weights to all of these pairwise comparisons from all of
the input preferences, we can add them up for each pairwise comparison.

The maximum number of possible pairwise comparisons is two times the num-
ber of candidate pairs (one for each side, i.e., one for preferring A to B and one
for preferring B to A). So this would be 2

(
m
2

)
= m(m − 1), in which m is the

total number of candidates. Comparing this number to the number of all possible
preferences, which is

∑m
i=2m!/(m− i)! > m!, shows that there is a great advan-

tage in accumulating the whole data in less than m2 values instead of more than
m! ones.

If we denote the assigned value for the comparison ci ≻ cj from the preference
p as vp(ci ≻ cj) and the summation of these values from all input preferences as
v(ci ≻ cj), we have:

vp(ci ≻ cj) = g(dp(ci, cj))

and

v(ci ≻ cj) =
n∑

r=1

vpr(ci ≻ cj)

We call this class of decomposition procedures monotonic decompositions.

Definition 3.10 (Monotonic decomposition). A decomposition procedure

D : L(X )n −→ RI(X )

is monotonic if I(X ) = {(x, y)|x, y ∈ X , x ̸= y} and it uses a non-decreasing
function g,

g : Z −→ R , g(x) = 0 for x ≤ 0

to accumulate a value for each pairwise comparison of candidates ci and cj (i, j ≤
m and n is the number of voters) as:

v(ci ≻ cj) =
n∑

r=1

g(dpr(ci, cj)).

3.3.2 Composition

Now the problem is how to combine these fragments of data in a way to obtain
some total orders on the subsets of candidates, i.e., aggregated preferences. In
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this phase we should try to merge pairwise orders to get some chain of orders and
alongside it retrieve relations of the candidates that we tried to preserve in the
decomposition phase.

To do this, let us take a look at the simple case of A ≻ B ≻ C again. As
we decomposed it into the three pairwise comparisons of A ≻ B, B ≻ C and
A ≻ C, it is natural to do the reverse procedure and merge these three pairs to a
total order on them. Notice that here we do not have transitivity. That is, from
A ≻ B and B ≻ C we cannot conclude that A ≻ C; although it may be the case
for each individual’s preference. So we may not have as much supportive data for
the A ≻ C as we do have for A ≻ B and B ≻ C, and also in most cases we do
not have the same supportive data for the last two.

Therefore, for these three candidates and especially for these three pairwise
comparisons we have three independent values coming from the summation of
their corresponding weights. Let us call these three values a, b and c corresponding
to A ≻ B, B ≻ C and A ≻ C respectively. Now we want to assign a value to
the aggregated preference of A ≻ B ≻ C, based on these values. The most
confident thing that we can say is to consider each of these three with the value
of d = min{a, b, c} instead of their own value, and then we have three fractions of
the aggregated preference (trend) of A ≻ B ≻ C with the same supportive value
and so we can say that there is such a trend in the preferences of the voters and
assign this value (or some corresponding value) to this trend.

We can also think about some other alternatives for assigning a value to such
a trend. For example, maybe the summation or multiplication of the values of
basic comparisons of each trend would be good choices in some cases. In addition,
since we will have different trends with different lengths in our model, considering
the length of the trends is good or maybe essential in such cases. So we may use
the average of these values (arithmetic or geometric mean) for the reliability of
each trend.

Furthermore, when we use the distances of pairwise comparisons in the decom-
position phase, it might be more reasonable to use a sort of reverse of the same
procedure we used to combine them. For example, consider again A ≻ B, B ≻ C
and A ≻ C with the corresponding values a, b and c, respectively. We should use
the values of a/g(1), b/g(1) and c/g(2) instead of the initial values, in which g
is a non-decreasing function similar (or maybe identical) to the one used in the
decomposition phase. Hence, we can assign d = min{a/g(1), b/g(1), c/g(2)} for
the reliability of the trend A ≻ B ≻ C. In the general case, if a is the summation
of weights for ci ≻ cj, then for computing the reliability of trend

P : c1 ≻ c2 ≻ · · · ≻ ci ≻ · · · ≻ cj ≻ · · · ≻ ck,

(let l = dP (ci, cj) and g is a non-decreasing function), we would use the value of
a/g(l) instead of a. Similar to the simple method, here we can (or should) use
the average of these values too.
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So in brief the combination method would be: For a trend like

P : c1 ≻ c2 ≻ · · · ≻ ci ≻ · · · ≻ cj ≻ · · · ≻ ck,

if we have v(ci ≻ cj) = a (aggregated from all input preferences), the support of
this value for trend P is:

v′P (ci ≻ cj) = a/g(l);

and if T is min or a kind of average (arithmetic or geometric mean) function,
then the support for trend P is calculated by:

v(P ) = T i<j≤k{v′P (ci ≻ cj)}.

Definition 3.11 (Power mean). A power mean (generalized mean) with exponent
ρ (ρ is a non-zero real number) of the positive real numbers x1, ..., xn is:

Mρ(x1, ..., xn) = (
1

n

n∑
i=1

xρ
i )

1/ρ;

and its asymptotic values for ρ = 0, +∞ or −∞ are defined as:

M0(x1, ..., xn) =
n

√√√√ n∏
i=1

xi,

M∞(x1, ..., xn) = max(x1, ..., xn),

M−∞(x1, ..., xn) = min(x1, ..., xn).

As we can see, M1 is the arithmetic mean and M0 is the geometric mean.
The most promising choices for the function T in this model are the arithmetic
mean(M1), geometric mean(M0), min(M−∞) and max(M∞) functions.

Definition 3.12 (Monotonic composition). A composition procedure

C : RI(X ) −→ RL(X ).

is monotonic if I(X ) = {(x, y)|x, y ∈ X , x ̸= y} and it uses a non-decreasing
function g,

g : Z −→ R , g(x) = 0 for x ≤ 0,

and a power mean function T to assign to each trend P ∈ 2L(X ) a weight as:

v(P ) = T i<j≤k

{
v(ci ≻ cj)

g(dP (ci, cj))

}
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Now we have completed the definitions of all the necessary parts of a trend
extractation procedure and can define our method formally.

Definition 3.13 (Monotonic 1-degree two-phase WTAPs). A monotonic 1-degree
two-phase WTAP, F g

T (or F g
ρ), is a trend aggregation procedure with composition

and decomposition phases that are monotonic with an identical non-decreasing
function g and which uses a power mean function T (or Mρ) for composition.

Since we only deal with monotonic 1-degree two-phase WTAPs, we may simply
call them TAPs. In the next section, we will introduce some slightly different
versions of TAPs. We will also discuss some possible ways to refine this potentially
enormous number of trends to a more reasonable number of selected ones. In the
next chapter, we will investigate the properties of these models in general and for
a few special cases, each with a specific monotonic function or mean function.

3.4 Normalization

The value that has been assigned to the trends can be normalized proportionally
in order to fall into a specific range, e.g., [0, 1]. However, here by normalization
we do not mean this trivial calculation.

To explain this normalization let us take another look at the method we had,
which we call Method 0:

3.4.1 Method 0

Here we only put together the definitions of the different parts of the method
that we have seen in the previous section.

Definition 3.14 (Method 0). The Method 0 TAP is a monotonic 1-degree two-
phase TAP which uses

vp(ci ≻ cj) = g(dp(ci, cj))

in the decomposition phase to assign a value to the pairwise comparison of ci and
cj in preference p, and

v(ci ≻ cj) =
n∑

r=1

vpr(ci ≻ cj)

is used for the aggregated value of the pairwise comparison from all input prefer-
ences. Also,

v(P ) = T i<j≤k

{
v(ci ≻ cj)

g(dP (ci, cj))

}
is used in the composition phase to calculate the weight of any trend P .
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Now suppose the basic case of one voter with preference p : A ≻ B ≻ C. All
the subpreferences of this preference are potential output trends. With use of the
proposed method, the weights of these trends would be:

v(P1 = A ≻ B) = T (g(1)/g(1)) = T (1) = 1

v(P2 = A ≻ C) = T (g(2)/g(1)) = T (g(2)) = g(2) ≥ 1

v(P3 = A ≻ B ≻ C) = T (g(1)/g(1), g(1)/g(1), g(2)/g(2)) = T (1, 1, 1) = 1

So v(A ≻ C) ≥ v(A ≻ B ≻ C) = v(A ≻ B).

It may seem counter-intuitive to assign a value to A ≻ C which is higher than
the weight of P3, while P3 is exactly the same singular input preference. The
contradictory aspect of this result is more clear in the case where selecting only
one of these trends is needed. In this case, P2 will be chosen due to its greater
weight despite the fact that P3 has the same information as the input and P2 is
just a subpreference of the same input preference.

On the other hand, this can be justified by interpreting it as the greater
weight of P2 representing more confidence in it and making the output result
more robust.

So, whether this kind of result is acceptable or not depends on our definition
and interpretation of trends’ weights and the application. In this regard, we will
present some more methods which handle this issue, each of which has its own
interpretation and properties.

We can avoid choosing a preference like P2 over P3 in such a case by imposing
restrictions on the selection procedure. We will discuss this kind of procedures
in the next section, but in most cases the selection procedure on these weights
does not lead to an acceptable result and therefore we need other methods which
produce different weights.

Here we present three alternative methods for the initial method. Each of
these can be seen as a modification of the original method.

First let us define a generalization of the above example to clarify what prop-
erty we are seeking.

Definition 3.15 (Singular election). An election with only one voter is a singular
election and the preference of this unique voter is the singular vote or singular
preference.

Definition 3.16 (Informativeness). A TAP is called informative if for any sin-
gular election with singular vote p, the weight of p as a trend is maximal; that
is,

∀Pi ∈ P : v(Pi) ≤ v(p).
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3.4.2 Method 1

The issue explained above was caused by the fact that for a particular input
preference p, its subpreference q gets the same values for its pairwise comparisons
in the decomposition phase. However, in the composition formula, due to the
lesser distance between its member candidates compared to the corresponding
distance in the initial preference p, it gets greater weight. This means that there
is an advantage for the shorter trends in the original formula. So a basic solution
is to add a normalization factor to compensate for this “unfair” advantage of
shorter trends.

We are looking for a normalization factor that makes the weight of any sub-
preference of singular preference p at most v(p). So, we define a factor based on
the length of the trends, which is applied to the raw values of trends’ weights
from Method 0, i.e., each value will be divided by the corresponding factor. Since
the raw weight of trend p in this case is 1, if it remains the same, all the other
weights should be downgraded under 1 to satisfy the informativeness property.
Hence for each length, the factor should be at least the maximum possible weight
of trends with that length from Method 0.

Consider a singular election with m candidates and the singular preference of
p = c1 ≻ c2 ≻ · · · ≻ cm; we calculate the normalization factor µ as follows:

µ(k) = max
l(P )=k

{
T ci≻cj∈P

{
vp(ci ≻ cj)

g(dP (ci, cj))

}}
.

Since vp(ci ≻ cj) = g(dp(ci, cj)) and dp(ci, cj) = j−i, we can replace vp(ci ≻ cj)
in the formula with g(j− i). This shows that µ(k) only depends on the value of k
(and the number of alternatives, m) and the definition of the functions g and T ;
and not on any part of the input. So, in general, if g and T are fixed, we denote
the normalization factor for preferences of length k when there are m alternatives
as µm(k).

Definition 3.17 (Method 1). If v(P ) is the weight of trend P in Method 0, its
weight in Method 1 is vµ(P ) which is calculated as: vµ(P ) = v(P )/µ(l(P )), in
which

µm(k) = max
1≤σ1<···<σk≤m

{
T i<j≤k

{
g(σj − σi)

g(j − i)

}}
.

From the definition, we have µm(2) = g(m−1)/g(1) = g(m−1) and µm(m) = 1.
In this method we do not need to change any part of the TAP except for

adding the normalization factor (µ) to the composition formula or in other words,
applying the normalization factor to the results of that TAP.

3.4.3 Method 2

In the original method we use the absolute distance of the pairs to calculate the
value of the pairwise comparisons, regardless of the length of the whole preference.
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For example, the pairwise comparison A ≻ C gets the same value, g(2), from both
preferences p1 : A ≻ B ≻ C and p2 : A ≻ B ≻ C ≻ · · · ≻ Z. But from another
point of view, we can assume that C is possibly less preferred to A in the second
case. This is because, in the first case the longest distance in p1 is also 2, the
same as the distance of A and C in that preference; while the distance between
A and C is very small compared to the length of the p2.

So here we consider the length of each preference as the scale for measuring
the distance rather than the absolute distance. That is, in each preference the
maximum value is assigned to the pairwise comparison of the most distant pair in
that preference and the rest of the pairs get the proportional value with respect
to their relative distance in the preference.

For instance, we can adopt 1 for the value of the pairwise comparison of the
first and last candidates of each preference. Then for other pairs the value would
be the ratio of their absolute distance to the maximum distance of that preference;
i.e., if d is the absolute distance of two alternatives in preference p and l = l(p),
we assign f(d, l) = d/(l − 1) for the value of this pairwise comparison in p.

We can generalize this formula by using the function g: f(d, l) = g(d)/g(l − 1).
Now we can replace this function f for the g in the decomposition and composition
formulas.

Definition 3.18 (Method 2). A TAP of Method 2 is a monotonic 1-degree two-
phase TAP with decomposition phase:

ṽp(ci ≻ cj) = f(dp(ci, cj), l(p))

ṽ(ci ≻ cj) =
n∑

r=1

ṽpr(ci ≻ cj)

and composition formula:

ṽ(P ) = T i<j≤k

{
v(ci ≻ cj)

f(dP (ci, cj), l(P ))

}
;

where f(d, l) = g(d)/g(l − 1).

3.4.4 Method 3

In the previous methods, all the values from different input preferences are added
for each pairwise comparison. This makes them 1-degree two-phase procedures.
When a pairwise comparison (A ≻ B) occurs in an input preference with distance
d, we can say that this A ≻ B supports any pairwise comparison of A and B
with distance d or less in trends; thus we do not assign more support for a trend
because of more distance in the input.

So if we can manage to separate this data for different distances, we can make
the procedure informative. This needs more data than an intermediary set of a
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1-degree WTAP has, yet it still deals with just pairwise comparisons. Indeed,
for each pairwise comparison, it has a vector of values for each distance from
1 to m − 1 instead of only one value. This makes the size of the intermediary
set m times larger. We call this kind of procedures extended 1-degree two-phase
procedures.

The idea is that if there is enough support for any part of a trend from an
input preference, this preference would contribute one unit (not more) to the
confidence of that part of the trend; and if it is not enough for full support it
will contribute proportionally to its share (like in the initial method). Here by
‘enough support for a pair’, we mean that they have at least the same distance
in the input as they have in the output trend.

We show the number of occurrences of any pairwise comparison with a specific
distance t in the input preferences by vt(ci ≻ cj):

vt(ci ≻ cj) = #{pr|dpr(ci, cj) = t}

These vts will replace the v in the decomposition phase, and the composition
part would use this formula for the weight of a trend P :

v#(P ) = T i<j≤k


∑dP (ci,cj)−1

r=1 vr(ci ≻ cj) · g(r)
g(dP (ci, cj))

+
m−1∑

r=dP (ci,cj)

vr(ci ≻ cj)


Definition 3.19 (Method 3). Method 3 is a monotonic extended 1-degree two-
phase TAP with decomposition phase: vt(ci ≻ cj) = |{pr|dpr(ci, cj) = t}| and
composition formula:

v#(P ) = T i<j≤k

{∑m−1
r=1 vr(ci ≻ cj) ·min(g(r), g(dP (ci, cj)))

g(dP (ci, cj))

}

3.4.5 Examples

Here we present an example to show the calculation procedures of these methods
in detail.

Example 3.1. Consider a singular election with the vote p : A ≻ B ≻ C.
We will calculate, for each of the four score-assigning methods, the weights of

these three trends:
P1 : A ≻ B,
P2 : A ≻ C,
P3 : A ≻ B ≻ C.
First, we calculate the aggregated weights (for Method 0 and Method 1) of all

pairwise comparisons:
v(A ≻ B) = v(B ≻ C) = g(1),
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v(A ≻ C) = g(2).
Now, for these two methods, we have:
Method 0:
v(P1) = T (g(1)/g(1)) = T (1) = 1,
v(P2) = T (g(2)/g(1)) = T (g(2)) = g(2) ≥ 1, and
v(P3) = T (g(1)/g(1), g(1)/g(1), g(2)/g(2)) = T (1, 1, 1) = 1.

Method 1:
The value of µ when m = 3 is: µ3(2) = g(m− 1) = g(2), µ3(3) = 1;
and the weights of the trends are:
vµ(P1) = 1/µ(2) = 1/g(2) ≤ 1,
vµ(P2) = g(2)/µ(2) = g(2)/g(2) = 1, and
vµ(P3) = 1/µ(3) = 1.

Method 2:
Aggregated weights of all pairwise comparisons in Method 2 are calculated as:
ṽ(A ≻ B) = v(B ≻ C) = 1/2 and
ṽ(A ≻ C) = 2/2 = 1;
and the weights of the trends are:
ṽ(P1) = T (0.5/1) = 1/2,
ṽ(P2) = T (1/1) = 1, and
ṽ(P3) = T (0.5/0.5, 0.5/0.5, 1) = 1.

Method 3:
For Method 3, the number of occurrences of each pair with each distance is:
v1(A ≻ B) = 1,
v1(B ≻ C) = 1, and
v2(A ≻ C) = 1;
and the weight of the trends are:
v#(P1) = T (1.g(1)/g(1)) = T (1) = 1,
v#(P2) = T (1.min(g(2), g(1))/g(1)) = T (1) = 1, and
v#(P3) = T (g(1)/g(1), g(1)/g(1), g(2)/g(2)) = T (1, 1, 1) = 1.

We can summarize these results in the following table (we can see that all of
the three new methods satisfy informativeness):

3.5 Refinement

Our proposed method produces a huge number of trends as result, i.e., all possible
trends (trends which have support for all of their parts). To make the output
tractable and presentable, we need to prune them and select only a few trends.
The general idea is that longer trends are better since they contain more data
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P1 P2 P3

Method 0 1 ≥ 1 1

Method 1 ≤ 1 1 1

Method 2 < 1 1 1

Method 3 1 1 1

Table 3.1: Example 3.1

and are more useful. On the other hand, trends with higher weights are stronger
and enjoy the support of more voters. So there is a trade-off between choosing
an informative trend with a possibly lower weight or a shorter but more popular
one. Since there is no concrete choice, we will present a number of options which
lean to one side or provide some sort of compromise in between. First we need
some definitions.

Given a set of prefrences, a maximal preference is a preference which is not a
subpreference of any other member of the set. Since the subpreference relation is a
partial order, there can be more than one maximal element in a set of preferences.
We call the set of all maximal members of a set P , the maximal set and denote
it as M(P ).

Definition 3.20 (Maximal set). The maximal set of a set P is the set consisting
of all the maximal members of P .

M(P ) = {p ∈ P |@q ∈ P : p @ q}

Like unweighted preferences, a weighted maximal preferences is a preference
that is not a weighted subpreference of any other member of the set. We call the
set of all weighted maximal members of a set P , the weighted maximal set and
denote it as Mw(P ).

Definition 3.21 (Weighted maximal set). The weighted maximal set of a set P
is the set consisting of all the weighted maximal members of P .

Mw(P ) = {p ∈ P |@q ∈ P : p @w q}.

By the definition, for any set of weighted preferences P : M(P ) ⊆ Mw(P ).
This is because there could be subpreferences of a maximal preference in M(P )
with greater weights, so they would be members of Mw(P ).

As an example, consider a chain of preferences p2 ⊑ p3 ⊑ · · · ⊑ pm (pi with
length i), in which v(p2) > v(p3) > · · · > v(pm). In such a case, for the set
S = {p2, p3, . . . , pm}; Mw(S) = S while M(S) = {pm}.

We may use a threshold on either the length or the weight of preferences to
put aside weaker preferences in that respect. We denote the set of preferences in
P with the weight of at least α as T α

w (P ), and the set of preferences in P with
the length of at least k as T k

l (P ),
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Definition 3.22. For a set of preferences P , a real number α ≥ 0 and an integer
k ≥ 0:

T α
w (P ) = {p ∈ P |v(p) ≥ α}

T k
l (P ) = {p ∈ P |l(p) ≥ k}

The set of top trends with regard to their weight or length can be seen as the
special case of these functions when α = max{v(p)|p ∈ P} and k = max{l(p)|p ∈
P} respectively. We denote these two sets of preferences, those with the highest
weight and those with the highest length, by the same notation without the
threshold value, i.e., Tw(P ) and Tl(P ) respectively.

Definition 3.23 (Top sets). For set of preferences P :
Tw(P ) = {p ∈ P |@q ∈ P : v(p) < v(q)}
Tl(P ) = {p ∈ P |@q ∈ P : l(p) < l(q)}

Replacing a set of trends by its (weighted) maximal set is the most confident
option to decrease the size of the output without loosing any useful data, since
when we have a preference, there is not much more data in its subpreferences. The
maximal set would shrink the size of a set significantly in most cases, although for
the weighted maximal set it depends very much on the weights and the method
we have chosen to assign weights. If the method is not informative, the weighted
maximal set would not be that much smaller than the original set in most cases.

If we want to make the size of the set smaller or filter shorter or weaker trends,
we may use a threshold on the length or weight or both. Again, we can replace
this filtered set by its maximal set. In general, we can use any mixture of these
operations to create different pruned subsets with different properties. As we will
se, the order does not matter in most cases, but in some, changing the order
would produce different results.

For all of the main four operations (M,Mw, T α
w , T k

l ; and also for the top sets),
we have F (F (P )) = F (P ). We also have Mw(M(P )) = M(Mw(P )) = M(P ).
Furthermore, we have Tl(M(P )) = Tl(Mw(P )) = M(Tl(P )) = Mw(Tl(P )) =
Tl(P ). The list of all variations is as follows (first we have the main operations
themselves):

1. M(P )

2. Mw(P )

3. T α
w (P )

4. T k
l (P )

5. Tw(P )

6. Tl(P )
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7. T α
w (T k

l (P )) = T k
l (T α

w (P )) = T α
w (P ) ∩ T k

l (P )

8. M(T k
l (P ) = T k

l (M(P ))

9. Mw(T k
l (P ) = T k

l (Mw(P ))

10. T α
w (M(P ))

11. M(T α
w (P ))

12. T α
w (Mw(P )) = Mw(T α

w (P )) = T α
w (P ) ∩Mw(P )

13. Tl(Tw(P ))

14. Tw(Tl(P ))

15. M(Tw(P )) = Mw(Tw(P ))

16. Tw(M(P )) = Tw(Mw(P ))

Note that we have: T α
w (M(P )) ⊆ M(T α

w (P )).
Also Tw(Tl(P )) ̸= Tl(Tw(P )), although T α

w (T k
l (P )) = T k

l (T α
w (P )), since the

implicit threshold values of the two sides are different. Tw(Tl(P )) is the set of
preferences with the highest weight among the longest preferences of P , while
Tl(Tw(P )) is the set of longest preferences among the preferences with highest
weight in P .

Example 3.2. Let P = {p1, p2, . . . , p9} in which:
p1 : (4) A ≻ B ≻ C ≻ D ≻ E ≻ F
p2 : (6) A ≻ B ≻ D ≻ F
p3 : (7) A ≻ C ≻ E
p4 : (8) A ≻ E
p5 : (7) A ≻ F
p6 : (3) X ≻ Y
p7 : (5) X ≻ Y ≻ Z
p8 : (6) R ≻ S
p9 : (4) A ≻ B ≻ C

and the numbers in the parentheses are the weights of the preferences. We
have:

1. M(P ) = {p1, p7, p8}

2. Mw(P ) = {p1, p2, p3, p4, p5, p7, p8}

3. T 5
w (P ) = {p2, p3, p4, p5, p7, p8}

4. T 3
l (P ) = {p1, p2, p3, p7, p9}
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5. Tw(P ) = {p4}

6. Tl(P ) = {p1}

7. T α
w (T k

l (P )) = T k
l (T α

w (P )) = T α
w (P ) ∩ T k

l (P ) = {p2, p3, p7}

8. M(T 3
l (P ) = T 3

l (M(P )) = {p1, p7}

9. Mw(T 3
l (P ) = T 3

l (Mw(P )) = {p1, p2, p3, p7}

10. T 5
w (M(P )) = {p7, p8}

11. M(T 5
w (P )) = {p2, p3, p7, p8}

12. T 5
w (Mw(P )) = Mw(T 5

w (P )) = T 5
w (P ) ∩Mw(P ) = {p2, p3, p4, p5, p7, p8}

13. Tl(Tw(P )) = {p4}

14. Tw(Tl(P )) = {p1}

15. M(Tw(P )) = Mw(Tw(P )) = {p4}

16. Tw(M(P )) = Tw(Mw(P )) = {p8}
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vp(ci ≻ cj) v(ci ≻ cj) v′P (ci ≻ cj) v(P )

Method 0: v g(dp(ci, cj))
∑n

r=1 vpr(ci ≻ cj)
v(ci≻cj)

g(dP (ci,cj))
T i<j≤k {v′P (ci ≻ cj)}

Method 1: vµ g(dp(ci, cj))
∑n

r=1 vµpr(ci ≻ cj)
vµ(ci≻cj)

g(dP (ci,cj))
/µ(l(P )) T i<j≤k

{
v′µP (ci ≻ cj)

}

Method 2: ṽ f(dp(ci, cj), l(p))
∑n

r=1 ṽpr(ci ≻ cj)
ṽ(ci≻cj)

f(dP (ci,cj),l(P ))
T i<j≤k {ṽ′P (ci ≻ cj)}

Method 3: v# vt(ci ≻ cj) = #{pr|dpr(ci, cj) = t}
∑m−1

r=1 vr(ci≻cj).min(g(r),g(dP (ci,cj)))

g(dP (ci,cj))
T i<j≤k

{
v′#P

(ci ≻ cj)
}

T : Mρ(x1, ..., xn) = (
1

n

n∑
i=1

xρ
i )

1/ρ;

M0(x1, ..., xn) =
n

√√√√ n∏
i=1

xi ,

M∞(x1, ..., xn) = max(x1, ..., xn),

M−∞(x1, ..., xn) = min(x1, ..., xn).

µm(k) = max
1≤σ1<···<σk≤m

{
T i<j≤k

{
g(σj − σi)

g(j − i)

}}
.

f(d, l) = g(d)/g(l − 1)





Chapter 4

Properties

In this chapter, we introduce a number of axiomatic properties for assessing our
model and its various methods. Most of these properties are generalizations of
classic properties in social choice and voting theory; others are somewhat new,
due to the new parameters that the model has.

For the classic properties, considering the more dimensions the model has,
one can find different ways of generalizing or modifying an axiomatic property,
in different directions or aspects. Here we present the generalizations which seem
most natural and promising, and for a few of them, more than one modification
is presented. For each of these properties, we will try to find out whether our
model satisfies that property or not.

Since we have introduced different methods of assigning weights and many
combinations of filters for refinement; the number of all possible TAPs, even in
their general settings (any monotonic function g or f , and any generalized mean
function), is too large to evaluate a property for all cases (at least in this thesis).
However, since TAPs’ behaviors vary for different filters, we will try to cover the
basic ones (namely: M, Mw, T k

l , Tl, T α
w , Tw). But, as we will see, for some

properties the whole problem gets too complicated and we leave their evaluation
for some cases for future work.

Although we proposed four weight-assigning methods, here we investigate the
properties of the first three of them. We put aside Method 3 because it differs
from the rest in that it is not really a 1-degree two-phase procedure.

First, we need some more notation and definitions to facilitate the presentation
of the properties.

4.1 Notation

In the last chapter, the implicit assumption was that the input profile is given. If
we want to specify that a function or variable corresponds to a particular profile
R, we put R as a superscript of that function or variable.

47
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For instance, PR denotes the output trends for input profile R; and vR(P ) is
the weight of trend P produced by the input profile R.

Similarly, we denote the weight of a trend P in the particular trend set P by
vP (P ).

For a preference p, we have defined S(p) as the set of all alternatives in p. We
use the same notation for the set of all alternatives in profile R (or output trends
P ), that is: S(R) =

∪
p∈R S(p)

We also use sR(p) to show the set of all voters in R for which p is a sub-
preference of their preference (here R is not necessarily the input profile and it
can be any other set of preferences like P . In that case sP (p) is the set of all
preferences in P such that p is their subpreference). This is mostly used for the
case where the set of voters prefer x to y: sR(x ≻ y). We might use this with
only an alternative instead of a preference p, sR(x), for the set of voters who have
x in their preference.

Each preference of length k contains
(
k
2

)
pairwise comparisons. We denote

the set of all of these pairwise comparisons in a preference p with C(p); i.e.,
C(p) = {(x, y)|x ≻p y}. Similarly, for an input profile R (or set of output trends
P ), we denote the set of all pairwise comparisons with C(R) (or C(P )); i.e.,
C(R) =

∪
p∈R C(p).

We call the first (best) alternative of a preference its top; that is: for a pref-
erence p, a = top(p) ⇐⇒ ∀x ∈ p, x ̸= a : a ≻p x.

For any k, topk(p) is the preference of k first (best) alternatives in p. That is,
if p = p1 ≻ · · · ≻ pk ≻ · · · ≻ pl then topk(p) = q with q = p1 ≻ · · · ≻ pk. We call
q the top-k subpreference of p.

We may restrict the preferences in s(p) to only preferences for which p is their
top subpreference (or in case of s(x), x is their top member). We denote this as
sRtop(p) which means the set of voters whose vote in R has p as top subpreference.

We previously defined a profile as an n-tuple of preferences. If the voters
are not important but only the votes, we may consider it as a multiset of pref-
erences. In that case, we can also write the input profile as a set of weighted
votes, in which the weights are the number of votes of that kind. More formally,
R = {(p1, v1), (p2, v2), . . . , (pk, vk)}, in which there are vi votes of type pi and∑k

i=1 vi = n. This latter way of representing an input profile conforms to the way
we represent output trends.

If we have two disjoint sets of voters with profiles R1 and R2, we can merge
them into a single profile R, written as R = R1 ⊕ R2. Formally, if R1 =
(p1, . . . , pn1) and R2 = (q1, . . . , qn2), then R1 ⊕R2 = (p1, . . . , pn1 , q1, . . . , qn2). If
the preferences are weighted (as in the input profile of weighted votes or out-
put trends) we do as follows: If the preferences in P 1 and P 2 are from the
set of preferences {p1, . . . , pk} and each of these preferences occurred at least in
one of the two preference sets, i.e., P 1 = {(pσ1 , v1(pσ1)), . . . , (pσk1

, v1(pσk1
))} and

P 2 = {(pσ′
1
, v2(pσ′

1
)), . . . , (pσ′

k2
, v2(pσ′

k2
))}, in which σ and σ′ are permutations on
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integers 1 to k; then P 1 ⊕ P 2 = {(p1, v1(p1) + v2(p1)), . . . , (pk, v1(pk) + v2(pk))}.
For a set of weighted preferences Pw, P = U(Pw) gives the set of the prefer-

ences without their weights.

As we have explained in the previous chapter, we may filter preferences in the
result of any TAP with different methods in the refinement phase. We denote
the results of this phase with calligraphic letters, so if P (Pw) is the set of
all (weighted) trends before refinement, the end product of the model after the
refinement phase is P (Pw).

Respectively, we denote the function of a TAP without (before) the refinement
phase by F ; and the complete function, including refinement, by F .

For the three main methods we have introduced, if we want to specify what
weight calculating method the TAP is using, we use the following notation: F v

(Method 0), F vµ (Method 1), F ṽ (Method 2).

A TAP is characterized completely with its weight-assigning method and its
refinement filter. For example, M(F v

g
min) is a TAP of Method 0 which uses the

function g and min and its results are refined by M, that is, its output consists
of only maximal trends. When functions g or T are fixed or not important in a
particular case, we may specify the TAP with only the type of method it uses and
the refinement filter. For example, M(F vµ) can be any TAP which uses Method
1 and is refined by M.

Most of the properties that we will investigate are centered around the ex-
istence and shape of the trends rather than their weights. So since M, Tl, and
T k
l are independent from the weights of the trends, we usually do not specify

the weight-assigning method of their corresponding TAPs unless it is necessary
(e.g., when the weights play a crucial role in the property). Therefore, in these
cases, we treat these refinement filters as a TAP; e.g., if we say M satisfies a
property, it means that all the three TAPs M(F v), M(F vµ) and M(F ṽ) satisfy
that property.

This is also the case for the TAPs without refinement. Similarly, when weights
do not matter for a property, we use F as the representative for all three TAPs:
F v, F vµ , and F ṽ.

In general, for each property, we try to check all the TAPs of any of the
three weight-assigning methods with any of the basic refinement filters (and also
without any refinement). These are 3 · 7 = 21 different classes of TAPs (each can
have different functions for g and T ). In this chapter, we only deal with these
TAPs. So, when we say a property holds for all TAPs, we mean this set of TAPs.
When the property is not sensitive to the weights of the trends, the number of
these TAPs can be reduced to 13, namely: F , M, T k

l , Tl, Mw(F v), T α
w (F v),

Tw(F v), Mw(F vµ), T α
w (F vµ), Tw(F vµ), Mw(F ṽ), T α

w (F ṽ), and Tw(F ṽ). To avoid
repeating this long list of TAPs, we may call them major TAPs.
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4.2 Preliminary Propositions

First we present a few basic propositions which we will use in the rest of the
chapter frequently. They also may provide an intuition for the behavior of the
basic elements of the model which can lead to understanding why some standard
properties do not work here, despite what it might seem like at first glance. In
all the formulas in this section, F is a TAP without a refinement phase.

Proposition 4.1. For any TAP F we have:
∀R : R ⊆ F (R),
∀R : C(R) = C(F (R)) = C(M(F (R))) = C(Mw(F (R))).

Proof. Each input preference is a potential trend itself. The model produces all
possible trends, so all input preferences will be part of the set of output trends
(before the refinement phase). Hence: R ⊆ F (R).

For the first part, R ⊆ F (R) implies C(R) ⊆ C(F (R)); and since the proce-
dure does not create new comparisons for pairs, C(R) = C(F (R)).

Similarly, M(F (R)) ⊆ F (R) implies C(M(F (R))) ⊆ C(F (R)). M(F (R))
eliminates only trends which are subpreferences of other trends in M(F (R)). So
all pairwise comparisons of each of the eliminated trends exist in at least one of
the trends in M(F (R)), this means that M does not shrink the set of pairwise
comparisons; hence C(F (R)) = C(M(F (R))).

Using the same argument, we have C(F (R)) = C(Mw(F (R))). So: C(R) =
C(F (R)) = C(M(F (R))) = C(Mw(F (R))).

Proposition 4.2. For any TAP F and any preference P :
∀R : P ∈ F (R) ⇐⇒ C(P ) ⊆ C(F (R)),
∀R1,R2 : C(R1) = C(R2) =⇒ U(F (R1)) = U(F (R2)).

Proof. The left-to-right direction of the first equivalence is trivial. For the oppo-
sition direction: C(P ) ⊆ C(F (R)) = C(R), i.e., all the pairwise comparisons of
P have support in R and so by definition P ∈ F (R).

Since C(F (R)) = C(R), we substitute C(R) in the first equivalence and
from C(R1) = C(R2) we have: ∀P ∈ F (R1) ⇐⇒ C(P ) ⊆ C(R1) ⇐⇒
C(P ) ⊆ C(R2) ⇐⇒ P ∈ F (R2). So, if C(R1) = C(R2), then U(F (R1)) =
U(F (R2)).

Proposition 4.3. For any TAP F and input profiles R1 and R2:
∃R : R2 = R1 ⊕R =⇒ C(R1) ⊆ C(R2),
C(R1) ⊆ C(R2) =⇒ U(F (R1)) ⊆ U(F (R2)).

Proof. R2 has all the preferences in R1, so it has all the pairwise comparisons
of R1, i.e., C(R1) ⊆ C(R2). If R2 has all the pairwise comparisons of R1,
it produces all the trends that R1 can produce; and possibly some additional
trends, so, U(F (R1)) ⊆ U(F (R2)).
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Proposition 4.4. For any two trend sets P 1 and P 2, if U(P 1) = U(P 2) then
M(P 1) = M(P 2), T k

l (P 1) = T k
l (P 2) and Tl(P 1) = Tl(P 2). Additionally if

∀P ∈ P 1 : vP 1(P ) ≤ vP 2(P ) then T α
w (P 1) ⊆ T α

w (P 2). Such a relation does not
hold for Tw and Mw.

Proof. Since the set of trends are the same (without considering the weights),
their length and the maximality relations remain intact. So their maximal set
and length threshold (and top length) set will be the same; i.e.,M(P 1) = M(P 2),
Tl(P 1) = Tl(P 2) and T k

l (P 1) = T k
l (P 2). Since the weights are not lower in P 2,

the threshold on weights would not remove any member of T α
w (P 1), and higher

weights may push new trends above the threshold; so: T α
w (P 1) ⊆ T α

w (P 2).

The trends with maximal weight can be different in the two sets and so the
top weight sets can consist of completely different trends. Thus, there is no such
a relation for top weight sets (Tw).

For Mw, assume a simple case where P 1 = {P,Q} such that P @ Q. Now,
consider a case in which vP 1(P ) > vP 1(Q), so Mw(P 1) = {P,Q}. Increasing the
value of Q in P 2 can cause a situation in which: vP 2(P ) ≤ vP 2(Q), i.e., P @w Q
and so Mw(P 2) = {Q}. In other words, rather surprisingly, increasing the values
of trends may result in elimination of some of them.

The reverse is also possible, i.e., increasing the weights can add new trends
to Mw(P 2). For this, similarly consider the case in which vP 1(P ) ≤ vP 1(Q), i.e.,
P @w Q and so Mw(P 1) = {Q}. Now, if vP 2(P ) > vP 2(Q), P will also become
a member of Mw(P 2); i.e., Mw(P 2) = {P,Q}.

Proposition 4.5. For any two trend sets P 1 and P 2, if U(P 1) ⊆ U(P 2) then
T k
l (P 1) ⊆ T k

l (P 2). Additionally if ∀P ∈ P 1 : vP 1(P ) ≤ vP 2(P ) then T α
w (P 1) ⊆

T α
w (P 2). Such a relation does not hold for M, Mw and Tw.

Proof. For T k
l and T α

w , we have the same argument as in the previous proposition;
but since we may have new trends, the equality for T k

l to be replaced by subset
relation.

For M, a new trend could be a new maximal trend that adds to the number
of trends in M(P ), or it can be a subprefrence of an existing trend that does not
change the set. But, in the first case, it is also possible that some maximal trends
become subpreferences of this new trend; and so the new maximal set loses some
of its members.

For Mw, we can use the same argument, or deduce directly from the previous
proposition (also for Tw).

4.3 Axiomatic Properties

Here we present several axiomatic properties (or evaluation criteria) for our model.
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4.3.1 Anonymity

In the proposed TAP model, since the voters do not play any role in the model and
we just deal with their reported preferences (obviously equally), the procedure
is anonymous. That is, changing the name of the voters does not affect the
procedure’s result.

4.3.2 Neutrality

Like anonymity, neutrality also holds for our model, since the alternatives are
treated equally in the procedure. So if we change the name of the candidates, the
output trends will be the same if we change the candidates’ names accordingly.

4.3.3 Homogeneity

Classic homogeneity says that replicating all voters uniformly does not affect the
election outcome. A generalization of it would be: replicating each voter with the
same number of similar voters does not change the resulting trends. The possible
changes in the trends’ weights can be fixed with proper normalization.

Theorem 4.1. For any TAP, substituting each input preference with k identical
preferences does not affect the resulting trends and their ordering. The new trends’
weights will be k times their corresponding trends.

Proof. If we replace a preference P with k identical P s, the corresponding binary
comparisons and their weights will remain the same and will just be repeated k
times. Because we add up these weights in the algorithm, the resulting weights
for each binary comparison at the end of the decomposition phase would be k
times the initial case (without k copies). Since this does not add or remove any
binary comparisons, it does not change the trend structure. So the resulting
trends will remain the same, only all weights will be k times the initial case.
Note that in case of T α

w , we assume that a normalization factor (of 1/k) will be
applied at the end (or the threshold value will be multiplied by k); otherwise
T α
w (F (R)) ⊆ T α

w (F (kR)), since the new weights may push new trends above the
threshold.

4.3.4 Unanimity

Since in most cases of classical voting (or preference aggregation) systems there
is only one outcome (either a winner or an aggregated preference), unanimity is
usually defined as: if there is a consensus among all voters, that would be the
system’s outcome. Also, as in most settings, Pareto optimality implies unanimity;
in the literature they are considered equivalent in many cases. However, due to the
more complex structure, we define them differently here. Also, since in general,
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the output consists of more than one trend (with different weights); it is not really
clear what the winner is, and even in the consensus case there could be more than
one trend in the output.

So, we define two kinds of unanimity properties. Unanimity, which means
the consensus preference will be one of the output trends; and unique unanimity,
which means the consensus preference will be the only output trend. Note that
uniqueness needs a refinement on the set of trends.

Definition 4.1 (Unanimity). A TAP is unanimous if when all voters have the
same preference, that preference is part of the outcome:

R = (p, . . . , p) =⇒ p ∈ F(R). (4.1)

We say a TAP has the unique unanimity property if the consensus preference
is the only trend of the output:

R = (p, . . . , p) =⇒ U(F(R)) = {p}. (4.2)

By definition, unanimity is weaker than unique unanimity.

Theorem 4.2. The TAP’s: M(F ), Tl, Mw(F vµ), Mw(F ṽ) are uniquely unan-
imous; F , T k

l , Mw(F v), T α
w (F vµ), T α

w (F ṽ) are unanimous and T α
w (F v) is not

unanimous.

Proof. An election with unanimous votes of k voters is equivalent to a singular
election in which the vote is replicated k times. Therefore, using homogeneity,
we consider a singular election and the results will be the same.

If there is only one voter with preference p then U(F (R)) = {q|q ⊑ p}. So,
p ∈ F (R), but it is not the only member of F (R); i.e., F is unanimous.

The maximal set and top length set of F (R) are both {p} and so M and Tl

are uniquely unanimous.

p is a member ofMw(F (R)), soMw is unanimous. Now to check if it is unique
or not, we need to consider the scoring method. If the method is informative, the
weight of p is maximal; and so p is the unique member of Mw(F (R)), otherwise
there could be other trends in the set. Hence,Mw(F vµ) andMw(F ṽ) are uniquely
unanimous and Mw(F v) is unanimous.

For the weight threshold, in Method 0, p has the minimum weight. So for any
threshold higher than its weight, p is not a member of T α

w (F v(R)) and therefore
T α
w (F v) is not unanimous. On the other hand, since Method 1 and Method 2 are

informative, p is the member of any weight threshold set. Because in these two
methods other trends could gain the same maximum weight as p has, the weight
threshold (and top weight set) will not guaranty the uniqueness of p. Hence,
T α
w (F vµ) and T α

w (F ṽ) are unanimous.
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4.3.5 Groundedness

We can see a common aspect in this model and ontology merging in the sense
that in both, the input and output are partial and the framework itself does not
rule out appearance of an alternative (formula) in the outcome without any direct
support in the input.

An axiom, called groundedness, has been introduced in this regard [21]. Here
we use a similar idea to define groundedness for our model.

Definition 4.2 (Groundedness). We call a TAP grounded if no alternative ap-
pears in the output trends unless it occurs in at least one input preference.

∀R : S(F(R)) ⊆ S(R) (4.3)

Note that, although our framework does not impose groundedness, our pro-
posed methods do in all of the presented cases. These methods only produce a
trend when all of its pairwise comparisons have occurred in the input preferences
and so the same holds for the individuals.

Besides the methods that have been presented, there are possible scenarios
within the model’s framework which violate the groundedness property. For ex-
ample, if we consider the alternatives that have not been compared in each voter’s
preference as the voters least preferred choices and then apply the rest of the pro-
cedure as before, then we may end up with alternatives in output trends which
have not been in any of the input preferences.

4.3.6 Existence

Here we deal with partial preferences both in the input and in the output, so
the existence of a particular alternative in the output in different situations is
noteworthy. For example, an existence axiom could be stated as: If an alternative
occurs in at least one of the input preferences, it should appear in at least one of
the output trends; i.e., for all x:

∃pi : x ∈ S(pi)) =⇒ ∃Pi : x ∈ S(Pi).

However, since this formulation is almost equivalent to another axiom that we
will introduce later (in Section 4.3.8), we do not define this as a separate axiom.
Here we use a universal quantifier for the premise and define two versions; one
requires the existence of the alternative in at least one trend and the other the
existence in all output trends.

Therefore we define the weak existence property as follows:

Definition 4.3 (Weak existence). We say a TAP has the weak existence property
if, when there is an alternative x which occurs in all input preferences, then x
appears in at least one output trend.

∀x[∀pi : x ∈ S(pi) =⇒ x ∈ S(P)] (4.4)
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Accordingly, the strong existence property (which we may call just existence)
is defined as follows:

Definition 4.4 (Strong existence). We say a TAP has the strong existence prop-
erty if, when there is an alternative x which occurs in all input preferences, then
x appears in all output trends.

∀x[∀pi : x ∈ S(pi) =⇒ ∀Pi ∈ P : x ∈ S(Pi)] (4.5)

Lemma 4.1. If there is an alternative x which occurs in all input preferences,
then for any output trend in P , x appears in the trend or in a superpreference of
that trend in P . That is, if P = F (R),

∀x[∀pi : x ∈ S(pi) =⇒ ∀P ∈ P : ∃P ′ ∈ P : P ⊑ P ′ ∧ x ∈ S(P ′)]

Proof. We show that for any P ∈ P such that x ̸∈ P , there is a P ′ ∈ P with
P @ P ′ and x ∈ P ′.

Let P : c1 ≻ ... ≻ ck be a trend without x. If ∀i = 1, . . . , k : ∃pj : x ≻pj ci
then P ′ : x ≻ c1 ≻ ... ≻ ck is a trend. If not, there is at least one ci that x never
beats it in any input preference. Now, suppose ct is the last alternative of this
kind in P ; i.e., v(x ≻ ct) = 0 and for i = t + 1, . . . , k : v(x ≻ ci) > 0. This
means that in all preferences containing x and ct, ct ≻ x; and since x appears in
all input preferences, whenever we have ct in a preference, x comes somewhere
after that. Considering the place of ct in P , for each i = 1, . . . , t− 1, there is at
least one preference in which: ci ≻ ct; and since ct ≻ x for every preference with
ct, we have ci ≻ x for all i = 1, . . . , t− 1. Hence, P ′ : c1 ≻ ...ct ≻ x ≻ · · · ≻ ck, is
also a trend.

Corollary 4.1. If a candidate exists in all input preferences, it will exist in all
maximal output trends and top length trends. That is,

∀x[∀pi : x ∈ S(pi) =⇒ ∀Pi ∈ M(P ) : x ∈ S(Pi)],
∀x[∀pi : x ∈ S(pi) =⇒ ∀Pi ∈ Tl(P ) : x ∈ S(Pi)].

Proof. From the lemma, each trend in P is a subpreference of a trend that con-
tains x. So, all maximal trends contain x. Also, since all top length trends are
maximal by definition, all trends in the top length set also contain x.

Theorem 4.3. All major TAPs, except for weight thresholds, are weakly existent.
M and Tl are strongly existent.

Proof. The previous corollary implies that M and Tl are strongly existent. Since
M and Tl are subsets of Mw and T k

l respectively, Mw and T k
l are weakly exis-

tent. Likewise, F is weakly existent; and it is not strongly existent. The length
threshold set (T k

l ) is not strongly existent, because of the inclusion of extra trends
in case of any threshold other than the maximum length.

When the weights play a role in filtering the output set, it is a bit more
complicated. For each weight-assigning method, it depends on the functions g
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(or f) and T . Here, we will not explore all of these possible situations and will
only present some significant cases.

For Method 0, consider the singular election with input preference p : A ≻
C ≻ B. We have (with any mean function), v(A ≻ B) = g(2), while v(p) = 1.
So, when g(2) > g(1) = 1 (as it is almost always the case), this means that
A ≻ B as an output trend is a weighted maximal trend for the output set of F v;
i.e. Mw(F v) does not satisfy strong existence. In addition, any threshold greater
than the weight of trend p would eliminate it and so T α

w (F v) is not even weakly
existent.

Now, for the other two methods, first we examine the case of T = min, as it
is the main choice for T and is the most promising one. Since these two methods
are informative, the previous example will not work for them.

For Method 2, consider the following scenario. The input preferences are p1
and p2 such that p1 : A ≻ B ≻ C and p2 : A ≻ C ≻ B. Now, we calculate the
scores of three trends p1, p2 and p : A ≻ B. The aggregated weight of pairwise
comparisons are:

v(A ≻ B) = v(A ≻ C) = g(1)/g(2) + g(2)/g(2) = 1 + 1/g(2), and
v(B ≻ C) = v(C ≻ B) = g(1)/g(2) = 1/g(2).
Therefore, the weights of the three trends are:
v(p) = 1 + 1/g(2),
v(p1) = T {v(A ≻ B)/(1/g(2)), v(B ≻ C)/(1/g(2)), v(A ≻ C)/1} = T {g(2) +

1, 1, 1 + 1/g(2)}, and by symmetry, v(p2) = v(p1).
Now, if T = min then v(p1) = 1 and so v(p) > v(p1) = v(p2). Thus, like

Method 0, when T = min, Mw(F ṽ) is not strongly existent and T α
w (F ṽ) is not

existent at all.
Note that for this example, depending on the function g, a range of choices for

the power mean violate existence. For example, if g(2) <
√
2, all the power mean

functions with the exponent of less than 1 (including M1 which is the arithmetic
mean) violate existence.

We can also see that if T = max, for any preference without x, there is a
superpreference of it with x which has a greater weight. That is, when T = max,
Mw(F ṽ) satisfies strong existence and T α

w (F ṽ) is weakly existent.

4.3.7 Pareto Optimality

In classical voting theory, usually two kinds of Pareto optimality are defined. In
most settings, the expected outcome of the two versions are the same; and the
weaker has stronger requirements. As mentioned before, in the literature, Pareto
optimality is sometimes considered equivalent with unanimity. In general, roughly
speaking, the Pareto optimality property says: if all members of a society have
“almost” the same opinion about two alternatives, the social outcome should
do the same. The stricter definition of “almost”, the stronger the axiom. For
example, a weak version may require that if all voters prefer A to B, so does the
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society, while a strong version only requires that no one prefers B to A. Note
that, in most classical settings, the conclusion part is the same for both versions
because there is one social preference and usually this social preference is not
partial.

Here we use a similar idea to generalize the concept of Pareto optimality with
two different approaches. Note that, here the outcome consists of more than one
trend and these trends are partial preferences. So we can have different versions
in the premise and conclusion parts. Therefore, we cannot say that one axiom is
mathematically weaker than the other and can by logically implied by the other
axiom.

First, we define a property in our model which we call existential Pareto
optimality.

Definition 4.5 (Existential Pareto optimality). A TAP is existentially Pareto
optimal, if when some voters prefer an alternative to another, then there are some
trends in which the former is preferred to the latter.

∀x, y[∃pi : x ≻pi y =⇒ ∃Pi : x ≻Pi
y] (4.6)

The other version, which we call universal Pareto optimality, is obtained by
replacing existential quantifiers in the axiom by universal quantifiers.

Definition 4.6 (Universal Pareto optimality). A TAP is universally Pareto op-
timal, if when all voters prefer an alternative to another, all output trends also
prefer the former to the latter.

∀x, y[∀pi : x ≻pi y =⇒ ∀Pi : x ≻Pi
y] (4.7)

Theorem 4.4. The TAPs: F , M(F ), Mw(F v), Mw(F vµ) and Mw(F ṽ) are
existentially Pareto optimal. No TAP with a threshold filter is existentially Pareto
optimal.

Proof. If ∃pi : x ≻pi y then there is at least one trend P in F (R) such that
x ≻P y. This trend or one of its superpreferences will be in the trends’ maximal
set and weighted maximal sets by definition. So, F , M(F ), Mw(F v), Mw(F vµ)
and Mw(F ṽ) are existentially Pareto optimal.

For T k
l , consider a case in which the only preference containing x and y is

x ≻ y, and all other preferences are on alternatives other than these two. So,
the only possible trend that contains x and y would be x ≻ y and this will be
eliminated by any threshold on the length of the trends.

We can use a similar argument for the weight threshold in any of the three
weight assigning methods.

Like strong existence, we do not know whether all TAPs satisfy universal
Pareto optimality. But we have this:
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Theorem 4.5. Universal Pareto optimality is strictly weaker than strong exis-
tence.

Proof. Suppose that in all input preferences x ≻ y. Then from strong existence,
x and y exist in all output trends. Since x ≻ y is in all preferences (and so there
is no support for y ≻ x), we have x ≻ y in all output trends. That is, strong
existence implies the universal Pareto optimality property.

Consider the case in which the input preferences are x ≻ y ≻ z and y ≻ z ≻ x,
and the output trend is y ≻ z. This satisfies universal Pareto optimality, but
violates strong existence. So, universal Pareto optimality is strictly weaker than
strong existence.

4.3.8 Covering

The existence property is about a specific alternative with a particular, rather
unlikely, situation in the input profile. We also saw (in Section 4.3.6) that the
existence property could be defined in another way, we define it here alongside
another property (covering). It is reasonable to seek procedures that have all the
compared alternatives of the input in their output.

Definition 4.7 (Covering). We call a TAP covering if the output trends consist
of exactly all the alternatives occurred in the input profile.

∀R : S(R) = S(P ) (4.8)

The definition is equivalent to:

∀x[x ∈ S(R) ⇐⇒ x ∈ S(P )] (4.9)

We saw a possible formulation for the existence axiom:

∀x[∃pi : x ∈ S(pi) =⇒ ∃Pi : x ∈ S(Pi)] (4.10)

This existence axiom is equivalent to the right-to-left direction of the Equation
4.9. The left-to-right direction is equivalent to the groundedness property.

So, if this existence axiom holds for a grounded TAP, the TAP satisfies the cov-
ering property. As we have seen, all TAPs that we are dealing with are grounded;
so we just need to check the existence axiom.

Theorem 4.6. The covering property holds for F and all the maximal filters. It
does not, however, hold for length or weight threshold filters.

Proof. We need to check the existence axiom. If x is in one input preference, that
preference is a trend itself and that trend or its superpreference will remain in
the set of maximal trends. So covering holds for maximal filters.

If x occurred in just one input preference (e.g., x ≻ y), this will be the only
trend representing x in the output. This could be eliminated easily by length or
weight threshold filters. So covering does not hold for these thresholds.
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4.3.9 Partitioning

In this model, the size of the set of alternatives is very crucial from the compu-
tational aspect. Because the complexity of the problem is fairly high, it is very
important to be able to find a way to reduce the size of the problem or divide
the problem to a number of smaller subproblems. In this regard, we present the
partitioning property. This is a rather trivial but definite solution if it is applica-
ble. More detailed partitioning of the problem might result in a situation where
only approximate solutions are possible. We define partitioning when we want to
produce the aggregated trends for two (or more) sets of disjoint alternatives.

Definition 4.8 (Partitioning). We say a TAP has the partitioning property if
when there are two sets of disjoint alternatives, computing the trend set of their
corresponding input profiles separately and then merging the resulting trend sets
or first merging the input profiles and then computing the trends, result in the
same outcome.

S(R1) ∩ S(R2) = ∅ =⇒ F(R1 ⊕R2) = F(R1)⊕F(R2) (4.11)

Obviously, this can be generalized for more than two disjoint sets:

k∩
i=1

S(Rk) = ∅ =⇒ F(R1 ⊕ · · · ⊕ Rk) = F(R1)⊕ · · · ⊕F(Rk) (4.12)

Theorem 4.7. The TAPs: F , M, Mw(F v), Mw(F ṽ), T k
l , Tw(F v) and Tw(F ṽ)

satisfy partitioning.

Proof. Since the sets of alternatives are disjoint, putting them together will not
add new pairwise comparisons. So, the trends remain intact. There also will not
be any changes in their weights, except in Method 1 (due to the change in the
value of µ). Hence, the set of all possible trends would be the union of the output
trends of the two disjoint profiles. Since the (weighted) maximal relation does not
change, M, Mw(F v) and Mw(F ṽ) also satisfy the partitioning property. This
is also the case for the threshold filters, because if a trend in any of the former
profiles passed the threshold, it will still pass. So, T k

l , T α
w (F v) and T α

w (F ṽ) satisfy
partitioning.

Note that both threshold filters satisfy partitioning when there is a specific
value for the threshold. In case of top sets, since the maximum value (length
or weight) depends on the corresponding set, the partitioning property is not
satisfied. That is, if the maximum length or weight in the two sets are different,
we cannot consider them as special cases of the threshold function, because there
are in fact two different threshold functions in the equivalence. However we can
fix this by adding an extra round of filtering; i.e, if T is a top set function (either
top length or weight) and F is F v or F ṽ, we have:

S(R1) ∩ S(R2) = ∅ =⇒ T (F (R1 ⊕R2)) = T (T (F (R1))⊕ T (F (R2))) (4.13)
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Furthermore, for Method 1, we can also have partitioning with a minor change
in the formula. Here, the problem is that the value of the µ depends on the total
number of the alternatives in the profile. Consider the case where there is a subset
of alternatives such that each of the input preferences is either totaly inside or
outside of this set. Then if we calculate the value of the µ based on the size of
this subset instead of the whole set, the weights remain the same in both cases.
Note that, this change results in a different weight for each output trend. These
new weights would even change the relative weights of the trends. For example,
if the profile consists of two preferences, p1 : A ≻ B ≻ C and p2 : D ≻ E; the
weight of the trend D ≻ E will be greater than the weight of the trend A ≻ B,
while they would have the same weight in the original method.

In practice, using this property, can reduce the computation time of the trend
aggregation significantly (if it is applicable). For any implementation of our
method, we can first run a linear algorithm to partition the set of alternatives
based on the input preferences, then apply the main algorithm on each part (and
its corresponding preferences) separately.

4.3.10 Informativeness

We previously defined informativeness, in a very special case of singular elections,
to characterize the weight-assigning methods. Here we define it as an axiomatic
property for elections of any size. Note that, since here we define informativeness
for the complete TAPs (i.e., with refinement phase), it can be the case that a
TAP with an uninformative weight-assigning method satisfies the informativeness
property.

Definition 4.9 (Isolated preference). We call an input preference isolated if its
set of alternatives is disjoint from the rest of the preferences in the input profile.
That is, p is isolated if: S(p) ∩ S(

∪
i∈X ,pi ̸=p pi) = ∅.

Definition 4.10 (Informativeness). We call a TAP informative, if any isolated
preference of the input profile is an output trend and has a greater weight than
any of its subpreferences in the output trend set.

∀p ∈ R[S(p) ∩ S(
∪

i∈X ,pi ̸=p

pi) = ∅ =⇒ ∀q ∈ P , q ⊑ p : v(q) ≤ v(p)] (4.14)

Note that when p is not in the output trend set, then v(p) = 0 by definition.
We introduced Method 2 as a solution to develop informative TAPs. However,

it is important to observe that not all the variants of Method 2 are informative.
The informativeness of Method 2 depends on the functions f and T . Here we
will show that when T = min, the weight-assigning method is informative. But,
this is not necessarily the case for all the other settings of Method 2.
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Lemma 4.2. In a singular election with input preference p, for Method 2 with
T = min, p has a greater weight than all of its subpreferences. That is, for TAP
F ṽ which is using the min function, we have:

R = {p} =⇒ ∀q ⊑ p : v(q) ≤ v(p).

Proof. Let p : c1 ≻ · · · ≻ cm, and q : c′1 ≻ · · · ≻ c′k be an arbitrary subpreference
of p. By definition, when p is the only input its weight as an output trend is one
unit, i.e., v(p) = 1. So, we need to show that the weight of no trend would exceed
1.

If c1 ̸= c′1 or cm ̸= c′k, it means that dp(c
′
1, c

′
k) < m − 1. Since g is non-

decreasing, vp(c
′
1, c

′
k) = g(dp(c

′
1, c

′
k))/g(m−1) < 1. So, v′q(c

′
1, c

′
k) = v(c′1, c

′
k)/f(k−

1, k − 1) = vp(c
′
1, c

′
k) < 1. Since T = min, we have v(q) ≤ v′q(c

′
1, c

′
k) < 1.

Now, if the first and last alternatives of both p and q are the same, then
v′q(c

′
1, c

′
k) = f(m−1,m−1)/f(k−1, k−1) = 1. Because T = min, we have v(q) ≤

v′q(c
′
1, c

′
k) = 1. We can see that the equality only occurs when all alternatives in

q are proportionally in the same place in p as they are in q. That is, only when
m− 1 = t(k − 1) and c′i = ct(i−1)+1.

Theorem 4.8. M(F ) and Tl(F ) are informative for all three weight-assigning
methods. F , Mw(F ), T k

l (F ), T α
w (F ) and Tl(F ) are informative when their

weight-assigning method is informative.

Proof. If a TAP satisfies partitioning, the problem is reduced to a singular elec-
tion. In case of Method 1, the order of the weights in each partition remains
unchanged; so it also can be reduced to a singular election. This is also the case
for the top length and weight sets. So, all of them are informative when their
weight-assigning method is informative. That is, Method 1 and the settings of
Method 2 which are informative (e.g., when T = min).

In addition, for M and Tl, since they eliminate the subpreferences of each
trend in their outcome; they are informative in all cases even when their weight-
assigning method is not informative.

4.3.11 Inclusiveness

We can see trend aggregation from two different points of view. First, as a system
that finds the most popular trends in the society. This can be seen as the social
trends that are usually high-weighted but with short length. Another point of
view is to report a comprehensive output, so even the marginal members of the
society can find trends in the outcome that are affected by their opinions. This
approach is essential when we want to use trend aggregation as a recommendation
system or decision support system. In this approach, a voter can find trends
that are aggregated from the society while encompassing his opinion and having
new suggestions for him. Considering this approach, we define the inclusiveness
property.
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Definition 4.11 (Inclusiveness). We say a TAP is inclusive, if for any input
preference, that preference or a superpreference of it is a member of the set of
output trends.

p ∈ R =⇒ ∃q ∈ P : p ⊑ q (4.15)

Theorem 4.9. F and all (weighted) maximal TAPs are inclusive. TAPs with
any kind of threshold are not inclusive.

Proof. F reports all the input preferences as trends in the output, so it is inclu-
sive. Maximal sets retain all preferences or their superpreferences, so they are all
inclusive.

In TAPs with thresholds, there can always be a profile in which the length or
weight of an input preference in the outcome is very low, because there was not
enough support in the input for that trend or its superpreferences. In particular,
we can consider an isolated preference in a profile which produces both longer
trends and trends with higher weights. So, all TAPs with a threshold phase
violate inclusiveness.

4.3.12 Idempotence

In this model, the input and output have the same format (we can have the
input in the format of weighted votes). So, it would be interesting to investigate
what will happen if the output of the procedure is considered as a new input. A
desirable property is that this consecutive running of the procedure produces the
same result as if it runs once. This is called idempotence. Here, we define this
property for our model formally. However, since we do not have definitive results
for most cases (TAPs), we will not have any theoretical results for this property.

Definition 4.12 (Idempotence). We call a TAP idempotent if applying it to the
output of any profile produces the same output. Note that we do not consider the
weights of trends in the equation here.

∀R : U(F(F(R))) = U(F(R)) (4.16)

From Proposition 4.1, the information in the output of the TAPs F and M
are the same as their input profiles. So, from Proposition 4.2, these outputs
produce the same results as the input. That is, F and M are idempotent.

Note that Proposition 4.1 also holds for Mw, but we need to check that the
procedure does not change the weights of the trends in a way that a previously
weighted maximal trend will not be maximal anymore or vice versa.

For T k
l , we can easily see that since all the input preferences are potential

trends (Proposition 4.1) and the output trends of T k
l have a length of at least

k, all the output trends of T k
l will be in the output of the second run. Because

there is no more support in the output of T k
l , it will not produce extra trends

(Proposition 4.3). So, T k
l is also idempotent.
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4.3.13 Non-Imposition

Classical non-imposition requires that any social winner (preference) is possible.
Sometimes the possibility of having any ranking as output is called strong non-
imposition.

For our model, the equivalent of the strong non-imposition property would be
that all possible (feasible) sets of trends are achievable. The problem is, unlike
the classical methods, all the possible sets of preferences are not valid outputs
(for example, in the output of any TAP without refinement, for each trend in the
output set, all of its subpreferences should be in the output too). So, it is more
reasonable to consider just feasible sets of trends. But, the characterization of the
feasible outcome in each case is complicated itself. So, we leave out investigating
the strong non-imposition property for our model and only present a general
formulation of it for TAPs:

Definition 4.13 (Strong non-imposition). A TAP satisfies strong non-imposition
property if for all feasible output trend sets, there is an input profile which produces
that output. That is, if P∗ is the set of all acceptable trend sets as the output of
the corresponding TAP, then:

∀P ∈ P∗ : ∃R : U(F(R)) = P . (4.17)

Furthermore, the weighted version is:

∀Pw ∈ P∗ : ∃R : F(R) = Pw. (4.18)

Now, we introduce a weaker version of non-imposition. Instead of all com-
binations of trends in the output, we only consider each trend individually and
check if every admissible trend is achievable as a member of the output of an
input profile. We call this, weak non-imposition or in short non-imposition.

Definition 4.14 (Non-imposition). A TAP has the non-imposition property, if
for any possible trend, there is a profile which produces an output containing that
trend.

∀P ∈ L(X ) : ∃R : P ∈ U(F(R)). (4.19)

Theorem 4.10. All major TAPs are non-imposed, except for the top weight set
Tw(F v).

Proof. Except for T α
w (F v), the rest are easy. For any desired trend P , the profile

R = {P} produces trend P as one of the output trends. F produces P and all of
its subpreferences. Since P is the maximal preference, the outcome for M is {P}
itself. This is also the case for Mw if the method is informative; i.e., Mw(F vµ)
and Mw(F ṽ). In case of Mw(F v), P is still a maximal preference and a member
of the output trend set, although it is not the only member. P is also a member
of T k

l and the only member of Tl.
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In informative methods, F vµ and F ṽ, P has the maximum weight and so is
a member of the output trend set for T α

w (F vµ) and T α
w (F ṽ); and it is the only

member of the output for Tw(F vµ) and Tw(F ṽ).
For T α

w (F v), the input profile {P} does not work anymore. Because it has
a lesser value than all of its subpreferences. We can fix this by adding a few
more copies of P to the input profile and an extra preference with a disjoint
set of alternatives. This will increase the proportional value of trend P to help
it pass the threshold. But it will not work for the top weight set, because its
subpreferences always have greater weight and thus P cannot be in the outcome
of Tw(F v).

4.3.14 Consistency

A reasonable property for a voting system is, when there are two sets of disjoint
voters which have a common social choice or preference, the collective result of
the union of these two sets should be the same. This is called the consistency [27]
criterion. It is also called reinforcement [17] or separability [24] in the literature.

In our model, we can use a similar idea and define different versions of it. The
equivalent of the classic consistency could be expressed as:

F(R1) ∩F(R2) ̸= ∅ =⇒ F(R1) ∩F(R2) = F(R1 ⊕R2) (4.20)

This is a strong requirement for a TAP, because the two input profiles could
produce totally new trends together in most cases. Therefore, we replace the
equality with the subset relation to provide a more promising version. We consider
this as the main consistency property in our model.

Definition 4.15 (Consistency). We call a TAP consistent if for any two input
profiles, the common trends of their separate outputs are in the set of output
trends of the merger of the two profiles.

F(R1) ∩F(R2) ⊆ F(R1 ⊕R2) (4.21)

Another possible axiom related to the concept of consistency is:

U(F(R1)) = U(F(R2)) = P =⇒ U(F(R1 ⊕R2)) = P (4.22)

Here, we investigate the main version which has been defined in definition
4.15.

Theorem 4.11. The TAP F and all the threshold TAPs are consistent. The
(weighted) maximal TAPs and top length set are not consistent.

Proof. Proposition 4.3 implies that F (R1) ⊆ F (R1 ⊕ R2) and the same for
F (R2). So, F (R1) ∩ F (R2) ⊆ F (R1 ⊕R2) and F is consistent.
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From Proposition 4.5, since F (R1) ⊆ F (R1 ⊕ R2), we have T k
l (F (R1)) ⊆

T k
l (F (R1 ⊕ R2)). We have the same for R2, so T k

l (F (R1)) ∩ T k
l (F (R1)) ⊆

T k
l (F (R1 ⊕R2)).

Because R1 ⊕ R2 has more input preferences than R1 or R2 seperately, the
weights of trends for the input profile R1⊕R2 are not less than the weight of their
corresponding trends for input profiles R1 or R2. Hence, from Proposition 4.5,
we have T α

w (F (R1)) ⊆ T α
w (F (R1 ⊕R2)) and the same for R2. So, T α

w (F (R1)) ∩
T α
w (F (R1)) ⊆ T α

w (F (R1 ⊕R2)).

We could also use the argument that the threshold functions are consistent
because if a trend is in the outcome of both profiles, it means that the trend
passes the length or weight threshold in both cases. Adding extra preferences to
the input does not decrease the lengths or weights of the trends, so they would
pass the threshold in case of the union of the profiles. In fact, for Mw(F v) and
Mw(F ṽ), we can easily see that they can pass thresholds as high as two times
the original one. That is, T α

w (F (R1)) ∩ T α
w (F (R2)) ⊆ T 2α

w (F (R1 ⊕R2))

For M, Mw and Tl, consider the following example: R1 = {A ≻ B,B ≻ C},
R2 = {A ≻ B,A ≻ C}.

The set of output trends for F is the input profile itself for both cases and
their maximal sets remain the same. Now, for R1 ⊕ R2, we have: R1 ⊕ R2 =
{A ≻ B,B ≻, A ≻ C} and F (R1 ⊕ R2) = {A ≻ B,B ≻, A ≻ C,A ≻ B ≻ C}.
In this case, M(F (R1 ⊕R2)) = {A ≻ B ≻ C}; while R1 ∩ R2 = {A ≻ B}. So,
M is not consistent.

For this example, Tl has the exact same effect as M, so the top set Tl is also
not consistent.

The same argument can be used for Mw, regardless of its weight-assigning
method, to show that Mw of any kind is not consistent.

For Tw, consider the same example, but with multiple input preferences as
follows: R1 = {(A ≻ B, 2), (B ≻ C, 3)}, R2 = {(A ≻ B, 2), (A ≻ C, 3)}. In this
case the top weight trend of the outputs are B ≻ C and A ≻ C respectively,
and their intersection is the empty set; but the top weight set of R1 ⊕ R2 is
A ≻ B. So, Tw is not consistent. However, if the two outputs have common top
weight trends, we can see that these common trends would be the top weight
trends of F (R1 ⊕R2). Consequently, if we restrict the consistency property for
situations in which the output of the two profiles have common trends; then Tw

is consistent.

4.3.15 Participation

In standard voting systems, the no show paradox is a well-studied issue. The
no show paradox happens when a favorable choice of a voter is already in the
outcome of the election without his vote; but by adding that vote, the outcome
becomes less favorable for the voter. The participation criterion has been defined
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to address such situations. A voting procedure has the participation property, if
the no show paradox does not happen for that procedure.

In our model, the concept of a favorable outcome for a voter other than his
exact preference is not very clear. So, here we consider the case in which a
preference has been chosen as an output trend; and we investigate what will
happen if that preference is added to the input profile.

Definition 4.16 (Participation). A TAP has the participation property if for any
preference that is already an output trend, adding that trend to the set of input
preferences will not make the situation of the trend in the output worse.

P ∈ F(R) =⇒ P ∈ F(R+ P ) ∧ (vR+P (P ) ≥ vR(P )) (4.23)

Lemma 4.3. If P ⊑ Q, there is a positive ϵ such that for all alternatives x and
y in Q: v′R+P

Q (x, y) ≤ v′RQ(x, y) + ϵ; and the equality holds when P = Q, i.e.,

v′R+P
P (x, y) = v′RP (x, y) + ϵ. For Method 0, ϵ = 1, for Method 1, ϵ = 1/µ(l(P ));

and for Method 2, ϵ = g(l(Q)−1)
g(l(P )−1)

, which is equal to 1 when P = Q.

Proof. In Method 0 we have:

v′
R+P
Q (x, y) =

∑
pi∈R+P vpi(x, y)

g(dQ(x, y))
=

∑
pi∈R vpi(x, y) + vP (x, y)

g(dQ(x, y))
= v′

R
Q+

g(dP (x, y))

g(dQ(x, y))
.

Since P @ Q, we have dP (x, y) ≤ dQ(x, y) and at least for one pair the

inequality is strict. So, because g is non-decreasing, g(dP (x,y))
g(dQ(x,y))

≤ 1.

Hence, if P @ Q: v′R+P
Q (x, y) ≤ v′RQ(x, y) + 1;

and if P = Q: v′R+P
P (x, y) = v′RP (x, y) + 1;

In Method 1, the definition is vµ
′
P (x, y) = v′P (x, y)/µ(l(P )). So, with a

similar argument, we have:

vµ
′R+P

Q (x, y) =

∑
pi∈R vpi(x, y) + vP (x, y)

g(dQ(x, y)).µ(l(Q))
= vµ

′R
Q +

g(dP (x, y))

g(dQ(x, y)).µ(l(Q))
.

So, if ϵ = 1/µ(l(Q)), in case of P = Q we have: vµ
′R+P
P (x, y) = v′RP (x, y) + ϵ;

and if P @ Q: vµ
′R+P
Q (x, y) ≤ v′RQ(x, y) + ϵ.

Similarly, for Method 2:

ṽ′
R+P
Q (x, y) =

∑
pi∈R vpi(x, y) + vP (x, y)

f(dQ(x, y), l(Q))
= ṽ′

R
Q +

f(dP (x, y), l(P ))

f(dQ(x, y), l(Q))
.

Since g(dP (x, y)) ≤ g(dQ(x, y)), we have:

f(dP (x, y), l(P ))

f(dQ(x, y), l(Q))
=

g(dP (x, y))/g(l(P )− 1)

g(dQ(x, y))/g(l(Q)− 1
≤ g(l(Q)− 1)

g(l(P )− 1)
.
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Hence, if P @ Q: ṽ′R+P
Q (x, y) ≤ ṽ′RQ(x, y) +

g(l(Q)−1)
g(l(P )−1)

;

and if P = Q: ṽ′R+P
P (x, y) = ṽ′RP (x, y) + 1.

Theorem 4.12. The TAPs F , M, T k
l , T α

w (F v), T α
w (F vµ) and T α

w (F ṽ) satisfy
the participation property. There are also some cases in which participation holds
for TAPs with a weighted maximal set.

Proof. We need to show that the weight of P is greater when we add it to the
input profile and it will still be a member of the output trend set.

First, we prove that vR+P (P ) ≥ vR(P ). Using the previous lemma, we have:
vR+P (P ) = T i<j≤l(P ){v′R+P

P (ci, cj)} = T i<j≤l(P ){v′RP (ci, cj) + ϵ} ≥
T i<j≤l(P ){v′RP (ci, cj)} = vR(P ).

Now, we need to check whether P is in the output or not. By adding a
new preference to the input, no trend will disappear from the output of F , so it
satisfies participation.

Also, since all the pairwise comparisons from this new preference already
existed (they shaped P ), there will be no new trend. But after the refinement, we
may lose some trends. Since there is no change in the shape of trends, maximal
set and threshold on the lengths (and also top length set) do not change the
output. Also, since the weight of Q is not less, it will not be harmed from a
threshold on the weights. Hence, participation holds for M, Tl, T k

l and T α
w .

Now, the only concern is about the weighted maximal set. We should check
that adding new preferences will not make P a weighted subpreference of any
other trend like Q. This could happen if P ⊑ Q and vR(P ) > vR(Q) but
vR+P (P ) ≤ vR+P (Q). Now, we show that this will not happen in some specific
cases; that is, if vR(P ) > vR(Q) then we also have vR+P (P ) > vR+P (Q):

In Method 0 we have:
v′P (x, y) = v(x, y)/g(dP (x, y)) and v′Q(x, y) = v(x, y)/g(dQ(x, y)). So, when

P ⊑ Q, v′P (x, y) ≥ v′Q(x, y).
In case of T = min:
vR(P ) > vR(Q) =⇒ minx,y∈S(P ){v′P (x, y)} > minx,y∈S(Q){v′Q(x, y)}.
Now, we can distinguish two cases for the pair (x, y) in which v′Q(x, y) =

minx,y∈S(Q){v′Q(x, y)} = vR(Q):

If P ̸|= (x ≻ y), adding P to the input profile does not increase the value of
v′Q(x, y). So, v

R+P (Q) = vR(Q). Hence, if vR(P ) > vR(Q), we have: vR+P (P ) ≥
vR(P ) > vR(Q) = vR+P (Q) =⇒ vR+P (P ) > vR+P (Q).

If P |= (x ≻ y), adding P to the input profile increases both the value of
v′P (x, y) and v′Q(x, y). From the lemma we have:

v′R+P
Q (x, y) ≤ v′RQ(x, y) + 1 =⇒ vR+P (Q) = minx,y∈S(Q){v′R+P

Q (x, y)} ≤
minx,y∈S(Q){v′RQ(x, y)+1} = vR(Q)+1 =⇒ vR+P (Q) ≤ vR(Q)+1, and similarly:
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v′R+P
P (x, y) = v′RP (x, y) + 1 =⇒ vR+P (P ) = vR(P ) + 1.

So, if vR(P ) > vR(Q):
vR+P (P ) = vR(P ) + 1 > vR(Q) + 1 ≥ vR+P (Q) =⇒ vR+P (P ) > vR+P (Q).
Hence, if T = min, a TAP with weighted maximal set in Method 0 satisfies

participation.

4.3.16 Reversal Symmetry

The generalization of the reversal symmetry property is easy.
If p = c1 ≻ c2 ≻ · · · ≻ ck is a preference, we show its reverse as p which is

p = ck ≻ · · · ≻ c2 ≻ c1. Accordingly, for a profile R = (p1, p2, . . . , pn), its revers
is R = (p1, p2, . . . , pn)

Definition 4.17 (Reversal symmetry). A TAP has the reversal symmetry prop-
erty if inverting all the input preferences results in the inversion of all output
trends.

F(R) = F(R) (4.24)

Theorem 4.13. For any TAP F , F(R) = F(R).

Proof. For any profile R = (p1, p2, . . . , pn), we have:
∀ci, cj ∈ X : vR(ci, cj) = vR(cj, ci). So, for any trend P ∈ P there is a trend

P ∈ P ; and since their pairwise values are identical for both P and P , their
corresponding weights would be the same in either of the four different methods.
So, the set of all trends for these two cases are equivalent, except that the trends
are the reverse of their correspondents.

From the definition, p @ q ⇐⇒ p @ q; and so: M(P ) = M(P ). Hence,
applying any of the refinement methods would have the same effect on both sets,
since they are only dealing with the weights, lengths, and maximal sets.

So , F(R) = F(R)

4.4 Summary

We have introduced many axiomatic properties in this chapter. We have evaluated
different TAPs with each of these properties separately. Here, we will summarize
the results we have seen and give an overall evaluation of the different TAPs and
our model in general.

First, let us point out an important issue about the properties that have been
presented here. Although we have introduced a large number of properties, one
can see that there is no sign of some of the very common and important axioms
of social choice theory, namely independence of irrelevant alternatives and mono-
tonicity. The reason is that the formulation of these axioms in our framework is
rather complicated. There could be many interpretations and formulations for
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these axioms and most of them do not seem promising. Also, most of these for-
mulations are complicated, and are not easy to understand and work with. So,
we can hardly find interesting results for them.

For example, consider monotonicity. A possible interpretation of monotonicity
can be explained as follows:

If an alternative x is moved to a higher rank in an input preference and the
rest of the input remains unchanged, then the number of output trends with x as
their top alternative will not be less and the weight of trends that already had x
as their top will not be lower.

We can define a similar property for moving x lower and resulting changes in
trends with x on their bottom.

This can be formulates as follows:

∀x : (∀y ̸= x : sR(x ≻ y) ⊆ sR
′
(x ≻ y) ∧ (∀y, z ̸= x : sR(y ≻ z) = sR

′
(y ≻ z) =⇒

|{P ∈ P |x = top(P )}| ≤ |{P ∈ P ′|x = top(P )}| ∧ ∀P ∈ P : vR(P ) ≥ vR
′
(P ))

(4.25)

Besides this complicated formula, another problem is that in the framework of
trend aggregation, a small change in one input preference (like adding or removing
an alternative or swapping two alternatives) can affect the outcome to a large
extent.

Because of these reasons, we leave investigation of these axioms (and many
more axioms) for future work.

4.4.1 Evaluation of the Results

As it might be expected, the maximal set filter has the best performance among
TAPs. From the theoretical point of view, the maximal set (specially the weighted
maximal set) is the most reasonable filter because it does not lose any useful
information and it only removes the redundant parts of the output. On the other
hand, practically, it may not reduce the size of the output as much as we want
and we do not have any control on the size of its outcome (in contrast to threshold
filters).

The maximal set filter satisfies more properties than the weighted maximal
set because the weights can result in unexpected changes in the outcome. This
can be seen more clearly in the weight threshold filters and results in losing many
axiomatic properties for these TAPs. For a few of the properties, we can see
that informative methods have better results than the original (uninformative)
method.

Overall, we can say that there is a trade-off between having a theoretically
“good” trend aggregation procedure or a practically useful one. Maybe, by com-
bining, these filters we can achieve TAPs that are in between, but we are not sure
and it needs more investigation.This is also important because by combining the
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filters we can have control on another trade-off in trend aggregation: the tradeoff
between the length and weights of the desirable trends.

We summarized all the results for the axiomatic properties in below, in Table
4.4.1. Because in most cases the results for a threshold set and its corresponding
top set are the same, we combine them in a single column in the table. If the
property holds only for the top set, we designate it by mentioning the name of
the top set directly in that column. If it is only violated by the top set, then the
name of the tops set comes with a negative sign in that cell.

As we mentioned at the beginning of the chapter, we use F , M and Tl for all
of the weight-assigning methods; for each of them we have only one column. In
the only case (informativeness) that their results depend on the weight-assigning
method, we use the character i to show that the TAP satisfies the informativeness
axiom for the informative weight-assigning methods. We also use min once in the
table for the case that the property holds when the T function of the TAP is min.
In the cases that we do not have definitive results, we use a question mark.
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v vµ ṽ

F M T k
l Mw T α

w Mw T α
w Mw T α

w

Anonymity X X X X X X X X X
Neutrality X X X X X X X X X

Homogeneity X X X X X X X X X
Groundedness X X X X X X X X X
Unanimity X X X X X X X X X

Unique Unanimity X X Tl X X X X X X

Non-imposition X X X X X(-Tw) X X X X
Covering X X X X X X X X X

Idempotence X X X ? ? ? ? ? ?

Informativeness i X i/Tl X X X X X X
Inclusiveness X X X X X X X X X

EPO X X X X X X X X X

W. Existence X X X X X X X X X

Existence X X Tl X X ? X ? X

UPO X X Tl X X ? X ? X

Partitioning X X X X X ? ? X X
Consistency X X X(-Tl) X T 2α

w X X? X T 2α
w

Participation X X X min X ? X ? X
Reversal Symmetry X X X X X X X X X





Chapter 5

Conclusion

5.1 Summary

In this thesis we have tried to bring forth the new concept of having multiple
aggregated preferences for a preference aggregation system and extracting trends
from partial input preferences. In this regard, we have introduced a new concept
in the social choice context, that we called a trend, and formulated the first steps
toward a theory for it. We tried to model the problem and present a solution with
the two-phase methods. We also suggested some operations (filters) to refine the
resulted trends.

The main theoretical results we have in this thesis are the axiomatic properties
that we defined (extended from the classic axioms or newly defined). We had an
extensive investigation about these axioms and the selected major TAPs. This
helps us have an evaluation of our proposed methods and gives some support for
the reliability of the model.

5.2 Computational Complexity

In this thesis, the focus was on the axiomatic aspects of the model. Here we will
have a brief discussion on the computational aspect of the problem.

If there are m alternatives, the maximum number of possible trends is

m∑
i=1

m!

(m− i)!
= m!

m∑
i=1

1

(m− i)!
= m!

m∑
i=1

1

m!
≈ m!e ≈ 2.7m!

This will occur when for any two alternatives x and y, both x ≻ y and y ≻ x
have support in the input preferences.

If a TAP is supposed to produce all possible trends, it means that there is a
potential situation that the number of output trends is 2.7m!. So, even without
considering the complexity of producing the trends, only reporting them has the
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complexity order of Ω(m!).. Therefore, in general, the procedure may not seems
very promising. On the other hand, in practice the number of all possible trends
for most cases is much lower than this.

When we are looking for a limited number of trends (based on their weight,
length, or maximality), then there is a chance of having tractable algorithms.

The most basic algorithm is to produce all possible trends (or even uncom-
pleted trends), calculating their weights and then running them through the re-
finement phase. But if we can develop an algorithm which produces only a limited
number of trends, this would be a great advantage for trend aggregation. For ex-
ample, consider the case that the T function used in the TAP is min and we are
looking for the trends with a weight higher than α. In this case, after the decom-
position phase and calculating the aggregated weights of pairwise comparisons,
we can easily omit the relations between pairs with lower aggregated weight than
α and then produce all possible trends, which is the desirable outcome. This
could result in a major drop in the computation time of the algorithm in most
cases, but the theoretical complexity would still be the same in this case (because
of the possible worst cases).

There might be a chance of better theoretical results for complexity of ap-
proximation algorithms, which is an interesting problem to work on later.

In practice, only a few (constant) number of the ’best’ trends are desirable
and useful. Developing effective algorithms for these cases is another interesting
problem, in particular if we can find faster algorithms.

5.3 Future Work

One of the first priorities for future work is designing an algorithm to produce
the trends in a reasonable time. Then the implementation of this algorithm
and having some experimental results can help us see the practical reliability and
effectiveness of the model. If we can develop an algorithm which produce the most
desirable trends directly, it would be a big achievement. Otherwise, considering
the axiomatic properties of the different refinement methods, we might be able to
develop faster algorithm for special cases. Another option is using approximation
algorithms.

Another direction for the future work is on the axiomatic properties. As we
have seen, for a number of axioms we do not have concrete results in all cases.
This is the first step. But there are also a couple of important properties which
we do not have enough results for or even some that are such that a generalization
of them for our framework is very problematic. There is also a chance that we
can find more general results for a set of primitive operations we can define on
the preferences, such as adding an alternative to a preference, deleting one from a
preference or swapping two alternatives in a preferences. We can also investigate
the behavior of the functions T and g and see what the best choices for them are
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from axiomatic or practical point of view.
Another aspect that we can work on is other versions of the model, like systems

with cardinal preferences or allowing indifference in the input preferences (or also
in output trends). Using interactive systems is another extension of the model.
In that case, we can iterate the procedure of finding trends and in each iteration
users provide more precise preferences based on the suggestion they receive from
the model.

We also can use the method presented in this thesis as a voting system, which
chooses the top candidate of the “best” (or the majority of) output trend as
the social choice. It can also use top candidates of other trends as possible
winners. The properties of such a voting method is an interesting issue for further
investigations.

Also, in general, our model can produce many similar trends. For example,
two trends with only one swap between two of their alternatives. As an example,
consider these two trends:

A ≻ B ≻ · · · ≻ I ≻ J ≻ · · · ≻ Z
and
A ≻ B ≻ · · · ≻ J ≻ I ≻ · · · ≻ Z.
Maybe it would be more useful if we could cluster such trends in a way like:
A ≻ B ≻ · · · ≻ I ∼ J ≻ · · · ≻ Z
This is not an easy procedure and even the representation of these similar

trends is a potential interesting problem. We can also think about the input
preferences with different levels of preferences. For example, a voter may be able
to express that by the input preference of A ≻ B, it means A and B are among
the best choices for the voter or A is the best and B is the one of the worst
choices for the voter. Developing a language to represent these clusters and also
the levels of preference is a possible topic for future work.

We can also consider classical preference aggregation methods as a tool for
trend aggregation and then compare the outcome of those methods with ours.
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Notation Meaning

N Set of all (n) voters

X Set of all (m) alternatives

R Profile (input preferences)

P Set of all trends, without weights (output)

Pw Set of all trends, with weights (output)

P Set of all trends after refinement, without weights (output)

Pw Set of all trends after refinement, with weights (output)

P Trend (member of P or P)

Pw Weighted trend (member of Pw or Pw)

S(P ) Set of all alternatives occurred in P

S(R), S(P ) Set of all alternatives occurred in any preference in R (P )

U(Pw) Set of trends in Pw without their weights

M(X) Set of maximal members of X

Mw(X) Set of weighted maximal members of X

T k
l (X) Set of members of X with length of at least k

Tl(X) Set of the longest members of X

T α
w (X) Set of members of X with the weight of at least α

Tw(X) Set of members of X with maximal weight.

l(p) Length of preference p

vR(P ) Weight of trend P for profile R

v′RP (x, y), v′RP (x ≻ y) The value that x ≻ y supports for trend P

vP (P ) Weight of trend P in the trend set P

sR(p) Set of all voters (in profile R) that p is the subpreference of it

C(R) Set of all pairwise comparisons in R

F Aggregation procedure without the refinement phase

F Aggregation procedure with the refinement phase

Table A.1: Table of Notation
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