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Abstract

In the first part we prove the correctness of an existing verification algorithm,
namely counterexample-driven abstraction refinement. To be able to state the
correctness of the algorithm, we modify it such that it verifies programs that
have a formal semantics. We use propositional dynamic logic and we give a
denotational semantics and an equivalent structural operational semantics.

Then we consider a deterministic fragment of propositional dynamic logic.
We improve the efficiency of the algorithm by exploiting determinism when
present and we prove that this algorithm terminates on incorrect determinis-
tic programs. Note that the algorithm will not always terminate on correct
deterministic programs, since verification is undecidable in general.

Finally, we consider programs with indirection and we show that the in-
troduced algorithms verify these programs inefficiently. We propose symbolic
execution as an alternative way of computing path constraints to circumvent
this inefficiency. Furthermore, the variant of symbolic execution we define re-
moves indirection from symbolic terms which enables us to use a theorem prover
that does not handle indirection.
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Chapter 1

Introduction

A specification of a computer program is a formal description of the properties
that we want the program to have. Verifying a program means checking whether
the program satisfies the properties in its specification.

We start with an example. Consider the program in Listing 1.1 on the fol-
lowing page. This program waits until a message is available and then processes
the message. Other programs can also manipulate the messages, therefore there
is a lock that a program has to hold when accessing or changing the messages.
The program in Listing 1.1 acquires a lock while checking for a message, retriev-
ing the message and processing the message. If there is no message available it
releases the lock to allow other programs to make a message available.

We want that the program uses the lock in a correct way. Constructing a
specification that precisely describes what we think is the correct way is not in
the scope of this thesis. For this program we take the following property as its
specification which captures at least a part of what it means to use the lock in
a correct way.

“The program does not call lock when it has the lock, or unlock
when it does not have the lock.”

To see that the example program satisfies this specification, observe that at the
end of the loop we have has messages = true if and only if the program has
the lock.

1.1 Automatic verification

During an execution of a program it can be automatically checked whether
this execution violates or respects the properties in the specification. This
means that in principle a program can be verified by checking all possible execu-
tions. However, the number of possibilities is usually astronomically large so this
method is seldom feasible. There are several ways to test a program as good
as possible in a certain amount of time. One is selecting random executions
and test the program using these states. See [3] for an example about ran-
dom testing in Haskell. Another is directed testing. In this method constraints
are constructed that lead the execution to a certain part of the program when
satisfied by the initial state. See [15] for an example of directed testing of C
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Listing 1.1 A program that calls lock and unlock in alternation

//Acquire message

has messages = false;

while (not has messages) {
lock();

has messages = check messages();

if (has messages) {
message = get message();

}
else {

unlock();

sleep();

}
}
//Process message

do stuff(message);
...

do stuff(message);

unlock();

programs. Both methods have successfully been used to find bugs, but they can
only prove a program correct by exhaustively checking all states.

Cousot and Cousot [6] introduced abstraction techniques that can be used
to check multiple states at once. When essential details are abstracted away,
verifying an abstraction has the possibility to lead to wrong results. To keep the
error one-sided Clarke, Grumberg and Long [5] defined overapproximations that
do not allow false positives. In [4] Clarke et al. showed how false negatives can
be used to refine an overapproximation. This is called counterexample-driven
refinement.

Counterexample-driven refinement has been implemented in the tool Yogi
[1] that has been used to efficiently verify windows device drivers. In this al-
gorithm the initial abstraction abstracts away from everything and only details
are included that are necessary to avoid false negatives.

1.2 Overview

We restrict ourselves to partial correctness specifications. A partial correctness
specification is a triple ϕpre {α}ϕpost where α is a formal program and ϕpre
and ϕpost conditions on the program. It states that whenever α is executed
in a state where ϕpre holds, then ϕpost holds in every state that could be the
result of executing α. This form of specifying was proposed by Floyd and Hoare
[8, 10].

In Chapter 2 we introduce the framework we use to describe programs and
specifications. We have chosen propositional dynamic logic (PDL) because it
can express partial correctness specifications in a very simple and elegant way.
We translate the program in 1.1 and its specification to PDL.

To verify a program we need a more detailed description of its execution
than PDL gives. With this purpose in mind we define in Chapter 3 control flow

3



graphs and we connect this with propositional dynamic logic.
Then in Chapter 4 we define the abstraction refinement algorithm that can

verify propositional dynamic logic programs. We use overapproximations and
counterexample-driven refinement as described before and we prove the correct-
ness of this algorithm.

In Chapter 5 we consider a fragment of PDL that has deterministic code
constructs and allows for deterministic and non-deterministic actions. We adapt
the abstraction refinement algorithm such that it exploits the fact that some
actions are deterministic. We prove that when all actions are deterministic,
the algorithm will eventually terminate on programs that are incorrect. Note
that this result cannot be extended to all correct or incorrect, deterministic
programs, since verification is undecidable. We conclude this chapter by running
the abstraction refinement algorithm on the PDL version of the program given
in Listing 1.1.

Finally, in Chapter 6 we define a language that allows for multiple levels of in-
direction, similar to C with pointer arithmetic, and we motivate why indirection
makes it infeasible to construct path constraints using weakest preconditions.
We define a variant of symbolic execution that does not have a fixed mapping
between symbols and input variables, but adds mappings when needed during
the execution. This enables us to cope with the multiple levels of indirection and
we show that it can be used as an alternative to constructing path constraints.
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Chapter 2

Propositional dynamic logic

Propositional dynamic logic was developed by Pratt [14] and Fischer and Ladner
[7]. In this thesis we will use the definition of Fischer and Ladner. PDL has a
complete axiomatization, see for example [13].

For an introduction to propositional dynamic logic and an overview of its
uses we recommend [16]. PDL is a multimodal logic, see [2] for a thorough
introduction to modal logic.

We will define the language of propositional dynamic logic in Section 2.1,
its semantics in Section 2.2 and in Section 2.3 we define a model that is able to
capture the essence of the program described in Listing 1.1 on page 3.

2.1 Language

The language of propositional dynamic logic consists of formulas and programs.
It is parametrized by a signature to be able to describe various other languages.

Definition 2.1 (Signature). A signature is a pair (P,B) with P a set of propo-
sitions and B a set of basic actions.

Definition 2.2 (Formulas and programs). With simultaneous recursion we de-
fine the set Φ of formulas and the set Π of programs over the signature (P,B).
Let p ∈ P, b ∈ B, ϕ1, ϕ2 ∈ Φ and α1, α2 ∈ Π, then

ϕ ::= > | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | 〈α1〉ϕ1

α ::= b | ?ϕ1 | α1;α2 | α1 ∪ α2 | α∗1.

The intended meaning of 〈α〉ϕ is that there exists a computation of α that
results in a state where ϕ is the case. The connection between propositional
dynamic logic and modal logic is that 〈α〉 can be seen as a modal operator.

The base cases in the definition of programs are programs of the form b or
?ϕ. The former is a basic action and the latter a test action, that tests whether
ϕ holds.

Programs can be composed in three ways: α1;α2 is the sequential compo-
sition of α1 and α2, α1 ∪ α2 is the program that non-deterministically chooses
between α1 and α2 and α∗ is the program that executes α an arbitrary number
n ∈ Z≥0 of times.
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We use the following abbreviations

⊥ = ¬>
ϕ ∨ ψ = ¬ (¬ϕ ∧ ¬ψ)

ϕ→ ψ = ¬ϕ ∨ ψ
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

[α]ϕ = ¬〈α〉¬ϕ.

Given the intended meaning of 〈α〉, we see that [α]ϕ = ¬〈α〉¬ϕ means that
in every state that is a result of the execution of α we have that ϕ holds.

The modal operator 〈α〉 enables us to express a partial correctness speci-
fication ϕpre {α}ϕpost. We have no need to allow program modalities in the
conditions ϕpre and ϕpost, thus we use the following definition.

Definition 2.3 (Specifications). A partial correctness specification of a pro-
gram α is a pair (ϕpre, ϕpost) ∈ Φ × Φ where ϕpre and ϕpost do not contain
program modalities. Furthermore, we require that every test action ?χ in α
also does not contain program modalities. The propositional dynamic logic
formula that states that α is correct is ϕpre → [α]ϕpost.

2.2 Semantics

We define the semantics over a labeled transition system where labels are actions
b ∈ B. This is a generalization of a Kripke structure that is used as a model for
modal logic.

Definition 2.4 (Models). A model over the signature (P,B) is a tuple M =
(Σ,V,R) where Σ is a set of states, V a valuation that sends p ∈ P to the set
V(p) ⊆ Σ where p is true and R a function from labels to transitions that sends
b ∈ B to the binary relation R(b) ⊆ Σ× Σ.

The binary relation R(b) describes the meaning of the basic action b as
follows. We say (s, r) ∈ R(b) when r is a possible resulting state of executing
b in the state s. When there are multiple r ∈ Σ with (s, r) ∈ R(b) then b is a
non-deterministic action. When there is no r ∈ Σ with (s, r) ∈ R(b) the action
b cannot be executed in s.

The interpretation of a program α will be a binary relation with the same
meaning. Before we can define this, we need the following general definitions
about binary relations.

Definition 2.5. Let R1 and R2 be binary relations over a set S. The relational
composition is defined as

R1 ◦R2 = {(s1, s3) ∈ S × S | ∃s2 ∈ S (s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2} .

The n-fold composition of a relation R with itself is recursively defined

R0 = {(s, s) | s ∈ S}
Rn+1 = Rn ◦R.
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The reflexive transitive closure of R is given by

R∗ =

∞⋃
i=0

Ri.

Definition 2.6 (Semantics). The interpretation of a formula ϕ ∈ Φ in a model
M = (Σ,V,R) is a set of states IM (ϕ) ⊆ Σ where ϕ is true and the interpreta-
tion of a program α ∈ Π is a binary relation IM (α) ⊆ Σ×Σ. We define IM by
simultaneous recursion.

IM (>) = Σ

IM (p) = V(p)

IM (¬ϕ1) = Σ− IM (ϕ1)

IM (ϕ1 ∧ ϕ2) = IM (ϕ1) ∩ IM (ϕ2)

IM (〈α1〉ϕ1) =
{
s ∈ Σ | ∃t ∈ Σ (s, t) ∈ IM (α1) ∧ t ∈ IM (ϕ1)

}
.

IM (b) = R(b)

IM (?ϕ) =
{

(s, s) ∈ Σ× Σ | s ∈ IM (ϕ)
}

IM (α1;α2) = IM (α1) ◦ IM (α2)

IM (α1 ∪ α2) = IM (α1) ∪ IM (α2)

IM (α∗1) =
(
IM (α1)

)∗
.

The binary relation IM (α) describes the program α by specifying every pair
(s, r) of states such that r is a possible end state when α is executed in the state
s.

We write M, s � ϕ for s ∈ IM (ϕ). When M is clear from the context, we
abbreviate M, s � ϕ to s � ϕ. We say M � ϕ if for all s ∈ Σ we have s � ϕ.

Definition 2.7 (Verification). Let (ϕpre, ϕpost) be a specification of the pro-
gram α. Verifying α against this specification is deciding whether M � ϕpre →
[α]ϕpost or M 2 ϕpre → [α]ϕpost.

2.3 A non-deterministic boolean model

We define a model that serves as an example of the framework we defined in
this chapter and that can be used to describe the program of Listing 1.1 on
page 3. The language consists of boolean variables and deterministic and non-
deterministic assignments. We will call this model NDB.

Let bool = {>,⊥}. Define the signature (P,B) where P is a set of variables
and

B = {p := random | p ∈ P} ∪ {p := x | p ∈ P, x ∈ bool} .

We take the model M = (Σ,V,R) where Σ is the set of functions from P to
bool,

V(p) = {s ∈ Σ | s(p) = >} ,
(s, r) ∈ R (p := random) iff s(q) = r(q) for all q 6= p,

(s, r) ∈ R (p := x) iff r(p) = x and for all q 6= p we have s(q) = r(q).
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Example 2.8. Consider the program defined in Listing 1.1 on page 3. We will
describe this program in NDB. We use the three variables lock, has m and foo.
The first denotes whether the lock has been acquired or not, the second whether
there is a message to process and the last to do irrelevant calculations with.

Every time the function check messages() is called in the program, it can
return true and false arbitrarily. Hence, we model it using a random assign-
ment. We also model the irrelevant computations with random assignments,
because we do not care about what happens. The translation of the statements
is thus as follows

lock() 7→ lock := >
unlock() 7→ lock := ⊥

has messages = false 7→ has m := ⊥
has messages = check messages() 7→ has m := random

message = get message() 7→ foo := random

sleep() 7→ foo := random

do stuff(message) 7→ foo := random.

We model the control flow statements as follows, see Chapter 5 for the
intuition behind this choice of modeling.

if (ϕ){α1} else {α2} 7→ (?ϕ;α1) ∪ (?¬ϕ;α2)

while (ϕ) {α} 7→ (?ϕ;α)
∗

; ?¬ϕ.

The translated program is given in Figure 2.1 on the following page.
As stated in the introduction the specification we want to check is “The

program does not call lock when it has the lock, or unlock when it does not
have the lock.” To model this in our framework we introduce a new variable
error. We replace the following calls

lock := > 7→ (?lock; error := >) ∪ (?¬lock; lock := >)

lock := ⊥ 7→ (?lock; lock := ⊥) ∪ (?¬lock; error := >) .

We require that error is false when the program starts, then we know that
error will be true at the end of the execution if and only if the program vi-
olated the property. We assume that the program does not have the lock
when it starts and we require that it has released the lock when the pro-
gram has finished. This leads to the following specification of the program
ϕpre = ϕpost = (¬error ∧ ¬lock). The full code is given in Figure 2.2.
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Listing 2.1 Lock/unlock program in NDB

has m := ⊥;

(

? ¬has m;

lock := >;

has m := random;

(

? has m;

foo := random

∪
? ¬has m;

lock := ⊥;

foo := random

)

)*;

? has m;

foo := random;

lock := ⊥
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Listing 2.2 Lock/unlock program with error check

has m := ⊥;

(

? ¬has m;

(

? lock;

error := >
∪

? ¬lock;
lock := >

);

has m := random;

(

? has m;

foo := random

∪
? ¬has m;

(

? lock;

lock := ⊥
∪

? ¬lock;
error := >

);

foo := random

)

)*;

? has m;

foo := random;

(

? lock;

lock := ⊥
∪

? ¬lock;
error := >

)
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Chapter 3

Control flow graphs

While propositional dynamic logic makes it easy to describe a program and its
specification, the recursive definition of programs makes it difficult to prove or
disprove that a program satisfies its specification. To overcome this we will in-
troduce semantics that describes all the individual steps of executing a program.
From now on, we will call the semantics I defined in the previous chapter the
denotational semantics and use the notation Ids. The semantics defined in this
chapter is called the structural operational semantics, it is denoted by Isos. See
[12] for a comparison between different styles of defining semantics.

We will use control flow graphs to define the structural operational semantics.
Control flow graphs have a language and models of its own, to avoid confusion
we will call the signatures and models defined in the previous chapter PDL-
signatures and PDL-models and the signature and models of control flow graphs
CFG-signatures and CFG-models. In later chapters we will not be concerned
with CFG-signatures and CFG-models anymore, and then we will drop the
prefix PDL. The notation for the semantics of control flow graphs is Igraph.

In Section 3.1 we define control flow graphs, CFG-models and the interpre-
tation Igraph. In the next section we will define a translation from programs
to control flow graphs and use this to define the structural operational seman-
tics Isos. Then in Section 3.3 we will prove that the structural operational and
denotational semantics are equivalent.

3.1 Language and semantics

The language of control flow graphs is parametrized by a set of actions. When
we make the connection with PDL, this set will differ from the set B in a PDL-
signature (P,B). Hence, we define CFG-signatures separately.

Definition 3.1 (CFG-signature). A CFG-signature is a set A of actions.

We will use a control flow graph to represent a program. It is defined as a
finite, directed multigraph with its edges labeled by actions. A node represents a
certain stage during the execution of the program. There is a special initial node
I and a final node F that represent the starting and ending stage. Outgoing
edges from a node specify which actions can be executed next at that stage. We
define this formally as follows.
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Definition 3.2 (Control flow graphs). A control flow graph G over A is a tuple
(N, I, F,E) where N is a finite set of nodes, I, F ∈ N are its initial and final
nodes and E ⊆ N ×A×N a set of directed, labeled edges.

We will use the following notation for a path γ that traverses the nodes
g0, . . . , gn along edges labeled with the actions a1, . . . , an

γ = g0
a1→ g1

a2→ . . .
an→ gn.

CFG-models have exactly the same structure as PDL-models, except that
there is no need for a valuation function V. Since A can differ from the set
B, we cannot simply use the relevant aspects of a PDL-model and we need to
define CFG-models separately.

Definition 3.3 (CFG-models). A CFG-model K over the signature A is a tuple
(Σ,R) where Σ is a set of states and R a function that maps a ∈ A to the binary
relation R(a) ⊆ Σ× Σ.

We have said that nodes represent stages during a computation and outgo-
ing edges the possible next actions. A path in a control flow graph therefore
represents a part of the computation. We use the word trace as a synonym for
a finite sequence of states. We define the connection between traces and paths
in the control flow graph as follows.

Definition 3.4 (Satisfying traces). Let γ be a path of length n in the control
flow graph G, let a1, . . . , an be the labels of the edges. We say that the trace
s0, . . . , sn of length n+ 1 with si ∈ Σ satisfies γ if for all i ∈ {1, . . . , n} we have
(si−1, si) ∈ R(ai).

The possible paths in G that start at the initial node I and end at the final
node F define the program that G represents.

Definition 3.5 (Semantics). The interpretation of a control flow graph G in
the CFG-model K is a binary relation IKgraph(G) ⊆ Σ × Σ. It is defined by

(s, r) ∈ IKgraph(G) iff there is a path γ in G that starts at I and ends at F and
a trace (s, t1, . . . , tn−1, r) that satisfies γ.

3.2 Connection with propositional dynamic logic

We will use control flow graphs to represent PDL programs. We have defined
control flow graphs over a set A of actions. Since programs can contain basic
actions b ∈ B and test actions ?ϕ, we translate a PDL-signature (P,B) therefore
to the CFG-signature A = B ∪ {?ϕ | ϕ ∈ Φ} that is the union of basic and test
actions.

Before we define the translation from programs α ∈ Π to control flow graphs,
we define how to merge two nodes in an arbitrary graph. See Figure 3.1 on the
next page for an example.

Definition 3.6 (Merging nodes). Let G be a graph with nodes N and edges
E ⊆ N ×A×N and let g0, g1 ∈ N be the nodes that will be merged. We define
the graph G′ = (N ′, E′) that is the result of merging g0 and g1 as follows.

12



(a) Before merging (b) After merging

Figure 3.1: Merging the nodes 1 and 2

Let g be a new node, we write g = g0 ] g1. The set of nodes of G′ is given
by

N ′ = N ∪ {g}\{g0, g1}.

We do not want to change anything essential about the edges. So if g0 or
g1 is part of an edge in G, then g will have the same role in an edge in G′.
Formally, we define E′ as follows

E′ = E ∩ (N ′ ×A×N ′)
∪{(h, a, g) | a ∈ A, h ∈ N ′ (h, a, g0) ∈ E or (h, a, g1) ∈ E}
∪ {(g, a, h) | a ∈ A, h ∈ N ′ (g0, a, h) ∈ E or (g1, a, h) ∈ E}
∪ {(g, a, g) | a ∈ A if there are x, y ∈ {g0, g1} with (x, a, y) ∈ E} .

We can now define the translation from PDL programs to control flow graphs.

Definition 3.7. Let α ∈ Π be a program. We define its control flow graph
G(α) with induction to the structure of α. See Figure 3.2 on the following page
for an illustration.

Case 1. Base cases: α = a or α =?ϕ. Define G as the graph with two nodes
I and F ; and an edge from I to F labeled with the (basic or test)
action α.

Case 2. Recursive cases. Let G1 and G2 be the control flow graphs of α1

and α2 respectively and let I1, I2 and F1, F2 denote their respective
initial and final nodes.

Case i. α = α1;α2. First define G as the disjoint union of G1 and
G2. Set I = I1 and F = F2 and merge the node F1 with
I2.

Case ii. α = α1 ∪ α2. First define G as the disjoint union of G1

and G2. Set I = I1 and F = F1 and merge the node I1
with I2 and F1 with F2.

Case iii. α = α∗1. Define G as the disjoint union of G1 with two new
nodes I and F . Add the following edges I → I1, I → F ,
F1 → I1 and F1 → F , all labeled with the action ?>.

13



(a) The control flow graph of b (b) The control flow graph of ?ϕ

(c) The control flow graph of α1 (d) The control flow graph of α2

(e) The control flow graph of α1;α2

(f) The control flow graph of α1 ∪ α2

(g) The control flow graph of α∗
1

Figure 3.2: Control flow graphs
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Example 3.8. Recall the lock/unlock program defined in Listing 2.2 on page 10.
In Figure 3.3 on the following page its control flow graph is shown.

From Figure 3.2 on the previous page we can make the following observation.
We will need this detail when defining the verification algorithm.

Fact 3.9. Let α be a program, there does not exist a node in the control flow
graph G(α) that has an edge to itself.

Now we are ready to define the structural operational semantics. Since pro-
grams can contain formulas as test actions and formulas can contain programs
in modalities, the interpretation of formulas and the interpretation of programs
depend on each other. We will let the structural operational interpretation Isos
of programs depend on the denotational interpretation Ids of formulas. The de-
notational interpretation of formulas is however dependent on the denotational
interpretation of programs, so indirectly the definition of Isos of programs de-
pends on the definition of Ids of programs.

This apparent dependency disappears when we have proven that Isos(α) =
Ids(α). Then the structural operational interpretation of programs can be seen
on its own right.

Definition 3.10 (Structural operational semantics). Let M =
(
ΣM ,VM ,RM

)
be a PDL-model. The interpretation a program α ∈ Π is a binary relation
IMsos(α) ⊆ ΣM × ΣM . Define the CFG-model K =

(
ΣK ,RK

)
where ΣK = ΣM

and

RK(a) =

{
RM (b) if a = b ∈ B{

(s, s) | s ∈ IMds (ϕ)
}

if a =?ϕ,ϕ ∈ Φ.

Then define
IMsos(α) = IKgraph(G(α)).

3.3 Equivalence of semantics

The proof that IMsos(α) = IMds (α) will be with induction to the structure of α.
We will first prove the base case.

Lemma 3.11. Let M =
(
ΣM ,VM ,RM

)
be a PDL-model. Let a ∈ A be a basic

or test action, we have IMsos(a) = IMds (a).

Proof. Let K =
(
ΣK ,RK

)
be the CFG-model as defined in Definition 3.10.

We have IMsos(a) = IKgraph(G(a)). The control flow graph G(a) is the graph
I → F where the edge is labeled with a, see Definition 3.7 on page 13. Since
there is only one path from I to F , we have (s, r) ∈ IKgraph(G(a)) if and only if

(s, r) ∈ RK(a).

Case 1. a = b with b ∈ B. By definition, RK(b) = RM (b) and IMds (b) =
RM (b). Hence IMsos(b) = IMds (b).

Case 2. a =?ϕ with ϕ ∈ Φ. By definition

RK(?ϕ) =
{

(s, s) ∈ Σ× Σ | s ∈ IMds (ϕ)
}

which is the same as the definition of IMds (?ϕ). Hence, IMsos(?ϕ) =
IMds (?ϕ).
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Figure 3.3: The control flow graph of the lock/unlock program
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To clean up the notation, we now fix a model M = (Σ,V,R) and we omit
the superscript M in IMds and IMsos.

Recall from Definition 2.6 on page 7 that the recursive cases of the definition
of Ids are given by

Ids (α1;α2) = Ids (α1) ◦ Ids (α2)

Ids (α1 ∪ α2) = Ids (α1) ∪ Ids (α2)

Ids (α∗1) = (Ids (α1))
∗
.

For each of these cases, we will prove a lemma that states that Isos behaves
in the same way.

Lemma 3.12. We have Isos(α1;α2) = Isos(α1) ◦ Isos(α2).

Proof. The idea is that paths in G(α1;α2) can be split into a path in G(α1) and
a path in G(α2). Vice versa, a path γ1 in G(α1) and a path γ2 in G(α2) can be
concatenated to form a path in G(α1;α2), see Figure 3.2e on page 14.

Suppose (s1, s3) ∈ Isos(α1;α2). Then there is a path γ in the control flow
graph of α1;α2 and a trace σ from s1 to s3 that satisfies γ.

γ = I
a1→ g1

a2→ . . .
an−1→ gn−1

an→ F

σ = (t0, . . . , tn) with t0 = s1, tn = s3.

This path has to cross F1 ] I2 somewhere, see Figure 3.2e on page 14, let i
be the index such that gi = F1 ] I2. Define the paths γ1, γ2 and the traces σ1,
σ2

γ1 = I1
a1→ g1

a2→ . . .
ai−1→ gi−1

ai→ F1

γ2 = I2
ai+1→ gi+1

ai+2→ . . .
an−1→ gn−1

an→ F2

σ1 = (t0, . . . , ti)

σ2 = (ti, . . . , tn).

We have that γ1 is a path in the control flow graph of α1 and γ2 in the control
flow graph of α2. Furthermore, σ1 satisfies γ1 and σ2 satisfies γ2. Hence, we
have (t0, ti) ∈ Isos(α1) and (ti, tn) ∈ Isos(α2). We conclude that (t0, tn) ∈
Isos(α1) ◦ Isos(α2).

For the other direction, suppose (s1, s3) ∈ Isos(α1) ◦ Isos(α2). Then there
is a s2 with (s1, s2) ∈ Isos(α1) and (s2, s3) ∈ Isos(α2). Hence, there are paths
γ1 and γ2 in the control flow graphs of respectively α1 and α2 with satisfying
traces σ1 and σ2.

γ1 = I1
a1→ g1

a2→ . . .
an−1→ gn−1

an→ F1

γ2 = I2
b1→ h1

b2→ . . .
bk−1→ hk−1

bk→ F2

σ1 = (r0, . . . , rn) with r0 = s1, rn = s2

σ2 = (t0, . . . , tk) with t0 = s2, tk = s3.

17



These paths can be concatenated to the path γ in the control graph of α1;α2

and these traces can be combined to σ as follows. Note that when combining
σ1 and σ2 to σ we omitted t0.

γ = I
a1→ g1 . . . gn−1

an→ F1 ] I2
b1→ h1 . . . hk−1

bk→ F

σ = (r0, . . . , rn, t1 . . . , tk).

Since rn = t0 we have that σ satisfies γ. Since r0 = s1 and tk = s3 we have
(s1, s3) ∈ Isos(α1;α2).

Lemma 3.13. We have Isos(α1 ∪ α2) = Isos(α1) ∪ Isos(α2).

Proof. From Figure 3.2f on page 14 it follows that every path γ in the control
flow graph G(α1) is a path in the control flow graph of α1 ∪α2, the same holds
for paths in G(α2). Vice versa, a path γ in the control flow graph of α1 ∪ α2 is
a path in G(α1) or in G(α2) (or both).

Lemma 3.14. We have Isos (α∗) = (Isos(α))
∗
.

Proof. The idea is that a path γ in G (α∗) is either I
?>→ F or can be split into

n paths in G(α). In the other direction, n paths in G(α) can be concatenated
to form a path in G (α∗). See Figure 3.2g on page 14.

Suppose (s, r) ∈ Isos (α∗). There is a path γ in the control flow graph of α∗

and a trace σ that satisfies γ.

γ = I
a1→ g1

a2→ . . .
am−1→ gm−1

am→ F

σ = (s0, . . . , sm) with s0 = s, sm = r.

Let n ∈ Z≥0 be the number of times F1 occurs in γ, see Figure 3.2g. If

n = 0, we must have m = 1 with a1 =?>. Then s = r, so (s, r) ∈ (Isos(α))
0 ⊆

(Isos(α))
∗
.

Else, for i = 1, . . . , n let ki be the number such that gki = F1 and let k0 = 0.
Define the path γi as the part of γ starting at the (ki−1 +1)-th node and ending
at the ki-th node. We see that γi is a path in the control flow graph G(α) since
gki−1+1 = I1 and gki = F1. We split the trace σ in the same way in traces σi.

γi = gki−1+1

aki−1+2

→ . . .
aki→ gki

σi = (ski−1+1, . . . , ski)

Since σ satisfies γ, we have that σi satisfies γi so (ski−1+1, ski) ∈ Isos(α).
Since the only edge from F1 to I1 in the control flow graph of α∗is labeled with
?>, and σ is a satisfying trace, we must have ski = sk1+1. Hence, (s, r) ∈
(Isos(α))

n ⊆ (Isos(α))
∗

For the other direction, let (s, r) ∈ (Isos(α))
∗
. Then there is a n ∈ Z≥0 with

(s, r) ∈ (Isos(α))
n
. If n = 0, we have s = r, so the trace (s, r) satisfies the path

I, F with edge-label ?> in the control flow graph of α∗. Hence, (s, r) ∈ Isos (α∗).
Else, for every i = 1, . . . , n there is a path γi in the control flow graph of α

and a satisfying trace σi = (si0, . . . , s
i
mi

) such that simi
= si+1

0 for i < n, s00 = s
and snmn

= r.
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We construct the path γ as follows. It starts from I to I1 using edge ?>.
Then γ1 is concatenated; this path ends in F1. Then for all i > 1, we append
the transition ?> from F1 to I1 and we append the path γi. We see that this
path also ends in F1, so this construction is well-defined. Finally, we append
the transition from F1 to F using the edge ?>. From Figure 3.2g it follows that
γ is a path of G (α∗).

Define the trace σ that is the concatenation of all traces σi

σ = (s10, . . . , s
1
m1
, s20, . . . s

2
m2
, . . . , sn0 , . . . , s

n
mn

).

Since simi
= si+1

0 we have that simi
, si+1

0 satisfies the transition ?>. Then
it follows from the fact that σi satisfies γi that σ satisfies γ. Hence, (s, r) ∈
Isos (α∗).

We will now wrap everything up to prove the equivalence of the semantics.

Theorem 3.15. Let M be a PDL-model. The structural operational interpre-
tation IMsos(α) equals the denotational interpretation IMds (α).

Proof. For brevity, we will omit the superscript M in IMds and IMsos. We will
prove this with induction to the structure of α.

Case 1. α = b and α =?ϕ. By Lemma 3.11.

Case 2. α = α1;α2. we have

Isos(α1;α2) = Isos(α1) ◦ Isos(α2) by Lemma 3.12

Ids(α1;α2) = Ids(α1) ◦ Ids(α2) by definition of Ids.

The result Isos(α) = Ids(α) follows from the induction hypothesis.

Case 3. α = α1 ∪ α2.We have

Isos(α1 ∪ α2) = Isos(α1) ∪ Isos(α2) by Lemma 3.13

Ids(α1 ∪ α2) = Ids(α1) ∪ Ids(α2) by definition of Ids.

Again, the result Isos(α) = Ids(α) follows from the induction hypoth-
esis.

Case 4. α = α∗1. We have

Isos (α∗1) = (Isos (α1))
∗

by Lemma 3.14

Ids (α∗1) = (Ids (α1))
∗

by definition of Ids.

And finally, the result Isos(α) = Ids(α) follows from the induction
hypothesis.
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Chapter 4

Abstraction refinement

We will define an algorithm that can verify programs in propositional dynamic
logic. To avoid the need to exhaustively check all states, this algorithm uses
finite abstractions of the program. These abstractions are overapproximations
of the program, which means that if the program is incorrect this information is
present in the abstraction, see [5]. The abstraction can contain information that
indicates that the program is incorrect while the program is actually correct.
This is called a false counterexample. To distinguish between true and false
counterexamples, the algorithm computes a formula that is satisfiable if and
only if the counterexample is true and it uses a theorem prover to obtain the
answer. When a counterexample is found to be false, this information is used to
refine the abstraction. This method is called counterexample-driven refinement,
see [4].

The algorithm terminates when a counterexample is found to be true or
when there are no counterexamples present in the abstraction. In the latter
case we can be sure that the program is correct, since the abstraction is an
overapproximation.

Like the algorithm in [1] we start with an abstraction that abstracts away
from everything and we only include information that is used to exclude a false
counterexample.

In Section 4.1 we define the algorithm and refer to other sections for the
definitions used in the algorithm. We conclude the chapter with Section 4.6
where we present the proof that the algorithm is correct.

4.1 Overview

Fix a signature (P,B) and a model M . Let α and (ϕpre, ϕpost) be a program
and its specification as defined in Definition 2.3. We require two properties of
the model, these are explained in Section 4.2. Verifying the program means
deciding whether M � ϕpre → [α]ϕpost or not.

The algorithm is defined in Listing 4.1. Below the algorithm a short expla-
nation and references to the formal definitions and proofs are given.
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Listing 4.1 The abstraction refinement algorithm

The algorithm

1. Initialize the abstraction A as the control flow graph of α where each node
is associated with the formula >.

2. Split (I,>) into (I, ϕpre) and (I,¬ϕpre). Split (F,>) into (F,ϕpost) and
(F,¬ϕpost).

3. Repeat the following

(a) Find an abstract path S0, . . . , Sn in A with S0 = (I, ϕpre) and Sn =
(F,¬ϕpost).

(b) If such a path does not exist, output that α is correct. Else, continue.

(c) For i ∈ {0, . . . , n} let ρi be the path constraint ρi of S0, . . . , Si. Find
the smallest i such that ρi is not satisfiable.

(d) If such an i does not exist, output that α is incorrect. Continue
otherwise.

(e) Change the abstraction A by splitting along the path S0, . . . , Si.

Explanation

1. An abstraction contains a finite partition of the state space for each node
in the control flow graph. Partition classes are represented by formulas,
see Definition 4.7 on page 24 for a formal definition. Initially all parti-
tions contain one class represented by >, this is the most abstract way of
considering the program. See Definition 4.8 for the initial abstraction.

2. In Definition 4.14 on page 26 it is defined how to split nodes. The refine-
ment in this step enables the algorithm to search for a path from (I, ϕpre)
to (F,¬ϕpost) which could lead to a counterexample.

3. In each iteration the abstraction A is changed, or the algorithm terminates.

(a) The abstraction A is a finite, directed graph. The nodes (I, ϕpre)
and (F,¬ϕpost) will always exist, see Lemma 4.22 on page 29.

(b) If the algorithm outputs that α is correct, the program α is indeed
correct, see Theorem 4.26 on page 31.

(c) Path constraints are defined in Definition 4.12 on page 26. Having a
way to check satisfiability is an assumption given in Section 4.2.

(d) If the algorithm outputs that α is incorrect, the program α is indeed
incorrect, see Theorem 4.26.

(e) Splitting along a path is defined in Definition 4.18 on page 29.
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4.2 Assumptions

We require two things about the model M . We assume there is a way to
determine the satisfiability of a formula ϕ ∈ Φ where ϕ does not contain program
modalities. Note that since ϕ does not contain modalities, the satisfiability only
depends on V and not on R. Hence, the verification question M � ϕpre →
[α]ϕpost cannot be directly answered using this assumption.

Secondly, we assume that for every b ∈ B there exists a weakest precondi-
tion operator, that we will define below. We will use weakest preconditions to
propagate constraints through the abstraction.

Definition 4.1 (Weakest preconditions). Let b ∈ B, a weakest precondition
WPb is a function from Φ to Φ with the following property. We have s � WPb(ϕ)
if and only if there exists a r ∈ Σ with r � ϕ and (s, r) ∈ R(b).

Example 4.2. We will prove that the model NDB we defined in section 2.3
satisfies these requirements. Recall that PNDB is a set of variables, so the set
of formulas without modalities are the propositional logic formulas. Although
the satisfiability problem of propositional logic is NP-hard, there is a way to
determine satisfiability.

Let ϕ[p 7→ ψ] stand for the formula ϕ where all occurrences of p are replaced
by the formula ψ. Then define the weakest precondition by

WPb(ϕ) =

{
ϕ[p 7→ x] if b = (p := x) with x ∈ bool = {>,⊥}
ϕ[p→ >] ∨ ϕ[p→ ⊥] if b = (p := random) .

Proposition 4.3. The function WPb defined above with b of the form p := x
where x ∈ {>,⊥} is a weakest precondition.

Proof. Let s ∈ Σ, by definition of RNDB(b) there is exactly one r ∈ Σ with
(s, r) ∈ RNDB(b). It is left to prove that s � WPb(ϕ) iff r � ϕ. We prove this
with induction to the structure of ϕ.

Case 1. ϕ = >. We have WPb(>) = >, both s and r satisfy >.

Case 2. ϕ = p. We have WPb(p) = x. By definition of r, we have r(p) = x,
so r � p iff x = >. Hence s � WPb(p) iff r � p.

Case 3. ϕ = q, with q 6= p. We have WPb(q) = q. The result follows from
r(q) = s(q).

Case 4. ϕ = ¬ψ. We have s � WPb(¬ψ) = ¬WPb(ψ) iff s 2 WPb(ψ). By
the induction hypothesis, this holds iff r 2 ψ. This is equivalent with
r � ¬ψ.

Case 5. ϕ = ϕ1 ∧ϕ2. We have WPb(ϕ1 ∧ϕ2) = WPb(ϕ1)∧WPb(ϕ2). So s �
WPb(ϕ) iff both s � WPb(ϕ1) and s � WPb(ϕ2). By the induction
hypothesis, we have s � WPb(ϕi) iff r � ϕi, for i ∈ {1, 2}. Then the
result follows from r � ϕ iff both r � ϕ1 and r � ϕ2.

Proposition 4.4. The function WPb defined above with b of the form p :=
random is a weakest precondition.
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Proof. We will reduce this problem to the previous Proposition. Let s ∈ Σ, by
definition of RNDB(b) there are two states with (s, r) ∈ RNDB(b), one of them
sends p to >, the other to ⊥. Let r1be the former and r0 the latter.

Suppose s � WPb(ϕ). Then s � ϕ[p → >] or s � ϕ[p → ⊥]. Assume the
former, consider the action c ∈ B with c = (p := >) we have s � WPc(ϕ).
Hence there is a r ∈ Σ with (s, r) ∈ RNDB(c) and r � ϕ. From the definition of
RNDB(c) we also have (s, r) ∈ RNDB(b). In the case s � ϕ[p→ ⊥] the argument
is similar, this concludes the proof of this direction.

Suppose there is a r with r � ϕ and (s, r) ∈ RNDB(b). Then r = r0 or
r = r1. Assume the former, define the action c ∈ B with c = (p := ⊥). Since
(s, r0) ∈ RNDB(c) we have s � WPc(ϕ) = ϕ[p 7→ ⊥]. Then also s � WPb(ϕ).
When r = r1 the argument is similar.

A note on actions

It will be convenient to treat basic and test actions the same. We will do this
in the same way as defined in Section 3.2.

Define the set of actions A = B ∪ {?ϕ | ϕ ∈ Φ}. Extend the interpretation
R of basic actions b ∈ B to all actions by defining

R(?ϕ) = {(s, s) | s � ϕ} .

Using this extension of R we can generalize Definition 4.1 of weakest pre-
conditions to all a ∈ A.

Definition 4.5 (Weakest preconditions). Let a ∈ A, a function WPa : Φ→ Φ
is a weakest precondition if the following holds. We have s � WPa(ϕ) if and
only if there exists a r ∈ Σ with r � ϕ and (s, r) ∈ R(a).

We assumed that there is a weakest precondition operator WPb for all b ∈ B.
We define WP?ψ(ϕ) = ϕ∧ψ to have a weakest precondition of all actions a ∈ A.

Proposition 4.6. The operator WP?ψ defined above is a weakest precondition.

Proof. Let s ∈ Σ. Suppose s � WP?ψ(ϕ) = ϕ ∧ ψ. Since s � ψ we have
(s, s) ∈ R(?ψ) and we have s � ϕ.

Suppose there is a r ∈ Σ with (s, r) ∈ R(?ψ) and r � ϕ. Then s = r and
s � ψ. Hence, s � WP?ψ(ϕ).

4.3 Abstractions

The abstraction we make is that we use a partition of the state space instead of
the state space itself. A partition class S will be represented by a formula ϕS ,
we can see this a partition class by s ∈ S iff s � ϕS .

The control flow graph of the program will be used to represent the program
α. Recall that nodes represent the stages during the computation of α. At
different stages we need different information about the states, so for each node
in the graph we maintain a separate partition of the state space.

The outgoing edges of a node represent the actions that are possible to take
next, however not all these actions will result in a successful computation when
executed at a state. We will use the partitions to denote the set of states where
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an action can be successfully executed on. To be able to represent this we want
labeled edges between partition classes instead of between nodes in the control
flow graph. This leads to the following definition. Note that this definition does
not enforce that the partition classes for a certain node form a partition, but in
our use of the abstraction this will be the case.

Definition 4.7 (Abstract programs). Let α be a program, let G be its control
flow graph and NG the nodes of G. An abstraction A of α is a tuple (N,E)
where N ⊆ NG × Φ is a set of nodes labeled by nodes from the control flow
graph and formulas; and E ⊆ N × A ×N a set of directed edges labeled with
actions. We require that there are no edges of the form (S, a, T ) with S = T .

In the initial abstraction we want to abstract away from everything. There-
fore, it is the same as the control flow graph where each node is associated with
the partition containing one class, represented by >.

Definition 4.8 (Initial abstraction). Let α be a program, let G be its control
flow graph with nodes NG and edges EG. The initial abstraction A = (N,E)
of α is defined by

N =
{

(g,>) | g ∈ NG
}

E =
{

((g,>), a, (h,>)) | (g, a, h) ∈ EG
}
.

Note that by Fact 3.9 on page 15 we have that there are no edges (S, a, T )
with S = T , so this definition satisfies the requirement given in the definition
of abstract programs.

Example 4.9. Recall the example program given in Listing 2.2 on page 10 and
its control flow graph given in Figure 3.3 on page 16. The initial abstraction
of this program is given in Figure 4.1 on the following page. Note that in all
nodes other than (I,>) and (F,>) we abbreviated (g,>) to > since the node g
is only used to distinguish the nodes.

We want to exclude the possibility of a false-positive. We do this by using
abstractions that overapproximate.

Definition 4.10 (Overapproximation). An abstraction A = (N,E) of α is an
overapproximation if the following holds. For each path γ in the control flow
graph of α that has a satisfying trace σ, where

γ = I
a1→ g1

a2→ . . .
an−1→ gn−1

an→ F

σ = (s0, . . . , sn),

there exist formulas ψ0, . . . , ψn such that si � ψi, (gi, ψi) ∈ N and

((gi−1, ψi−1), ai, (gi, ψi)) ∈ E.

Lemma 4.11. The initial abstract program A is an overapproximation.

Proof. Let γ be a path with nodes g0, . . . , gn and edge-labels a1, . . . , an and
let (s0, . . . , sn) be a satisfying trace. Choose ψi = >. We have si � > and
by definition (gi,>) ∈ N . Since γ is a path, we have by definition of E that
((gi−1,>), ai, (gi,>)) ∈ E.
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Figure 4.1: The initial abstraction of the lock/unlock program
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4.4 Path constraints

By design the abstractions will contain many false counterexamples. A coun-
terexample in the abstraction is false when there does not exist a concrete trace
that follows the example.

To distinguish between true and false counterexamples, we will define path
constraints. A path constraint of a path will be satisfiable if and only if the
path is satisfiable by a concrete trace.

Definition 4.12 (Path constraints). Let A be an abstract program and Γ a
path through A with nodes S0, . . . , Sn and edge-labels a1, . . . , an. The path
constraint ρ ∈ Φ of Γ is defined with induction to n.

Suppose n = 0. Let S0 = (g, ϕ), we define ρ = ϕ.
For n > 0, let τ be the path constraint of the path with nodes S1, . . . , Sn

and edge-labels a2, . . . , an. Let S0 = (g, ϕ), then ρ = ϕ ∧WPa1(τ).

Lemma 4.13. Let Γ be a path in A and γ in the control flow graph with

Γ = (g0, ϕ0)
a1→ . . .

an→ (gn, ϕn)

γ = g0
a1→ . . .

an→ gn

Let s ∈ Σ and ρ the path constraint of Γ. We have s � ρ iff there exists trace
s0, . . . , sn that satisfies γ with s0 = s and si � ϕi.

Proof. We prove this with induction to n. Suppose n = 0. Since γ is a path
without edges, all traces (s) satisfy γ. Because ρ = ϕ0, we have s � ρ iff s � ϕ0.

Let n > 0. Let τ be the path constraint of the following path Γ′, we have
ρ = ϕ0 ∧WPa1(τ).

Γ′ = (g1, ϕ1)
a2→ . . .

an→ (gn, ϕn).

Suppose that s � ρ. We already get s � ϕ0. From the definition of weakest
preconditions we have that there exists a r with (s, r) ∈ R(a1) and r � τ . Using
the induction hypothesis on r � τ we obtain a trace (s1, . . . , sn) that satisfies γ′

with s1 = r and si � ϕi for i > 0. Hence, (s, s1, . . . , sn) satisfies γ.
Suppose that there exists a trace (s0, . . . , sn) that satisfies γ and si � ϕi.

Using the induction hypothesis we have that s1 � τ . Since (s0, s1) ∈ R(a1) we
have by the definition of weakest precondition that s0 � WPa1(τ). From s0 � ϕ0

it follows that s0 � ρ.

4.5 Refinements

Abstractions can be refined to include new information. When we want to
distinguish between states that do or do not satisfy a property ψ, we can refine
the partitions in an abstraction in the following way. See Figure 4.2 on the next
page for an example.

Definition 4.14 (Splitting a node). Let A = (N,E) be an abstract program,
S = (g, ϕ) a node in A and ψ a formula that will be used to split S. We define
the abstraction A′ = (N ′, E′) that is the result of splitting S by ψ as follows.

Define S− = (g, ϕ ∧ ¬ψ) and S+ = (g, ϕ ∧ ψ). The nodes of A′ are defined
by

N ′ = N ∪
{
S−, S+

}
\{S}.
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(a) Before splitting (b) After splitting

Figure 4.2: Splitting the node (g, ϕ) using χ

We do not want to change anything essential about the edges. If S is part
of an edge in E, then we want two edges in E′, one where S− has the same role
as S and one with S+ in the same role. By definition an abstraction does not
contain an edge from a node to itself, so the edge (S, a, S) does not exist in E.
Using this, we can define the edges E′ by

E′ = E ∩ (N ′ ×A×N ′)
∪
{(
S−, a, T

)
| (S, a, T ) ∈ E

}
∪
{(
S+, a, T

)
| (S, a, T ) ∈ E

}
∪
{(
T, a, S−

)
| (T, a, S) ∈ E

}
∪
{(
T, a, S+

)
| (T, a, S) ∈ E

}
.

Note that splitting a node does not introduce edges of the form (T, a, T ).
Hence, A′ is an abstraction.

Lemma 4.15. Let A and A′ be abstractions where A′ is obtained from A by
splitting a node. If A is an overapproximation, then A′ is an overapproximation.

Proof. Let S = (g, ϕ) be the node that has been split using a formula ψ. Let γ
be a path with satisfying trace σ

γ = h0
a1→ . . .

an→ hn

σ = (s0, . . . , sn).

Since A is an overapproximation, there exists formula χi such that si � χi
and the path Γ given below is a path in the abstraction.

Γ = S0
a1→ . . .

an→ Sn with Si = (hi, χi).

We will replace each node S in Γ to obtain a path Γ′ in A′. The edge-labels
of Γ′ will be the same as in Γ, we construct the nodes S′i as follows. If Si 6= S
then S′i = Si. Else if Si = S and si � ψ then we take S′i = S+ = (g, ϕ ∧ ψ).
Otherwise, S′i = S− = (g, ϕ ∧ ¬ψ).

By the definition of the edges of A′, we have that Γ′ is a path in A′. With
χ′i the formulas of the nodes S′i, we have si � χ′i since we chose S+ when si � ψ
and S− otherwise. We conclude that A′ is an overapproximation.
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(a) When χ ∧ ϕ is not satisfiable (b) When χ ∧ ϕ is satisfiable

Figure 4.3: Splitting the transition from (g, ϕ) to (h, ψ) with edge-label a

When the algorithm has encountered a false counterexample, we want to
incorporate this information in the abstraction. A false counterexample is a
path in the abstraction from (I, ϕpre) to (F,¬ϕpost) that cannot be satisfied by
a concrete trace. Hence, we want to delete this path in the abstraction. Since
the transitions of this path can be used by other paths that we do not want
to delete, we will use the weakest precondition of an action to split the nodes
along this path and delete the edges for which we are sure that no path can take
them.

First we define how to split along one transition, then we will define how to
split along a full path using the first definition. For both we will prove that an
overapproximation will stay an overapproximation.

Definition 4.16 (Splitting along a transition). Let S = (g, ϕ) and T = (h, ψ)
be two nodes in the abstract program A with an edge from S to T labeled with
a ∈ A. See Figure 4.2a on the preceding page for an illustration. We obtain a
new abstract program by splitting this transition as follows.

Let χ be WPa(ψ). We check whether χ∧ϕ is satisfiable. If it is not, let the
resulting abstraction be the same as A except that the edge from S to T with
label a is removed. The resulting abstraction is given in Figure 4.3a.

Else, let A′ be the abstract program where (g, ϕ) is split using χ according
to the previous definition. Let S− = (g, ϕ∧¬χ) and S+ = (g, ϕ∧χ) be the new
nodes. Then let the resulting abstraction be A′ where the edge from S− to T
is removed. See Figure 4.3b for an illustration of the resulting abstraction.

Lemma 4.17. Let A and A′ be abstractions where A′ is obtained from A by
splitting along a transition. If A is an overapproximation, then A′ is an over-
approximation.

Proof. Let the transition from (g, ϕ) to (h, ψ) with edge-label a be the transition
that has been split. Define χ = WPa(ψ).

Suppose χ∧ϕ is satisfiable. Then the node (g, ϕ) is first split using χ. This
results in an abstraction B that is an overapproximation by Lemma 4.15.

Let γ be a path in the control flow graph that is satisfied by a trace σ

γ = g0
a1→ . . .

an→ gn

σ = (s0, . . . , sn).
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Since B is an overapproximation, there are formulas ψi such that si � ψi
and Γ defined below is path in the abstraction B.

Γ = S0
a1→ . . .

an→ Sn with Si = (gi, ψi).

To see that Γ is also a path in A′, assume otherwise. Hence, there exists an
i with Si = (g, ϕ∧¬χ), Si+1 = (h, ψ) and ai+1 = a. Since (si, si+1) ∈ R(a) and
si+1 � ψ, we have si � WPa(ψ) = χ by the definition of weakest precondition.
This contradicts with si � ¬χ. We conclude that A′ is an overapproximation.

Otherwise, χ ∧ ϕ is not satisfiable. The proof is similar to the second part
of the previous case, namely take B = A.

Definition 4.18 (Splitting along a path). Let S0, . . . , Sn be a path in the
abstract program A with edge-labels a1, . . . , an. First we split A along the
transition Sn−1, Sn with label an. If this split resulted in new states S+ and
S−, and we have n > 1, then we recursively split along the path S0, . . . , Sn−1, S

+

with edge labels a1, . . . , an−1. Else we are finished.

Lemma 4.19. Let A and A′ be abstractions where A′ is obtained from A by
splitting along a path. If A is an overapproximation, then A′ is an overapprox-
imation.

Proof. Splitting along a path is defined by repeatedly splitting along a transi-
tion. The result follows from repeatedly applying Lemma 4.17.

The abstraction refinement algorithm will search for a path from (I, ϕpre)
to (F,¬ϕpost) in each iteration. The following arguments show that these nodes
will always be present in the abstraction.

Fact 4.20. By definition the last node Sn is not split when splitting along the
path S0, . . . , Sn.

Lemma 4.21. Let Γ be a path with nodes S0, . . . , Sn whose path constraint is
unsatisfiable. Splitting along this path does not split the first node S0.

Proof. Let Si = (gi, ϕi) and let a1, . . . , an be the edge-labels of the path Γ. We
prove the contraposition of the Lemma.

Assume S0 has been split. Then all nodes Si with i < n are also split, let
S−i and S+

i = (gi, ϕ
+
i ) be the resulting states. Define ϕ+

n = ϕn. We will prove
with (downward) induction to i that ϕ+

i is the path constraint ρi of the path
Si, . . . , Sn.

Let i = n. The path constraint ρn of the path Sn is ϕn which is by definition
ϕ+
n .

Let i < n. The formula used to split Si is WPai+1(ϕ+
i+1), so ϕ+

i = ϕi ∧
WPai(ϕ

+
i+1). The path constraint ρi is defined as ρi = ϕi ∧WPai+1

(ρi+1). By

the induction hypothesis, ρi+1 = ϕ+
i+1. Hence, ϕ+

i = ρi. This concludes the
induction proof.

Since splitting the transition from S0 to S+
1 resulted in S0 being split, we

have by Definition 4.16 that ϕ0 ∧WPa1(ϕ+
1 ) = ϕ+

0 is satisfiable. Hence, the
path constraint ρ0 of the path S0, . . . , Sn is satisfiable.

Lemma 4.22. At step 3(a) of the abstraction refinement algorithm (see List-
ing 4.1 on page 21) there exist nodes (I, ϕpre) and (F,¬ϕpost) in the abstraction.
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Proof. The nodes (I, ϕpre) and (F,¬ϕpost) are introduced in the abstraction at
step 2. The only place where the abstraction changes after step 2 is in step 3(e).

The node (F,¬ϕpost) has no outgoing edges, so it can only occur as the last
node in a path. By Fact 4.20 we have that (F,¬ϕpost) will always be present in
the abstraction.

The node (I, ϕpre) has no incoming edges, so it can only occur as the first
node in a path. In the algorithm paths are only split when their path constraint
is unsatisfiable, the result follows from Lemma 4.21.

4.6 Correctness

We will first prove that when α does not satisfy its specification, there will
always exist a (true or false) counterexample in overapproximations of α. Then
we prove that if a counterexample has a satisfiable path constraint, α does not
satisfy its specification. Observing that the abstractions used in the abstraction
refinement algorithm are always overapproximations, we are then able to prove
the correctness of the algorithm itself.

Lemma 4.23. If M 2 ϕpre → [α]ϕpost and A is an overapproximation of α,
then there exists a path Γ in A that starts at (I, ϕpre) and ends at (F,¬ϕpost).

Proof. There exists a s ∈ Σ with s � ϕpre ∧ 〈α〉¬ϕpost. By the structural
operational semantics there is a trace (r0, . . . , rn) with s = r0 and rn � ¬ϕpost
that satisfies a path γ from I to F in the control flow graph of α . Let g0, . . . , gn
be the nodes of γ.

Since A is an overapproximation there exists a path Γ with nodes (gi, ψi)
such that ri � ψi. There are only two nodes in A of the form (I, ψ), namely
(I, ϕpre) and (I,¬ϕpre). Since g0 = I, r0 � ϕpre we have ψ0 = ϕpre.

Similarly, there are only two nodes of the form (F,ψ), namely (F,ϕpost) and
(F,¬ϕpost). Since gn = F , rn � ¬ϕpost we have ψn = ¬ϕpost. Hence, Γ starts
at (I, ϕpre) and ends at (F,¬ϕpost).

Lemma 4.24. If the path constraint ρ of a path Γ that starts at (I, ϕpre) and
ends at (F,¬ϕpost) is satisfiable, then M 2 ϕpre → [α]ϕpost.

Proof. Let (g0, ϕ0), . . . , (gn, ϕn) be the nodes of Γ and a1, . . . , an its edge-labels.
Since the path constraint is satisfiable, there exists a s ∈ Σ with s � ρ.
By Lemma 4.13 there is a trace s0, . . . , sn that satisfies the path with nodes
g0, . . . , gn and edge-labels a1, . . . , an and s0 � ϕpre and sn � ¬ϕpost. By the
definition of structural operational semantics we have (s0, sn) ∈ Isos(α). Hence,
s0 � ϕpre ∧ 〈α〉¬ϕpost so M 2 ϕpre → [α]ϕpost.

Lemma 4.25. The abstract program A is an overapproximation at every stage
of the algorithm.

Proof. When A is initialized, it is an overapproximation by Lemma 4.11. The
abstraction A is changed in step (2) in the algorithm, see Listing 4.1. It stays
an overapproximation by Lemma 4.15.

The only other step where A is changed in step (3e) of the algorithm. From
Lemma 4.19 we can conclude that A will also remain an overapproximation after
this step.
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Theorem 4.26. If the algorithm terminates, its output is correct.

Proof. The algorithm can terminate at two places. Suppose the algorithm termi-
nates at step (3b) outputting that α is correct. This means that there is no path
Γ in abstraction A of that stage that starts at (I, ϕpre) and ends at (F,¬ϕpost).
By Lemma 4.25 we have that the abstraction A of that stage is an overapprox-
imation. By the contraposition of Lemma 4.23 we have M � ϕpre → [α]ϕpost,
so α is indeed correct.

Suppose the algorithm terminates at step (3e) outputting that α is incor-
rect. Then the path constraint of a path Γ that starts at (I, ϕpre) and ends at
(F,¬ϕpost) is satisfiable. From Lemma 4.24 it follows that M 2 ϕpre → [α]ϕpost
so α is indeed incorrect.
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Chapter 5

Deterministic propositional
dynamic logic

Propositional dynamic logic allows for non-determinism in two ways. The code
constructs α1∪α2 and α∗ are non-deterministic and actions can result in different
states. An example of the last category is the action p := random defined in
the NDB language in Section 2.3.

Most imperative languages only have deterministic code constructs and most
statements execute deterministically. This can be used to make the abstraction
refinement algorithm more efficient and it will also enable us to give the fol-
lowing termination result. When a deterministic program does not satisfy its
specification, the abstraction refinement algorithm will eventually terminate and
output that the program is incorrect.

Although non-deterministic actions do not usually occur in programming
languages, they are still useful to model the environment of a program. We shall
therefore allow arbitrary mixes between deterministic and non-deterministic ac-
tions and we will adapt the abstraction refinement algorithm to exploit deter-
minism when present. Note that the termination result only holds when all
actions are deterministic.

In Section 5.1 we define the language and semantics of a fragment of propo-
sitional dynamic logic that only contains deterministic code constructs. Then
in Section 5.2 we formally define the two ways in which a program can be deter-
ministic and we prove that the fragment of PDL we have defined satisfies this
definition.

Then in Section 5.3 we adapt the abstraction refinement algorithm to make
use of determinism when present. This allows us to prove the termination result
in Section 5.4.

Finally, we run this version of abstraction refinement on the program we
presented in the introduction. The results of this verification are discussed in
Section 5.5.

5.1 Language and semantics

The language consists again of formulas and programs. Instead of non-determinism
and looping we have if-then-else statements and while statements.
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Definition 5.1. Let (P,A) be a signature. Define the deterministic PDL for-
mulas Φd and programs Πd by simultaneous recursion. Let p ∈ P, b ∈ B,
ϕ1, ϕ2 ∈ Φd and δ1, δ2 ∈ Πd, then

ϕ ::= > | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | 〈δ1〉ϕ1

δ ::= b | δ1; δ2 | if (ϕ) {δ1} else {δ2} | while (ϕ) {δ1}.

We use the same models for D-PDL as we use for PDL, see Definition 2.4
on page 6. We give the denotational semantics by defining a translation π from
D-PDL to PDL. We define π by recursion, the only interesting cases are the
new constructs, for completeness we also give the other cases.

π(>) = >
π(p) = p

π(¬ϕ) = ¬π(ϕ)

π (ϕ1 ∧ ϕ2) = π(ϕ1) ∧ π(ϕ2)

π (〈δ〉ϕ) = 〈π(δ)〉π(ϕ).

π(b) = b

π(δ1; δ2) = π(δ1);π(δ2)

π (if (ϕ) {δ1} else {δ2}) = (?ϕ;π(δ1)) ∪ (?¬ϕ;π(δ2))

π (while (ϕ) {δ1}) = (?ϕ;π(δ1))
∗

; ?¬ϕ.

Recall that Ids is the notation for the denotational semantics of PDL pro-
grams and Isos for the structural operational semantics. For D-DPL programs
we use the notation Id ds and Id sos for the two semantics.

Definition 5.2 (Denotational semantics). The denotational semantics of δ ∈
Πd is defined by IMd ds(δ) = IMds (π(δ)).

We could define the control flow graph of deterministic programs using the
translation to PDL. However, in the case of the while statement it would not
be clear from the control flow graph that this statement is deterministic. We
therefore define the control flow graph of deterministic programs separately.
Recall that G(α) is the notation for the control flow graph of a PDL program,
we will use Gd(δ) for the control flow graph of a D-PDL program.

Definition 5.3. Let δ ∈ Πd be a program. We define its control flow graph
Gd(δ) with induction to the structure of δ. See Figure 5.1 on the next page for
an illustration.

Case 1. δ = b. Define Gd(b) as the graph with two nodes I and F , with an
edge from I to F labeled with the action b.

Case 2. Recursive cases. Let G1 = Gd(δ1) and G2 = Gd(δ2) be the con-
trol flow graphs of δ1 and δ2 and let I1, I2 and F1, F2 denote their
respective initial and final nodes.

Case i. δ = δ1; δ2. First define G as the disjoint union of G1 and
G2. Set I = I1 and F = F2 and merge the node F1 with
I2.
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(a) The control flow graph of b

(b) The control flow graph of δ1 (c) The control flow graph of δ2

(d) The control flow graph of δ1; δ2

(e) The control flow graph of if (ϕ) {δ1} else {δ2}

(f) The control flow graph of while (ϕ) {δ1}

Figure 5.1: Control flow graphs of deterministic programs
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Case ii. δ = if (ϕ) {δ1} else {δ2}. Define G as the disjoint union
of G1, G2 and a new node I. Set F = F1 and merge the
nodes F1 with F2. Add an edge from I to I1 labeled with
?ϕ and add an edge from I to I2 labeled with ?¬ϕ.

Case iii. δ = while (ϕ) {δ1}. Define G as the disjoint union of G1

with two new nodes I and F . Add the edges I → I1 and
F1 → I1 both with label ?ϕ, and add the edges I → F
and F1 → F both with label ?¬ϕ.

Like PDL programs, we define the structural operational semantics using
control flow graphs.

Definition 5.4 (Structural operational semantics). Let M be a PDL-model.
Define the GFC-model K in the same way as in Definition 3.10 on page 15.
Then define

IMd sos(δ) = IKgraph(Gd(δ)).

Proposition 5.5. Let M be a PDL-model. The structural operational interpre-
tation IMd sos(δ) equals the denotational interpretation IMd ds(δ).

Proof. Let K be the GFC-model as defined in Definition 3.10 on page 15. The
following equalities hold

IMd ds(δ) = IMds (π(δ)) by definition of Id ds

= IMsos(π(δ)) by Theorem 3.15

= IKgraph (G(π(δ))) by definition of Isos
IMd sos(δ) = IKgraph(Gd(δ)). by definition of Id sos.

We will prove with induction to the structure of δ that a trace (s0, . . . , sn)
satisfies a path in G(π(δ)) if and only if it satisfies a path in Gd(δ). The while-
statement is the only case where Gd(δ) has a different structure than G(π(δ)),
this will be the most interesting case.

Case 1. δ = b. We have π(b) = b and G(b) = Gd(b).

Case 2. δ = δ1; δ2. We have π(δ) = π(δ1);π(δ2). The graph G(π(δ)) is in
the same way constructed from G(π(δ1)) and G(π(δ2)) as Gd(δ) is
constructed from Gd(δ1) and Gd(δ2). The result follows from the
induction hypothesis.

Case 3. δ = if (ϕ) {δ1} else {δ2}. We have

G (π(δ)) = G ((?ϕ;π(δ1)) ∪ (?¬ϕ;π(δ2))) .

This graph is in the same way constructed fromG(π(δ1)) andG(π(δ2))
as Gd(δ) is constructed from Gd(δ1) and Gd(δ2). The result follows
from the induction hypothesis.

Case 4. δ = while (ϕ) {δ1}. We have

G (π(δ)) = G
(
(?ϕ;π(δ1))

∗
; ?¬ϕ

)
.
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(a) The control flow graph G (π (while (ϕ) {δ1}))

(b) The control flow graph Gd (while (ϕ) {δ1})

Figure 5.2: Equivalent control flow graphs

See Figure 5.2 for an illustration. From the figure it follows that every
path in Gd(δ) corresponds with a path in G(π(δ)) by inserting edges
?>, and every path in G(π(δ)) corresponds with a path in Gd(δ) by
removing edges ?>. Since R(?>) = {(s, s) | s ∈ Σ}, a satisfying trace
of a path in Gd(δ) corresponds with a satisfying trace of the corre-
sponding path in G(π(δ)) by the induction hypothesis and doubling
states s in the trace when an edge ?> is inserted. And in the other
direction, a satisfying trace of a path in G(π(δ)) corresponds with a
satisfying trace of the corresponding path in Gd(δ) by the induction
hypothesis and merging two adjacent states s, s in the trace to s for
every removed edge ?>.

5.2 Determinism

There can be two different types of determinism in a program. One is that at
every stage there is only one statement that can be executed next, the other is
that a single statement can only result in one state.

We define this in the languages of control flow graphs, let A be a CFG-
signature and K = (Σ,R) a CFG-model.

Definition 5.6 (Deterministic control flow graphs). A control flow graph G is
deterministic in K if the following holds. Let s ∈ Σ be a state, g a node in G
and e1, . . . , en be the outgoing edges of g. Then there is at most one i such that
there is a r ∈ Σ with (s, r) ∈ R(a) where a is the label of ei.
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Definition 5.7 (Deterministic relation). A relation R ⊆ Σ×Σ is deterministic
if it is a partial function. That is, for every s ∈ Σ there is at most one r ∈ Σ
with (s, r) ∈ R.

Definition 5.8 (Deterministic action). An action a ∈ A is deterministic in K
if the relation R(a) is deterministic.

We will prove that the control flow graphs of D-DPL programs are deter-
ministic control flow graphs. First observe the following from the definition of
Gd.

Fact 5.9. Let G be the control flow graph of a program δ, then the node labeled
F has no outgoing edges.

Lemma 5.10. The graph Gd(δ) is a deterministic control flow graph.

Proof. We prove this with structural induction on δ. Let s ∈ Σ be a state, g a
node in Gd(δ) and e1, . . . , en be the outgoing edges of g.

Case 1. δ = b. Then Gd(δ) has only one edge.

Case 2. δ = δ1; δ2. If g 6= F2 ] I2, then g and its outgoing edges are fully
contained in either Gd(δ1) or Gd(δ2). If g = F2 ] I2, we have by Fact
5.9 that the outgoing edges of g are contained in Gd(δ2). In both
cases the result follows from the induction hypothesis.

Case 3. δ = if (ϕ) {δ1} else {δ2}. When g = F , it has no outgoing edges.
When g = I the outgoing edges are ?ϕ and ?¬ϕ. If s � ϕ there
cannot be a r with (s, r) ∈ R(¬ϕ) and when s 2 ϕ there cannot
be a r with (s, r) ∈ R(?ϕ). Hence, there is at most one i with the
asked property. If g 6= F and g 6= I, we have that g and its outgoing
edges are fully contained in either Gd(δ1) or Gd(δ2). Then the result
follows from the induction hypothesis.

Case 4. δ = while (ϕ) {δ1}. When g = F , it has no outgoing edges. When
g = I or g = F1 the outgoing edges are ?ϕ and ?¬ϕ. The argument
is the same as in the previous case. Otherwise, we have that g and
its outgoing edges are fully contained in Gd(δ1) and the result follows
from the induction hypothesis.

To connect D-DPL with the second type of determinism, we prove that if all
actions are deterministic the interpretation of a D-DPL program is deterministic.

Lemma 5.11. Suppose all actions b ∈ B are deterministic in M . Let γ1 and
γ2 be two paths in Gd(δ) of length n that start at a node g. Let s ∈ Σ, let σ1
and σ2 be two traces starting with s that satisfy respectively γ1 and γ2. Then
σ1 = σ2 and γ1 = γ2.

Proof. We prove this with induction to n. If n = 1 then σ1 = σ2 since they
both start with s.

Let n > 1. Let g1 be the second node of γ1, r1 the second state of σ1 and
a1 the label of the edge from g to g1. Define g2, a2 and r2 analogously. Since
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(s, r1) ∈ R(a1) and (s, r2) ∈ R(a2) and Gd is a deterministic control flow graph
by Lemma 5.10, we have that g1 = g2 and a1 = a2. If a1 is a test action, we
have s = r1 = r2. Else, a1 is a basic action and by assumption deterministic.
Hence, r1 = r2. The result follows from the induction hypothesis.

Proposition 5.12. Suppose all actions b ∈ B are deterministic in M . Let δ be
a program, then its interpretation IM (δ) is a deterministic relation.

Proof. Suppose (s, r1) ∈ IM (δ), (s, r2) ∈ IM (δ). By the structural operational
semantics, there are paths γ1, γ2 in the graph Gd(δ) that are satisfied by traces
σ1 and σ2, where both traces start with s, σ1 ends with r1 and σ2 ends with r2.

Let n1, n2 be their lengths. Suppose n1 ≤ n2. Look at the first n1 nodes
of γ2. By Lemma 5.11 we have that this segment equals γ1. Hence, the n1-th
node of γ2 is F . By Fact 5.9 F has no outgoing edges and we conclude that
n1 = n2. When n1 ≥ n2 the argument is the same, hence n1 = n2. We apply
Lemma 5.11 again to see that r1 = r2.

5.3 Partition refinement on D-PDL

The partition refinement algorithm defined in Chapter 2 is defined over PDL
programs α ∈ Π. However, it only uses the control flow graph G(α) to verify α
and not the specific PDL constructs. When we replace G(α) by Gd(δ), we can
therefore use the same definitions and proofs to define the algorithm on D-PDL.

The second change we make in the algorithm is that we use a different way
of splitting along a path. This definition makes the algorithm more efficient
when it splits along a path that contains deterministic actions.

The last change is that the algorithm searches for the shortest abstract path
from (I, ϕpre) to (F,¬ϕpost) instead of an arbitrary path. This enables us to
give a proof that the algorithm terminates on incorrect programs.

The algorithm is given in Listing 5.1 on the next page together with refer-
ences to the relevant definitions and proofs.

Refinements

When we know that an action is deterministic, we can remove more edges when
we split along a transition labeled by that action. See Figure 5.3 on page 40 for
an illustration of all the possible cases.

Definition 5.13 (Splitting along a transition). Let S = (g, ϕ) and T = (h, ψ)
be two nodes in the abstract program A with an edge from S to T labeled with
a ∈ A. We obtain a new abstract program by splitting this transition as follows.

First we refine the abstraction according to Definition 4.16 on page 28. Re-
call that when χ ∧ ϕ is not satisfiable where χ = WPa(ψ), this results in an
abstraction as shown in Figure 5.3c. When it is satisfiable it results in an
abstraction as shown in Figure 5.3b.

When this refinement caused S to be split into S− and S+ and a is a deter-
ministic action, we additionally do the following. We remove all outgoing edges
from S+ except the edge to T labeled with a. An illustration is shown in Figure
5.3d.
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Listing 5.1 The abstraction refinement algorithm on D-PDL

The algorithm

1. Initialize the abstraction A as the deterministic control flow graph of δ
where each node is associated with the formula >.

2. Split (I,>) into (I, ϕpre) and (I,¬ϕpre). Split (F,>) into (F,ϕpost) and
(F,¬ϕpost).

3. Repeat the following

(a) Find the shortest abstract path S0, . . . , Sn in A with S0 = (I, ϕpre)
and Sn = (F,¬ϕpost).

(b) If such a path does not exist, output that δ is correct. Else, continue.

(c) For i ∈ {0, . . . , n} let ρi be the path constraint ρi of S0, . . . , Si. Find
the smallest i such that ρi is not satisfiable.

(d) If such an i does not exist, output that δ is incorrect. Continue
otherwise.

(e) Change the abstraction A by splitting along the path S0, . . . , Si.

Explanation

1. Abstractions and the initial abstraction are defined analogously to Defini-
tion 4.7 and 4.8 on page 24, where we use the deterministic control graph
Gd(δ) in stead of G(α).

2. In Definition 4.14 on page 26 it is defined how to split nodes.

3. In each iteration the abstraction A is changed, or the algorithm terminates.

(a) An abstraction is a finite directed graph.

(b) The correctness is proved in Theorem 5.17.

(c) Path constraints are defined in Definition 4.12 on page 26.

(d) The correctness is proved in Theorem 5.17.

(e) Splitting along a path is defined in Definition 5.15 on page 41.
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(a) Original abstraction (b) When χ ∧ ϕ is satisfiable and a non-
deterministic

(c) When χ ∧ ϕ is unsatisfiable (d) When χ ∧ ϕ is satisfiable and a deterministic

Figure 5.3: Splitting the transition from (g, ϕ) to (h, ψ)
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To prove the correctness of the algorithm, we want that abstractions are
always overapproximations. The following Lemma shows that splitting along a
transition using the new definition will result in an overapproximation.

Lemma 5.14. Let A and A′ be abstractions where A′ is obtained from A by
splitting along a transition according to Definition 5.13. If A is an overapprox-
imation, then A′ is an overapproximation.

Proof. Let the transition from S to T with label a be the transition that is
being split. Splitting along this transition is defined by first splitting according
to Definition 4.16, let B be the resulting abstraction. By Lemma 4.17 on page 28
it follows that B is an overapproximation.

If S has not been split or a is non-deterministic, we have A′ = B and we
are finished. Else, S has been split into S− and S+ and we have that A′ equals
B where certain edges are removed. We will prove that these edges cannot be
part of a satisfying trace.

Let S = (g, ϕ) and T = (h, ψ), by Definition 4.16 we have S+ = (g, ϕ ∧ χ)
with χ = WPa(ψ) . Let (s, r) be a (part of a) trace that satisfies the transition
from S+ to T ′ = (h′, ψ′) with edge-label a′.

Since s � ϕ∧χ we have by the definition of weakest preconditions that there
exists a t with (s, t) ∈ R(a) and t � ψ. By Lemma 5.10 on page 37 we have that
the control flow graph Gd(δ) is deterministic. Since a is the edge label of the
edge from g to h with (s, r) ∈ R(a) and a′ is the edge label of the edge from g′

to h′ with (s, t) ∈ R(a′), we have by Definition 5.6 of deterministic control flow
graphs that a = a′ and h = h′.

Since a is deterministic, we have r = t, so r � ψ. Since ψ and ψ′ are part of
a partition of the state space and r satisfies both, we must have ψ = ψ′. Hence,
T = T ′.

The edge from S+ to T with label a is not removed when splitting along the
transition. Hence, A′ is an overapproximation.

We define splitting along a path in the same way as in Definition 4.18 on
page 29, except that we use a different definition of splitting along a transition.

Definition 5.15 (Splitting along a path). Let S0, . . . , Sn be a path in the
abstract program A with edge-labels a1, . . . , an. First we split A along the
transition Sn−1, Sn with label an. If this split resulted in new states S+ and
S−, and we have n > 1, then we recursively split along the path S0, . . . , Sn−1, S

−

with edge labels a1, . . . , an−1. Else we are finished.

Lemma 5.16. Let A and A′ be abstractions where A′ is obtained from A by
splitting along a path according to Definition 5.13. If A is an overapproximation,
then A′ is an overapproximation.

Proof. Splitting along a path is defined by repeatedly splitting along a transi-
tion. The result follows from repeatedly applying Lemma 5.14.

Correctness

Theorem 5.17. If the algorithm terminates, its output is correct.
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Proof. The proof is the same as Theorem 4.26 on page 31, except that we
use Lemma 5.16 to prove that the abstractions used are always overapproxi-
mations and we use Theorem 5.5 on page 35 for the equivalence between the
denotational semantics and the structural operational semantics of deterministic
propositional dynamic logic.

5.4 Termination

The algorithm can fail to terminate for two reasons. One is that a check of the
satisfiability of a formula does not terminate. The other is that the algorithm
will explore infinite abstract counterexamples. Note that the halting problem
can be translated to a verification question, so the algorithm cannot terminate
on all inputs.

We assume that checking the satisfiability of formulas without modalities al-
ways terminates. Then we are able to prove that when all actions are determin-
istic the algorithm will halt on programs that do not satisfy their specification.

Lemma 5.18. Assume that all actions b ∈ B are deterministic. Let A be an
abstraction and A′ be the resulting abstraction after splitting along a transition.
Then there is an injective function from paths in A′ ending at (F,¬ϕpost) to
paths in A ending at (F,¬ϕpost) that preserves the length of the paths.

Proof. See Definition 5.13 on page 38 for the definition of splitting along tran-
sitions, let S and T be the nodes of the transition and a the label of the edge.
Since (F,¬ϕpost) has no outgoing edges, we have S 6= (F,¬ϕpost).

There are two possibilities. When the node S is not split, the difference
between A and A′ is that an edge has been removed. The identity serves as a
length preserving injection.

Otherwise, the node S is split into S− and S+. We take the function that
maps a path Γ to the path Γ′ where all occurrences of S− or S+ are replaced
with S. We have that S− and S+ cannot occur as the last node in the path,
hence one if its outgoing edges is part of the path. By definition, the only
outgoing edge from S+ is the edge to T with label a and S− does not have an
edge with label a to T . Hence, this function is an injection.

In the rest of this section, we call a path in A from (I, ϕpre) to (F,¬ϕpost)
an error path.

Lemma 5.19. Assume all actions b ∈ B are deterministic. Let A be an ab-
straction and let A′ be the resulting abstraction after one iteration. Define n as
the length of the smallest error path in A and m as the number of error paths
of length n in A. Define n′, m′ similarly in A′. Then either n′ > n; or n′ = n
and m′ < m.

Proof. Since the algorithm considers the smallest path, the path it considers
is of length n. The abstraction A′ is obtained from A by splitting this path,
which is defined as repeatedly splitting along a transition. For each of these
transitions except the last, we invoke Lemma 5.18 to see that there are at most
m error paths of length n. The last transition is being split without splitting
a node, but only by removing an edge. This edge is part of the error path the
algorithm considered. Hence, A′ contains strictly less error paths of length n.
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When A′ does not contain any error path of length n anymore, we have n′ > n.
Otherwise, n′ = n and m′ < m.

Theorem 5.20. Assume all actions b ∈ B are deterministic. If the program δ
is incorrect, the algorithm terminates.

Proof. Suppose δ is incorrect. By Lemma 4.23 on page 30 A contains an error
path of length n.

Let ni be the length of the shortest error path during iteration i and mi the
number of paths with that length. If the algorithm does not terminate, we have
for all i that ni ≤ n. Hence, there is a j with ni+1 = ni for all i ≥ j. By Lemma
5.19 this gives an infinite decreasing sequence (mj ,mj+1, . . .) of natural numbers
which is a contradiction. We conclude that the algorithm terminates.

5.5 Verification of the lock/unlock example

Recall the program given in Listing 1.1 on page 3. We gave a translation to
propositional dynamic logic in Listing 2.2 on page 10. The program uses only
deterministic control flow statements, we can therefore translate it to determin-
istic PDL. The result is given in Listing 5.2 on the next page. The actions
has m := random and foo := random are non-deterministic, all other actions
are deterministic.

We will verify this program against the specification

ϕpre = ϕpost = (¬error ∧ ¬lock) .

Its initial abstraction is shown in Figure 5.4 on page 45. We have omitted
the node (I,¬ϕpre), since it is not used in the abstraction refinement algorithm.
After 12 iterations the algorithm terminates and outputs that the program is
correct. The final abstraction contains 55 nodes. The nodes that can be reached
from (I, ϕpre) are shown in Figure 5.5 on page 46.

Recall that in the introduction we made the observation that has m is true
if and only if the program has the lock. This is exactly the formula that the
algorithm found to distinguish between states that exit the loop and states that
reenter the loop.

The final abstraction can serve as a certificate that the program is correct as
follows. We can check whether actions that are removed are indeed not possible
given the constraints in the abstract states and that the constraints are satisfied
by all states at that point during the execution.
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Listing 5.2 Lock/unlock program in D-DPL

has m := ⊥;

while (¬has m) {
if (lock) {

error := >
} else {

lock := >
};
has m := random;

if (has m) {
foo := random

} else {
if (lock) {

lock := ⊥
} else {

error := >
};
foo := random

}
};
foo := random;

if (lock) {
lock := ⊥

} else {
error := >

}
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Figure 5.4: The initial abstraction
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Figure 5.5: The final abstraction
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Chapter 6

Indirection

An example of indirection in a programming language are pointers in C. The
value of a variable that is a pointer is interpreted as an address. It can be
dereferenced to obtain the value of the location with that address. There can be
multiple layers of indirection when pointers point to an address that contains
another address as a value. Furthermore, addresses can be manipulated by
adding or subtracting numbers, this is called pointer arithmetic. See Figure 6.1
for an illustration, see [9] for an introduction to C and pointers.

By the nature of indirection, whether two pointers refer to the same location
or not can greatly influence the execution of the program. This forces weakest
preconditions to contain many case distinctions, which makes it infeasible to
compute path constraints of large paths. As an alternative way of computing
path constraints we introduce symbolic execution, see [11].

In Section 6.1 we introduce a language that has indirection. We show in
Section 6.2 by an example that weakest preconditions cannot efficiently be used
to compute path constraints in this language. We introduce symbolic execution
in Section 6.3 as an alternative and prove the correctness in Section 6.4.

6.1 Language

Define the signature (P,B) as follows. We give propositions an internal structure
by using terms.

Definition 6.1. The set of terms T is recursively defined, with n ∈ Z, v1, v2 ∈ T

v ::= n | ?v1 | v1 + v2 | v1 − v2.

Figure 6.1: Memory with pointers
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Then the set of propositions P is defined as follows, with v1, v2 ∈ T

p ::= v1 ' v2 | v1 > v2.

Finally, the set of basic actions is

B = {?v1 := v2 | v1, v2 ∈ T } .

The term ?v is the term that introduces indirection, this will be clear when
we have defined the semantics. The intended meaning of v1 ' v2 is that v1
and v2 are equal, to avoid confusion with other uses of =, we have chosen the
symbol '.

Definition 6.2. The model M = (Σ,V,R) is defined as follows. Let Σ be the
set of functions f : Z → Z. A state s ∈ Σ determines a function s+0 : T → Z
and a function s+1 : P → {>,⊥} as follows. Usually we omit the subscripts 1
and 2 and write s+.

s+0 (n) = n

s+0 (?v) = s(s+0 (v))

s+0 (v1 + v2) = s+0 (v1) + s+0 (v2)

s+0 (v1 − v2) = s+0 (v1)− s+0 (v2)

s+1 (>) = >

s+1 (v1 ' v2) =

{
> if s+0 (v1) = s+0 (v2)

⊥ if s+0 (v1) 6= s+0 (v2)

s+1 (v1 > v2) =

{
> if s+0 (v1) > s+0 (v2)

⊥ if s+0 (v1) ≯ s+0 (v2)

s+1 (¬ϕ1) = ¬s+1 (ϕ1)

s+1 (ϕ1 ∧ ϕ2) = s+1 (ϕ1) ∧ s+1 (ϕ2).

Then we define V(p) = {s | s+(p) = >}. Let n,m ∈ Z, define s[n 7→ m] as the
function r with r(n) = m and r(k) = s(k) for all k 6= n. Finally the relations
are defined by

R (?v1 := v2) = {(s, r) | r = s[s(v1) 7→ s(v2)]} .

Note that all actions b ∈ B are deterministic.

6.2 Path constraints

Consider the program in Listing 6.1 on the following page, we want to check
the postcondition ?(−1) > ?1. This program will produce the same result for
all starting states, so we can check it by hand and see that the postcondition is
always satisfied.

However, this program is difficult to verify using the abstraction refinement
algorithm. We will compute a part of the path constraint that leads the execu-
tion to a state where ?(−1) ≤ ?1. Recall that path constraints are inductively
defined, starting at the last transition and using weakest preconditions.
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Listing 6.1 A program with indirection
?-1 := 1;

?1 := -1;

??1 := -??1;
??-1 := -??-1;
??-1 := -??-1;
??1 := -??1;

Example. Let ρ0 be ¬ϕpost = ?(−1) ≤ ?1, we compute ρi = WPai(ρi−1) where
ai is the last but i-th action.

We have a0 is ? ? 1 := − ? ?1, to be able to substitute the new value of ? ? 1
we have to make a case distinction on ?1. We see

ρ1 = WPa0(ρ0)

= (?1 ' 1→ ρ0[?1 7→ − ? 1]) ∧ (?1 ' −1→ ρ0[?(−1) 7→ − ? (−1)])

= (?1 ' 1→ ?(−1) ≤ − ? 1) ∧ (?1 ' −1→ − ? (−1) ≤ ?1) .

To compute ρ2 = WPa1(ρ1) we have to make a new case distinction.

ρ2 = WPa1(ρ1)

= (?(−1) ' 1→ ρ1[?1 7→ − ? 1]) ∧ (?(−1) ' −1→ ρ1[?(−1) 7→ − ? (−1)])

= (?(−1) ' 1→ ?(−1) ≤ ?1)

∧ (?(−1) ' −1→ (?1 ' 1→ − ? (−1) ≤ − ? 1) ∧ (?1 ' −1→ ?(−1) ≤ ?1)) .

Then we compute

ρ3 = WPa2(ρ2)

= (?(−1) ' 1→ ρ2[?1 7→ − ? 1]) ∧ (?(−1) ' −1→ ρ2[?(−1) 7→ − ? (−1)]) .

Etcetera.
Computing path constraints using weakest preconditions quickly becomes

infeasible. To overcome this problem we introduce a variant of symbolic execu-
tion.

6.3 Symbolic execution

Symbolic execution can be used to compute a path constraint. This works as
follows. For each input value we introduce a symbol. An expression normally
evaluates to a concrete value, now we symbolically evaluate an expression to a
term over symbols. Assignments are executed symbolically by assigning terms
over symbols to variables. For each control flow statement we obtain a boolean
term over the symbols. The conjunction of these boolean terms forms the path
constraint of the path.

We define the symbolic terms and formulas below. The variant of symbolic
execution that we will define uses symbols to remove indirection from symbolic
terms. Our symbolic language therefore does not contain the operator ?.
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Definition 6.3. Let X = {x0, x1, . . .} be a set of symbols. Define the set T X

of symbolic terms recursively, with x ∈ X , n ∈ Z, vx1 , v
x
2 ∈ T X

vx ::= x | n | vx1 + vx2 | vx1 − vx2 .

Define the set PX of symbolic propositions, with vx1 , v
x
2 ∈ T X

px ::= vx1 ' vx2 | vx1 > vx2 .

Finally, define the set ΦX of symbolic formulas recursively, with px ∈ PX

and ϕx
1, ϕ

x
2 ∈ ΦX

ϕx ::= > | px | ¬ϕx
1 | ϕx

1 ∧ ϕx
2.

An assignment that maps symbols to concrete values connects a symbolic
execution to a concrete execution.

Definition 6.4. An assignment is a function κ from X to Z. Assignments can
be extended to a function κ0 : T X → Z and a function κ1 : ΦX → {>,⊥} as
follows. Usually we will omit the subscripts.

κ0(x) = κ(x)

κ0(n) = n

κ0(vx1 + vx2) = κ0(vx1) + κ0(vx2)

κ0(vx1 − vx2) = κ0(vx1)− κ0(vx2)

κ1(>) = >

κ1(vx1 ' vx2) =

{
> if κ0(vx1) = κ0(vx2)

⊥ if κ0(vx1) 6= κ0(vx2)

κ1(vx1 > vx2) =

{
> if κ0(vx1) > κ0(vx2)

⊥ if κ0(vx1) ≯ κ0(vx2)

κ1(¬ϕx
1) = ¬κ1(ϕx

1)

κ1(ϕx
1 ∧ ϕx

2) = κ1(ϕx
1) ∧ κ2(ϕx

2).

When we cannot symbolically evaluate an expression with indirection using
existing symbols, we will introduce a new symbol that represents this term.
A mapping specifies which terms the symbols represent. Since new symbols
are introduced one by one and we can only use symbols that are previously
introduced, we use the following definition.

Definition 6.5. A mapping ξ is a (finite) partial function ξ ⊆ X × T X such
that ξ(xi) does not contain the symbols xj with j ≥ i and such that if ξ(xi)
exists, then ξ(xj) exists for all j < i.

The intuition behind this definition is as follows. Suppose (x0, t
x) ∈ ξ. Since

tx cannot contain symbols xi with i ≥ 0 we have that tx ∈ T . We say that
x0 represents the term ?tx ∈ T . We can now inductively compute the terms
ti ∈ T that the symbols xi represent as follows. Let (xi, t

x) ∈ ξ. We have that
tx only contains symbols xj with j < i, replace each occurring symbol xj by tj
to obtain a term t′ ∈ T . Then ti = ?t′ ∈ T .
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Listing 6.2 Symbolic execution

The input is a path Γ with Si = (gi, ψi) and

Γ = S0
a1→ S1

a2→ . . .
an→ Sn.

The goal is to find the smallest i such that ρ ∧ η is unsatisfiable, where ρ is the
path constraint of the path S0, . . . , Si and η the alias information of this path.

1. Initialize the symbolic memory to µ = ∅, the alias information to η = >,
the path constraint ρ = > and the symbolic mapping to ξ = ∅.

2. Let S0 = (g0, ψ0). Evaluate ψ0 to ψx
0 as defined in Listing 6.3 on the

following page. Update the path constraint ρ = ψx
0 .

3. Iterate the following for i = 1, . . . , n

(a) When ai =?ϕ, do the following.

i. Evaluate ϕ to ϕx, evaluate ψi to ψx
i .

ii. Change the path constraint ρ to ρ ∧ ϕx ∧ ψx
i .

(b) Else ai = (?v1 := v2).

i. Evaluate v1 to vx1 and then v2 to vx2 .

ii. Compute the alias wx of vx1 as defined in Listing 6.4 on page 53.

iii. There is a pair (wx, ux) ∈ µ, change this pair to (wx, vx2).

iv. Evaluate ψi to ψx
i and change the path constraint ρ to ρ ∧ ψx

i .

(c) Check satisfiability of ρ∧η. When it is not satisfiable, output i. Else,
continue.

When we symbolically evaluate a term with indirection, we cannot always
determine whether we already have a symbol that represents this term or not,
and we will make a choice. These choices will be specified in a formula η ∈ ΦX

called the alias formula.
The result of a symbolic assignment is stored in the symbolic memory we

define below. Since assignments are of the form ?t := s with t, s ∈ T , the
symbolic memory maps symbolic terms to symbolic terms.

Definition 6.6. A symbolic memory µ is a (finite) partial function µ ⊆ T X ×
T X.

The algorithm that symbolically executes along a path Γ in an abstraction
of a program is given in Listing 6.2.

6.4 Correctness

Symbolic execution is defined in an algorithmic way, we prove its correctness
also algorithmically. We replay the symbolic execution and construct concrete
states si that follow this execution. We want that a state si somehow matches
the symbolic memory µ. We define this in the following way.

51



Listing 6.3 Symbolic evaluation

Evaluating terms
The input is a (non-symbolic) term v ∈ T to evaluate, the current path con-
straint ρ, alias information η, symbolic memory µ and mapping ξ. The algorithm
outputs a symbolic term in T X that is the evaluation of v, it can change η, µ
and ξ, but not ρ.
The algorithm is a recursive algorithm. The most interesting case is the case
v = ?u, the other cases are a straightforward extension.

1. Make the following case distinction.

Case 1. v = n. Output n.

Case 2. v = ?u. First symbolically evaluate u to ux. Compute the alias
wx of ux as defined in Listing 6.4 on the following page. Output
µ(wx).

Case 3. v = v1 + v2. First evaluate v1 to vx1 . Note that this can change
η, ξ and µ. Using the new values of these, evaluate v2 to vx2
and output vx1 + vx2 .

Case 4. v = v1 − v2. First evaluate v1 to vx1 , then evaluate v2 to vx2 .
Output vx1 − vx2 .

Evaluating formulas
The input is a (non-symbolic) formula ϕ ∈ Φ to evaluate, the current path
constraint ρ, alias information η, symbolic memory µ and mapping ξ. The
algorithm outputs a symbolic formula in ΦX that is the evaluation of ϕ, it can
change η, µ and ξ, but not ρ.
The algorithm is a recursive algorithm.

1. Make the following case distinction. All cases are straightforward exten-
sions of the symbolic execution of terms.

Case 1. ϕ = >. Output >.

Case 2. ϕ = v1 ' v2. First evaluate v1 to vx1 . Note that this can change
η, ξ and µ. Using the new values of these, evaluate v2 to vx2
and output vx1 ' vx2 .

Case 3. ϕ = v1 > v2. First evaluate v1 to vx1 , then evaluate v2 to vx2 .
Output vx1 > vx2 .

Case 4. ϕ = ¬ψ. Evaluate ψ to ψx and output ¬ψx.

Case 5. ϕ = ψ1 ∧ ψ2. First evaluate ψ1 to ψx
1 , then evaluate ψ2 to ψx

2 .
Output ψx

1 ∧ ψx
2 .
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Listing 6.4 Computing and choosing an alias

As input there is a term vx ∈ T X to compute the alias of, the current path
constraint ρ, the alias information η, the symbolic memory µ and the mapping
ξ. The algorithm outputs a term in T X that is the alias of vx, it can change η,
µ and ξ, but not ρ.

1. Define U =
{
ux ∈ T X | ∃wx ∈ T X (ux, wx) ∈ µ

}
. Define the formulas for

all ux ∈ U the formula

ψux = (vx ' ux) ∧

 ∧
wx∈U,wx 6=ux

¬(vx ' wx)

 .

And define the formula

ψnone =

( ∧
wx∈U

¬(vx ' wx)

)
.

2. For each ψ ∈ {ψux | ux ∈ U}∪{ψnone} check whether ψ∧η∧ρ is satisfiable.

3. If multiple of these formulas are satisfiable, choose one ψ arbitrarily and
update η to η ∧ ψ. Else, there is exactly one satisfiable, let ψ be the
corresponding formula.

4. If ψ is of the form ψux , then output ux.

5. Else ψ = ψnone, let xi ∈ X be the first symbol that is not present yet
in ξ. Update ξ by adding the pair (xi, v

x). Update µ by adding the pair
(vx, xi) and output vx.
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Definition 6.7. Let κ be an assignment, recall that it uniquely extends to a
function T X → Z. We say that a state s agrees with a memory map µ if for all
pairs (vx, ux) ∈ µ we have s (κ(vx)) = κ(ux).

Theorem 6.8. Let A be an abstraction of a program α. Let Γ be a path in A
starting at (I, ϕpre) and ending in (F,¬ϕpost) that is symbolically executed and
suppose that the final constraint ρ∧ η is satisfiable. Then M 2 ϕpre → [α]ϕpost.

Proof. The proof is given in Listing 6.5 on the next page.
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Listing 6.5 The replay of a symbolic execution

We will replay the symbolic execution of the path Γ with Si = (gi, ψi) and

Γ = S0
a1→ S1

a2→ . . .
an→ Sn.

See Listing 6.2 on page 51 for the definition of symbolic execution. We assume
that ρi ∧ ηi is satisfiable at each iteration of the symbolic execution. Let κ be
a satisfying assignment of the final value ρn ∧ ηn.
We will construct a trace (s0, . . . , sn) with si � ψi and (si−1, si) ∈ R(ai) that
proves that

s0 � ψ0 ∧ 〈α〉ψn.

At every stage we want that the current si agrees with the current memory map
µ, see Definition 6.7 on the previous page. When a term v ∈ T or a formula
ϕ ∈ Φ is symbolically evaluated, we have by Listing 6.6 on the following page
that s+i (v) = κ(vx) and s+i (ϕ) = κ(ϕx). The symbolic memory could change
during the symbolic evaluation, but the algorithm in Listing 6.6 ensures that si
still agrees with the resulting memory.

1. Define s0 as the state with s0 (κ(vxi )) = κ(xi) for each (xi, v
x
i ) ∈ ξn. We

have that s0 agrees with the current memory µ, since µ = ∅.

2. The path constraint is updated to ρ = ψx
0 . Since ψx

0 is a conjunct in the
final path constraint ρn, we have that κ satisfies ψx

0 . Since s0 agrees with
µ we have that s0 � ψ0.

3. Iterate the following for i = 1, . . . , n. We assume we have a si−1 that
satisfies the memory µ at this point. We construct a si that satisfies the
memory at the end of this iteration, that has si � ψi and (si−1, si) ∈ R(ai).

(a) When ai =?ϕ, do the following.

i. The path constraint is updated to ρ ∧ ϕx ∧ ψx
i . Since these are

conjuncts of the final path constraint ρn, we have that κ satisfies
ϕx ∧ ψx

i .

ii. Define si = si−1. Since si−1 agrees with µ we have si � ψi and
si−1 � ϕ so (si−1, si) ∈ R(?ϕ).

(b) Else ai = (?v1 := v2).

i. Let vx1 and vx2 denote the evaluations of v1 and v2. We have
s+i−1(v1) = κ(vx1) and s+i−1(v2) = κ(vx2) since si−1 agrees with µ.

ii. Let wx be the alias of vx1 as defined in Listing 6.7 on the next
page. We have κ(wx) = κ(vx1) as proved in the same Listing.

iii. The memory is updated by changing the pair (wx, ux) ∈ µ
to the pair (wx, vx2). Define si the same as si−1, except that
si (κ(wx)) = κ(vx2). Since si−1 agrees with the memory before
this update, we have that si agrees with the memory after the
update. Since κ(wx) = s+i−1(v1) and κ(vx2) = s+i−1(v2) we have
(si−1, si) ∈ R(?v1 := v2).

iv. The path constraint is updated to ρ∧ψx
i . Since this is a conjunct

of the final path constraint ρn, we have that κ satisfies ψx
i . Hence,

si � ψi.
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Listing 6.6 The replay of a symbolic evaluation

Let si be a state in the replay of a symbolic execution that agrees with the
memory µ at the stage that a term v or formula ϕ is being symbolically evaluated
under the assignment κ. When a term v is symbolically evaluated to vx we prove
that s+i (v) = κ(vx). When a formula ϕ is symbolically evaluated to ϕx we prove
that s+i (ϕ) = κ(ϕx). Furthermore, we have that si still agrees with the memory
after the symbolic execution.
The most interesting case is v = ?u.

• First u is symbolically evaluated to ux. By induction hypothesis we have
κ(ux) = s+i (u).

• Then the alias wx of ux is computed, such that µ (wx) is defined. By
Listing 6.7 we have that κ(wx) = κ(ux).

• The symbolic evaluation of v is the vx = µ(wx). Since si agrees with µ,
we have si(κ(wx)) = κ(vx).

• By definition we have s+i (v) = s+i (?u) = si(s
+
i (u)). From s+i (u) = κ(ux) =

κ(wx) it follows that s+i (v) = si(κ(wx)) = κ(vx).

The other cases follow from recursion, since symbolic execution and the evalu-
ation s+ : T → Z follow the same structure.

Listing 6.7 Replaying the computation of an alias

We replay the computation of the alias wx of the term vx ∈ T X. We will prove
that we have κ(wx) = κ(vx) and when si agrees with the memory, it will still
agree with the memory after choosing the alias.
Let U =

{
ux ∈ T X | µ(ux) is defined

}
and Ψ ∈ {ψux | ux ∈ U} ∪ {ψnone} be as

defined in Listing 6.4 on page 53.
Suppose the alias wx was chosen using ψwx , see step 4 of Listing 6.4 on page 53.
The memory is not updated, so si still agrees with the resulted memory. When
there was one ψ ∈ Ψ such that ψ ∧ η ∧ ρ is satisfiable, we have that vx ' wx

follows from η ∧ ρ. Since κ satisfies ρn ∧ ηn we have that κ(vx) = κ(wx). When
there were multiple ψ ∈ Ψ, the constraint vx ' wx is a conjunct in ηn, hence
also κ(vx) = κ(wx).
Suppose the alias wx was chosen using ψnone, see step 5 of Listing 6.4 on page 53.
Then wx = vx so κ(wx) = κ(vx) .
The memory is updated by choosing a new symbol xi ∈ X , adding the pair
(xi, v

x) to ξ and the pair (vx, xi) to µ. The pair (xi, v
x) is part of ξ and therefore

of ξn. By construction of s0 (see Listing 6.5) we have s0 (κ(vxi )) = κ(xi).
Since ψnone was chosen, we know that terms that could alias with vx have not
been evaluated before. In particular, assignments that change the value of vx

have not been encountered. Hence, si (κ(vxi )) = s0 (κ(vxi )). We conclude that
si also agrees with the new pair (vx, xi) in the symbolic memory.
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Chapter 7

Conclusion

We defined programs and partial correctness specifications using propositional
dynamic logic. To describe the individual steps that are part of executing a pro-
gram, we introduced control flow graphs and defined a translation from PDL
programs to control flow graphs. Then we defined an algorithm that can auto-
matically verify PDL programs against partial correctness specifications. The
algorithm works by counterexample-driven abstraction refinement.

We considered a deterministic fragment of propositional dynamic logic, we
adapted the verification algorithm to improve its efficiency on deterministic pro-
grams and we proved that this algorithm terminates on incorrect programs. We
ran this algorithm on the example program given in the introduction. The algo-
rithm proved the correctness of this program by discovering the same invariant
we gave as an argument to show the correctness of the program.

Finally, we introduced a language with indirection and we explained why
using weakest preconditions is a very inefficient way of computing path con-
straints. We proposed symbolic execution as an alternative way to compute
path constraints. Our variant of symbolic execution furthermore removes all in-
direction from the path constraint, hence indirection does not play a role when
checking the path constraint for satisfiability.

As future research we would like to investigate how symbolic execution can
be used to give an alternative definition of splitting along a path. The cur-
rent definition uses weakest preconditions and suffers from the same inefficiency
as computing path constraints with weakest preconditions. An idea would be
to use the alias information to reduce the number of disjoints in the weakest
precondition, the problem that should be overcome with this approach is that
during the symbolic execution choices are made about which terms alias each
other.

We believe that the termination result we proved for deterministic programs
also holds for non-deterministic programs. Since splitting along a path in the
non-deterministic case can introduce new error paths of the same length, the
argument does not easily translate. An idea would be to group error paths in
the abstraction by the path they represent in the control flow graph and show
that the number of paths in one group strictly decreases.

Another direction for future research is to include the support for total cor-
rectness specifications. This would probably require a change of framework,
since in propositional dynamic logic we cannot directly state that a program
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terminates. A connection with temporal logic could enable us to do so.
When we verified the example program, we observed that the postcondition

¬error was propagated through the whole control flow graph. It could be more
efficient to include an explicit way of exiting the program with an error and
adapt the abstraction refinement algorithm to search for paths that end in a
state where an error is thrown.

Finally, we assumed that we have an efficient way of deciding the satisfiability
of formulas without modalities. In practice this will be the bottleneck of the
algorithm, some approaches run concrete executions of the program in parallel
and use information of this execution to simplify the path constraint. It would
be interesting to investigate if including information of a concrete execution still
enables the algorithm to prove that a program is correct.
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