
Walking the Graph of Language:

On a Framework for Meaning and Analogy

MSc Thesis (Afstudeerscriptie)

written by

Nal Emmerich Kalchbrenner

(born December 11th, 1987 in Lugano, Switzerland)

under the supervision of Dr Reinhard Blutner and Dr Raquel Fernandez

Rovira, and submitted to the Board of Examiners in partial fulfillment of the

requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

September 7th, 2012 Prof Dr Johan Bos

Dr Reinhard Blutner

Dr Raquel Fernandez Rovira

Prof Dr Benedikt Löwe
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Abstract

We introduce a computational framework for generating representations of

linguistic concepts. The concepts we consider are the meanings of words and the

verbal analogs corresponding to n-tuples of words. Representations of meanings

can be compared to estimate their degree of synonymy. Likewise, representations

of verbal analogs can be compared to estimate the strength of the analogy be-

tween them. The framework automatically constructs from a corpus of language

large graphs with words as vertices and conceptual connections as edges; these

graphs are dubbed word-graphs. Focusing on representations of verbal analogs

of word pairs, we present two main algorithms for the extraction of such repre-

sentations from a word-graph. One algorithm relies on path distance measures

and random walks over the word-graph. The other algorithm relies on spreading

activation and algebraic vector operations. Tested on a standardized set of verbal

analogy problems, one of the algorithms attains accuracy that is statistically not

significantly different from the state-of-the-art. Further, the experiments yield a

novel theoretical insight into the workings of verbal analogy and its representa-

tion.
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1 Preface

The computational study of language investigates the effective generation of

operational mathematical representations of linguistic information. By effective

generation, we mean that a feasible algorithm is specified that computes the

representation of the intended linguistic information, given as input data of

varying sort. By an operational representation, we mean one that may be feasibly

operated on or computed with. Types of linguistic information include, among

multiple others, the syntactic analysis of a sentence, the meaning of a word or

phrase within or without a discourse, or the content of a paragraph or document.

The aim of generating such representations is twofold. On the one hand, the

representations may be adopted to allow computing machines to process and

interpret the linguistic information, thus allowing them to perform to a certain

degree of accuracy a large variety of linguistic tasks. Examples range from using

representations of syntactic analyses of sentences in translating from one lan-

guage to another [8], to adopting representations of the meaning of phrases in

retrieving documents that are relevant to the phrase [29]. Future uses of suffi-

ciently accurate representations are potentially very extensive and may include,

for instance, general linguistic interactions between users and machines.

On the other hand, the representations and the algorithms that generate

them may yield findings and insight into the type of linguistic information it-

self. If the representations resulting from one algorithm capture, according to

the experimental setting, the intended type of linguistic information more ac-

curately than those resulting from another algorithm, then an appraisal of the

differences between the two algorithms may increase our understanding of the

particular type of linguistic information. More specifically, if an algorithm A is

more accurate than an algorithm A′, where the latter results from the former

by a small, but significant variation, then what is varied and the way it is varied

may be informative as to the linguistic phenomenon. 1

We here present a framework in which one generates representations for the

meaning of words and representations for the verbal analog of n-tuples of words.

A verbal analog of an n-tuple of words is an agglomerate of concepts and of

1 A notable example is [28].
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relations between the concepts, where each concept is given by the meaning

of one of the words in the n-tuple; a verbal analog of a single word is just its

meaning.2 One compares representations of meanings by measuring their degree

of synonymy. One compares representations of verbal analogs by measuring their

degree of analogical strength. The degree of analogical strength of two verbal

analogs given by single words is just the degree of synonymy of the two words.

One generates representations in the framework in two main steps. First, on

the basis of a corpus of language one constructs a word-graph, that is a graph

with words at its vertices and conceptual role connections as directed weighted

edges between the vertices (Sect. 4). Then, the information incorporated in cer-

tain regions of the word-graph is taken to correspond to the meaning or verbal

analog of certain words. Focusing on the verbal analog given by a pair of words,

we present two main algorithms R and S for extracting vectorial representa-

tions of the information within the selected regions (Sect. 5).3 The vectorial

representations yield in turn the desired representation of the verbal analog of a

pair.

Different theoretical insights on analogy induce the selection of different re-

gions for the representation of the verbal analog of the pair of words. There are

two types of regions, called respectively meaning regions and relation regions

(Sect. 5). If the verbal analog is taken to be a result of just the meanings of

the two words, as e.g. in the Model of Analogical Reasoning (MAR) [35], then

one selects the corresponding meaning regions and assigns the verbal analog

representation to be an algebraic operation of the vectorial representations of

the meaning regions. If the verbal analog is taken to be the result of the rela-

tions that hold between the two words, as suggested by the Structure Mapping

Theory (SMT ) [18] and implemented in Latent Relational Analogy (LRA) [36]

and Distributional Memory (DM) [2], then one selects the relation region deter-

mined by the two words and lets the verbal analog representation be the vectorial

representation of the relation region.

We investigate the accuracy of the framework and algorithms in a two-fold

way, according to the two aims of representations suggested above (Sect. 6).

The experimental setting is given by 374 verbal analogy problems from the SAT

2 We return to this in Sect. 2.
3 A third, hybrid algorithm T is also briefly presented, but no experimental evaluation

is reported for it.
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College Board exam [36]. On the one hand, we consider the overall accuracy of

the framework across the two algorithms at the task of solving the verbal analogy

problems. We see that the reported experiments yield an accuracy for the higher

performing S algorithm that is significantly better than the LexDM model (one

of the three sub-models ofDM , the other two beingDepDM and TypeDM), and

is not significantly different from DepDM , LRA or the model with state-of-the-

art accuracy TypeDM .4 Since the basic way of harvesting connection weights in

the present framework is rather close to that in LexDM and DepDM , this shows

that a combination of the graph-structure and semantic analysis (not present in

LexDM and DepDM) and of the S algorithm yields a significant improvement

at least with respect to the LexDM model. By contrast, LRA and TypeDM

have a specific way of harvesting such weights; the way of harvesting weights

that is adopted in TypeDM is also portable to the present framework (Sect. 7).

On the other hand, we consider the accuracies of the representations induced

by the different theoretical insights on analogy. We see that the resulting accura-

cies do not yield a significant difference between the representations induced by

MAR and those induced by SMT . Further, a novel theoretical insight emerges

that yields representations that are significantly better than those induced by

MAR. The novel theoretical insight coincides with the highest performing vari-

ant of the S algorithm. The insight incorporates both a crucial idea from MAR

and one from SMT .

We proceed as follows. We start off in Sect. 2 by considering linguistic con-

cepts such as meanings and verbal analogs with a view towards the framework.

We also consider the notions of synonymy and analogical strength and how these

are specified in the framework. In Sect. 3 we survey three foregoing models of

verbal analogy underscoring the insights that go with them. In Sect. 4 we present

the procedure for the construction of a word-graph. In Sect. 5 we present the

two main algorithms R and S, the former based on path distance functions and

random walks and the latter on spreading activation and algebraic operations.

In Sect. 6 we present the accuracy values for various specifications of the algo-

rithms and consider the significance of these values as to the theoretical insights

into analogy. Finally, in Sect. 7 we end by describing possible variations and

extensions of the framework.

4 All Fischer tests are reported in Sect. 6. The state-of-the-art is relative to the size

of the corpus.
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2 A Prelude of Words, Concepts and

Representations

We here introduce some of the more fundamental notions underlying the theo-

retical and computational aspects of the framework. We begin with the syntactic

constructs of the framework that will serve as labels to the computational ob-

jects. We continue by expounding on the informal, theoretical interpretation of

the syntactic constructs in terms of linguistic concepts; concepts that are word

meanings turn out to be special cases of concepts that are verbal analogs. We

further remark on some features of such concepts. Then, we move on to the gen-

eral computational representation of the constructs, thus relating central notions

such as vector representation and measure of vector similarity. We conclude by

extending the theoretical interpretation to the latter.

2.i Words and n-tuples of words

The syntactic constructs that will be assigned representations in the framework

are words and n-tuples of words. By word we will mean the main form of a lexeme

of the English language, also called a lemma; examples of words are ‘aardvark’,

‘bright’ or ‘blossom’. By an n-tuple of words we mean a finite sequence of words,

such as 〈 ‘aardvark’, ‘nightly’ 〉 or 〈 ‘bright’, ‘blossom’, ‘blue’ 〉. We identify a word

w with the 1-tuple 〈w〉. Further, the notion of word is to be distinguished from

that of word token, that is a possibly inflected instance of a corresponding word;

thus, ‘aardvarks’ and ‘blossomed’ are word tokens of respectively ‘aardvark’ and

‘blossom’. Let us briefly remark on these notions.

Any expression that appears in language and purports to convey linguistic

information counts as a word token. For instance, expressions such as “proba-

bleee” and “lol” that occur in written language are word tokens that one may

view as instances of the homograph words. Any indeterminateness is resolved

by automatic procedures that extract words corresponding to word tokens oc-

curring in a given corpus of language, as we see below. For now let us fix a

collection W of all the relevant words and in turn determine precisely the syn-

tactic constructs word and n-tuple of words. With this in mind, let us consider

the informal, theoretical interpretation of the constructs.
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2.ii Concepts of a linguistic ilk

The constructs stand for their conceptual counterparts. One naturally interprets

a word w to stand for its meaning, i.e. the information that an ordinary speaker

of the language deploys in concordance with the speaker’s deployment of the

word w.5 We write w to point to the meaning of w and to distinguish meaning

from the sequence of symbols w itself. Thus, ‘aardvark’ stands for aardvark and

‘blossom’ for blossom. We view the meaning of a word as a type of linguistic

concept. Let us consider next the interpretation of word n-tuples.

An n-tuple 〈w1, ..., wn〉 stands for the corresponding verbal analog. A general

analog is constituted of a commonly small collection of, possibly non-linguistic,

concepts and conceptual relations between such concepts.6 An example of a gen-

eral analog is a tree with its roots, trunk, branches, flowers, fruits and leaves

playing different roles in relation to each other. Another example is a set of par-

ticles with the relevant equations describing the relations between them. We call

a verbal analog one in which the constituent concepts are given by the meanings

of a specified collection of words. Thus, given two words in the form of a pair,

e.g. 〈 ‘aardvark’, ‘Africa’ 〉, one considers the verbal analog given by the mean-

ings of the two words, here aardvark and Africa, and the conceptual relations

occurring between them, e.g. being native to. In this way we take a word

n-tuple 〈w1, ..., wn〉 to stand for the corresponding verbal analog that we write

〈w1, ...,wn〉, where the conceptual relations occurring between the concepts are

not explicitly given. We note that one may view conceptual relations themselves

as just concepts, linguistic or otherwise, that happen to play a linking role in

the context of a particular analog. More generally, we view an analog itself as a

concept that in turn is an agglomerate of other concepts. Let us briefly comment

on the connection between meaning and verbal analog.

The notion of verbal analog encompasses that of meaning. In Sect. 2.i we

have identified the word w with the 1-tuple 〈w〉. Lifting the identity to that

of the respective interpretations, one considers the meaning w to be just the

verbal analog 〈w〉 as implied by 〈w〉 = w, where in 〈w〉 no specific conceptual

5 We do not attempt to give a definition of meaning ; the present explication or the

ordinary understanding of the notion are sufficient.
6 Concepts may be of a visual, behavioral or musical sort, among multiple others. The

use of the term analog here for a general collection of concepts foreshadows the study

of analogy below.
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relations are elicited. A verbal analog 〈w1, ...,wn〉 may thus be usefully viewed

as a more encompassing notion than meaning, i.e. as a generalization of meaning

to multiple words 〈w1, ..., wn〉; here the joint consideration of multiple meanings

elicits the consideration of conceptual relations between them.

A final remark concerns analogs in connection to analogy. Analogy is the

identification of correspondences between concepts and conceptual relations in

two or more analogs [19,18,7]. Verbal analogy is similarly explicated with respect

to verbal analogs. For example, one may find compelling the verbal analogy

between 〈aardvark, Africa〉 and 〈emu, Australia〉. We return to analogy

below. Let us consider next certain features of the connections between words

and concepts that turn out to be significant in the framework.

2.iii Facets of conceptual behavior

Words may be ambiguous as to the concept they stand for. When looking at

the map from words to meanings, it surely strikes one as one-to-many at best.7

Notorious are instances such as ‘bear’, that may signify either the woodland

creature of drably fur or the enduring act of support, among others. We frame

this as the following remark:

Ambiguity of words: A word w can stand for multiple distinct concepts

w1, ...,wn.

Can one say more about the relation of w with respect to a single one of its

meanings wi?

An additional remark concerns the variableness in the meanings of words.

Let us illustrate the remark first with a parable.8 Consider the Druids, a people,

the parable goes, who left the shores of Great Britain some three centuries ago

and settled on a desolate island in the South Sea. The Druids spoke a form of

antique English as they left and kept speaking it throughout their generations

of maritime isolation. On a sunny day not too long ago, some Druids started

noticing grey and white shiny objects floating in the air as modern settlers were

exploring the area. Having never heard of airplanes and having never envisaged

engine-driven machines, the lucky few Druids cried out, “Look at those large

birds flying over the tall trees”. Further observations followed and word spread

7 The map is also many-to-one as the same concept can be meant by differing words.
8 The parable is adapted from [40].

10



through the jungly villages. As the awe of the news placated over the following

days, ordinary Druids’ conversations would comprise utterances such as, “birds

have soft, brightly colored feathers and birds gain height by forcefully flapping

their feathered wings” and “fetch some eggs from these birds’ nests!”, as well

as, “some birds have drab but shiny bodies that seem to be made of steel” and

“I wouldn’t try lunching on one of those birds!”. What is interesting about the

parable is, to wit, the flawless and unnoticed expansion of the word ‘bird’ and

its meaning bird into unforeseen linguistic territory.

A more contemporary example would involve the word ‘phone’. A dictio-

nary entry for ‘phone’ explicates its meaning phone in terms of a device for

transmitting and receiving sounds.9 Nonetheless, we all too often hear nowa-

days, “I texted her with my phone”, “I used my phone to take a photograph

of the event”, “he played chess with his phone and it beat him”. The meaning

phone has clearly enlarged its patches of linguistic usage to cover devices whose

main functions go beyond sound manipulations and the expansion has appar-

ently gone unnoticed by dictionaries. A wealth of instances of expansions and

modifications of meaning may be found not just in the recent history of gadgets,

but also in the domains of colors, biology and engineering, among others.10 We

do not relate here further the quirky proclivities of meanings; we frame instead

a corresponding remark as follows:

Variableness of meanings: For a word w and one of the concepts wi that

w stands for, the concept wi may vary, i.e. expand, shrink or modify, its

patches of linguistic usage.

It is worthwhile to briefly compare the ambiguity of words with the variable-

ness of meanings. One picture is as follows: as some meaning wi of a word w

varies over time and crystalizes over, say, two recognizably distinct patches of

usage, wi is “split” into wj and wk and the latter two are identified as distinct

concepts that the word w ambiguously stands for. Thus, the Druids may even-

tually determine that the steel, shiny airplanes are usefully distinct in kind from

the jungle avians and stipulate the word ‘bird’ as ambiguous between the two

meanings; one may eventually do the same with the word ‘phone’. This ends our

9 The Oxford Dictionary entry for ‘telephone’ reads, “a system for transmitting voices

over a distance using wire or radio, by converting acoustic vibrations to electrical

signals.”
10 For a rich survey, see [40].
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considerations of the relations between words and meanings. We inquire finally

into the behavior of conceptual relations within verbal analogs.

Given an analog, the elicitation of a conceptual relation between two of the

constituent concepts depends on the surrounding background. Let us first illus-

trate with a rather simple pictorial analog.

A

B.1

C.1

B.2

C.2

Concentrating on the motif labelled A, we notice it portrays what is an analog

with the two patterns as main constituents. Each pattern in turn is made up of a

few simple shapes, a diamond and an umbrella-like figure. A number of different

relations may occur between the left and the right patterns in A and some of

these may not be immediately discerned. Compare this independent appraisal of

A with the task of choosing among the analogs B.1 and B.2 the one that most

closely matches A. As one finds B.1 to be the most closely matching analog,

the relation of inverting the arrow markings and, possibly, that of rotating

the inner figure by π
2 are elicited. On the other hand, against the background

of the task of choosing between C1 and C2, the relations rotating the inner

figure by π
2 and switching the outer figure with the inner one are now

elicited yielding a preference for C.1 as the most nearly matching analog. Thus,

different tasks will occasion different relations to become manifest between the

patterns.

The situation is that more remarkable for the more complex verbal analogs.

Thus, take for instance the analog 〈 ostrich, bird 〉. To resolve a choice for

12



the analog that most nearly matches 〈 ostrich, bird 〉 among the following two

analogs,

〈 panda, bear 〉
〈 car, vehicle 〉

one may need to discern the relation being an animal species of, a rather

immediate one. To choose the most matching analog between the two other

analogs,

〈 panda, bear 〉
〈 cheetah, cat 〉

one may need to elicit the relation being the fastest runner of. To further

select one of the following two analogs as the closest one,

〈 car, vehicle 〉
〈 skyscraper, building 〉

one may need to elicit the relation being the largest of. To do the same with

these other two analogs,

〈 panda, bear 〉
〈 giraffe, ruminant 〉

one may need to discern the relation having the largest neck-body ratio of,

and so on ad libitum. Hence, the presence of different backgrounds in the form

of selection tasks occasions the elicitation of respectively different conceptual

relations between the constituent concepts in the verbal analog.11 This is likewise

true for a wide array of different backgrounds and purposes [19,25,24]. Let us

formulate the remark thusly:

Background-dependence of relations: For a verbal analog 〈w1, ...,wn〉 and

two constituent concepts wi, wj, what conceptual relations are elicited be-

tween wi and wj depends on the background against which the analog

〈w1, ...,wn〉 is considered.

One may wonder about the connection between the elicitation of relations and

the previous two remarks. Words are as significant in verbal analogs as they are in

11 Additional examples of background-dependence can be found in [7].
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word meanings; thus, ambiguity carries over. As for variableness of meanings, one

finds the analogy between 〈 phone, photocamera 〉 and 〈 hammer, weapon

〉 supported rather well by a relation such as being sometimes used as; this

might not have been so just a few decades ago.

The three remarks encapsulate some of the more pervasive phenomena mark-

ing linguistic concepts and their behavior. Attempting a representation of such

concepts might strike one as alike to the effort of building a house over marshy

terrain. As lore tells us, the solution will involve plunging the pillars of repre-

sentation deep below the watery surface.

2.iv Representing constructs

The theoretical interpretation given so far of the syntactic constructs in terms

of certain linguistic concepts will serve as a guiding light to the endeavor that

is the primary concern of the present essay, i.e. to provide the constructs with

a mathematical representation. We here lay out a general form for such repre-

sentations that encompasses more than the particular constructions given later

in Sect. 4-5.12 The general form is specified in terms of a context function δ and

an agglomerate function Σ.

Fix L to be a corpus of language. We view L as a sequence of word tokens

〈ti〉i≤k that count as instances of particular words. Fix C to be a collection of

selected structures; these are commonly vectors or graphs. One first defines a

context function δ : 〈ti〉i≤k → C that assigns to each word token tj in 〈ti〉i≤k the

structure δ(tj); δ(tj) is thought of as capturing the verbal context of the token

tj in L. An example follows.

Let tj be the token “aardvarks’ ” and let the immediate sequence of tokens

around tj in 〈ti〉i≤k be “the biologists found the aardvarks’ tale thrilling”. Let

the chosen structures in C be vectors of m dimensions where m = |W| and let

the dimensions be tagged by words in W.13 Then, a simple example of a context

function δ - much simpler than the one we adopt in Sect. 4 - is one that assigns

to tj the vector δ(tj) with a value of 0 everywhere, except for a value of 1 in

the dimensions tagged with the corresponding words ‘biologist’, ‘find’, ‘tale’,

12 However, the representation does not purport to be completely general, not even

within the domain of all computational models of semantics.
13 The set of words W and, consequently, its size may depend on L itself.
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‘thrilling’; ‘aardvark’ itself is here given a value of 0.14 Fig. 1 gives a sample

δ(tj). Let us now look at a further notion.

biologist philosopher find aardvark cassowary tale vase thrilling

1 0 1 0 0 1 0 1

Fig. 1. A section of a sample vector δ(tj) for the token “aardvarks’ ”.

Further, one defines an agglomerate function Σ : C<ω → C′ that assigns to

a finite sequence of structures 〈δ(ti)〉i≤k a further structure Σ(〈δ(ti)〉i≤k) in C′,
where C′ might possibly contain structures of a different type from that of C. In

fact, we assume here that Σ(〈δ(ti)〉i≤k) is always a vector in a n-dimensional

real inner-product space H; thus, C′ = H. Let us extend the aforementioned

example.

Specify a simple diagonal map τ , where τ(i, j) = 1 if the word corresponding

to token ti is the same as the word corresponding to token tj ; and τ(i, j) = 0

otherwise. Then, for the token tj , an agglomerate function may be specified by,

Σ(〈δ(ti)〉i≤k) =

k∑
i

τ(i, j) ∗ δ(ti) . (1)

The specified Σ just sums the vectors of the verbal contexts of all tokens ti

that correspond to the same word w as tj does. Clearly for every token tl corre-

sponding to the particular word w, Σ will yield the same sum of vectors. Thus,

Σ is thought as yielding for each word a unique sum of vectors, that is itself

a vector in H. Fig. 2 illustrates such a Σ. Let us finally consider the form of

representations.

biologist philosopher find aardvark cassowary tale vase thrilling

aardvark 6 2 2 0 3 3 0 1

Fig. 2. A section of a sample vector Σ(〈δ(ti)〉i≤k) for the word ‘aardvark’ obtained

from vectors δ(tj) for tokens of ‘aardvark’.

14 Notice that here a procedure as mentioned in Sect. 2.i is assumed that extracts words

from word tokens; some of the tokens are disregarded (e.g. “the”).
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Let W∗ be the set of syntactic constructs, i.e. n-tuples of words from W
for n ≥ 1. Given some n, and some context and agglomerate functions δn and

Σn possibly dependent on n, for some n-tuple 〈w1, ..., wn〉 its representation

〈w1, ..., wn〉 is defined by the following general form:

〈w1, ..., wn〉 = Σn(〈δn(ti)〉i≤k) . (2)

That is, the representation 〈w1, ..., wn〉 of the construct will generally be

the result of an agglomerate function Σn applied to verbal contexts extracted by

δn from the word tokens ti that form a corpus of language L. For instance, the

functions δ and Σ mentioned in the above example yield a simple representation

for the single word construct 〈 ‘aardvark’ 〉 (Fig. 2).

A consequence of Eq. 2 is that the representation is a function of the ver-

bal contexts in which the word tokens occur. In terms of the interpretation of

constructs as concepts, the representation of the corresponding concept, be it a

word meaning or a verbal analog, is a function of the verbal contexts in which the

concept occurs in the form of a corresponding word token. In short, conceptual

representations are borne out of verbal contexts.

It is also worth attempting an initial appraisal of the general consequences of

the three remarks of Sect. 2.iii for representations of the type of Eq. 2. In regard

to the ambiguity of words, if one wishes to represent one particular meaning wi of

a word w, it will not likely do to simply take into consideration (in the procedure

Σ) all the verbal contexts δ(ti) where ti counts as a token of w; one would need

to select only those word tokens and corresponding verbal contexts that involve

an occurrence and use of the concept wi.15 In the absence of such a procedure,

the resulting representation 〈w〉 will likely superimpose, in accordance with the

operations specified by Σ, contextual information from any of the distinct mean-

ings of w; the result is likely to be an average, somewhat noisy, but nevertheless

still rather effective, representation of the most frequently occurring meanings

of w. Similar remarks also apply in the case of the variableness of meanings, as

ambiguity and variableness have similar effects within verbal contexts.

In regard to the background-dependence of conceptual relations in verbal

analogs, in representing the relations between the concepts that two words stand

for, one would similarly need to select only those word tokens and corresponding

15 This is not straightforward. Search-based techniques such as those adopted in Sect.

6 may alleviate the effects of ambiguity somewhat.
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contexts that are relevant to the background of the verbal analog under consid-

eration. In the absence of such a selection, we are likely to likewise obtain an

average and somewhat noisy representation of the most immediate conceptual

relations within the verbal analog. Besides representations themselves, we also

need an apparatus for comparing the representations with each other. To this

we turn next.

2.v Degrees of synonymy and of analogical strength

A degree of similarity between vectors in H may be computed by a variety

of functions. Let us mention three such functions [39]. Consider two vectors

p, q ∈ H. To begin with, we may consider the Euclidean distance between p and

q, which is equivalent to the L2-norm ||q − p||2 computed by,

||q − p||2 =

√√√√ n∑
i

(qi − pi)2 . (3)

To turn the distance between p and q into a degree of similarity, one may take

for instance the inverse value 1
||q−p||2 .

A second possibility is to use the L1-norm instead of the L2-norm as a

measure of distance, which is simply given by

||q − p||1 =

n∑
i

|qi − pi| . (4)

An inversion will turn this into a similarity measure as well.

Finally, a commonly used measure that directly yields a degree of similarity

is the value of the cosine of the angle θ between p and q. If · is the inner product

operation, then the cosine measure σ(p, q) is computed by,

σ(p, q) =
p · q

||p||2 ||q||2
. (5)

All such functions intuitively satisfy that the more p and q have in “common”,

the higher their degree of similarity. We use the L1-norm and cosine measures

in Sect. 6.

It is interesting to interpret the degree of similarity between two vectors in

H when the latter are in fact representations of syntactic constructs. A degree

of similarity between vectors 〈w1〉 and 〈w2〉 that represent single words and
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that are interpreted as capturing the meanings of such words corresponds to the

degree of synonymy between the two words w1 and w2. In other words, if 〈w1〉
and 〈w2〉 do capture to a significant extent the meanings of respectively w1 and

w2, then the more similar the vectors, the more synonymous the words.

A respective interpretation holds for pairs 〈w1, w2〉 and 〈w3, w4〉. If the

vectors 〈w1, w2〉 and 〈w3, w4〉 representing the pairs 〈w1, w2〉 and 〈w3, w4〉 do

capture reliably the conceptual content of the constituents and the conceptual

relations between them, then the more similar the representing vectors, the more

analogous the analog of 〈w1, w2〉 is to that of 〈w3, w4〉. In other words, a degree

of similarity between such representations corresponds to a degree of analogical

strength between the constructs. An equivalent statement holds for arbitrary n-

tuples. Thus, we notice that, on the interpretational side, just as a verbal analog

encompasses the notion of word meaning, so does analogical strength encompass

the notion of synonymy.

∗ ∗ ∗

We have specified the syntactic constructs that serve as labels to the repre-

sentational objects of the framework and we have detailed an interpretation of

the constructs that views word meanings as a special case of verbal analogs and,

respectively, views synonymy as a special case of analogical strength. On the

side of representations, we have presented a somewhat more general Σ-δ-form

for vectorial representations corresponding to the constructs and have specified

similarity measures for comparing vectorial representations. After an interluding

Sect. 3 in which we describe an experimental setting to test our framework, we

return in Sect. 4 to detail the computational aspects of the framework yielding

a particular δ function; in Sect. 5 we then detail the algorithms giving rise to

particular Σ functions and to the desired representations.
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3 Experimental Layout and Foregoing Models

The primary aim of the specification and algorithms in Sect. 4-5 and of the

experimental evaluations in Sect. 6 concerns representations of pairs of words

〈w1, w2〉. We here describe the setting of the experimental evaluation for such

representations. Further, we survey first a few, previously proposed, models that

have a similar aim, but a somewhat different specification and, secondly, a few

models that have a related specification, but a somewhat distinct aim.

3.i A collection of analogy problems

Representations of the form 〈w1, w2〉 are evaluated on their efficacy at solving

multiple-choice verbal analogy problems. The collection of analogy problems has

been compiled from a selection of 374 problems from past College Board SAT

entrance examinations; the collection is produced and maintained by P. Turney

[36,38]. 16 A verbal analogy problem consists of a source (S) verbal analog and

five possible target (T ) verbal analogs; the problem requires one to select the

target analog that creates the strongest analogy with the source analog. A typical

problem thus has the following form:

S : 〈 ‘lull’, ‘trust’ 〉
T1 : 〈 ‘balk’, ‘fortitude’ 〉
T2 : 〈 ‘betray’, ‘loyalty’ 〉
T3 : 〈 ‘cajole’, ‘compliance’ 〉
T4 : 〈 ‘hinder’, ‘destination’ 〉
T5 : 〈 ‘soothe’, ‘passion’ 〉

Here the strongest analogy is between the verbal analog of S and that of T3.

Another example is as follows:

16 The College Board SAT exams do not contain word analogy questions since 2005;

but word analogy questions remain an important component of other examinations,

such as the Graduate Record Examination GRE.



S : 〈 ‘ostrich’, ‘bird’ 〉
T1 : 〈 ‘lion’, ‘cat’ 〉
T2 : 〈 ‘goose’, ‘flock’ 〉
T3 : 〈 ‘ewe’, ‘sheep’ 〉
T4 : 〈 ‘cub’, ‘bear’ 〉
T5 : 〈 ‘primate’, ‘monkey’ 〉

Here the strongest analogy is with the verbal analog T1. As suggested by the

examples, even though most of the words that constitute the word pairs in the

collection of analogy problems are indeed nouns, words that are verbs, adjectives

and adverbs appear rather frequently as well. It is worthwhile mentioning the

estimate of human performance on verbal analogy problems. A high-school stu-

dent about to enter university taking the SAT examination on average obtains

an accuracy of about 57% on verbal analogy problems [36]; a baseline given by

random guessing yields an accuracy of 20%. Keeping in mind the verbal analogy

problems making up the evaluative setting, let us now describe three previously

proposed models for such problems.

3.ii Insights from foregoing models of verbal analogy

We survey the early Rumelhart and Abrahamson’s psychological Model for Ana-

logical Reasoning (MAR) [35], Turney’s Latent Relational Analysis (LRA) [36]

and the more recent Baroni and Lenci’s Distributional Memory (DM) [2] that

is related to LRA. A distinction arises between a more meaning-centered and a

more relation-centered view of the conceptual relations elicited between the con-

cepts w1 and w2 in a verbal analog 〈w1,w2〉. We see that MAR incorporates

the former, whereas LRA and DM incorporate the latter.

Model for Analogical Reasoning Consider a source word pair 〈w1, w2〉 and

a target word pair 〈w3, w4〉. Let w1, w2, w3, w4 ∈ H be representations of the

respective meanings of the corresponding words as vectors in a Hilbert space.

MAR defines an ideal vector

i = w3 + (w2 −w1) (6)

such that the strength of the verbal analogy is a monotone decreasing function

of the Euclidean distance between i and w4 in H. More specifically, let f be
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such a monotone decreasing function. Then, the analogical strength is given by,

f(||w4− i||2) = f(||w4− (w3 +(w2−w1))||2) = f(||(w4−w3)− (w2−w1)||2) .

(7)

That is, the analogical strength is given by a monotone decreasing function of the

Euclidean distance between the vectors (w2−w1) and (w4−w3). Analogously,

let σ be any similarity measure of those mentioned in Sect. 2.v. Then, extending

the insight of MAR to these measures, the analogical strength is given by,

σ(w2 −w1,w4 −w3) . (8)

By taking (w2−w1) as de facto a representation 〈w1, w2〉 of the verbal analog,

and likewise for (w4−w3), after constructing the meaning vectorsw1, w2, w3, w4

we evaluate the efficacy of these particular representations in Sect. 6.

Notice the significant part that meaning plays in representing 〈w1, w2〉 =

(w2−w1). The conceptual relations of the verbal analog 〈w1,w2〉 are implicitly

represented in terms of a simple algebraic function (−) of the meanings of the

constituents. This meaning-centered view contrasts with the explicit represen-

tation of the conceptual relations that is harvested in models such as LRA and

DM. Let us examine the latter in turn.

Latent Relational Analysis The Structure Mapping Theory of analogy [18]

underscores, among others, the centrality of the role that conceptual relations

play in the formation of an analogy. LRA makes this role explicit by searching

in a corpus of language for short phrases that occur between two words from a

word pair. Given a collection of word pairs C and a corpus of language L, LRA’s

core algorithms involves the following steps:

1. For each word pair 〈w1, w2〉 ∈ C, form alternate word pairs by combining

one of the words w1, w2 with a synonym of the other word; the synonyms

are obtained from a thesaurus.

2. For the original pair 〈w1, w2〉 and each alternate pair, search in L for short

phrases of less than k = 5 words such that the first word in the phrase is

one of w1, w2 and the second word is the other.

3. Sort the alternate word pairs by the number of short phrases found for each

of them; keep the topmost three alternate word pairs with most phrases, in

addition to the original word pair; add alternate word pairs to C.
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4. For each phrase occurring between the kept word pairs, exclude the first and

last word, and from the remaining at most k − 2 words, build 2k−2 patterns

by replacing every subset of the k−2 words with respective wildcards. Filter

the top l = 4000 most occurring patterns between the word pairs.

5. Build a matrix M where rows are indexed with word pairs from C and

columns are indexed by patterns. Apply log and entropy transformations

and smooth the matrix with singular value decomposition [36].

For each word pair 〈w1, w2〉 ∈ C, the result is a vector r encapsulating the

weighted counts of explicit phrase patterns from L; these phrase patterns are

seen as explicit instantiations of the various conceptual relations between w1 and

w2. We thus see that the representation r given to the verbal analog 〈w1,w2〉 by

LRA is a relation-centered one that is not specified in terms of representations

w1, w2 for meanings.

It is notable that while representations alike to those in MAR have not, to

our knowledge, so far been tested on the aforementioned collection of analogy

problems, LRA has been tested and achieves state-of-the-art performance on the

problems. With a corpus of language L consisting of about 5 ∗ 1010 word tokens,

LRA achieved an accuracy of 56%, not significantly different from average human

performance [36]. With a corpus L consisting of about 2.83 ∗ 109 word tokens,

an order of magnitude smaller, LRA achieved an accuracy of 37.8% [2]. Let us

finally consider the DM model.

Distributional Memory The DM model extracts triples 〈w1, l, w2〉, like

〈bird , as, ostrich〉, from a dependency parsed corpus L, where l is the type of the

link connecting w1 to w2.17 Each triple is given a weight t that depends, among

others, on the frequency of the triple in L. The triples and their weights give

rise to the following two matrices:18

– word by link-word matrix M1: a word w1 is given a representation w1 where

each value corresponds to the weight of a triple 〈w1, l, wk〉, for some link l

and word wk;

17 The extraction of such triples is not unique to DM and is commonly adopted in

structured vector space models [11].
18 DM actually includes two additional matrices. All four matrices are naturally derived

from a labelled third order tensor [2].
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– word-word by link matrix M2: a pair of words 〈w1, w2〉 is given a repre-

sentation 〈w1, w2〉 where each value corresponds to the weight of a triple

〈w1, l, w2〉, for some link l.

Note that M1 aims at capturing the meaning of w1 whereas M2 aims at the

relations between w1 and w2.19

There are three kinds of matrices M1 and M2 in DM depending on the kind

of link types considered. In short, the DepDM model considers semantic types

of links obtained from dependency paths, such as sb intr (subject of an intransi-

tive verb), obj (direct object), and prepositions themselves such as with and as.

Examples of triples in DepDM are 〈book , obj, read〉 and 〈bird , as, ostrich〉. The

LexDM model includes the types of links in DepDM and adds many additional

types in such a way that almost any verb or adjective, tagged with suffixes encod-

ing additional information, constitutes a type. An example is 〈soldier , use+n-the+n-a, gun〉.
Finally, TypeDM uses the same types of links as LexDM , but it drops the

suffixes, and instead of counting the frequency of a triple in L, it counts the

number of different suffixes that a link type has. Thus, if LexDM also included

the triple 〈soldier , use+n-the+n-the-j , gun〉, then TypeDM would include the

triple 〈soldier , use, gun〉 counting the two former triples as two occurrences of

the latter, independently of the frequencies of the two former triples. Each of

DepDM , LexDM and TypeDM gives rise to a pair of matrices M1 and M2.

DepDM , LexDM and TypeDM using the corresponding matricesM2 achieve

respectively an accuracy of 29.3%, 31.4% and 42.4% on the 374 analogy ques-

tions, given the same smaller corpus of 2.83 ∗ 109 tokens [2]. TypeDM achieves

the highest accuracy to date on a corpus of that size. As suggested above, these

M2 matrices and respective models incorporate a relation-centered view of the

relations in verbal analogs.

This concludes the description of DM and of some of the more relevant

foregoing models of verbal analogy. The framework described in Sect. 4 extracts

links and counts frequencies in a way that is similar to the extraction of links in

DepDM and LexDM (though not similar to that in TypeDM or LRA); but the

tools used in the construction of the framework and the resulting graph structure

are different. Let us thus mention models with a different purpose than ours, but

which adopt similar tools and resulting graph structure.

19 Similarly, M1 is said to capture the attributional similarity of words, whereas M2 is

said to capture the relational similarity between pairs of words [37,2].
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3.iii Models of a related specification

The framework that we present in Sect. 4-5 consists of a core graph structure,

a word-graph, and of algorithms applied to word-graphs. The construction of a

word-graph is similar to the construction of the semantic network underlying

the ASKNet system [23] and of that in [42]. The same tools C&C and Boxer

are adopted in all cases; the construction of a word-graph differs somewhat

in the processing of the Boxer output (Sect. 4). The algorithms presented in

Sect. 5 include, among others, the use of spreading activation over word-graphs;

spreading activation over semantic networks is also used in [23,22,42].

∗ ∗ ∗

We have described the experimental setting under consideration involving

374 verbal analogy problems. We have seen two primary ways of understanding

representations of verbal analogs, a meaning-centered one and a relation-centered

one. Keeping these views and respective models in mind, let us proceed to specify

the construction of the graph structure underlying the framework.
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4 Word-Graphs and their Assemblage

A word-graph is a graph with words at its vertices and conceptual role connec-

tions as weighted directed edges between the vertices. The connections result

from the semantic analyses of sentences containing the words. We here set out

to describe the construction of a word-graph pointing out the free parameters on

which the construction depends.20 One of the parameters, the merging function

µ, plays a crucial role as it determines whether or not certain types of words are

to be merged into a single vertex; this affects the extent to which vertices have

paths connecting one another.

Preliminaries to the construction The first major parameter P1 that affects

precisely the set of vertices V and the set of edges E in a word-graph G = 〈V, E〉
is the corpus of language L itself from which G is constructed. That is, the first

parameter is the following:

P1 :: corpus of language L

Given some L, we assume not only a procedure for separating L into distinct word

tokens ti, thus viewing L as a sequence of tokens 〈ti〉i≤k , but also a procedure

for separating L into a sequence of sentences 〈si〉i≤l ; each sentence si in turn

corresponds to a small sequence of word tokens.

The construction of G goes through three stages. First, each sentence s is

converted into a discourse representation structure Bs that encodes a semantic

analysis of s [26]. Secondly, Bs is converted into a context graph Gs that yields

a graph representation of the semantic analysis. Finally, a merging procedure

incorporates Gs into G. The construction of G also defines a context function δ

assigning a verbal context to each word token tj in s for every sentence s in L.

Let us thus fix a sentence s, say,

“Large birds such as cassowary, emu, and ostrich are displayed in separate com-

pounds.”

and proceed to describe the three stages of its conversion.

20 Advance to Fig. 5 for a picture of the word-graph that we are going to construct.

25



4.i From sentence to logical structure

A discourse representation structure (drs) Bs of a sentence s is a pair Bs =

〈Rs, Cs〉, where Rs is a set of discourse referents and Cs is a set of drs-conditions

[26]. Discourse referents are thought of as standing for the objects that s or

the discourse preceding and surrounding s refer to. drs-conditions encode the

information that s or the surrounding discourse convey about such objects. We

obtain Bs by applying the following two processes to s:

– the C&C tools robustly and efficiently tag and parse the sentence s using

categorial combinatory grammar CCG ;

– the Boxer analyzer interprets the CCG parse tree and outputs a semantic

analysis in the form of a drs [4].21

We here detail the syntax of Boxer ’s output drss; the latter are defined similarly

to the standard first-order drss [26].

A drs D is a pair D = 〈R,C〉, where R is a set of discourse referents and

C is a set of drs-conditions. Discourse referents R are simply given by a set

of variables x1, ...xn. drs-conditions C are in turn inductively defined by the

following clauses:

a. if Pπ(·) is a one-place predicate symbol and if x ∈ R, then Pπ(x) ∈ C, where

π ∈ {n, v, a, d, f} indicates a part-of-speech type;

b. if Nπ(·) is a named-entity symbol and if x ∈ R, then Nπ(x) ∈ C, for π ∈
{n, v, a, d};

c. ifRπ(·, ·) is a two-place relation symbol and if x1, x2 ∈ R, thenRπ(x1, x2) ∈ C,

for π ∈ {i, f};
d. if x1, x2 ∈ R, then (x1 = x2) ∈ C;

e. if D is a drs and x ∈ R, then (x : D) ∈ C; (x : D) stands for a propositional

attitude;

f. if D1, D2 are drss, then (¬D1), (D1 ∨D2), (D1 → D2), and possibly others,

are in C.

Finally, one defines a merge operation ] on pairs of drss D1 = 〈R1, C1〉, D2 =

〈R2, C2〉 by,

D1 ]D2 = 〈R1 ∪R2, C1 ∪ C2〉
21 Other possible formats include first-order logic formulas and segmented drs. For a

full description, see http://svn.ask.it.usyd.edu.au/trac/candc/wiki/DRSs
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yielding a further drs.22

A few explanatory comments are in place. The symbols that π in (a − c)

ranges over indicate the following part-of-speech (pos) types:

n : noun

v : verb

a : adjective

d : adverb

i : preposition

f : fixed

Fixed predicate symbols include symbols such as thing, proposition, neuter along

with multiple others and are designated by the set Pf . Likewise, fixed relation

symbols include agent, patient, rel, nn among others and are designated by

the set Rf . drs-conditions of the form defined in clause (f) are designated by

c(D1, D2).

Let us illustrate the outcome of the C&C tools and the Boxer analyzer

applied to the sentence s. Boxer ’s output for s in easy-to-read box format is

depicted in Fig. 3. The resulting drs Bs involves the discourse referents x0, ..., x7.

Most of the word tokens in s are turned into drs-conditions where the symbols

are given by the corresponding words. Thus, Bs includes non-fixed predicate

symbols such as ‘ostrichn’ and ‘displayv’, and non-fixed relation symbols such as

‘asi’ and ‘ini’. Other word tokens like “such”, “and”, and “are” are analyzed away

and do not appear in Bs. Further, Bs contains the fixed predicate symbol event

that is introduced by the main verb ‘display’ and the fixed relation patient(x6, x0)

indicating that the referent x0 is the direct object of the event x6. Bs also contains

additional drss as its own conditions. Let us then continue to the next stage

and see how Bs is transformed into a context graph Gs.

22 There are minor technical differences with Boxer’s full output syntax, but any ad-

ditional information is derived from it. The differences are: (i) we consider four

part-of-speech types for predicates, and consider the part-of-speech type of named-

entities; (ii) we do not consider presently time-expression and cardinality conditions;

(iii) any additional (complex) conditions are included in clause f , but are not treated

specially; (iv) drss with alpha-types are always resolved and thus do not occur in

the output.
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_________________________

| x0 x1 x2 x3 x4 x5 x6 x7 |

|_________________________|

| large(x0) |

| bird(x0) |

| cassowary(x1) |

| emu(x2) |

| ostrich(x4) |

| display(x6) |

| separate(x7) |

| compound(x7) |

| event(x6) |

| as(x0,x1) |

| patient(x6,x0) |

| in(x6,x7) |

| _________ |

| | | |

| x3:|_________| |

| | x1 = x2 | |

| |_________| |

| _________ |

| | | |

| x5:|_________| |

| | x1 = x4 | |

| |_________| |

|_________________________|

Fig. 3. Boxer ’s analysis Bs of sentence s.

4.ii From logical structure to context graph

The context graph Gs = 〈Vs, Es〉 for the sentence s incorporates the linguistic

information derived from the verbal contexts δ(ti) of the word tokens ti in s

in terms of semantic or conceptual role connections between the corresponding

words; the connections are dictated by the semantic analysis Bs. The algorithm

for the construction of Gs thus concludes the defining procedure of the context

function δ; the latter procedure is made explicit below.

Let us begin by explicating the algorithm for the constuction of Gs from the

drs B(s) = 〈Rs, Cs〉 obtained for the sentence s. The algorithm has 5 steps.

1. Processing drs-conditions We process and separate the drs-conditions

in B(s) into a set 1s of unary conditions and a set 2s of binary conditions;
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the recursive procedure Q(D) for doing so is specified over an arbitrary drs

D = 〈R,C〉 by the following clauses:

a. for a predicate Pπ(x) ∈ C, 〈P, π, x〉 ∈ 1s;

b. for a named-entity Nπ(x) ∈ C, 〈N, π, x〉 ∈ 1s;

c. for a relation Rπ(x1, x2) ∈ C, 〈R, π, x1, x2〉 ∈ 2s;

d. for an equality (x1 = x2) ∈ C, 〈rel, f, x1, x2〉 ∈ 2s and 〈rel, f, x2, x1〉 ∈ 2s;

e. for a propositional attitude (x : D1) ∈ C, 〈rel, f, x, y〉 ∈ 2s, where y is the

discourse referent of Pπ(y) := main(D1);

f. for a drs-condition c(D1, D2), apply Q(D1) and Q(D2);

g. for a merged drs D1 ]D2, apply Q(D1) and Q(D2).

We must define the selection function main from clause (e). For a non-empty

set of predicates or named-entities A, order the elements of A by their pos-

types according to ranking v < n < a < d < f; then let priority(A) be

the first element of the resulting ordering.23 Then, for a drs D′ = 〈R′, C ′〉,
we simply have main(D′) = priority({ Pπ(x) | Pπ(x) a predicate or named-

entity in C ′ }). Thus, clause (e) in Q heuristically chooses one main predicate

or named-entity from the drs D′ giving precedence first to verbs, then to

nouns, and so on through the other pos-types; then it relates the discourse

referent x of the propositional attitude to the discourse referent of the cho-

sen predicate. In sum, the first step of the algorithm involves separating all

the drs-conditions into unary conditions that refer to just one discourse

referent and binary conditions that refer to two discourse referents; by way

of the fixed relation symbol rel, one treats equalities as a pair of binary con-

ditions and propositional attitudes as one binary condition. The operations

in drs-conditions with form c(D1, D2) and in merged drss are not directly

processed, only the drss D1, D2 themselves are.

2. Mapping referents to priority unary conditions The next step involves

computing a map u that maps each referent x ∈ Rs to a unary condition in

1s that is given by,

u(x) := priority′({〈U, π, y〉 ∈ 1s | y = x}).
23 We do not impose special conditions on the ordering of predicates with same pos-type

π.
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Here, priority′(A) is similar to priority, except that it now orders a set A

of unary conditions and it orders them according to the slightly different

pos-type ranking n < v < a < d < f, that gives precedence first to nouns. If

the set {〈U, π, y〉 ∈ 1s | y = x} is empty, we let u(x) := 〈thing, f, x〉 for the

fixed predicate symbol thing, here used as a temporary place-holder.

3. Incorporating unary conditions into the context graph The first

building blocks of Gs are given by priority unary conditions. That is, for

each referent x ∈ Rs, we consider first the priority unary condition u(x) =

〈U, π, x〉 and create a vertex v = 〈U, π〉 keeping only the symbol U and its

pos-type π; v is added to the vertices Vs. Further, for every other unary con-

dition in {〈U ′, π′, y〉 ∈ 1s | y = x}, we add to Vs the corresponding vertex

v′ = 〈U ′, π′〉 and connect v to v′ by adding a directed edge 〈v, v′, e〉 to Es
with the default real-valued weight e (we let e = 1). For a referent x ∈ Rs,
we designate by v(x) the vertex (here v) corresponding to u(x).

4. Incorporating binary conditions For each binary condition 〈B, π, x1, x2〉 ∈
2s with π 6= f, we form the vertex v′ = 〈B, π〉 and consider the vertices v(x1)

and v(x2); then to Es we add 〈v(x1), v′, e〉 and 〈v′, v(x2), e〉. The remaining

fixed binary conditions 〈B, π, x1, x2〉 ∈ 2s where π = f are treated as follows:

– for 〈agent, f, x1, x2〉 ∈ 2s, one adds 〈v(x2), v(x1), e〉 to Es;
– for 〈nn, f, x1, x2〉 ∈ 2s, one adds 〈v(x1), v(x2), e〉 and 〈v(x2), v(x1), e)〉 to

Es;
– for any other fixed binary condition 〈B, f, x1, x2〉 ∈ 2s, including 〈rel, f, x1, x2〉,

one adds 〈v(x1), v(x2), e)〉 to Es.

Note that, if on the one hand, non-fixed binary conditions correspond to ver-

tices bridging between the vertices of the referents, on the other, one does

not add any vertices for fixed binary conditions. One interprets them instead

by adding possibly new edges between existing vertices.

5. Circumventing fixed unary conditions At this stage, vertices 〈V, π〉 ∈
Vs that have π = f are those corresponding to fixed unary conditions. Let

f = 〈V, f〉 be any such vertex. For any other distinct vertices v, v′ such that

〈v, f, e〉 and 〈f, v′, e〉 are edges in Es, we incorporate into Es the transitive

closure 〈v, v′, e〉 of the two edges. After the transitive edges have been added
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for every such pair of vertices v, v′ and for every vertex f = 〈V, f〉, we finally

drop from Gs the vertices with form f = 〈V, f〉 and all the edges that begin

or end at such vertices. This ensures that the linguistic information encoded

by fixed unary conditions is retained in the form of possibly novel edges

between the relevant vertices, while at the same time the resulting vertices

in Gs have symbols that are words extracted from tokens in s. This concludes

the generation of Gs.

If we use the algorithm to generate the context graph Gs for our sentence

s from the drs Bs, we obtain the graph depicted in Fig. 3. Notice for instance

how the equalities (x1 = x2) and (x1 = x4) in Bs have been resolved to bi-

directed arrows from ‘cassowary’ to ‘ostrich’ and to ‘emu’. Notice also how the

fixed binary condition with symbol patient has given rise to an arrow between

‘display’ and its direct object ‘bird’. With Gs having been constructed, let us

look at the resulting context function δ.

Fig. 4. Context graph Gs for sentence s. Vertices of pos-type n are rectangles, those of

pos-type v are rhombuses, those of pos-type a are ellipses, and those of pos-type i are

shaded rhombuses. Vertices of pos-type d do not occur in Gs.
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The context function is defined on word tokens ti. For a word token ti, we

designate by v∗(ti) the vertex 〈w, π〉 in Gs where the symbol w is the word

extracted from ti during the construction and π is the extracted pos-type. We

then define δ(ti) as a vector whose values are given by:24

δ(ti)j :=

{
e′ if 〈v∗(ti), v∗(tj), e′〉 ∈ Es
0 otherwise

(9)

The present δ function might be undefined for a word token ti if v∗(ti) is unde-

fined in turn, i.e. if the token ti does not ultimately correspond to a word and a

vertex in Gs. The central aspect of δ(ti) is that the resulting vector encoding ti’s

verbal context is non-zero only on those dimensions j for which there exists an

edge from v∗(ti) into v∗(tj). Thus, δ(“birds”) is non-zero on dimensions corre-

sponding to the vertices 〈‘as′, i〉 and 〈‘large′, a〉 that have an outgoing edge from

〈‘bird′, n〉 connected to them; in other words, the verbal context of “birds” and

of the resulting word ‘bird’ is captured in terms of conceptual role connections

such as being the argument of the adjective or attribute ‘large’, and being the

first argument of the preposition or relation ‘as’. Similarly, δ(“are displayed”)

is non-zero on dimensions corresponding to 〈‘in’, i〉 and 〈‘bird’, n〉, its context

being captured by conceptual role connections to these words. Thus, the present

context function δ is very different from the ‘bag-of-surrounding-tokens’ context

function illustrated in Sect. 2.iv; the present δ defines the verbal context of a

token in terms of conceptual role connections obtained from the syntactic and

semantic processing of the sentence s in which the token occurs. Let us lastly

examine how Gs is merged into G.

4.iii Merging context graphs into a word-graph

The operation of merging a context graph Gs into a word-graph G is straightfor-

ward. For every edge 〈v, v′, e〉 ∈ Es, where e is the weight of the edge, one selects

a vertex xv ∈ V, another vertex xv′ ∈ V and, if no edge from xv to xv′ exists,

one adds an edge 〈xv, xv′ , e〉 to E ; otherwise, if such an edge g ∈ E exists, one

just augments the weight of g by the value e. What remains to be explained is

how xv and xv′ are actually selected.

24 This definition is the not only possible one; one may define the context function also

in terms of ingoing edges at the expense of double-counting edges; ingoing edges play

a significant role below.
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We parametrize the selection of vertices xv and xv′ that are made to corre-

spond to v, v′ on a merging function µ. µ specifies whether identical vertices of a

given pos-type π ∈ {n, v, a, d, i} should be all merged together in WG or whether

they should all be kept distinct. Thus, if v is a vertex with π = n, and vertices

of pos-type n are to be merged according to µ, then one simply finds the vertex

xv = v in Gs, if such a vertex xv already exists; if v is not to be merged or if

it does not exist in Gs, a new vertex xv is created in Gs. We frame the function

parameter as follows:

P2 :: merging function µ

Finally, an additional parameter indicates the maximum number of vertices

in G:

P3 :: maximum size of G

The parameter may be set to unlimited, in which case the construction of G
proceeds unaffected as described. If, on the other hand, G reaches its maximum

size, the construction procedure is altered as follows. For every edge 〈v, v′, e〉 ∈
Es, suppose that at least one of v and v′ is to be merged according to µ; if not, do

not consider the edge. Let v be the merged vertex. Then, if there already is an

edge f in G connecting v to a vertex v′′ in G that has the same word and pos-type

as v′, add the edge weight e to the weight of f ; if there are multiple such v′, choose

one randomly. In all other cases, do not consider the edge 〈v, v′, e〉 ∈ Es. This

strategy ensures that the number of vertices in G does not grow, while additional

edge weights coming from unprocessed context graphs may be incorporated into

G as long as the edges are already contained in G.

An example of a word-graph built from seven sentences containing the tokens

“ostrich” and “bird” with a merging function µ that merges all vertices except

those of pos-type i is given in Fig. 5. This concludes the description of the

assemblage of word-graph G.

∗ ∗ ∗

We have seen how each sentence from a corpus is converted first into a drs, then

into a context graph and then merged into a word-graph. We have seen how this

defines a corresponding context function δ. With the word-graph having been

constructed, let us now turn to examine algorithms.

33



Fig. 5. A word-graph built from seven sentences. The pos-type of vertices are indicated

as in Fig. 4. In addition, shaded ellipses indicate vertices with pos-type d.
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5 Regions in Word-Graphs and their

Algorithms

Having constructed a word-graph, we now aim to extract the linguistic infor-

mation captured by certain regions of the word-graph. A region is simply a

subgraph of the word-graph. We consider meaning regions that are viewed as

capturing the information pertaining to the meaning of a word. We further con-

sider relation regions that are viewed as capturing the information underlying

the conceptual relations between a pair of words w1 and w2. In Sect. 5.i, we see

that these regions are given by considering not just single links or connections

as in models such as DM , but by also considering both sequences of multiple

links or connections and the graph structure itself underlying the connections.

The rest of Sect. 5 is devoted to the algorithms for extracting the information

from such regions in the word-graph. We present two family of algorithms R and

S, as well as a hybrid family T . Each of R, S and T can be used to extract both

meaning and relation regions from a word-graph. The R family is based on path

distances and random walks. The S family is based on spreading activation and

algebraic operations on vectors. The hybrid T family uses path distances, but

adopts spreading activation instead of random walks.25

5.i Meaning and relation regions

The meaning region of a word w1 is viewed as the subgraph centered around

w1.26 In Sect. 3.ii, we have seen how in a model such as DM, the word by link-

word matrix M1 yields a representation w1 of the meaning of w1 by way of the

single links that link w1 to other words in the corpus. But, in a word-graph such

as that of Fig. 5, one can find sequences of multiple connections such as the

following:

ostrich→ bird→ lose→ feature→ of → flight

25 Thus, note that each of R, S and T yields in turn a different instance of an agglom-

erate function Σ (Sect. 2.iv).
26 We henceforth identify, when no confusion arises, the word w1 with the corresponding

vertex 〈w1, π〉 in the word-graph.
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It seems here that the entire sequence is informative as to the meaning of ‘os-

trich’, even though, say, ‘flight’ is multiple connections removed from ‘ostrich’.

Further, one may find sequences such as,

cassowary → ostrich→ bird→ flightless

even though ‘cassowary’ and ‘flightless’ do not in fact occur together in any

one of the sentences that make up the word-graph in Fig. 5. But ‘flightless’

is informative as to the meaning of ‘cassowary’.27 More generally, we suppose

that the subgraph closely surrounding a word w1, with its sequences of multiple

connections and the graph structure itself, may be more informative as to the

meaning of w1 than its single links with other words. We call such a small

subgraph centered around w1 a meaning region of w1, as it captures information

pertaining to the meaning of w1.

The relation region of a pair of words w1 and w2 is viewed as the subgraph

given by the sequences of connections between w1 and w2. The above sequences

of connections may also be seen as explicit instances of relations connecting the

first and the last word in the sequence. This is clear in the first case; the captured

relation there between ‘ostrich’ and ‘flight’ is just,

being a bird that has lost the feature of

In the second case, the suggested relation between ‘cassowary’ and ‘flightless’ is

somewhat less immediate to paraphrasis, but may naturally be put as,

being related to ostrich that is a bird that is

We thus suppose that the subgraph given by the most informative sequences of

multiple connections between w1 and w2, and the underlying graph structure,

is more informative as to the relations that hold between w1 and w2 than just

single links.28 We call such a subgraph the relation region determined by w1 and

w2. Fig. 6 gives a schematic depiction of meaning and relation regions.

As we shall see, such regions allow us to obtain different kinds of concrete

representations for a verbal analog 〈w1,w2〉. Thus, we may identify a relation-

centered representation 〈w1, w2〉r with the relation region determined by w1

27 Cassowaries are flightless avians.
28 Single links of this sort are captured in the word-word by link matrix M2 of DM

(Sect. 3.ii).
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and w2. We may also identify a meaning-centered representation 〈w1, w2〉m

with that obtained by way of an algebraic operation, such as subtraction −,

applied to the meaning regions of w1 and w2; this representation would be close

to that in MAR. Let us thus proceed to describe algorithms that extract regions

and informativeness values for vertices in such regions from a word-graph.

w1
w2

w1
w2

Fig. 6. Schematic depiction of the meaning region of w1 in a word-graph (left) and of

the relation region between w1 and w2 (right).

5.ii Preliminaries to the algorithms

We begin by describing, first, how one selects vertices in G from which the

algorithms are initiated and, secondly, how one transforms the weights on the

edges in G; these two initial steps apply to all three algorithms R, S and T .

Initiating vertices Given a word-graph G constructed as in Sect. 4 and a

particular pair 〈w1, w2〉 of words, we need a way of selecting a pair of vertices

in G that are the vertices from which the algorithms are initiated. The selection

α takes a word-graph G and a pair 〈w1, w2〉 and returns a, possibly altered,

word-graph G∗ and a pair of initiating vertices 〈v1, v2〉 in G∗:

P4 :: initiating vertices selection α

For example, given the G from Fig. 3 and the pair 〈 ‘ostrich’, ‘bird’ 〉, a straight-

forward function α just returns G∗ = G and the two vertices 〈‘ostrich’, n〉 and
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〈‘bird’, n〉, if the pos-type n of ‘ostrich’ and ‘bird’ are known or can be deter-

mined.29 This together with α itself concludes the first preliminary step of the

algorithms.

PPMI weighting At this point the weight of an edge 〈w1, w2, e〉 in G∗ is just the

raw frequency count of the number of times the corresponding connection of w1

to w2 occurs in the sentences from the corpus L from which G∗ is constructed.

But such raw counts may be biased in various ways. For instance, in edges

〈‘ostrich’, ‘have’, e〉 and 〈‘ostrich’, ‘flightless’, e′〉, the raw count e might be higher

than the count e′ simply because the prior probability of ‘have’ occurring in L
is higher than that of ‘flightless’. One must thus transform the weights so as to

incorporate the probability of the particular connection of w1 to w2, as well as

the prior probability of w1 itself and that of a connection of any vertex to w2.

There are various weighting approaches that have proven effective.30 Here we

adopt Positive Pointwise Mutual Information (PPMI) [39].

PPMI is defined as follows. For a word-graph G = 〈V, E〉, let n = |V| be the

number of vertices and let the vertices (and corresponding words) be indexed

with integers i ≤ n. Let ei,j be the weight e in edge 〈wi, wj , e〉. The PPMI weight

fi,j is given by:

pi,j =
ei,j∑n

k

∑n
l ek,l

pi,∗ =

∑n
l ei,l∑n

k

∑n
l ek,l

p∗,j =

∑n
k ek,j∑n

k

∑n
l ek,l

(10)

f ′i,j = log

(
pi,j

pi,∗p∗,j

)
fi,j = max(f ′i,j , 0)

A PPMI weighting of G substitutes each edge weight ei,j with the PPMI weight

fi,j . Here we have that pi,j is the estimated probability of the connection of wi to

wj , pi,∗ is the estimated probability of wi, and p∗,j is the estimated probability

of a connection of any vertex to wj . Under the assumptions that informative

29 In Sect. 6, we use a slightly more encompassing function α that sidesteps the need

for pos-types.
30 For a survey, see [39].

38



connections (such as that of ‘ostrich’ to ‘flightless’) have pi,j > pi,∗ ∗p∗,j , i.e. the

probability of a connection between them is greater than if the two happened to

co-occur and be connected by random chance, we expect fi,j > 0 for informative

connections. Under the assumption that uninformative connections (such as that

of ‘ostrich’ to ‘have’) are statistically independent and thus, by definition, have

pi,j = pi,∗ ∗ p∗,j , we expect fi,j = log(1) = 0 for uninformative connections.31 If

pi,j < pi,∗ ∗ p∗,j , we simply take it to be statistically independent and set fi,j =

0. Thus PPMI is designed to increase the weights of semantically informative

connections and decrease the weights of the uninformative ones. A second step is

thus to apply the PPMI transformation to the word-graph. Let us then proceed

to the first family of algorithms R.

5.iii Path distance measures

Having applied PPMI weighting to G∗ and with w1, w2 being the two initiating

vertices, we now specify how to extract regions that are subgraphs from G∗ based

on the distance between vertices measured by the length of certain paths; this

constitutes the first part of R. We focus first on the extraction of the relation

region determined by w1 and w2. One important parameter is the (maximum)

size κ of the subgraph to be extracted:

P5 :: size κ of subgraph G〈w1,w2〉

The aim is to extract the κ vertices that have the most informative sequences

of connections with w1 and w2, where the informativeness of a connection is

estimated by its weight. If we let the length li,j of a connection from wi to wj be

inversely proportional to its weight ei,j , i.e. li,j = 1
ei,j

, then a connection is more

informative, the shorter it is, and a sequence of connections is more informative,

the shorter the sum of the lengths; finally, a vertex wi is more informative with

respect to wj , the more informative the shortest sequence of connections from wj

to wi. This idea underlies the three path distance measures presented below. The

resulting G〈w1,w2〉 is thus an explicit representation in the form of a word-subgraph

of the most informative sequences of connections, and of the words making up

such sequences, relating w1 and w2 and of any additional connections between

the words themselves. Let us thus specify three path distance measures that turn

out to have somewhat different outcomes as to the resulting subgraph G〈w1,w2〉

31 The two assumptions follow from the so-called distributional hypothesis [39] .
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Vertices on shortest paths For a connection or edge 〈wi, wj , e〉 and its weight

ei,j , let its length be li,j = 1
ei,j

; thus, an edge that has high weight and is

informative is taken to have a short length. Having defined lengths for edges, for

two vertices wi, wj , let λ(wi, wj) be the length of the shortest directed path from

wi to wj in G∗, and undefined if no directed path exists. Given initiating vertices

w1, w2, for a vertex wi we may now define the first measure Λ1 as follows:

Λ1(wi) = min(λ(w1, wi) + λ(wi, w2), λ(w2, wi) + λ(wi, w1)) (11)

If any of the λ values is undefined, Λ1(wi) is undefined as well. It is easy to see

that, if Λ1(wi) is defined for wi, then Λ1(wi) is the minimum of the length of the

shortest directed path from w1 to w2 passing through wi and of the length of the

shortest directed path from w2 to w1 passing through wi. Thus keeping the κ

vertices with highest Λ1 value results in a subgraph G〈w1,w2〉 that includes, among

others, the h shortest directed paths between w1 and w2, for some h ≤ κ (Fig.

7).32 The complexity of determining the value Λ1 for every vertex is O(|V| ∗ d),

where |V| is the number of vertices in G∗ and d is the running time of the shortest

path algorithm.33

Vertices on shortest two-way paths An alternative measure Λ2 is given as

follows:

Λ2(wi) = min(λ(w1, wi), λ(wi, w1)) +min(λ(w2, wi), λ(wi, w2)) (12)

As above, Λ2(wi) is undefined if so is any of the λ values. If Λ2(wi) is defined

for wi, then there is a sequence of vertices in G∗ that starts with w1 and ends at

w2 and that includes wi. There is no guarantee that this sequence is a directed

path from w1 to w2 or vice versa; guaranteed are only a directed path from w1

to wi or from wi to w1, and a directed path from w2 to wi or from wi to w2.

Such a sequence we call a two-way path from w1 to w2 through wi.
34 Hence

32 Technically, the path on which the κth vertex resides may not be complete, unless

all the remaining vertices on the path are included.
33 The used implementation of Dijkstra’s shortest path algorithm has running time

O(q|V|log|V|), where q is the average out-degree of a vertex. In word-graphs, q tends

to be small at about 2-3, depending on the merging function µ.
34 A two-way path from w1 to w2 through wi is also a two-way path from w2 to w1

through wi.
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keeping the κ vertices with highest Λ2 value results in a subgraph G〈w1,w2〉 with

h ≤ κ shortest two-way paths from w1 to w2, among possibly other two-way

paths (Fig. 7). As above, the complexity of determining the value Λ2 for every

vertex is O(|V| ∗ d).

Vertices on shortest undirected paths Finally, a third, more efficient, mea-

sure Λ3 acts on the undirected variant G′ of G∗; the length of an undirected edge

between wi and wj in G′ is l′i,j = l′j,i = min(li,j , lj,i), the smallest of the lengths

of the corresponding directed edges in G∗, if both edges exist; if only one edge

between wi and wj exists in G∗, then l′i,j = l′j,i is simply the length of that edge.

With λ′(wi, wj) = λ′(wj , wi) being the shortest undirected path on G′ between

wi and wj , the measure Λ3 is given as follows:

Λ3(wi) = λ′(w1, wi) + λ′(w2, wi) (13)

Λ3(wi) is undefined if so is any of the two λ′ values. If defined, Λ3(wi) is the

length of the shortest undirected path from w1 to w2 passing through wi. The

corresponding sequence of vertices in G∗ that reside on the undirected path is

neither guaranteed to be a directed path nor a two-way path. Thus, keeping in G∗

the κ vertices with highest Λ3 value results in a G〈w1,w2〉 with h ≤ κ sequences of

vertices that viewed in G′ are the shortest undirected paths between w1 and w2

(Fig. 7). An important advantage of Λ3 over Λ1 and Λ2 is its complexity. It turns

out that to find the Λ3 value for every vertex in G∗ requires only O(d) steps.

In fact, merely two full runs of Dijkstra’s shortest path algorithm, one starting

from w1 and the other from w2 on G′ are sufficient to determine the shortest

undirected paths from w1 and w2 to every other vertex in G∗.35 According to

our experimental considerations, the increase in efficiency makes Λ3 a fast and

feasible measure on word-graphs that have upwards 500,000 vertices; by contrast,

Λ1 and Λ2 cease to be really feasible already on word-graphs of more than 20,000

vertices.

The first part of R is thus to extract a subgraph G〈w1,w2〉 from G∗ according

to one of the three measures Λ1, Λ2, Λ3. G〈w1,w2〉 is a restriction of G∗ to the ver-

tices on the most informative paths, i.e. directed, undirected or two-way paths,

35 This is also true for shortest directed paths. However, using undirected paths mimics

more closely the subgraphs resulting from Λ1 and Λ2. In this case, for instance, a

vertex that only has outgoing directed paths to w1 and w2 may still be considered

by Λ3 in the resulting subgraph G〈w1,w2〉.
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relating specifically w1 and w2. G〈w1,w2〉 is thus a relation region determined by

w1 and w2. Having gathered the relation region between w1 and w2, the next

crucial step is to determine the informativeness of a vertex wj itself as it resides

on the paths in G〈w1,w2〉. A Λ measure for wj only gives the informativeness of

wj with respect to some shortest paths between wj and w1, w2. By contrast, we

would like to estimate the informativeness of wj in G〈w1,w2〉 as given by the gen-

eral graph structure underlying the connections and paths in G〈w1,w2〉. This not

only allows one to determine the informativeness of a single word in the relation

region G〈w1,w2〉, but also allows one to compare different relation regions with

each other by comparing the informativeness values of the words in them. The

next part of R thus uses random walks with non-uniform jumps to determine

informativeness values for the vertices in G〈w1,w2〉.

Fig. 7. Subgraphs extracted from the word-graph in Fig. 5 that include the topmost 11

vertices. The vertices are ranked according to respectively the Λ1, Λ2 and Λ3 measures;

the ranks are not shown. Note, for instance, that the vertex ‘flightless’ is on a two-way

path that is not a path, and ‘penguin’ is on an undirected path that is not a two-way

path.
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5.iv Estimating informativeness by random walks

We specify a more precise criterion for the informativeness of a vertex and cor-

responding word wi within the path and graph structure in G〈w1,w2〉. The first

criterion that we aim to capture is as follows:

(C1) wi is informative if other informative words connect to it.

Assume for the moment that G〈w1,w2〉 that contains κ vertices satisfies the fol-

lowing two properties, where one sets ei,j = 0 if there is no edge from wi to wj

in G〈w1,w2〉:

∀i ∀j ei,j ∈ {0, 1} (14)

∀i
κ∑
j

ei,j = 1 (15)

A graph that satisfies Eq. 14-15 is called a stochastic graph. In a stochastic

G〈w1,w2〉, criterion C1 translates as follows, where I1(wi) intuitively stands for

the informativeness of wi:

I1(wi) =

k∑
j

ej,i I1(wj) (16)

We see shortly below that I(wi) as in Eq. 16 can be obtained as the stationary

probability of wi given by a random walk over G〈w1,w2〉 modeled as a Markov

chain.

An additional criterion seems to be desirable for estimating the informative-

ness of a word wi in G〈w1,w2〉:

(C2) wi is informative if it connects to other informative words.

Criterion C2 translates into the following:

I2(wi) =

k∑
j

ei,j I2(wj) (17)

It thus seems that the informativeness of a word I(wi) may best be captured by

a combination of the above two criteria:

I(wi) = I1(wi) + I2(wi) (18)

The value I(w2) may approximately be modeled as a random walk similar to

I1, but with the edges in G〈w1,w2〉 reversed and appropriately weighted so as to
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obtain a stochastic graph.36 We return to the values I2 and I only briefly in

Sect. 7; here we focus on I1 instead. Let us then describe some of the details

behind estimating the value I1.

Random walks with non-uniform jumps Let G be a stochastic word-graph

with n vertices. Consider a random walker placed at a vertex wi in G, randomly

choosing to step to one of the vertices wj for which there is a directed edge

from wi. Since G satisfies Eq. 14-15, we can interpret the weight ei,j of the edge

from wi to wj as the probability that the walker chooses wj . As the walker

proceeds to take steps from one vertex to another, the walker steps through

certain vertices more often than through others. The more ingoing edges a vertex

has and the higher the corresponding probabilities, the more often the vertex

will be visited.37 Note that the probability of the walker stepping from wi to wj

depends only on the probability ei,j of the edge (i.e. its weight in the stochastic

graph), not, for instance, on where the walker came from; this is called the

Markov property of the random walk. In other words, the random walk is modeled

as a Markov chain [29].

Specifically, a Markov chain M consists of a set W of states and a n × n
transition probability matrix E, where the values Ei,j in E satisfy Eq. 14-15. E

is thus a stochastic matrix. Given an n-dimensional row probability vector π, we

write

πt := πEt (19)

Thus, (πt)j is the probability of reaching state j after t steps in M beginning

from the probability distribution π over the states in W .

M is said to be irreducible if, for any i, j ≤ n, there is a sequence Ei,k1 , ..., Ekn,j ,

of non-zero transition probabilities that starts at state i and ends at state j. A

state i is said to be aperiodic if there is an m such that for all m′ ≥ m, there is

a sequence of m′ non-zero transition probabilities that starts at state i and ends

at state i. Further, M is aperiodic if all of its states are. For a finite irreducible

Markov chain M , if one of its states is aperiodic, then so is M .

A central theorem for Markov chains is as follows.

36 This would only be an approximation, as the values ei,j must be modified when the

edges are reversed in order for the graph to be stochastic.
37 The informativeness of the vertex will be closely related to the probability with

which the vertex is visited by the random walker.
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Theorem 1. [29] For a finite state, irreducible and aperiodic Markov chain M ,

there is a unique stationary probability vector Π that is the left eigenvector of

E, such that for any probability vector π,

lim
t→∞

πt = Π

From the theorem it follows that,

ΠE = Π (20)

and, by indicating with E∗,i the ith column of E, that,

Πi = ΠE∗,i =
n∑
j

Ej,iΠj (21)

Assuming now that the adjacency matrix of G〈w1,w2〉 and the word vertices W
and edges E form an irreducible and aperiodic Markov chain, letting I1(wi) = Πi

and having that ej,i = Ej,i, Eq. 21 is precisely the desired criterion C1 formulated

in Eq. 16.

We must next describe how any word-subgraph G〈w1,w2〉 may be turned into

an irreducible and aperiodic Markov chain. The trick is as used in the Person-

alized PageRank algorithm for ranking World Wide Web pages [34]. Given the

interpretation of the Markov chain as a random walk, the trick involves endow-

ing the walker with the ability to jump from any vertex i to any other vertex

j according to some prior probability Jj ∈ [0, 1] determined at the outset and

depending only on j. That is, at each step, with probability γ ∈ [0, 1] the walker

chooses the jump operation, where the walker jumps from the current vertex i

to vertex j with probability Jj ; on the other hand, with probability 1 − γ, the

random walker selects as before one of the vertices having ingoing edges from

the current vertex i. We thus have here two parameters:

P6 :: jump probability γ

P7 :: priors distribution J

It turns out that the adjacency matrix of any G〈w1,w2〉 properly adjusted to a

stochastic matrix that includes jump and prior probabilities γ and J is irre-

ducible and aperiodic.38

38 For details, see [29]
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Besides making the adjacency matrix aperiodic and irreducible, an appropri-

ate choice of γ and J may have other significant effects. For example, without γ

and J , if one just turns the adjacency matrix of G〈w1,w2〉 into a stochastic ma-

trix, much of the PPMI weighting may be lost. One makes an adjacency matrix

stochastic by replacing an edge weight ei,j by the value,

ei,j∑κ
l ei,l

This ensures that Eq. 14-15 are satisfied. But now consider some vertices wk

and wl with a single outgoing edge with weight, respectively, ek,k′ and el,l′ . No

matter what the weights ek,k′ and el,l′ are, after the stochastic weighting they

are both simply equal to 1. To somewhat alleviate this difficulty, one may select

J so as to give higher priors to vertices whose outgoing or ingoing edges tend to

have higher values relatively to those of other vertices and choose a significant

probability γ to give weight to such priors. We will see an example of J in Sect.

6. After the incorporation of γ and J into the stochastically weighted adjacency

matrix of G〈w1,w2〉, a vector of stationary probabilities Πγ
J can easily and robustly

be computed determining the informativeness of a word wi in G〈w1,w2〉 according

to criterion C1, modulo small differences due to the incorporation of γ and J .

This concludes the method by which R estimates the informativeness of a vertex

in the relation region given by the subgraph G〈w1,w2〉.

To sum up, the vector of informativeness values for vertices in the relation

region of G∗ determined by w1 and w2 is computed in R as follows:

1. Given initiating vertices 〈w1, w2〉 and word-graph G∗, apply PPMI weighting

to G∗;
2. Use measures Λ1, Λ2 or Λ3 to obtain the subgraph G〈w1,w2〉 with the κ vertices

on the most informative paths;

3. Merge all the vertices in G〈w1,w2〉 that have the same word and pos-type;

4. Determine J using the PPMI weighting in G〈w1,w2〉, and using β and J

transform the adjacency matrix of G〈w1,w2〉 into an irreducible and aperiodic

Markov chain;

5. Compute the vector of stationary probabilities Πγ
J given by the Markov

chain; the stationary probability (Πγ
J )i of vertex wi reflects the informa-

tiveness of the word in the relation region G〈w1,w2〉, according to criterion

C1.
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Note step 3. Vertices of certain pos-types might still not be merged by that stage,

depending on the original construction of the word-graph G and the merging

function µ; we merge them all together before applying the random walk.

We thus finally obtain a concrete, relation-centered representation 〈w1, w2〉r

for the verbal analog 〈w1,w2〉, by setting:

(〈w1, w2〉r)j :=

{
Πγ
J if wj is in G〈w1,w2〉

0 otherwise
(22)

Fig. 5 illustrates the importance values resulting from applying R to the word-

graph of Fig. 3 three times, one for each of the possible Λ measures, where the

intermediate subgraphs are depicted above in Fig. 4. Let us briefly show how

the algorithm is modified in order to use R to compute informativeness values

in the meaning region determined by w1 alone.

Fig. 8. Fully merged subgraphs with informativeness values resulting from applying R
to the word-graph from Fig. 3, using respectively the Λ1, Λ2 and Λ3 measures. The

adopted priors vector J is as explained in Sect. 6.

Meaning regions in R The variant ofR that computes informativeness values

for the vertex in the meaning region of w1 according to criterion C1 requires only
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a modification to step 2. The Λ measures must be modified into Λm measures

by dropping any λ or λ′ term containing the vertex w2. This results in the new

measures Λm
1 and Λm

2 actually being the same. The new Λm are path distance

measures only with respect to paths from and to w1. The resulting subgraph

Gw1
is centered around w1. The remaining steps 3-5 are identical to those in R

as specified above.39 Let us now describe algorithm S

5.v Spreading activation

Given the word-graph G∗ and the initiating vertices w1 and w2, the S algo-

rithm adopts a direct method of assigning informativeness values to the vertices

surrounding w1 and w2, without needing path distance measures. The method

captures the following, somewhat underspecified, criterion of informativeness

that is relative to a vertex wj .
40 We say that a directed path is simple if it does

not have any repeated vertices; the discrete length of a directed path is defined

as the number of connections it has; the weight of a path is defined as the sum

of the weights of the connections in the path. Then, we may state the criterion

as follows:

(C3) wi is more informative with respect to wj , the greater the number of dis-

tinct simple directed paths from wj to wi, the smaller their discrete lengths,

and the greater their weights.

The aforementioned method is the spreading activation algorithm. The variant

given below is in essence a depth-first search through the graph starting from

a vertex w1 that is given an initial activation value. The search proceeds by

decreasing the activation value by a global decay factor each time a vertex is

visited. The activation value is summed to the previous value of the vertex (that

is initially 0). If the vertex’s activation value is lower than a given firing threshold,

the search stops at that vertex. The pseudocode for the algorithm is given in Fig.

9, where a(v) is the activation value assigned to vertex v or null if not assigned,

39 It would be possible to obtain a meaning-centered representation 〈w1, w2〉m for the

verbal analog based on these meaning regions. We do not presently consider this

with R, but only below with S.
40 The algorithm specified below yields precise informativeness values, but a non-

specific statement of the nature of the values suffices for explanatory purposes.
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SpreadActivation (Vertex v, Path p)

if a(v) < firingThreshold

return

add v to p

for each edge e outgoing from v

let v’ be the target of e

let x be the weight of e

if a(v’) is null

set a(v’) = 0.0

if v’ is not in p

let x = a(v’) + a(v) * x * globalDecay

set a(v’) = min(x, maxActivation)

SpreadActivation (v’, p)

Fig. 9. Depth-first spreading activation algorithm

maxActivation is normally set to 1.0, and firingThreshold and globalDecay

are free parameters:

P8 :: firing threshold

P9 :: global decay

Given the values a(w) for every vertex w obtained from spreading activation

from w1, since some of the a(w) might actually be null, we let the outgoing

activation vector Sout(w1) from w1 defined on vertices w be as follows:

Sout(w1)(w) :=

{
a(w) if a(w) is not null

0 otherwise
(23)

Further, let the ingoing activation vector Sin(w1) from w1 be similarly defined,

but with the a(w) values obtained from a variant of the spreading activation al-

gorithm, where outgoing from is replaced with ingoing into in the procedure

SpreadActivation. In other words, Sin(w1) is the activation vector obtained

by spreading the activation values from w1 over ingoing edges.

A technical transformation must be applied to the PPMI weighted G∗ before

spreading activation can reliably be used. To avoid unexpected behavior, all edge
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weights must be in the interval [0, 1]. This is ensured by normalizing the edge

weights in G∗, i.e. by replacing each edge weight ei,j by the value,

ei,j
fG∗

where fG∗ is the greatest edge weight occurring in G∗. This concludes the descrip-

tion of the spreading activation algorithm. Let us now see how activation vectors

may be combined algebraically to capture the information of various regions in

G∗; this constitutes the next part of S.

5.vi Algebraic combinations of activations

As we saw in the previous section, S acts directly on the whole normalized word-

graph G∗ and uses the delimiting capacity of spreading activation to obtain ac-

tivation vectors with respect to an initial vertex w1. The next step combines

such activation vectors by way of algebraic operations. Different algebraic oper-

ations, and pairs thereof, yield high informativeness values for different regions

of G∗; the interpretation of these regions may likewise differ. Even though some

algebraic operations, and pairs thereof, clearly do not yield any meaningful infor-

mativeness values, we still specify two schemas for combining activation vectors

and leave the algebraic operations as free parameters.

To this end, given the initiating vertices w1, w2, let Sout(w1), Sin(w1), Sout(w2),

Sin(w2) be as defined in Sect. 5.v. The two schemas S(w1, w2) and S ′(w1, w2)

are given as follows,

S(w1, w2) = (Sout(w1) ~ Sin(w2))� (Sout(w2) ~ Sin(w1)) (24)

S ′(w1, w2) = (Sout(w1) ~ Sin(w1))� (Sout(w2) ~ Sin(w2)) (25)

where the operations ~ and � are applicable algebraic operations on vectors

such as such as −, +, point-wise ∗, max or min, the tensor product ⊗, and

possibly others. These are left as parameters:

P10 :: inner operation ~

P11 :: outer operation �

Let us thus illustrate some concrete instances of S(w1, w2) and S ′(w1, w2). Con-

sider S(w1, w2) and suppose that ~ = min and � = max. For a vertex wj of
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G∗, the value min(Sout(w1),Sin(w2))j will be high in the range [0, 1] if and only

if both the activation values Sout(w1)j and Sin(w2)j are high. But the latter is

the case if and only if both wj is highly informative with respect to w1 and w2

is highly informative with respect to wj . In other words, there are very signifi-

cant directed paths from w1 to wj and from wj to w2. Thus, the vertices with

high value min(Sout(w1),Sin(w2)) make up a region of G∗ of relations from w1

to w2, in that order. By a symmetric argument, the vertices with high value

min(Sout(w2),Sin(w1)) make up a region of G∗ of relations from w2 to w1. By

taking the max of the values of the vertices within these two regions, one obtains

a further region of G∗ capturing the relations between w1 and w2 in both direc-

tions. To wit, min and max have an effect of, respectively, graded intersection

and graded union. A similar argument works for the selection ~ = ∗ and � = +,

as the latter in the range [0, 1] have effects similar to those of min and max,

respectively.

Now, consider S ′(w1, w2) and suppose that ~ = max (or ~ = +), and� = −.

max(Sout(w1),Sin(w1)) takes the graded union of regions that have vertices that

are highly informative with respect to w1 and with respect to which w1 is highly

informative. That is, max(Sout(w1),Sin(w1)) captures the meaning region of

w1. If we let the representation of the meaning w1 simply be,

w1 = max(Sout(w1),Sin(w1)) (26)

and similarly for w2, and consider the operation � = − on w1 and w2, we

essentially reconstruct the representation (w1 −w2) from the MAR model (Eq.

8).41

How about the pair ~ = ∗ and � = − applied to S(w1, w2)? As before,

vertices with high value in (Sout(w1) ∗ Sin(w2)) make up a region of relations

from w1 to w2. Vertices with high value in (Sout(w2)∗Sin(w1)) make up a region

of relations from w2 to w1. One may think of the former as a characterization

of w1 as it relates to w2. Similarly, one may think of the latter as a character-

ization of w2 as it relates to w1. Applying now the outer operation − on the

two vectors returns an instance of S(w1, w2). The interpretation, geometric and

theoretical, of the effect of − on the resulting S(w1, w2) is similar to the one

41 The vectors w1 and w2 are switched here. If the presumed w3 and w4 are switched

just in the same way, this has no effect on the similarities as calculated by the

measures in Sect. 2.v applied to Eq. 8. Also, switching back presents no difficulties.
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in MAR (Sect. 3.ii); the difference is that in MAR one applies subtraction − of

meaning representations w1 and w2, whereas here the subtraction is applied to

representations of w1 and w2 as they relate, respectively, to w2 and w1.42 The

resulting S(w1, w2) captures both the theoretical insight of MAR and the insight

on the importance of relations suggested in SMT and incorporated into LRA

and DM. This representation turns out to be crucial from an experimental point

of view and we return to it in Sect. 6.

Before we can deduce specific representations 〈w1, w2〉 of the desired verbal

analog 〈w1,w2〉, we must briefly deal with vertices that may still not be merged

in G∗. We merge these vertices together in G∗ by summing their values as ob-

tained from one of S(w1, w2) and S ′(w1, w2). This results in vectors ν(S(w1, w2))

and ν(S ′(w1, w2)) with somewhat fewer dimensions than the originals.

We may finally give the above three instances of S(w1, w2) and S ′(w1, w2) as

concrete representations for 〈w1, w2〉. Thus, we have the meaning-centered one

similar to that in MAR (from Eq. 25):

〈w1, w2〉m = ν((Sout(w1) ∗ Sin(w1))− (Sout(w2) ∗ Sin(w2))) (27)

We further have the relation-centered ones (from Eq. 24):

〈w1, w2〉r = ν(max(min(Sout(w1),Sin(w2)),min(Sout(w2),Sin(w1)))) (28)

〈w1, w2〉r = ν((Sout(w1) ∗ Sin(w2)) + (Sout(w2) ∗ Sin(w1))) (29)

〈w1, w2〉r = ν((Sout(w1) ∗ Sin(w2))− (Sout(w2) ∗ Sin(w1))) (30)

We, somewhat arguably, consider the latter also a relation-centered representa-

tion. Some further concrete representations 〈w1, w2〉 will be tested in Sect. 6.

To sum up, S involves the following steps:

1. Given initiating vertices 〈w1, w2〉 and word-graph G∗, apply PPMI weighting

to G∗;
2. Apply normalization to G∗;
3. Apply spreading activation to obtain activation vectors Sout(w1), Sin(w1),

Sout(w2), Sin(w2);

42 The representation of w1 as it relates to w2 may also be viewed as the representation

of that part of the meaning of w1 that is most relevant or central to w2. Some of the

vertices that have high value in the meaning representation of w1, those “closest”

to w2, will also have high value in the latter representation.
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4. Use the given algebraic operations ~ and � to compute S(w1, w2) and

S ′(w1, w2);

5. Apply the merging procedure ν, that merges all the vertices with same word

and pos-type.

This concludes the description of S. Let us finally consider T .

Combining spreading activation with path distance measures The algo-

rithm T adopts the Λ or Λm measures from Sect. 5.iii to obtain relation regions

G〈w1,w2〉 or meaning regions Gw1
. Then, instead of estimating informativeness

with random walks, it estimates it with spreading activation. Eq. 24-25 are thus

applied directly to the subgraph G〈w1,w2〉 or Gw1
. In this case, it is possible to

simplify Eq. 24-25 by dropping the Sin terms and the inner operation, as the ex-

traction of an appropriate subgraph has already been performed through the Λ or

Λm measures. Fig. 10 gives informativeness values calculated through spreading

activation on subgraphs obtained from the word-graph in Fig. 5; the subgraphs

are the same as those in Fig. 7. Concrete representations 〈w1, w2〉r are obtained

analogously to Eq. 22. This concludes the description of T .

∗ ∗ ∗

In Sect. 5, we have considered regions of word-graphs capturing information

pertaining to concepts such as meanings and relations. We have presented two

main algorithms R and S and a variation T for extracting such regions and

the informativeness values of the words in the regions from a word-graph. We

have thus obtained some concrete representations 〈w1, w2〉 of verbal analogs.

In the last main section, we now investigate the experimental accuracies of such

representations and what these suggest about meaning and analogy.
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Fig. 10. Subgraphs resulting from applying T to the word-graph from Fig. 5, using

respectively the Λ1, Λ2 and Λ3 measures. Firing threshold is set to 0.1, global decay is

1.0 and the outer operation is +. This operation allows for the final, summed values

to be greater than 1.
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6 Accuracy Results and Experimental Findings

We first describe the way the parameters left free in Sect. 4-5 are assigned. The

description of the parameters includes some implementation details. Then, we

report on the initial batch of experiments that has been performed and we state

and compare the respective accuracy values.43 Finally, we examine the accuracy

values of the algorithms from a more theoretical perspective, illustrating how

the highest accuracy value for an algorithm is obtained by merging theoretical

insights from MAR with those from SMT .

6.i Parameters

We here describe the way one selects the parameters that are left free in Sect.

4-5; these parameters are adopted in the experiments reported below. We also

relate some of the details of the implementation of the framework.

Corpus of language L The collection of analogy problems consists of 374

problems, each in turn made up of a source analog and five target analogs;

one must choose the target analog whose analogical strength with the source

is highest (Sect. 3.i). For each problem P of the 374 problems, we generate a

small corpus LP containing sentences relevant to the 6 analogs in P . Each small

corpus LP is generated from a large corpus L∗.
The large corpus L∗ consists of preprocessed, sentence tokenized and tokenized

versions of the UkWac corpus and of Wikipedia.44 UkWac and Wikipedia to-

gether consist of about 3∗109 tokens.45 Wikipedia is first preprocessed to extract

only the text from it; this is done using the Wikiprep script [15,16] and addi-

tional Perl scripts. Both UkWac and Wikipedia are then tokenized and sentence

tokenized into the Penn TreeBank format using the NLTK Python toolkit [3].

43 We do not presently report any experimental results on the T algorithm.
44 We use an early-2012 XML dump of Wikipedia.
45 Much of this corpus is identical with the corpus used in DM and in the restricted

version of LRA [2]; the corpus in DM and LRA includes the British National Corpus

[6], whereas L∗ includes a somewhat larger version of Wikipedia.
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Next, for each word pair 〈w1, w2〉 in P , synonyms of w1 and w2 are deter-

mined using WordNet [13,31] and the Adapted Lesk algorithm for word disam-

biguation [1]. Of all the synonym sets (synsets) of w1 in WordNet, the one synset

s is chosen that has the highest Lesk score with any of the synsets of w2. The

words in s are chosen as synonyms for w1. Thus, w1 is disambiguated using w2 as

“context” and the words from the corresponding synset are taken as synonyms

for w1. The same is performed for w2 with respect to w1. Let us indicate by

s1, ..., sn and t1, ..., tm the determined synonyms, respectively, of w1 and w2.

Now LP is extracted from L∗ as follows. For each word pair 〈w1, w2〉 in P , a

Boolean query of the following form is constructed:

(w1 ∧ w2) ∨
n∨
i

(w1 ∧ si) ∨
m∨
i

(ti ∧ w2) (31)

The Apache Lucene search engine is then used to search L∗ using the query from

Eq. 31; up to 10,000 of the most relevant sentences found by this query make

up the corpus LP for the problem P . Each sentence in turn contains either w1

and w2, or w1 and one of the synonyms ti of w2, or w2 and one of the synonyms

si of w1. This is how LP is generated. Parameter P1 is thus assigned the corpus

LP . A word-graph for each problem P is then built according to the procedure

described in Sect. 4.

Notice here the various aspects that attempt to deal with the ambiguity of

the words w1 and w2. First, synonyms of each word are found by disambiguating

with respect to the other of the two words. Secondly, the sentences in LP tend

to be about the intended meanings of w1 and w2, since both words (or their

synonyms) must occur in the sentence. Hence, if ‘cub’ and ‘bear’ occur in a

sentence, ‘bear’ tends to stand for the corresponding animal and not for the act

of support or any other of its meanings.

Merging function µ The merging function used in all of the present exper-

iments is the same as the one mentioned in Sect. 4-5. It merges vertices with

pos-type π ∈ {n, v, a, d}, whereas it does not merge prepositions vertices of pos-

type i.

Maximum size of a word-graph Let GP be the word-graph generated from

LP . We experiment with maximum size parameters P3 of 10,000, 50,000 and
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unlimited (∞). A finite limit on the maximum size can be used to increase the

efficiency of the optimization process, though significant linguistic information

is generally lost in a reduced size word-graph (depending naturally on the extent

of the reduction).

Initiating vertices selection α Given a word-graph GP and a pair 〈w1, w2〉
together with their synonyms, the selection procedure α (parameter P4) that

we presently adopt merges the vertex corresponding to w1 in GP with all the

vertices corresponding to the synonyms s1, ..., sn of w1. It does the same with

w2 and its synonyms t1, ..., tm. Let the merged vertices be, respectively, w∗1 and

w∗2 . α thus returns the new graph G∗P and the initiating vertices w∗1 and w∗2 . The

aim of merging the vertices is to accumulate into a single vertex the information

in GP concerning both w1 (respectively w2) and all of its synonyms.

Maximum size of subgraph For the maximum size κ (parameter P5) of a

subgraph for a word pair 〈w1, w2〉 generated during R, we experiment with

κ ∈ {200, 400, 800, 1000, 2000, 3000, ..., 30000} (32)

κ is thus serves as an optimization parameter. As we see below, it turns out that

due to the robustness of random walks the size of κ within a large range does

not affect accuracy significantly.

Jump probability γ and priors distribution J Given the word-graph G∗P
and a vertex wi, we let its prior Ji be defined by:

Ji =

∑
j ei,j∑

k

∑
j ek,j

(33)

where ei,j is, as above, the weight of the edge from vertex wi to wj . Hence, if

sum of the PPMI weights of the outgoing edges of wi is relatively high, we assign

to wi a larger prior. This aims at alleviating the canceling effects of stochastic

weighing in R on the PPMI weights. We briefly explore some possible variants

of J in Sect. 7.

To give significance to the priors, we experiment with jump probability values

γ = 0.3 and γ = 0.4. These are somewhat higher than the usually suggested 0.1

or 0.15 [29,34].
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Firing threshold and global decay We optimize the threshold t (parameter

P8) and decay d (parameter P9) values over the following ranges:46

t ∈ {10−1, ..., 10−9} (34)

d ∈ {1.0, 0.9, ..., 0.1} (35)

The firing threshold values t fall exponentially. This is to capture the exponential

decrease in the activation values, due among others to d, as the activation spreads

further away from the initial vertex.

Inner and outer operations There is a large number of possible algebraic

operations to adopt for ~ and �.47 We experiment with a few combinations

involving ∗, +, −, max and min.

This completes the survey of the parameters. Let us now consider their ac-

curacy when incorporated into the algorithms R and S.

6.ii Experiments and Accuracy

Algorithm R The R algorithm coupled with the Λ3 measure was tested with

P3 set to unlimited ; when R was coupled with the Λ1 or Λ2 measures R was

tested with P3 set to 10,000 for efficiency reasons.48 The results are reported in

Table 1. R with the Λ3 measure and unlimited P3 (top row) performs signifi-

cantly better than R with the Λ2 and reduced P3 (bottom row) according to

the Fischer test (p = 0.036).49 The accuracies for the Λ1 measures (mid-rows)

are not significantly different from the Λ3 accuracies or the Λ2 accuracies. It

is interesting to note that, even on a reduced word-graph, R coupled with the

Λ1 measure performs comparatively to R coupled with the Λ3 measure on a

unreduced word-graph. A related observation stems from Table 2. It shows the

accuracies of R coupled with Λ3 by varying the parameter P5 corresponding to

the maximum size of the subgraph. The accuracies are not significantly different

from each other over a large part (2, 000− 30, 000) of the tested interval. This is

likely to be a result of the general stability of random walks with jumps under

perturbations of the unimportant nodes underlying the link structure [33].

46 Similar ranges are used in [21].
47 For a systematic study of some in a different framework, see [32].
48 The average size of a word-graph across the 374 problems was about 74,000 vertices.
49 The accuracies are significantly different according to the Fischer test if p < 0.05.
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A further observations concerns similarity measures. As Table 2 suggest, us-

ing the L1-norm similarity measure for representations obtained from the random

walks in R consistently yields somewhat higher accuracies than those obtained

using the cosine measure. This reflects the fact that such representations are in

fact probability distributions and the length normalization implicit in the cosine

measure does not seem to be meaningful in this case.

Λ meas. P3 P5 P6 sim. meas. # non-skip # correct % correct non-skip % correct

Λ3 ∞ 17,000 0.3 L1-norm 366 122 33.3 32.6

Λ1 10,000 2,250 0.3 cosine 359 113 31.5 30.2

Λ1 10,000 2,000 0.4 cosine 355 109 30.7 29.1

Λ2 10,000 4,000 0.4 L1-norm 344 95 27.6 25.4

Table 1. Accuracy results from experiments with R.
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Table 2. Accuracy of R coupled with Λ3. The upper line with cross points indicates

accuracies measured with the L1-norm, whereas the lower line with circled points in-

dicates accuracies measured with the cosine measure.

Algorithm S We experimented with the S algorithm on reduced word-graphs

with a limit on their maximum size P3 of 50, 000 vertices. Table 3 summarizes

the results. We notice that the S(·, ·) schema from Eq. 24 with inner operation

~ = ∗ and outer operation � = − (top row) has by some margin the highest
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accuracy. The difference is significant with respect to the lowest S(·, ·) score

reported (28.7%) according to the Fischer test (p = 0.019). The difference is

significant also with respect to the two lowest S ′(·, ·) scores (p = 0.043 and

p = 0.009, respectively). We consider the significance of these results in Sect.

6.iii.

It is interesting to observe the way accuracy changes as the threshold and

decay parameters are varied. Table 4 shows the variations in accuracy of the

S(·, ·) schema with inner operation ~ = ∗ and outer operation � = −. A decay

value too close to 1.0 decreases somewhat the resulting accuracy. This suggests

the expected fact that activating too large of a region in the word-graph has

negative effects on accuracy. Variations in the firing threshold do not alter ac-

curacy significantly. Let us thus consider the overall accuracies of the R and S
algorithms as they compare to the LRA and DM models.

P3 schema inner ~ outer � threshold P8 decay P9 sim. meas. # non-skip # correct % correct non-skip % correct

50,000 S(·, ·) ∗ − 10−4 0.3 cosine 369 138 37.4 36.9

50,000 S(·, ·) ∗ + 10−1 0.6 cosine 369 115 31.2 30.7

50,000 S(·, ·) min max 10−1 0.8 cosine 369 115 31.2 30.7

50,000 S(·, ·) ∗ + 10−4 0.3 cosine 369 107 29.0 28.7

50,000 S ′(·, ·) + + 10−2 0.9 cosine 369 119 32.2 31.8

50,000 S ′(·, ·) + ∗ 10−1 0.8 cosine 369 111 30.1 29.7

50,000 S ′(·, ·) + − 10−4 0.7 cosine 369 104 28.2 27.8

Table 3. Accuracy results from experiments with S.

Overall accuracies Table 5 reports the accuracy of the optimized algorithms

S and R, of LRA and of the three DM models [2]. The accuracy values are

comparable as they are based on similar corpora (Sect. 6.i). The significance

of the values is as follows. According to Fischer tests, R’s accuracy is not sig-

nificantly different from that of LexDM (p = 0.342), DepDM (p = 0.753),

S (p = 0.249) and LRA (p = 0.168); the accuracy of R is significantly lower

than that of TypeDM (p = 0.008). The S algorithm has an accuracy that is

significantly higher than that of LexDM (p = 0.0294); S’s accuracy is not sig-
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Table 4. Accuracies of algorithm S with schema S ′(·, ·), inner operation ~ = ∗ and

outer operation � = −. P8 is the threshold parameter (on a negated logarithmic scale,

x = −log(y), where y is the actual threshold value) and P9 is the decay parameter.

nificantly different from that of DepDM (p = 0.122), LRA (p = 0.879) and

TypeDM (p = 0.155).

In the current specification of the framework, the weights on the edges are

based on frequency in a way not dissimilar to the one adopted in DepDM and

LexDM . Hence, what makes S significantly better than LexDM and nearly

better than DepDM seems to be a combination of the graph-structure, the ad-

ditional semantic analysis and the algorithm S with the specific inner and outer

operations ∗ and −. From the results above, the graph-structure and semantic

analysis do not appear to be sufficient by themselves; the choice of algebraic

operations matters significantly.

A minor observation concerns similarity measures. We have seen above how

the L1-norm is a somewhat more accurate measure of similarity for probability

distributions obtained from random walks in the R algorithm. It turns out that

the cosine measure was more accurate in the case of representations obtained
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from the S algorithm. It thus seems that the additional normalization implicit

in the cosine measure is effective for vectors of activation values.

Algorithm % correct 95% CI

TypeDM 42.4 37.4−47.7

LRA 37.8 32.8−42.8

S 36.9 32.1−41.8

R 32.6 27.9−37.6

DepDM 31.4 26.6−36.2

LexDM 29.3 24.8−34.3

Table 5. Highest accuracy results for S and R and the LRA and DM models.

6.iii On theoretical insights into analogy

Theoretical insights about analogy may give rise to a particular kind of repre-

sentations for verbal analogs. As we have seen in Sect. 3.ii, MAR postulates a

meaning-centered view, according to which a representation for the verbal ana-

log is the result of a subtraction of the representations of the meaning of the

two words. Restricting our focus to the S algorithm, a most natural counterpart

of the MAR representation is the S ′(·, ·) from Eq. 25 applied with ~ = + and

� = − (Sect. 5.iv). This achieves an accuracy of 27.8% (bottom row in Table. 2).

Similarly, the most natural counterpart to the relation-centered view of relations

within a verbal analog postulated by SMT and adopted in LRA and DM is the

S(·, ·) schema either with ~ = ∗ and � = +, or with ~ = min and � = max.

The latter two seem to have similar effects on activation values and indeed they

both achieve the same accuracy of 30.7%. Even though the latter accuracy of the

S(·, ·) schema is somewhat higher than that of the S ′(·, ·) schema, the difference

is not statistically significant. Thus, the evidence here does not yield a preference

for either type of representations and respective insights.

By contrast, the accuracy of 36.9% of the S(·, ·) schema with ~ = ∗ and

� = − is significantly better than that of the schema S ′(·, ·) suggested by

MAR. But what is the interpretation of the insight behind this higher perform-

ing schema S(·, ·) for a verbal analog 〈w1,w2〉? The algebraic operation (−) is
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applied to the following two vectorial representations. The first representation

r1 is the one obtained by considering the relations, i.e. sequences of connections,

from w1 to w2; the second representation r2 is the one obtained by considering

the relations from w2 to w1. By interpreting the operation (−) between two vec-

tors geometrically as the vectorial distance between them, if, on the one hand,

in MAR one takes the representation of the verbal analog 〈w1,w2〉 to be the

vectorial distance of the meaning representations w1 and w2, on the present in-

terpretation, one takes the representation of the verbal analog 〈w1,w2〉 to be the

vectorial distance between the one-sided relational representations r1 and r2.50

Thus, both the vectorial distance suggested by MAR and the centrality of the

relations suggested by SMT play a crucial role in yielding in the present experi-

ments the most highly performing representation of the verbal analog 〈w1,w2〉.
We conclude here our consideration on the experiments. Let us now end by

considering in the last section possible additions and extensions of the current

specification of the framework.

50 It does not matter which of the vectors is subtracted from the other as long as this

is done consistently.
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7 Concluding Remarks

In this essay we have seen how one constructs a word-graph from a corpus of

language and how one extracts by way of the R and S algorithms vectorial rep-

resentations of the information in selected regions of the word-graph. Led by

various theoretical insights and by viewing different such regions as incorporat-

ing information pertaining to verbal analogs, we have obtained various types

of representations for verbal analogs of pairs. We have experimented with the

resulting representations and those obtained from a variant of the S algorithm,

notwithstanding a limiting parameter (P3), achieve an accuracy that is not sig-

nificantly different from that of the state-of-the-art performing model TypeDM .

We have also evaluated the representations induced by the theoretical insights

behind MAR and SMT , not finding a significant difference between the respec-

tively induced representations; we have pointed to a novel insight into analogy

suggested by the significantly better accuracy of the S(·, ·) schema representa-

tions couple with the operations ~ = ∗ and � = −.

The possibilities of the framework have not been exhausted by the experi-

ments reported in Sect. 6. Further, the framework may be altered in significant

ways while maintaining its core ideas. A list of possible pathways to explore is

as follows:

– Merging functions µ have a very significant effect on the way the information

extracted from the corpus is represented in the word-graph. It would be

possible to adopt different merging functions that merge different types of

nodes. It would also be possible to deal with ambiguity by including more

vertices for highly polysemous words; one such method is described in [23].

It would be possible to introduce probabilistic merging where each vertex is

merged with a certain probability to achieve a specific factor of connectivity

in the word-graph.

– The stability and robustness of random walks under various subgraph sizes

is a highly desirable property. Random walks ought to be better exploited

to achieve more accurate, but still highly robust representations. Random

walks over reversed edges that approximately capture criterion C2 may also

yield improvements in accuracy (Sect. 6).

– It would be possible to generate word-graphs from precisely the links and

weights used in the TypeDM model together with appropriate merging func-
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tions. This would in principle generalize the TypeDM model, as the original

representations would still be retrievable.

– Hyperlinks from Wikipedia and other online resources could easily be in-

corporated into word-graphs together with the connections stemming from

the language corpus. Also, more semantic annotation coming from the Boxer

analyzer as well as from other sources could also be incorporated.

– A single, larger word-graph would be desirable in order to be able to tackle

many semantic tasks with a unique structure.

– The framework can be extended to capture representations of n-tuples for

n ≥ 3, either by selecting different appropriate regions in the word-graph, or

by combining algebraically representations of verbal analogs of the pairs in

the n-tuple.

The exploration of these pathways is left for future computational journeys

into the workings of language.
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