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Abstract

The motivation of this thesis is the idea of extending the results in [13] to the case of logics
with fixpoints and with a non-classical base. We focus in particular on the intuitionistic
modal mu-calculus. We enhance the ALBA algorithm [26] for the elimination of monadic
second order variables so that mu-formulas can be treated in which all the variables occur
inside the scope of fixpoint binders. We prove that this enhancement is sound thanks
to the order-theoretic properties of the interpretation of fixpoint binders in the algebraic
semantics for intuitionistic mu-calculus. We define the class of recursive inequalities and
informally justify that the enhanced ALBA is successful on this class.
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Introduction

A glimpse at correspondence theory. Correspondence theory stems from the observa-
tion that Kripke frames can be used both as models for classical first-order logic and for
modal logic. This implies that both modal formulas and first-order sentences can be used
to define classes of Kripke frames (in the case of modal formulas this can be done though
the notion of validity). So, we can say that a modal formula and a first-order sentence
correspond to each other if they define the same class of Kripke frames. Correspondence
theory is the part of the model theory of modal logic which systematically studies the
phenomenon of correspondence. In particular, Sahlqvist theory (cf. [19], [8]) provides
a syntactic approach to correspondence theory, which is aimed at characterizing classes
of modal formulas which are guaranteed to have first order-correspondents by means of
conditions on their syntactic shape. The most famous of these classes is the Sahlqvist
class of modal formulas. Because they have a first-order correspondent, Sahlqvist formu-
las have additional good properties: for instance, their associated normal modal logics are
canonical, and hence strongly complete with respect to the class of frames defined by their
first-order correspondents (cf. thm 4.42 of [5]). Sahlqvist theory provides sufficient but
not necessary conditions for the correspondence of modal formulas. Indeed it was shown
in [2] (Chagrova’s theorem), that it is undecidable whether an arbitrary basic modal for-
mula has a first-order correspondent. Thus any decidable class of modal formulas each
member of which is guaranteed to correspond to some first-order formula can only be an
approximation of the class of modal formulas which admit a first-order correspondent.

Developments in Sahlqvist theory: syntactic characterizations. Researchers have
been trying to improve the original results in [8], [19] . These improvements follow two
separate directions, which occasionally come together:

1. In the original classical modal logic setting, developments have come in the form of
finding proper extensions of the Sahlqvist class. This gave rise to the introduction
of the classes of inductive and recursive formulas in [20], [21];

2. Developments have also come in the form of finding counterparts of the Sahlqvist
class for other logics than classical modal logic. For, instance the Sahlqvist class has
been defined for distributive modal logic [14], substructural logic [16] and modal
mu calculus [13], [18].

These two separate directions have come together in [26], where the inductive formulas
have been defined also for distributive and intuitionistic modal logics.
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Developments in Sahlqvist theory: the algorithmic approach. Extensions of Sahlqvist
formulas using syntactic characterizations are not always easy to use in practice, whence
the need to look for easier ways to characterize formulas which correspond to first-order
conditions on frames.
This motivates the introduction of algorithms for correspondence (e.g SQEMA [23], [24]
and ALBA [26]), which, given an arbitrary modal formula in input, compute its first-order
correspondent, or terminate with failure. The algorithmic approach is different from the
syntactic approach in the sense that “it does not care ” to which the syntactically defined
class the input formula belongs to. The algorithm can either succeed or report failure. This
is in fact very nice, because it is not always easy to use the syntactic characterizations in
practice, but it is very easy to run the algorithm on a formula and see whether it succeeds.
Moreover, one is typically not interested to know whether a formula is Sahlqvist or induc-
tive; rather, one is interested in knowing to which condition a certain formula corresponds.
This question is exactly what the algorithm can be used to give answer to. However, given
an algorithm, one is also interested in knowing how powerful and effective it really is. To
answer this question, it has been shown that:

1. SQEMA and ALBA are very effective and are respectively guaranteed to succeed
on all the inductive formulas in the setting of classical modal logic (SQEMA [23],
[24] ), of distributive and intuitionistic modal logic (ALBA [26]).

2. The recursive extension of SQEMA [21] is guaranteed to succeed on the class of
recursive formulas, which is larger than the class of all inductive formulas, which
in turn properly extends the class of Sahlqvist formulas.

3. The ALBA algorithm is guaranteed to succeed on a class larger than the class of all
inductive inequalities1.

General methodology. This thesis focuses on the problem of extending correspon-
dence theory to different logics. To be able to successfully extend Sahlqvist theory to
different types of logics, we need to understand the mathematical principles which make
Sahlqvist theory work independently of the specific logical signature. It turns out that the
algebraic approach is extremely well suited for this kind of analysis; besides [4,13,15]
and [16] it has been pursued earlier in Jónsson [6], Sambin and Vaccaro [17], Ghilardi
and Meloni [15].

The methodological foundations of the algebraic approach, as well as how it con-
nects to the classical model-theoretic approach has been extensively explained in [22]; in
a nutshell, this perspective is based on the duality theory for modal logic, which makes
it possible to systematically translate validity and satisfaction of modal formulas from
Kripke frames to their complex algebras, and then explain the Sahlqvist mechanism in
terms of the order-theoretic properties of the operations which interpret the logical con-
nectives of modal formulas. Since these order-theoretic properties are not unique to modal
logic but hold for many logics (for instance, for intuitionistic and substructural logics as
well), this algebraic and order-theoretic account of Sahlqvist theory gives a way to define

1In [26], the class of inequalities on which ALBA is guaranteed to succeed is proven to be strictly larger
than the inductive inequalities, which in turn properly extends the class of Sahlqvist inequalities of [14].
Inductive inequalities are the distributive counterpart of the inductive formulas of Goranko and Vakarelov
in the classical setting.
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Sahlqvist, inductive and recursive formulas for all the logics with the right order-theoretic
properties.

Modularity and its advantages. The algebraic approach that we described above has
another advantage: it is modular in nature. Indeed,

1. the order-theoretic machinery can be easily transferred to different logics, which
provides a uniform way to identify syntactic classes and to define versions of ex-
isting algorithms just by introducing little changes; in this way, it can be seen that
the order-theoretic properties that underly the characterization of the Sahlqvist class
remain inherently unchanged when moving from logics based on classical proposi-
tional logic to weaker, non-classical settings, such as intuitionistic, distributive and
non-distributive lattice-based logics;

2. moreover, certain logics, as for instance substructural logics and intuitionistic modal
logics, admit more than one type of relational semantics, and therefore, it can be
expected that the same formula admits different first-order correspondents in the
different semantic structures. However, the different relational structures dually
generate algebras which all enjoy certain crucial order-theoretic properties; the al-
gebraic approach depends exclusively on these properties (more on this in Chapter
2). Therefore, in these cases, the quest for first-order correspondents can be neatly
divided in two steps:

• in the first step, the general algebraic setting is employed independently of the
specification of the semantics for the given logic;

• in the second step, the results are then translated taking into account the con-
crete specifications of each relational semantics. This is very nice because the
first step can be used across all relational semantics for the same given logic.

The modal mu-calculus. In 1983, Dexter Kozen [7] introduced a logical framework
that combined simple modalities with fixpoint operators to enrich the expressivity of
modal logic so as to deal with infinite processes such as recursion. This logic, also known
as the (modal) mu-calculus, has a simple syntax, an easily given semantics, and yet is
decidable [10]. Modal mu-calculus has become a fundamental logical tool in theoreti-
cal computer science and has been extensively studied ([9],[10],[7],[11]) and applied, for
instance in the context of temporal properties of systems (e.g., that a given property is
verified infinitely often), or infinite properties of concurrent systems (e.g., when pieces
of computations are performed by more than one computer in parallel, and so on). Be-
sides, many expressive modal and temporal logics such as PDL, CTL, CTL∗ can be seen
as fragments of the modal mu-calculus ([10], section 4.1). Finally, modal mu-calculus
provides a unifying framework connecting modal and temporal logics, automata theory
and the theory of games.

Developing correspondence theory for modal mu-calculus can be useful because, be-
sides helping to strengthen its general mathematical theory and facilitate the transfer of
results from first-order logic with fixpoints, it can also help the understanding of the mean-
ing of mu-formulas, which is often difficult to grasp.

To our knowledge, the only results about frame-correspondence theory for mu-calculus
was developed in [13] by means of purely model-theoretic techniques. Given the existing
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algebraic approach to Sahlqvist theory, a natural question arising at this point is whether
an algebraic and order-theoretic account can be given of the results in [13], which would
hopefully help to extend them to fixpoint logics with a weaker-than-classical base. The
answer turns out to be in the affirmative. Before turning to presenting the original con-
tributions of this thesis, let us mention a few reasons why fixpoint logics with a weaker-
than-classical bases might be interesting to study in their own right:

1. the phenomena captured by fixpoints are intrinsically independent of their being set
in classical logic; hence we can gain a better insight on their nature;

2. we obtain a greater generality, and hence the possibility to apply our results also in
contexts where classical axioms such as the excluded middle are not sound.

3. constructive modal logics and type theory are of increasing foundational and practi-
cal relevance in fields such as semantics of programming languages, so mu-calculus
on intuitionistic base can be a valuable tool to these investigations.

Our contribution. In this thesis, we give an algorithmic, order-theoretic account of the
correspondence theory for modal mu-calculus presented in [13]. We isolate the algebraic
principles underlying these results, and, following the methodology developed in [22],
we add an intermediate level of order-theoretic analysis to the model-theoretic analysis
presented in [13]. This makes it possible to:

1. Recognize that the classical Boolean setting plays no essential role in the develop-
ment of the theory;

2. Extend the theory to several different logics with fixpoints, of which we only present
in detail the case study of intuitionistic modal mu calculus;

3. Recognize that the distributive setting plays essentially no role for the crucial order-
theoretic preservation properties of fixpoints; accordingly, we develop the relevant
theory of order-theoretic preservation properties of fixpoints in the vastly more gen-
eral setting of complete semilattices of which no distributivity law is assumed. This
paves the way to the development of correspondence theory for substructural logics
expanded with fixpoints.

4. Observe that different relational semantics can be given for the same given (fix-
point) logic; accordingly, we develop the crucial part of correspondence theory
independently of the specific way the relational semantics is specified.

In particular, in this thesis, we extend the algorithm ALBA of [26] to the language of intu-
itionistic modal logic with extremal fixpoints, so that the enhanced version of ALBA can
be modularly extended in such a way as to manipulate (a wider class of) mu-inequalities
(more of this in Chapter 2). Moreover, we define the class of recursive inequalities for
intuitionistic modal mu-calculus. This class is the intuitionistic counterpart of the class
of Sahlqvist mu-formulas defined in [13]. Then, we give an informal justification to the
effect that the enhanced ALBA is always successful on all the recursive mu-inequalities.

It is worth to stress that all the results and in particular all the practical reductions
which we develop for intuitionistic modal mu-calculus are immediately applicable to the
classical case, as will be illustrated later on in some examples.
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Structure of the thesis. This thesis is organized as follows: In Chapter 1, we give the
needed preliminaries on intuitionistic modal logic, its algebraic and one of its relational
semantics, as well as on the order-theoretic facts about fixpoints which will be useful
for our work; in Chapter 2, we sketch the essential features of the algorithmic approach
to correspondence and explain what our contribution to it consists of; in Chapter 3, we
review some versions of the Ackermann’s lemma, which is the core engine of the algo-
rithmic monadic second order variable elimination process; the original contribution of
this thesis starts in Chapter 4, where we develop the order-theoretic preservation prop-
erties of extremal fixpoints, in a general setting of complete (non-distributive) lattices of
variable assignments; in Chapter 5, we introduce formally the language and semantics
of intuitionistic modal mu-calculus, as well as the expanded language which facilitates
the algebraic correspondence reductions; in Chapter 6, we introduce some of the formal
tools for the enhanced version of ALBA, in the form of so-called approximation rules
(see Chapter 2 for more details on approximation rules) for fixpoint binders; we also dis-
cuss a proposal for the so-called residuation rules (see Chapter 2) for fixpoint binders,
which turns out not to be good for our purposes, and then a case study. In Chapter 7,
the adjunction and residuation rules for (non-nested) fixpoints which we will be actually
using are introduced, together with a method to recursively reduce nested fixpoints to the
non-nested cases. In Chapter 8, we define the intuitionistic recursive mu-inequalities, and
justify informally that ALBA, augmented with the rules defined in the previous chapters,
is enough to cover them. In Chapter 9, we discuss the conclusions and what is left for
future developments.
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Chapter One

Preliminaries

In this Chapter, we introduce the preliminaries on intuitionistic modal logic, as well as the
duality between its relational and algebraic semantics in the form of perfect distributive
lattices with operators. Also, preliminaries on fixpoints will be given here, which will be
useful later on. We will assume some familiarity with partial orders and lattices [4], and
therefore we will not give preliminaries on this.

The material in Section 1.1 is essentially an adaptation of the distributive
modal logic setting of [26] to the case of Intuitionistic modal logic. Different
relational semantics are also adopted in the literature for the same language,
see [3]. The material in Section 1.2 is taken from [1] and [28]. If the reader
is familiar with these topics, this chapter can be skipped.

1.1 Intuitionistic modal logic

1.1.1 Syntax
The language of Intuitionistic Modal Logic (or IML for short) is obtained by adding two
unary modalities ^,� and one binary connective→ to the propositional language of dis-
tributive lattices. The intuitive meanings of ^ϕ,�ϕ, respectively are: ‘ϕ is possible, ϕ
is necessary’. Because of the absence of classical negation, the modal operators are not
interdefinable and thus both of them have to be taken as primitive. For the sake of general-
ity, they will be also semantically interpreted using two (different) accessibility relations.
Let PROP be a denumerably infinite set of propositional variables. The elements of PROP
will be denoted by p, q, r, possibly indexed. The well-formed formulas of intuitionistic
modal logic are given by the following grammar:

ϕ ::= ⊥ | p | ϕ ∨ ψ | ϕ ∧ ψ | ^ϕ | �ϕ | ϕ→ ψ.

We will use ¬ϕ and > as abbreviations for ϕ→ ⊥ and ⊥ → ⊥ respectively.

Definition 1.1. An Intuitionistic Modal Logic Λ is a subset of formulas which contains all
theorems of intuitionistic propositional calculus (IPC) and closed under modus ponens,
substitution and the rules:

�(p ∧ q) = �p ∧ �q ^(p ∨ q) = ^p ∨ ^q
�> = > ^⊥ = ⊥

ϕ→ ψ/^ϕ→ ^ψ ϕ→ ψ/�ϕ→ �ψ.

ILLC, Amsterdam 8 Msc Thesis
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1.1.2 Relational semantics for intuitionistic modal logic
Given a poset (W,≤), we will use the symbol P↑(W) to indicate the set of all upward-
closed subsets of (W,≤) (that is, all subsets U ⊆ W such that if u ∈ U and u ≤ x then
x ∈ U). IML-frames are based on posets and not on sets.

Definition 1.2. (IML-frame). An IML-frame is a structure F = (W,≤,R^,R�) such that
(W,≤) is a non empty poset, R^,R� are binary relations on W such that the following
conditions hold:

≥ ◦R^◦ ≥⊆ R^ ≤ ◦R�◦ ≤⊆ R�.

A model based on an IML-frame F is a pairM = (F ,V), where V : PROP→ P↑(W),
assigns an upward-closed subset to every propositional variable. V is called a persistent
valuation on F .

Given a model M = (F ,V) based on an IML-frame F = (W,≤,R^,R�) and a state
w ∈ W, the semantics of our language Lterm is formally given by:

M, w  ⊥, never

M, w  >, always

M, w  p if and only if w ∈ V(p)

M, w  ϕ ∨ ψ if and only ifM, w  ϕ orM, w  ψ

M, w  ϕ ∧ ψ if and only ifM, w  ϕ andM, w  ψ

M, w  ^ϕ if and only if there exists v ∈ W with (wR^v andM, v  ϕ)

M, w  �ϕ if and only if for all v ∈ W with wR�v, we haveM, v  ϕ

M, w  ϕ→ ψ if and only if for all v ∈ W with w ≤ v ifM, v  ϕ thenM, v  ψ.

Observe thatM, w  ¬ϕ if and only if for all v ∈ W with w ≤ v,M, v 1 ϕ.
We will useM  ϕ if M, w  ϕ for every state w ∈ W.
As usual, the IML formula ϕ is valid at a state inF (denotedF , w  ϕ), if (F , V), w 

ϕ for every persistent valuation V on F ; the formula ϕ is valid on F if it is valid at every
state in F .

Definition 1.3. (Complex algebra of a IML-frame). For every IML-frame

F = (W,≤,R^,R�),

the complex algebra of F is

F + = (P↑(W),∪,∩, ∅,⇒, 〈R^〉, [R�]),

where for each X ⊆ W we have1,

1Let Xc be the relative complement of X ⊆ W, X↓ = {w ∈ W | w ≤ x for some x ∈ X}, and for every
R ⊆ W ×W, let R[w] = {x ∈ W | wRx}.

ILLC, Amsterdam 9 Msc Thesis
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[R�]X := {w ∈ W | R�[w] ⊆ X}
〈R^〉X := {w ∈ W | R^[w] ∩ X , ∅}
and, for X,Y ∈ W, X ⇒ Y = (X ∩ Yc)↓c.

1.1.3 Perfect intuitionistic algebras and their correspondence with
frames

Definition 1.4. An intuitionistic modal algebra (IMA) is an algebra

A = (A,∨,∧,→,⊥,>,^,�)

such that (A,∨,∧,→,⊥,>) is a Heyting algebra2 and the additional operations satisfy
the following identities:

^(x ∨ y) = ^x ∨ ^y ^⊥ = ⊥ �x ∧ �y = �(x ∧ y) > = �>.

It is well known in the classical setting that the complex algebras of Kripke frames
are characterized in purely algebraic terms as complete and atomic modal algebras. This
can be extended to the IML setting. In fact, the complex algebras of IML-frames are
abstractly characterized as perfect IMA’s.
In what follows, C will be a complete lattice except otherwise stated. An element j ∈ C
is completely join prime if for every S ⊆ C, if j ≤

∨
S then j ≤ s for some s ∈ S . An

element m ∈ C is completely meet prime if for every S ⊆ C, if
∧

S ≤ m then s ≤ m for
some s ∈ S .

We denote by J∞(C) the collection of completely join-prime elements of C and by
M∞(C) the collection of completely meet-prime elements of C.

Definition 1.5. (cf. [12], Def. 2.9) A perfect distributive lattice is a complete lattice C
such that J∞(C) is join-dense3 in C andM∞(C) is meet-dense in C.

Perfect distributive lattices are also characterized as those lattices that are isomorphic
to P↑(X) for some poset X [26]. Section 2.4 of [26] states that, if we consider J∞(C)
andM∞(C) as subposets of any perfect distributive lattice C then we have the following
proposition:

Proposition 1.1. The map κ : J∞(C) → M∞(C) defined by j 7→
∨
{u ∈ C; j � u} is an

order isomorphism. The inverse of κ denoted λ is defined order dually.

Definition 1.6. (Perfect Heyting Algebra)
A perfect Heyting Algebra is a perfect distributive lattice equipped with the Heyting im-
plication.

Definition 1.7. (Perfect IMA)
An IMA A = (A,∨,∧,→,⊥,>,^,�) is perfect if (A,∨,∧,→,⊥,>) is a perfect Heyting
Algebra and for every S ⊆ A:

^(
∨

S ) =
∨
{^s : s ∈ S } �(

∧
S ) =

∧
{�s : s ∈ S }.

2A Heyting algebra is a bounded distributive lattice equipped with the Heyting implication (i.e., a binary
operation→ such that for every a, b, c ∈ A, a ∧ b ≤ c iff a ≤ b→ c.

3i.e., for all u ∈ C u =
∨
{r ∈ J∞(C); r ≤ u}. Meet-dense is defined order dually.
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Proposition 1.2. For every IML-frame F , F + is a perfect IMA.

In the classical case, we can associate any complete atomic modal algebra with its
atom structure, i.e., a Kripke frame based on the set of its atoms; likewise, we can asso-
ciate any perfect Heyting algebra with its prime structure (cf. definition 2.12 of [26])

C+ = (J∞(C),≥,R^,R�),

where (J∞(C),≥) is the dualized subposet of the completely join-prime elements of C,
and for every i, j ∈ J∞(C),

jR^i iff j ≤ ^i jR�i iff �κ(i) ≤ κ(j).

The following proposition states the duality that exists between IML-frames and per-
fect IMA.

Proposition 1.3. For every perfect IMA C and every IML-frame F ,

(C+)+ � C and (F +)+ � F .

1.1.4 The expanded language of perfect IMA’s
A crucial role for our (algebraic) correspondence will be played by an expansion of the
language of IML. Any perfect IMA is a complete lattice, and, by definition, the operations
∨,∧,^,� of a perfect IMA are each either completely join- or meet-preserving in each
coordinate. So each of them has a coordinatewise adjoint, or residual, as seen below. Each
operation in the lower row is the (coordinatewise) adjoint of the corresponding operation
in the upper row:
∧ ∨ ^ �
→ − � _

where − is the Heyting implication of the dual lattice. Indeed, the complex algebra of a
frame (W,≤,R^,R�) (in the intuitionistic context) is a complete bi-Heyting4 algebra with
operators. For reasons which will be explained in Chapter 2, we find it useful to define an
expanded language for perfect IMA’s, which will include the connectives corresponding
to all the adjoint operations, as well as a denumerably infinite set of sorted variables NOM
called nominals, ranging over the completely join-prime elements of perfect IMA’s, and a
denumerably infinite set of sorted variables CNOM, called co-nominals, ranging over the
completely meet-prime elements of perfect IMA’s. The elements of NOM will be denoted
with i; j, and those of CNOM with m; n.

Definition 1.8. ([26]) The formulas of the expanded language L+
term are given by the

following grammar:

ϕ ::= ⊥ | p | j | m | ϕ ∨ ψ | ϕ ∧ ψ | ϕ − ψ | ϕ→ ψ | ^ϕ | �ϕ | _ϕ | �ϕ

where p ∈ PROP, j ∈ NOM, and m ∈ CNOM.

4A bi-Heyting algebra is a Heyting algebra such that its dual is also a Heyting algebra.
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A valuation forL+
term on an IML frame F is any map: V : PROP∪NOM∪CNOM →

P↑(W) such that V(p) ∈ P↑(W). V(i) = x↑ for some x ∈ W, for each i ∈ NOM. For each
m ∈ CO-NOM, V(m) = (x↓)c = κ(x↑) for some x ∈ W. From now on till the end of
this chapter, we will denote by L+ the set of inequalities between terms in L+

term. The
satisfaction relation for formulas of L+ is defined recursively as can be seen in section 2.5
of [26]. The following proposition shows how the local satisfaction of modal formulas
can be encoded as a special case of global satisfaction of inequalities.

Proposition 1.4. For every IMA C, every IML frame F , every L+
term-valuation V on F

and L+
term-assignment v on C, and every ϕ ∈ L+

term,

1. the following are equivalent:
a) F ,V,w  ϕ;
b) F +,V ′+ � j ≤ ϕ, where j is a new nominal not occurring in ϕ and V ′ is the
j-variant of V such that V ′(j) = {w}↑;
c) F +,V ′+ 2 ϕ ≤ m, where m is a new co-nominal not occurring in ϕ and V ′ is the
m-variant of V such that V ′(m) = ({w}↓)c.

2. C, v � j ≤ ϕ if and only if C+, v+, v(j) � ϕ.

3. C, v � ϕ ≤ m if and only if C+, v+, λ(v(m)) 2 ϕ.

For an account of the standard translation of L+ in the general setting of DML, see
section 2.5.2 of [26].

1.2 Order theoretic facts about fixpoints
The logical operators of the modal µ-calculus can be interpreted using algebraic tools.
Recall that given an ordered set S and a map F : S → S , an element x ∈ S is called a
fixpoint of F if F(x) = x. The least and greatest fixpoints of F will be respectively denoted
by LFP.F and GFP.F .

Theorem 1.1. (The Knaster-Tarski Fixpoint Theorem)
Let (L,

∨
,
∧

) be a complete lattice and F : L→ L be an order-preserving map. Then

1. LFP.F =
∧
{x ∈ L | F(x) ≤ x} is the least fixpoint of F.

2. GFP.F =
∨
{x ∈ L | x ≤ F(x)} is the greatest fixpoint of F.

Proof. 1. We first have to show that LFP.F is a fixpoint of F; i.e., F(x) = x. Let
G = {x ∈ L | F(x) ≤ x}. For all x ∈ G, LFP.F ≤ x, so F(LFP.F) ≤ F(x) since F
is order-preserving. Thus, by transitivity of ≤ and using the fact that x ∈ G, we get
F(LFP.F) ≤ x. Hence F(LFP.F) is a lower bound of G, whence

(1.1) F(LFP.F) ≤ LFP.F.

Since F is order preserving, from (1.1) we get F(F(LFP.F)) ≤ F(LFP.F). This
entails that F(LFP.F) ∈ G; now LFP.F =

∧
G, so

(1.2) LFP.F ≤ F(LFP.F).

Equalities (1.1) and (1.2) yield F(LFP.F) = LFP.F as desired.
Next we show that LFP.F is the least fixpoint of F. Let α be any fixpoint of F.
Then α ∈ G, and so LFP.F ≤ α; i.e., LFP.F is the least fixpoint of F.
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2. This follows from 1. by order duality.
�

Definition 1.9. Let C = (C,
∨
,
∧

) be a complete lattice, and let f : C → C be some map.
Then by ordinal induction we define the following maps on C:

f 0
µ (c) := c

f α+1
µ (c) := f ( f αµ (c))

f λµ (c) :=
∨
α≤λ

f αµ (c).

where λ denotes an arbitrary limit ordinal.
By replacing µ and

∨
respectively by ν and

∧
, we obtain an analogue (dual) definition.

Proposition 1.5. Let C = (C,
∨
,
∧

) be a complete lattice, and let f : C → C be a mono-
tone map. Then f is inductive, that is,

f αµ (⊥) ≤ f βµ (⊥).

for all ordinals α and β such that α < β.

Corollary 1.1. Let C = (C,
∨
,
∧

) be a complete lattice, and let f : C → C be a monotone
map. Then there is some α of size at most | C | such that LFP. f = f αµ (⊥).

The following proposition will be useful later in this thesis.

Proposition 1.6. (cf. proposition 1.2.23 of [1])
Let E be a complete lattice and D be an ordered set. If f : E ×D→ E is monotonic in its
two arguments, then µx. f (x, y) and νx. f (x, y) are monotonic mappings from D to E.

In the following, we will write θ for either µ or ν.

Proposition 1.7. (cf. proposition 1.3.2 of [1])
Let E be a complete lattice, and h : E × E → E be a map which is monotonic in its two
arguments. Then,

θx.θy.h(x, y) = θx.h(x, x) = θy.θx.h(x, y).
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Chapter Two

The context of our work: order
theoretic algorithmic correspondence

The material in this chapter is a re-elaboration of insights coming from [26]
and [22]. If the reader is not familiar with these papers, this chapter cannot
be skipped.

The original contribution of this thesis is rather technical and can only be understood in
the context of the order theoretic algorithmic correspondence theory [26]. Rather than
giving a full account of this theory, which will be very lengthy, in this chapter we are
going to run the algorithm on some examples, while at the same time illustrate the order-
theoretic principles on which it is based. Let us start with one of the best known examples
in correspondence theory namely ^^p → ^p. It is well known that for every kripke
frame F = (W,R),

F  ^^p→ ^p iff F � ∀xyz (Rxy & Ryz → Rxz).

The first important insight is that, by duality, every piece of argument to prove this corre-
spondence that we can perform on frames can be translated on their dual algebras, which
are perfect distributive lattices with operators (actually, in the classical case, they will be
in particular complete atomic boolean algebras with operators). More details on this can
be found in subsection 1.1.3. Once we are in the setting of perfect distributive lattices,
the algorithmic strategy will be implemented there. Let us show how this is done in the
case of the example above. First of all, the validity condition on F which we have written
above translates into the complex algebra A as [[^^p]] ⊆ [[^p]] for every assignment of
p into A, so we can rephrase this validity clause as follows:

A � ∀p[^^p ≤ ^p].

Now observe that in every perfect distributive algebra, every element is both the join of
the completely join prime elements below it and the meet of the completely meet prime
elements above it. So the condition above can be equivalently rewritten as follows:

A � ∀p[
∨
{i ∈ J∞(A) | i ≤ ^^p} ≤

∧
{m ∈ M∞(A) | ^p ≤ m}].

By elementary properties of least upper bounds and greatest lower bounds in posets (cf.
[4]), this condition is true if and only if every element in the join is less than equal to
every element in the meet; thus the condition above can be equivalently rewritten as:

A � ∀p∀i∀m[(i ≤ ^^p & ^p ≤ m)⇒ i ≤ m],
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The context of our work: order theoretic algorithmic correspondence 15

where the variables i and m are special and range over J∞(A) andM∞(A) respectively.
At this point we can proceed in two different ways:

The first option. The first way to proceed is based on the observation that the operation
on A interpreting ^ is in fact 〈R〉, defined as 〈R〉(X) = {w ∈ W | ∃x(Rwx & x ∈ X)}
for every X ⊆ W. It is well known that this operation preserves arbitrary unions i.e., it
preserves arbitrary joins in the complete lattice A. By the general theory of adjunction in
complete lattices, this is equivalent to 〈R〉 being a left adjoint (cf. [4, proposition 7.34]).
It is also well known that the right adjoint of 〈R〉 is is the operation [R−1], defined as
[R−1](X) = {w ∈ W | ∀x(R−1wx ⇒ x ∈ X)} for every X ⊆ W. This implies that if we
introduce the symbol � in our language which is interpreted by [R−1] on the algebra A,
then, for every interpretation of p and m ∈ M∞(A),

A � ^p ≤ m iff A � p ≤ �m.

Hence the condition we had before can be equivalently rewritten as:

A � ∀p∀i∀m[(i ≤ ^^p & p ≤ �m)⇒ i ≤ m],

and then as follows:

A � ∀i∀m[∃p(i ≤ ^^p & p ≤ �m)⇒ i ≤ m].

At this point we are in a position to eliminate the variable p and equivalently rewrite
the previous condition as follows:

A � ∀i∀m[i ≤ ^^�m⇒ i ≤ m].

Let us justify this equivalence: for the direction from top to bottom, fix an inter-
pretation V of the variables i ∈ J∞(A) and m ∈ M∞(A), and assume that under this
interpretation i ≤ ^^�m. To prove that, under the interpretation V , the inequality i ≤ m
holds, consider the variant V∗ of V which maps V∗(p) = �V(m). Then under this interpre-
tation, of course both the inequalities i ≤ ^^p and p ≤ �m hold; hence by the topmost
clause i ≤ m holds under V∗ and hence under V . Conversely, fix an interpretation V of the
variables p, i and m, and assume that under this interpretation i ≤ ^^p and p ≤ �m. Then
by the monotonicity of the term function ^^p, we have that under V , i ≤ ^^p ≤ ^^�m.
Hence by the lower clause, it follows that the inequality i ≤ m holds under V .

The argument above is nothing else than an instance of the (proof of) the following
(left) Ackermann’s lemma:

Lemma 2.1. Let α, β(p), γ(p) be formulas of a (modal) language L+ over the set of vari-
ables PROP; let p ∈ PROP such that p < FV(α) and let V be any valuation on a frame
F ; if β is negative in p and γ is positive in p, then the following are equivalent for every
L+-Kripke frame F :

1. F ,V  β(α/p) ≤ γ(α/p);

2. there exists a p-variant V∗ of V such that F ,V∗  p ≤ α and F ,V∗  β(p) ≤ γ(p).
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The context of our work: order theoretic algorithmic correspondence 16

the proof of it similar to the proof of the right Ackermann’s lemma which is stated and
proved in Chapter 3 (cf. lemma 3.1) . The only thing we want to add at this point is that,
when proving the direction from top to bottom, the variant V∗ we considered was nothing
else than the minimal valuation of the classical Sahlqvist correspondence argument.

Whenever, in a reduction process we reach a shape in which the lemma above (or its
symmetric (right) version) can be applied, we say that the condition is in Ackermann’s
shape.

The second option. For this example, there is also another way to reach Ackermann’s
shape: starting again from

A � ∀p∀i∀m[(i ≤ ^^p & ^p ≤ m)⇒ i ≤ m],

recall that A is a perfect distributive lattice and so the element of A interpreting p is the
join of the completely join prime elements below it. Hence, if V is any interpretation such
that the inequality i ≤ ^^p holds, because the interpretation of ^^ on A is completely
join-preserving, we have that V(i) ∈ J∞(A) and

V(i) ≤ ^^(
∨
{ j ∈ J∞(A) | j ≤ V(p)}) =

∨
{^^ j | j ∈ J∞(A) and j ≤ V(p)},

which implies that V(i) will be below or equal to some element of the join in display.
Hence, we can equivalently rewrite the validity clause above as follows:

A � ∀p∀i∀m[∃ j(i ≤ ^^ j & j ≤ p & ^p ≤ m)⇒ i ≤ m],

and then as follows:

A � ∀p∀i∀m∀ j[(i ≤ ^^ j & j ≤ p & ^p ≤ m)⇒ i ≤ m],

Here we are again in a position to eliminate the variable p with a similar argument as
before (or applying the Ackermann’s lemma), so as to obtain

A � ∀i∀m∀ j[(i ≤ ^^ j & ^ j ≤ m)⇒ i ≤ m].

At this point, using elementary properties of least upper bounds and greatest lower bounds
plus the fact thatJ∞(A) is join-dense in A andM∞(A) is meet-dense in A, we can further
reduce the clause above first as follows:

A � ∀i∀ j[(i ≤ ^^ j ⇒ ∀m[^ j ≤ m⇒ i ≤ m]].

then as follows:
A � ∀i∀ j[(i ≤ ^^ j ⇒ i ≤ ^ j].

then as follows:
A � ∀ j[^^ j ≤ ^ j].

Again via duality, the clause above can be retranslated on frames as

F  ∀w[〈R〉〈R〉{w} ⊆ 〈R〉{w}],

which by definition is
F  ∀w[R−1[R−1[w]] ⊆ R−1[w]],

which can be easily translated into the familiar transitivity condition of R−1 and hence of
R.
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A proof-theoretic presentation. The discussion so far illustrates the main strategy for
the elimination of second order variables, which is the core of Sahlqvist theory, by means
of the algorithmic approach: namely, we transform the initial validity condition in a shape
in which the Ackermann’s lemma is applicable (i.e., the Ackermann’s shape). Clearly,
the Ackermann’s lemma is the endpoint of this strategy, but besides it, the two special
properties which guaranteed the soundness of the rewriting process to be able to reach the
Ackermann’s shape were:

(a) The possibility of approximating elements of the algebra from above or from below
using completely join prime and completely meet prime elements;

(b) the fact that 〈R〉 is a left adjoint. This is a general fact of all the operations which
interpret the (non fixpoint) logical connectives in our language: indeed they are either
residuals or adjoints.

Accordingly, we can repackage these observations in the form of proof rules. For
instance, a mirror-image version of the Ackermann’s lemma 2.1 (cf. lemma 3.1) implies
that the following rules are sound and invertible w.r.t. the standard Kripke semantics (and
hence also w.r.t. the algebraic semantics of complete atomic Boolean algebras):

∀p[α ≤ p⇒ φ(p) ≤ ψ(p)]
(RA)

φ(α/p) ≤ ψ(α/p)
∀p[φ(p) ≤ ψ(p)]

(⊥)
φ(⊥/p) ≤ ψ(⊥/p)

subject to the restrictions that α be p-free, and that φ and ψ be respectively positive and
negative in p. Notice that the rule (⊥) can be regarded as the special case of (RA) in which
α := ⊥. Likewise, lemma 2.1 implies that the following rules are sound and invertible
w.r.t. the standard Kripke semantics (and hence also w.r.t. the algebraic semantics of
complete atomic Boolean algebras):

∀p[p ≤ α⇒ φ(p) ≤ ψ(p)]
(LA)

φ(α/p) ≤ ψ(α/p)
∀p[φ(p) ≤ ψ(p)]

(>)
φ(>/p) ≤ ψ(>/p)

subject to the restrictions that α be p-free, and that φ and ψ be respectively negative and
positive in p. Other rules which can be easily proved to be sound and invertible come
in two types: the approximation rules and the residuation/adjunction rules, such as the
following ones (below, we use the variables i, j to be interpreted as completely join prime
elements, and the variables m,n to be interpreted as completely meet prime elements of
the algebra):

φ ≤ ψ
(FA)

∀j∀m[(j ≤ φ & ψ ≤ m)⇒ j ≤ m]

The rule above is called first approximation and its soundness and invertibility has been
motivated in the discussion above. The following rules are sound and invertible thanks to
the fact that ∨ is both a left adjoint and a right residual:

φ ∨ χ ≤ ψ
(∨LA)

φ ≤ ψ χ ≤ ψ
φ ≤ χ ∨ ψ

(∨RR)
φ − χ ≤ ψ

The following rules have been applied in the discussion above and their soundness and
invertibility is motivated by the fact that ^ is a left adjoint, and hence completely join
preserving, plus the fact that i, j are interpreted as completely join prime elements:
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^φ ≤ ψ
(^LA)

φ ≤ �ψ
j ≤ ^ψ

(^Approx)
∃i(j ≤ ^i & i ≤ ψ)

In a perfect distributive lattice, ∧ is both a right adjoint and a left residual:

φ ≤ χ ∧ ψ
(∧RA)

φ ≤ χ φ ≤ ψ
φ ∧ χ ≤ ψ

(∧LR)
φ ≤ χ→ ψ

The interpretation of � is a right adjoint and and hence completely meet preserving,
plus m,n are interpreted as completely meet prime elements:

φ ≤ �ψ
(�RA)

_φ ≤ ψ

�φ ≤ m
(�Appr)

∃n(�n ≤ m & φ ≤ n)

Applying the algorithmic approach to mu-calculus. Given the machinery which we
have seen above, can we apply it successfully to mu-inequalities? Yes we can in some
cases, as the following example will show:

The inequality νX.�(p ∧ X) ≤ p can be reduced as follows:

∀p[νX.�(p ∧ X) ≤ p]
iff ∀p∀i∀m[(i ≤ νX.�(p ∧ X) & p ≤ m)⇒ i ≤ m]

(∗) iff ∀i∀m[(i ≤ νX.�(m ∧ X)⇒ i ≤ m]
iff ∀m[νX.�(m ∧ X) ≤ m].

The equivalence marked with (∗) is an application of the (left) Ackermann’s lemma (or,
equivalently of the rule (LA)), which is soundly applied because the term function γ(p) =

νX.�(p ∧ X) is monotone in p. So all the steps in the previous chain of equivalences can
be justified in terms of the principles of order-theoretic algorithmic correspondence we
have seen above. But two main questions now are:

(a) in which language should we interpret the clause ∀m[νX.�(m∧X) ≤ m] on frames?
(b) Which classes of mu-formulas can be treated, with the tools we have so far?
The answer to (a) is: the clause can be interpreted in the correspondence language

FO+LFP; this is done just in the same way as in the fixpoint-free case and as we have
seen in the example above (for instance, by interpreting the variable m ∈ M∞(A) on
classical kripke frames as the complement of a singleton subset; more of this in [26]).

The answer to (b) is: only very special formulas, namely those which can be trans-
formed into Ackermann’s shape; but to achieve this, we need to be able to display some
occurrences of the variable p (i.e., we need to get them to the surface of an inequality,
either to the left or to the right, by means of applications of the rules we have so far).
Of course, if all the propositional variables occur inside the scope of fixpoint binders,
there is no hope to achieve this with the tools we have so far. Therefore, all the work
in the following chapters is aimed at defining rules (both of approximation-type and of
residuation/adjunction-type) for fixpoint binders, which make it possible to reach Ack-
ermann’s shape also in cases in which the propositional variables occur in the scope of
fixpoint binders.
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Chapter Three

The Ackermann’s lemmas

In this chapter, we review the lemmas which enable us to eliminate the monadic second
order variables. They come in two versions: the Ackermann’s lemma which we have seen
and applied in the previous chapter, and the recursive version of it.

The lemmas are not original contributions and can be found in [26], [23]
[21], but the examples are.

Lemma 3.1. (Right Ackermann’s lemma) Let α, β(p), γ(p) be formulas of a (modal) lan-
guage L+ over the set of variables PROP; let p ∈ PROP such that p < FV(α) and let
V be any valuation on a frame F ; if β is positive in p and γ is negative in p, then the
following are equivalent for every L+-Kripke frame F :

1. F ,V  β(α/p) ≤ γ(α/p);

2. there exists a p-variant V∗ of V such that F ,V∗  α ≤ p and F ,V∗  β(p) ≤ γ(p).

Proof. As to the direction from (1) to (2): let V be a valuation on a frame F , such that
[[β(α/p)]]V ⊆ [[γ(α/p)]]V . Let V∗ be the p-variant of V such that V∗(p) := [[α]]V . Then,
because the variable p does not occur in α, we have [[α]]V∗ = [[α]]V = V∗(p), which proves
that F ,V∗  α ≤ p. However, for every formula ξ, the following chain of equalities holds:
[[ξ(p)]]V∗ = [[ξ]](V∗(p)) = [[ξ]]([[α]]V) = [[ξ(α/p)]]V . This and the assumption prove that
F ,V∗  β(p) ≤ γ(p).
Conversely, let V be a valuation on a frame F , assume 2., then we have [[α]]V∗ ⊆ V∗(p).
Now the variable p does not occur in α so [[α]]V = [[α]]V∗ ⊆ V∗(p). Thus, we have the
following:

[[β(α/p)]]V = [[β]]([[α]]V) ⊆ [[β]](V∗(p)) ⊆ [[γ]](V∗(p)) ⊆ [[γ]]([[α]]V).

Hence, 1. holds.
The second inclusion above is by the assumption that F ,V∗  β(p) ≤ γ(p). The first and
third inclusions above are justified by the fact that β and γ are respectively positive and
negative in p (i.e, [[β]] and [[γ]] are respectively monotone and antitone in p.) �

3.1 Recursive Ackermann lemma
For the purpose of this section, F is a DML/IML frame, andL+ is the expanded language
appropriate to its corresponding complex algebra F +.
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Lemma 3.2 (Recursive right Ackermann’s Lemma). Let α(p) and β(p) ∈ L+ be positive
in p, and let γ(p) ∈ L+ be negative in p. Let V be any valuation on a frame F . Then, the
following are equivalent:

1. F ,V  β(µp.α(p)/p) ≤ γ(µp.α(p))/p);

2. there exists some V ′ ∼p V such that F ,V ′  α(p) ≤ p, and F ,V ′  β(p) ≤ γ(p).

Proof. As regards ‘1 ⇒ 2’, letting V ′(p) := V(µp.α(p)), it is not difficult to see that 2.
holds. Conversely, F ,V ′  α(p) ≤ p implies that V ′(p) is a pre-fixpoint of [[α]], and
hence LFP([[α]]) ≤ V ′(p). Therefore using the fact that β and γ are respectively positive
and negative in p we get:

[[β(µp.α(p)/p)]]V = [[β]](LFP([[α]])) ≤ [[β]](V ′(p)) ≤ [[γ]](V ′(p)) ≤ [[γ]](LFP([[α]])) =

[[γ(µp.α(p)/p)]]V . �

Example 3.1. Consider the Löb inequality �(�p → p) ≤ �p. In the classical Sahlqvist
setting it is well known that this formula does not have a first order correspondent. In-
deed, the minimal valuation exists, but it is not first-order definable (so the Löb example
is much better behaved than formulas, like the McKinsey formulas, for which the min-
imal valuation does not exist altogether). Indeed, if we allow for the correspondence
language to be more expressive than the simple frame correspondence language, as is
done in [13], where the FO+LFP is taken as the correspondence language, then we can
apply the recursive Ackermann’s lemma, which again gives the minimal valuation, and
find the correspondent of the Löb inequality, also in the intuitionistic case, as follows:

∀p[�(�p→ p) ≤ �p]
iff ∀p∀i∀m[(i ≤ �(�p→ p) & �p ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m[(_i ≤ �p→ p & �p ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m[(_i ∧ �p ≤ p & �p ≤ m)⇒ i ≤ m]

(∗) iff ∀i∀m[�(µp.(_i ∧ �p)) ≤ m⇒ i ≤ m]
iff ∀i[i ≤ �(µp.(_i ∧ �p))]
iff ∀i[_i ≤ µp.(_i ∧ �p)]

In the equivalence marked with (∗), the Right Ackermann lemma has been applied
with α(p) := _i ∧ �p and β(p) := �p being positive in p, and γ(p) := m being negative
in p.

Example 3.2. Consider the van Benthem inequality �^> ≤ �(�(�p → p) → p); as in
the previous example, we have:

ILLC, Amsterdam 20 Msc Thesis



The Ackermann’s lemmas 21

∀p[�^> ≤ �(�(�p→ p)→ p)]
iff ∀p∀i∀m[(i ≤ �^> & �(�(�p→ p)→ p) ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m∀n[(i ≤ �^> & �n ≤ m & �(�p→ p)→ p ≤ n)⇒ i ≤ m]
iff ∀p∀i∀j∀m∀n[(i ≤ �^> & �n ≤ m & j ≤ �(�p→ p) & j→ p ≤ n)⇒ i ≤ m]
iff ∀p∀i∀j∀m∀n[(i ≤ �^> & �n ≤ m & _j ≤ �p→ p & j→ p ≤ n)⇒ i ≤ m]
iff ∀p∀i∀j∀m∀n[(i ≤ �^> & �n ≤ m & _j ∧ �p ≤ p & j→ p ≤ n)⇒ i ≤ m]

(∗) iff ∀i∀j∀m∀n[(i ≤ �^> & �n ≤ m & j→ µp.(_j ∧ �p) ≤ n)⇒ i ≤ m]
iff ∀i∀j∀n[(i ≤ �^> & j→ µp.(_j ∧ �p) ≤ n)⇒ ∀m[�n ≤ m⇒ i ≤ m]]
iff ∀i∀j∀n[(i ≤ �^> & j→ µp.(_j ∧ �p) ≤ n)⇒ _i ≤ n]
iff ∀i∀j[i ≤ �^> ⇒ ∀n[j→ µp.(_j ∧ �p) ≤ n⇒ _i ≤ n]]
iff ∀i∀j[i ≤ �^> ⇒ _i ≤ j→ µp.(_j ∧ �p)]
iff ∀i∀j[i ≤ �^> ⇒ i ≤ �(j→ µp.(_j ∧ �p))]
iff ∀j[�^> ≤ �(j→ µp.(_j ∧ �p))]

In the equivalence marked with (∗), the Right Ackermann lemma has been applied with
α(p) := _j ∧ �p and β(p) := j → p being positive in p, and γ(p) := n being negative in
p.
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Chapter Four

Preservation properties of extremal
fixpoints

In this chapter, we give the order-theoretic basis for the definition of sound approximation
rules for fixpoint binders. For the sake of greater generality, the presentation is purely
lattice-theoretic. In fact, we will be working in a setting of complete lattices which do not
need to be distributive. This is interesting because it points at the possibility to extend the
algorithmic theory to logics with fixpoints on a non distributive lattice base.

To our knowledge, the material in this chapter is entirely original.

Proposition 4.1. Let L be a complete
∨

-semilattice, and let X be a family of monotone
maps f : L→ L. Then,

1.
∨
{LFP( f ) | f ∈ X} ≤ LFP(

∨
X).

2. If X is directed and every f ∈ X is completely join-preserving, then

LFP(
∨
X) =

∨
{LFP( f ) | f ∈ X}.

3. If X is a collection of monotone maps f : L→ L, such that

(4.1) (
∨
X)(
∨

S ) =
∨
{ f (a f ) | f ∈ X}

for every X-indexed subset S = {a f | f ∈ X} ⊆ L, then

LFP(
∨
X) =

∨
{LFP( f ) | f ∈ X}.

Proof. 1. Let x = LFP(
∨
X); so in particular x is a pre-fixpoint of

∨
X, i.e., (

∨
X)(x) ≤

x. Hence, for every f ∈ X,

f (x) ≤
∨
{ f (x) | f ∈ X} = (

∨
X)(x) ≤ x.

This shows that any pre-fixpoint of
∨
X (and x in particular) is a pre-fixpoint of every

f ∈ X. Therefore, since the least fixpoint is also the least pre-fixpoint, LFP( f ) ≤ x for
every f ∈ X, which proves that

∨
{LFP( f ) | f ∈ X} ≤ LFP(

∨
X).

2. To prove that LFP(
∨
X) ≤

∨
{LFP( f ) | f ∈ X}, observe that

LFP(
∨
X) =

∧
{a | (
∨
X)(a) ≤ a}

=
∧
{a | f (a) ≤ a for all f ∈ X};
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hence it is enough to show that, if x =
∨
{LFP(g) | g ∈ X}, then f (x) ≤ x for every f ∈ X.

Fix f ∈ X; since by assumption f is completely join preserving, f (x) ≤ x is equivalent to∨
{ f (LFP(g)) | g ∈ X} ≤

∨
{LFP(g) | g ∈ X}.

To prove this, it is enough to show that for every g ∈ X there exists some h ∈ X such
that f (LFP(g)) ≤ LFP(h). Since by assumption X is directed and f , g ∈ X, there exists
some h ∈ X such that f ≤ h and g ≤ h (w.r.t. the pointwise order). We will prove the
statement above for this choice of h.

Since LFP(h) is a pre-fixpoint of h, we have that f (LFP(h)) ≤ h(LFP(h)) ≤ LFP(h),
and g(LFP(h)) ≤ h(LFP(h)) ≤ LFP(h), i.e. LFP(h) is a pre-fixpoint of both f and g;
hence LFP(g) ≤ LFP(h), from which it follows by monotonicity of f that f (LFP(g)) ≤
f (LFP(h)). Hence the following chain of inequalities holds:

f (LFP(g)) ≤ f (LFP(h)) ≤ LFP(h).

3. To prove that LFP(
∨
X) ≤

∨
{LFP( f ) | f ∈ X} it is enough to show that b =∨

{LFP( f ) | f ∈ X} is a fixpoint of
∨
X. Let a f = LFP( f ) and S =

∨
{a f | f ∈ X}.

We have: (
∨
X)(b) = (

∨
X)(
∨

S ) =
∨
{ f (a f ) | f ∈ X} =

∨
{a f | f ∈ X} = b. �

In what follows, we are going to introduce a setting in which the unlikely-looking
assumption (4.1) of Proposition 4.1.3 will be naturally verified.

Let Var be a set, and L be a complete
∨

-semilattice. Let Val(L) be the set of maps
from Var to L. The set Val(L) inherits the structure of complete

∨
-semilattice from L:

indeed, for every H ⊆ Val(L), define
∨
H : Var → L by x 7→

∨
L{h(x) | h ∈ H}.

Consider an arbitrary map φ : Val(L) → L. For every x ∈ Var, the map φ induces a map
Φx : Val(L) → [L → L] where, for every h : Var → L, the map Φx

h : L → L sends each
a ∈ L to φ(ha

x), and ha
x : Var → L is defined as follows1: for every y ∈ Var,

ha
x(y) =

a if y = x
h(y) otherwise.

Fact 4.1. For every a ∈ L, S ⊆ L, h ∈ Val(L),H ⊆ Val(L),

1. h
∨

S
x =

∨
Val(L){ha

x | a ∈ S }.

2. (
∨
H)a

x =
∨
{ha

x | h ∈ H}.

3. (
∨
H)
∨

S
x =

∨
{ha

x | a ∈ S and h ∈ H}.

4. If S = {ah | h ∈ H}, then (
∨
H)
∨

S
x =

∨
{hah

x | h ∈ H}.

Proof. Items 1 and 2 immediately follow from definitions; Item 3 follows from 1 and 2.
As to 4, ∨

{hah
x (x) | h ∈ H} =

∨
{ah | h ∈ H}

= (
∨
H)
∨

S
x (x),

1Sometimes we will also write e.g. h(a,b,c)
(x,y,z) in place of e.g. ((ha

x)b
y)c

x.
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and for every y ∈ Var \ {x},∨
{hah

x (y) | h ∈ H} =
∨
{h(y) | h ∈ H}

= (
∨
H)(y)

= (
∨
H)
∨

S
x (y).

�

Remark 4.1. It is interesting to contrast items 3 and 4 of the Fact above; indeed, applying
item 3 to the special case in which S = {ah | h ∈ H} yields (

∨
H)
∨

S
x =

∨
{hag

x | h, g ∈ H}.
This join is in principle different from

∨
{hah

x | h ∈ H}, because the former is indexed over
(h, g) ∈ H ×H and the latter is indexed over (h, h) ∈ ∆H � H . Therefore, it always holds
that ∨

{hag
x | h, g ∈ H} ≥

∨
{hah

x | h ∈ H},

and proving the converse inequality typically requires being able to produce, for every
(h, g) ∈ H2, an index k ∈ H such that hag

x ≤ kak
x . This requirement is essentially a form of

the (upward) directedness which we need to assume in the statement of Proposition 4.1.2.
The item 4 is then the crucial piece of information, the one which allows Proposition
4.2 below (where no assumption of directedness is made) to be proved as an instance of
Proposition 4.1.3.

Given a map φ : Val(L)→ L and x ∈ Var, everyH ⊆ Val(L) induces a corresponding
set X = {Φx

h : L → L | h ∈ H}, to which Proposition 4.1.3 will be applied in the proof of
the following

Proposition 4.2. Let L be a complete
∨

-semilattice, x ∈ Var, and H ⊆ Val(L); let
φ : Val(L)→ L be such that:
(a) Φx

h : L→ L is monotone for every h ∈ H , and
(b) Φx∨

H
=
∨
{Φx

h | h ∈ H}.
Then

LFP(Φx∨
H

) =
∨
{LFP(Φx

h) | h ∈ H}.

Proof. The inequality
∨
{LFP(Φx

h) | h ∈ H} ≤ LFP(Φx∨
H

) immediately follows from
Proposition 4.1.1 and assumptions (a) and (b). The converse inequality can be obtained
as a direct consequence of Proposition 4.1.3, by observing that, thanks to Fact 4.1.4, the
set X = {Φx

h : L → L | h ∈ H} satisfies the assumption (4.1). Indeed, for every set
S = {ah | h ∈ H},

(
∨
X)(
∨

S ) = Φx∨
H

(
∨

S )
= φ((

∨
H)
∨

S
x )

= φ(
∨
{hah

x | h ∈ H}) (Fact 4.1.4)
=
∨
{φ(hah

x ) | h ∈ H}
=
∨
{Φx

h(ah) | h ∈ H}.
�

A sufficient condition for assumptions (a) and (b) of the above Proposition to be veri-
fied is that φ : Val(L)→ L be completely

∨
-preserving, as is shown in the following

Fact 4.2. If φ : Val(L)→ L is completely
∨

-preserving, then for every x ∈ Var,

1. Φx
h : L→ L is completely

∨
-preserving (hence monotone) for every h ∈ Val(L);
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2. Φx is completely
∨

-preserving, i.e. for everyH ⊆ Val(L),

Φx∨
H

=
∨
{Φx

h | h ∈ H}.

Proof. 1. For every S ⊆ L,

Φx
h(
∨

S ) = φ(h
∨

S
x )

= φ(
∨
{ha

x | a ∈ S }) (Fact 4.1.1)
=
∨
{φ(ha

x) | a ∈ S } (φ is completely
∨

-preserving)
=
∨
{Φx

h(a) | a ∈ S }.

2. For every a ∈ L,

Φx∨
H

(a) = φ((
∨
H)a

x)
= φ(

∨
{ha

x | h ∈ H}) (Fact 4.1.2)
=
∨
{φ(ha

x) | h ∈ H} (φ is
∨

-preserving)
=
∨
{Φx

h(a) | h ∈ H}.
�

As an immediate consequence of Proposition 4.2 and Fact 4.2 we get:

Proposition 4.3. If L is a complete
∨

-semilattice and φ : Val(L) → L is completely∨
-preserving, then for everyH ⊆ Val(L) and every x ∈ Var,

LFP(Φx∨
H

) =
∨
{LFP(Φx

h) | h ∈ H}.

Proof. The inequality
∨
{LFP(Φx

h) | h ∈ H} ≤ LFP(Φx∨
H

) immediately follows from
Proposition 4.1.1 and Fact 4.2.2.
The converse inequality can be obtained as a direct consequence of Fact 4.2.1 and of
Proposition 4.1.3, by observing that, thanks to Fact 4.1.4, the set X = {Φx

h : L → L | h ∈
H} satisfies the assumption (4.1). Indeed, for every set S = {ah | h ∈ H},

(
∨
X)(
∨

S ) = Φx∨
H

(
∨

S )
= φ((

∨
H)
∨

S
x )

= φ(
∨
{hah

x | h ∈ H}) (Fact 4.1.4)
=
∨
{φ(hah

x ) | h ∈ H}
=
∨
{Φx

h(ah) | h ∈ H}.
�

If L is a complete lattice and φ : Val(L) → L, then, for every x ∈ Var, let µx.φ :
Val(L) → L and νx.φ : Val(L) → L be respectively defined by the assignments h 7→
LFP(Φx

h) and h 7→ GFP(Φx
h), provided these fixpoints exist for every h ∈ Val(L). Then

Propositions 4.2 and 4.3 (and their order-dual versions) immediately imply the following

Corollary 4.1. 1. Let L be a complete
∨

-semilattice, x ∈ Var, and H ⊆ Val(L); let
φ : Val(L)→ L be such that:
(a) Φx

h : L→ L is monotone for every h ∈ Val(L), and
(b) Φx∨

H
=
∨
{Φx

h | h ∈ H}.
Then

(µx.φ)(
∨
H) =

∨
{(µx.φ)(h) | h ∈ H}.

ILLC, Amsterdam 25 Msc Thesis



Preservation properties of extremal fixpoints 26

2. If L is a complete
∨

-semilattice and φ : Val(L) → L is completely
∨

-preserving,
then µx.φ : Val(L)→ L is completely

∨
-preserving for every x ∈ Var.

3. Let L be a complete
∧

-semilattice, x ∈ Var, and H ⊆ Val(L); let φ : Val(L) → L
be such that:
(a) Φx

h : L→ L is monotone for every h ∈ Val(L), and
(b) Φx∧

H
=
∧
{Φx

h | h ∈ H}.
Then

(νx.φ)(
∧
H) =

∧
{(νx.φ)(h) | h ∈ H}.

4. If L is a complete
∧

-semilattice and φ : Val(L) → L is completely
∧

-preserving,
then νx.φ : Val(L)→ L is completely

∧
-preserving for every x ∈ Var.

Corollary 4.2. Let L be a complete
∨

-semilattice, and let x, y ∈ Var with x , y. Let
h : Val(L)→ L andH = {hs

y | s ∈ S } for some S ⊆ L. If φ : Val(L)→ L is such that
(a) Φx

h : L→ L is monotone for every h ∈ Val(L), and
(b) Φx∨

H
=
∨
{Φx

h′ | h
′ ∈ H},

then
(µx.φ)(

∨
H) =

∨
{(µx.φ)(hs

y) | s ∈ S }.

Proof. By Corollary 4.1.1 it is enough to show that
(b) Φx∨

H
=
∨
{Φx

h′ | h
′ ∈ H},

On the other hand, Φx∨
H

(c) = φ(
∨
H c

x) = φ(
∨
{(h j

y)c
x | j ∈ J∞(a)}) = φ(

∨
{(hc

x)
j
y | j ∈

J∞(a)}) =
∨
{φ(hc

x)
j
y | j ∈ J∞(a)}) =

∨
{φ(h j

y)c
x | j ∈ J∞(a)}) �

The theory developed so far is meant to be applied to the special setting in which L is
the complex algebra of some relational structure, the maps φ : Val(L) → L arise from
formulas of a propositional language expanded with fixpoints, and their order-theoretic
properties are induced by the interpretations of the logical connectives in the complex
algebras (or equivalently in the relational structures). The following chapter is dedicated
to presenting this setting in detail for the case study of intuitionistic modal mu-calculus.
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Chapter Five

Intuitionistic modal mu-language and its
semantics

In this chapter, the language and algebraic interpretation of intuitionistic modal mu-
calculus is introduced.

To our knowledge, the material in this chapter is entirely original.

Let AtProp and FVar be disjoint sets of proposition variables and of fixpoint variables
(the elements of which are respectively denoted by p, q, r and by X,Y,Z). Let x, y, z denote
variables in AtProp ∪ FVar. Let us define
(a) the set L of modal mu-formulas over AtProp and FVar,
(b) their signed (positive or negative) generation trees, and
(c) the set FV(ϕ) of their free variables,
by simultaneous recursion, as follows: any x ∈ AtProp ∪ FVar is a modal mu-formula;
its ∗-signed generation tree (for ∗ ∈ {+,−}) consists of one node, labelled by ∗x, and
FV(x) = {x}. If ϕ and ψ are modal mu-formulas, then so are ϕ∧ψ, ϕ∨ψ, ϕ→ ψ,�ϕ,^ϕ;
for � ∈ {∧,∨,�,^}, their ∗-signed generation tree consists of a root node, labelled by
∗�, whose only child (children) is (are) the root(s) of the ∗-signed generation tree(s) of
the immediate subformula(s); the ∗-signed generation tree of ϕ → ψ consists of a root
node, labelled by ∗ →, whose only children are the roots of the ∗∂-signed generation
tree of ϕ and of the ∗-signed generation tree of ψ (where ∗∂ = + if ∗ = −, and ∗∂ = −

if ∗ = +); for � ∈ {�,^}, we let FV(�ϕ) = FV(ϕ), and for � ∈ {∧,∨ →}, we let
FV(ϕ�ψ) = FV(ϕ)∪FV(φ). If every free occurrence of X in the positive generation tree
of ϕ is labelled positively, then µX.ϕ and νX.ϕ are modal mu-formulas; for � ∈ {µX, νX},
the ∗-signed generation tree of �.ϕ consists of a root node, labelled by ∗�, whose only
child is the root of the ∗-signed generation tree of ϕ; we let FV(�.ϕ) = FV(ϕ) \ {X}. An
occurrence of X in ϕ is bound if X < FV(ϕ). A sentence is a modal mu-formula with no
free fixpoint variables. The symbol ϕ(p1, ..., pn, X1, ..., Xm) indicates that the proposition
variables and free fixpoint variables in ϕ are among p1, ..., pn and X1, ..., Xm respectively;
in this symbol, the variables p1, ..., pn, X1, ..., Xm will be understood as pairwise distinct.
For modal mu-formulas ϕ and ψ and x ∈ AtProp ∪ FVar, the symbol ϕ(ψ/x) denotes the
mu-formula obtained by replacing all free occurrences of x in ϕ by ψ.

The non-fixpoint fragment of this language can be interpreted on several types of re-
lational structures F ; each interpretation yields a different corresponding definition of
complex algebra L. Irrespective of these differences, the complex algebras of these re-
lational structures are always perfect distributive lattices (see Definition 1.5 of Section
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1.1.3) endowed with additional operations interpreting the logical connectives, each of
which is either a residual or an adjoint (see Subsection 1.1.4 for more details). The core
of the theory presented in this thesis can (and will) be developed only on the basis of these
properties, hence independently of the way the interpretation of the connectives is con-
cretely defined. As is the case for the languages of distributive and intuitionistic modal
logic [26], the special properties of perfect (distributive) lattices make it possible to de-
fine an interpretation for the following expanded mu-language L+, which is built over
AtProp ∪ FVar ∪ NOM ∪ CNOM, where the variables i, j ∈ NOM (called nominals) and
m,n ∈ CNOM (called conominals) are interpreted in every complex algebra L as elements
of J∞(L) and of M∞(L) respectively, additionally closing under the modal operators _
and � (respectively interpreted in every complex algebra L as the left adjoint of �L and
as the right adjoint of ^L), and the subtraction operation − (interpreted in every complex
algebra L as the left residual of ∨L). The ∗-signed generation tree and set FV(ϕ) of any
L+-formula ϕ are defined as in the case of L-formulas (for instance, the ∗-signed gener-
ation tree of ϕ − ψ consists of a root node, labelled by ∗−, whose only children are the
roots of the ∗-signed generation tree of ϕ and of the ∗∂-signed generation tree of ψ).

Let Var = AtProp ∪ FVar, and let L be a perfect distributive lattice arising as the
complex algebra of some given relational structure F . Every formula ϕ ∈ L induces a
map [[ϕ]] : Val(L) → L, recursively defined as follows: for every assignment h : Var →
L,

[[x]](h) = h(x)
[[⊥]](h) = ⊥L

[[ϕ ∨ ψ]](h) = [[ϕ]](h) ∨L [[ψ]](h)
[[ϕ ∧ ψ]](h) = [[ϕ]](h) ∧L [[ψ]](h)

[[ϕ→ ψ]](h) = [[ϕ]](h)→L [[ψ]](h)
[[^ϕ]](h) = ^L[[ϕ]](h)
[[�ϕ]](h) = �L[[ϕ]](h)

[[µX.ϕ]](h) = (µX.[[ϕ]])(h)
[[νX.ϕ]](h) = (νX.[[ϕ]])(h)

where the maps µX.[[ϕ]] and νX.[[ϕ]] are defined by specializing to [[ϕ]] the definition given
right before Corollary 4.1 for an arbitrary map φ : Val(L)→ L.

Let Var+ = AtProp ∪ FVar ∪ NOM ∪ CNOM, and let Val+(L) be the set of L+-
assignments into L, i.e., those maps h : Var+ → L which map nominals into J∞(L) and
conominals into M∞(L). Every formula ϕ ∈ L+ induces a map [[ϕ]] : Val+(L) → L,
recursively defined as follows: for every assignment h : Var+ → L (here we only report
the additional variable sorts and connectives),

[[i]](h) = h(i)
[[m]](h) = h(m)

[[ϕ − ψ]](h) = [[ϕ]](h) −L [[ψ]](h)
[[_ϕ]](h) = _L[[ϕ]](h)
[[�ϕ]](h) = �L[[ϕ]](h).

Let us stipulate that, unless specified otherwise, the variables x, y, z range in Var in the
context of L-formulas and range in Var+ in the context of L+-formulas. In what follows,
we find it useful to introduce the term function associated with any mu-formula ϕ =
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ϕ(x1, . . . , xn) (either belonging to L or to L+) as the operation [ϕ] : Ln → L defined by
the assignment (a1, . . . , an) 7→ [[ϕ]](h) for any h ∈ Val(L) (resp. any h ∈ Val+(L)) such
that h(xi) = ai for 1 ≤ i ≤ n. The following proposition guarantees that both definitions
make sense.

Proposition 5.1. If ϕ(X, x1, . . . , xn) ∈ L+ and every free occurrence of X ∈ FVar in
the positive generation tree of ϕ is labelled positively, then for every h ∈ Val+(L), the
map ΦX

h : L → L defined by the assignment a 7→ [[ϕ]](ha
X) is monotone. Hence, both

the maps µX.[[ϕ]] : Val+(L) → L and νX.[[ϕ]] : Val+(L) → L and the term functions
[µX.ϕ] : Ln → L and [νX.ϕ] : Ln → L are well defined.

Proof. The proof follows from proposition 1.3.2 of [1]. �

For any model M = (L, h) and all formulas ϕ, ψ, we write:
M,w  ϕ if w ∈ [[ϕ]](h);
M  ϕ if [[ϕ]](h) = >L;
M  ϕ ≤ ψ if [[ϕ]](h) ≤ [[ψ]](h);
F  ϕ if [[ϕ]](h) = >L for any h : Var → L;
F  ϕ ≤ ψ if [[ϕ]] ≤ [[ψ]] ordered pointwise.

A moment of reflection will convince the reader of the following

Fact 5.1. For every mu-formula ϕ = ϕ(x1, . . . , xn) ∈ L+ and every h ∈ Val+(L),

[[ϕ]](h) = [ϕ]([[x1]](h), . . . , [[xn]](h)).

Hence, for all mu-formulas ϕ(x1, . . . , xn), ψ1, . . . , ψn ∈ L
+ and every h ∈ Val+(L),

[[ϕ(ψ1/x1, . . . , ψn/xn)]](h) = [ϕ]([[ψ1]](h), . . . , [[ψn]](h)).
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Chapter Six

Towards a calculus for correspondence
for fixpoints

This chapter is aimed at introducing – and proving the soundness of – rewriting rules
which make it possible to transform systems of inequalities inL+ into equivalent systems,
hopefully to get to a (recursive) Ackermann’s shape. The soundness of these rules is
proven on suitably expanded perfect distributive lattices. The way these rules are given
is very general, and in fact does not depend on the specific signature introduced in the
previous section; therefore the same rules immediately apply to other distributive-lattice
based mu-calculi. In Section 6.1 the approximation rules will be introduced and proven
to be sound on suitably expanded perfect distributive lattices; in Section 6.2 residuation
rules will be introduced and proven to be sound, which are unfortunately not good for our
purposes: indeed, it will be illustrated that their application is guaranteed to never yield
to clauses to which the Ackermann elimination rule is applicable. Finally, in Section 6.3,
ideas for a proof strategy for adjunction and residuation rules will be illustrated, which
will be generalized in the following section.

The material in this chapter is entirely original.

The symbol ϕ(!x) indicates that the variable x occurs exactly once in ϕ. Throughout
this section, we find it convenient to understand that, when writing e.g. ϕ(X, !x), other
variables might occur in ϕ as well.

6.1 Sound approximation rules for fixpoint binders
Let us consider the following rules:

i ≤ µX.ϕ(X, ψ/!x)
(µ-A)

∃j[i ≤ µX.ϕ(X, j/!x) & j ≤ ψ]
νX.ϕ(X, ψ/!x) ≤ m

(ν-A)
∃n[νX.ϕ(X,n/!x) ≤ m & ψ ≤ n]

where, in the rule on the left, ϕ is assumed to satisfy the additional assumption that
its associated term function [ϕ] be completely

∨
-preserving in x (resp. completely

∧
-

preserving in x in the rule on the right); moreover, in both rules the variable x ∈ Var is
assumed to not occur in ψ. The following proposition essentially says that (ν-A) is sound
on perfect distributive lattices.
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Proposition 6.1. Let ϕ(X, !x), ψ ∈ L+ such that every occurrence of X ∈ FVar in the pos-
itive generation tree of ϕ is positive, and x ∈ Var does not occur in ψ. If the term function
[ϕ] is completely

∧
-preserving in the coordinate determined by x, then the following are

equivalent on every perfect distributive lattice L and for every h ∈ Val+(L):

1. [[νX.ϕ(X,n/!x)]] ≤ [[m]](h) and [[ψ]](h) ≤ [[n]](h) for some n ∈ CNOM \ {m}, not
occurring in ϕ, nor in ψ;

2. [[νX.ϕ(X, ψ/!x)]](h) ≤ [[m]](h).

Proof. (1. ⇒ 2.) Assume that [[νX.ϕ(X,n/!x)]] ≤ [[m]](h) and [[ψ]](h) ≤ [[n]](h) for some
n ∈ CNOM. moreover, since [ϕ(!x)] is order preserving in x, and x , X, we have that
[νX.ϕ(!x)] is also order preserving; hence we have:

[[νX.ϕ(ψ/!x)]](h) = [νX.ϕ]([[ψ]](h)) (Fact 5.1)
≤ [νX.ϕ]([[n]](h)) ([νX.ϕ] monot. in x.)
= [[νX.ϕ(n/!x)]](h) (Fact 5.1)
≤ [[m]](h).

(2. ⇒ 1.) Assume that [[νX.ϕ(X, ψ/!x)]](h) ≤ [[m]](h); since x does not occur in ψ, we can
assume w.l.o.g. that h(x) = [[ψ]](h), so that our assumption becomes:

(6.1) [[νX.ϕ]](h) ≤ [[m]](h).

Let H = {hn
x | n ∈ M∞(h(x))}. Since L is perfect, h(x) =

∧
M∞(h(x)), which implies

that
∧
H = h. Let us show that the map [[ϕ]] and the set H verify assumption (b) in

Corollary 4.1.3; indeed, for any h ∈ Var+(L), let ΦX
h : L→ L be defined by the assignment

a 7→ [[ϕ]](ha
X), and let us show that:

ΦX∧
H

=
∧
{ΦX

k | k ∈ H}.

Indeed, for every b ∈ L,

ΦX∧
H

(b)
= [[ϕ]]((

∧
H)b

X)
= [ϕ](b, h(x)) (

∧
H = h and x , X)

= [ϕ](b,
∧
M∞(h(x))) (h(x) =

∧
M∞(h(x)))

=
∧
{[ϕ](b, n) | n ∈ M∞(h(x))} ([ϕ] is c.

∧
-pr. in x.)

=
∧
{[[ϕ]]((hb

X)n
x | n ∈ M

∞(h(x))}
=
∧
{[[ϕ]]((hn

x)
b
X | n ∈ M

∞(h(x))}
=
∧
{ΦX(k)(b) | k ∈ H}.

The map [[ϕ]] verifies also assumption (a) of the same corollary, because of Proposition
5.1. Hence,

(νX[[ϕ]])(h) =
∧
{(νX[[ϕ]])(hn

x) | n ∈ M
∞(h(x))},

which can be rewritten as

[[νX.ϕ]](h) =
∧
{[[νX.ϕ]](hn

x) | n ∈ M
∞(h(x))}.

Hence our assumption (6.1) can be equivalently rewritten as∧
{[[νX.ϕ]](hn

x) | n ∈ M
∞(h(x))} ≤ [[m]](h).
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Since [[m]](h) = h(m) ∈ M∞(L), this implies that [[νX.ϕ]](hn
x) ≤ [[m]](h) for some n ∈

M∞(h(x)). Let n ∈ CNOM be a fresh variable. We can assume w.l.o.g. that h(n) = n ≥
h(x) = [[ψ]](h). Hence we have [[ψ]](h) ≤ [[n]](h), and [[νX.ϕ(X,n/!x)]](h) = [[νX.ϕ]](hn

x) ≤
[[m]](h), which finishes the proof. �

The following proposition can be proven similarly to the proposition above using
Corollary 4.1.1, and takes care of the soundness of the rule (µ-A):

Proposition 6.2. Let ϕ(X, !x), ψ ∈ L+ such that every occurrence of X ∈ FVar in the pos-
itive generation tree of ϕ is positive, and x ∈ Var does not occur in ψ. If the term function
[ϕ] is completely

∨
-preserving in the coordinate determined by x, then the following are

equivalent on every perfect distributive lattice L and for every h ∈ Val+(L):

1. [[i]](h) ≤ [[µX.ϕ(X, j/!x)]] and [[j]](h) ≤ [[ψ]](h) for some j ∈ NOM\{i}, not occurring
in ϕ, nor in ψ;

2. [[i]](h) ≤ [[µX.ϕ(X, ψ/!x)]](h).

Example 6.1. (Application of (ν-A)) The inequality p ≤ νX[�(X∧ (q→ ⊥))∨ (^p∧^q)]
can be reduced as follows:

∀p∀q[p ≤ νX[�(X ∧ (q→ ⊥)) ∨ (^p ∧ ^q)]]
iff ∀p∀q∀i∀m[(i ≤ p & νX[�(X ∧ (q→ ⊥)) ∨ (^p ∧ ^q)] ≤ m)⇒ i ≤ m]
iff ∀q∀i∀m[νX[�(X ∧ (q→ ⊥)) ∨ (^i ∧ ^q)] ≤ m⇒ i ≤ m]

(ν-A) iff ∀q∀i∀m∀n[(^i ∧ ^q ≤ n & νX[�(X ∧ (q→ ⊥)) ∨ n] ≤ m)⇒ i ≤ m]
iff ∀q∀i∀m∀n[(q ≤ �(^i→ n) & νX[�(X ∧ (q→ ⊥)) ∨ n] ≤ m⇒ i ≤ m]
iff ∀i∀m∀n[νX[�(X ∧ (�(^i→ n)→ ⊥)) ∨ n] ≤ m⇒ i ≤ m]
iff ∀i∀n[i ≤ νX[�(X ∧ (�(^i→ n)→ ⊥)) ∨ n].

All the steps in the above chain of equivalences but the one marked with (ν-A) can
be justified by the theory of algorithmic correspondence for distributive and intuitionistic
modal logic [26]. The marked equivalence is an application of the approximation rule
(ν-A), which is soundly applied, since all the assumptions of Proposition 6.1 are verified
by ϕ(X, !x) = �(X ∧ (q→ ⊥)) ∨ x and ψ = ^i ∧ ^q.

6.2 Sound but useless residuation rules for fixpoint binders

µX.ϕ(X, ξ/!x) ≤ χ
(µ-Res)

ξ ≤ ψ(µX.ϕ(X, ξ/!x)/X, χ/!y)
χ ≤ νX.ψ(X, ξ/!y)

(ν-Res)
ϕ(νX.ψ(X, ξ/!y)/X, χ/!x) ≤ ξ]

where, in both rules, ϕ(X, !x) and ψ(X, !y) are assumed to satisfy the additional assumption
that their associated term functions [ϕ] and [ψ] form a residuated pair in x and y: i.e. for
every h ∈ Val+(L),

(6.2) [[ϕ(X, !x)]](h) ≤ [[y]](h) iff [[x]](h) ≤ [[ψ(X, !y)]](h).

Moreover, in both rules the variable x ∈ Var is assumed to not occur in ψ, ξ or in χ, and
the variable y ∈ Var is assumed to not occur in ϕ, ξ or in χ. The following proposition
essentially says that (µ-R) is sound on perfect distributive lattices.
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Proposition 6.3. Let ϕ(X, !x), ψ(X, !y), ξ, χ ∈ L+ such that X ∈ FVar does not occur
free in ξ or χ, every free occurrence of X in the positive generation tree of ϕ is positive,
x ∈ Var does not occur in ψ, ξ or in χ, and y ∈ Var does not occur in ϕ, ξ or in χ. Let L
be a perfect distributive lattice, and assume that clause (6.2) holds for every h ∈ Val+(L).
Then the following are equivalent:

1. [[µX.ϕ(X, ξ/!x)]](h) ≤ [[χ]](h);

2. [[ξ]](h) ≤ [[ψ(µX.ϕ(X, ξ/!x)/X, χ/!y)]](h).

Proof. Assume that [[µX.ϕ(X, ξ/!x)]](h) ≤ [[χ]](h). By definition, [[µX.ϕ(X, ξ/!x)]](h) =

LFP(ΦX
h ), where ΦX

h : L → L is defined by the assignment a 7→ [[ϕ(X, ξ/!x)]](ha
X). Let

b = LFP(ΦX
h ); the following chain of identities holds:

[[µX.ϕ(X, ξ/!x)]](h) = LFP(ΦX
h ) (definition of [[·]])

= ΦX
h (b) (b = LFP(ΦX

h ) is fixpt of ΦX
h )

= [[ϕ(X, ξ/!x)]](hb
X). (def. of ΦX

h )

Hence, the assumed inequality can be equivalently rewritten as [[ϕ(X, ξ/!x)]](hb
X) ≤ [[χ]](h).

Let c = [[ξ]](h) and d = [[χ]](h). By clause (6.2) applied to h(b,c,d)
(X,x,y) ∈ Val+(L), this is equiv-

alent to [[ξ]](h) ≤ [[ψ(µX.ϕ(X, ξ/!x)/X, χ/!y)]](h). �

The following proposition can be proven similarly to the proposition above, and takes
care of the soundness of the rule (ν-Res):

Proposition 6.4. Let ϕ(X, !x), ψ(X, !y), ξ, χ ∈ L+ such that X ∈ FVar does not occur
free in ξ or χ, every free occurrence of X in the positive generation tree of ψ is positive,
x ∈ Var does not occur in ψ, ξ or in χ, and y ∈ Var does not occur in ϕ, ξ or in χ. Let L
be a perfect distributive lattice, and assume that clause (6.2) holds for every h ∈ Val+(L).
Then the following are equivalent:

1. [[χ]](h) ≤ [[νX.ψ(X, ξ/!y)]](h);

2. [[ϕ(νX.ψ(X, ξ/!y)/X, χ/!x)]](h) ≤ [[ξ]](h).

Example 6.2. (Application of (µ-Res)) Let ¬q := q → ⊥; consider the inequality p ≤
νX.[�(X ∧ ¬q) ∨ µY.[(^Y ∧ ^p) ∧ ^q]].

∀p∀q[p ≤ νX.[�(X ∧ ¬q) ∨ µY.[(^Y ∧ ^p) ∧ ^q]]]
iff ∀p∀q∀i∀m[(i ≤ p & νX[�(X ∧ ¬q) ∨ µY.[(^Y ∧ ^p) ∧ ^q]] ≤ m)⇒ i ≤ m]
iff ∀q∀i∀m[νX[�(X ∧ ¬q) ∨ µY.[(^Y ∧ ^i) ∧ ^q]] ≤ m⇒ i ≤ m]
iff ∀q∀i[i ≤ νX[�(X ∧ ¬q) ∨ µY.[(^Y ∧ ^i) ∧ ^q]]]
iff ∀q∀i∀n[µY.[(^Y ∧ ^i) ∧ ^q] ≤ n & νX[�(X ∧ ¬q) ∨ n] ≤ m]
iff ∀q∀i∀n[q ≤ �((^µY.[(^Y ∧ ^i) ∧ ^q] ∧ ^i)→ n) & νX[�(X ∧ ¬q) ∨ n] ≤ m]

The last ‘iff’ is due to an application of (µ-Res), where ϕ(Y, x) := (^Y ∧ ^i) ∧ ^x,
ξ := q, χ := n, and ψ(Y, y) := �((^Y ∧ ^i)→ y).

Notice that this last clause is not in recursive Ackermann’s shape: indeed, the first
inequality is of the form q ≤ α(q) where α(q) := �((^µY.[(^Y ∧ ^i) ∧ ^q] ∧ ^i) → n))
is negative in q. This is a general problem of the -Res rules: indeed, if ϕ(X, x) is positive
in X and ψ(X, y) is its right residual in x, y, then ϕ is positive in x (and hence so is µX.ϕ),
and ψ is negative in X, hence α(x) := ψ(µX.ϕ(X, x)/X, y) is negative in x. The fact that the
application of -Res rules does not lead to an Ackermann shape makes them unfortunately
useless for our purposes.
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6.3 A case study
Consider the inequality νX.�(p ∧ X) ≤ p which we have already reduced in Chapter 2.
This inequality can also be alternatively reduced as follows:

∀p[νX.�(p ∧ X) ≤ p]
iff ∀p∀i∀m[(i ≤ νX.�(p ∧ X) & p ≤ m)⇒ i ≤ m]

(∗) iff ∀p∀i∀m[(µX._(X ∨ i) ≤ p & p ≤ m)⇒ i ≤ m]
iff ∀i∀m[µX._(X ∨ i) ≤ m⇒ i ≤ m]
iff ∀i[i ≤ µX._(X ∨ i)].

The equivalence marked with (∗) is justified by the following steps (where ei(∗) = _(∗ ∨
i)):

µX._(X ∨ i) =
∨

κ≥1 eκi (⊥) the justification of this equality comes from [28, section 3.1]
=
∨

κ≥1 _
κi (Claim 1)∨

κ≥1 _
κ a

∧
κ≥1 �

κ (Claim 2)

νX.�(X ∧ p) =
∧

κ≥1 hκp(>) (where hp(∗) = �(∗ ∧ p))
=
∧

κ≥1 �
κp (Claim 3)

The proof of Claim 1 is analogous (in fact dual) to the proof of Claim 3, which immedi-
ately follows from the fact that for every κ,

hκp(>) =
∧

1≤i≤κ

�i p;

this can be shown by transfinite induction on κ. For instance, if κ is a limit ordinal, then

hκp(>) =
∧

λ≤κ hλp> (def of hκp for limit ordinals)
=
∧

λ≤κ

∧
1≤i≤λ �

i p (induction hypothesis)
=
∧

1≤i≤κ �
i p.

Claim 2 is an instance of Fact 7.1.
Notice that, because of Claim 1, the correspondent ∀i[i ≤ µX._(X∨i)] can be rewritten

as ∀i[i ≤
∨

κ≥1 _
κi], which immediately translates on Kripke frames into the condition

expressing the reflexivity of the transitive closure of the relation interpreting �.
This case study suggests some ideas for a general strategy; firstly, the fixpoint formula

νX.�(p∧X), was unfolded and rewritten as a transfinite meet of terms (or term-functions),
each of which is an adjoint; this guarantees that the rewritten unfolding itself gives rise
to an adjoint function, which is given by the transfinite join of the adjoints of the mem-
bers of the rewritten unfolding (see Fact 7.1). This is already excellent news, because
this transfinite join is certainly expressible in the target FO+FP correspondence language.
But there is even more! Indeed, the transfinite join of adjoints

∨
κ≥1 _

κ is itself a finite
term (function) in the expanded language, which makes it possible to express the reduc-
tion using only finite terms of the expanded language. In the following subsections, this
proof strategy will be developed for a hierarchy of more and more general types of for-
mulas/inequalities, highlighting the cases in which finite reduction rules can be soundly
defined.
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Chapter Seven

Display methods for fixpoint binders

This chapter is aimed at introducing – and proving the soundness of – methods which
make it possible to equivalently rewrite inequalities of the form ϕ ≤ ψ(p) or ϕ(p) ≤ ψ,
where the proposition variable p occurs within the scope of some fixpoint binder(s), re-
spectively as α ≤ p or p ≤ α. As mentioned early on in Chapter 2, we refer to this
rewriting as displaying the variable p; clearly, this step is crucial to be able to reach
the Ackermann shape and then eliminate p. As mentioned early on, we will proceed
analytically and introduce – whenever notationally convenient – rules applicable to pro-
gressively more general types of formulas/inequalities. In particular, first, the case of
non-nested fixpoint binders will be treated in the following Section 7.1; then in Section
7.2, we will make use of the insights gained in the following subsection to treat the case
of nested fixpoint binders. Before getting started, we need to warn the reader: while, up
to the previous section, we were very explicit in keeping formulas, their associated exten-
sion maps and term functions notationally distinct (which was needed to be able to first
justify and then apply Corollary 4.1), throughout the present section these distinctions are
not needed anymore, and so, in particular, formulas and their associated term functions
will be systematically identified.

The material in this chapter is entirely original.

7.1 Non-nested occurrences of fixpoint binders

7.1.1 The pure-adjunction case
Let us consider the following rules:

µX.(A(X) ∨ B(p)) ≤ χ
(µ-Adj)

p ≤ νX.(E(X) ∧ D(χ/p))
χ ≤ νX.(E(X) ∧ D(p))

(ν-Adj)
µX.(A(X) ∨ B(χ/p)) ≤ p

where, in each rule, A(X) =
∨

i∈I δi(X), B(p) =
∨

j∈J δ
′
j(p), E(X) =

∧
i∈I βi(X) and

D(p) =
∧

j∈J β
′
j(p) I and J are finite sets of indexes, each δi and δ′j is a unary left ad-

joint (relativized to our signature, this means that δi and δ′j are concatenations of ^), and
each βi and β′j is a unary right adjoint (relativized to our signature, this means that βi and
β′j are concatenations of �). Finally, δi a βi and δ′j a β

′
j for each i and j.

These rules cover the case study of the preceding subsection. The remainder of this
subsection is aimed at showing the soundness of these rules. The following lemma holds
more generally than under the assumptions above; in particular, notice that A and B do
not need to be term functions (this will become important in Subsection 7.2).
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Lemma 7.1. Let A(X) = A(X,−→z ) be completely join preserving in X and let B be an
arbitrary function which does not depend on X. Then,

µX.(A(X) ∨ B) =
∨
κ∈Ord

Aκ(B).

Proof. Let F(∗) = A(∗) ∨ B. It is well known that µX.(A(X) ∨ B) =
∨

κ≥1 Fκ(⊥) (see [28,
section 3.1]); then the equality is an immediate consequence of the following claim: for
every ordinal κ,

(7.1) Fκ+1(⊥) =
∨

0≤i≤κ

Ai(B).

By induction on κ. If k = 0, then Cp(⊥) = A(⊥)∨B = ⊥∨B = A0(B) (A(∗) is c. join-pres.,
hence A(⊥) = ⊥).

If κ is a successor ordinal, then

F(Fκ(⊥)) = A(Fκ(⊥)) ∨ B
= A(

∨
0≤i≤κ−1 Ai(B)) ∨ B (induction hypothesis)

=
∨

1≤i≤κ Ai(B) ∨ B (A is compl. join-pres.)
=
∨

0≤i≤κ Ai(B). (B = A0(B))

If κ is a limit ordinal, then

F(Fκ(⊥)) = F(
∨

λ≤κ Fλ(⊥))
=
∨

λ≤κ F(Fλ(⊥)) (F is compl. join-pres.)
=
∨

λ≤κ F1+λ(⊥)
=
∨

λ≤κ Fλ(⊥) (κ is limit ordinal)
=
∨

λ≤κ

∨
0≤i≤λ Ai(B) (induction hypothesis)

=
∨

0≤i≤κ Ai(B).
�

By a straightforward dualization of the proof above we obtain the following

Lemma 7.2. Let E(X) = E(X,−→z ) be completely meet preserving in X and let D be an
arbitrary function which does not depend on X. Then,

νX.(E(X) ∧ D) =
∧
κ∈Ord

Eκ(D).

Thanks to the very special shape of A and B in the rule (µ-Adj) above, the commuta-
tivity of their composition can be proved as a byproduct of associativity, which makes it
possible for the following to hold:

Lemma 7.3. If A(X) =
∨

i∈I δi(X) and B(p) =
∨

j∈J δ
′
j(p), such that I and J are finite sets

of indexes, and each δi and δ′j is a unary left adjoint (relativized to our signature, this
means that δi and δ′j are concatenations of ^). Then for every κ,

Aκ(B(p)) = B(Aκ(p)).

Proof. by induction on κ. If κ = 0 it is immediate. If κ = 1, recall that δi and δ′j are
concatenations of ^. In what follows, we will abuse notation and use the indexes i and j
as standing for the number of concatenated diamonds that δi and δ′j respectively consist
of. With this stipulation, we have for every q:
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A(B(q)) =
∨

i δi(
∨

j δ
′
j(q))

=
∨

i
∨

j δi(δ′j(q)) (δi is c. j. pres.)
=
∨

i
∨

j δi+ j(q)) (associativity of composition)
=
∨

j
∨

i δ j+i(q))
=
∨

j
∨

i δ
′
j(δi(q)) (associativity of composition)

=
∨

j δ
′
j(
∨

i δi(q)) (δ′j is c. j. pres.)
= B(A(q)).

Hence for successor ordinals, applying the induction hypothesis to Aκ and B′(p) = A(B(p))
and then the case κ = 1 to q = Aκ(p), we get: Aκ+1(B(p)) = Aκ(B′(p)) = B′(Aκ(p))) =

A(B(Aκ(p))) = B(A(Aκ(p))) = B(Aκ+1(p)).
For limit ordinals,

Aκ(B(p)) =
∨

λ≤κ Aλ(B(p))
=
∨

λ≤κ B(Aλ(p)) (induction hypothesis)
= B(

∨
λ≤κ Aλ(p)) (B is compl. join-pres.)

= B(Aκ(p)).
�

By a straightforward dualization of the proof above we obtain the following

Lemma 7.4. If E(X) =
∧

i∈I βi(X) and D(p) =
∧

j∈J β
′
j(p), such that I and J are finite sets

of indexes, and each βi and β′j is a unary right adjoint (relativized to our signature, this
means that βi and β′j are concatenations of �). Then for every κ,

Eκ(D(p)) = D(Eκ(p)).

Fact 7.1. If f , g : L → L and f a g, then f κ a gκ for every κ, where for limit ordinals,
f κ :=

∨
λ≤κ f λ, and gκ :=

∧
λ≤κ gλ.

Proof. By transfinite induction on κ. If κ is a successor, the statement follows immediately
from the induction hypothesis and the adjoint of a composition being the composition of
the adjoints. If κ is a limit ordinal, then we have f κ :=

∨
λ≤κ f λ a

∧
λ≤κ gλ = gκ. �

Corollary 7.1. Let A(X) =
∨

i∈I δi(X), B(x) =
∨

j∈J δ
′
j(x), E(X) =

∧
i∈I βi(X) and D(y) =∧

j∈J β
′
j(y), such that I and J are finite sets of indexes, and δi a βi and δ′j a β

′
j for each i

and j. Then, for every perfect distributive lattice L, every h ∈ val+(L), and x, y ∈ Var+

[[µX.(A(X) ∨ B(x))]](h) ≤ [[y]](h) iff [[x]](h) ≤ [[νX.(E(X) ∧ D(y))]](h).

Proof. By Lemma 7.1 and 7.2, it is enough to show that∨
κ∈Ord

Aκ(B(∗)) a
∧
κ∈Ord

Eκ(D(∗)).

For this, it is enough to show that Aκ(B(∗)) a Eκ(D(∗)) for every κ. From the assumptions
it readily follows that A a E and B a D; hence By Fact 7.1, Aκ a Eκ for every κ, hence
AκB a DEκ = EκD, the latter identity holding because of Lemma 7.4. �

Example 7.1. (Application of (ν-Adj)) Consider the inequality νX.�(p ∧ �X) ≤ p.
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∀p[νX.�(p ∧ �X) ≤ p]
iff ∀p∀i∀m[(i ≤ νX.�(p ∧ �X) & p ≤ m)⇒ i ≤ m]

(∗) iff ∀p∀i∀m[µX._(_X ∨ i) ≤ p & p ≤ m)⇒ i ≤ m]
iff ∀i∀m[µX._(_X ∨ i) ≤ m⇒ i ≤ m]
iff ∀i[i ≤ µX._(_X ∨ i)].

The equivalence marked with (∗) is an application of (ν-Adj), modulo distributing
modal connectives.

7.1.2 Adding residuals
Let us consider the following rules:

µX.(A′(X,−→z ) ∨ B′(p,−→z )) ≤ χ
(µ-R)

p ≤
∧

κ∈Ord D′(E′κ(χ/y,−→z ))
χ ≤ νX.(A′(X,−→z ) ∧ B′(p,−→z ))

(ν-R)∨
κ∈Ord D′(E′κ(χ/y,−→z )) ≤ p

where, in the rule on the left,

A(X) =
∨

i∈I δi(X), A′(X,−→z ) = ϕ(A(X)/!x,−→z ),
B(p) =

∨
j∈J δ

′
j(p), B′(p,−→z ) = ϕ(B(p)/!x,−→z ),

E(x) =
∧

i∈I βi(x), E′(y,−→z ) = E(ψ(y,−→z )/x),
D(x) =

∧
j∈J β

′
j(x), D′(u,−→z ) = D(ψ(u,−→z )/x);

(notice the inversion from A′ and B′ to E′ and D′); moreover, I and J are finite sets of
indexes, each δi and δ′j is a unary left adjoint (relativized to our signature, this means that
δi and δ′j are concatenations of ^), and each βi and β′j is a unary right adjoint. Finally,
ϕ(x,−→z ) a ψ(y,−→z ) in x and y, δi a βi and δ′j a β

′
j for each i and j.

where, in the rule on the right,

A(X) =
∧

i∈I δi(X), A′(X,−→z ) = ϕ(A(X)/!x,−→z ),
B(p) =

∧
j∈J δ

′
j(p), B′(p,−→z ) = ϕ(B(p)/!x,−→z ),

E(x) =
∨

i∈I βi(x), E′(y,−→z ) = E(ψ(y,−→z )/x),
D(x) =

∨
j∈J β

′
j(x), D′(u,−→z ) = D(ψ(u,−→z )/x);

Here, I and J are finite sets of indexes, each δi and δ′j is a unary right adjoint (relativized
to our signature, this means that δi and δ′j are concatenations of �), and each βi and β′j is
a unary left adjoint. Finally, the delta’s are the right adjoints of the beta’s i.e., βi a δi and
β′j a δ

′
j for all i and j; and the ϕ(x,−→z ) is the right residual of the ψ(y,−→z ) in x and y.

The soundness of (µ-R) is a straightforward consequence of Lemma 7.1 and of the
fact that for every −→z ,∨

κ∈Ord

A′κ(B′(x,−→z )/X,−→z ) a
∧
κ∈Ord

D′(E′κ(y,−→z )/u,−→z )

in x and y, which in its turn follows by the assumptions and Fact 7.1.
A straightforward dualization of this argument gives the soundness of (ν-R).
The counterparts of Lemmas 7.3 and 7.4 for the present set of assumptions do not

hold. This implies that the strategy carried out in the preceding subsection cannot be
implemented to equivalently reduce the adjoint function defined as a transfinite join (or
meet) to some term function inL+. Whether this can be done using another strategy is left
as an open problem. However, in the next subsection it is shown how this is still possible
for a restricted subclass of formulas.
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7.1.3 Finite residuation rule for the symmetrization of previous shape
Let us consider the special case of the assumptions above in which B′(∗) = A′(∗); in this
case, the application of Lemmas 7.1 and 7.2 yields

Lemma 7.5. Let µX.(A′(X) ∨ A′(p)) and νX.(E′(X) ∧ E′(p)) be as above. Then

1. µX.(A′(X) ∨ A′(p)) =
∨

κ∈Ord A′κ(A′(p)).

2. νX.(E′(X) ∧ E′(p)) =
∧

κ∈Ord E′κ(E′(p)).

Moreover, the identities A′κA′ = A′A′κ and E′κE′ = E′E′κ clearly hold, which amount
to the counterparts of Lemmas 7.3 and 7.4 for the present set of assumptions. So all the
steps making it possible to implement the proof strategy of subsection 7.1.1 are in place,
and indeed, by an analogous argument to the one given at the end of subsection 7.1.1 we
get the following

Corollary 7.2. Let A′(∗) and E′(∗) be as above. Then, for every perfect distributive lattice
L, every h ∈ val+(L), and x, y ∈ Var+,

[[µX.(A′(X) ∨ A′(x))]](h) ≤ [[y]](h) iff [[x]](h) ≤ [[νX.(E′(X) ∧ E′(y))]](h).

This justifies the soundness of the following rules:

µX.(A′(X,−→z ) ∨ A′(p,−→z )) ≤ χ
(µ-R)

p ≤ νX.(E′(X,−→z ) ∧ E′(χ/p,−→z ))
χ ≤ νX.(A′(X,−→z ) ∧ A′(p,−→z ))

(ν-R)
µX.(E′(X,−→z ) ∨ E′(χ/p,−→z )) ≤ p

Example 7.2. (Application of (µ-R)) Let (q → ⊥) = ¬q, and consider the inequality
q ≤ µY.[((^Y ∨ ^^q) ∨ (^^Y ∨ ^q)) ∧ ¬�q]. We can equivalently rewrite it as

q ≤ µY.[((^Y ∨ ^^Y) ∧ ¬�q) ∨ ((^q ∨ ^^q) ∧ ¬�q)],

so A(∗) := ^∗ ∨ ^^∗, and ϕ(x,−→z ) = x ∧ ¬�q. Solving for εq = ∂, we get:

∀q[q ≤ µY.[((^Y ∨ ^^q) ∨ (^^Y ∨ ^q)) ∧ ¬�q]]

iff ∀q∀i∀m[(i ≤ q & µY.[((^Y ∨ ^^q) ∨ (^^Y ∨ ^q)) ∧ ¬�q] ≤ m)⇒ i ≤ m]

(∗) iff ∀q∀i∀m[(i ≤ q & q ≤ νY.[(�Y ∧ ��(¬�q → m)) ∧ (��Y ∧ �(¬�q → m))]) ⇒
i ≤ m]

(∗∗) iff ∀i∀m[i ≤ νq.νY.[(�Y ∧��(¬�q→ m))∧ (��Y ∧�(¬�q→ m))]⇒ i ≤ m]

iff ∀m[νq.νY.[(�Y ∧ ��(¬�q→ m)) ∧ (��Y ∧ �(¬�q→ m))] ≤ m].

The equivalence marked with (∗) is an application of (µ-R); the equivalence marked
with (∗∗) is an application of the recursive Ackermann, which is applicable, since νY.[(�Y∧
��(¬q→ m)) ∧ (��Y ∧ (¬q→ m))] is positive in q.
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7.2 Nested fixpoints
For reasons of notational convenience, in this section we will not describe the display
methods in the form of rules to be applied globally on inequalities. Rather, we will show
how to rewrite a certain type of fixpoint formula as an adjoint or residual, starting from the
innermost occurrences of fixpoint binders. Notice preliminarily that from [1, Proposition
1.3.2], it follows immediately that the following pre-processing rules are sound:

ϕ(µX.µY.ξ(X,Y)/!x)
(µ-Pre)

ϕ(µX.ξ(X, X)/!x)
ϕ(νX.νY.ξ(X,Y)/!x)

(ν-Pre)
ϕ(νX.ξ(X, X)/!x)

where, in both rules, the formulas can occur either on the left or on the right of an inequal-
ity, and the “placeholder” variable x does not occur in ξ. Repeated applications of these
rules will ensure that it can be assumed without loss of generality that fixpoint binders
occur consecutively in the generation trees of formulas only if they are non-homogeneous
(e.g., either µX.νY.ϕ or νX.µY.ϕ).

For reasons which will become clear in the next section, we are mainly interested in
the case of nested homogeneous fixpoints. Hence, because of the observation above, the
main case we need to treat is the pattern represented by the formula

µX.ϕ(A1(X) ∨ B1(µY.[A2(Y) ∨ B2(p) ∨ B3(X)])/!x,−→z ),

where,

A2(X) =
∨

i∈I2
δi(X), A′2(X,−→z ) = ϕ(A2(X)/!x,−→z ),

A1(Y) =
∨

i∈I1
δi(X), A′1(Y,−→z ) = ϕ(A1(X)/!x,−→z ),

B3(X) =
∨

j∈J3
δ′j(X), B′3(X,−→z ) = ϕ(B3(X)/!x,−→z ),

B2(p) =
∨

j∈J2
δ′j(p), B′2(p,−→z ) = ϕ(B2(p)/!x,−→z ),

B1(v) = δ′(v), B′1(v,−→z ) = ϕ(B1(v)/!x,−→z ),

moreover, I1, I2 and J1, J2, J3 are finite sets of indexes, for i ∈ I1 ∪ I2 and j ∈ J1 ∪ J2, J3,
each δi and δ′j is a unary left adjoint (relativized to our signature, this means that δi and δ′j
are concatenations of ^). In what follows, we are going to show that

Lemma 7.6. Under the assumptions above,

µX.ϕ(A1(X) ∨ B1(µY.[A2(Y) ∨ B2(p) ∨ B3(X)])/!x,−→z ) =
∨
λ∈Ord

A′λ(B′(p))

for some left residuals A′(x,−→z ) and B′(p,−→z ).

Proof. The following chain of identities holds:

B1(µY.[A2(Y) ∨ B2(p) ∨ B3(X)])
= B1(

∨
κ∈Ord Aκ

2(B2(p) ∨ B3(X))) (Lemma 7.1)
= B1(

∨
κ∈Ord Aκ

2(B2(p))) ∨ B1(
∨

κ∈Ord Aκ
2(B3(X)))

=
∨

κ∈Ord B1(Aκ
2(B2(p))) ∨

∨
κ∈Ord B1(Aκ

2(B3(X))) (B1 c. join-pres.)
=
∨

κ∈Ord Aκ
2(B1(B2(p))) ∨

∨
κ∈Ord Aκ

2(B1(B3(X))) (Lemma 7.3)

Let C1(p) =
∨

κ∈Ord Aκ
2(B1(B2(p))) and C2(X) =

∨
κ∈Ord Aκ

2(B1(B3(X))). Then,
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µX.ϕ(A1(X) ∨ B1(µY.[A2(Y) ∨ B2(p) ∨ B3(X)])/!x,−→z )
= µX.ϕ((A1(X) ∨C2(X)) ∨C1(p)/!x,−→z )
= µX.[ϕ((A1(X) ∨C2(X))/!x,−→z ) ∨ ϕ(C1(p)/!x,−→z )]
= µX.[A′(X,−→z ) ∨ B′(p,−→z )]
=
∨

λ∈Ord A′λ(B′(p)), (Lemma 7.1)

where A′(X,−→z ) = ϕ((A1(X) ∨C2(X))/!x,−→z ) and B′(p,−→z ) = ϕ(C1(p)/!x,−→z ). �

The formula above can be easily made more general by assuming that
B1(v) =

∨
j∈J1

δ′j(v) and by taking appropriately indexed copies of the innermost fixpoint
formula µY.[A2(Y) ∨ B2(p) ∨ B3(X)].

The dual version of the preceding lemma is proved by a straightforward dualization
of the foregoing argument. Repeated applications of the lemmas above, starting from
the innermost occurrences of fixpoint binders will make it possible to rewrite a fixpoint
formula as a composition of right or left adjoints/residuals. This rewriting makes it possi-
ble to display critical occurrences of proposition variables, and hence hopefully to reach
Ackermann shape.

Example 7.3. To illustrate the method described above, consider p ≤ µX.[¬p ∧ (X ∨
µY.[(^Y ∨ ^p) ∨ ^^X])].

The nested fixpoint satisfies the assumptions of Lemma 7.1, for A1(Y) = ^Y and
B1 = ^p ∨ ^^X. Therefore,

µY.[(^Y ∨ ^p) ∨ ^^X] =
∨

κ∈Ord ^
κ(^p ∨ ^^X)

=
∨

κ∈Ord ^
κ^p ∨

∨
κ∈Ord ^

κ^^X.

Hence, we can rewrite X ∨ µY.[(^Y ∨ ^p) ∨ ^^X] as

(X ∨
∨
κ∈Ord

^κ^^X) ∨
∨
κ∈Ord

^κ^p.

This is again an expression of type A2(X) ∨ B2 satisfying the assumptions of Lemma 7.1.
By distributing ϕ(x, p) = x∧¬p over A2(X)∨B2, we obtain (A2(X)∧¬p)∨(B2∧¬p), which
still satisfies the assumptions of Lemma 7.1. So, if A′2(X) = ϕ(A2(X)/!x, p) = A2(X)∧¬p,
and B′2 = ϕ(B2/!x, p) = B2 ∧ ¬p, the nested fixpoint formula can be rewritten as∨

λ∈Ord

A′2
λ(B′2) =

∨
λ∈Ord

A′2
λ(¬p ∧

∨
κ∈Ord

^κ^p),

which is an expression of the same type as we have seen in Subsection 7.1.2, and the
residual of which can be calculated similarly.
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Chapter Eight

Intuitionistic recursive mu-inequalities

In this section, the definition of recursive inequalities for the signature of intuitionistic
modal mu-calculus is introduced. The style of this definition closely follows that of [26],
in that it is grounded on a certain classification of the nodes in the signed generation
trees of formulas (cf. Table 8.1). However, one major difference with [26] is that the
classification of nodes adopted in this thesis is based on the positive properties of the
operations interpreting the logical connectives. Since, however, the fixpoints escape to
some extent this classification (because they do not quite enjoy the same order theoretic
properties of the other connectives), we settled for denominations which do not explicitly
refer to order-theoretic properties; instead, in a signed generation tree of an L-sentence,
we will regard certain nodes as skeleton nodes and others as PIA nodes, since these names
help to establish connections with the model-theoretic analysis conducted in [13].

An order type over n ∈ N is an n-tuple ε ∈ {1, ∂}n. For every order type ε, let ε∂ be its
opposite order type, i.e., ε∂i = 1 iff εi = ∂ for every 1 ≤ i ≤ n.

For any L-sentence ϕ(p1, . . . pn), any order type ε over n, and any 1 ≤ i ≤ n, an ε-
critical node in the signed generation tree of ϕ is a (leaf) node +pi with εi = 1, or −pi

with εi = ∂. An ε-critical branch in the tree is a branch terminating in an ε-critical node.
The intuition, which will be built upon later, is that variable occurrences corresponding to
ε-critical nodes are to be solved for, according to ε.

For every L-sentence ϕ(p1, . . . pn), and every order type ε, we say that +ϕ (resp. −ϕ)
agrees with ε, and write ε(+ϕ) (resp. ε(−ϕ)), if every leaf node in the signed generation
tree of +ϕ (resp. −ϕ) which is labelled with a proposition variable is ε-critical. In other
words, ε(+ϕ) (resp. ε(−ϕ)) means that all proposition variable occurrences corresponding
to leaves of +ϕ (resp. −ϕ) are to be solved for according to ε. We will also make use of
the sub-tree relation γ ≺ ϕ, which extends to signed generation trees, and we will write
ε(γ) ≺ ∗ϕ to indicate that γ, regarded as a sub- (signed generation) tree of ∗ϕ, agrees with
ε.

Definition 8.1. Nodes in signed generation trees will be called skeleton nodes and PIA
nodes according to the specification given in table 8.1. A branch in a signed generation
tree ∗ϕ, for ∗ ∈ {+,−}, ending in a proposition variable is an ε-good branch if it is the
concatenation of two paths P1 and P2, one of which may possibly be of length 0, such that
P1 is a path from the leaf consisting (apart from the variable node) only of PIA-nodes,
and P2 consists (apart from the variable node) only of skeleton-nodes. Moreover, any
PIA-node of an ε-good branch which is neither a leaf- nor an SRA∪{+νX,−µX}-node is
of the form γ ? β, where
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SLR SRA Skeleton PIA

+ ∨

+ ∧

+ ^

− ∨

− ∧

− �
− →

+ ∧

+ �

− ∨

− ^

+ ∨

+ ∧

+ ^
+ µX
− ∨

− ∧

− �
− →

− νX

+ ∧

+ �
+ ∨

+ →

+ νX
− ∨

− ^
− ∧

− µX

Table 8.1: SLR, SRA, Skeleton and PIA nodes.

(a) the side of ? where the ε-good branch lies must be monotone1, and
(b) if β is the side where the branch lies, then γ is a mu-sentence2 and ε∂(γ) ≺ ∗ϕ.
Unraveling the condition ε∂(γ) ≺ ∗ϕ specifically to the L-signature, we obtain:
b1) if γ ? β = +(γ ∨ β), then ε∂(+γ);
b2) if γ ? β = +(γ → β) or γ ? β = −(γ ∧ β), then ε(+γ).
A good branch is skeleton if P1 has length 0.

Definition 8.2. Given an order type ε, the signed generation tree ∗ϕ, ∗ ∈ {−,+}, of an L-
sentence ϕ(p1, . . . pn) is ε-recursive if every ε-critical branch is ε-good. An L-inequality
ϕ ≤ ψ is ε-recursive if the signed generation trees +ϕ and −ψ are both ε-recursive. An
L-inequality ϕ ≤ ψ is recursive if it is ε-recursive for some order type ε.

8.1 Recursive inequalities and the enhanced ALBA
The intuitive idea of the ε-recursive shape ϕ ≤ ψ is that, on either side of the inequality,
it consists of three types of ingredients. The first ingredient is an outer, approximation-
friendly (exo)skeleton ϕ′(!x1, . . . , !xn) ≤ ψ′(!y1, . . . , !ym); in the skeleton, the variables xi

and y j for 1 ≤ i ≤ n and 1 ≤ j ≤ m should be understood as placeholders. These place-
holders mark the point where, traversing critical branches from leaf to root, PIA-nodes
give way to skeleton-nodes. Indeed, the ε-recursive shape guarantees that, appended to
the generation tree of the skeleton (i.e., replacing each placeholder variable), there are
the two remaining types of ingredients, namely, either ε∂-formulas γ (i.e. formulas such
that either ε∂(γ) ≺ +ϕ or ε∂(γ) ≺ −ψ), or PIA-formulas β. This guarantees that ε-critical
branches must go through PIA-formulas. The analysis conducted in [13] about PIA-
formulas can be summarized in the slogan “PIA formulas provide minimal valuations”.
This exactly translates in the Ackermann’s strategy: indeed, the PIA shape guarantees

1This condition is needed because, in the case of a non-unary, residuated connective, its negative coor-
dinates are the ones which switch sides in the residuation condition; therefore if an ε-critical branch passed
through the negative coordinate of such a connective, its corresponding variable occurrence could never be
‘displayed’.

2This condition excludes the occurrence of ‘PIA’-only signed generation (sub)trees such as −µX(^X ∧
^q) from recursive inequalities.
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that ε-critical variables be displayed (more on this below), and, as discussed in Chapter
2, displaying an ε-critical variable exactly amounts to finding the value of the minimal
valuation for that variable.

The ε-recursive shape, and the three types of ingredients it consists of, guarantee
that the enhanced version of ALBA can be successfully applied on ϕ ≤ ψ: indeed, as
already remarked in Section 7.2, along to the preprocessing steps in ALBA (see [26] for
more details on the preprocessing) we can add the preprocessing rules (µ-Pre) and (ν-
Pre), which guarantee that we can assume wlog that occurrences of homogeneous nested
fixpoints are always separated by the occurrence of some non-fixpoints node between
them. After preprocessing, the first approximation takes place, yielding the initial clause

∀i∀m[(i ≤ ϕ′(−→γ ,
−→
β ) & ψ′(−→γ ,

−→
β ) ≤ m)⇒ i ≤ m];

Claim 1: the skeleton shape guarantees that the approximation rules are applicable.
Indeed, the skeleton shape guarantees that all the non-fixpoint nodes in ϕ′ are completely
join preserving (at least in the coordinates lying on critical branches) and all the non-
fixpoint nodes in ψ′ are completely meet preserving (at least in the coordinates lying on
critical branches). Therefore, the approximation rules (both for the non-fixpoints connec-
tives and for the fixpoint binders) appropriate to each side can be applied repeatedly so
as to un-nest the skeleton fixpoint-nodes. In this way, either we reach a critical variable,
which will be then put in display, or we have equivalently transformed the initial clause
into the following clause

∀i∀m
−→
∀j[(
−→
j ≤
−→
β & i ≤ ϕ′(−→γ ,

−→
j ) & ψ′(. . .) ≤ m)⇒ i ≤ m];

where the generation trees of the β’s (which we have extracted by means of repeated
application of the approximation rules) only consists of PIA nodes.

Claim 2: the PIA shape guarantees that the adjunction/residuation rules and rewrit-
ing procedure are applicable. Indeed, PIA-nodes which are not fixpoint binders are
either (syntactic) right adjoints or right residuals. While the occurrence of right adjoint-
nodes is not subject to any condition, the occurrence of right residual-nodes is limited by
condition (b) in Definition 8.1, which essentially says that, inside any (sub-) tree rooted
on a fixpoint binder, the free fixpoint variables and ε-critical variables cannot be ‘sepa-
rated’ by residual nodes (in the sense of being the leaves of branches which join up in
a residual node). For instance, in −µY.((^Y ∨ ^q) ∧ ^^p), condition (b) is violated if
εp = ∂. This implies that either one of the adjunction/residuation rules given in Section
7.1 can be applied to display the critical variable(s), or the rewriting procedure described
in Section 7.2 can be applied starting from the innermost occurrences of fixpoint binders.
In either case, we obtain each inequality j ≤ βi can be equivalently rewritten into (systems
of) displayed inequalities αi ≤ p; hence the clause above can be equivalently rewritten as

∀i∀m
−→
∀j[(
∨

i

αi ≤ p & i ≤ ϕ′(−→γ ,
−→
j ) & ψ′(. . .) ≤ m)⇒ i ≤ m].

The fact that the γ’s are ε∂ guarantees that the Ackermann’s rule can be applied, which
eliminates p.
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Chapter Nine

Conclusion and future work

This thesis was motivated by the idea of extending the results in [13] to the case of log-
ics with fixpoints and with a non-classical base. We focused in particular on intuitionistic
modal mu-calculus. We enhanced the ALBA algorithm with rules for solving for variables
which occur inside the scope of fixpoint binders, and proved their soundness thanks to the
order-theoretic properties of the interpretation of the logical connectives in the signature
of intuitionistic modal mu-calculus on perfect intuitionistic modal algebras. We defined
the class of recursive inequalities and informally justified that the enhanced ALBA is
guaranteed to eliminate the monadic second order propositional variables, yielding a cor-
respondent in FO+EFP.

The work in this thesis covers the general principles of the order-theoretic algorith-
mic correspondence for intuitionistic modal mu-calculus; however, in order to complete
the picture we have to a fully fledged theory, the following results need to be developed,
which are left to future work:

- details of the standard translation need to be provided;
- evidence should be provided that these results are about local correspondence (which
we believe is the case);
- the fact that the enhanced ALBA is successful on recursive inequalities, which we have
justified informally, needs to be fully proved; in particular, the adjunction/residuation
rules need to be extended so as to be able to solve for all the critical variables at once;
- in the algorithmic correspondence theory, we have the possibility of distinguishing be-
tween applications of recursive and non-recursive Ackermann’s lemma; we would like to
define syntactic shapes of recursive inequalities which guarantee the solvability through
applications of the non-recursive Ackermann.

In proving the order-theoretic properties of fixpoints, which the soundness of the rules
is based on, we realized that they do not rely on the lattice being distributive. This
opens the opportunity to extend these results to fixpoint expansions of logics with a non-
distributive lattice base; for instance the substructural logics. So a further direction is
about extending the existing non-distributive version of ALBA [27] with rules for fix-
points.
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