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Abstract

Finding the right model for the structure of translation equivalence between
languages is one of the major challenges and lines of research in statistical
machine translation. In this thesis we consider a formalization of translation
equivalence as synchronous grammars and explore a particular way of modify-
ing a translation grammar � by labeling its nonterminal symbols. The labeling
we develop is based on the general notion of semantic equivalence: since it is
not know a priori what kind of semantic distinctions are relevant to transla-
tion equivalence, we de�ne an unsupervised procedure to learn a label set by
clustering close paraphrases that somehow characterize strings generated from
a given nonterminal symbol. We implement the de�ned procedure and test
a current baseline grammar (Hiero system [Chiang07]) labeled with a gener-
ated label set. By trying out a number of labeling algorithms and introducing
additional modi�cations to the grammar, as well as making other changes to
the standard translation pipeline, we �nd that the performance of the labeled
grammar is worse than the one of the unlabeled. We discuss possible reasons
for that and propose a number of modi�cations to the labeling procedure we
de�ned and implemented here that could improve the performance.
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Chapter 1

Introduction

The ultimate goal of machine translation (MT) is to automatically translate
texts from one language to another at the same qualitative level that pro-
fessional human translators do. The problem therefore consists in �nding or
de�ning translation equivalence units between languages and using them to
�nd an optimal translation of an input text. By translation equivalence we
understand a relation between linguistic units from two di�erent languages
such that they are translations of one another.

Intuitively, a translation is a text that conveys the same information as
the original, and therefore it is reasonable to say that the �core� of transla-
tion equivalence relation is semantic equivalence. This implies that the task of
automatic translation meets a major challenge of natural language processing
in general � resolving ambiguity in a text: the original text has to be inter-
preted correctly in order to render it in another language. On the other hand,
the output of translation has to be well-formed from the perspective of the
structure of the output language. Thus, MT also subsumes the problem of
natural language generation. Further, as with any machine learning problem,
an automatic translation system has to be general enough so that it works
for (ideally) any kind of text of a given language and is not biased towards a
particular subset of cases. This latter point poses a very signi�cant challenge,
since natural languages contain a great number of patterns of high complexity.

The task of automatic translation can be approached analytically: one can
manually construct rewrite rules from one language to another that would
cover the whole language system, as in the rule-based approach. However, this
approach is hardly capable of alleviating the challenges pointed out above:
research in computational linguistics has shown that systems based solely on
human expertise fail to embrace the complexity the whole language system.
In order to take into account all (or as many as possible) cases, one may
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de�ne an algorithm to automatically extract patterns directly from data. In
empirical linguistics, data is large collections of texts � corpora � which one
assumes to be a good approximation of a studied linguistic system (i.e. one
assumes that the patterns found in a corpus and their distribution is close to
the one in the whole actual linguistic system). In MT, one studies not just
one linguistic system, but the correspondence between two languages, so the
data is bilingual corpora: corpora consisting of texts in two languages being
translations of each other.

Example-based machine translation works with a corpus of pairs of sen-
tences translating each other (typically produced by human translations).
Given these, translation correspondences between smaller units of text are
extracted based on some de�nition of string correspondence. Statistical ma-
chine translation (SMT) does not just extract patterns from data collections,
but attempts to model its probability distribution. It sees translation as a
stochastic process where de�nitions of random variables are based on transla-
tion equivalence. A probabilistic model allows to de�ne a function assigning
probability scores to pairs of sentences as an estimation of the likelihood that
they are mutual translations. This way we can get a decision procedure of
choosing the best translation hypothesis, which is based not on the structural
properties of the sentences but on the probabilistic model in which the struc-
tural properties and components of the sentences are values of the variables
constituting it. In this thesis we work on an extension of an existing SMT
model, and the rest of the introduction is dedicated to SMT.

1.1 Translation grammars in SMT

In this section we look at the structure of translation equivalence. There are
three major paradigms of SMT with respect to the translation equivalence
structure: word-based, phrase-based and hierarchical, each next one can be
seen as a generalization of the previous one. We �rst describe them brie�y, and
then show that each of them can be formalized as a synchronous1 translation
grammar (although it is not typical to do so for the �rst two paradigms), in
order to compare them and to explain why and how we want to re�ne then
most advanced one (hierarchical translation grammar).

A translation hypothesis is constructed out of translation correspondence
units � or, from the perspective of a translation grammar, is a result of a
derivation produced by the translation grammar. Word-based SMT formalizes

1Synchronous meaning that it generates tuples of strings (in the case of translation �
pairs � for both language sides).
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Figure 1.1: A set of possible phrase alignments of constrained by word align-
ments (represented by lines). (Picture taken from lecture notes to �Element of
language processing and learning�).

translation equivalence units as pairs of single words. Word pairs constitute
word alignment of sentences. Phrase-based SMT extends the de�nition by al-
lowing pairs of any contiguous strings of words which respect word alignments
(i.e. for any word in the string all of the words aligned to it should be in this
phrase pair). Figure 1.1 represents all the possible phrases extractable from
aligned phrases, given their word alignments. A translation hypothesis in a
a word-based or phrase-based translation grammar is a result of concatena-
tion of translation units. The conceptual di�erence between word-based and
phrase-based SMT is that the former assumes absolute compositionality: that
a correct translation of a sentence can be composed of translations of its small-
est subunits. With the phrase-based model, on the other hand, it is possible
to take contextual information into account by letting the �nal translation
hypothesis be composed of units of any length2 and letting the probabilistic
model decide about the best derivation. Hierarchical SMT incorporates the
bene�ts of phrase-based SMT, but allows to generalize further. Construction
of a translation hypothesis in hierarchical SMT is better described as a deriva-
tion in a grammar which generates strings with both terminal (nonsubstitable)
and nonterminal (substitutable) symbols.

As an example, consider a German-English sentence pair (Sie kam sofort
an, She arrived immediately), with word alignment pairs (sie, she), (kam,
arrived), (sofort, immediately), (an, arrived). Some of the possible rules in

2Typically length constraints are used in practice.
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word-based (1.2), phrase-based (1.3) and hierarchical (1.4) grammars are given
below.3 We see that in order to make a derivation in a word-based and a
phrase-based grammar we need additional rules of the form X → XX (for
concatenation of substrings). For the hierarchical grammar, we can just con-
catenate strings of rules (a) and (j) and then apply rule (b).

a. X → 〈sie, she〉

b. X → 〈sofort, immediately〉

c. X → 〈kam, arrived〉

d. X → 〈an, arrived〉

Figure 1.2: Some possible rules in word-based grammar

e. ...everything from the word-based grammar...

f. X → 〈kam sofort an, arrived immediately〉

Figure 1.3: Some possible rules in a phrase-based grammar

g. ...everything from the phrase-based grammar...

j. X → 〈kam X an, arrived X〉

Figure 1.4: Some possible rules in an hierarchical grammar

From the above example we can also see that the hierarchical formalism
allows to make better generalizations of the data. In a phrase-based framework
there is really no way to learn that the German an is the so-called separable
verb pre�x4: the best it can do is learn di�erent exemplars of the general rule

3These are not the only possible ones and that we do not specify a probability function
over rules in order to demonstrate which derivation would be the optimal one. Our goal
here is just to demonstrate how derivations are structured in the three di�erent grammars.

4A separable verb pre�x is a verb particle that is attached to a verb in some subset of
syntactic contexts (for example, when the verb is in the in�nitive form: Sie wollte sofort

ankommen � She wanted to come immediately) and is separated (by other words of a
sentence) in rest of the contexts.
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(kam sofort an, kam langsam an, kam plötzlich an). The hierarchical model
learns the pattern with a string kam X an, which is a generalization over the
di�erent examples.

A hierarchical grammar allows to introduce more abstract representations
for the translation equivalence units by distinguishing between di�erent non-
terminal symbols. For instance, we may have translation pairs 〈ADJ NP, NP
ADJ 〉 for English-French; 〈get Xstate, werden Xstate〉, 〈get Xobject, bekommen Xobject〉
for English-German, where werden is `become', and bekommen is `receive'. In
the next section we will show that re�ning translation grammar through la-
beling of nonterminal symbols can be bene�cial from the machine translation
perspective and motivate the contribution of the present thesis.

1.2 Re�ning one-nonterminal hierarchical trans-

lation grammar: syntactic and semantic per-

spectives

The current baseline in hierarchical SMT is a system called Hiero [Chiang07].
Its translation grammar has only one nonterminal X (in chapter 2 we give a
formal de�nition)5 , which implies that for any step in a derivation, if a current
string contains X, then any rule can potentially be applied there (provided it
�ts into the terminal string that is being parsed). One straightforward way to
alleviate the problem above is to label nonterminal symbols so that the set of
rules that can be applied at any step in a derivation reduces. In this thesis we
explore precisely this way of re�ning a hierarchical grammar. In this section
section we explain what kind of labeling we want to employ.

In chapter 2 we review some recent literature on how to re�ne a one-
nonterminal hierarchical grammar formalism through labeling. All of the re-
viewed proposals derive labels based on some syntactic de�nitions: their un-
derlying hypothesis is that broad syntactic classes are good for specifying a
restriction on the class of translation equivalence units that are applicable at
some part of a derivation.

At the beginning of the chapter we said that semantic equivalence is the
essential part of translation equivalence relation. Syntactic classes capture
to a certain extent semantic equivalence. For example, such semantic roles,
such as agent, patient, etc., is to a certain extent approximated with elabo-

5There is one more nonterminal, S, for so-called glue-rules (rules for concatenation of
subtrees, but they have a meta-role in the grammar, since they do not contain terminal
symbols.
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rate syntactic labels: categorial grammar tags, in addition to syntactic class,
also capture position relative to other phrases in a sentence. In this thesis
we attempt to capture semantic equivalence of translation units in a more di-
rect fashion: we group translation equivalence units based on some notion of
semantic equivalence. The advantage of �proper� semantic labeling is that it
captures more subtle cases of ambiguity. A possible inferiority in comparison
to syntactic labeling is that it might overlook the syntactic well-formedness
factor (one reason being that semantic classes are typically much narrower).

For an illustration of our motivations, consider an English-Russian lan-
guage pair and suppose we have unlabeled rules (1.1 - 1.2) extracted from
data:

X → 〈X is the crown of creation, X venec evoljucii〉 (1.1)

X → 〈man, chelovek〉 | 〈man, muzhchina〉 (1.2)

The English man has at least two interpretations: `human' and `male'. In
Russian there are two separate words for that (and no word that has both
of the interpretations): chelovek (`human') and muzhchina (`male'). For the
sake of illustration let us assume that `male' interpretation is more frequent in
the corpus. Then with rules (1.1 - 1.2), a more likely derivation for a sentence
Man is the crown of creation would be (1.3-1.4) (i.e. `Male is a the crown of
creation') rather than (1.5-1.6).

X → 〈X is the crown of creation, X venec evoljucii〉 → (1.3)

〈man is the crown of creation, muzhchina venec evoljucii〉 (1.4)

X → 〈X is the crown of creation, X venec evoljucii〉 → (1.5)

〈 man is the crown of creation, chelovek venec evoljucii〉 (1.6)

If we could label rules in (1.2) as in (1.7) and (1.8) and have two separate
rules (1.9) and (1.10) instead of (1.1), it would be very likely that rule (1.9)
has a very high probability weight, and (1.10) � a very low one. Then the
derivation combining rules (1.9) and (1.7) would be likely to get a higher
probability score than the one combining (1.10) and (1.8).6

XL1 → 〈man, chelovek〉 (1.7)

6Application of separate rules are taken to be independent events, so the probability of
their combination is obtained via multiplication of probability weights of individual rules.
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XL2 → 〈man,muzhchina〉 (1.8)

X → 〈XL1 is the crown of creation, XL1 venec evoljucii〉 (1.9)

X → 〈XL2 is the crown of creation, XL2 venec evoljucii〉 (1.10)

This is a typical example of a problem caused by semantic ambiguity, which,
as we pointed out at the beginning of the chapter, is very relevant in the �eld of
MT. We showed that using labeling it is possible to distinguish between narrow
semantic classes of words. Obviously, syntactic labels would not work here:
they are too general to distinguish between such notions as `human individual'
and `male individual'. One way to solve such a problem is to use some kind of
semantic labeling: for instance, based on our example, one could use features
as male/female/unde�ned for labeling. The problem is the already mentioned
complexity of natural language: it is not known a priori what kind of semantic
labeling is optimal and it hard to come up with one that would account for
all the cases of ambiguity in a language. Therefore, for the same reason that
data-based approaches in MT are more favorable than rule-based approaches,
we would like to have a procedure that automatically clusters items that are of
the same semantic nature, in a way that is relevant to translation equivalence
relation.

In the next section we describe the strategy of unsupervised semantic la-
beling that we explore in this thesis.

1.3 Contributions

In this thesis we explore the following strategy of unsupervised semantic la-
beling: we do not come up with an ad hoc set of semantic labels, but de�ne
a general notion of similarity between translation pairs. The de�ned seman-
tic similarity allows to derive a quantitative measure which is used to cluster
translation pairs that are close enough. The resulting clusters are hypothesized
to be semantic equivalence classes.

In the computational linguistics literature semantically close linguistic items
are usually called paraphrases, and the task of extracting them paraphrase ex-
traction. We illustrate with the same example from above how we want employ
paraphrases and paraphrase clustering for translation grammar labeling.

Suppose we have a procedure to identify that a word man has paraphrases
human, human being, individual, person (group 1) and male, guy (group 2).
It is reasonable to expect that some of the paraphrases from group 1 will have
high co-occurrence scores with the phrase is a crown of creation, but not the
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ones from group 2. On the other hand, it is likely that phrases from group
2 have high co-occurrence scores with a phrase like are stronger than women,
unlike the phrases from group 1. All of the phrases from group 1 are translated
as the Russian chelovek, and the ones from group 2 � as muzhchina. So if we
label the rule (1.1) as (1.9), and devise a set of rules in (1.11), we get high
probability scores for all of them and thus bias the decoding system to choose
these rules for decoding Man is the crown of creation. Analogously, we can
devise rules using labeling and grouping paraphrases meaning `male' under the
same label (1.12), in order to bias the system in favor of translating Men are
stronger than women correctly.

XL1 → 〈 human, chelovek〉 | 〈individual, chelovek〉 | 〈man, chelovek〉 | ...
(1.11)

XL1 → 〈 guy, muzhchina〉 | 〈male, muzhchina〉 | 〈man, muzhchina〉 | ...
(1.12)

The implementation of this idea, which we are going to de�ne in chapter 3,
comes with some important limitations that we decided to make for the initial
stage of the research for the sake of simplicity. First, ideally we want to cluster
translation pairs to form classes of semantically equivalent units. However, the
models that we de�ne actually start by clustering phrases of one language and
then transforming the cluster into a set of all phrase pairs containing the
phrases from the cluster. Second, we do not estimate for each occurrence of
a nonterminal the optimal set of translation units that are generated from
it. Instead we use a uniform clustering procedure by de�ning a function that
selects n best paraphrases given a list of all paraphrases and their similarity
scores.

We summarize the original research presented in this thesis. It consists of
two parts: abstract de�nitions of the clustering model and the empirical testing
whether a label set generated according to the de�nitions can be used to im-
prove performance of a baseline translation system. As an abstract model we
de�ne a procedure of generating a label for each occurrence of a nonterminal.
Note that we do not de�ne a labeling algorithm. Also note that although our
goal is to improve the performance of a particular translation grammar (Hi-
ero), the method in principle can be applied to any translation grammar. Our
main contribution in the abstract modeling part is de�ning several alternative
de�nitions of similarity measures between paraphrases. For the empirical test-
ing part, we run experiments with di�erent labeling algorithms. We also ran
some additional experiments to investigate the impact of some of the design
choices we made.
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1.4 Outline

The rest of the thesis is structured as follows.
Chapter 2 contains the necessary background information about the �elds

that are involved in this thesis: statistical machine translation, semantic mod-
eling, in particular de�nitions of semantic similarity, and literature on para-
phrases and paraphrase extraction.

In chapter 3 we de�ne a procedure for generating labels for an hierarchical
translation grammar.

In chapter 4 we describe the experiments that we ran to test the perfor-
mance of a labeled translations system. We discuss the experimental results
and outline possible questions and modeling ideas for further research.

Chapter 5 lists conclusions.

11



Chapter 2

Background

The purpose of this chapter is to provide the reader with the background
information related to and necessary for understanding the original research
presented in the subsequent chapters. Our major task in this thesis is to de�ne
a procedure for generating labels for nonterminals of a hierarchical translation
grammar.

Since the thesis about machine translation, we introduce the most impor-
tant notions of the �eld in section 2.1. Paraphrases are informally de�ned as
phrases conveying the same information [BannardCallison-Burch05], therefore
more precise instantiations of this general concept has to rely on some no-
tion of semantic similarity. In section 2.2 we make a brief overview of some
important state-of-the-art models in computational semantics and the de�ni-
tions of semantic similarity. In section 2.3 we concentrate on the de�nitions
of paraphrases proposed in the literature and the corresponding methods for
extracting them from textual data.

2.1 Statistical Machine Translation (SMT)

The goal of machine translation (MT) is, given a text in one language, to
automatically produce a syntactically well-formed text conveying the same
information in another language. Currently most MT systems translate a text
sentence by sentence. An input sentence (the one which is translated) is called
source sentence, the output (result of translation) is called target sentence.
It is a convention in the state-of-the-art SMT, which we will follow, to use f
(French) for source text and e (English) for target in formal notation.1

1This is because �rst SMT models were tested on French-English parallel texts.
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The process of translation in MT is called decoding. It relies on a trans-
lation grammar � a set of productions specifying how to translate a source
text to target text. Decoding consists in constructing a space of derivations,
each producing some translation given a grammar and an input sentence, and
based on that deciding on the best translation. Thus, a complete translation
system must consist of at least two following elements: a translation grammar
(supplied with a method to learn it, in case it is not manually created) and a
decoding algorithm.

As a �eld MT originated with a rule-based approach, whereby the de-
coding algorithm was based on explicitly de�ned syntactic-oriented rules and
manually-created dictionaries. A new stage of development of MT came with
example-based MT [Nagao84]. Its innovation was the source of learning the
translation correspondences � a bilingual parallel corpus. A parallel corpus
is a collection of parallel texts: texts the building units of which are aligned
to each other. Alignment is a relation between linguistic units (paragraphs,
sentences, phrases, words) that are approximately semantically equivalent or,
more speci�cally in our case, translationally equivalent. A bilingual parallel
corpus consists of texts in two di�erent languages aligned between each other.

Input data in example-based MT (which is usually called translation mem-
ory) is sentence-aligned: sub-sentential alignment is achieved by inspecting
�minimal pairs� of sentences in one language (sentences that di�er only with
respect to some proper substring of words) and comparing their translations.
As a simpli�ed example, consider sentences He loves summer, He hates sum-
mer and their respective French translations Il aime l`ètè, Il déteste l`ètè: it
can be inferred that he is translated as il and summer � as l`ètè, because these
French words repeat in both sentences, just as the English originals; and, cor-
respondingly, loves is aime and hates is déteste � because these French words
are the substring that make the two sentences di�erent, just as the English
originals. The decoding process consists in �nding the most similar sentence
from the memory for the source sentence and the most similar strings for the
parts that do not match, and then using the translations of the matching
strings to produce the target sentence (with an algorithm sketched above).
Importantly, the choice of matching parts in the memory is based only on
string similarity (typically, an optimal translation is the one that requires the
least number of string combinations).

Statistical MT is characterized by deeper analysis of bilingual data: it
uses probabilistic modeling to learn bilingual correspondence patterns from
parallel corpora. A translation grammar comes together with a probabilistic
model which assigns a probability value to every derivation built up from the
grammar. Besides translation equivalence units a probabilistic model typically
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includes language model probability, which is usually de�ned as an n-gram
model.

The task of an SMT system is to �nd the best translation based on set of
possible derivations and their scores2.

Although we have stated that a SMT system consists of several components
(translation grammar, probabilistic model, decoding system), we will not re-
view them separately, since throughout the development of SMT models, the
evolution of one of the components was always to some extent motivated by
the others. That is why we will try to keep the chronological order as the
major one in our overview. It is common to single out three major �evolution-
ary stages� of SMT models: word-based, phrase-based, hierarchical. We will
review them one by one and give for each of them a description of their main
components. However, the scope of this thesis is the structure of a translation
grammar, so we will give more attention to this aspect.

2.1.1 Word-based models

Word-based SMT is represented by �ve IBM models [Brownetal1993]: they all
share the same modeling idea and increase in complexity from �rst to �fth.
We will focus our attention on the �rst model, since it is enough to illustrate
the most important concepts of word-based SMT.

In [Brownetal1993] the authors de�ne a generative probabilistic model in
which translation from English to French is seen as a basic process. On an
intuitive level, the authors take a semantic perspective: the model they build
up can be seen as a process of a native French speaker generating sentences
in French so that his �mental representations� are English sentences. They
introduce a semantically inspired notion of cept : a subset of positions in an
English string together with a sense or concept that they re�ect. A cept gener-
ates French words. On a surface level cepts are realized as word alignments �
connections between a pair of source and target words which translate (parts)
of each other. Word alignment as a relation is not one-to-one: it is often the
case that more than two words on one side correspond to a single word on the
other side, and even more complex patterns occur. However, the IBM model
narrows down its attention to individual words and connections between them
and makes an assumption that each English word is aligned to at most one
French word.

By transforming Pr(e|f) into Pr(e)Pr(f |e)
Pr(f)

, we get a decision rule for choosing

2The common decision rules are: the most probable translation (i.e. the one that maxi-
mizes derivations sum), the one that is obtained from the most probable derivation.
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a target ebest given source f is de�ned as in (2.1), which is referred to as the
noisy channel model. The bene�ts of reformulating the decision rule problem
from Pr(e|f) to Pr(e) · Pr(f |e) is that it allows to separate the problem of
�nding an English string that is conveys the meaning of, or generates, a source
French string (Pr(f |e) � translation model probability) and the problem of
making sure that the target English string is syntactically well-formed (Pr(e)
� language model probability). We will focus on the former.

ebest = argmaxePr(e|f) = argmaxePr(e) · Pr(f |e) (2.1)

Pr(f|e) can be rewritten as
∑

f
Pr(f, a|e), where f = fm1 = f1...fm, e =

el1 = e1...el, a = am1 = a1...am, and ai stands for a position in a target string
to which fm is aligned. The authors decompose the latter formula as in (2.2):

Pr(f, a|e) = Pr(m|e)
m∏
j=1

Pr(aj|aj−1
1 , f j−1

1 ,m, e)Pr(fj|aj1, f
j−1
1 ,m, e) (2.2)

In the �rst IBM model it is assumed that Pr(m|e) is constant (equal to ε),
and Pr(aj|aj−1

1 , f j−1
1 ,m, e) depends only on l (length of the English string),

and the attention is concentrated on t(fj|eaj) ≡ Pr(fj|aj1, f
j−1
1 ,m, e), which is

estimated as the relative frequency of (e, f) connections with respect to all e
occurrences. Thus:

Pr(f, a|e) =
ε

(l + 1)m

m∏
j=1

t(fj|eaj) (2.3)

Summing over all possible alignments for the given source and target
strings, they get a formula of translation probability. The unsupervised learn-
ing of the word alignments is done via the expectation-maximization algorithm
[Dempsteretal77], where the maximized function is t.

2.1.2 Phrase-based models

From a conceptual point of view word-based SMT implies the idea of absolute
compositionality: translation of bigger strings can be seen as a sum of its
smallest parts. This kind of approach has a lot of counterexamples in the
linguistic literature: it has been long observed that in language there are word
combinations that do not semantically reduce to their building parts (idioms
and collocations being examples of di�erent degrees of the general phenomenon
of non-compositionality). Phrase-based SMT (PBSMT) alleviates this problem
by considering probability distributions over bilingual string correspondences
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of di�erent sizes. From the perspective of PBSMT, source and target strings
consist of phrases, and word alignments in a string are taken to be constraints
on which phrases it consists of:

De�nition 1 (Phrase pairs [Zensetal02]). Given a word alignment A between
two strings fJ1 and eI1, a phrase pair is a pair of substrings f j+mj and ei+ni such
that:

• both have no gaps;

• both are consistent with A: for all fk ∈ f j+mj all the el such that (fk, el) ∈
A are in ei+ni ; and analogically for all al ∈ ei+ni .

A minimal phrase pair (e, f) is such that there is no phrase pair (e′, f ′) where
either e′ is a substring of e, or f ′ � a substring of f [SimaanWenniger12].

De�nition 2 (Phrases in SMT). A (minimal) phrase is an element of a (min-
imal) phrase pair from de�nition 1.

Under the noisy-channel model, in order to estimate translation probability
of a source phrase given a target phrase it is now marginalized over all possible
segmentations (consistent with word alignments) B of the phrases [Zensetal02]:

Pr(fJ1 |eI1) =
∑
B

Pr(fJ1 , B|eI1) =
∑
B

Pr(fJ1 |B, eI1)Pr(B|eI1) (2.4)

The probability distribution over possible segmentations may be assumed
uniform [Zensetal02], and the probability of a source phrase given a segmen-
tation and a target is estimated as ([Koehnetal03]):

Pr(f I1 |eI1) =
I∏
i=1

φ(fi|ei)d(ai − bi−1), (2.5)

where f
I

1 designates a particular segmentation of a phrase fJ1 into I phrases
(likewise for eJ1 ), fi (analogously ei) stands for i-th phrase in a segmentation,
φ is a phrase translation distribution, and d(ai− bi−1) is distortion probability
where ai is the start position of a given source phrase and bi−1 is the end
position of a source phrase which is translated into (i − 1)th target phrase.

φ(f |e) is estimated as #(f,e)
#e

.
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2.1.3 Hierarchical models

Translation grammar is further sophisticated by learning correspondences be-
tween more abstract patterns than just word strings: hierarchical SMT [Chiang05]
does that by explicitly formalizing translation correspondence as a synchronous
context-free grammar ([AhoUllman]). For example, if we have a pair of Chinese-
English sentences in (2.6 - 2.7), where square brackets designate phrase align-
ments3, we might, for example, not only extract a phrase pair (de shaoshu
guojia zhiyi, one of the few countries), but also translation pairs ([1] zhiyi,
one of [1]), where [1] is a placeholder for a phrase and �1� is an index and
designates alignment (translation correspondence) between two units. This
way we can de�ne a rule X → 〈X1 zhiyi, one of X1〉.

[Aozhou] [shi] [yu] [Bei Han] [you] [bangjiao] 1[de shaoshu guojia zhiyi ](2.6)

[Australia] [is] [dipl. rels.]1 [with] [North Korea] [is] [one of the few countries](2.7)

This model can capture translation correspondence between units of di�er-
ent levels of syntactic abstraction. Importantly, the introduction of the nonter-
minal symbols allows to learn reordering patterns more e�ectively. Languages
typically di�er in the relative order of syntactic constituents and not individual
words: phrase-based model does not allow to generalize over reordering exam-
ples that involve the same type of syntactic constituents, while hierarchical
model achieves the generalization by representing the constituents in question
with a single non-terminal in question.

The commonly accepted baseline in hierarchical MT is Hiero translation
system [Chiang07], we will refer to its translation grammar as the Hiero gram-
mar :

De�nition 3 (Hiero translation grammar). Hiero translation grammar is a
synchronous context-free grammar (SCFG) (V , TS, TT ,N , R, S), where V is a
set of terminal symbols, TS = TT = {X1, X2, S1, S2} are sets of source and
target nonterminals (respectively), N = {X,S} is a set of left-hand terminal
symbols, such that S is a starting symbol. R is a set of rules of the form
A→ 〈γ, α,∼〉, where γ is a source string, α is a target string, ∼ is a one-to-
one correspondence between non-terminals in γ and α. The rules are of two
types:

1. rules of the form X → 〈γ, α〉, where γ and α are strings of symbols from

3Example from [Chiang05].
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V, TS, TT , with the following constraints 4:

• the length of the source string on the right-hand side is at most �ve
symbols;

• each side has at most two nonterminals;

• nonterminals cannot be adjacent on the source side;

• a rule must have at least one pair of terminal symbols.

2. glue rules of the form S → 〈γ, α〉, where γ and α are strings of symbols
from TS, TT , with the constraint that they contain two symbols.

There are also constraints which are active at the stage of grammar ex-
traction. Hiero grammar rules are extracted in two steps: �rst, phrase-pairs
are extracted according to Def. 1 to form initial rules (with X on the left-
hand side); second, sub-phrase pairs (if any) are substituted with X symbols.
[Chiang07] imposes a constraint that �initial rules� have at most ten words on
either side. Another constraint is that unaligned words are not included into
initial rules.

In sections 2.1.1-2.1.3 we have seen that how the structural complexity of
translation correspondence increases: the result is that there are more struc-
tural aspects that we might want to include into the probabilistic model. The
noisy-channel model takes care only of the translation probability and of the
language model probability, while for the expressive power of the Hiero gram-
mar we could take into account more than that. [OchNey02] propose to inter-
polate an arbitrary number of properties, or feature functions, of an object in
one model. They propose to directly model the probability Pr(eI1|fJ1 ) within
the maximum entropy framework [Bergeretal96]: in the framework, one spec-
i�es a set of M feature functions hm(eI1, f

J
1 ), m ∈ {1, ...,M}. Each feature

function is accompanied with a weighting parameter λm and is interpolated
into the whole model as follows:

Pr(e|f) = pλM1 (e|f) =
exp(

∑M
m=1 λmhm(e, f))∑

e exp(
∑M

m=1 λmhm(e, f))
. (2.8)

Maximizing the probability with respect to e we get a decision rule:

argmaxePr(e|f) = argmaxe

M∑
m=1

λmhm(e, f). (2.9)

4The motivation for the introduction of such constraints is spurious ambiguity � a situ-
ation where at decoding we get many distinct derivations which have the same values for
di�erent probability functions that characterize them (cf. log-linear model below). Another
motivation is to reduce the search space of a decoder.
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This model allows to take into account di�erent weighted functions of
source-target pairs (hi), such as lexical probability (how well individual words
are translated), distortion probability (how good the word-order correspon-
dence is), rule penalty (a monotonously increasing function of the number of
rules used in the CFG derivation), etc.

2.1.4 Extensions of the state-of-the-art SMT systems:

structural perspective

In the previous three sections we have traced down how the complexity and de-
tailedness of translation equivalence patterns increased from model to model.
An important part of the current research in SMT is to de�ne a model captur-
ing translation equivalence even better. There are at least two ways to proceed
with this goal which are taken in the literature:

1) adding additional feature functions to the log-linear model (sometimes
based on additional patterns extractable from the data);

2) modifying translation grammar;

The �rst option is to directly manipulate the probability of a resulting
derivation by taking into account additional structural features of aligned sen-
tences. For example, [Lietal12] add an additional reordering model to the sys-
tem, [Chiangetal09], [ZollmanVogel11] add distortion features, [GimpelSmith08]
discuss di�erent positional features.

In this thesis we are interested in the second option. To be more speci�c,
we are interested in a particular kind of modi�cation � the one that we call
labeling: labeling of a grammar is assigning labels of some kind to rules which
can be de�ned in grammar. As said in the previous section, the latest baseline
system in SMT is usually taken to be Hiero (Def. ??). As we stated in the
introduction, our goal is to provide a labeling for the Hiero grammar, so here
we will review the literature on labellings of this translation grammar.

An important reason why there is a general interest in extending, or more
speci�cally, labeling the Hiero grammar is that, as we pointed out in section
1.2, it is able to capture syntactic patterns between linguistic units of di�erent
levels of abstraction: between terminal nodes (i.e. actual words) and variables
standing for phrases. The drawback of the Hiero grammar is that it is too
unrestricted: it has only one nonterminal symbol (X) that can appear in a
string with terminals. This implies that in a derivation, when using a rule
with X on the right-hand side the next choice of a rule can be any other non-
glue rule that �ts the pattern of the source string, and only the probabilistic
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decision rule will decide that the best derivation is. Instead, if there were more
than one nonterminal symbol, the set of rules that could be employed at a given
step of a derivation would be smaller. This idea underlies the labeling models
that we will review. Generally, the algorithm for learning a labeling assumes
that the baseline grammar is available and should include the following steps:

1. Take as input a parallel text parsed with the baseline grammar.

2. To each nonterminal symbol in the �parse forest� assign a label according
some criterion. Since we are working with parallel texts, there is a choice
about the source for labeling information: the labels can be assigned to
source side and then copied to the aligned target side (or vice versa).
The information for labels can be based on bilingual patterns;

3. Extract the new grammar from the given labeled parse forest.

The labelings proposed in the literature are typically based on the output of
some theoretically-motivated tool: phrase-structure parser [MylonakisSimaan11],
categorial grammar parser [MylonakisSimaan11], dependency parser [Lietal12],
POS-tagger [ZollmanVogel11]. On the other hand, labels can be theory-independent,
like, for example, reordering labels [MylonakisSimaan11], [SimaanWenniger12].
The set of labels used to extend the baseline grammar can be prede�ned (for
example, labels can be the direct output of a tagging tool), or they can be
coined on the �y. As an example of the latter approach, [ZollmanVogel11]
produce labels from sequences of POS tags that cover the phrase span corre-
sponding to the nonterminal. Finally, another important modeling decision is
what part of the constituent that a given nonterminal dominates is taken into
account for labeling. It can be the whole terminal phrase generated from a
given nonterminal, but it can be a part of the phrase: often what is called a
dominant head (as de�ned in dependency grammar) of a constituent is used
for labelling [Lietal12].

2.1.5 Evaluation metrics for SMT

The most popular automatic evaluation metrics for SMT is BLEU [Papineni etal02].
It relies on a test data set and a set of its reference translation. The evaluation
algorithm compares the translation output by the decoder with the reference
translations and outputs a number between 0 and 1.

The algorithm computes modi�ed precision scores for n-grams (1- to 4-
grams), denoted by pn, according to a formula:

pn =
#n-grams from candidate set in reference translations

#n-grams in reference translations
(2.10)
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The �nal score is:

log BLEU = min(1− r

c
, 0) +

N∑
n=1

wnlogpn, (2.11)

where r is the length of the reference corpus, c is the length of the candidate
set, wn stands for an n-gram.

2.2 Automatic extraction of semantic informa-

tion

Mutual paraphrases being sets conveying the same information [BannardCallison-Burch05],
we can regard them as semantic equivalence classes and use them as semantic
information in applications. The amount of research output on paraphrases
and on semantic similarity in theoretical and computational linguistics is enor-
mous and we will not attempt to give the overview of it here. The scope of the
present work is very speci�c: it is how paraphrases are seen from and can be
applied in machine translation. But before we go on to present the background
on research on paraphrase extraction and application, we would like to spend
some time on some relevant highlights in more theoretically-oriented research
in computational linguistics. We concentrate on two notable approaches to
unsupervised semantic modeling: distributional modeling and the perspective
of multilingual learning.

2.2.1 Distributional semantic models

Inspired by [Harris54], there has been a great deal of research in computa-
tional modeling of linguistic meaning in terms of distributions in text. By a
distribution of a linguistic unit we understand a set of linguistic units of a
speci�ed kind with which the former co-occurs in a corpus. The basic idea
is that the structure of a language can be described in terms of distributions:
for example, vowels are surrounded by consonants in a word, articles are el-
ements that precede nouns, a word dog due to its semantics often co-occurs
with words bark. A notorious disadvantage of this approach, which is relevant
for paraphrase extraction, is that antonyms usually have close distributions:
for example, it is very probable that words open and close co-occur equally
frequently with a word door.

Distributional semantic models (DSMs) have as their core assumption that
a generalization of the context in which a lexical unit occurs in a corpus can be
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a good approximation of the semantics of this unit. [Turney06] takes the dis-
tributional idea further to model relational similarity between parts of words.
DSM de�nes semantic space as a vector space where dimensions (set of vec-
tor features) are formalized as co-occurrence counts with the most frequent
lexical items from the corpus, and vectors themselves correspond to senses of
target words � words for which we want to put into the semantic space. By
co-occurrence we understand that two words co-occur in a context window (a
set of words surrounding a word) of a speci�ed size. n most frequent words
(which constitute a basis) are chosen for vectors' features because, �rst, the
co-occurrence counts with them provide more precise information and, second,
because they make it possible to compare between di�erent vectors.

[PadoLapata07] abstract over the existing DSMs and develop a general
model of semantic space, which can be described in terms of what components
are needed to construct it from data:

1. Context of a target word is formalized as a dependency path π, which
is said to be anchored to a target word t if t is the �starting� vertex of
the path (notation: πt). Note that under this de�nition a context of one
occurrence of tmay consist of more than one paths (if there are more than
one path available). The intuition is that the dependency formalism can
capture rather deep semantic relations (if we have appropriate labels for
edges of a dependency graph), unlike a simple �bag-of-words� approach,
and is less oriented at surface syntactic properties. In addition to that
one de�nes a context selection function cont: W → 2Πt (where Πt is a set
of all πt) which speci�es what information actually is taken into account.

2. A basis B and a basis mapping function µ : Π→ B (where Π is a set of
all dependency paths).

3. A path value function v : Π → R (in the simplest case this function
assigns 1 uniformly). Further, for each target word type (i.e. a set of all
occurrences of some word) a global co-occurrence frequency (generalized
over the whole corpus) is determined via f : B × T → R.

[ErkPado10] explore a modi�cation of the above model: they do not in-
clude global co-occurrence frequency function into the semantic space. Their
idea is to store separately contexts for each token (occurrence) and consider
them di�erent senses of a word. This way they perform sense disambiguation:
for a given context, they activate only those exemplars that are su�ciently
close (greater than some threshold θ) to the current context with respect to a
prede�ned metric. The whole set of exemplars is designated as E and the set
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of exemplars activated in a current context s � act(E, s):

act(E, s) = {e ∈ E|sim(e, s) > θ(E, s)} (2.12)

2.2.2 Semantics in the framework of multilingual learn-

ing

In the previous subsection we have outlined a class of models that represent
semantics of linguistic units by modeling the context in which they appear
in a corpus. Another source of information that can be used for approximat-
ing semantics of linguistic units are parallel corpora (de�ned in 2.1). Aligned
elements in a parallel text are assumed to be approximately semantically equiv-
alent, and so if we are able to trace down the regularities in how words (or
other units) align to words on the other side of a parallel text, we might also
capture semantic regularities. This idea is used in [DiabResnik02], where the
authors use aligned French language as a �sense language� for English for the
task of word sense disambiguation. The authors point out that the method
has its problems: the sketched model basically assumes that the words of a
�sense language� are monosemous. Another problem is that their algorithm
of semantic disambiguation relies on word alignment, which is generally quite
noisy. Interestingly, a similar idea is expressed in [Brownetal1993] (which we
have already mentioned), where they also construct a generative model with
conditioned e and conditioning f and explain their intuitions as when a native
French speaks French he has a corresponding English translation (being some
sort of semantic representation) in mind.

The ideas underlying [DiabResnik02] can be characterized as belonging
to a more general �eld of multilingual learning, where POS tags, syntactic
structure, morphological structure of one language is learned from its corre-
spondence to another language ([SnyderBarzilay10]).

2.3 Paraphrase extraction methods

As a a result of their very broad de�nition (phrases conveying the same in-
formation), one can devise a lot of di�erent methods to extract paraphrases.
One way is to use linguistic theory and manually-created linguistic resources,
such as dictionaries, thesauri, encyclopedias. But as was said above, we are
interested in automatic, semi-supervised and unsupervised ways to extract
paraphrases, so only such methods will be reviewed here.
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Paraphrase extraction methods are typically based on an idea of semantic
similarity, that is why they use essentially the same ways of capturing se-
mantic closeness as the models discussed in section 2. There are two major
approaches to paraphrase extraction. In one, expressions are considered mu-
tual paraphrases if their have similar distributions in a corpus. In the second
one, the criterion for paraphrase extraction is whether expressions are aligned
to the same expression in the parallel text (an approach based on parallel
corpora).

2.3.1 Distributional approach

Under the distributional approach phrases are considered mutual paraphrases
if they have similar distributions in a corpus.

The idea of distributional similarity is realized in its simplest form in
[PascaDienes05] and [Marton etal09]. The set of potential paraphrases is ob-
tained by extracting n-grams from a monolingual corpus. For each occurrence
of each n-gram a so-called lexical anchor (a context window of a �xed length,
which is just a set of words). [PascaDienes05] do not compute the global co-
occurrence frequency, but devise a metric to compare the set of lexical anchors
for each two n-grams (potential paraphrases). [Marton etal09], on the other
hand, use global co-occurrence function to build for each phrase its distribu-
tional pro�le (formalized as a vector). Paraphrase closeness is then estimated
as vector similarity.

[LinPantel01] formalize context ,as well as paraphrases themselves as spe-
cially transformed dependency paths5.

2.3.2 Approach using parallel corpora

This family of methods makes use of parallel texts to establish correspondence
between two phrases from parallel texts: if there is such correspondence, then
these two phrases are mutual paraphrases, since they convey the same infor-
mation. There are at least two ways to de�ne this correspondence. One can
use parallel texts of the same language, as [BarzilayMcKeown01] do, to extract
aligned phrases and consider them paraphrase. Or one can use translation to a

5The transformation consists in connecting a preposition to a phrase that is its dependent,
deleting the edge to the preposition, inserting a new edge from the node that dominated
the preposition to the phrase to which the preposition got attached, and, �nally, labeling
this new edge with the preposition under discussion. This transformation is done in order
to capture only semantic relations between words.
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di�erent language as a pivot to establish the correspondence between phrases
of the same language, as [BannardCallison-Burch05] do.

[BarzilayMcKeown01] use alternative translations of the same foreign text
as data. They �rst perform sentence alignment between them, and then iden-
tify parts of the sentence that are the same and parts that are di�erent: for
example, two sentences They came home and They arrived home almost co-
incide except for the word in the middle � this kind of divergent strings are
learned as paraphrases. The approach is sound from the conceptual point of
view, but it meets a major problem in application � scarcity of data: multiple
translations of the same text are in general not very frequent, and they mostly
are alternative translations of �ction literature texts, which are typically avail-
able only for a small subset of languages.

A pivot-based approach in [BannardCallison-Burch05] solves the problem
of scarcity of data discussed above. It uses phrase-alignments (as de�ned in
phrase-based machine translation) between bilingual corpora to extract mono-
lingual paraphrases. The idea is that if two phrases are aligned to the same
foreign phrase, then they are mutual paraphrases. An important bene�t of this
approach is that one may use di�erent language pairs to extract paraphrases for
a given language: for example, if one needs a paraphrase system for Spanish,
he may use Spanish-English, Spanish-German, Spanish-French, etc. bitexts.
This fact is useful when we consider applications of paraphrasing in machine
translation: when a decoder encounters an unknown word in a source sentence
(the one that is absent in the translation model), this word may be substituted
by its paraphrase, which is present in the translation model. Still considering
the same application, the authors de�ne the �best� paraphrase ebest which is
to be substituted instead of the original one e1 as:

ebest = argmax(e2 6=e1)p(e2|e1) (2.13)

= argmax(e2 6=e1)

∑
f

p(e2|f, e1) · p(f |e1) (2.14)

≈ argmax(e2 6=e1)

∑
f

p(e2|f) · p(f |e1) (2.15)

From this formula we can derive the similarity measure between para-
phrases (note that the measure is not symmetric):

p(e2|e1) =
∑
f

p(e2|f) · p(f |e1) (2.16)

This baseline is re�ned by taking syntactic information into account [Callison-Burch08].
First, one can constrain the de�nition of paraphrases by requiring that they
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have only those syntactic labels that the original phrase has in the corpus:

pSyntConstr1(e2|e1) = p(e2|e1, S(e1)) (2.17)

=
∑
f

p(e2|f, S(e1)) · p(f |e1, S(e1)) (2.18)

where S is a function for a phrase to a set of its syntactic labels in a corpus,
and p(f |e1, S(e1)) is obviously equal to p(f |e1).

Alternatively, one can maximize the probability with respect to a syntactic
label:

pSyntConstr2(e2|e1) = argmaxsi∈S(e1)p(e2|e1, si) (2.19)

Finally, one can require the paraphrases to have the same syntactic label
as the given occurrence of the original phrase. If the given syntactic model
allows multiple labels for one occurrence, then the idea can be implemented in
two ways: one can maximize the conditional probability with respect to a label
((2.20), where CurrS(f1) stands for a set of current syntactic labels of f1), or
one can sum over all of the current labels (this will give the same formula as
(2.17), with S(f1) interpreted as the set of current syntactic labels).

psyntConstr3(f2|f1) = argmaxsi∈CurrS(f1)p(f2|f1, si) (2.20)

2.4 Summary and outlook

In this chapter we have reviewed the research in machine translation and
computational semantics which sets the necessary background for the original
research presented in this thesis.

In 2.1 we have reviewed the state-of-the-art models of SMT, with an em-
phasis on the translation grammar models, and their evaluation metrics. We
also gave a brief overview of the current literature on sophisticating the gram-
mar formalisms for translation � the line of research represented by this thesis.

In section 2.2 we presented a summary of the recent modeling attempts
in the �eld of computational semantics. We drew a line between two kinds
of approaches: the ones that approximate linguistic meaning based on the
contexts of the units that carry the meanings, and the ones that capture
meaning correlation by capturing how linguistic units of one (target) language
are related (via translation correspondence) to other language(s).

In section 2.3 we reviewed the literature in computational linguistics on
paraphrases and paraphrase extraction. We have shown that the research on
paraphrases is a sub�eld of computational semantics and thus it also can be
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divided into two classes: some models take paraphrases to be phrases that
appear in similar contexts, and other models de�ne paraphrases as phrases
aligned to the same elements in a parallel corpus.

With the background set, we can proceed with de�ning our own model. In
the next chapter we specify a procedure for generating labels for an hierarchical
translation grammar.
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Chapter 3

Paraphrase clustering for label

generation

The goal of the present thesis is de�ne a procedure for generating a set of labels
for an hierarchical translation grammar (we work with a particular case, the
Hiero grammar). We generate a set of labels by considering each occurrence of
a nonterminal in a parse forest of an unlabeled grammar and de�ning a label
for this occurrence. The kind of labeling we want to arrive at is semantic-
oriented, which in particular implies that the classes denoted by the labels are
much narrower than syntactic labels used in the literature (reviewed in chapter
2). We stress that in this chapter we de�ne label generation, and not the actual
labeling algorithm. The latter will be considered in the next chapter, where we
consider a number of alternative labeling methods: fully labeling the original
grammar, labeling a restricted set of occurrences of nonterminals, and others.
We start with an informal overview of all the steps needed to generate the
labeling we want to arrive at. The sections that follow will provide a detailed
and formal speci�cation of the framework.

To informally describe the procedure of label generation, we need to in-
troduce some additional terminology: intuitively, it is reasonable to have a
concept of a representative phrase for a nonterminal. In general, labeling is
about �nding a good representative of the class of phrases that are to be gen-
erated from some nonterminal symbol. On the other hand, each X in a tree
dominates a terminal phrase, therefore, it is reasonable to say that for each
occurrence of X there is a phrase that represents it, or characterizes it (it may
be the whole dominated phrase, or its subphrase, or some particular repre-
sentation of the phrase) � we are going to use this second meaning. The idea
behind our labeling procedure is then, given a symbol X in a tree, to cluster
the closest paraphrases of a phrase that represents it. Therefore, a precise
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de�nition of the method to generate our labeling set requires speci�cation of
at least the following components:

• what to consider a representative phrase representing for a given con-
stituent;

• how to de�ne a paraphrase of a given phrase;

• what measure function to use to determine cluster membership;

• what clustering algorithm to employ.

The following sections give a detailed speci�cation of the needed compo-
nents. Section 3.1 speci�es the models that we use as an initial step of our
clustering: the grammar that we will label � we will refer to it as a basis for
labeling (the Hiero grammar) and a model for choosing a representative phrase
for a non-terminal (CCL model). Section 3.2 de�nes an algorithm for choosing
a cluster of closest paraphrases of a given phrase. First, it gives two general
de�nitions of paraphrase similarity functions and derives from it a paraphrase
similarity measure. Second, it de�nes the clustering algorithm itself. Sec-
tions 3.3 gives the simplest implementations of the two general de�nitions of
paraphrases: we call them basic models.

3.1 Determining a starting element of a para-

phrase cluster

In this section we de�ne formally the models that we will use to produce the
�rst step of the labeling: a grammar that is a basis for labeling and a model
which determines for each occurrence of a nonterminal in the basis grammar
a representative phrase (in the sense de�ned above). We conclude this section
with a precise speci�cation of our framework.

3.1.1 The baseline model

As a baseline we use a translation grammar Hiero from [Chiang07], the de�-
nition for which we repeat here:

De�nition 4 (Hiero translation grammar). The Hiero translation grammar is
a synchronous context-free grammar (SCFG) (V , TS, TT ,N , R, S), where V is
a set of terminal symbols, TS = TT = {X1, X2, S1, S2} are sets of of source and
target nonterminals (respectively), N = {X,S} is a set of left-hand terminal
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symbols, such that S is starting symbol. R is a set of rules of the form A →
〈γ, α,∼〉, where γ is a source string, α is a target string, ∼ is a one-to-one
correspondence between non-terminals in γ and α. The rules are of two types:

1. rules of the form X → 〈γ, α〉, where γ and α are strings of symbols from
V, TS, TT , with the constraints on the form and size of source and target
strings speci�ed in De�nition 3;

2. glue rules of the form S → 〈γ, α〉, where γ and α are strings of symbols
from TS, TT , with the constrain that they contain two symbols.

3.1.2 Choosing a representative phrase for a nonterminal

A straightforward solution for choosing a representing phrase would be to take
the whole terminal phrase that is generated from a given non-terminal in a
tree. Such a model might not work for our purposes (clustering), since the
likeliness of a phrase to have a paraphrase decreases with its length. As a
result, the implemented model will be sparse and might not work well. Also,
such a solution neglects one of the major generalizations in linguistics � the
�recursiveness� of language, since it treats each phrase as de�ning its own
separate category. Projected onto the setting we are working in (hierarchical
translation grammar), the idea of recursiveness of language can be spelled out
as: each phrase has a subphrase that captures its essential properties. If this
hypothesis is correct, then, given a selection criterion for a dominant element,
it can be a �rst step of generalizing the set of categories. The second step
would be (in our case) clustering of phrases, to reduce the set of categories
even further.

For the purpose of selecting a dominant element, we might preprocess the
data with some existing tool, such as a dependency parser, in order to choose a
�dominant� subphrase for each phrase. However, existing tools typically work
with syntactic information, while in the introduction chapter we showed that
our idea is capture is more narrow semantic regularities. Thus, a syntactic
tool might be too crude for our goals. Another problem is that not all tools
are available for any language.

In the following subsection we present a model for labeling of the Hiero
grammar proposed by Gideon Maillette de Buy Wenniger. The model is fully
unsupervised, is based solely on Hiero representations and involves choosing
one phrase in each rule (constituent) for labeling a non-terminal.
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Core context labels (CCL): an information-theoretic approach to
labeling of synchronous hierarchical representations

The CCL model takes an information-theoretic perspective and chooses a
phrase with the most unpredictable translation to label a rule with it. The
labels that are produced by the model are called core context labels, since,
supposedly, they capture the core of the phrase for which the labeling is done.
In order to single out a phrase with the most unpredictable translation, a
probabilistic model is de�ned.

The extensions of the Hiero grammar that we reviewed in the background
chapter are typically based on the structural properties of one of the languages
(source or target). This approach is well-motivated, since interlingual di�er-
ences are often quite systematic. On the other hand, the translation grammars
that we reviewed (from word-based to hierarchical) have bilingual structures
(word pairs, phrase pairs, etc.) as their basic units. The CCL model continues
this latter approach of directly formalizing the interlingual correspondence.

The CCL model formalizes an event space as consisting of events of a
particular source phrase having a particular corresponding target unit. A
random variable is formalized as a source phrase ranging between di�erent
translations:

De�nition 5 (Random variable represented by a phrase). A random variable
varf represented by a source phrase f ranges between translation pairs in which
the �rst element is f and the second element is any e phrase. The probability
distribution of varf is de�ned as the conditional probability of a target phrase
e given f:

Pr(varf ) = {Pr(e|f)|e ∈ set of target phrases in a corpus}
As an example, suppose a French word f1 is aligned to e1, e2, e3 in a bilin-

gual corpus: the values of the corresponding variable are {〈f1, ei〉|ei is in the corpus},
and their probabilities are #(f1↔e1)

#f1
, #(f1↔e2)

#f1
, #(f1↔e3)

#f1
and zero for the rest of

the values.
The CCL model restricts the set of variables to those which are represented

by minimal phrases. We repeat the de�nition from the background chapter:
a minimal phrase does not contain a proper subphrase. Non-minimal phrases
are taken to be complex objects whose probability distribution is a function
of the distributions of the minimal phrases of which it consists: it is de�ned
to be the distribution of the minimal phrase with the highest entropy.

De�nition 6 (Random variable in CCL). A random variable in a CCL model
is a random variable represented by a source phrase (Def. 5) which is a minimal
phrase.
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De�nition 7 (Probability distribution of phrase in CCL). A probability dis-
tribution of a phrase f is equal to the one of the minimal phrases constituting
it with the highest entropy, de�ned as:

H(varf ) = −
∑

xi∈varf

Pr(xi) logPr(xi) = −
∑
〈f,ei〉

Pr(ei|f) logPr(ei|f),

where ei ∈ {set of target phrases in a corpus} and the random variable varf is
de�ned in Def.5.

The basic idea behind the CCL-based labeling is to choose a minimal phrase
which has the highest entropy among the minimal subphrases constituting a
phrase dominated by a given nonterminal. However, we might want to exclude
cases where a very rare phrase pair is chosen, even though formally it has a
higher entropy than the rest of the minimal subphrases. For that reason the
entropy measure is weighted with a probability of the given minimal phrase
pair.

De�nition 8 (CCL-based labeling for the Hiero tree representation). Every
non-terminal in a Hiero tree is labeled with a phrase pair 〈f, e〉 which is de-
rived from this non-terminal and has the highest rank among the rest of the
minimal subphrases derived from this nonterminal with respect to the follow-
ing measure: ambigf (〈f, e〉)× prob(〈f, e〉), where ambigf is the entropy of a
variable represented by a source (�French�) part of the phrase pair and prob is
the probability of 〈f, e〉.

Now we turn to the intuitions and motivations behind the CCL model.
The linguistic interpretation of a phrase corresponding to a variable with the
highest entropy is the phrase with the most unpredictable translation. If we
think of di�erent translations of a phrase as its di�erent senses (cf. discussion
of [DiabResnik02] in a background chapter), then we might say that a phrase
with the highest entropy is the most ambiguous phrase � we will use this de-
scription throughout the text. In the introduction chapter we have discussed
one of the major motivations for this thesis project � the need for semantic dis-
ambiguation with an example which contained an ambiguous word man (Man
is the crown of creation). We have showed that it is desirable to label rules in
such a way that the translations that these rules generate would di�erentiate
between di�erent translations of an ambiguous word. The CCL-based labeling
di�erentiates between di�erent translations of an ambiguous word by labeling
the corresponding rule with both the source phrase and its current translation.
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On the other hand, such a local approach to labeling has a disadvantage:1

a core context label derived from a terminal node and its translation may �go
up� high in the derivation tree, if the minimal phrase has a high ambiguity
score. As a result, we get rules with labels consisting of phrases which are
actually generated much later, in a di�erent context. It follows then that at
decoding we have to choose a translation of a very ambiguous word just based
on the probabilistic model, without any context (words or phrases that are
adjacent to the phrase in question in the derived sentence). On the other
hand, in the �eld of statistical parsing lexicalization (labeling of nonterminal
with some lexical information from the constituents) has been shown to be
useful. However, in parsing lexical labels are additional to syntactic ones, i.e.
they they further categorize already existing classes of rules, which is not the
case in our setting.

We use the CCL-based labeling as a �rst step of our own labeling procedure.
The hypothesis behind CCL labeling is that a minimal phrase pair chosen to
represent a constituent is its good characterization in the sense that it splits
the rules in such a way that the resulting best translations increase in quality.
In our model we �x the source phrase of the chosen minimal phrase pair and
then group together its closest paraphrases. Thus, what we are assuming in
addition to the above is: close paraphrases characterize approximately the
same sets of constituents.

3.1.3 Summary: a paraphrase-based framework of ex-

tension of Hiero translation grammar

Now we can describe in more detail the learning method for our paraphrase-
based extension. We specify it in form of a high-level algorithm:

1. The input is a set of aligned sentences parsed with a trained Hiero gram-
mar.

2. Each occurrence of X in the forest receives a CCL label as prescribed in
Def.8. We only need the source-side element of a label.

3. For each occurrence of a CCL label, we take its source-side part f1, and
compute its similarity to the rest of the source phrases sim(fi|f1). We
then choose the subset of all the paraphrases based on their rankings to
get a cluster label.

The sections below de�ne models for the third step of the algorithm.

1Pointed out by Gideon Wenniger, by personal communication.
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c

par1 par2

Figure 3.1: A model of type 1: c stands for a conditioning (causing), pari
stand for conditioned paraphrase variables

3.2 Paraphrase clustering: choosing a paraphrase

model and a clustering method

Clustering can be described as grouping of elements of the same nature into
classes. Clustering typically relies on some measure that characterizes some
property of all the elements in the dataset, and based on it the closeness be-
tween elements with respect to this measure is determined. Di�erent clustering
methods de�ne algorithms that determine for every pair of elements in a set
whether they should be included in the same class. Thus, in order to specify
our clustering method, we have to �x a measure function of closeness between
phrases and also choose a clustering algorithm. The two following subsections
do that.

3.2.1 Two types of models for a measure function

In this subsection we describe two di�erent approaches that we take to derive
a similarity measure between phrases.

Model of type 1

Under the �rst approach, which we will call model of type 1, a measure func-
tion is derived directly from a probabilistic model: it is conditional probabil-
ity Pr(par2|par1) (where par stands for �paraphrase�). We de�ne a generative
model which necessarily has the following elements: two conditioned variables,
which represent paraphrases, and a conditioning variable (Figure 3.1). Con-
ditioned variables specify which paraphrase exactly (an actual French phrase,
or whatever we take to be a paraphrase in our formalization) occurs: the �rst
variable stands for a paraphrase that is observed, the second one is an alter-
native phrase that could have occurred instead of the original phrase (that is,
conditioned by the same value of the conditioning value). The interpretation of
the conditioning variable could in principle be any reasonable information that
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we can extract from data (i.e. something on which a de�nition of paraphrases
is based).

We can make a choice whether in our model the conditioning variable is
observed � this will in�uence the �nal formula of conditional probability: (3.1)
is a formula for the setting when the conditioning variable is unobserved , (3.2)
is for when it is observed. The equality in (3.2) and in the last step in (3.1) is
due to the principle of D-separation in a directed graphical model.

P (par2|par1) =
∑
c

P (par2, c|par1) =
∑
c

P (par2|c, par1)·P (c|par1) =
∑
c

P (par2|c)·P (c|par1)

(3.1)

P (par2|par1, c) = P (par2|c) (3.2)

In section 3 we describe the simplest model of this type in which a con-
ditioned variable is interpreted as a source phrase, and a conditioning � as a
target phrase.

Model of type 2

Under the second approach, we build up a vector space model in which para-
phrases are represented as vectors. We then use a standard measure of vector
similarity to determine paraphrase closeness. In this work we chose the cosine
measure, which is a dot product of two vectors divided by their lengths:

cos(v1, v2) =
v1 · v2

|v1||v2|
(3.3)

The feature space should somehow characterize the distribution of a given
phrase: for example, with respect to translations or contextual information.
In section 4 we describe a basic model of type 4, where the features of a
vector are taken to be conditional probability between f (a phrase) and all the
potential translations ei.

An important di�erence from the conditional probability measure of type 1
model is that the current similarity measure is normalized with respect vector
lengths. Another di�erence is that the cosine measure is symmetric, unlike the
conditional probability.

3.2.2 Clustering algorithm

In this paper we decided to choose a simple clustering technique, one that
allows to get a feeling of the whole framework that we are experimenting with.
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Clustering can be characterized as global or local [ManningSchuetze02].
Clustering is global if it estimates classes by taking into account the whole data
set. Local clustering methods estimate cluster with respect to a particular data
point or data region. It is clear from the informal description of our method
that we need local clustering: since we estimate for each data point (phrase)
a set of its closest points.

A typical disadvantage of local clustering is that the �nal result might
largely depend on the starting point of the clustering procedure. However in
this paper, when estimating a cluster for a particular phrase, we disregard the
clusters that have been already computed: each cluster is computed separately
for each nonterminal occurrence. This entails that the clusters that we get in
the end might intersect to a large extent.

We work with two similar clustering methods: the �rst one is based on
k nearest neighbors (kNN), and the second one is a modi�cation of the �rst
one. kNN is an algorithm for estimating density of unknown data distribution
[Bishop06]. Its assumption is that there is a (quite small) number k such
for each data point x its nearest (according to some similarity measure) k
elements are get the same value in some probability distribution. The most
popular version of the kNN algorithm is used in supervised classi�cation, in
which an unlabeled element gets a label of the majority of elements among its
k nearest neighbors. We use the general idea di�erently: from the spelled out
assumption it follows that all the k + 1 elements are of essentially the same
nature and therefore form a natural class.

Thus, the kNN algorithm for computing a cluster in our model is:

1. given data point (phrase) f1, compute similarity sim(fi, f1) for each fi
in the corpus;

2. order the phrases with respect to similarity score they got;

3. choose k best phrases with the respect to the ordering. In the case where
the least score that gets into a cluster is such that if we do not add it,
then there will be less than k elements, and if we add all the phrases
with this score, then there will be more than k elements, � we choose
the second option.

We modify the described method by letting k be function of the distribution of
the paraphrase similarity measure. We set a lower bound p on the score that
each paraphrase gets, and let only those paraphrases into a clusters that have
a score above that bound � that is, we modify the third step of the algorithm.
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Figure 3.2: Basic model of type 1

The de�ned clustering algorithm has a variable parameter � k or p, and
there is no a priori value for it. The optimization measure that we use is the
�nal BLEU score that the whole translation system gets.

3.3 Basic models for type 1 and 2

The models of type 1 and 2 were de�ned abstractly: we did not specify what
kind of data to use for the parameters of the models. In this section we
give a simple instantiation of the two models based on the idea proposed in
[DiabResnik02] and [BannardCallison-Burch05], and call them basic models.
The idea behind the basic models is to use the de�nition of paraphrases from
[BannardCallison-Burch05]: two phrases are paraphrases if they have common
translations.

3.3.1 Basic model of type 1

Given that we will cluster phrases of a source language, as a basic model of type
1 we will assume the one that has a conditioning e variable and conditioned f
variables. An e variable ranges between all the possible English phrases, and
f variables � between French phrases (Fig. 3.2). This basic model relies on
the already discussed hypothesis that di�erent translations of a word or phrase
correspond to a certain extent to its di�erent senses [DiabResnik02].

Based on the abstract template derived in (3.1) and (3.2), the formulas
of conditional probability will be (3.4) for a model with unobserved English
variable, and (3.5) for when it is observed. We can see that the formula in
(3.4) is the exactly the one used in [BannardCallison-Burch05]. Unlike the
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referred paper, now we have both intuitive and formal motivations for it.2.

p(f2|f1) =
∑
e

p(f2|e) · p(e|f1) (3.4)

p(f2|f1, e) = p(f2|e) (3.5)

3.3.2 Basic model of type 2

As it was said in section 2.1.2, the features of a vector should somehow char-
acterize the corresponding paraphrase. We make the same assumption as for
basic model of type 1: we assume that a translation of a phrase provides
su�cient characterization of a phrase.

Unlike for the model of type 1, we do not have to make any assumptions
about the causal relation between English and French phrases: all we need is
to re�ect the distribution of French phrases with respect to English phrases.
Therefore, we can take a vector to be a list of probabilities P (ei|f), where f is
�xed, and ei ∈ {all English phrases in a corpus}. We use v(f) to denote such
vector for a phrase f . Then for every f1 and f2 their cosine score will be:

cos(v(f1), v(f2)) =

∑
e p(e|f1)p(e|f2)

|v(f1)|
√∑

e p(e|f2)2
(3.6)

=

∑
e

#(f1,e)#(f2,e)
#f1#f2

|v(f1)|
√∑

e p(e|f2)2
(3.7)

=
1

#f1 ·#f2 · |v(f1)|

∑
e #(f1, e)#(f2, e)√∑

e #(e, f2)2
(3.8)

For the application that we are considering here � estimating closeness to
phrase f1, the value of the initial factor in (3.8) is constant for all paraphrases.
Therefore, for this application, the model under consideration is equivalent to

2Actually in the original paper the equality is approximate:

p(f2|f1) =
∑
e

p(f2|e, f1) · p(e|f1)

≈
∑
e

p(f2|e) · p(e|f1)

This fact is strange, since under assumption of model in Fig.3.2 the equality should be strict
(by D-separation). On the other hand, in none of the papers where this paraphrase model
is developed available to us is there any explicit discussion about what model is assumed.
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the one in which vector features are de�ned as joint counts of a phrase with
all possible translation.

Alternatively, we may de�ne a model where feature values are conditional
probabilities of a given phrase given an English translation, for all English
translations � P (f |ei). We designate by v′(f) a vector representing phrase f
in this model. The cosine measure will look like:

cos(v′(f1), v′(f2)) =

∑
e p(f1|e)p(f2|e)

|v′(f1)|
√∑

e p(f2|e)2
(3.9)

=
1

|v′(f1)|

∑
e

#(f1,e)#(f2,e)
#e2√∑

e
#(f2,e)2

#e2

(3.10)

For the same reason as above we disregard the initial factor. The major
di�erence between the two presented versions of type 2 models is the fact
that in the second one the joint counts are normalized with respect to English
phrases. So, it is supposed to be more re�ned than the previous one.

3.4 Assumptions and predictions associated with

the de�ned procedure

The ultimate goal we are pursuing in this thesis is to improve the performance
of the Hiero translation system, as evaluated by the BLEU metrics. Therefore,
the de�ned procedure for label generation has a number of implicit assumptions
about how the the design choices in�uence the performance of the resulting
grammar (some of which have been mentioned before). These assumptions
lead to certain predictions and intuitions about how the de�ned models will
perform. We list and discuss them here.

1. Close paraphrases are representatives of the same class of phrase
pairs

We assume that clusters of close paraphrases in general may provide a
good restriction of the types of translation equivalence units applicable
at a given part of a derivation. More speci�cally, the assumption is that
close paraphrases represent (in the sense described above) approximately
the same set of subtrees of a parsed corpus (and thus phrase pairs).
Since we base our de�nition of paraphrases on translation equivalence
relation, the hypothesis gets stronger (if not too strong): phrases which
have similar distributions of their translations represent the same set of
phrase pairs (having the representing phrase pair as its proper part).
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2. All paraphrase classes can be characterized with the same prob-
ability distribution

Our clustering algorithm is based on an assumption which could be a
serious limitation of our whole framework. Our clustering algorithm, k
nearest neighbors, assumes that there is a �xed k and a probability distri-
bution such that for each data point its k nearest neighbors are assigned
the same probability value. Applied to the case, it means that each para-
phrase equivalence class is characterized by the same distribution of its
elements.

3. A minimal phrase with the highest ambiguity is a good repre-
sentative phrase for a constituent

We made a choice to use the CCL model for de�ning a representing
phrase. It is a very speci�c model and it is not clear whether it works
well. In the next chapter we test also some alternative de�nitions.

4. Di�erences between alternative design choices

There are some design choices that are not �nal, and we explore a num-
ber of alternatives, since we do not know in advance which is the best:
language side based on which clustering is done, paraphrase similarity
function model, number of members in a cluster (k). However, we do
have some intuitions and predictions about how these parameters will
work. If the CCL model is a reasonable model for choosing a represent-
ing phrase and our intuitions about it are correct, then we expect the
model of Type 1 with both source and target states observed to per-
form better than the other two models, since the former performs sense
disambiguation of a highly ambiguous phrase.

3.5 Summary

In this chapter we fully de�ned a procedure for generating labels for a hi-
erarchical translation grammar. We started by choosing a de�nition for a
phrase representing a constituent, which is a CCL model (one of the motiva-
tions being there is no immediately available alternative). We then proposed
two types of models for paraphrase similarity measure: one is a generative
probabilistic model, the other is a vector space model that uses probabilistic
information for its features. We chose a clustering algorithm, which is kNN
and its modi�cation. Finally, we have outlined two simple implementations of
the two proposed measure model types. The implementations employ solely
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phrase alignment information, in accordance with the paraphrase de�nition
in [BannardCallison-Burch05]. Finally, we summarized the most important
assumptions and predictions underlying the modeling choices that we made.

In the next chapters we test the de�ned procedure on real data. We stress
again that in this chapter we only de�ned a way to generate labels for a given
set of nonterminal occurrences: we did not �x the actual labeling algorithm
(which occurrences to label, etc.). In the next chapter we test di�erent algo-
rithms. The strongest hypothesis is that label set generated by our procedure
is alone su�cient to label the whole Hiero grammar and improve its perfor-
mance. However, we will also investigate partial labeling and discuss possible
combinations of our label set with others.
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Chapter 4

Experiments

In this chapter we test the models for generating a label set de�ned in chapter
3. We are interested in two main questions. First, if a label set generated
according to our procedure can in general be used to improve the performance
of the Hiero system, and what are the optimal values of the variable parameters
in the models that we employ. Second, if the generated label set is useful, then
what is the optimal labeling algorithm: does a fully labeled grammar perform
well, or only some partially labeled ones does.

4.1 Experimental setup

We tested our models on a task of translating from French to English. The
two subsections below we give information about the training data and the
implementation of the translation system that we used.

4.1.1 Data setup

For training of the system we used an English-French Europarl parallel corpus
[Koehn05] consisting of 200K sentences. The size of a test set is 1K sentences.
We used a parallel corpus consisting of 1K sentences for training the of pa-
rameters of the log-linear model using MERT [Och03] (we will refer to this
set as the dev set). The test and dev set are taken from the WMT2007 data
collection.

For grammar extraction, we performed �test-�ltering� of the training set:
we extracted only those rules the initial rules for which the initial rules have as
their source side an n-gram present in the test set [Lietal09], [Callison-Burchetal05],
[Lopez07]. For MERT training, the training set is �ltered with the dev set in
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Baseline (Hiero)
0.3077

Figure 4.1: BLEU score of the baseline system on the data settings from 4.1.1

the same way.

4.1.2 Implementation details

The translation pipeline used in the experiments consists of several units,
provided by di�erent sources. The translation grammar extraction unit is
written in Java and is an extension of the implementation made by Gideon
Wenniger. It consists of three consecutive subunits:

1. extraction of a mapping from minimal translation pairs to their ambigu-
ity ranks � it is used for choosing the representing phrase according to
the CCL model (cf. 3.1.2);

2. extraction of a mapping from �labeling positions� (i.e. X-nonterminals
in rules) to paraphrase clusters;

3. extraction of a labeled translation grammar.

For MERT training of the log-linear probabilistic model, decoding and scor-
ing of the hypothesis we used an implementation provided by an opensource
SMT toolkit Joshua 4.0 [Ganitkevichetal12].

4.2 Experiments

In this section we describe experiments that we ran in order to test the per-
formance of the Hiero grammar labeled with a label set generated according
to the de�nition from chapter 3. The results of the experiments are given as
the scores of the BLEU metrics, described in 2.1.5. We compare the perfor-
mance of our models to the one of the baseline system � Hiero [Chiang07],
since it is the one we are trying to improve upon labeling. We tested the pure
Hiero system (Joshua 4.0 implementation) with the data settings described in
4.1.1: its resulting BLEU was 0.3077. For convenience of the reader (for better
visibility) we put the result in Table 4.1.
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4.2.1 Experiments with fully labeled grammars

In this section we report on the experiments with Hiero grammar fully labeled
according to the speci�cation in chapter 3: the labeling procedure is applied
to every rule. That is, in this section we explore our working hypothesis in
its strongest form: that labeling of rules based on a property of its subpart
results in a more optimal search space during decoding.

The labeling that we de�ned contains a number of variable parameters:

1) language side (source or target) on which paraphrase clustering is based:
in case of source-based clustering, for each nonterminal we �x a source
part of the translation pair chosen according to the CCL model, and
cluster its paraphrases; analogically for target-based clustering;

2) a function for k � a number of elements in paraphrase clusters.

For the �rst parameter, we experimented with both sides the language pair.
For the second parameter, we report only on the function that sets a lower
bound on the probability score that a paraphrase included in a cluster may
have. We have tested some grammars with a function that directly �xes k, and
it did not give signi�cantly di�erent results. Since lower bound-based function
allows more direct manipulation of the set of resulting clusters, we will use
it. We experimented with values of the lower bound: we tried both non-strict
lower bound, which excludes only the most unlikely paraphrases (P = 0.2),
and a strict one, which allows only very close paraphrases (P = 0.85).

Figures 4.1 and 4.2 provide BLEU scores for di�erent combinations of the
two parameters above for the di�erent models de�ned in chapter 3. The no-
tation should be understood as follows:

• Type 1 is a basic model of type 1 (3.3.1). orig.obs. is a variant where
only the causing variable (source, �original�) is observed, transl.obs.
is the one where both source and target variables are observed;

• Type 2 is a basic model of type 2 (3.3.2): we experimented with the
version where feature space is de�ned as conditional probability of target
given source (for source-based clustering; reversed � for target-based).

We see that all of the scores are from 0.05 to 0.1 BLEU point lower than
the baseline. This implies that the categorization that the models impose
distribute probabilities between rules not in an optimal way. Below we attempt
to trace the reasons of that, running some additional experiments. Before
reporting on them, we brie�y discuss the results from 4.1 and 4.2.
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Type of model P = 0.2 P = 0.85
Type 1, orig.obs. 0.3017 0.2995
Type 1, transl.obs. 0.3020 0.2979

Type 2 0.2983 0.3015

Figure 4.2: BLEU scores for labeling based on source-side (French) clusters

Type of model P = 0.2 P = 0.85
Type 1, orig.obs. 0.2990 0.2995
Type 1, transl.obs. 0.2937 0.2974

Type 2 0.2975 0.2980

Figure 4.3: BLEU scores for labeling based on target-side (English) clusters

First, some of the best results that we obtained in all the experiments that
we ran are in table 4.1 (0.3015, 0.3017, 0.3020). Interestingly, for Type 1
models these good results are for �all but worst� cluster lower bound, and and
for Type 2 it is for �the very best� lower bound. But in general, it is hard to
say whether the choice of a model (Type 1 or 2, which variables are observed)
really makes a di�erence.

However, we do see a di�erence between source-based and target-based
clustering: the former performs better than the latter. Moreover, the num-
ber of rules of source-based labeled grammar varies around 29.5M, and of
target-based labeled grammar � around 17M. This possibly implies that the
resulting clusters for target-based clustering overlap to a larger extent. Yet,
target-based grammars perform worse, which might suggest that the employed
clustering results in a non-optimal rule categorization. In the rest of the text,
we will assume that source-based clustering captures data properties (for our
purposes) better and will experiment only with it.

Rescoring output with labeled grammar

Since the labeled grammars do not perform well enough on their own, we
checked whether they can augment the baseline model to rescore translation
hypotheses. The decision procedure used in the Hiero system is to choose the
translation hypothesis the derivation of which gets the highest score of the
probability model function (the score is obtained with Viterbi approximation
[Lietal10]).

It might turn out that although the labeled grammars perform worse on the
whole, for some test sentences they give a better derivation. We checked that
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by combining n-best lists produced by the baseline grammar and by a labelled
grammar. We ran this on a model of Type 1 orig.obs. and transl.obs., P=0.2.
However, the resulting BLEU score was equal to the one of the baseline, which
implies that none of the n best derivations produced by a labeled grammar
beat any of the ones produced by the baseline.

In order to see whether a new labeled grammar can at least be useful to
provide additional information for better scoring of hypothetical translations,
we implemented a simple rescoring procedure in which the best translation is
chosen according to the following procedure. Given a set of n best derivation
hypotheses, one constructs a set of translation sentences that the derivations
produce, labeled with the number of times it is produced by a derivation from
the n-best set. The best translation is the one that is labeled with the greatest
counts. In case there are multiple sentences with the (same) greatest count, one
chooses a sentence among them that has a derivation with the greatest score.
The hypothesis behind this method if there is a translation hypothesis that
is produced by a lot of derivations, even suboptimal in terms of their scores,
it might be a likely translation. However, it turned out that in �individual�
n-best lists each sentence occurs only once, and so in the merged list � at most
twice. The described rescoring gave suboptimal results, lower than the results
for each of the models separately: for di�erent models, it varied around 0.2700
BLEU (again, for Type 1 orig.obs. and transl.obs., P=0.2).

Sparsity issues

The number of rules that we get in the new grammars is much greater than
in the baseline: for baseline it is around 3.3M, and for fully labeled gram-
mars it is 29.5M for source-based labeling and 17M for target-based. Since
the source-based grammars perform better than target-based and they have a
much greater number of rules, it might be that the inferior performance of our
models is due to data sparsity.

To check whether this is the case, we tested some of our models on a 0.5M
training set and 1K test and dev sets. With these data settings, the baseline
model scores 0.3180 BLEU point. We have tested the source-based models
that performed the best in the 200K-corpus experiment. The number of rules
now varies around 67M and the BLEU scores for some of the models are:

• Type 1, orig.obs., P = 0.85: 0.3039 BLEU;

• Type 1, orig.obs., P = 0.2: 0.3058 BLEU;

• Type 1, transl.obs., P = 0.2: 0.3042 BLEU.
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We see that more data does improve the performance: which could imply that
there are deeper reasons why the model does not perform well (the categoriza-
tion of translation equivalence units is not optimal).

Rede�ning the choice of the representing phrase

We also experimentally investigated a question already discussed at length in
chapter 3: what is a good de�nition of a representing phrase for a nonterminal.
The CCL de�nition has two important properties: it always chooses a minimal
subphrase, and this minimal phrase should be the most ambiguous one among
the available. Here we experimented with the second property of the de�nition:
we ran paraphrase-based grammar extraction where a representing phrase was
chosen as a minimal phrase with lowest score with respect to the weighted
ambiguity measure (as de�ned in Def.8). The results some of the models and
see that changing the selection criterion among minimal makes a di�erence, so
choosing a phrase with greater ambiguity seems to be reasonable:

• Type 1, transl.obs., P = 0.2: 0.3008 BLEU;

• Type 1, transl.obs., P = 0.85: 0.2130 BLEU;

• Type 2, P = 0.85: 0.2989 BLEU.

Summary on the fully labeled grammars

We have seen that fully labeled grammars make the performance of the trans-
lation system worse. The grammars are very sparse but increasing the data
size does not help, which suggests, that the kind of labels and the labeling
method do not re�ne a grammar in a way that biases the system towards
better scoring function. We have seen, however, that the choice of the CCL
model to de�ne representing phrases is not unoptimal. Further, we have found
that the variation of parameter values of the clustering model makes a lot
of di�erence on the �nal BLEU result. This could suggest that the for each
phrase in a corpus the set of potential paraphrases is very small. However, we
did �nd that source-based clustering is better than target-based.

Since the fully labeled grammars did not perform well, we investigate other
algorithms for labeling a Hiero grammar.

4.2.2 Modifying the labeling algorithm

In 4.2.1 we presented experiments with fully labeled grammars. Although their
performance did not even reach the baseline, we pointed out some interesting
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�ndings, which we will investigate further here.
We found that a grammar fully labeled with paraphrase-based labels is very

sparse because the number of labels is very high. We will introduce a modi�ed
grammar de�nition as an attempt to partially alleviate the sparsity problem.
Also, we have investigated the impact of the CCL de�nition of representing
phrase on the performance of the translation system: we experimented with
an alternative de�nition in which a minimal phrase is chosen if it has the
lowest weighted ambiguity score. In this subsection we modify the grammar
extraction algorithm in such a way that we indirectly manipulate the impact
of the fact that minimal phrases are selected.

Labeling with modi�cation of the structure of the parse trees

X

... X ...

Figure 4.4: Unlabeled subtree

XL1

... XL2 ...

Figure 4.5: Subtree labeled according to an algorithm from chapter 3

XL1

... X

XL2

...

Figure 4.6: Subtree labeled with modi�ed labeling from this subsection

This modi�cation goes as follows. If there is a nonterminal in a tree which
dominates another nonterminal, then the latter is not labeled directly: rather,
it is substituted with a subtree consisting of an unlabeled nonterminal domi-
nating a labeled nonterminal. For example, consider a subtree in Figure 4.4.
Under the labeling algorithm we de�ned in chapter 3 and employed in sub-
section 4.2.1, its labeled version would be Figure 4.5, where L1 and L2 are
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Type of model P = 0.2 P = 0.85
Type 1, orig.obs. 0.2915 0.2904
Type 1, transl.obs. 0.2902 0.2909

Type 2 0.2921 0.2928

Figure 4.7: BLEU scores for grammar with unary rules

cluster labels computed as de�ned in chapter 3. Under the modi�ed version
of labeling we described here, the subtree would be transformed into 4.6.

Given this modi�ed labeling procedure, the resulting grammar should con-
sist of (apart from glue rules):1

• terminal rules, the left-hand side for which is necessarily labeled;

• non-terminal rules with the left-hand side labeled and right-hand side
nonterminals unlabeled;

• non-terminal rules with unlabeled left-hand side and right-hand side con-
sisting of a single labeled nonterminal.

With the help of this modi�cation we make the rules of a grammar less speci�c,
since only one side is labeled. This can be a partial solution to the sparsity
problem. The results of the experiments with the modi�ed grammar is given
in Table 4.7 (we call it grammar with unary rules because it introduces special
nonterminal to nonterminal unary rules). The number of rules indeed became
smaller (around 10M), but, as we see, the results have got even worse. A
possible explanation for this is that, in a derivation, when there is an unlabeled
nonterminal which is to be substituted, there is nothing but the statistical
model that sets the preference for the choice of rules: in other words, the
application of a unary rule generating a labeled nonterminal is not conditioned
or restricted by the structure of the string in which it is applied. In sum, we
have �split� rules in order to reduce their detailedness, but the splitting resulted
in a set of rules which carry no way to structurally identify a preference for
them to be used at some point of a derivation. This problem could be solved
by labeling the nonterminals which were previously left unlabeled with some
wider categories (for instance, syntactic ones).
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Type of model P = 0.2 P = 0.85
Type 1, orig.obs. 0.3034 0.2975
Type 1, transl.obs. 0.3035 0.2975

Type 2 0.2986 0.2966

Figure 4.8: BLEU scores for restricted-3 grammar

Type of model P = 0.2 P = 0.85
Type 1, orig.obs. 0.2998 0.3014
Type 1, transl.obs. 0.3005 0.3016

Type 2 0.3013 0.3013

Figure 4.9: BLEU scores for restricted-2 grammar

Restricting the set of labeled terminals by length of generated phrases

Another problem with the models we de�ned is that by choosing the minimal
subphrase we capture very local information in a tree. For each represent-
ing phrase, we cluster phrases which are its translational equivalents: such
equivalence classes are expected to be very narrow. That is why tagging a
nonterminal dominating, for instance, the whole sentence with a label de�ned
�locally� might not be a good idea.

Ideally, we would like to apply rules labeled with narrow paraphrase-based
semantic information at some point close to the end of the derivation of a
sentence: when the translation of a sentence is already known on a high-level,
and there are now more subtle ambiguities to resolve. Therefore, we would
like a grammar with nonterminal labels representing di�erent linguistic levels:
from broad syntactic to narrow semantic.

As an approximation to a desired model, we implemented the following
labeling procedure: we set a restriction on the length of the source terminal
phrase that is derived from a given non-terminal.2 Such a restriction is a simple
way of controlling how high in a tree a given nonterminal is. By restricting the
labeling in such a way, we get labeled rules that specify derivations of short
phrases � and thus we do not any more have the problem of local information
being used as characterization of subtrees of any length.

1When we describe the right-hand side of rues below, it applies to both of elements of
the right-hand side pair.

2There are perhaps smarter ways to restrict labeling to local parts of a parse tree. For
instance, we could set a restriction on the depth of a tree. But due to time limitations we
chose a reasonable option that was fastest to implement.
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The length of a source phrase in general is restricted to �ve words in Hiero
grammar [Chiang07], so we experimented with the restriction that a terminal
source phrase derived from a given nonterminal is at most 3 words and at
most 2 words. The results are in Figures 4.8 and 4.9. The results for Type
1 P = 0.2 are the highest results we got with our models in this thesis. We
again see that the results of Type 1 models are very similar between each other
and di�erent the Type 2 model. Since we also observe that more restrictive
clustering (P=0.85) gives worse results, one could suggest that the Type 2
model assigns very low similarity measures to paraphrases which results in
very small clusters.

In sum, the fact that we got some very small improvement over the previous
results that we got could suggest that paraphrase-based labeling is not hope-
less. It would be interesting to see how the model with labels corresponding
to di�erent levels of linguistic generalization, sketched above, would perform.
Alternatively, one could combine labels of di�erent level in a di�erent way: by
�lexicalizing� broad syntactic classes with narrow semantic ones (by analogy
to what is done in syntactic parsing).

4.3 Discussion of results and future work

The results of the experiment can generally be characterized as negative, since
we did not manage to even reach the baseline results. In this section we
summarize the insights and observations that we made throughout the chapter
and discuss how they could be employed in future work.

First of all, we have to answer the main question: whether labels obtained
based on paraphrase clusters can be used to improve the performance of the
Hiero grammar. The answer is not clear, but the results of all the grammars
re�ned with paraphrase clusters that we tested are inferior to the baseline. One
of the reasons why paraphrase clusters do not provide good categorization
of translation equivalences are the limitations pointed out in chapter 1 and
chapter 3: the simplifying heuristics used for clustering and the fact that we
actually cluster phrases and not translation units. Further, we found that it
is di�cult to manually evaluate which of the clustering model variants gives
the best results. This might be due to the fact that in general a phrase in
a corpus has very few potential paraphrases and so the di�erent similarity
metrics give similar scores. This problem can be alleviated if we actually
cluster translation pairs, and not monolingual phrases, since the size of the
data set would increase. In general, it would be useful if we could de�ne
some evaluation metric to make predictions about the resulting set of labels
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generated by a model.
Second, we tested whether the model for a representative phrase is good.

We ran some experiments with an alternative de�nition which retained an
important characteristics of the original one: it always chooses a minimal
phrase. The results with the alternative de�nition were worse. However, it
would be interesting to explore other de�nitions as well: for example, the ones
that do not only choose minimal phrases. Notably, it would be interesting to
use some existing tool, such as a dependency parser.

Third, we discussed a hypothesis that paraphrase-based clusters could be
good for �local labeling�. It was somewhat supported by the the fact that a
special variant of labeling restricted by length of the source constituent gave
the highest results among all the ones we got (but still almost 0.05 BLEU point
below the baseline). We also saw that a grammar modi�cation in which labeled
nonterminals never appear on the right-hand side with terminal symbols and
are generate by separate rules unlabeled on the left-hand side, performs much
worse than other labeled grammars. This result could imply that application
of left-hand side labeled rules need to be restricted with respect to the context.
Therefore we suggested to use paraphrase-based labels in a modi�ed labeling
where both wide syntactic and narrow semantic categories are used.
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Chapter 5

Conclusion

In this thesis we explore a particular way of labeling of an hierarchical transla-
tion grammar, based on automatic extraction of narrow semantic classes, and
test the abstract model on the Hiero translation grammar (which has one non-
terminal symbol). The general motivation for labeling a grammar is to restrict
the set of translation units that can be generated from a given nonterminal
symbol at a given stage of the derivation. While most models of translation
grammar labeling proposals found in the literature use syntactic-based de�-
nitions to generate a set of labels, we developed a procedure for generating
semantic-oriented classes for labeling. The motivation for using semantic la-
bels are cases of translational ambiguity (caused by semantic ambiguity in one
language and lack thereof in the other language). Our basic idea was to de-
�ne an unsupervised way of generating labels by de�ning a similarity measure
function between paraphrases and a clustering algorithm.

We realized our intuitive idea in a fully de�ned procedure for de�ning
paraphrase-based labels given a data set parsed with an original (unlabeled)
grammar. We pointed out some simpli�cations of an original idea: the fact
that our models de�ne clustering of monolingual phrases, based on their trans-
lations, instead of clustering translation units, and the fact that the clustering
algorithm itself is is not optimized to �t the data. The de�nition of the pro-
cedure of generating labels consisted of model for choosing a �representing
phrase� for each occurrence of a nonterminal: we chose a CCL model, but
pointed out that alternative models could be tried out. Given a way to choose
representing phrase, we de�ned a parametrized procedure for clustering closest
paraphrases: we de�ned a number of alternative similarity measure functions,
as well as chose a clustering algorithm for which one can tune the number of
elements that the resulting cluster has.

We tested our model empirically by labeling a baseline grammar (Hiero)
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and running it on a standard translation task. Our �rst �nding was that given
the de�nition paraphrases that we use and the similarity measure between
them, the di�erences between di�erent variants of clustering models vary very
insigni�cantly and it is di�cult to manually make any generalizations about
the impact of di�erent parameter values. We pointed out that this could be
due to the simpli�cations made at the modeling stage and the properties of the
data (paraphrase equivalence classes according to the de�nition we are using
are typically very small). We proposed that using a more complex de�nition
of paraphrases (in particular, taking them to be phrase pairs, not monolingual
phrases) and paraphrase similarity measure could be a solution to this problem.
We did not spend much time on testing the impact of the de�nition of the
�representative� phrase for a given nonterminal occurrence. Future work might
consist in a more thorough research of this question, exploring both supervised
and unsupervised de�nitions. Based on the experimental results with non-
fully labeled Hiero grammar, we suggested that paraphrase-based labels could
improve the performance of a translation system when combined with a more
wide class-based labeling (such as syntactic labeling).
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