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Abstract

Post-quantum cryptography studies the security of classical, i.e. non-quantum
cryptographic protocols against quantum attacks. Until recently, the consid-
ered adversaries were assumed to use quantum computers and behave like
classical adversaries otherwise. A more conservative approach is to assume
that also the communication between the honest parties and the adversary
is (partly) quantum. We discuss several options to define secure encryp-
tion and authentication against these stronger adversaries who can carry out
superposition attacks. We re-prove a recent result of Boneh and Zhandry,
stating that a uniformly random function (and hence also a quantum-secure
pseudorandom function) can serve as a message-authentication code which
is secure, even if the adversary can evaluate this function in superposition.






Acknowledgements

I would like to thank my supervisor Christian Schaffner for working together
after making me interested with his course on cryptography. I am grateful
for his patience and didactic guidance through the complex proofs during my
project. His help and confidence made this result possible.

I want to thank Ronald de Wolf for noticing the relation between the theorem
of Boneh and Zhandry and Farhi’s result. Apart from playing this crucial
role, he made some very important comments. I also want to thank the
other members of the thesis committee, Alexandru Baltag and Serge Fehr ,
for taking the time to read my thesis and for correcting some details.

I thank both Gerrit and Frank for their useful (and funny) comments from
a different point of view. Finally, I want to thank Nicole and Peter-Paul for
studying together at the kitchen table.

iii






Contents

1 Introduction
2 Preliminaries

3 Cryptography
3.1 Introduction . . . . . . . . . .. ...
3.2  Mathematical Security . . . . . .. .. ... ...
3.2.1 Emncryption . . ... ...
3.2.2 Authentication . . . . .. ... ... ...
3.3 Pseudorandomness . . . . . .. ... ...

4 Quantum Computing
4.1 Introduction . . . . . . . ... ...
4.2 Technical Framework . . . . .. ... ... ... .. ......
4.3 Entanglement . . . . .. ... o000
4.4 Query Model . . . . .. ... ...

5 Quantum Security Models
5.1 Encryption . . . ... o
5.2 Authentication . . . . . ... ... ... L

6 Quantum-Secure Authentication
6.1 Main Result . . . . . . ... ...
6.2 Proof of Theorem 6.1 . . . . . . ... ... ... ... .....
6.3 Applications of Theorem 6.1 . . . . . . . . ... ... .....

7 Conclusion and Further Research

15
15
17
18
19

25
26
30

31
31
33
42

44






1 Introduction

To be prepared for a future in which quantum computers have significant
computing power but are not available to all users of cryptographic proto-
cols, we need to study the security of classical (i.e. non-quantum) schemes
against quantum attacks. Usually in the field of post-quantum cryptography,
it is assumed that the honest parties are fully classical and the attackers
or adversaries use quantum computers. This scenario can be generalized by
dropping the assumption that the honest parties can compute and commu-
nicate only classically. An important argument to do this is the fact that the
world, as physical theories describe it nowadays, is not classical but quantum,;
although some devices are designed to work classically, they may leak quan-
tum information under certain conditions. It is also conceivable that honest
parties do use quantum computing, to speed up some computations, but still
use classical schemes instead of quantum cryptography only. Since classical
computing is a special form of quantum computing, considering quantum
implementations of classical schemes captures a broader class of scenarios.
Notions of (classical) security are defined by means of a game between a
challenger and an adversary. Different options to model the abilities of the
adversaries lead to various security definitions. Damgard et al. [DFNS11]
consider ‘superposition attacks’ on some cryptographic protocols where com-
munication between the honest players and the adversaries can be quantum.
The protocols they discuss are secret sharing, zero-knowledge protocols and
multiparty computation. Boneh and Zhandry [BZ13b] define quantum se-
curity games that model the case in which (part of) the communication is
quantum, for both private-key and public-key encryption and authentication.
They build upon earlier work in which pseudorandom functions are queried
in superposition [Zhal2]. Their research extends the ideas of the paper on
quantum accessible random oracles [BDFT11]. As Damgard et al. point out,
there is an important difference between superposition attacks on functions



that are implemented by the adversary herself and superposition attacks on
protocols run by the honest party. It seems to be similar, because both at-
tacks are modelled in terms of oracles that may be queried in superposition.
In the second case however, the adversary tricks the honest party to act like
an oracle and some communication takes place, whereas in the first case the
oracle is a subroutine of the algorithm that is modelled as black box.

It is not always clear how (unintended) quantum communication between
the adversary and the honest parties should be modelled. In particular, is it
plausible that the adversary is able to create quantum entanglement with the
sender? Superposition queries to an oracle are usually modelled so that it
results in a state including the query and the answer. To end up in a similar
state using quantum communication with the honest party, the adversary has
to create a register that is entangled with the question. While the honest
party is answering, he shares entanglement with the adversary.

In this thesis, we discuss the security definitions Boneh and Zhandry pro-
posed in [BZ13b] and we suggest an alternative definition for quantum secure
encryption, which uses apart from superposition oracle access also quantum
communication without entanglement. We leave open the question whether
this definition is equivalent to that of Boneh and Zhandry or strictly stronger,
and whether it is feasible at all (i.e. whether there exist an encryption scheme
that is secure in this sense). The technical part of the thesis is focussed on
Message Authentication Codes (MACs) from pseudorandom functions un-
der superposition attacks. We re-prove the theorem proved by Boneh and
Zhandry [BZ13a] stating that a uniformly random function, and therefore
also a pseudorandom function, can serve as a MAC which is secure, even if
the adversary has superposition oracle access to this function. Formulated
as a game it says that, except with negligible probability, it is impossible for
any adversary to output ¢ + 1 input-output pairs of the oracle function after
making ¢ superposition queries. Our approach to prove the theorem is based
on the quantum polynomial method [BBCT97]. We follow the outline of the
proof of an earlier result from quantum computing and generalize this result.

Chapter 2 gives a list of some basic notation and definitions. Chapter 3 is
a general introduction to cryptography and Chapter 4 introduces some basic
concepts of quantum computing and some more specific constructions that
we will use in Chapter 6. In Chapter 5 we discuss how to model quantum
attacks and Chapter 6 consists of the new proof of Boneh and Zhandry’s
theorem and some applications of it. Chapter 7 concludes and points out
some interesting questions for future research.



2 Preliminaries

In this chapter we list some mathematical notation we use, and we define
some basic concepts from probability theory and computational complexity.
We use the following notations for n € N:

e The set of all bit strings of length n is denoted by {0,1}". {0,1}*
denotes the bit strings of any finite length.

e [n] is the set of natural numbers from 0 to n — 1. [n|* denotes the
numbers from 1 to n — 1 (or [n]\{0}).

e VX is the set of functions f: X — Y.

e The bitwise XOR is denoted as @ and is the operation that adds two
bits modulo 2. Bitwise means that the operation is applied on bits in
the same position. For example: 01 & 11 = 10.

Definition 2.1 A weight assignment on a set S is a function D : S — R that
assigns a value to each element in the set. We can assume that the values
always sum up to one (if not, we scale the values). A probability distribution
is a weight assignment of which all values are non-negative and thus can be
seen as probabilities. Note that in some cases we implicitly assume that all
outcomes that are assigned with probability zero are excluded from the set.

When a distribution is sampled, that is: an element of the set is randomly
chosen according to the distribution, we write v <— S. If the distribution is
not explicitly mentioned, the uniform distribution is assumed. In this thesis
we only consider distributions over finite sets.

Definition 2.2 A function ¢ : N — R.q is negligible if ¢ decreases faster
than any inverse polynomial:

1
Ve > 0 AN, € N such that ¥n > N, it holds that e(n) < —
/rLC



Equivalent to Turing Machines, every computation can be modelled by a (uni-
form family of) Boolean circuits of certain basic Boolean operations called
gates.

Definition 2.3 For every n € N, an n-input, single-output Boolean circuit
is a directed graph with n sources (vertices with no incoming edges) and one
sink (vertex with no outgoing edges). All nonsource gates are labelled with a
logical operation OR, AND or NOT. The size of a circuit is the number of
vertices in it. (Arora and Barak [AB09])

If an algorithm has access to some oracle, then the circuit contains query
gates in addition. This means that querying the oracle costs one time step.

Sets of natural numbers and formal decision problems can be compared by
their complexity: how ‘difficult’ it is for algorithms to compute respectively
solve them. To which complexity class(es) a problem belongs, depends on
the running time or memory space it takes an optimal algorithm to solve the
problem and whether it uses randomness. The two best known complexity
classes are the following:

e P is the class of problems that can be solved in polynomial time or
equivalently with a polynomially-sized circuit.

e NP is the class of problems for which a witness that shows the positive
answer, can be verified in polynomial time. For example, the problem
whether a model exists satisfying a formula ¢ is in NP because we can
verify in polynomial time whether a given model satisfies ¢.

It has not been proved, but it is generally believed and an underlying as-
sumption for a lot of theorems (especially in cryptography) that P # NP.



3 Cryptography

This chapter provides the background in cryptography that is needed to un-
derstand Chapters 5 and 6. The first section introduces the research field.
In Section 3.2 we formally define encryption schemes and message authen-
tication codes and the traditional security notions for these two concepts.
Section 3.3 is about the more abstract notion of pseudorandomness, that has
a lot of applications in different cryptographic constructions.

3.1 Introduction

Cryptography literally means ‘secret writing’ and has already been used in
wars and diplomatic affairs from the time of Julius Caesar. There are two
main goals in cryptography:

e secrecy: an adversary who intercepts an encrypted message should not
be able to gain any information about the content of the message from
it.

e authentication: it should be certain for the receiver by whom the mes-
sage is sent and that the received message is exactly the one that is
sent.

Assuming that the parties (often called Alice and Bob) communicate by
sending data over a public channel, the only way to achieve the first goal
perfectly, is to send an encrypted version of the message (called ciphertext)
that is statistically independent from the original message, but which can be
decrypted using a secret key. This key is arranged in advance between the
sender and the receiver. Statistically independent means that for all m and
¢ the probability that the original message is m is equal to the probability
that the message is m, given the cipher text is c.



This definition is called information-theoretic security and is only possible
if the secret key is of the same size as the message and used only once, as was
shown by Shannon [Sha49]. For example, if the length of the key is smaller
than the length of the messages, it is possible to carry out a brute-force at-
tack. The decryption algorithm is run repeatedly on the ciphertext with each
possible key. Because there are less possible keys than possible messages, the
outcomes of this experiment are not distributed over all messages and yield
some information about the original message. An information-theoretically
secure scheme can be used in practice, but it can be difficult to secretly
arrange a key each time, so it is not useful for all purposes. In practice
however, an adversary cannot always utilize the information hidden in an
‘insecure’ ciphertext because it may take too much time to run the needed
computations.

Cryptographers make some assumptions about the adversaries who po-
tentially intercept communication. By Kerckhoffs’ principle, the adversary
is assumed to know the fact that the sender wants to send the receiver some
text and also what kind of encryption they use. The key is the only thing
that is not known by the adversary. As soon as a key is used multiple times,
we can model the power of the adversary in several different ways. In any
case an eavesdropper may use all previous ciphertexts in its computation.
Historical examples show that we may want to assume that the adversary
can trick the sender into encrypting a message (or part of a message) of her
choice. We call this chosen-plaintext attacks (CPA). We can go even further
and assume that the adversary can trick the honest parties in encrypting and
decrypting texts of her choice: chosen-ciphertext attacks (CCA). Thus, what
we call a (computationally-) secure encryption scheme depends on the kind
of attack we want to be secure against, but also on the computational power
of the adversary in our model and the time we want to keep our message
secret. For some applications it is not a problem if the adversary knows the
message after ten years.

To be more general and be able to compare different schemes, it is con-
venient to use an asymptotic approach as in complexity theory. The running
time of an algorithm is treated as function of the input length and we are
interested in the asymptotic behaviour of this function, in particular whether
it grows exponentially. All computations in the model should run in polyno-
mial time. Each computation gets as additional input a string of ones whose
length is called the security parameter n. Often it is the same as the length
of the input, but it allows algorithms that not necessarily have any input at
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all to run for some reasonable time. The running time of the functions that
are part of the scheme is then bounded by some fixed polynomial in this se-
curity parameter. We only consider adversaries that run in polynomial time
in their input, which is the ciphertext, as adversaries winning the game in
super-polynomial time are not considered a threat.

CPA or CCA secure encryption schemes must be randomized (apart from
the randomness used for generating the key). If a message would every time
be encrypted as the same ciphertext, it is easy to detect when a message is
sent twice, which gives a lot of information in some cases. We sometimes
denote a random string by 7.

There are two different types of encryption: private-key (or symmetric)
encryption and public-key (or asymmetric) encryption. Private-key encryp-
tion is quite intuitive: two parties that want to communicate share a secret
key in advance, for example when they meet physically. Public-key encryp-
tion works as follows: the receiver publicly announces an encryption key
which works in combination with a secret decryption key (known only to the
receiver). This is a very useful and non-trivial concept, but not the main
subject of this thesis.

The second goal of cryptography is authentication. We want to detect when
a message we receive (from a trusted person) is tampered with or sent by
an adversary. Roughly speaking, Message Authentication Codes (MAC) are
the digital equivalence of handwritten signatures. However, the word digital
signature is reserved for the public-key version, because that concept is even
more comparable to handwritten signatures which can be verified by every-
one.

3.2 Mathematical Security

Where historical ciphers were just developed in a smart way which was hope-
fully not thought of by the adversary, modern cryptography deals with com-
monly known schemes where only the key is secret according to Kerckhoffs’
principle. A scheme is called secure if we can prove mathematically that
whatever strategy an adversary has, she cannot find out anything about the
message using the information she has access to.



3.2.1 Encryption

Before we can define formally the security of encryption schemes, we need to
define the scheme itself.

Definition 3.1 A private-key encryption scheme is a tuple (Gen, Enc, Dec)
where:

o Gen is the key-generation algorithm having as input the security pa-
rameter 1™ (the bit string consisting of n consecutive ones) on which it
outputs a key k. Often this is just a sample from the uniform distribu-
tion on the set of all strings of a certain size.

e Enc is the encryption function which, on input k and a message m €
{0,1}*, outputs a ciphertest c.

e Dec is the decryption algorithm which takes as input k and ¢ and outputs
/

m'.
The encryption scheme is correct if Dec is deterministic and Dec(Enc(m)) =
m for all messages m.

We define information-theoretic (or perfect) security to illustrate what relax-
ations are made in the definition of computational security, compared to the
semantic definition of security we want to achieve. We start with the most
intuitive definition saying that an adversary can not learn anything from the
ciphertext that was not already known.

Definition 3.2 An encryption scheme (Gen, Enc,Dec) is perfectly secret if
for every probability distribution over the message space, and every possible
ciphertext we have:

Vm,c: Pr[M =m|C = ¢|] = Pr[M = m]

where variable M 1is the message sent hidden in the ciphertext variable C', m
a particular message and ¢ a particular ciphertext.

An equivalent way to define secrecy is to set up a game between a challenger
playing the honest parties and the adversary, which is won by the adversary
if she learns more from the ciphertext than is allowed.



Definition 3.3 An encryption scheme (Gen, Enc, Dec) is perfectly secret if
all adversaries win the following game with probability %
FEavesdropping game:

1. The adversary A outputs a pair of messages mg,my € {0, 1}*.

2. A random key is generated by running Gen and a random bit b is chosen
by the challenger. ¢ = Encg(my) is sent to A.

3. A outputs a bit b and wins if b=10".

It is easy to see that this notion is equivalent to the first definition. We
will not work out the proof here and refer to [KL07]. This game is referred
to as PrivK ' and is defined to be 1 if A wins and 0 otherwise. We can
alternatively write the adversary’s final output in this game as output of the

algorithm 4 on input Encg(my). The encryption scheme is perfectly secret
if:

N | —

Pr[A(Enci(my)) = b] =
< Pr[A(Enci(my)) = 0] — Pr[A(Enci(my)) = 1] =0

The probability is taken over all randomness used by the challenger, in the
encryption scheme or by the adversary. Because perfect secrecy may be too
strong to be manageable and not needed for most applications, we define
several notions of a second, more relaxed type of security. We make the
reasonable assumption that all agents are computationally bounded and we
do not require security to last infinitely long. Hereby we arrive in the field
of computational-complexity theory. The semantic security definition with
intuitive meaning in the real world, is followed by an equivalent definition in
terms of indistinguishability.

The semantic definition of computational security we state is a slightly
simplified version of the more general definition in the book by Katz and
Lindell [KLO07]. Following these ideas, stronger definitions can be made to
cover adversaries that are more powerful than just eavesdroppers.

Definition 3.4 A private-key encryption scheme I1 = (Gen, Enc, Dec) is se-
mantically secure in the presence of an eavesdropper if for any randomized
polynomial-time adversary A there exists a randomized polynomial-time al-
gorithm A’ such that for all efficiently-sampleable distributions D and all



polynomial-time computable functions f, there exists a megligible function
negl such that

[Pr[A(1", Enc(m)) = f(m)] — Pr[A/(1") = f(m)]| < negl(n)

where m is chosen according to D and the probabilities are taken over the
randomness used in the encryption scheme, by the challenger and by the
adversary.

The intuition behind this definition is that an encryption is secure if no ad-
versary can in practice (i.e. with polynomially bounded computation power)
compute any partial information about the message (f(m)) using the eaves-
dropped encryption of the message, except with negligible probability. When
D is the uniform distribution over all possible messages, then there exist
no encrypted message Enc(m) from which the adversary can compute some
f(m).

Because this definition is not very practical to work with, we use the
following equivalent definition from which we define stronger security notions

as well. For the proof of the stated equivalence we refer to the textbook by
Oded Goldreich [Gol04].

Definition 3.5 A private-key encryption scheme I1 = (Gen, Enc, Dec) is se-
cure in the presence of an eavesdropper if for any randomized polynomial-time
adversary A there exists a negligible function negl such that

1
Pr[PrivK{L(n) = 1] < 5 + negl(n)

where the random variable PrivK g, (n) is defined as the following game:

1. A gets input 1" and outputs a pair of messages (mg, my) of the same
length.

2. Gen(1™) generates a key k and a random bit b is chosen by the chal-
lenger. Enc(my,) = ¢ is given to A.

3. If A outputs the bit b she succeeds and the output of the game is 1, the
output is 0 otherwise.

Again, the probability is over all randomness.
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Real-life breaks (i.e. successful attacks) and new insights have led to refine-
ments of the assumptions regarding the adversary. It is easy to adapt the
game in the security definition in terms of indistinguishability by changing
the abilities of the adversary and the information sources she has access to.
We keep the semantic security definition in mind.

Definition 3.6 A private key encryption scheme 11 = (Gen, Enc, Dec) has
indistinguishable encryptions under a chosen-plaintext attack (or is CPA-
secure) if for any randomized polynomial-time adversary A there ezists a
negligible function negl such that

1
Pr[PrivKyy(n) = 1] < 5 + negl(n)

where the random variable PrivK 7 (n) is defined as the following:
1. Gen(1™) generates a key k

2. A gets input 1", has oracle access to Ency and outputs a pair of mes-
sages (mg, my) of the same length.

3. A random bit b is chosen. Enc(my) = ¢ is given to A.

4. If A, which still has oracle access to Enc, outputs the bit b then it
succeeds and the output of the game is 1, otherwise the output is 0.

The output of A in this game can also be written as AF"*(Ency(my)) and the
success probability is Pr[AE" (Ency(my)) = b] where the probability is taken
over the possible keys and the randomness of Enc, b and A. The superscript
Ency, means that the algorithm A has oracle access to Ency.

For chosen-ciphertext security we define the same game with the only ad-
dition that the adversary has oracle access to the decryption function. The
adversary is not allowed to query the decryption oracle on the challenge
ciphertext c¢ since this would trivially result in a break.

Definition 3.7 CCA indistinguishability game PrivKgq(n):
1. Gen(1™) generates a key k.

2. A gets input 1™, has oracle access to Ency, and Decy and outputs a pair
of messages (mg, my) of the same length.

11



3. A random bit b is chosen. Enc(my) = ¢ is given to A.

4. A still has access to the oracles but is not allowed to query the decryp-
tion oracle on c. If A outputs the bit b then she succeeds and the output
of the game is 1, otherwise the output is 0.

3.2.2 Authentication

We want to have formal security definitions for authentication as well. We
start with the definition of a MAC.

Definition 3.8 A Messsage Authentication Code (MAC) is a triple of ran-
domized polynomial-time algorithms (Gen, Mac, Vrfy):

e Gen outputs a key k on input 1™, |k| > n (the security parameter).
e Mac takes input m € {0,1}* and k and outputs a tag t.
o Vrfy checks validity of the tag: on input m, k and t it outputs 0 or 1.

A tagt is valid on message m under key k if Macy(m) =t (for some random-
ness r if Mac is randomized) The authentication scheme is correct if the tag
t is valid on m when Vrfy,(m,t) =1 and is not valid when Vrfy,(m,t) = 0.

The definition of secure MACs needs to formalize the requirement that a
message from a trusted sender cannot be changed by an adversary without
being noticed by the receiver. This requirement immediately covers infeasi-
bility of sending a message as if it is sent by this particular trusted party.
For MACs there is only one definition used in general (and variations of it),
which is security against the adaptive chosen-message attack.

Definition 3.9 A MAC is existentially unforgeable under adaptive chosen-
message attacks if for any adversary the probability that the adversary wins
the following game is negligible.

MAC-forge game:

1. Gen(1™) generates a random key.

2. A is given input 1" and oracle access to Macg. A wins if she outputs a
pair (m,t) for which it holds that m was not queried and Vrfy,(m,t) =
1.

12



We can equivalently say that the adversary wins if she outputs £ + 1 distinct
valid message-tag pairs where k is the number of queries made. We will use
this formulation to define quantum security in Chapter 5.

Note that it is possible for an adversary to send a valid message-tag
pair of a MAC that is secure, according to this definition, by resending a
pair that was sent by a trusted sender. A MAC can be protected against
these replay attacks by requiring a sequence number or a time-stamp as part
of each message, but we will not discuss this further. Roughly the same
security definition works for public-key authentication: signature schemes.
The difference in the game is that everyone, including the adversary, can
check the validity of a signature using the public key.

3.3 Pseudorandomness

A cryptographic scheme is secure against a certain class of adversaries if
ciphertexts ‘look random’ to all adversaries. This is exactly what pseudoran-
domness achieves: making much pseudorandom output from little random
input. Apart from that, pseudorandomness can be used as alternative for real
randomness. One of the applications, and one we study in this thesis, is the
almost trivial construction of MACs from pseudorandom functions (PRF).
PRF’s can be made from pseudorandom generators, which in their turn can
be build using one-way functions.

Definition 3.10 A pseudorandom function is an efficient length-preserving
keyed function f: {0,1}* x {0,1}* — {0,1}* such that for all randomized
polynomial-time algorithms D, there exists a negligible function negl such
that:

|Pr[ka(1”) = 1] — Pr[D?(1") = 1]| < negl(n)

where k and the function g are chosen uniformly at random.
Definition 3.11 A pseudorandom generator is an efficient deterministic al-

gorithm G which, on input s € {0,1}", outputs a string of length I(n) such
that:

e The expansion factor I(n) is a polynomial in n with ¥n l[(n) > n.

13



e No randomized polynomial-time algorithm D can distinguish G(s) from
a uniformly random string of the same length:

| Pr[D(r) = 1] — Pr[D(G(s)) = 1]| < negl(n)

where s and r are uniformly random strings of respective sizes n and
l(n), and negl is some negligible function (that may depend on D).

Definition 3.12 A one-way function is a function f:{0,1}* — {0,1}*
which 1s easy to compute and hard to invert:

o There exists a polynomial-time algorithm M; such that ¥z M(z) =
f(z).

e Any randomized polynomial-time A wins the following inverting (or

collision finding) game only with negligible probability:
A is given 1" and f(z) of a random x < {0,1}" and oulputs z’. A

wins if f(2') = f(z)

14



4 Quantum Computing

This chapter provides some background on quantum computing. Section 4.1
is an introduction to quantum computers. Section 4.2 is about the formal
definition and the commonly used notation to write down computations con-
cisely. Section 4.3 describes the famous EPR-pair [EPR35] illustrating the
phenomenon entanglement. In Section 4.4 we introduce the query model in
which a function is modelled as black box or oracle instead of a subroutine of
an algorithm. The algorithm may query a quantum oracle on any superpo-
sition of inputs. We prove the equivalence of two different implementations
of oracle queries to any (non-boolean) function. This shows that the imple-
mentation we work with in Chapter 6 is equivalent to the implementation
Boneh and Zhandry use [BZ13a].

4.1 Introduction

To describe small particles one should use the theory of quantum mechanics.
Although modern elements of computer chips are too small to behave clas-
sically, the unwanted quantum mechanical behaviour is ‘corrected’ because
we want computers to work like we expect and according to which classical
software is designed. Theoretically, it is also possible to exploit the quantum
effects and build a computer based on these phenomena instead of classical
logic. In practice it is shown to be possible to build a quantum computer
consisting of very few quantum bits (the analogue of a classical bit) and re-
searchers are working on other methods that are hopefully more scalable. It
is not clear whether it is possible at all or when a quantum computer will be
built with computing power comparable to state-of-art classical computers,
but when the time comes, we can no longer expect our adversaries to use
classical computers only.

15



The theoretical aspects of quantum computation have been studied since
the 1980s, and discoveries have been made that are of great importance for
cryptography. The bad news is that, using Shor’s surprisingly efficient quan-
tum algorithm for factorization, it is easy to break the widely used RSA
public-key encryption schemes. The good news is there exist information-
theoretically secure encryptions schemes that make use of quantum com-
putation and communication to distribute keys. However, when quantum
computers first become usable, they will be scarce and expensive and honest
parties who want to communicate securely will in general not have access
to a quantum computer, while criminal organizations may have. In this sit-
uation it is important to use classical cryptographic schemes proven to be
secure against quantum attacks. The research field that investigates the vul-
nerability of existing or new classical schemes to quantum power, is called
Post-Quantum Cryptography. A lot of (symmetric) schemes that are proven
to be classically secure are expected to be quantum secure as well, maybe
under some additional conditions, but new proofs and/or proof techniques
are required.

Three important phenomena in quantum mechanics are superposition, inter-
ference and the collapse after measurements. Superposition means a system
can be in more than one state at a time, each with some amplitude (a com-
plex coefficient). Due to interference, positive and negative amplitudes can
cancel each other out. In quantum computing a qubit can be both 0 and 1 at
the same time, but after a measurement the qubit collapses into a classical
basis state. The probability that the qubit is measured as 0 is the squared
modulus of the amplitude of this state. The squares of the amplitudes must
sum up to one. A system or register of n qubits can be in 2" states at the
same time and algorithms on this register may compute a function on 2" dif-
ferent inputs simultaneously. However, it is not possible to see the outcomes
of all these parallel computations because the register will collapse to a single
basis state after measurement. Only if interference can be used in a smart
way, can the measurement tell us something about multiple inputs.

There are only a few specific problems for which there exist a quantum
algorithm solving it, which is much (exponentially) faster than any known
classical algorithm that solves the problem.

In the field of quantum computing, people often make use of the circuit
model of algorithms, which is, like the classical model, equivalent to the
model of (quantum) Turing machines.
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4.2 Technical Framework

The state of a qubit can be written as two-dimensional vector ( g ) in a
. . . . 1
Hilbert space, where « is the amplitude of basis vector ( 0 ) and [ the

0 :
1)@ and [ are complex numbers and their squared abso-
lute values sum up to 1. We use the more concise Dirac-notation, which is
conventional in both quantum mechanics and quantum computing. In this

amplitude of

notation, a column vector ¢ = ( g ) is written as ket |¢) = a|0) + §|1) and

a row vector ¥ as bra (1|. The product bra - ket (1|¢) is the inner product of
the two vectors, which corresponds with the widely used notation for inner
product.

Every operation that can be applied on a quantum state preserves the
following property of a quantum state: the sum of the squared amplitudes is
1. In terms of linear algebra, this means that operations or circuit gates on
a quantum state can be written as unitary matrices left-multiplied with the
state.

The tensor product ® is used to combine multiple qubits or registers of
qubits in one big quantum system. The set of possible classical states of a
combined system is the Cartesian product of the state sets of each part.

The combined state of two qubits |¢) and |¢)) is written as |¢) ® |¢)) and
sometimes abbreviated to |p)|Y), |¢,¥) or |¢p). The bit string that arises
in this way, in case of basis states, can be written as number between 0 and
2" — 1 where n is the length of the bit string. Two parallel unitary trans-
formations on two registers is equal to the tensor product of the operations
applied on the tensor product of the registers.

When we measure a register of n qubits in the state |p) = 23181 ajlj), the
probability of seeing the classical state |j) is |a;]*. We say that the quantum
state has collapsed to the classical state |j) after the measurement. All other
information the quantum state held is lost. This standard implementation is
called measurement in the computational basis but there are more possibili-
ties. In general, measurements in any orthonormal basis can be described as
a projective measurement. For more information about this see for example
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the first chapter of Ronald de Wolf’s PhD thesis [dW01] or the textbook by
Nielsen and Chuang [NCO00].

The circuit model for classical computation uses logical gates as NOT,
AND, OR, XOR. There are different minimal sets of gates which generate all
other gates. The same is true for quantum computing if we allow a negligible
error probability.

The following quantum gates are commonly used:

(1) 7 (o )

Bitflip gate X is the quantum equivalent of NOT and Z is a phaseflip gate.
The Hadamard gate changes a classical state in a ‘very’ quantum state: a
superposition over all four combinations of two bits9.

=51 4)

1 000
0100
CNOT = 000 1
0010

The controlled-not gate negates the second bit if the first bit is 1 and does
nothing otherwise.

4.3 Entanglement

An important phenomenon that illustrates the counter-intuitive character
of quantum mechanics is entanglement. Possibly separated particles can
be related such that they seem to ‘communicate instantly’ over any distance.
However, this is impossible because no matter or information can travel faster
than light. Something is going on that looks like communication but it is
something else.

The following circuit creates two qubits being ‘fully entangled’: an EPR-
pair (named after a famous paper by Einstein, Podolsky and Rosen [EPR35]).
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[q0) — H |

q1)

We calculate the state after this circuit, applied on |[00). The Hadamard
gate on the first bit transforms it to \/Li(|0> +|1)). Now the CNOT gate flips
the second bit to 1 if the first bit is 1. This means that either both bits are
1 or both bits are 0. The state we have is \%(|OO> + [11)). Suppose that
Alice holds the first qubit and the second qubit is given to Bob who takes
it to a place far away from Alice. If Alice now measures her qubit and sees
(say) 1, then Bob’s qubit collapses at the same moment: if Bob measures
his qubit, he will see 1 as well. This could not have happened as a causal
relation, since it happened faster than anything sent by Alice could reach
Bob. This contradicts relativity theory unless (at least) one of the following
two assumptions (which we tend to make intuitively) is dropped.

e realism: the physical properties that objects have are independent of
observation.

e [ocality: measurements can not influence the outcome of other mea-
surements from a distance.

Although Alice and Bob can share entanglement, they cannot send each other
information faster than light. When Alice measures her qubit, she cannot
choose to which state her or Bob’s qubit will collapse. Neither can Bob.

4.4 Query Model

Instead of time complexity, quantum algorithms are often analysed in terms
of query complexity. If we know how many queries an algorithm needs to
make to some function or random-access memory, we have a lower bound on
the computing time as well. Each query costs one time step.

The query model is used in cryptography as well. In the security defini-
tions we assumed adversaries to have oracle access to the encryption, decryp-
tion or MAC-function. A lower bound on the number of queries an adversary
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needs to break a scheme immediately implies a lower bound on the time the
break takes, so query complexity is useful in this field too.

The difference between the two fields is that cryptographers treat oracles
as functions: the query is an element of the domain of the function and the
answer is an element of the range, whereas in quantum computing oracles are
usually memory of which the algorithm queries a bit by its index. It is not a
big difference since a bit string is just a Boolean function, and any function
can be represented as string. However, we have to be careful with the details.
The main theorem in Chapter 6 is about a cryptographic non-Boolean oracle,
which is the reason why we have to prove a standard technique used in
quantum computing for this general case (Proposition 6.2).

A quantum algorithm may query the oracle on a superposition of inputs.
There are different possibilities to implement an oracle answering a super-
position query. We describe two commonly used implementations and prove
their equivalence.

Proposition 4.1 Let f: X — Y be the function to which an algorithm has
oracle access, |X| = n, |Y| = m. The following two transformations on a
register of qubits are equivalent formalizations of a single superposition query.
The register consists of three parts. The first part x is used for the query, b
for the answer and w is workspace.

e addition query Oy : |x,b,w) — |x,b+ f(x), w) where + is the operation
of the group in which b and f(z) live, in this case addition modulo m.

b-f ()

e phase query O : |z,b,w) — ww' |z, b,w) and wy, is the mth complex

root of unity e* m .

Proof We prove equivalence by giving two circuits that implement one for-
malization using the other. These circuits show that we get one type of
queries by viewing the operation of the other type in a different basis, since
the only thing we do is change to the ‘Fourier basis’ to make the query and
then change back to the computational basis.

We start with the implementation of a phase query using an addition query.

Circuit:

e The inverse Fourier transform is applied on first register |b).
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e The transformation of the addition query is applied on the total state.

e The Fourier transform is applied on the first register.

By F,, we denote the m!" Fourier transform which is an m-by-m matrix with

entries \/mefw’f where j is the row and k the column of the entry. The in-

verse of the Fourier transform F1 is defined similarly: each entry is \/—%w;j"’.
From here on, we often omit the m if it is clear which root is meant.

At the start of the circuit, the registers of the algorithm are in the following
state:

Z Qb | T, b, W)

x,b,w

After the application of the inverse Fourier transform on |b) each basis state

m—1
|z, b, w) becomes \/—% S w bz, 4, w), so the total state is:
j=0

1 m—1 iy .
xbw ™~ — m ‘77 >
P S

z,b,w

On this state the transformation of the addition query is applied which results
in the following state:
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Then after the Fourier transform we get:

m—1 1 m—1
—bj k(j+f(z
Zambw =2 =D wn k)
z,b,w 7=0 \/m k=0
m—1m—1
_ 1 Z s 3 S WD g k)
:J:bw 7=0 k=0
1 m—1m—1
=D Gy Y e Ok w)
m x,b,w 7=0 k=0
1 m—1m—1
= 2w ) Y Wi T Ok w)
m z,b,w k=0 j=0
1 —= (k—b)+k-
_ flz (b—=b)+b-f(x
3 | S )+ S
z,b,w k=0 j=0

kb
We split the sum over k into a single term k£ = b and the sum over all other
terms. The reason for this is that all terms k # b have the form

m—1 m—1
ij(k ORI |2, ke w) = ijc”“f |z, k,w)
Jj=0 7=0

for some non-negative constant c. By Proposition 4.2 (below), each of these
sums over j equals 0. So we are only left with the term & = b which is exactly
our definition of the phase query:

m—1 m—1

S w0 by = 3 WO, b, w)

i=0 =

The second part of the proof is to show that we can implement the addi-
tion query using a phase query. The circuit is very similar to the previous
one, namely the Fourier transform and its inverse have swapped places: the
Fourier transform is applied before the query and the inverse Fourier trans-
form after the query. We start again with some arbitrary state:

Z Qb |, b, W)

x,b,w
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The Fourier transform is applied to the b-register of this state which turns it
into:

1 m—1 y .
Ay —F— WWJZ|$,],UJ>
Z b Jm ;

x,b,w

Then a query is made implemented as phase change, resulting in:

m—1
1 b .
Z Qb —F— Z w ]wj.f(x)|$aja w)
v/m =0

z,b,w

And after the inverse Fourier transform we have the state:

z,b,w
1 m—1m—1

_ = bj, ,j-fx), ,—ik

= D > > WM k)
z,b,w k=0 j5=0

1 m—1 m-—1 m—1
= Z Qb Z ' W OH@=R) 0 e w) + Z w0z, b+ f(x),w)
z,b,w k#0 7=0 j=0

k=b+f(x)

Using Proposition 4.2 we get:

m—1 m—1
1 0
SOt | > 04 Y Wbt f(),w)
z,b,w k#0 7=0
k=b+f(x)

= S o [ b+ S (), w)

x,b,w

= Z Qb |2, 0+ f(2), w)

x,b,w
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Proposition 4.2 Let w,, = 2 for m € N and let ¢ be a non-zero integer
that is not a multiple of m (m+1c). Then

m—1

Z wr =0

j=0
Proof It follows directly from well known formula for the sum of a geometric
series, but it gives more insight to see the proof. For ¢ = 1 one can easily see
that the expectation ranges over exactly all distinct powers of omega on the
unit circle in the complex plane. Viewing these points, it is intuitively clear
that they sum op to 0 because they are evenly distributed on the circle. We
can show this algebraically for arbitrary ¢ by showing that the set of points
and thus their sum stays the same if we rotate everything by an angle of %

I
)

k=0

If a multiplication (of elements in a field) does not change an object, then
either the object is multiplied by (the identity) one, or the object is zero.
Because e m ! # 1 it follows that the sum must be 0. 0J
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5 Quantum Security Models

In this chapter we discuss different ways to model a quantum attacker. In
any case a quantum adversary can use a quantum computer to run quan-
tum algorithms. We know that for some public-key schemes, the key can
be learned using a quantum algorithm. When RSA is used for example, the
adversary can compute the prime numbers (secret key) from their product
(public key). Of course quantum adversaries have access to the same sources
of information or oracles as their classical counterparts. When we are rea-
soning about communication and oracle queries in situations in which there
are classical computers as well as quantum computers, the communication
can be quantum or classical. The choices we make for our security models
depend on how adversaries in reality gain certain information.

For example, in the random oracle model, the random oracle would in
reality be replaced by some hash function which can be computed by the
adversary itself. Because we can never be sure how an adversary implements
the hash function, we assume in our model that the adversary can compute
it in superposition. Analogously, the random oracle may be queried in su-
perposition by the adversary. Boneh et al. [BDFT11] show that security in
this quantum random-oracle model is harder to prove for schemes in general.
They even construct a scheme that is secure if the random-oracle is queried
only classically, but insecure if it is queried in superposition.

Other oracles that occur in security definitions are the pseudorandom and
uniformly-random functions in distinguishing games, encryption and decryp-
tion oracles, and signing oracles. In the line of random-oracle proofs, it is
interesting to look at pseudorandom functions since they can be used to sim-
ulate a random oracle. In general, quantum secure pseudorandom functions
can be used for several things if one wants to have a conservative model
with minimized limitations on the adversary’s abilities. Zhandry [Zhal2]
shows that quantum-secure pseudorandom functions are needed to simulate
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quantum-accessible random oracles if the number of queries is not bounded in
advance. Here quantum-accessible random oracle means that the adversary
can query the oracle on a superposition of states. This can be implemented
in several ways as explained in Chapter 4. Equivalently, a PRF is quantum
secure if it cannot be distinguished from a uniformly random function by an
adversary making quantum queries to the oracle.

Going further in giving adversaries superposition oracle access becomes
more difficult when we consider encryption and authentication, because the
security games are not trivial to translate. While having only the oracle to
consider and no other input (except for the security parameter) in case of
pseudorandom functions, it is getting more complex when we model encryp-
tion games in which adversaries have communication back-and-forth. Which
inputs does the adversary get in superposition?

5.1 Encryption

Recall the security game of a chosen-plaintext attack on an encryption scheme.
(Definition 3.6)

1. Gen(1™) generates a key k.

2. A getsinput 1", has oracle access to Enc, and outputs a pair of messages
(mg, my) of the same length.

3. A random bit b is chosen. Enc(m;) = ¢ is given to A.

4. If A, which still has oracle access to Enc, outputs the bit b then it
succeeds and the output of the game is 1, otherwise the output is 0.

To turn this into a superposition-chosen-plaintext attack, the first option is
to make the oracle access to Enc, quantum. That is, the adversary can
query the oracle on a superposition of inputs, getting back a superposition
of answers.

To see how useful this definition is, we look at the real-life scenario this
definition aims to model. Usually, in the field of post-quantum cryptography,
it is assumed that the adversary has a quantum computer and the honest
parties have only a classical machine. If both the sender and the receiver
had quantum computers, they would be able to use quantum cryptography.
However, it is possible that Alice, having a quantum computer, chooses to
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use a classical scheme to communicate to several others (maybe without a
quantum computer) and has found an implementation of the scheme for her
quantum computer. If the adversary finds a way to get the final superpo-
sition of this quantum encryption algorithm just before Alice measures it
to send it classically, then the scenario fits with the adversary getting su-
perposition answers. To be conservative, we assume that the adversary can
choose any superposition to query in this way (however unrealistic this may
sound). Assuming that the adversary can obtain the final superposition of
the encrypted queries, we cannot always exclude that the adversary can do
the same for all messages that are sent by Alice. We want to have the choice
to make this assumption or not. Allowing Alice to see all superpositions of
ciphertexts means that the challenge ciphertext ¢, would also be in some
superposition.

Boneh and Zhandry [BZ13b] formalize this (as a first try) in the following
way, without much discussion about why this is a reasonable option.

Definition 5.1 [BZ13b, Definition 4.1] A private-key encryption scheme
IT = (Gen, Enc,Dec) is indistinguishable under a fully quantum chosen-
plaintext attack (IND-fqCPA secure) if no efficient adversary A can win
the following game, except with probability at most % + negl:

1. A key k is generated using Gen and a random bit b is chosen.

2. A is allowed to make chosen-message queries on superpositions of mes-
sage pairs. For each such query, the challenger chooses randomness r,
and encrypts the appropriate message in each pair using r as random-

ness:
Z wmo,m1,c‘m07m17c> — Z ¢m0,m1,c mOamlac@ Ean(mb;T»
mo,mi,c mg,mi,c

3. A produces a bit and wins the game if the bit is equal to b.

Because every oracle answer contains information about b, this adversary is
very powerful. Boneh and Zhandry prove that there cannot exist a scheme
that satisfies this definition, because the message query is entangled with the
answer. They try to solve this problem by changing the implementation of
the queries: both messages will be encrypted, but depending on b the order
is flipped in the answer. Unfortunately, this definition does not solve the
problem: they prove that this definition is at least as strong as the first one.
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They proceed with the same game we mentioned above. In this game 5.2,
the challenge ciphertext is one of Enc(mg) and Enc(m,) where the classic pair
(mg, my) is chosen by the adversary.

Definition 5.2 [BZ13b, Definition 4.5] A private-key encryption scheme
IT = (Gen, Enc, Dec) is indistinguishable under a quantum chosen-plaintext
attack (IND-qCPA secure) if no efficient adversary A can win the following
game, except with probability at most % + negl:

1. A key k is generated using Gen, and a random bit b is chosen.
2. A is allowed to make:

e challenge queries: A sends a pair (mg,m1) and gets back ¢* =
Enc(k,my).

e encryption queries: For each such query, the challenger chooses
randomness r, and encrypts each message using r as randommness:

> melm, ) =Yt elm, ¢ © Ency(m; 1))

3. A produces a bit and wins the game if the bit is equal to b.

What is reasonable to allow the adversary in order to model the real world?
To answer this question, we recall the ideas that led to the traditional defini-
tion. The adversary has access to the encryption oracle to model the ability
of tricking an honest party into sending particular messages. We want to
assume, in this new model, that this tricking can be done in superposition.
It can be the case that a copy of an encryption device is in hands of the ad-
versary. This device works as a black box, so it can be run on superpositions
of messages without revealing the key.

The message pair (mg, m1) of the classical distinguishing game is intro-
duced to have two situations that the adversary can try to distinguish. This
distinguishing ability should be equivalent or close to the ability of learning
some information about the messages Alice genuinely sends to Bob. To prove
that whatever Alice wants to send, the adversary learns nothing (new) from
the ciphertext, we let the adversary choose the pair (classically) in the game.
We have to keep in mind that in reality there is no communication between
the adversary and the sender; the communication with the challenger exists
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in the model to ensure that the scheme is secure for any such pair. To cover
all scenarios, we do want to assume that the adversary can always get the
sender’s superposition just before it is to be measured and sent. Note that
the sender loses the quantum state in this case and the sending process is
aborted. We do not discuss the question why the sender wants to send a
measured superposition of messages; we just want to be general. Even if
the definition is too strong for most uses, we want to have the choice to use
it instead of weaker ones. Above all it is interesting to compare different
models.

The semantic notion of security we want to achieve is the following: no
adversary can learn anything about the superposition of messages the sender
started with, from the superposition of ciphertexts the sender was about to
measure and send. Our goal is to state this notion as distinguishing game.

We propose to give the adversary the task to distinguish between two
superpositions of ciphertext. As in the classical case, we let the adversary
choose the two superpositions because itS has to be safe for any message the
sender may send. The formalization we use (Definition 5.3) is not, like Boneh
and Zhandry do, the same as the implementation of the queries, in which the
query itself is still part of the state afterwards. In our model the adversary
sends a pair of superpositions over a quantum channel and receives one of the
two superpositions of ciphertexts, depending on b. We require that the pair
of superpositions is not entangled. This may seem questionable, but since the
pair does not model any real state prepared by the adversary, it is reasonable
to make this requirement. Note that a special case is the situation in which
the adversary chooses two classical states. Because there is no entanglement
between different registers of the adversary, we are (at least at first sight)
not facing the problem that occurs with the mentioned option Boneh and
Zhandry proposed. It is easy to see that this definition is stronger than
(what they call) IND-qCPA security because the last one is a special case.
Whether it is feasible at all and if so, whether it is strictly stronger than
IND-qCPA security is an interesting open question.

Definition 5.3 A private-key encryption scheme 11 = (Gen, Enc, Dec) is in-
distinguishable under a superposition chosen-plaintext attack (IND-sCPA
secure) if no efficient adversary A can win the following game, except with
probability at most % + negl:

1. A key k is generated using Gen and a random bit b is chosen.

29



2. A is allowed to make encryption queries. For each such query, the
challenger chooses randomness r, and encrypts each message using r
as randomness:

Zwmvc|m, c) — Z@/}m,c|m, ¢ ® Enci(m; 7))

m,c m,c

3. A chooses two non-entangled superpositions of messages (|mq), |m1))
and sends them over a quantum channel to the challenger. (Non-
entangled means in this case that after sending the pair, the adver-
sary does not hold qubits that are entangled with (|mgo) or |my)). Also,
(|mo) and |mq)) are not entangled with each other.)

4. The challenger chooses randomness r*. The messages in |my) are en-
crypted using r* and sent to A:

) = > hmlm) =Y m|Ency(m; 1))

5. A, who has still access to the encryption oracle, produces a bit and wins
the game if the bit is equal to b.

5.2 Authentication

Fortunately, defining quantum security for authentication is more straight-
forward.

Definition 5.4 A MAC is existentially unforgeable under a quantum chosen
message attack (EUF-qCMA) if no adversary can win the following game,
except with negligible probability.

Quantum MAC-forge game:

1. Gen(1™) generates a random key.

2. A is given input 1" and quantum oracle access to Macy. A wins if she
outputs q + 1 distinct pairs (m,t) such that Vrfy,(m,t) =1, where q is
the number of oracle queries A made.

The oracle uses the same randomness to generate the tags in one query. This
is more conservative than assuming that new randomness is used for each tag
and it is easier for the authenticator.
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6 Quantum-Secure Authenti-
cation

In this chapter we re-prove a theorem first proved by Boneh and Zhandry
and describe some implications of it.

6.1 Main Result

When we model the situation in which an adversary with quantum power is
trying to forge a classical message authentication tag, we intuitively assume
that the communication from the authenticating device is always classical.
However, as explained in Chapter 5, making this assumption is not the most
conservative approach. It may be the case that the verifier or authenticating
agents do have quantum computing power and measure their states just
before communication. If we now consider an adversary who can somehow
get access to the final quantum state, then we must allow her to make queries
in superposition.

Boneh and Zhandry [BZ13a] prove that it is possible to construct a MAC
that is secure under quantum-chosen-message attacks using a quantum-secure
PRF. They develop a new technique for this purpose, which they call the rank
method. Using this method, they bound the probability that an adversary
outputs a number of input-output pairs of the oracle function which is bigger
than the number of queries. A special case of the result is equivalent to a
result by Farhi et al. [FGGS99]. In this case the oracle is a Boolean function
and an upper bound is shown on the number of functions that can be distin-
guished by an algorithm making ¢ quantum queries. This upper bound is a
function of the number of queries and the success probability p.

In the next section, we generalize the result and proof technique of the
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paper by Farhi et al. and thereby we re-prove Boneh and Zhandry’s Theorem
4.1 [BZ13a]. We believe that this new approach contributes to the insight into
the strength of adversaries who are able to use both quantum computation
and quantum communication.

Recall the formal definition of a quantum secure MAC (Definition 5.4)
with a game between challenger and adversary in which the adversary is
allowed to make ¢ quantum queries to the authentication oracle and her
task is to output k > ¢ distinct message-tag pairs. Theorem 6.1 bounds the
probability that an adversary wins this game if the tag function is chosen
uniformly at random. To build a real secure MAC, this random function
needs to be replaced by some pseudorandom function. Apart from this basic
application, Boneh and Zhandry construct a quantum secure variant of the
Carter-Wegman MAC.

Theorem 6.1 Let A be a quantum algorithm making q queries to a uni-
formly chosen oracle f: X — Y where | X| = n, |Y| = m. The probability
that A successfully outputs k > q distinct pairs (v € X, f(z) € Y) is at most

2 () m =1

To get a feeling for the size of the expression in Theorem 6.1, we note that if
the sum would run from 0 to k, then it was equal to the binomial expression
of (m — 14 1)*. Since m > 1, every term is strictly positive; in particular
the term ¢ = k. The factor # ensures that the expression in the theorem is
at most one if ¢ is smaller or equal to k, so it can be a probability. Because
q < k is required, the bound in Theorem 6.1 is non-trivial (i.e. strictly smaller
than 1).

We assume that the final state of the algorithm contains, when measured,
a sequence x of k distinct elements of X followed by a sequence of k elements
of Y. The rest of the register is called w for working space. We write the
final state of the algorithm as follows:

W) =Y " au()lz) =D duyulryw)

x7y7w

The success probability of the algorithm is the expectation (over the uniform
distribution of oracles) of the probability that the first & - log n qubits repre-
sent k different z’s and the subsequent & -log m qubits represent the sequence
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f(x) = f(z1)f(x2)--- f(xg) where f is consistent with the particular oracle.

> laseau(f) |2]

xCX,w

Pr[success] = E

Like Boneh and Zhandry do, we assume that the sequence x C X that the
algorithm outputs does not depend on the oracle. After finishing the proof
we argue that we can reduce the general case to the one with this assumption.

The proof by Farhi et al. we will build upon makes use of the fact, proved by
Beals et al. [BBCT97], that the amplitudes of the final states of any quantum
algorithm are 2k-degree multilinear polynomials in the values of the oracle-
function, where k is the number of queries. This is known as an essential part
of the polynomial method and is normally applied with Boolean inputs. The
situation we model involves functions with a larger codomain. We cannot
represent our assumptions if we replace a query by multiple bitwise queries
on a value since this will allow the adversary to query an arbitrary mixture
of bits of function values. Therefore, we generalize the theorem by Beals et
al. for functions with an arbitrary codomain Y. Proposition 4.1 shows that a
superposition query implemented as a phase-changing operation is equivalent
to the commonly used one which adds the answer to the second register, so
we can use the first implementation without changing the model. Oracle
query:
|z, b, w) — W@z b w)

Here w,, is the mth complex root of unity 2 m.

6.2 Proof of Theorem 6.1

With the following proposition, we mould the amplitudes of a state after ¢
queries into a nice polynomial form.

Proposition 6.2 The amplitudes o, in the state Y _a.|z) of any algorithm
after making q quantum queries to a function f: X — Y with |Y| =m, can

be written as

SCX, zeSs
b: S—[m]*

33



where |S| < q and the function b is represented as set of input-output pairs
and [m]* ={1,2,...,m — 1}.

Proof We prove this lemma by induction on the number of queries made by
the algorithm.

Base: if no queries have been made the sum in the lemma is taken over only
one pair {S,b}, namely {(),0}. The single term in this sum is a constant
times an empty product so just the constant (as an empty product is 1).
Amplitudes do not depend on the oracle if no queries are made so they are
indeed constant. The base case holds.

Induction Hypothesis: assume that the lemma holds for ¢ = ¢; then the
amplitudes of any algorithm after making ¢ quantum queries (each followed
by a unitary) to a function f can be written as

Z Bsb - H w/ (2)b(@)

SCX, zeSs
b: S—[m]*

where |S| < t. We compute the state after one more query.

Step: the basis state |xobywo) has amplitude Y ¢\ Bob - [ e Wi @P@) after

the unitary transform that follows the ¢t** query. The next query only changes
the global phase of a each state: each amplitude oy p,w, becomes o pyw, *

wl @)t We express the new amplitude in terms of the old:

Azobowg = Z ﬁg’b . H wgl(w)-b(x) IRCORT

SCX, zeS
b: S—[m]*
Here |S] < t.
Each term of the sum is multiplied by w/(®0)% which transforms the sum in
one of the following ways:

o If 2y ¢ S then the product is now over x € S U {zo}. For the sum it
means that the term (S, b) disappears and a new term (S U {z},bU
{(x0,b9)} with the same coeflicient fgy, is added. Note that |S| now
can be t 4 1.

o If xyp € S and b(xg) + by # 0 then the term (S, b) is replaced by the
term (S, b’) where b’(zg) = [b(zo) + by mod m]. Again, the new term
gets the coefficient of the disappearing term.
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o If xp € S and b(zg) + by =0 (mod m) then this term is replaced by a
term (S\{zo}, b\{(z0, b(x0)}).

If we added or changed more than one term with the same pair {S, b}, we
sum the coefficients to make it a single term. By the induction hypothesis,
each b(z) is in [m]* before the step. We added these numbers modulo m,
and when the sum was equivalent to 0, the = disappeared from the set S.
This means that the new b(x) are all in [m]*.

The amplitudes are of the same form as before the last query, now with
|S| < t+4 1. The number of terms in the sum did not increase. The next part
of the induction step is the application of some unitary. After multiplying the
amplitude vector by a unitary matrix, each amplitude is a linear combination
of the amplitudes after the query. This linear combination can be written
in the same form, with new coefficients. Now, the number of terms of each
sum can be much bigger: at most the number of pairs of a set S of size at
most t + 1 together with a function b. The number of distinct pairs (S, b) is
Zi‘c:o (‘f') (m —1)". For each size i of set S there are ('f‘) possible sets, each
of which can come with (m — 1)? possible functions b. Here we see a glimpse
of the expression of Theorem 6.1.

The induction step shows that if the amplitudes resulting from any algo-
rithm making ¢ queries have the claimed form with |S| < ¢, then an algorithm
making ¢ + 1 queries has amplitudes of the same form with |S| < ¢+ 1. By
induction, the final state of any algorithm making ¢ queries has amplitudes
of the claimed form with |S| < ¢. O

Now we can start to bound the success probability of a MAC forger. A couple
of lemmas lead to Theorem 6.1.

Lemma 6.3 Let f: X — Y be a function, |X| = n, |Y| = m and let
a:YX — C be a multivariate function in of the form

alf)= Y. Bew- [Jwl@r®

SCX, zeSs
b: S—[m]*

where |S| < q.
If 3f such that a(f) =1 then the following holds:

1
> 1B’ =~

SCX, b S—[m]* > () (m—1)
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Proof We assume that « is of the stated form and oz(f) =

a(f) = > 5Sb Hw

SCX, b: S—[m] zeS

By the Cauchy-Schwarz inequality we have:

|1‘2_|265b Hw (e P |2<Z\5Sb\ Z|wa(x )]

€S Sb zeS

Since the norm of any power of omega is 1, this gives:

1—\Zﬁ3b [T i@ <3 s D1
S,b S,b

€S

We divide by the sum over ones (which is equal to the number of terms of

the sum):
2 S
E |Bspl” > # #(5.b)

The number of terms in the sum, #(5,b) can be counted by summing over
all sizes of S. For each size ¢ there are (’Z) subsets of X and for each subset
o

there are (m — 1) functions b from S to [m]*.
Ao ‘
b) = — 1y
#50) =3 (7)on 1)
This proves the lemma. 0

Lemma 6.4 Let a(g) a function of the form:

Z Bsp - H Wi )

SCX, b: S—[m]* z€S

forg: X —Y. Then:
)P] = Z |Bsp|”
S,b

where g is chosen uniformly from the set of all functions from X to Y.
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E, [la(9)f] = E, zﬂSb [[wrome ]

€S

=E, Z Bs1b1 Bsabs H wI@ k1@ H wI(@)bz(z)

(Sl,b1),(52,b2) TESY z'€So

Since Bgp is independent from g we can move the expectation in front of the
products after swapping it with the sum which we may do by linearity.

Ey [la(g)?] = D BsibiBsaby B | [J @@ @ ] wot b2t (6.1)
(S1,b1) z€S1 /€55
(S2,b2)

We distinguish three different kinds of terms in this sum: terms with S; # Ss,
terms with S; = Sy and by # by, and terms with (S7,by) = (S2, by). Terms
of the first two kinds can be partitioned in groups that sum to 0, which leaves
only the terms of the last type.

e case S7 # Sy
Without loss of generality we can assume that dxy such that x4 €
S1, xg & Sa. Now we fix values g(x) for all x # x4. Let G4 be the set
of functions that are consistent with the fixed values. In this set there
is exactly one function for each possible value g(xg).

H w9(@)b1 () H wI@ba(z) | —
TeS] €Sy

Eq, [w/e0P1E0 T wo@P@ T wo@be@
THTg €S2 |

The powers of w in the product are the same for all functions in G4, so
the products do not depend on g. We can view the big products as a
constant a and take it out of the expectation.

a-Eyeq, [wg(ﬂﬁd)b(iﬂd)} =a B,y [w%b(wd)}

By Lemma 4.2 and because Y = [m], this is 0.
We can partition all functions in Y in parts with g(z) fixed for z # z4.
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Each part has expected value 0 for the product so the expected value
over all functions is also 0.

e case S; = 59 and by # by
x4 such that by (z4) # ba(z4). Again we partition all functions g such
that the functions in one part have the same values on = # .

H WwI@b1(2) H wy(w)b2(w)_

Eq,
TEST z€S> i
=Eg, |w9@P1Ed)yg(wa)ba(ea) H I@b1(2) H 9(@)ba(x)
TF#Lq T#Tyg i
= EGd ojg(xd)(bl(xd)_b2(xd)) H wg(:(})bl(x) H wg(m)bg(x)
rF#xq T#Ty i

In this equation the big products, as well as (by(zg) — ba(z4)), are
constants, so again the expected value is 0 by Lemma 4.2.

e case (S1,b1) = (S, by)

g _H WI(@)b1(z) H wg(x)bQ(x)_

L x€S1 TESH i

—E, H WwI(@b1(x) H w9(x)b1 ()

| x€S1 reSt

- Eg[l]

In the sum of equation 6.1, only the terms remain with (Sj,by) = (S2, bs)
and these terms consist of the two coefficients multiplied by 1:

EQ[|a<g)|2] = Z leblﬁs—leQ' 1= |55b|2
)

(S1,b1)=(S2,b2) (S,b
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As explained in Section 6.1, the final state of any quantum algorithm making
q oracle queries to f € YX can be written as

[WF) = () = D anulryw)

and the probability that the adversary succeeds is

Pr[success] = E; Z |l reow ()P | = P (6.2)

xCX,
w

Here, x has the required length and f is uniformly chosen from Y*. Since it
is a quantum state, the squares of the coefficients ayy,, add up to (at most)
one, for a fixed f.

Fixx C X, w and f. Having this fixed x we can split each function g = goUg;
where gy has domain x and ¢; acts on the complement X\x. We now define

axf(x)w(QO U fl)
Cfo(x)w(f)

Of;fw(go) = (6.3)

which satisfies o/ ;,,(fo) = 1.

Corollary 6.5 For any fired x C X of size k, w and f the following holds:
1

Bl (0)|*) 2 ————
> ()m 1y
Proof We will show that we can apply the previous two lemmas and that

| X| in the binomial coefficient becomes k. Firstly, we write o/ as we defined
it (6.3).

Qs (xyw(go U 1) 2

xfxpw(f)
By definition, o’ does not depend on g; so we may as well take the expectation
according to the uniform distribution over gy instead of g.

Byl (90) %] = Bl

H axf(x)w<90 U fl) |2]

Eg, (|0 (90) 7] = E
9 ! 9 axf(x)w(f)
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We have shown (Proposition 6.2) that the numerator is of the polynomial

form required to use Lemma 6.4. The denominator is a constant since we

fixed x, w and f. Each coefficient of o fx)w(go U f1) is divided by a con-

stant, which means that the form is preserved. So o, (go) is of the form
oUf1(x)-b(z

SCX, bz,:S'—ﬂm}* ﬁg7b ‘ :BI;[SW% e where ﬂéb - axf,(B:;lZu(f) and |S| S 4

We can rewrite this polynomial a bit since gy U fi(x) = fi(x) is constant

if x ¢ x. Each constant power of w can be moved to the coefficient which

leaves us with new coefficients ¢,. The products are over z € (S Nx) so we

can now combine the terms that multiply over the same intersection. This

results again in new coefficients Jgp,

Now by Lemma 6.4: E,[|o/(g0)|?] = > 8¢,|? where still |[S] < q.

SCx, b: x—[m]*

Because 3f, namely our fixed f, such that o/(f) = 1, by Lemma 6.3 we have

1
Z ’6%’:[)‘2 Z q
SCx, b: S—[m]* > (".‘I) (m—1)
0

(2

So

O

To prove Theorem 6.1, we use our definition of o’ in the inequality of Corol-
lary 6.5.

B, [| S/ Coulo0on) 12 1

s (f) B > (k) (m—1)i

The oracle function the adversary has access to is chosen uniformly at random
from Y, and the restriction of g to x is uniformly chosen from Y*. Therefore
we can replace the expectation by a summation and divide by the number

of functions |Y|*l = mk.
Qe (ulgoUf) 12) m'
> (|t
GoEY'* xf(x)w S ()(m — 1)
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The constant o fx)w(f) can be taken out of sum after the squared norm is
taken of the numerator and de denominator separately. If we then take the
denominator to the right hand side we get:

Z |axf(x)w(go U f1)|2 > ﬂ”f]k ) ’axfow(f”z
goEY® S (’f) (m — 1)

1=0

Up to this point we worked with fixed x, f and w. Now we sum over all
possible choices.

DD XD laxsuloo U f)PF = m quZx 2w lospou ()
e > ()m 1)

1=0

On the left-hand side we pull the sum over g outside the new sums, and we
split the sum over f into sums over fy and f;.

S Y Jonselan U A 3 T2t o e s
g0 f1 wx,f(x) Z (k)(m— 1)i

=0
The sum over w, x and f(x) of the squared amplitudes with a fixed oracle
function, is at most 1 since the amplitudes are in the final state of 49%/1.
The sum over all possible oracles go U f; is at most |V | = m".
On the right-hand side we replace the sum over f by the expectation over

the uniform distribution of f multiplied by the number of functions.

mF - m" - Ef[; % |Oéxf(x)w<f)|2]
> (5 (m — 1)

1=0

m" >

The expectation over f is exactly p, the success probability of the adversary
(6.2).
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This is equivalent to:

p< ii (k>(m— 1)
—mk —~\i
This finishes the proof for the special case in which the sequence x, consisting
of the input parts of the input-output pairs (generated by the adversary in
the game) is independent of the oracle. In other words, the case in which
the adversary decides in advance for which inputs she will give the function
values.

To cover the general case, we now assume that there exists an adversary A
violating Theorem 6.1, who outputs a sequence x that depends on the oracle
f. We use this adversary to construct a new algorithm B that successfully
outputs k > ¢ distinct pairs (z, f(z)) with the same probability as A but
with the difference that the sequence x is independent of the oracle. B picks
a random oracle O with the same domain X and range Y = [m] as f. It
simulates A giving it the oracle f + O defined by f + O(z) := f(x) + O(z)
mod m. A sees a random oracle and succeeds with probability greater than
the bound from Theorem 6.1. The sequence x of A’s output may depend on
f + O but is independent of f and O which are both independent of their
sum and not seen by A. B can translate the pairs given by A to input-output
pairs of the function f by subtracting O(x) from each y. The probability that
A’s pairs are distinct and correct is equal to the probability that B’s pairs are
distinct and correct. With a sequence x as output that is independent from
its oracle, B belongs to the case for which we proved Theorem 6.1. It follows
that the success probability of B is bounded by Theorem 6.1 and therefore
the same is true for A’s success probability. Our assumption is false and the
theorem holds in the general case. 0

6.3 Applications of Theorem 6.1

The bound in Theorem 6.1 is a complex term and it may be difficult to feel
what this bound tells us. Towards the application in the security game of a
message authentication code, we consider the case in which £ = ¢+ 1. We
then have a bound on the success probability of

mi—l-l i (qj 1) (m—1) = # <§ <q;r1) (m—1)' — (m — 1)q+1>

=0 i=0
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Using Newton’s binomial theorem we can replace the sum in this expression
by (1+ (m — 1)) = m?™!. The bound becomes the following:

1 (m — 1)+ 1
+1 +1y _ _ +1
qurl(mq —(m—l)q )_1_W_1_(1_E)q
By induction on ¢ + 1, (1 — L)a+ > 1 — 281 Base: (1 - 2)1 > 1 -1,
Induction step: assume (1—2)" > 1—2 then (1— )" > (1-2)(1-1) =
1-z-dim>1-s2

The bound of theorem 6.1 is thus at most %1.

An immediate consequence of Theorem 6.1 is the following: a quantum secure
pseudorandom function can serve as a MAC that is secure against superposi-
tion attacks. The existence of quantum pseudorandom functions, that means
PRFs that are indistinguishable from a random function by adversaries mak-
ing superposition queries, is proved by Zhandry [Zhal2].

Theorem 6.6 Let [ : K x X — Y be a quantum pseudorandom function.
If ﬁ is negligible in n then fi.(m) is a EUF-qCMA-secure MAC' as defined
i Section 5.2.

Proof Any adversary .4 making polynomially many queries (q) to the MAC
oracle can win the EUF-qCMA game only with probability  if the oracle
is a random function. This probability is negligible in the \ength of the
tags log(|Y|) and the length of the messages. fi is indistinguishable from
a random function so the difference between the success probability in the
game with the random function as MAC and that of the game with f; as
MAC is negligible. This means that A can only win the game in which the

MAC oracle is f; with negligible probability. O

Boneh and Zhandry [BZ13a] show that a modification of the Carter-Wegman
MAC is secure against superposition attacks. Next, they consider one-time
MACs and more general ¢-time MACs. They show that unlike classically,
a (g+1)-wise independent function is not enough to build a secure g-time
MAC, but a (¢ 4 2¢)-wise independent function does ensure security.

In their most recent paper [BZ13b] they go further with giving a con-
struction to turn any classically secure MAC into a quantum secure one by
combining it with a chameleon hash function. They also use a generalization
of Theorem 6.1 to prove that the GPV signature scheme built from pre-image
sampleable functions and PRFs is quantum secure.
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7 Conclusion and Further Re-
search

Not all traditional security definitions have a trivial counterpart in the quan-
tum world. It is therefore interesting and insightful to study several options
for modelling reality. It is not always needed nor practical to obtain the most
conservative security notion covering the broadest class of attacks, but it is
important to know whether reasonable-looking definitions are feasible at all.

Comparing the new definition we proposed in this thesis (Definition 5.3)
to other options is interesting for further research. It is not unlikely that
our definition can be proved equivalent to the definition Boneh and Zhandry
suggest. Another question is how the real world relates to these definitions.
The current state of the development of physical quantum computers can be
used to make more specific assumptions concerning quantum adversaries.

Our alternative proof of Boneh and Zhandry’s theorem [BZ13a] helps in
understanding the (limitations on) advantages an adversary has from getting
information in superposition. The new proof exposes a relation between
research questions in post-quantum cryptography and existing results from
the field of quantum computing. Specifically, we generalized and followed
the lines of the proof by Farhi et al. [FGGS99] of the theorem that states the
following: any adversary making ¢ quantum queries to an oracle holding one
of a set of Boolean functions cannot identify the function with probability
at least p if the set is of size > %[1 +M)+G)+--+ (Z)], where n is the
size of the domain of the functions. In our case, the oracle may hold any
function (not only Boolean) and the goal of the adversary is not necessarily
to know exactly which function it is, but to output k input-output pairs. In
any non-trivial case we require k > q.

The quantum-secure MACs we discussed in Chapter 6 are an applica-
tions of quantum pseudorandom functions, as defined and constructed by
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Zhandry [Zhal2]. Another application could be constructing quantum pseu-
dorandom permutations. Classical pseudorandom permutations can be built
from pseudorandom functions using for example a Feistel network. These
techniques are widely used as block ciphers such as DES. Whether the classi-
cal Luby-Rackoff construction [LR88] can be shown secure against quantum
attacks is an interesting open question. Naor and Reingold [NR99] gave a
clear proof of the correctness of the classical construction, which can be a
starting point for further research on quantum-secure cryptography.

With still some time before our real adversaries build or buy powerful
quantum computers, we already have various results that contribute to the
confidence in classical cryptography in a quantum world. The new paradigm
in which there is quantum communication between the honest parties and the
adversary has created new research questions. The quantum-secure MACs
we discussed is an example, and there are other related questions to study.
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