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Abstract

We introduce a framework designed to mathematically study and model the
‘evolvability’ of entities. Our use of ‘evolvability’ is different than the one
found in the context of biology. We roughly understand an entity as being
‘evolvable’ if, with non-negligible probability, it can arise as the result of an
evolutionary process. However, this is not a formal definition. An essential
part of our work is to examine how one may arrive at a formal definition for
evolvability. The exact definition will depend on one’s application of interest.
With such a definition in hand one may approach questions like “is there a
mechanism that can make such-and-such entities co-evolve under such-and-
such initial conditions, with non-negligible probability, in a non-astronomical
amount of time?” Ultimately, we are interested in assessing the power of a
given evolutionary process in terms of the evolutionary products it can give
rise to, the conditions and resources necessary for this to happen, and the
respective probabilities of those events.
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Chapter 1

Introduction

Nowadays, it is widely accepted that life has evolved through the years.
According to neo-Darwinian evolution, starting with simple forms, adapta-
tional forces have managed to create increasingly complex organisms. The
term ‘evolution’ is quite an abstract notion; it signifies some kind of change
of some population along time. Hence, for example, it does not necessar-
ily entail natural selection, which is an integral part of neo-Darwinism. In
this text, however, we will be interested only in evolution in line with neo-
Darwinism, encompassing the idea of mutation and natural selection, and we
will mean the latter when we say ‘evolution’.

In this work we are interested in the complexity of evolutionary innova-
tions. For example, how complex is it for a mammal to appear as a result
of a certain evolutionary process? Under what kind of initial conditions?
Questions such as these serve as motivation and lead our models. However,
they may be overwhelmingly intricate to tackle. What are the defining char-
acteristics of a mammal? How can we represent those in a mathematical
framework? How can we represent environmental conditions on earth? Can
we find a set of such conditions to which we may restrict our attention and
expect to get satisfactorily accurate results? The latter questions reside well
in the realm of biology.

In this work we abstract away from these details and focus on an abstract
process of evolution. We form a Meta-Model which allows for evolution to
be studied through different levels of abstraction, depending on the setting.
The user of the framework is given the opportunity to define things such
as the details of the environment, the evolutionary process, the entities in
question, etc.

Note that given the nature of this work we are bound to use some biology
jargon early on. As such, the reader may want to jump to Section 2.1, for a
clarification of the respective terms, before continuing with this introduction,
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or she may just go back and forth whenever she comes across an unknown
term.

There has been prior work on the issue of the complexity of evolutionary
innovations. Leslie Valiant [Val09], through the perspective of computational
learning theory, introduced a framework mostly concerned with classifying
the complexity of evolutionary innovations, e.g., certain complex organisms.
Complexity in Valiant’s framework is captured by the notion of evolvability,
where the latter is roughly understood as the possibility/probability of a
certain innovation being the result of an evolutionary process that has started
from some random initial state.1

Our approach is similar, in the sense that we are interested in the notion
of evolvability. In fact, Valiant’s work has been our starting point, but we
will deviate from it substantially. Our main concern in this work has been
to avoid any unnecessary assumptions in order to stay as close as possible to
the essentials of the evolutionary process.

Ultimately, we expect the modelling and subsequent understanding of
evolvability to give insight into questions in biology and possibly into philo-
sophical questions2 that have to do with evolution.

The following section sketches our approach.

1.1 The Plan

In this work we try to understand the complexity of macroscopic evolutionary
innovation. Let us try to clarify this statement. Firstly, what is ‘macroscopic
evolutionary innovation’? It is innovation, e.g., the emergence of a certain
organism or character, that is the result of an evolutionary process that has
been executed for a long period of time.3

In the setting of computational complexity we are interested in how ‘com-
plex’ it is for certain problems to be solved through a computational process.
In analogy with that, in this work we are interested in how ‘complex’ it is
for certain innovations to happen as the result of an evolutionary process.

1Note that the term ‘evolvability’ is used with different meaning in the context of
biology. More on that in Chapter 2.

2For example, arguments about evolvability, understood as above, have been used to
criticize the trust of biology in neo-Darwinism. Assessing such arguments partly motivates
our work, even though in Appendix A.2.2 we argue that such claims tend to be doomed
from the beginning because of the need and the difficulty to define the assumed initial
conditions of the evolutionary system under question.

3For more details, the reader is referred again to Section 2.1 where those notions are
defined.

2



We capture the notion of complexity with the notion of evolvability. In a
more technical sense, we understand an innovation to be evolvable if it can
arise as the result of an evolutionary process. Depending on the application
we may restrict the evolutionary process in various ways. For example, we
may restrict the possible mutation mechanisms, or require the evolutionary
process to be in some sense efficient. One of the main aspects of the process
that we may want to bound through the notion of efficiency is time, which
can be thought of roughly as number of generations. In this setting, if it
takes too long for a certain innovation to arise then we may want to deem it
non-evolvable.

1.2 Into Perspective

There are probably many ways in which we can relate our work to existing
research. In this section we will point out a few of those.

Mathematical work on evolution has assumed (at least) two different,
and to a certain extent complementary in nature, trends. One [GS07, Gas07]
that is focused on the evolution of actual entities that have existed on earth,
their history and patterns, and a less empirical one [Kau93, Goo01, TH12,
LOPA03] that is mainly concerned with how order arises as the result of
limited interactions between the basic elements of life. Our work is closer to
the latter trend.

Our framework is flexible enough so that we can speak about the prop-
erties of evolutionary systems in general, that is, not only about biological
evolutionary systems. Similarly, Adami et al. [LOPA03], for example, con-
sider the evolutionary origin of complexity in a setting where the entities
of interest are computer programs. Fontana and his colleagues work on an
abstract level too. In their work at the Fontana Laboratory [Fon13] they de-
fine a formal language for representing biochemical and biophysical aspects
of interaction, which they use to analyze the effects of adaptational forces.

We understand evolvability as a certain kind of complexity. In biology
there is a lot of research that considers the evolution of complexity. Kauff-
man [Kau93], for example, has taken a dynamical-systems approach in order
to analyze the dynamics of evolution by focusing on the implications of the
adaptational forces. McShea [McS96] considers four different definitions of
complexity and how this complexity can be observed on specific cases of
evolution on earth.
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1.3 Overview

In Chapter 2 we give a first taste and somewhat clarify many of the basic
notions and issues that will concern us in this text. In Chapter 3 we define
and analyze Valiant’s framework. In Chapter 4 we proceed to point out
various shortcomings of this framework. In Chapter 5 we introduce our
own framework, and in Chapter 6 we demonstrate how one may restrict our
framework so as to explore certain specific applications. In Chapter 7 we
introduce various problems and use our framework to formalize and analyze
them. Chapter 8 concludes the text. Lastly, Appendix A contains various
details and issues complementary to the main body of the text.

If the reader is mainly interested in our framework and not in connections
with that of Valiant’s, she may skip Chapters 3 and 4. Though, reading those
chapters is sure to help one better understand our framework and we would
advise at least a quick reading of the introduction of Chapter 3, Section 3.1,
and Chapter 4.
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Chapter 2

Preliminaries

In this work our focus will be on an abstract process of evolution that is driven
mainly through mutation and natural selection. However, the knowledge of
this process still comes from the understanding of how this process took place
on earth and we should expect that the notion of evolution can become clear
only in analogy to its manifestation on earth.

2.1 Concepts in Evolutionary Theory

In this section we give the definitions of various terms that we use throughout
the text. Some of the definitions are the standard ones while others, such as
that of natural selection and evolvability, are somewhat more particular to
our purposes here. Be sure to read the remarks in the end of this section.

Evolution, or evolutionary process, is a process that drives the change of
biological populations through time.

Evolutionary innovation commonly refers to some change that is the re-
sult of an evolutionary process. In general, we use the term to denote a
large-scale change, in analogy to macro-evolution—defined later in this sec-
tion. We may also use the term innovation just by itself wherever there is
uncertainty whether the corresponding change can be the result of an evolu-
tionary process.

The genotype of an organism corresponds to the hereditary information of
the organism, i.e., its genetic makeup. The genotype should be distinguished
from the phenotype it produces. An organism’s phenotype is its observable
body and behavior. The phenotype of an organism is determined to a large
extent from its genotype. However, knowing the phenotype of an organism
does not necessarily allow us to directly derive its genotype.

In biological classification, organisms are categorized into groups such as
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kingdom, genus, and species. These groups, known as taxa, form an hierarchy,
where, e.g., the organisms of many different species may be members of the
same genus. The hierarchy is known as the taxonomic hierarchy and has its
roots in the work of Carolus Linnaeus.

Natural selection is a principle that automatically occurs given the occur-
rence of certain conditions. Specifically, “if variation exists for some trait,
and a fitness difference is correlated with that trait, and the trait is to some
degree heritable (determined by genetics), then the trait distribution will
change [towards the variations of the trait that result in fitter individuals]
over the life history of organisms in a single generation, and between gener-
ations.” [Car10] The process of change is called adaptation.

Assuming that the more fit an organism is, the more likely it is to re-
produce, then natural selection seems somewhat like a tautological principle,
since it roughly says that the fitter an organism is, i.e., the more likely to re-
produce, the better its chances are to pass its genes to the next generations.
All in all, when natural selection is present in a process then adaptation
occurs in such a way that fitness increases in the long run.

Microevolution refers to “changes in gene frequencies within populations,
under the influence of natural selection and random drift” [Rid04]. It is
evolution in the small scale. Macroevolution, on the other hand, is evolution
on the large scale. It refers to “the origin of higher taxa, such as the evolution
of mammal-like reptiles into mammals, fish into tetrapods, and green algae
into vascular plants. It also refers to long-term evolutionary trends, and to
diversification, extinction, and replacements of higher taxa.” [Rid04]

Neo-Darwinism stands for Darwinian evolution through natural selection
coupled with Mendelian genetics. That is, it corresponds to the idea that
the dynamics of evolution are characterized by natural selection, and that
evolution works by changing the genetic makeup of organisms along repro-
duction. Specifically, in the context of biology, it is accepted as the essential
mechanism that drives (micro)evolution.

In biology, evolvability refers to how probable or easy it is for a certain
organism to evolve into some new kind of organism. However, in this work
we define the term quite differently. In this text, evolvability refers to how
probable or easy it is for a certain organism to evolve from certain initial
conditions.1 In the early parts of the text we will mostly use the term in

1The choice to have this clash of terminology here may be somewhat surprising, but
the thing is that the term is very fitting for both notions used (both for ours and Valiant’s,
and for the standard one in biology). The issue is the particular nature of the notion ‘to
evolve’. Let us first focus on two other notions, on ‘to change’ and ‘to be created’. A
certain thing that does not exist may not change, while it is for a thing that does not exist
that we care whether it can be created. On the other hand, when it comes to our notion
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connection to the informal definition and we will allow the context to clarify
those occasions where a technical one is used.

Lastly, we will use the term evolutionary system—or sometimes just sys-
tem—to refer to the collection, at some point in time, of all those elements
that are part of or affect the evolutionary process, and are of interest to us.
Its technical sense will be context-dependent, and it will be determined by
the model in question. For example, the system at some time t may refer
to some environment at time t, the organisms in that environment, and the
properties of the accompanying evolutionary process.

Remark 2.1.1. Our understanding of natural selection may be slightly dif-
ferent than the technical understanding of it in the context of biology. We
understand natural selection as a mechanism which spans the whole taxo-
nomic hierarchy of organisms, and does not reside on the lowest level alone,
i.e., that of the species. As such, in the context of our work, natural selection
is a mechanism that also underlies the interspecies dynamics of evolution,
e.g., in our understanding of natural selection, it is the latter that is at work
when gazelles and crocodiles clash as a result of both needing access to the
same water supply.

You may notice, later on, that this abstraction we make is so natural
that it is hardly noticeable if not made explicit, especially for non-biologists
whose understanding of natural selection tends to be a direct extrapolation
from the fact that competition manifests itself between the members of any
group of living organisms who strive for the same resources.2

The most widely accepted model for macroevolution in biology, and the
only one that can be illustrated with detailed fossil evidence, is the extrap-
olative model which suggests that “macroevolution proceeds by the same
process [as microevolution], that of natural selection and adaptive improve-
ment, as has been observed within species and at speciation; but the process
is operating over a much longer period” [Rid04, p. 586].

The details of this process are not yet fully understood. However, these
details will not affect our work here. Our understanding of natural selection
will be in line with the extrapolative model and possibly will give the freedom
for our framework to encapsulate even more intricate theories (if anyone ever
wants to consider such a thing).

of interest, a certain thing that does exist may have the ability to evolve (in analogy with
‘to change’), but also a certain thing that does not exist may have the ability to evolve
(in analogy with ‘to be created’). This may clarify a bit why the same term may be so
fitting for two different notions.

2More information on interspecies competition may be found in [Con83].
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2.2 Life, Environment, and Evolutionary Mech-

anism

We start here by formalizing a few ideas that rely on very basic assumptions
that are hardly questioned in the context of biology. This will serve as a
starting point for our framework in Section 5, it will allow us to better un-
derstand Valiant’s model, and it will also allow us to compare our framework
to that of Valiant’s.

Understanding an evolutionary system as an ever-changing system of in-
terrelated components, we differentiate between those components whose
evolution we are interested in (we save the symbol L for those; ‘L’ for ‘life’),
those components that correspond to the particulars of the evolutionary pro-
cess (we save the symbol M for those; ‘M’ for (evolutionary) ‘mechanism’),
and the rest of the components (we save the symbol E for those; ‘E’ for ‘en-
vironment’). For example, in the context of life on earth, L may correspond
to all living organisms, E to the physical laws, the state of the earth in terms
of its geology and atmosphere, etc., and M to an evolutionary mechanism in
accordance with neo-Darwinism.

More precisely, we use L, M , and E to denote representations of the
respective components. We also use S = (L,E,M) to denote a state of the
system at a given point in time. For example, in a formal framework, L could
denote a set of organisms represented by their DNA sequence, and M could
denote an evolutionary algorithm.

Moreover, we talk of the classes L, E , andM that contain all the possible
L’s, E’s, and M ’s, respectively. For example, say that any specific L has the
form of a set of entities, where an entity is represented by a binary string of
length n, and as such, L ⊆ P({0, 1}n), where for some set X, P(X) denotes
the power set of X, i.e., the set of all subsets of X. Then if we allow for any
such string to code for an entity, L will be equal to P(P({0, 1}n)).

Lastly, note that in general the state S = (L,E,M) of a system is dy-
namic, that is, it changes over time. In principle all of L, M , and E, may
be dynamic. However, in a formal framework it is only L that must be
dynamic—since we are interested in the evolution of the respective entities,
while E and M may be static. For example, in analogy with evolution on
earth it makes sense to consider M to be static.3

3For further discussion on this latter assumption the reader is referred to Ap-
pendix A.2.1.
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Chapter 3

Valiant’s Framework of
Evolvability

Valiant [Val09] suggests that evolution ultimately is a constrained form of
learning. He tries to encapsulate the process of evolution in a setting similar
to that of computational learning, and, specifically, in the framework of PAC
learning [Val84].1 The main notion discussed in PAC learning is that of
learnability. According to the theory, some specific concept is learnable if
there exists an algorithm that a computer can use so that it learns to (as in,
reach a state where it is able to) differentiate between whether some arbitrary
example is in line with the concept in question or not.

Similar to the above, in Valiant’s evolvability framework an entity is evolv-
able if there exists an algorithm that, starting from any entity, will converge
to the entity in question; with the only catch that the algorithm must be
efficient and should work with good probability (similar to the PAC learn-
ing framework2 [KV94] in computational learning, defined in the following
section).

The evolutionary process is modelled as a process in which, at each step,
the current entity is replaced by a fitter entity—or sometimes by one of
similar fitness, the latter being selected from a small pool of mutations of
the former. The fitness of an entity is determined relative to some target
entity. The target entity serves to lead the evolutionary process towards
some “ideal” entity, with some kind of “ideal” behavior.

As such, the starting point in the process is the consideration of a certain
ideal function that will lead the evolutionary process. Precisely speaking,

1The PAC learning framework was proposed in 1984 by Valiant himself, and it is one
of the reasons why he was awarded the Turing Award in 2010.

2PAC stands for probably approximately correct. The corresponding framework allows
for the use of algorithms that can learn a concept approximately with good probability.
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we start by considering a class of ideal functions, the functions therein are
independently considered as targets for independent runs of the evolution-
ary process. This point will be made clear when we reach the definition of
evolvability (Definition 3.1.5).

3.1 Formal Definition

In this section we formally define the framework. We precede the definition
of evolvability with that of PAC learning. This will help see how Valiant’s
framework of evolvability is inspired by (his own) PAC learning framework.
The exposition below follows [FV08] closely.

3.1.1 Preliminaries

Let X = ∪n≥1Xn be the situation space, where Xn = {0, 1}n, corresponding
to the set of possible situations an entity might find itself in. Entities are
modelled using functions from Xn to {+1,−1}, for some n, where {+1,−1}
is the set of possible ways an entity may respond to a given situation; in
other words, what is modelled is the behavior of an entity.

Let Dn be a distribution over Xn that defines the probabilities of the
various possible situations x ∈ Xn. Let D = ∪n≥1Dn be an ensemble of
distributions.

A concept/entity class3 C over X is a set of {+1,−1}-valued functions
over X.4 We have that C = ∪n≥1Cn where Cn is the restriction of C to the
concepts/entities over Xn.

Lastly, we need a way to represent concepts/entities in our formal system.
For this reason we use the representation class R that contains the represen-
tations of all possible entities that we wish to consider in our system. For
example, while C may correspond to some phenotypic characteristic of the
entities, R may correspond to their DNA.

3.1.2 PAC Learning

Valiant introduced the PAC (Probably Approximately Correct) learning model
in [Val84]. Let C be a concept class over X. Let D be some unknown dis-
tribution over X. The objective is to find an algorithm A that can learn C

3In the context of learning we are interested in concepts to be learned, while in the
context of evolvability we are interested in entities to evolve.

4This definition of an entity class is adequate for the needs in Valiant’s framework of
evolvability. However, in our own framework later we do not restrict the form of an entity
class.
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under any D, that is, for every concept f ∈ C, and every distribution D, A
can, with good probability, learn f approximately.

The only access that A has to f is through an example oracle that returns
tuples of the form 〈x, f(x)〉 with x randomly chosen according to D. In other
words, the said tuples are random examples together with the value of f on
those examples.

Let R be the hypothesis space, i.e., a class of representations of concepts,
that A is using. What A does is use hypotheses r ∈ R in order approximate
f . As such, the objective is to find a good r ∈ R that has approximately the
same behavior as f .

Definition 3.1.1. An algorithm A is said to PAC learn C in time t if for
every n, ε ∈ (0, 1), δ ∈ (0, 1), f ∈ Cn, and distribution Dn over Xn, A given
ε, δ, and access to the example oracle, outputs in time t with probability at
least 1− δ, a hypothesis r such that PrD[f(x) 6= r(x)] ≤ ε.

The learning is called efficient if t is upper bounded by some polynomial
p(n, 1/ε, 1/δ). We say C is learnable if there exists an algorithm A that can
PAC learn C.5

3.1.3 Evolvability

Let C be an entity class. We understand C as the class of ideal func-
tions/entities, i.e., the functions that will be used as targets for the evolu-
tionary process.6 Let R = ∪n≥1Rn be a class of representations of functions,
where Rn is the restriction of R to functions of n variables. We assume func-
tions and representations are polynomially evaluable, i.e., f ∈ C and r ∈ R
can be efficiently computed for every x ∈ X.

Similarly to the setting of PAC learning, on each run of an algorithm A
in the current setting, A tries to converge to some specific function in C.
In analogy with evolution, the idea here is that A is run with some specific
f ∈ C as the ideal function, i.e., the ideal entity towards which all evolution
drifts. Having specified that f is the ideal function, we understand that f
gives the “best” possible response for each situation x ∈ X. Subsequently,
the closer to f the behavior of a representation (of a function) r ∈ R is, the
better the performance of r.7

5In this text when we say ‘learnable’ we mean ‘PAC learnable’.
6For each run of the evolutionary process, we will assume that there exists only one

such ideal behavior at any point in time, and, as such, we will not require convergence to
more than one ideal function at the same time. Every time the algorithm runs, it tries to
converge towards some specific ideal function.

7Clearly, the performance we are talking about is relative to f , and it may look strange
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The idea here is that the algorithm starts from some random representa-
tion r0 which “mutates” to some representation r1 and so on. At each point
in the algorithm we only remember the last representation. If the latter is
close in performance to f , the algorithm stops.

Definition 3.1.2. We define the performance of a representation r relative
to some ideal function f over D to be the correlation of r with f taken over
all x ∈ X weighted according to D. Precisely speaking, we have

Perff (r,D) = Ex∈D[r(x) · f(x)],

where Ey∈P [φ(y)] is the expected value of φ(y) for y chosen according to
probability distribution P , and · denotes multiplication.

Moreover, we define the empirical performance Perff (r,D, s) which is
computed using, instead of all vectors in X, just s random samples from X.8

Precisely speaking, we have the following random variable

Perff (r,D, s) =
1

s

∑
i≤s

r(zi) · f(zi),

where z1, z2, . . . , zs ∈ X are random variables chosen randomly and indepen-
dently according to D.

As we already mentioned, we want our algorithm to converge to f . Specif-
ically, we want an algorithm that with probability 1 − δ will reach some
representation r such that Perff (r,D) ≥ 1− ε for some small ε > 0.

We define now a quadruple that holds a vector of parameters for the
mutator function Mu (to be defined).

Definition 3.1.3. Let P = (R,Neigh, µ, t) be a parameter vector 9 where

• R is the set of representations of functions over X that the algorithm
may use,

to talk about it as if it was absolute performance and still have a whole set, C, of ideal
functions. This is a remnant from the setting of computational learning, and later on we
will see how the notion of the ideal function is somewhat unnatural for the modelling of
evolution.

8Perff (r,D) depends on all the situations x ∈ X, which are 2n in number. However,
Perff (r,D, s) depends only on s, in number, of the situations in X, and hence will be
efficiently computable if s is polynomially bounded.

9The term ‘evolutionary algorithm’ is used in [FV08] instead of ‘parameter vector’, but
we opt for the latter because what is called an ‘evolutionary algorithm’ in [FV08] is just
a set of parameters for the evolutionary algorithm and not a complete characterization of
the algorithm.
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• Neigh is a function such that for r ∈ Rn, ε ∈ (0, 1), and δ ∈ (0, 1),
Neigh(r, ε, δ) is the neighborhood of r, i.e., the set of representations
into which r may “mutate”. It holds that r ∈ Neigh(r, ε, δ) and
|Neigh(r, ε, δ)| ≤ pP (n, 1/ε, 1/δ) for a fixed polynomial pP ,

• µ is the function such that for r ∈ Rn and r1 ∈ Neigh(r, ε, δ), µ(r, r1, ε, δ)
is the probability that r “mutates” into r1,

• t(r, ε, δ) is the tolerance at r ∈ Rn, that is, the minimum increase in
performance that a “mutation” has to attain in order to be considered
beneficial. The tolerance is bounded from above and below by a pair of
polynomially-related polynomials in the following sense. There exist a
polynomial tuN(1/n, ε, δ) and a constant η ≥ 1 such that for all r ∈ Rn

and ε > 0, tuN(1/n, ε, δ) ≥ t(r, ε, δ) ≥ tuηN(1/n, ε, δ).

Functions Neigh, µ, and t need to be computable by a randomized algorithm
in time polynomial in n and 1/ε.

Let us see now how “mutation”—corresponding to one step in the evolu-
tionary process—works.

Definition 3.1.4. For a function f , distribution D, parameter vector P =
(R,Neigh, µ, t), a representation r ∈ R, accuracy ε, probability of failure
δ, and sample size s, the mutator Mu(f,D,m, r, ε, δ, s) is a random variable
that takes value r1 as follows. First the mutator computes an empirical value
of v(r′) = Perff (r

′, D, s) for each r′ ∈ Neigh(r, ε, δ).10 Let

Bene = {r′ | v(r′) ≥ v(r) + t(r, ε, δ)}

and
Neut = {r′ | |v(r′)− v(r)| < t(r, ε, δ)}.

Then, in case that Bene is not empty, output some r1 ∈ Bene with probability
µ(r, r1, ε, δ)/

∑
r′∈Bene µ(r, r′, ε, δ). Otherwise, i.e., Bene = ∅, output r1 ∈

Neut with probability µ(r, r1, ε, δ)/
∑

r′∈Neut µ(r, r′, ε, δ).

In other words, the mutator starts by categorizing the representations in
Neigh, which comprise the possible mutations, between beneficial and neutral
mutations, or nothing of the two. It does this in terms of the performance of
those possible mutations, determined through the use of a sample, of X, of
size s. If there is at least one possible beneficial mutation, it selects between

10Note that Perff (r,D, s) only takes as an argument the size of the sample, and not the
actual sample. As such, the samples z1, z2, . . . , zs ∈ X are chosen independently for the
various r.
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all the possible beneficial ones according to µ. Otherwise, it uses µ to decide
among the mutations in Neut.11 This process gives rise to a sequence of
representations r0, r1, r2, . . . such that ri = Mu(f,D, P, ri−1, ε, δ, s).

We are ready now to define the evolvability of a class of functions.

Definition 3.1.5. Let C be a class of functions, D a distribution over X, and
P = (R,Neigh, µ, t) a parameter vector. We say that C is evolvable by P over
D if there exist polynomials s(n, 1/ε, 1/δ) and g(n, 1/ε, 1/δ) such that for ev-
ery n, f ∈ Cn, ε ∈ (0, 1), δ ∈ (0, 1), and r0 ∈ Rn, with probability at least 1−
δ, the sequence r0, r1, r2, . . ., where ri = Mu(f,D, P, ri−1, ε, δ, s(n, 1/ε, 1/δ)),
will have Perff (rg(n,1/ε,1/δ), D) > 1− ε.

The polynomial g(n, 1/ε, 1/δ) is used to bound the number of generations
needed for the evolution of f . Note that in the above definition evolvability
is distribution-dependent. The respective distribution-independent definition
follows.

Definition 3.1.6. A class of functions C is evolvable if there exists a pa-
rameter vector P such that for all distributions D, C is evolvable by P over
D (using the same polynomials s and g).

Remark 3.1.1. Let us take a moment to note the parameters to the evo-
lutionary algorithm/process that we defined above and that are implicit in
the definition of evolvability. First, there are the “global” parameters X and
D (understood as the environment where the entities reside), and P (un-
derstood as the characterization of the evolutionary mechanism). There is
the “local” parameter f , which is the ideal function, and lastly, there is the
characterization of the initial state of the system, which amounts to r0, the
initial representation.

Lastly, let us give one more definition that will allow us later to handle
some notions with more ease.

Definition 3.1.7. A concept class C is evolvable by a representation class
R over distribution D if C is evolvable over D using R as a representation
class.

Remark 3.1.2. Evolvability ‘by R over D’ is a notion in between evolvability
as defined in Definition 3.1.6 and Definition 3.1.5. It is similar to evolvability
‘by a parameter vector P = (R,Neigh, µ, t) over D’, only that instead of
fixing the whole parameter vector P , we fix only its first element R.

11Note that there is always at least one representation in Neut, namely the current
representation r.
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Another way to look at it is as follows. Evolvability ‘by R’ demands C
to be evolvable using R specifically, while evolvability as in Definition 3.1.6
only requires the existence of such an R under which C is evolvable.

3.2 Some Results

In this section we give some results concerning Valiant’s framework.

3.2.1 Evolvability Versus Learnability

Here we will present some results on the relative power of the two frameworks,
that of evolvability and that of learnability.

If a class is evolvable it is also learnable. The definition of evolvability
is closely related to that of learnability [KV94]. However, it comes with the
following restrictions. Each step of learning chooses from a hypotheses set
of polynomial size, tolerates at most a small decrease in performance, and
the next hypothesis is chosen on the basis of its average performance on
example situations, and not according to their exact behavior on the example
situations.

In fact, every evolutionary algorithm in Valiant’s framework can be sim-
ulated by a PAC learning algorithm. Specifically, the following holds.

Proposition 3.2.1. Let C be a concept class, R a representation class, and
D a distribution over the situation space X. If C is evolvable by R over D
then C is learnable by R over D. Moreover, if C is evolvable by R then C is
learnable by R.

In light of Remark 3.1.2 we get the following corollary of Proposition 3.2.1.

Corollary 3.2.1. If C is evolvable then C is learnable.

The main idea in the proof of Proposition 3.2.1 is that the evolutionary
algorithm can be simulated in the PAC learning framework. At each step
of the process, the algorithm takes a sample of s(n, 1/ε, 1/δ) examples from
X according to D, computes the empirical performance for the current hy-
pothesis, forms the neighborhood of the latter, and from that neighborhood
it chooses the next hypothesis. All those steps are easily implemented in the
PAC framework.
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Evolvability is equivalent to CSQ-learnability. Valiant [Val09] proved
that if a class is evolvable it is also SQ learnable, i.e., learnable in the sta-
tistical queries (SQ) framework [Kea98].12 Feldman [Fel09] took this result
further and proved that evolvability is equivalent to a natural restriction of
statistical queries, referred to as correlational statistical queries (CSQ). In
other words, the following holds.

Proposition 3.2.2. C is evolvable iff C is learnable by CSQs.

This latter result is not difficult to see. A CSQ allows a learning algo-
rithm to obtain an estimate of the correlation between the current hypoth-
esis/representation and the target/ideal function. But this is exactly the
performance metric used in Valiant’s framework of evolvability as seen in
Definition 3.1.2.

Evolvability is strictly weaker than learnability. Kearns [Kea98] has
found a class that is PAC learnable but not SQ learnable. This, together
with Proposition 3.2.2 and the fact that CSQs are weaker than SQs, gives us
that evolvability is strictly weaker than learnability.

Lastly, note that since the evolutionary process in the framework is a
constrained form of PAC learning, it is more difficult to design algorithms
that give rise to the evolution of a certain function than designing PAC
learning algorithms to learn that function.

3.2.2 Examples of Evolvable Structures

Here we see a few examples of evolvable structures under Valiant’s frame-
work. Firstly, let us consider conjunctions and disjunctions on n variables
x1, . . . , xn. A conjunction or disjunction is monotone if it contains no negated
literals. Valiant [Val09] proved the following.

Proposition 3.2.3. Monotone conjunctions and disjunctions are evolvable
over the uniform distribution by their natural representations (as lists of
literals).13

This result can be strengthened if initialization is allowed. Valiant de-
fines evolvability with initialization similar to evolvability in Definition 3.1.5,
but instead of requiring convergence from any starting point r0 ∈ R, we re-
quire only that there exists some specific starting point r0 such that we have
convergence for all targets f ∈ C. Valiant proved that

12SQ and CSQ are defined in Appendix A.1.
13Note that, in line with Remark 3.1.2, this result is stronger than saying that “monotone

conjunctions and disjunctions are evolvable over the uniform distribution”.
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Proposition 3.2.4. Conjunctions and disjunctions are evolvable with ini-
tialization over the uniform distribution.

Moreover, Feldman [Fel08], based on the equivalence of evolvability with
CSQs, proved that

Proposition 3.2.5. For any fixed distribution D, if a class of functions is
learnable by SQs over D then it is also evolvable over D.

Lastly, Michael in [Mic07] gave an algorithm for evolving decision lists
using a different fitness/performance metric over hypotheses.

3.3 Robustness of the Model

Feldman [Fel09] examined the robustness of Valiant’s model, by comparing
some variants of it in order to find which modelling choices affect the power
of the model. The two most important parameters were the performance
metric and the selection procedure. In this section we sketch some of his
results.

3.3.1 Performance Metrics

In learning theory, a loss function is usually used as a measure of the distance
between a hypothesis and an ideal concept. For functions with range Y , a
loss function L is a non-negative mapping L : Y × Y → R+.

For a certain loss function L, the L-SQ model, defined by Feldman [Fel09],
is roughly a statistical query model that can only find the L-distance between
a hypothesis and an ideal function; in contrast to the SQ model that can use
any loss function.14

Previously, we saw that evolvability is equivalent to learning by CSQs.
Feldman proved that this equivalence can be extended as follows.

Proposition 3.3.1. For any admissible loss function L, evolvability using L
as its performance metric is equivalent to learning by L-SQs.

Moreover, Feldman demonstrated that the power of the model is greatly
affected by the performance metric used. We say that a loss function is
quasi-linear if for every y ∈ [−1, 1] it holds L(1, y) + L(−1, y) = L(−1, 1).
Feldman proved the following.

Proposition 3.3.2. For L quasi-linear, L-SQ learnability is equivalent to
CSQ learnability, while for L not quasi-linear, L-SQ learnability is equivalent
to SQ learnability.

14More information on L-SQs can be found in Sections A.1 and A.1.1.
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3.3.2 Selection Rules

At each stage of the process a selection rule is used to select the next hy-
pothesis/representation. Consider the following two selection rules:

(i) the selection rule used in Valiant’s model, i.e., form the Bene and Neut
sets and select a mutation—randomly according to µ—from Bene if not
empty, otherwise select from Neut.

(ii) a selection rule which instead of aiming to select some mutation from
Bene, which contains all “beneficial” mutations, tries to select one of
the mutations that are close to optimal among the pool of mutations
available. Specifically, let Opt be the set {r′ ∈ Neigh(r, ε, δ) | v(r′) ≥
p∗−t(r, ε, δ)}, where p∗ = maxr′∈Neigh(r,ε,δ)

⋃
{r}{v(r′)} and Neigh, v, and

t are as in Definition 3.1.4. The algorithm selects the mutation from
Opt randomly according to µ.

Feldman [Fel09] proved that the power of the model is not affected by
which of the two selection rules is used.

3.4 On the Structure of the Definition of Evolv-

ability

In this section we discuss Valiant’s definition of evolvability in terms of the
components that we are mainly interested in (‘life’, ‘evolutionary mechanism’,
‘environment’), as they were outlined in Section 2.2. This will allow to better
understand how the current framework models evolution, and how it relates
to our framework.

Recall that the three important components in Section 2.2 were the char-
acterizations/representations of the entities (corresponding to L), the envi-
ronment (corresponding to E), and the evolutionary algorithm (correspond-
ing to M). Here we assign to L, E , and M concrete roles in Valiant’s
framework. We identify L with the class of representations R, that is, L
contains all the possible representations of entities r. We identify E with
the set of all possible distributions D, where a distribution is interpreted as
an environment. Lastly, we identify M with the set of all possible param-
eter vectors P , where a parameter vector is interpreted as an evolutionary
algorithm.

Given that X is the set of all possible situations into which an entity may
find itself, in Valiant’s framework we understand the environment as the dis-
tribution D on X; that is the reason why we use E as mentioned. Moreover, a
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parameter vector P completely determines the evolutionary algorithm; that
is why we use M as mentioned.

From Definitions 3.1.5 and 3.1.6, we have the following for any concept
class C:

C is evolvable ⇔
∃P ∈M,∀D ∈ E ,∃ polynomials s(n, 1/ε, 1/δ), g(n, 1/ε, 1/δ),

∀n,∀f ∈ Cn,∀r0 ∈ L
s.t. ∀ε,∀δ, with probability at least 1− δ, the sequence r0, r1, . . .,

where ri = Mu(f,D, P, ri−1, ε, δ, s(n, 1/ε, 1/δ)),

will have Perff (rg(n,1/ε,1/δ), D) > 1− ε. (3.1)

Note that in Valiant’s framework the environment and the evolutionary al-
gorithm are static, while the only dynamic part is the current entity ri.

One thing we may notice from (3.1) is that Valiant, in order for a class
of functions C to be evolvable, demands the existence of an evolutionary
mechanism P that results in all the functions in C being able to evolve in all
possible environments D, starting from any possible initial entity r0. More
about this in Section 4.3.
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Chapter 4

Shortcomings of Valiant’s
Framework

In this chapter we attempt to point out various shortcomings of Valiant’s
framework. They constitute mostly discrepancies with standard facts of bi-
ology or clash with the intuition we get from evolution as it happened on
earth. Later in the text, it will be rather evident that those shortcomings
are mainly the result of Valiant’s decision to fit his framework of evolvability
into that of PAC learning.

The main reason we analyse the framework in this way is in order to
better understand the issues at stake. As such, this analysis serves as a
starting point for our own framework.

Each choice/assumption made in the framework may give rise to many
shortcomings. The following subsections are categorized according to the
assumptions made in the framework, rather than according to the shortcom-
ings induced by those assumptions. Sometimes, for example, two different
assumptions may force the framework to the same discrepancy, but we still
analyse those two assumptions separately.

4.1 One Representation Assumption

Let us denote by ORA the One Representation Assumption of Valiant, which
stands for the fact that in his framework he only considers the setting where
only one type of entity exists at any given point in time.1

1Recall that he considers successive representations ri that the evolutionary mechanism
tries to push towards some ideal function. Note that the Neigh function allows the mech-
anism to also consider some neighbours of the current entity, that is, roughly, a limited
set of entities that are used to model entities in the same species with the current entity.
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Coevolution. It directly follows from ORA that the model of the evolu-
tionary process prescribed in the framework does not consider the coexistence
of many entities of different type.

In order for Valiant to handle the issue that the model of the process can-
not account for the possible coevolution of many entities of different type,
he needs to consider many ideal functions, each of which acts as a target to-
wards which the evolutionary mechanism must be able to evolve, completely
ignoring all other ideal functions. This gives us no guarantee that those ideal
functions could have evolved all together in the same system. As such, the
framework cannot account for a multitude of entities concurrently evolving
in the same system.

Natural Selection. Natural selection forces the evolution of the entities of
some environment, at a certain moment in time, to drift towards the fittest
of them, while taking into account the interrelationships between all the
entities.2 In other words, natural selection, even if it to a certain extent acts
locally, determines the fitness (i.e., the chances of an individual to reproduce)
of some individual, relative to the other individuals in the environment.

Given ORA, though, we see that the current framework only allows us to
determine fitness in an absolute way (in the sense that the fitness of an indi-
vidual is always the same regardless of the state of the other entities). This is
another reason why Valiant’s framework cannot account for macroevolution
since it does not consider interspecies relationships.

4.2 Static Environment

Valiant assumes that the environment is static. This is a serious restriction
since it does not allow for the coevolution of the entities and the environment
they reside in. In the context of microevolution this may be acceptable, but
in the context of macroevolution we cannot expect the environment to stay
unchanged over time. In particular, it may be the case that the change of
the environment is a critical factor in driving evolution in the large scale.
As such, a framework that cannot handle this change may fail to predict the
specifics of evolution.

Note that the assumption of a static environment in conjunction with
ORA allows Valiant to use ideal functions, since the corresponding entities
are ideal in that environment. If we were to drop the static environment
assumption then clearly a changing environment could give rise to different

2Since all the entities rely on the same resources for survival.
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ideal behaviors, which means that there would be no a priori ideal functions.
While if we were to drop ORA then the fact that an entity in the system
would not be independent from the rest of the entities, means that we would
not be able to pinpoint independent ideal behaviors.

4.3 The Notion of ‘Evolvable’

Another questionable point is Valiant’s modelling of ‘evolvable’. As we can
see from (3.1), for a function f to be evolvable it needs to be the case that
there exists an evolutionary mechanism P through which f may evolve under
any environment D, starting from any initial state r0. This seems to be a
definition for something that is bound to evolve, regardless of environment
and initial conditions, that is, regardless of chance. This definition stems
from the setting of computational learning, where the objective is to find a
mechanism such that the concept will be learned no matter what.

However, one would expect some entity to be ‘evolvable’ if it can arise
with some fair probability3, corresponding to being able to evolve under some
settings, instead of under all settings. The latter is a less strict definition
that would allow for more intricate analysis.

Another counterargument for the above definition of evolvability goes as
follows. A widely accepted thesis, for example, is that animals have evolved
from unicellular organisms, but it may not be the process of evolution that
gave rise to the latter. As such, in analogy to evolution on earth, we cannot
require of an organism to be able to evolve from any possible initial state in
order to call it evolvable. For in that case we would not be able to call ani-
mals evolvable, since in the above example animals would not have evolved if
starting from some initial state where no unicellular organisms were around,
except only if we took into account some other process (other than the evo-
lutionary one) that could give rise to unicellular organisms. Such a process,
however, would be out of the scope of this framework.

All in all, what we may safely argue is only that the notion of evolvability
is context-dependent and Valiant’s definition corresponds to only a special
case of it. More on the context-dependent nature of the notion of evolvability
can be found in Appendix A.2.2.

3In the case of Valiant’s framework specifically, the random parameters on which we
may quantify the said probability are the initial representation r0 and the distribution D.
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4.4 Distant Targets

In Valiant’s framework, on every run of the evolutionary algorithm there
exists exactly one ideal function f . Evolution is modelled as starting from
a certain initial entity r0 and evolving towards f , while every entity ri, in
between r0 and f , has f as its target. Let’s keep this in mind.

In macroevolution we are interested in the evolution of organisms start-
ing from simple unicellular ones and reaching complex modern-day animals.
In such a setting Valiant’s framework suggests that the unicellular organ-
ism (corresponding to its initial entity r0) has as its target ideal function a
modern-day animal, such as the human. However, it makes no sense to assess
the performance of a unicellular organism on the situations x ∈ X that are
important to a human. Adaptational forces that act on a unicellular organ-
ism are very different from those that act on a human, as those organisms
have largely different needs to satisfy.

Moreover, we would expect the target ideal function of the unicellular
organism to be a lot simpler than that of the human, and as such it would be
a lot easier for the unicellular organism to evolve to that intermediate target
function. In the same vein, it may be also a lot simpler to evolve to many
intermediate targets that are successively closer to a human than to evolve
towards a human while having the human as a target right from the start.

Lastly, note that Valiant is explicit about the phenomenon we discuss
here. He writes: “the theory, analogously to learning theory, analyses only
the granularity of the structure that can evolve in a single phase with a single
ideal function” [Val09, pp. 15]. He adds: “[i]f multiple phases are allowed with
different ideal functions in succession, then arbitrarily complex structures can
evolve. For example, in response to various initial ideal functions some set
of conjunctions and disjunctions may evolve first. At the next phase the
outputs of these functions can be treated as additional basic variables, and a
second layer of functionality can evolve on top of these in response to other
ideal functions. This process can proceed for any number of phases, and
build up circuits of arbitrary complexity, as long as each layer is on its own
beneficial. We call this evolvable target pursuit.”

It is even more interesting to note what Valiant writes in the Abstract
of [Val09]: “[w]e suggest that the mechanism that underlies biological evolu-
tion overall is ‘evolvable target pursuit’, which consists of a series of evolu-
tionary stages, each one inexorably pursuing an evolvable target in our tech-
nical sense, each such target being rendered evolvable by the serendipitous
combination of the environment and the outcomes of previous evolutionary
stages.” However, the two quotes above are the only places where Valiant
mentions ‘evolvable target pursuit’. As such, at this point his framework
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seems to overlook some macroevolution.

4.5 Monotonicity

An entity being able to evolve to some target does not necessarily mean
that it can evolve to it monotonically, in terms of performance. In his model
Valiant allows for a mutation to be selected only from the beneficial or neutral
mutations. Hence, he effectively bounds the decrease in performance, for any
given mutation, by the tolerance t(r, ε, δ).

A disadvantageous mutation may arise recurrently [Rid04]. Natural se-
lection may not be able to eliminate such a mutation. Given also exaptation,
where that certain trait that resulted from the mutation becomes later a
beneficial trait, it is not necessarily a good idea to ignore non-monotonicity
of performance.4

Let us note here, though, that we have not analyzed the issue in detail
and it may be the case that Valiant’s restriction does not hinder his frame-
work in the way hinted above. The reason being that the small decrease in
performance allowed by his framework may be sufficient to model any other
decrease in performance; at least to the extent that evolvability is concerned.

4.6 Conclusion

Valiant tried to model evolution staying close to the setting of computational
learning. We find this resulted in some unnatural assumptions. Besides the
fact that he does not handle evolution of the environment, which would
probably be a very difficult task anyway, his notion of ‘evolvable’, the fact
that he uses distant targets, and especially the fact that he does not model
coevolution we find to be major restrictions.

Aside from the static environment, Valiant’s most important assumption
is ORA. Under the latter, the rest of his modelling choices are fairly reason-
able. For example, the choice to use ideal functions in order to navigate the
course of the representations, i.e., each new mutation tries to approach the
ideal function. However, this choice feels fairly unnatural since we do not
understand in general the evolutionary process as having some distant inno-
vation as a target, but more like as if it tries to adapt to the issues at hand,
i.e., the current problems that the organisms face at each point in time.

4Note that these phenomena may be too rare, and as such the argument about mono-
tonicity weakens. But if we are to be precise we should probably just model things in such
a way that is in line with decrease in performance having a low probability.
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Another unnatural assumption that makes sense under ORA is that, with-
out loss of generality, all the resources evolution has in the current framework
is one processor, instead of something more in the lines of a massively parallel
computer as one would expect.

All in all, the fact that the framework resides in the setting of computa-
tional learning resulted in getting many results about evolvability as defined.
However, we feel that there is a need for a more precise modelling of the
evolutionary process, one that stays closer to our intuitions about evolution.

25



Chapter 5

Definition of our Framework

In this chapter we define our framework. Our object of study is evolution
that employs mutation and some kind of natural selection; in line with the
theory of neo-Darwinism. This determines to a certain extent the details of
our framework. However, it still leaves a large degree of freedom. We are
interested in formulating a framework that is abstract enough to allow for
the analysis of most of the interesting cases of evolutionary systems that fit
the picture as described above.

The idea is that the user of the framework should be able to specialize
it to her needs. The main property that is analyzed in the framework is
the evolvability of entities. However, there are many ways in which one may
understand evolvability. As such, we need to give the user a certain amount
of freedom in choosing what she considers evolvability to be. We discuss the
issue further in Section 6.2.

However, before deciding on a working definition of evolvability, the user
needs to specify the details of the evolutionary process1. To that end we
define the Meta-Model (MM) in Section 5.1.1 which describes the basics of
the evolutionary process. The user is supposed to specialize MM in order to
get to a model of the evolutionary process that satisfactorily captures the
application in mind.

In the next chapter we discuss further how the user may specialize MM
so that it satisfactorily models her specific evolutionary system of interest.
Moreover, we discuss how the user may design a definition of evolvability
that fits her needs and we give some interesting examples of such designs.

1In this chapter we use the terms ‘evolution’ and ‘evolutionary process’ interchangeably.
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5.1 Modelling Evolution

In this section we introduce the Meta-Model (MM), which is a high-level
meta-model that describes evolution. MM determines only the essential parts
of an evolutionary system. Therein one can find our basic assumptions. This
is the basis of our framework and the user may specialize MM in order to get
to a model that better fits her needs.

Throughout the framework we use the symbols S, L, E, and M in line
with Section 2.2. As such, S denotes the state (L,E,M) of an evolutionary
system at a certain point in time. However, L, E, and M are still open
to a concrete definition. Roughly, the only thing that holds true for L,
E, and M throughout the framework is that their concrete definitions are
to correspond to modellings of the ‘life’, ‘environment’, and ‘evolutionary
mechanism’ components of the system of interest.2 In general we would like
to allow for the possibility for L, E, and M to range along many different
objects. Hence, we will opt to define the classes L, E , and M that contain
all the possible L’s, E’s, and M ’s, respectively. This point will be made clear
in the discussion about the definition of evolvability later.

We accompany the description of a couple elements of MM with descrip-
tions in pseudocode that briefly encapsulate the processes in question. The
pseudocode is quite simple to understand and should be quite clear in con-
junction with the accompanying verbal descriptions. A few notes on the
format of our pseudocode can be found in Appendix A.3.

5.1.1 Meta-Model

The Meta-Model (MM) defines certain details about the form of the compo-
nents of an evolutionary system L, E, and M . Specifically, L is a multiset
that contains representations of entities. The possible representations are
elements of a representation class R which is not yet defined. E and M are
also not yet defined, except for the fact that M contains the functions b, d,
Mu, and N , which correspond to the probability that an entity reproduces
(‘b’ for birth), the probability that an entity dies (‘d’ for death), the muta-
tor function, and the function that returns the multiset of the “significant”
neighbors of an entity (‘N’ for neighborhood), respectively. All those unde-
fined details will be left to the user who is supposed to define them so that
she gets a model of evolution appropriate to her needs.

Time is discretized into timeslots t. Let St be the state of the system
during the t-th timeslot, with S0 being the initial state. For S = (L,E,M) a

2In addition we restrict L to be a multiset.
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state of the system, we denote by S.L the first component of the tuple S. We
use similarly S.E and S.M for the other two components of S. Moreover,
we use the same convention to point to the components of L, E, and M
themselves, e.g., S.M.Mu denotes the mutator function of S.M .

Some burdensome notation, such as the above, is unavoidable. The reason
is that we allow for the possibility for all the components of a system to be
dynamic (i.e., varying with time), and as such, we need some way to specify
exact components at various points throughout the process. We hope that the
reader will appreciate this notation when definitions start getting somewhat
complex. This notation carries some redundancy but demands less of the
reader in terms of the depth of clarity in which she has to remember what
the symbols stand for.

A Step in the Process

The Meta-Model defines functions step and stepL, which correspond to
a step in the evolution of the system and a step in the evolution of the
life parameter L of the system, respectively. We have St+1 = step(St).
Functions step and stepL are defined as follows.

Function step is quite simple. It takes a state S as an input and outputs
a new state formed by the three components of S updated by the functions
stepL, stepE, and stepM, respectively. The latter two will not be defined
in MM, only stepL will be. The corresponding pseudocode follows.

IN: state. OUT: state.
step(S)
L′ ← stepL(S)
E ′ ← stepE(S)
M ′ ← stepM(S)
return (L′,E ′,M ′)

Function stepL is a bit more complicated. Before starting with its de-
scription, note that the pseudocode below uses the random function flip,
where flip(x) is a random variable that takes the value TRUE with proba-
bility x, and FALSE with probability 1− x.

Function stepL takes as input a state S and updates its life component
S.L to give rise to a new life component L′. L′ is the same as L except for the
entities that die and those new entities that are the result of reproduction.

Each entity may reproduce at most once in a given timeslot; the proba-
bility of reproduction of an entity in l ∈ L is given by applying the function
S.M.b to l. Note that S.M.b, as with all the other components of S.M ,
is not defined by MM; the only part defined about the functions that are
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components of S.M is the type of their arguments and of their output. The
probability that an entity dies is given by applying S.M.d.

One way to describe the mapping that results from stepL is the following.
L′ is initialized to S.L. Then, for each l ∈ S.L, stepL forms the neighbor-
hood neigh of l using the function S.M.N , and based on l, neigh, and the
environment S.E, it computes (probabilistically—using S.M.b, S.M.d, and
flip) whether l is to reproduce and/or to die. If l is to reproduce, L′ gains
a new element S.M.Mu(l, S), which is a mutation of l. If l is to die, l is
removed from L′.

IN: state. OUT: life.
stepL(S)
L′ ← S.L
for each l ∈ S.L

neigh ← S.M.N(l, S)
if flip(S.M.b(l, neigh, S.E)) then L′ ← L′ ∪ {S.M.Mu(l, S)}
if flip(S.M.d(l, neigh, S.E)) then L′ ← L′ \ {l}

end
return L′

The pseudocode above only defines the mapping that results from stepL
and not the actual way in which the process happens. For example, if we
were to understand the process as a computational one, we would have that
if the computation for each l ∈ S.L was done in parallel, then stepL(S)
could still be computed in finite time even if S.L was infinite.

MM also defines the form of functions stepE and stepM. Those two
functions are similar to stepL. They take a state S as input and return the
updated S.E and S.M , respectively, as may be seen in the following abstract
pseudocode.

IN: state. OUT: environment.
stepE(S)
. . .

IN: state. OUT: evolutionary mechanism.
stepM(S)
. . .

5.1.2 Remarks on MM

In this section we present various remarks on MM considering various possi-
bilities, potential limitations, and implicit assumptions.
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Limits on the size of L. Notice that the size of L can grow in ways that
are perhaps unnatural. Consider, for example, the case where S.M.b always
returns 1 and S.M.d always returns 0. In that case, |L| would double on
each timeslot. However, there are more interesting modelling possibilities.
In analogy with a natural system we would expect that a population can
only grow to the extent that the resources of its environment allow. As
such, a more natural way to model evolution may be to have a negative
correlation between the probability that an entity reproduces S.M.b and |L|,
and a positive correlation between S.M.d and |L|.

Sexual reproduction. It is a basic assumption of our model that a new
entity is mainly based on one already existing entity (evident in the function
call S.M.Mu(l, S)). This means, for example, that there is no sexual re-
production. Nevertheless, this assumption can be overridden since S.M.Mu
takes the whole of S as an argument and we allow for S to store any kind
of information. Note that this has not been our intention initially and it is
only a side effect of our design.

One birth per entity per timeslot. Each already existing entity can
reproduce at most once in a given timeslot. However, the timeslot may
correspond to a very small interval in “real” time and as such we still allow
for many reproductions in a short length of time.

Fitness correlation between different entities. An important aspect
of MM is that it allows for the reproduction/birth and the death probabilities
of a certain entity to be affected by the presence of other entities. That is the
main reason for the existence of the neighborhood function S.M.N , whose
output is fed to S.M.b and S.M.d. The main idea behind this choice is that
in analogy to evolution on earth, entities who live in the same environment
need to share common resources.

Note, however, that sometimes there is no such idea of common resources
shared by entities. In case, for example, of the evolution of monotone con-
junctions there is no natural environment into which we may consider those
abstract objects/entities to reside.

Moreover, note that the other factor that affects the S.M.b and S.M.d
probabilities, which essentially determine the fitness of the various entities,
is the environment S.E. This is similar to what Valiant does if we interpret
the distribution D over the situation space X as the environment of the
entities. However, Valiant does not consider the coevolution of entities, so in
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his model there is no issue of the fitness of different entities being correlated
or not.
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Chapter 6

Specializations of our
Framework

In this chapter we discuss specializations of our framework. This is the first
step towards exploring specific applications. In Section 6.1 we discuss how
the user may specialize the Meta-Model (MM) in order to reach a model
of evolution. We also give an example of an interesting but quite high-
level specialization. In Section 6.2 we discuss how the user may design a
definition for evolvability and we also give some interesting examples. Lastly,
in Section 6.3 we demonstrate how Valiant’s framework is a special case of
our framework.

In the next chapter we will make all these more concrete by examining
some applications of our framework.

6.1 Specializations of the Meta-Model

For a complete modelling of evolution, as far as MM is concerned, one thing
we need to do is specify completely functions stepE, and stepM. Moreover,
we need to specify the exact form of L, E, and M , which essentially means
that we need to specify L, E , and M, defined in Section 2.2.

The first step in specifying the form of L is deciding on a representation
class R. At this point of the specialization, we have that L can be any
multiset that contains elements from R, as defined in Section 5.1.1. The
user, however, may want L to always have exactly one entity (as in Valiant’s
model). In that case, since as we already mentioned in the previous chapter
L is a multiset, if we want to force it to have exactly one element at all times,
we will have to do that by the appropriate definitions of S.M.b and S.M.d.
On the other hand, the user may want to handle L’s of infinite size. She may
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represent an entity as a string, attempting maybe to represent its phenotype.
It may be that any string in {0, 1}n could represent an entity, or it may be
that only a set of strings that satisfy some intricate pattern can be regarded
as entities.

The environment E may be dynamic and represent, for example, just the
humidity and the temperature of the physical environment of the entities. Or
it may be static, as in Valiant’s model where the environment is a distribution
on the various situations the entities may find themselves into. Note that
modelling the environment in a manner similar to Valiant is quite general
and for that reason it will be of interest to us.

The evolutionary mechanism may also be either static or dynamic. It is
difficult to imagine a model where the mechanism itself evolves into many
different manifestations of different kind, however, it is not as strange to
imagine a system where some parameters of the evolutionary mechanism
change along time.

An example of a partial specialization of MM follows.

6.1.1 Resource-Bounded Meta-Model

MM does not restrict the resources of the evolutionary process in any way.
Though, the user may be interested in some process that is efficient in some
sense. MM gives a lot of freedom to the user on how to define efficiency.
In this section we sketch one of the options. We introduce the Resource-
Bounded Meta-Model (RBMM) which restricts the power of MM in order
to come closer to modelling the fact that resources in the physical setting
are limited. We will bound the resources of the evolutionary process using
bounds of a computational nature. As such, we will also understand the
evolutionary steps as results of computation.

As we mentioned above, somewhere along the specialization of MM the
user needs to define the form of the representations of entities, i.e. the rep-
resentation class R. Given R we can always define a length function; for an
entity l we denote its length as |l|. For example, if R = ∪n≥0{0, 1}n then, for
l ∈ R, we may define |l| to be equal to the length of the string l.

The Resource-Bounded Meta-Model (RBMM) is characterized by the fol-
lowing. S.M.b, S.M.d, S.M.Mu and S.M.N are required to run in polyno-
mial time, and also the sets to which S.M.N maps should be polynomially
bounded in size. The said polynomial bounds, of either time or size, are in
|l| where l is the first argument of the above functions.1

1It is standard practice in the context of computational complexity to model efficiency
by using polynomial bounds.
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Note here that we have not yet decided on a specific model of computa-
tion. However, the one that naturally arises given our above definitions is
one which understands efficiency as local efficiency. Specifically, the compu-
tations are done in parallel, with one processor per entity. In this setting,
for example, |L| could be exponential and the computation could still be
efficient.

6.2 Modelling Evolvability

The user needs to take into consideration what is the notion of evolvability
that she wants to use. The highest-level variable of interest is St. The
evolutionary process gives rise to a certain random sequence S0, S1, S2, . . ..
A definition of evolvability will require certain properties of this sequence.
Moreover, the user may quantify along the classes L, E , and M in various
ways when setting up a definition for evolvability. She may pick out specific
elements from those classes, or even take probabilities on them.

For example, concerning the evolutionary mechanism, the user would
need to choose whether the latter is static or dynamic. In case it is static,
she may want to be able to choose it a priori (e.g., in the case of evolution
on earth, one may consider that the evolutionary mechanism is set in stone
and she wants to work with that mechanism only, or maybe work with just
a small number of mechanisms), or she may just care about the existence of
some mechanism that gives rise to the evolution of a certain entity (e.g., in
case where the mechanism is a computer program, she may just want to see
whether a program exists under which a certain entity evolves), or maybe
she wants a bunch of mechanisms that all together have a fair probability to
occur (e.g., in a setting where she would have no control on which mechanism
is used and she wants to see whether if things are left to luck, there is still a
chance that some certain entity will evolve).

In the next section we consider evolvability under the assumption that
the evolutionary mechanism M is static. In this setting we give a definition
of evolvability that tries to capture the notion as it relates to evolution on
earth.

6.2.1 Evolvability under a Static M

In this section we concern ourselves with evolution under a static evolutionary
mechanism M . In Appendix A.2.1, we argue why a static M is a reasonable
assumption in the setting of evolution on earth.

Let’s start with our basic assumption, i.e., M is static. This is captured

34



by the fact that stepM is the identity function. We want to get now to a
definition of evolvability that is in line with evolution on earth.

First we need a distance measure dis(· , · ) that maps from C×R to [0, 1],
where C is a class of entities2, and dis(l, l′) is the distance between l and l′.3

Given that, we may say that an entity l ∈ C has evolved if there exists an
entity (technically, a representation of an entity) l′ ∈ L whose distance from
l is very small.

The intuition that we want to serve here is that a class of entities C is
evolvable if there exists an evolutionary mechanism M ∈M that can give rise
to C. Let us stress here that the mere existence of such a mechanism would
be enough to give us evolvability. Note that MM allows for an enormous class
of different evolutionary mechanisms to be used. However, we expect that
the user will restrict the class of possible mechanismsM so that it represents
only those mechanisms that make sense in her application of interest.

Moreover, we understand evolvability to represent the fact that an entity
can evolve with a non-negligible probability. The probabilities in question
apply to the initial conditions of the system. Specifically, the initial set of
entities, L0, and the initial environment, E0, may be chosen probabilistically,
and this is what we do. What we need here is for the user to define two
probability measures µL0 and µE0 which dictate the probability of certain L0

and E0 being the case, respectively.4

Now, the last step before we define evolvability is to define what it means
for a class of entities C to have evolved. We want something like a predicate
that represents the event that a class of entities C has evolved. We are
going to define two different predicates equal(C, S, ε) and equant(C, S, ε). The
first predicate will correspond to a qualitative understanding of evolvability
which roughly says that a class C has evolved in state S, if for every entity
l in C there is an entity in the system (during state S) that is similar to l.
The second predicate is similar to the first one, however, it also cares about
the number of entities in C and in the system. Let us give now the formal
definitions.

Definition 6.2.1. For an entity class C, a state of the system S, and ε ∈
2Note that similar to Valiant we differentiate between entities (as found in C) and their

representations (as found in L).
3We may use here a function similar to Valiant’s and Feldman’s performance metrics,

as introduced in 3.1.3 and 3.3.1. Only we are going to call them distance measures since
we do not understand the target entity as an “ideal” entity.

4If the environment is static then E0 would actually correspond to the environment
along the whole run of evolution.
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(0, 1) we have

equal(C, S, ε)⇔ ∀l ∈ C ∃l′ ∈ S.L : dis(l, l′) ≤ ε.

Definition 6.2.2. For an entity class C, a state of the system S, and ε ∈
(0, 1) we have

equant(C, S, ε)⇔ ∃f : C → S.L, ∀l ∈ C : dis(l, f(l)) ≤ ε,

where f is one-to-one.

Thus, whereas in the qualitative understanding we care for every l ∈ C
to be mapped to some entity l′ ∈ S.L, in the quantitative one we require the
whole of C to be mapped one-to-one on S.L. The first predicate corresponds
to questions of the type “can lions evolve in the system?” while the second
predicate may answer the question “can a thousand lions evolve in the system
at the same time?” Note that the second predicate may be quantitative when
considering the evolution of entities, but if we consider the evolution of the
system as a whole then the second predicate may too be understood to have a
qualitative nature. Through the latter interpretation we would be answering
a question of the type “can the system evolve so that it contains a thousand
lions?”5

In other words, whereas qual-evolvability is truer to our initial under-
standing of evolvability and focuses on the possibility of a certain entity to
evolve, quant-evolvability has a flavor of population dynamics since it is also
concerned with numbers of entities.

With all the above in hand we can define evolvability for classes of entities
C of finite size as follows. Let us start with the qualitative interpretation. We
remind the reader thatM is the class of all possible evolutionary mechanisms,
E is the class of all possible environments, and L is the class that contains
all possible multisets of entities.

Definition 6.2.3. Let µL0 and µE0 be probability measures on L and E ,
respectively. A finite entity class C is qual-evolvable w.r.t. µL0 and µE0 if
there exist M ∈ M, and polynomials g(1/ε) and h(1/ε) such that for all
ε ∈ (0, 1),

Pr
L0∼µL0

E0∼µE0

[
∃t ≤ g(1

ε
) : equal(C, St, ε)

]
>

1

h(1/ε)
,

where S0 = (L0, E0,M) and St+1 = step(St).

5Clearly, we assert here that we understand a system with one lion to be qualitatively
different from a system with a thousand lions.
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Remark 6.2.1. In the evolvability definition above we require the existence
of a polynomial h that bounds the rate of decrease of the success probability
as ε grows smaller. In the context of computational complexity it is standard
practice to bound probabilities like that in order to model the fact that the
probability does not decrease too fast.

However, in concrete applications of our framework the user may find this
to be too restrictive and not representative of the needs of the application.
In such a case, the user may want for example to allow the probability to
decrease exponentially with n. In Section 7.3 we will examine a certain
system and see how the above choice affects the evolvability of classes in the
system.

Similarly, we require evolution of the entities of interest to happen in a
timeslot t that is bounded by a polynomial g in order to model for the fact
that we do not want the process to take too long. Similar concerns with h
apply here too.

We also define evolvability for classes Cn of entities of arbitrary complex-
ity. Here n corresponds to the complexity of the entities in Cn. As we said
before, evolvability is also in a sense a kind of complexity, however, here when
we say complexity we are thinking more of a superficial kind of complexity
as in the number of traits of a certain organism, or the length of its DNA.

Definition 6.2.4. Let Ln and En be such that L =
⋃
n≥1 Ln and E =⋃

n≥1 En. Let µL0 and µE0 be such that µL0,n and µE0,n are probability mea-
sures on Ln and En, respectively. A sequence of entity classes {Cn}n≥1 is
qual-evolvable w.r.t. µL0 and µE0 if there exist M ∈ M, and polynomials
g(n, 1/ε) and h(n, 1/ε) such that for all n, and ε ∈ (0, 1),

Pr
L0∼µL0,n

E0∼µE0,n

[
∃t ≤ g(n, 1

ε
) : equal(Cn, S

t, ε)
]
>

1

h(n, 1/ε)
,

where S0 = (L0, E0,M) and St+1 = step(St).

Now we can extend both of the above two definitions to the quantitative
interpretation.

Definition 6.2.5. The definition of quant-evolvable is the same as qual-
evolvable except that we use equant instead of equal.

Our definition here of evolvability, in line with Section A.2.2, makes clear
the importance of being explicit about the initial state of the system, here
captured by µL0 and µE0 , when talking about evolvability. Moreover, note

37



that our definition is more flexible than Valiant’s, whose definition renders
entities generically evolvable, under any environment, starting from any ini-
tial state.

We also define here a stronger version of evolvability which captures the
idea that there exists an evolutionary mechanism under which a certain class
of entities is bound to evolve.

Definition 6.2.6. A class of entities C is universally evolvable if C is evolv-
able w.r.t. all pairs of µL0 and µE0 (using the same evolutionary mechanism).

Universal evolvability is a property that in general is very hard to satisfy,
and is fairly similar in its interpretation of evolvability to the interpretation
implicit in Valiant’s definition of evolvability.

Remark 6.2.2. In certain applications we want to know how the probability
of evolution is affected by the size of the entity classes C under consideration.
In the next chapter we will consider in several examples qual-evolvability as
in Definition 6.2.3, but slightly altered so as to render a class evolvable only
if the probability of evolution decreases at most polynomially as a function
of the size of the entity class under question. Note that in order to do that
we have to consider entity classes of some certain type but of arbitrary size.

Remark 6.2.3. Note that in our definitions of evolvability we find it enough,
roughly, if a class of entities C shows up in only one timeslot. That is, we do
not require for the entities of C to stick around for a long time in order to call
C evolvable. However, we could instead have required for the entities in C
to be in the system for q(ε) subsequent timeslots, with q(ε) possibly getting
larger as ε is getting smaller. Such a solution may make sense especially in
cases where the the probability of an entity to go extinct given that it has
existed for one timeslot (or even q(ε) timeslots) is non-negligible.

In general, it is an interesting question to examine the sustainability of
certain classes. This could be a direction for future work.

Remark 6.2.4. The reader may have noticed some kind of directedness in
our basic question in this work. Instead of asking what is evolvable, we ask for
specific entities whether they are evolvable. Even though those specifics can
be quite general, e.g., we do not need to ask whether the great white shark is
evolvable, we can ask whether fish are evolvable, our question still is directed.
However, in the setting where the entities under consideration are one-to-one
with the elements of the representation classR that we use (let us assume that
f is the corresponding bijection from the set of all entities under consideration
to R), we can easily reconcile this through the following definition. The class
of all evolvable entities is {f−1(r) | r ∈ R ∧ (f−1(r) is evolvable)}.
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One may wonder whether we really address the issue here. Note that
what we do is formalize a certain notion, but we do not force any way of
analysis of the system at hand so as to find the corresponding classes of
interest. The user of the framework is free to analyse the system in a way
that makes it easier either to find what entities are evolvable in general or to
find for specific entities whether they are evolvable.

6.3 Fitting Valiant’s Framework into Ours

In this section we specialize RBMM introduced in Section 6.1.1 in order to
get Valiant’s model. As the reader may guess, we need to define two things,
the evolutionary process and the definition of evolvability. In the following
whenever we use St with t undefined we mean ‘for an arbitrary t’.

Consider the following specialization. Functions stepE and stepM are
the identity functions. St.E contains the distribution D over X. St.M.N
returns the empty set6, and St.M.b and St.M.d are always 1. St.M.Mu is
the mutator function of Valiant.7 St.M also contains an ideal function f so
that the process may use Perff , a parameter vector P = (R,Neigh, µ, t), and
a polynomial s that determines the sample size. Note that f , P , and s are
variables and are only specified through the definition of evolvability.

In this context Valiant’s definition of evolvability (Definition 3.1.6) can
easily be translated to our framework as follows.

Definition 6.3.1. We say that a class of functions C is evolvable if there
exists a parameter vector P = (R,Neigh, µ, t), and polynomials s(n, 1/ε, 1/δ)
and g(n, 1/ε, 1/δ) such that for all distributions D, for every n, every f ∈ Cn,
every ε ∈ (0, 1), every δ ∈ (0, 1), and every r0 ∈ Rn, with probability at least
1− δ, the unique r ∈ Sg(n,1/ε,1/δ).L will have Perff (r, S

t.E.D) > 1− ε, where
S0.L = {r0}, St.M.P = P , St.M.s = s, and St.E.D = D.

Remark 6.3.1. The reader may be a bit puzzled on how our framework
whose outlook is so much different than Valiant’s can accommodate the lat-
ter. Specifically, Valiant makes use of oracles and has ideal functions that
drive evolution. He essentially models what is referred to in biology as “di-
rected evolution” [Rid04, pp. 340], an idea that clashes with that of natural
selection.

6Note that St.M.N is a different function than Valiant’s Neigh(r, ε) function.
7Precisely speaking, our mutation function St.M.Mu(l, St) is equal to

Mu(St.M.b, St.M.D, St.M.P, l, ε, δ, St.M.s(n, 1/ε, 1/δ)) where Mu is Valiant’s mu-
tation function.
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The thing, though, is that even though we designed a framework without
expecting to use any oracles and ideal functions we also did not restrict it
so as to not allow for the use of those. All in all, this example serves to
demonstrate how flexible our framework really is.
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Chapter 7

Applications of our Framework

In this chapter we examine various systems to illustrate our framework. As
the reader will notice, sometimes we simplify our notation in order to avoid
clutter. For example, if the function giving the probability of reproduction is
static we may denote it as S.M.b instead of St.M.b, or we may even denote
it as b. Moreover, if arguments to functions like S.M.b or S.M.Mu are
redundant or implicit we may omit them, and write, e.g., S.M.b(l) instead
of S.M.b(l, neigh, S.E).

Let us start with a couple of definitions that will make our exposition
clearer. A discrete trait is a trait that can assume finitely many manifesta-
tions, e.g., a trait that corresponds to the color of the eyes assuming that
the latter can either be brown, blue, or green. A continuous trait is a trait
that can vary continuously, e.g., a trait that corresponds to the color of the
eyes assuming that the color of the latter can be any combination of different
proportions of brown, blue, and green. Lastly, two numbers x and y are
α-close if |x− y| ≤ α.

7.1 Peppered Moth

We will start with a trivial example in order to clarify the use of our frame-
work. Suppose that there is a large population of white (light-colored) pep-
pered moths, maybe with the occasional black (dark-colored) moth. We
model the color of the moth as a discrete trait that can only take two values,
black and white. Specifically, we use the representation class R = {0, 1},
where the 0 stands for black and the 1 for white. We remind the reader that
the set of entities at timeslot t (which we denote by St.L) is a multiset that
only contains elements from R.

Given that the trait of interest is discrete, we also use a discrete distance
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function, specifically, dis(l, l′) = 0 if l = l′ and dis(l, l′) = 1 otherwise.
Moreover, note that since the distance function is discrete, the accuracy
parameter ε has no significance in this setting.

The white moths are well protected on the light-colored trees that occupy
the area since they are hidden from their predators. However, with the
coming of the industrial revolution the trees assume a very dark color, say,
overnight. And now the white moths can be easily spotted by their predators.
The probability that a black moth dies S.M.d(0) is equal to some small
real number pd ≤ 1/2. Since we will not allow for those probabilities to
change over time, which is a result of assuming a static environment, we
will write d instead of S.M.d and similarly for S.M.b and S.M.Mu. Hence,
we have d(0) := pd. Moreover, we opt for d(1) := 1 − pd.

1 Note that
d(1) ≥ d(0), meaning that white moths are likelier to die than black moths.
The probability that a black or white moth gives birth are the same and
equal to some pb ∈ (0, 1), i.e., b(l) := pb for all l ∈ R. We assume that births
happen at the start of a timeslot and deaths at the end of a timeslot.

Moreover, there is a very small probability pm that a white moth will
reproduce a black one, and the reverse. Specifically, for all l ∈ R we have
Mu(l) = l with probability 1− pm, and Mu(l) = 1− l with probability pm.

We will consider the case where the initial set of entities L0 contains no
black moths. Is the class C that contains only black moths evolvable? Let
us first consider qual-evolvability.

Qualitative evolvability. The case for qual-evolvability is trivial and we
only mention it here in an effort to showcase more options in our framework.
It is enough that with positive probability2 there exists some timeslot t such
that St.L contains a black moth.

Remember from the definition of qual-evolvability that S0.L = L0. It is
easy to show that there is a positive probability that S1.L contains a black
moth. Specifically, suppose that S0.L contains at least one white moth.
This moth will give birth to a black moth with probability pbpm. And this
gives us qual-evolvability. Precisely speaking, any class of black moths C
is qual-evolvable, according to Definition 6.2.3, w.r.t. any µL0 and µE0 such
that there exist a set of entities L and an environment E with µL0(L) > 0,
µE0(E) > 0, |L| > 0, E.pb > 0, and E.pm > 0.3

1One way to interpret the choice of d(·) is that a predator will either eat a black moth
or a white moth. However, the main reason behind this modelling choice is to simplify
the exposition.

2We do not care about the rate of decrease of the probability in terms of ε, because as
we mentioned above, ε has no significance in this setting.

3Note that E.pb stands for what we denoted by pb above. However, since pb is a
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Let us now turn to quant-evolvability.

Quantitative evolvability. We consider here finite entity classes C that,
as we said above, contain only black moths. The probability that C evolves,
in the quant-evolvability sense, is again positive and constant since it is not
affected by ε. The exact probability is a function of |L0| and |C|. To be
more precise we have that, for a given L0, there exists α ∈ (0, 1) such that
the probability that some arbitrary entity class C evolves is lower bounded
by α|C|. The derivation of this result can be found in Appendix A.4.

This result gives us quant-evolvability but it does not really tell us much.
In a sense it tells us that we can get an arbitrarily large class C to evolve,
but it ignores the fact that the probability decreases exponentially as the size
of C increases.4

In line with Remark 6.2.2 we would rather have a lower bound that de-
creases at most polynomially. Let us try to get such a bound now. Let Xt

be a random variable that corresponds to the number of black moths in the
system at timeslot t. Let It := Xt/Xt−1 be the ratio of black moths in the
system between timeslots t and t− 1.

We have that

E[It] ≥2(pb(1− pm)(1− pd))+
1(pb(1− pm)pd)+

1(((1− pb) + pbpm)(1− pd))+
0(((1− pb) + pbpm)pd),

where the summands correspond to the events that a black moth reproduces
and does not die (results in 2 moths for the next timeslot), it reproduces and
dies (results in 1 moth), it does not reproduce or reproduces a white moth
and does not die (results in 1 moth), it does not reproduce or reproduces a
white moth and dies (results in 0 moths), respectively. The expression is an
inequality, instead of an equality, because we do not take into account that
some black moths are the result of white moths giving birth. If we tidy this
up we get

E[It] ≥ 1 + pb(1− pm)− pd := λ. (7.1)

parameter defined by the environment we may also denote it by E.pb. Similarly for E.pm.
4In most of the examples that we consider in this chapter we will be able to get similar

lower bounds, i.e., lower bounds that give us the evolvability of arbitrarily large entity
classes C but with a probability that decreases exponentially as a function of |C|. In the
case of continuous traits, ε is also a significant parameter that would affect the rate of
decrease of such trivial lower bounds.
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Suppose that λ > 1, i.e., pb(1 − pm) > pd. We will demonstrate quant-
evolvability of any entity class C with a probability that decreases at most
polynomially with |C|. From (7.1) we have that5

E[Xt] = E[
∏
i≤t

It]X0 ≥ E[
∏
i≤t

It] =
∏
i≤t

E[It] ≥ λt. (7.2)

Moreover, we have that since the population can at most double at each
timeslot that

Xt ≤ 2t. (7.3)

For any random variable Y that takes values from the natural numbers
and there exists Ymax such that Y ≤ Ymax with probability 1, we have that
for every natural number k ≤ Ymax it holds

E[Y ] =
Ymax∑
y=0

yPr[Y = y]

=
k−1∑
y=0

yPr[Y = y] +
Ymax∑
y=k

yPr[Y = y]

≤ (k − 1)Pr[Y < k] + YmaxPr[Y ≥ k]

= (k − 1)(1−Pr[Y ≥ k]) + YmaxPr[Y ≥ k],

which gives us that

Pr[Y ≥ k] ≥ E[Y ]− k + 1

Ymax − k + 1
.

Hence together with (7.2) and (7.3) we get for the probability of the
evolution of C that

Pr[Xt ≥ |C|] ≥
λt − |C|+ 1

2t − |C|+ 1
.

Now we can easily find a timeslot t such that λt > |C|+1⇔ t > logλ(|C|+1)
that will give us our result. For example, for t′ = logλ(|C|+ 2) we get

Pr[Xt′ ≥ |C|] ≥
1

(|C|+ 2)1/ log2 λ − |C|+ 1
,

which is a bound that fits what we were after, i.e., C is evolvable with a
positive probability that decreases at most inverse-polynomially in |C|.

5Here we assume for simplicity that L0 contains at least one black moth and as such
X0 ≥ 1. In case it does not, it takes only constant probability, namely, pbpm, for a black
moth to arise at the first timeslot as a result of a birth of a white moth.

44



7.2 A Continuous Trait

We will examine here a system where entities have one continuous trait.
Moreover, we will introduce a simple fitness landscape with respect to that
trait.

A specific amount of energy, same for all entities, is available to each
entity. Each entity l has a specific efficiency lf in using that energy. The
higher the efficiency, the better the fitness of an entity, which translates to
higher probability to reproduce and smaller probability to die.

Our initial expectation here, is that the system will converge to a state
were most entities l have lf close to 1. However, we cannot say that before
defining an evolutionary mechanism. We will actually consider a simple and
natural evolutionary mechanism under which we will demonstrate speciation,
in the sense that entities with high energy efficiency will be extremely more
prevalent than other entities. Moreover, our analysis will also address the
population dynamics in the system.

We define R = {l = 〈lf〉 | lf ∈ [0, 1]}, where lf is the energy efficiency
of l. We remind the reader that S.L is a multiset with elements in R. Let
dis(l, l′) = |lf − l′f | be the distance function that we will use.

For a real number x ∈ [0, 1], let U(x) be a random variable that takes
values uniformly randomly from [x−η, x+η], where η is a small real number
such that η ≤ 1/2. Let U∗(x) := min(max(U(x), 0), 1) be the function that
for all x ∈ [0, 1] brings the value of U(x) in [0, 1]; note that if x is η-close
to one of the boundaries, i.e., 0 or 1, then there is a peak in the probability
density of U∗(x) to equal that boundary.

We will consider the evolutionary mechanism where S.M.Mu(l, S) = l′

with l′f = U∗(lf ) being the energy efficiency of the mutated entity. Moreover,
for all entities l we have S.M.d(l) := 1 − S.M.b(l) and S.M.b(l) := lf .

6 In
the following we will abbreviate the above functions by omitting ‘S.M ’.7

Note that the above probabilities mean that the population can start
growing exponentially in size when we have entities l with lf close to 1.
However, in a real system we would expect the limited resources to bound
the maximum possible size of the population. We will assume that this bound
is large, i.e., the system can accommodate a large number of individuals.8

6Note that this is a simple and somewhat extreme model. A nicer model would be to
have S.M.b(l) := p+ (1− 2p)lf , for some p ∈ [0, 1/2), which would yield S.M.b(〈0〉) := p
and S.M.b(〈1〉) := 1− p. We will consider this model later.

7Moreover, we should have written here S.M.b(l,neigh, S.E), instead of S.M.b(l), ac-
cording to the form of S.M.b in our framework; analogously for S.M.d. But for the sake
of simplicity we do not.

8This is a restriction that could possibly follow from modifying the definitions of S.M.b
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Then if we focus on the distribution of the entities and not on the actual
number of entities, the analysis for the unbounded-population case and for
the bounded one should converge to the same results.9

Evolvability. The most useful results in terms of understanding the be-
havior of the model we obtained through simulations of the system. Our
system has only one parameter, namely, η.

For a small η, as seen in Figure 7.1, we have that all the entities l have
energy efficiency lf really close to 1.

While for larger values of η, as seen in Figure 7.2, we have also entities
with energy efficiencies much smaller than 1 in the system. The reason is
that any given entity has a good chance to give birth to entities with fairly
smaller energy efficiency. The small peak that we see in the ratio of entities a
little before 1 has to do with the fact that our mutation mechanism is defined
using function U∗(x) that, as we mentioned before, gives a quirky behavior
to the mutation probabilities near the boundaries.

All in all, our results suggest that there exists an interval around the
ideal manifestation of the trait (in our case the trait is energy efficiency
and the ideal value is 1) whose size depends on η, i.e., the parameter which
determines the variability of the mutations, wherein most of the entities
reside. Moreover, the relative frequencies of the entities along the interval
converge very fast in the simulation.

and S.M.d. However, for simplicity we do not make the latter two functions account for
the fact that resources are limited and as such the population will be bounded at some
point.

9Note that a good reason to examine the unbounded-population case directly, instead
of the bounded-population case, is that in the former entities are independent from each
other, apart from the interrelation that arises from the act of reproduction.

46



Figure 7.1: Simulation of the system for η = 1/133 for 300 timeslots. There
are 25 graphs in this figure, each of which corresponds to a point in time along
the first 300 timeslots; the time interval between successive images is roughly
300/25 timeslots. The horizontal axis corresponds to the energy efficiency
interval [0, 1]. The vertical axis depicts the relative frequencies of entities
with different energy efficiencies. In the initial distribution the entities are
uniformly distributed along [0, 1].
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Figure 7.2: Simulation of the system for η = 1/20 for 300 timeslots. There
are 25 graphs in this figure, each of which corresponds to a point in time along
the first 300 timeslots; the time interval between successive images is roughly
300/25 timeslots. The horizontal axis corresponds to the energy efficiency
interval [0, 1]. The vertical axis depicts the relative frequencies of entities
with different energy efficiencies. In the initial distribution the entities are
uniformly distributed along [0, 1].
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7.3 Food on a Grid

Here we examine an example mainly concerned with biogeography. In this
system entities live on the nodes of a grid and they eat the food given to
them by some process that places food on the grid; we will use the term
food-process for the latter. We want to examine how the entities will spread
in space depending on the specifics of the food-process.

In Section 7.3.2 we will examine two extreme, and somewhat uninteresting
cases. The two cases are (i) the situation where the food-process lays food at
all timeslots on the same nodes of the grid, and (ii) the situation where food
is uniformly randomly dropped on the grid. We will use our results on those
two cases to examine a more interesting case in Section 7.3.3, where we will
introduce a food-process that brings about the idea of a fitness landscape
more clearly than the food-processes in cases (i) and (ii).

We start with some preliminaries.

7.3.1 Preliminaries

Consider the grid Gm = {(x, y) | x, y are integers such that 0 ≤ x ≤ m −
1, 0 ≤ y ≤ m − 1} of size m × m, and a process that places food on the
nodes of Gm at the start of each timeslot. Let F t ⊆ Gm be the set of nodes
where the food-process places food at timeslot t. Let the representation class
Rm = Gm where we view entities l ∈ Rm as l = (lx, ly). Lm is the class of
all possible L’s, i.e., all possible subsets of Rm. Hence, for all timeslots t we
have that St.L, i.e., the population at timeslot t, is a subset of Rm.

On each node of the grid there may live at most one entity; if an entity l
is reproduced and is supposed to go on a node that already carries another
entity then l is discarded. An entity needs to eat every c timeslots in order
to sustain itself, where c is an integer such that c ≥ 1, and it can only eat
food present at its own location.10 An entity will always eat the food if it
is available. Moreover, food goes bad if not consumed in 1 timeslot and is
discarded from the system. Reproductions happen at the start of a timeslot
and deaths at the end of a timeslot.

Let w((x, y)) be the set of neighboring nodes to (x, y); every node has
four neighboring nodes and we think of the boundaries of the grid in such a

10This rule determines S.M.d, the function that determines the probability for an entity
to die.
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way that the grid forms a torus. Specifically,

w((x, y)) = {((x− 1 +m) mod m, y)

((x+ 1 +m) mod m, y)

(x, (y − 1 +m) mod m)

(x, (y + 1 +m) mod m)}.

LetQ denote the predicate such that for everyX ⊆ Gm, and (x, y), (x′, y′) ∈
Gm, Q(X, (x, y), (x′, y′)) is true iff there exists a chain of neighboring nodes
in X that starts from (x, y) and finishes with (x′, y′).

Let v(l) be the set of neighbors of entity l. At timeslot t we have that
v(l) = w((lx, ly)) ∩ St.L.11

7.3.2 First Results

We will consider here evolvability under the class of evolutionary mechanisms
M that contains all those mechanisms that use a mutation function Mu such
that Mu(l) ∈ w((lx, ly)).

12 Specifically, we will consider qual-evolvability as
defined in Section 6.2.1. Our distance function dis(l, l′) equals 0 if lx = l′x
and ly = l′y, and 1 otherwise.13

In the following when we refer to Manhattan distance between two nodes
we refer to the distance of the shortest strictly horizontal and/or vertical
path between the two nodes. Note that m − 1 is the maximum Manhattan
distance between two nodes on the grid. The Manhattan distance between
two nodes (x, y) and (x′, y′) lower bounds the number of timeslots needed for
an entity to come alive on node (x′, y′) as a result of life being propagated
among neighboring nodes starting from an entity that resides on node (x, y).
This is a direct result of the fact that Mu(l) ∈ w((lx, ly)).

A simplified analysis. Here we will examine the qual-evolvability of all
entity classes C such that C ∈ Lm. In contrast with the next section, we
will not be concerned with how the size of the entity classes affects their
probability of evolution, or how the latter behaves in relation to m, i.e., the
parameter that determines the size of the grid and consequently the possible
distances among nodes.

As we mentioned above, we will consider two cases concerning the food-
process. In both cases |F t| = k, for some positive integer k ≤ m2. That is,

11We remind the reader that St.L is the set of entities in the system during timeslot t.
12Here Mu(l) stands for S.M.Mu(l, S).
13Given that Lm contains no multisets and our distance function is discrete, qual-

evolvability is equivalent to quant-evolvability.
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the density q of food on the grid is constant and equal to k/m2. In case (i)
we will have that F t = F t+1, for all t ≥ 0. In case (ii) we will have that F t is
a subset of Gm chosen uniformly at random among all subsets of Gm of size
k.14

For both cases (i) and (ii) the following holds. For c = 1, i.e., if the
entities need to eat at every timeslot, no entity class C such that |C| > k is
evolvable, since there is not enough food to sustain as many entities as the
size of C. More generally, if C is evolvable then |C| ≤ ck.

Let us focus on case (i) now. We have that if C is evolvable then for
all l ∈ C there exists l′ ∈ L0 such that Q(F 0, l, l′).15 What is more, we
can also easily find a mechanism that makes the above statement work the
other way around too. One such mechanism is the mechanism where b(l) is
a positive constant, i.e., there exists pb ∈ (0, 1] such that St.M.b(l) = pb for
all timeslots t, and Mu(l) chooses uniformly randomly among the entities on
the four neighboring nodes to (lx, ly).

Let us demonstrate why this mechanism works as promised, i.e., if for all
l ∈ C there exists l′ ∈ L0 such that Q(F 0, l, l′) then C is evolvable. Suppose
that for all l ∈ C it holds that there exists l′ ∈ L0 such that Q(F 0, l, l′), then
the above mechanism has as a result that all l ∈ C have a positive probability
to evolve, and that probability is independent of any accuracy parameter ε.
Moreover, because of the nature of F t in case (i), if an entity evolves it will
be sustained forever. Hence, C is evolvable, according to Definition 6.2.3.

Taking m into account. Here we take into account how the probability
of evolution is affected by the size of the class to evolve. The size of the
classes C could be equal to m or larger16.

In line with Remark 6.2.2, we address this concern by parameterizing all
of our components with m and focusing on how things turn out in relation
to m. Hence, instead of C ⊂ Gm, we consider Cm ⊂ Gm.17 We will consider
only the most interesting of the two cases described above, i.e., case (ii) where
for some density q ∈ [0, 1] we will have that F t

m is a subset of Gm chosen
uniformly at random among all subsets of Gm of size km = dqm2e.

Let us start by demonstrating that |Cm| ≤ ckm is not enough to guarantee

14For case (i) the environment S.E would need to contain (as information) both k and
F 0, while for case (ii) only k will be enough.

15We remind the reader that L0 is the initial set of entities.
16The size of C can be as large as m2.
17Note here that the subscript m on Cm does not signify the complexity of the entities

in Cm as n does in Definition 6.2.4 or as in the example of Section ??. Here m is just the
parameter that determines the size of the grid.
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the evolvability of C.18 Let rt be a predicate such that rt((x, y)) is true iff
at timeslot t an entity l such that (lx, ly) = (x, y) is reproduced (clearly,
reproduced by an entity that resides on a node neighboring (x, y)). We
have that Pr[rt((x, y))] ≤ 1− (3/4)4, where 1− (3/4)4 is the probability for
rt((x, y)) to happen given that there are entities on all neighboring nodes of
(x, y).

Assuming that the density q 6= 1, then we have for all t ≥ 1 that

Pr[Cm evolves at timeslot t]

≤ Pr[∀l ∈ Cm : rt((lx, ly)) ∨ (¬rt((lx, ly)) ∧ (lx, ly) ∈
⋃

t′∈{t−c,...,t−1}

F t′)]

≤
∏
l∈Cm

Pr[rt((lx, ly)) ∨ (¬rt((lx, ly)) ∧ (lx, ly) ∈
⋃

t′∈{t−c,...,t−1}

F t′)]

≤ ((1− (3/4)4) + (3/4)4(1− (1− q)c))|Cm|

≤ α|Cm|,

for some α ∈ (0, 1).
Subsequently, assuming that L0 6= Cm,

Pr[Cm evolves in g(m, 1/ε) timeslots]

= Pr[
∨

t∈{1,...,g(m,1/ε)}

Cm evolves at timeslot t]

≤ α|Cm|g(m, 1/ε)

As such, if |Cm| ≥ m then the probability of success decreases exponen-
tially with m. Let us summarize by saying that if the elements of a sequence
{Cm} are evolvable with a probability that is decreasing at most polynomi-
ally with m then |Cm| ∈ O(logm). This result is a consequence of the cost
that we have to pay (in terms of probability) in order to keep the entities
fed. It is still possible though for Cm of size O(logm) to be evolvable.

Specifically, given the above result the strongest thing that we may pos-
sibly prove is that |Cm| ∈ O(logm) and |Cm| ≤ ckm is enough to render C
evolvable. However, a simple consideration will indicate this to be unlikely.
Consider c = 1, m = 1024, |Cm| = log2m = 10, and say that we have just
enough food, i.e., km = 10. Thus, we ask whether Cm can evolve in a place
where we have 106 nodes and there is only food for 10 of them. A good guess

18Note that this restriction, which practically says that there is at least the bare mini-
mum of food on the grid in order to sustain as many entities as those in Cm, was enough
to give us evolvability when we did not take m into account.
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would be that we cannot get evolvability in this setting; we would instead
need to boost km, and probably have it in Ω(m2).

In order to address this questions we made some simulations of the sys-
tem.19 Those indicate the following. It turns out that the system has a
threshold behavior. Specifically, there is a threshold value, say q∗, for q that
determines whether the probability that everyone dies is negligible or it is
close to 1. For example, for c = 1 this threshold value of q lies in the interval
[0.59, 0.6]. Naturally, for larger values of c the value of the threshold q∗ gets
smaller and smaller.

Simulations show that the density of alive entities in L0 does not make
much difference. Moreover, the density of alive entities, say qA, for a specific
q converges as m gets larger.20 The fact that F t

m is uniformly random and
St.L ⊆ F t

m for all timeslots t, indicates that the system reaches a state where,
in the long run, every configuration of density roughly equal to qA is pretty
much as probable as any other. Or, more precisely, there exists some small
real number η such that the great majority of the configurations have density
in [qA − η, qA + η]. This is the key point in our analysis here.

We have that as m gets larger η gets smaller and the number of nodes on
the grid gets larger. As such, we may regard the system to have a behavior
where at each timeslot, each node carries an alive entity with probability
qA, independent from the other nodes.21 And in this setting the probability
that a certain entity class |Cm| evolves is (qA)|Cm|. Since |Cm| ∈ O(logm) we
have that the probability of evolution decreases at most polynomially with
m. All in all, the above indicate that for all Cm such that |Cm| ∈ O(logm),
if km > m2q∗ then Cm is evolvable.

7.3.3 Among the Oases

Now we consider the scenario where there are oases along the grid. There
is always plenty of food in an oasis but there is not always life. While in
those parts of the grid where there are no oases, there only exist some scarce
resources of food. The latter scarce resources may be used by entities so that
life may propagate from one oasis to another. We want to see here to what
extent this propagation can be successful.

Let us see now how we will model this situation. Our food-process will

19We simulated the system for grids of dimensions 30 × 30 to 100 × 100, and food
processes in line with case (ii) for various food densities q between 0 and 1.

20For example, for c = 1, qA converges to roughly 0.08 for q = 0.6, to roughly 0.44 for
q = 0.7, to roughly 0.66 for q = 0.8, and to roughly 0.84 for q = 0.9.

21We remind the reader that km > m2q∗ can guarantee to us that qA is a positive
probability.
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be a hybrid of the two food-processes of cases (i) and (ii). Specifically, there
will be some nodes on the grid that always have food (as in case (i)), corre-
sponding to the oases, while all the rest of the nodes will have food randomly
dropped on them (as in case (ii)).

Precisely speaking, we define an oasis as follows. A set of nodes X ⊆ Gm

is an oasis if it is maximum among all the subsets Y of Gm such that for
all timeslots t we have F t ∩ Y = F t+1 ∩ Y , i.e., there is always food on the
nodes of Y , and for (x, y), (x′, y′) ∈ Y we have Q(Y, (x, y), (x′, y′)), i.e., Y is
neighbor-connected. Note that once an oasis is filled with life, it will remain
so intermittently.

Let Om ⊆ Gm denote the set of nodes that are in oases. We will only
consider the evolvability of classes Cm such that Cm = Om. We have for all
timeslots t that F t ∩ Om = F t+1 ∩ Om, while F t \ Om is chosen among all
subsets of Gm \Om of size km = dq(m2 − |Om|)e.

We will consider the same evolutionary mechanism as in the previous sec-
tion. Moreover, we will focus only on settings where the number of different
oases in Om is in o(m), i.e., sublinear. The latter assumption allows us to
simplify our problem as follows. A class of oases is evolvable (in the sense
that the class of entities on those oases is evolvable) if the most difficult
to evolve among those oases is evolvable. This is because if the latter is
evolvable then we can always boost the probability for the rest of the oases
to evolve by using a polynomial g in |Cm|, that determines the number of
timeslots available to the process, that increases faster. Moreover, following
the results of Section 7.3.2, it is trivial to see that an oasis is evolvable if one
of the entities in it is evolvable.

We will assume that there is at least one alive oasis at the initial state,
i.e., |L0∩Om| 6= 0 which stands for the fact that there exists at least one alive
entity in the oasis. Now, we will focus on the difficult case where there is an
oasis that is very far from any other live oases. Given our discussion above
this problem boils down to the following. Consider Om such that |Om| = 2,
|L0 ∩ Om| = 1. Let us denote by l0 the entity that is in L0 ∩ Om and l the
other entity. We want to see whether l can evolve. In order to make the
problem difficult, i.e., consider an oasis that is maximally difficult to evolve,
as we mentioned above, we assume that the Manhattan distance between the
nodes (lx, ly) and (l0x, l

0
y) is in Θ(m).22

Ultimately, what we want to find is whether having l0 as a source of

22Note that the analysis of this setting will give us the behavior of the system, in terms
of evolvability, for all situations where there is at least one oasis Θ(m) steps away from
the entities in L0. This is because if there exists an oasis in Om that is Θ(m) steps away
from L0 then, since |Om| ∈ o(m), there must exist some oases in Om that are Θ(m) steps
away from all the other oases in Om.
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life, the scarce food-process between the two oases is enough to make life
propagate and reach l with a non-negligible probability. Clearly from our
simulation results in the previous section, we have that if km > m2q∗, where
q∗ is the same threshold (which is a function of c) as in the previous section,
then l is evolvable. To see that, note that in the case we are considering now
evolvability is easier than in the case before. This is because apart from the
random food-process, now we also have at least one entity that never dies;
since we assumed that |L0 ∩Om| 6= 0.

The next question is whether we can expect better evolvability results,
than in the previous section, since there are now oases and entities in an
oasis never die. Specifically, can we expect here evolution of classes even
with smaller density q (of the random food-process) than in the previous
setting? Clearly, the presence of oases boosts the probability for evolution,
however, asymptotically it makes no difference.23 The main impediment
in the evolution of entities in the previous setting was that life could not
propagate large distances if the density was not large enough. In our setting
here, as m gets larger, distances grow large as in the previous setting and
the same impediment holds here too.

23Note that this only holds in the case where |Om| ∈ o(m), and there exists an oasis in
Om that is Θ(m) steps away from all other entities in L0, which roughly means that there
is an oasis that is quite far away from all other oases where there is life and as such it is
very difficult for the said oasis to evolve. Otherwise, the problem gets easier and we can
expect better results.
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Chapter 8

Conclusion

Our work borders on philosophy since it is interested in the analysis of a
specific notion, that of evolvability. However, we have not tried to answer
what evolvability is. Our aim was more practical. We wanted to assist in the
formalization of the notion when a specific application is in mind.

Our starting point was Valiant’s framework where he formalized the evolv-
ability of functions under a certain model of evolution, with the assumptions
that there exists an ideal function and that evolution is executed by an
algorithm that has access to an oracle which provides the algorithm with
examples of the said ideal function.

Trying to be consistent with the essence of the workings of evolution,
we did not force our framework to contain oracles and ideal functions. In
general, we did not make very restrictive decisions and even our model for
evolution (the Meta-Model) is a very general one. The reader may have
noticed that in Chapter 6, where we discussed the definition of evolvability
in our framework, our focus was not on how evolvability can be defined on
top of Meta-Model but on how it may be defined on top of an arbitrary model
of evolution.1 The Meta-Model was there only to assist in doing this and if
one wants to use our framework, one does not need to limit herself to using
our Meta-Model as is.

8.1 Future Work

Expanding on the work in Chapter 6, a direction for future work could be to
examine more specializations of our framework. Certain specializations could

1The only hard assumptions we made here was to understand an evolutionary system
as consisting of three parts, namely, life L, environment E, and evolutionary mechanism
M .
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actually give rise to interesting connections, such as the one that Valiant’s
framework does to computational learning. One may also examine other
definitions of evolvability. Maybe certain definitions that are fitting to a
certain type of applications.

Expanding on the work in Chapter 7, the most straightforward direction
for future work is the actual use of our framework in order to analyse spe-
cific evolutionary systems, such as real biological systems or computational
evolutionary systems.

Another interesting project would be to analyse more notions in a manner
similar to the one that we analyzed evolvability here. For example, one may
analyse the notion of sustainability, where, for example, an entity may be
rendered sustainable, under certain conditions, if with non-negligible proba-
bility it can be sustained in the system for a respectable amount of time2.

Taking our last point a bit further, a higher-level direction for future work
could be to investigate which are all those notions, such as evolvability or
sustainability, that may be of interest to biologists. There is the possibility
actually that such work could find something new; if it fails to do that, it
will at least make more concrete the connections between all those notions.

2This ‘respectability’ could be modelled for example by requiring the said amount of
time to be superlinear in the inverse of the accuracy parameter 1/ε.
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Appendix A

Appendix

A.1 Statistical Queries

In this section we introduce some frameworks of computational learning. In
Section 3.1.2 we introduced the PAC learning framework. Here we introduce
the closely related statistical query (SQ) framework and some specializations
of it.

Kearns introduced the statistical query model in [Kea98] as a special
case of PAC learning where the algorithm does not have direct access to the
examples, as returned by the example oracle, but only has access to statistical
queries on the concept f in question.

Precisely speaking, an algorithm has access to f only through the statis-
tical query oracle. The latter, when passed a function ψ : X × {−1, 1} →
{−1, 1} as an argument, returns a value v such that

∣∣ED[ψ(x, f(x))]−v
∣∣ ≤ τ

where τ ∈ [0, 1] is a real number called the tolerance of the query.
The definitions of learnability are identical to that of PAC learning, only

that now the algorithm has access to the statistical query oracle instead of
the example oracle. However, efficiency also requires that τ is bounded from
below by 1/p(n, 1/ε) for some polynomial p.

A.1.1 Specialized Statistical Queries

Let us start by defining the correlational statistical query (CSQ) model which
is of particular interest in connection to Valiant’s evolvability framework. In
this model the function passed to the statistical query oracle is of the form
ψ(x, f(x)) ≡ φ(x)· f(x), where · is multiplication. That is, an algorithm may
only query the correlation of some function φ : X → {−1, 1} to the con-
cept of interest f , where the correlation can be written as ED[ψ(x, f(x))] =
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ED[φ(x)· f(x)]. In computational learning, f is the ideal concept and φ the
current hypothesis.

Feldman [Fel09] also defined L-SQ, an intermediate concept between SQ
and CSQ. The CSQ model, on one hand, restricts the SQ model by only
allowing queries about the correlation between a concept and a hypothesis.
The L-SQ model, on the other hand, restricts the SQ one by only allowing
queries about the L-distance between a concept and a hypothesis. A de-
scription of the notion of L-distance and the definition of the L-SQ model
follow.

In learning theory, a loss function is usually used to formalize the notion
of “closeness”. For functions with range Y , a loss function L is a non-
negative mapping L : Y ×Y → R+. The value of the function represents the
loss suffered because of the distance between its two inputs. Feldman only
considers admissible loss functions L : {−1, 1}×[−1, 1]→ R+ as performance
metrics.1

Feldman defined the class of L-SQ models where the statistical query
oracle is restricted to answering questions about “closeness” according to L
alone. For any admissible loss function L, we define an L-SQ to be a statisti-
cal query which may only query the value of 1−2 ED[L(f(x), φ(x))]/L(−1, 1)
for some φ : X → {−1, 1}. The important quantity here is ED[L(f(x), φ(x))];
the rest of the factors are there to normalize the value of this quantity.

A.2 Remarks in Connection to Certain Bio-

logical Assumptions

A.2.1 Assuming a Static Evolutionary Mechanism

Some skeptics might question the assumption of a static evolutionary mecha-
nism. They may argue as follows. Biology tends to focus on a certain limited
era along the existence of the universe. Specifically, it focuses on that latest
part of it where there has been life on earth. But a more abstract discussion
with philosophical concerns, like our discussion, can start from an earlier
point. One where maybe there was no life or evolutionary mechanisms, and
the latter only came about over time.

In other words, our current evolutionary mechanism may not have been
ever-present and, as such, we may not consider it as static. In the context
of biology this is not such an important concern since biology supports the

1He calls a loss function L admissible if it is efficiently computable, monotone, non-
degenerate, L(1,−1) = L(−1, 1) and L(−1,−1) = L(1, 1) = 0. More details in [Fel09].
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existence of a certain static evolutionary mechanism along a huge timespan,
starting from the time where only unicellular organisms were around. And
that timespan is enough for most concerns of biology. It seems that this
assumption may need to be questioned mainly only when the discussion
reaches into philosophy.

The issue fits in the higher level discussion of the following section.

A.2.2 Using Evolvability to Question Neo-Darwinism

At times neo-Darwinism has been questioned on the basis of evolvability.
In this section we criticize this kind of criticism. Let us start by noting a
couple of examples where this has happened. According to the Irreducible
Complexity [Pen01] argument of the proponents of Intelligent Design, certain
biological systems are too complex to be the result of neo-Darwinism acting
on “simpler” systems. This is one of the main arguments of the creation-
ist community but no backing evidence has ever been brought up that was
publishable in the scientific community.

Moreover, Aaronson [Aar11]2 writes “Interestingly, in a 1972 letter to
Hao Wang (see [130, p. 192]), Kurt Gödel expressed his own doubts about
evolution as follows: ‘I believe that mechanism in biology is a prejudice of our
time which will be disproved. In this case, one disproof, in my opinion, will
consist in a mathematical theorem to the effect that the formation within
geological time of a human body by the laws of physics (or any other laws
of similar nature), starting from a random distribution of the elementary
particles and the field, is as unlikely as the separation by chance of the
atmosphere into its components.’”

Now, let us try to retrace the argument. Roughly, if evolvability was to
be used to question neo-Darwinism, one would assert that the probability
that modern-day animals, or, say, humans evolved from some initial state,
say S, is very small. That is, human evolution, starting from S, implies the
occurrence of a very unlikely event. Nevertheless, in general, in such argu-
ments questioning neo-Darwinism the details of S tend to be only sloppily
specified, if at all. Our main point here is that this latter step is pivotal and
cannot be rushed.

For example, consider the following. Humans have evolved from unicel-
lular organisms (or some other entity, but, for the sake of the argument, we
will stick to unicellular organisms). However, it may not be the process of

2Aaronson included a section on Valiant’s work [Val09] in a text of his [Aar11] wherein
he argues why computational complexity may offer valuable insight into philosophical
issues.
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evolution that gave rise to the latter. As such, on one hand, we may need
different means to determine the existence and form, and the corresponding
probabilities, of those unicellular organisms that could give rise to humans.3

On the other hand, we should not inquire the probability of the evolution of
the human starting from some random initial state, as in Gödel’s argument
above; starting from the latter the probability of humans having evolved
may be small, but this is not necessarily the case on the assumption that
unicellular organisms existed far in the past.

Or consider this. We already know that humans exist. So maybe the
question should be, what is the probability that humans have evolved from
S, given that humans exist (and unicellular organisms too)?4 The fact that
humans exist may already be a very unlikely event, and we cannot argue
that it is not correlated with the existence of other favorable conditions that
were crucial in the emergence of humans. For example, what if neo-Darwinian
forces are very common, i.e., systems where those forces could manifest them-
selves have often come into existence, but those other additional favorable
conditions did not came about as often, and that is why humans did not
evolve in the past? What if existence had its chance again and again (and in
countless different locations in the universe) to give rise to humans, except
that it was not lucky enough to have those favorable conditions around? It
is not at all simple to rule out such a possibility.

The above should be enough to demonstrate that there tends to be a
certain amount of naivity in arguments questioning neo-Darwinism on the
basis of evolvability. The reason being that it tends to be problematic to
determine the appropriate conditioning for the event that neo-Darwinism
underlies evolution.

A.3 Pseudocode

In Section 5.1 we use some pseudocode to clarify some processes of the Meta-
Model. Here we give a few notes on how to read this pseudocode.

We use pseudocode to define certain functions. The first line of each
definition has an IN and an OUT statements defining the type of the input
and the output, respectively, of the function. The second line has the name
of the function and in parentheses the variable names used for its input
components.

3Regardless of whether this is a matter that is under question in the context of biology.
4This concern here is related to the “anthropic principle” [HK13] that states that our

observations are a result of our existence, or in other words, our understanding of our
environment is filtered by the limitations and peculiarities of our own nature.
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The next lines contain the body of the function. If we do not want to
define the exact workings of the function yet, the body has the following
form:

. . .

While, if we do want to define the body we use some additional constructs.
We use← as the assignment operator; it assigns objects or values to vari-

ables of the corresponding type. We use for each as our looping construct;
“for each x ∈ X” results in an iteration through all elements of X with x
being the iterator. Lastly we use if-then-else as our conditional construct;
consider “if c then b1 else b2”: c must have a boolean value, if it is TRUE
then b1 is executed, otherwise b2 is executed.

A.4 Details of Section 7.1

Consider the setting of the example in Section 7.1. Let us consider the quant-
evolvability of an arbitrary finite entity class C. We can get the following
trivial lower bound on the probability of the evolution of C.

Given that |L0| ≥ 1 we have that the probability that |C| evolves is lower
bounded by

b(0)pm(1− d(1))|C|
|C|−1∏
i=1

b(1)(1− pm)(1− d(1))|C|−i ≥ (A.1)

pm(pb(1− pm)(1− pd))|C|.

The quantity in (A.1) is the probability that the following happens. A white
moth in L0 gives birth to a black moth (happens with probability b(0)pm)
and the black moth survives at least |C| timeslots (happens with probability
(1 − d(1))|C|). At the next timeslot this black moth gives birth to another
black moth that survives for at least |C| − 1 timeslots. At the next timeslot
one of black moths give birth to another black moth that survives at least
|C| − 2 timeslots, and so on. After |C| timeslots we will have that S|C|.L
contains at least |C| black moths.
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