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Chapter 1

Introduction

The paper is self contained. It
uses forcing - this can be
eliminated easily but for me this
has no point.

Saharon Shelah
Around Classification Theory of

Models

In set theory, there are various transformations between models. In particular, forcing, inner
models, and ultrapowers occupy a fundamental place in modern set theory. Each of these play a
different role. For example, forcing and inner models are typically used to establish the consistency
of statements and the consistency strength of statements, and ultrapowers are typically used to
define various large cardinal notions, which play the role of a barometer for consistency strength of
statements.

Each of these techniques however, can be seen as a process for starting with one model of set
theory, and obtaining another. Indeed, it is this aspect of these techniques that we are interested in
in this thesis. Each such method of transforming models of set theory lends itself to analysis by the
techniques of modal logic [Ham03, HL08], which is the general study of the logic of processes. It is a
recent trend in set theory that research has focussed on these modal aspects of models of set theory.
This is partly due to philosophical concerns, such as Hamkins’s multiverse view [Ham09, Ham11],
Woodin’s conditional platonism [Woo04], Friedman’s inner model hypothesis [Fri06], but also due to
mathematical concerns, such as to account for the curious fact that, in some sense, these techniques
that we have mentioned are essentially the only known techniques that set theorists have to prove
independence results.

Concretely, if we fix a particular technique of model-transformation, we may reasonably ask of a
given model of set theory questions of the following nature: “which statements are always true in all
models that we shall construct by using this technique?”; “which statements can we always change
the truth value of in any model that we shall construct by using this technique?” etc. Questions
of the first sort are the topic of study of the area of set theory which is known as absoluteness,
whereas questions of the second sort are the topic of study of the area of set theory known as
resurrection. However, in both these cases, the questions we are asking talk about specific sentences
in the language of set theory. That is, while the answers to these questions change depending on
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the type of model-transformation technique that we are considering, they are not purely questions
about these techniques.

In this thesis, we are (for the most part) not interested in this interplay between a model-
transformation technique and sentences in the language of set theory, but instead, in the purely
modal side of these techniques. That is, we are interested in understanding the general principles
that are true of these techniques when they are seen as processes. As an example of the kind of
questions that we shall concern ourselves with, consider: “If ϕ is a statement that is true in some
model that we construct by using this technique, and ψ is another statement that is true in some
model that we construct by using this technique, then is it the case that we can construct a model
where both ϕ and ψ are true by using this technique?”, or “If ϕ is true of all models that we shall
construct by using this technique, is ϕ already true?”. Note that the answers to these questions do
not depend on what ϕ and ψ are, but only on the nature of these model-transformation techniques.

These questions were first considered by Hamkins in [Ham03]. In particular, Hamkins showed
that by interpreting the modal � operator by “in all forcing extensions” and the ♦ operator by “in
some forcing extension” one could interpret modal logic in set theory in a very natural way, and
using this interpretation, study the technique of forcing through the modal lens. Hamkins used
this interpretation to express certain forcing axioms known as maximality principles. These axioms
were meant to capture the essence of models where a lot of forcing had already occurred, or to
quote Hamkins, “anything forceable and not subsequently unforceable is true”, and relativisations of
‘forceable’ to specific types of forcing notions. It is easily seen that modal logic provides an elegant
way of expressing these statements using the scheme ♦�ϕ � ϕ. Hamkins also gave a lower bound of
S4.2 for the modal logic that arises from forcing, the modal logic of forcing, in this paper. Hamkins’s
work on maximality principles has had many follow ups, the earliest ones being [Lei04] and [HW05].

The first paper devoted entirely to the modal logic of forcing was [HL08]. In particular, they
were able to show that the modal logic of forcing is S4.2. They also studied various generalisations of
the modal logic of forcing, such as the modal logic of forcing with parameters, and developed some
techniques which modularise the process of calculating the modal logics of set-theoretic constructions.

In addition to this, in [HL08], various relativisations of modal logic of forcing were also considered.
For example, if we fix a definable class of partial orders P, and a definition for it, we may interpret
the � operator as “in all forcing extensions obtained by forcing with a partial order in P” and the
♦ operator as “in some forcing extensions obtained by forcing with a partial order in P” and ask
what the modal logic so obtained, denoted by MLP , is. This line of investigation is the main topic
of study of [HLL], where for many natural classes P, upper and lower bounds are given for their
modal logic. We continue this line of enquiry in this thesis. In particular, we take P to be the class
of ccc-partial orders, and we study their corresponding modal logic, MLccc. We are able to improve
the upper bound for MLccc which was obtained in [HL08]. In order to do this, we generalise the
method found there from the case of a single ω1-tree to the case of an arbitrary finite number of
ω1-trees. Along the way, we obtain a characterisation of Aronszajn trees to which a branch can be
added by ccc forcing which is interesting in its own right, and which also raises some questions of
independent interest.

Another different direction that we pursue is that of looking at a different technique for relating
models, namely that of taking definable-with-parameters inner models. The germs of this endeavour
can be found in [HL13], where the modal logic of the relation of being a forcing ground1 is studied.
We are able to compute the exact modal logic of this relation, though this modal theory was not one

1This is the converse of the relation of being a forcing extension.
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which had been considered in this area before. We obtain this theory by adding an extra axiom to
the well-studied modal theory S4.2 which captures the property of L, Gödel’s constructible universe,
being in a sense the minimal model of ZFC. Our proofs strongly rely on the results from [HL13].

A third concern of ours relates to a technical question raised by a mistake in the literature.
In [HL08], a proof of the main theorem contained a gap as was pointed out by Jakob Rittberg in
[Rit10]. As Hamkins and Löwe had given two proofs of this main theorem (a detailed version of the
second proof can be found in [HLL]), the result continued to hold, but the gap that Rittberg pointed
out was interesting in its own right: in order to construct an arbitrarily large family of mutually
independent buttons and switches (see Section 3.4 in Chapter 3), Hamkins and Löwe implicitly
assumed that in any generic extension M of L, for any natural number n > 0, if ℵLn is still a cardinal
in M , then there is a generic extension of M in which ℵLn is not a cardinal any more, but no other
cardinals are collapsed. As Rittberg pointed out, the standard partial order for collapsing cardinals,
the Lévy collapse, requires some cardinal arithmetic asssumptions to ensure that no other cardinals
are collapsed. Indeed, for the case of n = 2 already, if 2ℵ0 > ℵ2 in M , then the Lévy collapse,
Lev(ℵ1,ℵ2), can be shown to collapse ℵ3. As Hamkins and Löwe had not specified any method for
collapsing cardinals which behaved in the way they desired, their proof had a gap. However, this
does not rule out the possibility that there are other partial orders different from the Lévy collapse
which have this behaviour.

Question 1. Let n > 1 be a natural number. M be a generic extension of L sucn that M �“ℵLn is a
cardinal”. Then, is there a generic extension N of M such that N �“ℵLn is not a cardinal” and such
that for all other natural numbers m > 1, if M �“ℵLm is a cardinal”, then N �“ℵLm is a cardinal”?

While researching this question, we found that similar questions had already been considered
by Abraham in his PhD thesis. In particular, in [Abr83], he had given a method for collapsing the
second uncountable cardinal in any model of set theory without collapsing any other cardinals. We
give an exposition of his intricate method.

The organisation of the thesis is as follows: in Chapter 2 we introduce some notation that we
will use throughout the thesis. We will also mention what we assume of the reader. In Chapter 3
we show formally how, given a relation between models of set theory satisfying certain properties,
modal logic can be interpreted in set theory. We then go over the basic techniques that are used to
calculate this modal logic. While most proofs are not hard, the most tricky issue we face while doing
this interpretation is the metamathematical one of formalising these statements in the appropriate
language.

In Chapter 4, we study the modal logic of inner models. In particular, we define a certain modal
theory, prove some characterisation results for it, and then piggyback on the results of [HL13] to
show that this modal theory is exactly the one corresponding to the modal logic of inner models.
The result which allows us to do this is that the relation ‘being a forcing ground’ is an initial segment
of the relation ‘being a definable-with-parameters inner model’.

In Chapter 5, we study the modal logic of ccc forcing. We introduce a class of frames which
have not been studied in the literature before, and show how the modal logic of ccc forcing, MLccc,
is contained in the modal logic characterised by these frames. We use this to show that MLccc is not
contained in a certain natural modal theory. Our main tools for showing that MLccc is contained in
the aforementioned modal logic is the analysis of the effect on ccc forcing on the Aronszajn-ness of
ω1-trees. We also prove a (to us) surprising negative result which we found while attempting to
generalise the techniques of this chapter.
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In Chapter 6, we give an exposition of Abraham’s technique to collapse ℵ2. We start off by
showing why the standard partial order does not work, and then explain how Abraham gets around
this obstacle. We also discuss some obstacles with generalising his techniques.
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Chapter 2

Preliminaries

For the most part, all of the notation that are used in this thesis is standard. In particular, we
follow [Jec03] for set-theoretic notation, and [BdRV02] for modal-logical notation.

As far as possible, we have tried to keep each chapter as self-contained as possible. This chapter,
where we give the set-theoretic and modal-logical background, and Chapter 3, where the basic
theory of the modal logic of set-theoretic constructions is exponded, are sufficient background to
read Chapter 5 and Chapter 4, which form the core of the thesis. In particular, neither of these
chapters depends on the other.

There are two common threads that run throughout this thesis: modal logic, and forcing. Even
in Chapter 4 where we discuss the modal logic of inner models, the set-theoretic side of the main
proof still relies heavily on forcing. Similarly, even in Chapter 6, where an exposition is given of
a paper that was written well before the connections between modal logic and set theory that
this thesis primarily concerns itself with were discovered, we only found this paper when doing
background research on a question that can most naturally be expressed with the language of modal
logic.

In any chapter where modal techniques going beyond what is discussed in this chapter are
required, sections of the relevant chapter are devoted to these techniques. All of the techniques that
we use from modal logic are (properly) contained in Chapters 1, 2 and 4 of [BdRV02].

When it comes to set theory, this thesis demands more from the reader. In particular, it is
assumed that the reader is familiar with the first fifteen Chapters of [Jec03]. Barring Chapter 6
where an exposition is given of a research paper, the only results that might not be taught in a
graduate course on forcing that are used are Grigorieff’s Theorem, Theorem 101, the Laver-Woodin
Theorem, Theorem 99, and a theorem of Abraham and Shelah, Theorem 130. In the case of the
first of these, a proof is not given as it can be found in [Jec03, Chapter 15], whereas a proof is
provided of the second one. A complete proof of the third result (or even its corollary which we
use, Corollary 131) would have required far too much space, and unless the proof were sufficiently
detailed, not added anything to the reader’s understanding. Hence, we skipped its proof as well.
We also use a modification of a model of Reitz [Rei07] which was built by class forcing using Easton
support. Explaining the basics of class forcing would have involved much work, so it is assumed
the reader has Chapter 15 of [Jec03] closeby for definitions and basic results. All of the other
set-theoretic techniques that are used are those that would probably be covered in a graduate course
on forcing. For example, the only types of iterated forcing that are used are two-step iterations.
Nonetheless, basic facts that are used are, as far as possible, explicitly stated, even though the reader
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is often referred to [Jec03] for the proofs. In Chapter 6, we use two theorems without supplying a
proof. Neither of these are theorems of Abraham, and while one of them does not add much to the
understanding of the paper, the proof of the other would require the development of quite some
background.

2.1 Notation

All trees, frames, partial orders and Boolean algebras grow upwards. If (S,≤) is a pre-order, then if
it is clear from context the order shall not be mentioned. That is, we will often refer to S, which we
call the carrier set of this pre-order, being a pre-order if there is no scope for confusion. Similarly,
we will often refer to Boolean algebras only by their carrier sets B, implicitly assuming that they
have an ordering ≤, a bottommost element 0 and a topmost element 1. We will also sometimes use
the equivalent characterisation of Boolean algebras in terms of a join ∨ and their meet ∧. When
talking about the powerset algebra of some set S, we shall instead refer to the ordering by the
symbol ⊆ to refer to the containment relation, the bottommost element by the emptyset symbol, ∅,
the topmost element by the set S, the join by the union symbol, ∪ and the meet by the intersection
symbol ∩.

Given a pre-order (S,≤), there is a natural equivalence relation on this structure given by
s ≡ y ↔ x ≤ y ≤ x. Taking the quotient of the pre-order by this equivalence relation gives a
partial order. This partial order shall be denoted by ([S]≡,≤≡), and refer to it as the quotient
partial order of (S,≤). Also, for x ∈ S, the equivalence class of x is denoted by [x]≡. When talking
about pre-orders, we shall refer to this equivalence relation as “the natural equivalence relation”. If
[x]≡ = [y]≡, we say that the nodes x and y are equivalent. A collection C of equivalent nodes of a
pre-order is called a cluster. Call C a complete cluster if it is empty, or if there is a node p ∈ S
such that C = [p]≡. It is easy to see that a pre-order is obtained from its quotient partial order by
adding at each point the corresponding complete cluster of the pre-order.

If (S,≤) is a pre-order, and x, y ∈ S, we say that x and y are comparable if x ≤ y or y ≤ x. We
shall say that they are incomparable if this is not the case. Also, if there is a z ∈ S such that x ≤ z
and y ≤ z as well, then we say that x and y are compatible, denoted x ‖ y. If this is not the case, we
say that they are incompatible, denoted x ⊥ y.

If (S,≤) is a partial order, then a node t ∈ S is a maximal node or extremal node of S if the
only s ∈ S such that t ≤ s is t itself. A node t ∈ S is a penultimate node if there is exactly one
other element s ∈ S such that t ≤ s. Such an element is called a coatom in the literature, though
we do not use this term in this thesis. A node t ∈ S such that for each s ∈ S, t ≥ s is called the
bottom node of S. Note that this implies that any partial order can have at most one bottom node.

Maximal clusters, penultimate clusters, bottom clusters etc are defined in an analogous way.
A tree is a partial order T with a bottom node (which we call the root) such that if p, q ∈ T are

incomparable, then they are incompatible. It is easy to see that the converse always holds for any
partial order. In Chapter 5 we shall be interested in specific types of trees, and we explicate there
exactly what we expect of them.

A linear pre-order is a pre-order where any two nodes are comparable. A directed pre-order
(S,≤) is a pre-order such that for any x, y ∈ S, there is a z ∈ S such that x ≤ z and y ≤ z. Any
linear pre-order is directed.

Let (S,≤) be a partial order, and let p, q ∈ S. Then p is an immediate successor of q if q ≤ p,
and if for very r ∈ S different from these two elements, if r is comparable with both p and q, then
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either r < q or p < r. Also, we define intervals for partial orders in the standard way, with the
standard notation for open, closed, half-closed half-open intervals etc.

If (S,≤) is a partial order, and p, q ∈ S, a path between p and q is a sequence 〈p0, p1, . . . , pn〉 of
some finite length such that for each i, 0 ≤ i < n, pi+1 is an immediate successor of pi, and p0 = p
and q = pn. Note that this implies that no vertex occurs twice in a path between two nodes, since
we are in a partial order firstly, and because no node is an immediate successor of itself. Also, if
p = q, then we call the path from p to p a trivial path. We also define a subpath relation between
paths in the obvious way.

Suborders, subalgebras, complete subalgebras, homomorphisms, isomorphisms are all defined as
in the standard literature, and each of them preserves all of the structure (including constants) of
the object in question. An embedding is an injective homomorphism. Also, if A,B are two objects
of the same type which are isomorphic, then we denote this as A ∼= B. We also use the symbols ]
and

⊎
for disjoint unions.

2.2 Forcing Background

All models of set theory that we speak about in this thesis are transitive well-founded models.
Except for one case, in Section 4.3 in Chapter 4, all forcings are set-forcings. For most of this thesis,
partial orders are used for forcing. The general principle is this: in specific forcing constructions,
partial orders are more convenient, whereas to prove more structural results Boolean algebras are
more convenient.

The one place in this thesis where we have deviated from standard notation is the following:
since a large percentage of the partial orders that are used for forcing in this thesis are trees, the
forcing order is chosen so that when restricted to trees it will agree with the tree-order. That is,
we work Jerusalem-style, so p ≥ q actually does imply that p is stronger than q. This causes some
confusion (especially when it comes to working with Boolean algebras), but hopefully we have
managed to avoid this by forcing with Boolean algebras as little as possible.

We do not go into the definitions of basic forcing theory here, such as the definitions of a name,
canonical name, nice name, the semantic and syntactic forcing relations and their ZFC-provable
equivalence, or the preservation of the axioms of ZFC by passing to a generic extension. It is assumed
that the reader is familiar with the standard method of formalising forcing in ZFC, where the model
does not need to be assumed to a countable transitive model. It is also assumed that the reader
is aware of the standard methods by which a model M of ZFC can prove results about its generic
extension by means of the Boolean truth value of any statement or by means of maximal antichains.

Definition 2. Let P be a partially ordered set. Then P is a forcing poset if the following hold:

(i) There is an element 0 ∈ P such that for each p ∈ P, 0 ≤ p. In this case, we say that 0 is the
least element of P;

(ii) For all p, q ∈ P, if p 6≤ q, then there is an r ∈ P such that p ≤ r, and q ⊥ r. In this case, we
say that P is separative.

We shall sometimes simple call a forcing poset a poset if the context of forcing is clear. When P
is a forcing poset, any p ∈ P is a condition, and for any statement ϕ such that p forces ϕ, we write
that p  ϕ. If each condition p ∈ P forces ϕ, then we write ϕ.
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When talking about Boolean algebras in the context of forcing, they will be atomless and
complete. That is, if we mention that B is a Boolean algebra, then it is implicitly assumed that:

(i) For any b ∈ B \ {0}, there is an a ∈ B such that 0 < a < b.

(ii) For any X ⊆ B, there is an a ∈ B such that for each x ∈ X, x ≤ a, and further, for all other b
having this property, a ≤ b.

In the rest of this section, we mention the basic concepts and facts about forcing that we shall
use.

Definition 3. A collection S of finite sets is called a ∆-system if there is a finite set R, called the
root of the ∆-system, such that for any distinct X,Y ∈ S, X ∩ Y = R.

Lemma 4. (∆-System Lemma) Let S be an uncountable collection of finite sets. Then there is an
uncountable subset T of S such that T is a ∆-system.

Definition 5. Let M be a model of set theory and P ∈M a forcing poset.

(i) A set A ⊆ P in M is called an antichain if for all p, q ∈ A, p ⊥ q. It is maximal if for all B ⊆ P
in M , A ( B implies that B is not an antichain.

(ii) A set D ⊆ P in M is called a dense set of P in M if for all p ∈ P, there is a q ≥ p in M such
that q inD. It is called dense open if further, for each p ∈ P such that p ∈ D, for each q ∈ P
such that q ≥ p, q ∈ D.

Definition 6. Let M be a model of set theory, and P a forcing poset in M . A set G ⊆ P is
M -generic for P if any of the following equivalent conditions are met:

(i) For each maximal antichain A ∈M , G ∩A 6= ∅.

(ii) For each dense set D ∈M , G ∩D 6= ∅.

(iii) For each dense open set D ∈M , G ∩D 6= ∅.

Theorem 7. Let M be a model of set theory, and P a forcing poset in M . Let G be M -generic for
po. Then M [G] is the smallest transitive model of set theory which has the same ordinals as M , and
contains M and G.

Proposition 8. Let M,N be transitive class models of set theory with the same ordinals. Then
M = N if and only if they have the same sets of ordinals.

Definition 9. Given two partial orders P,Q, a dense embedding of P in Q is an embedding f : P→ Q
such that for each q ∈ Q, there is a p ∈ P such that q ≤ f(p).

Proposition 10. Let M be a model of set theory, and in M , let P and Q be forcing posets and
f : P→ Q a dense embedding of P into Q. Let G be M -generic for Q. Then f−1[G] is M -generic
for P.

Theorem 11. Let P be a forcing poset. Then there is a canonical complete atomless Boolean algebra
B (called the completion or Boolean completion of P) such that P densely embeds into B \ {1}, the
partial order of non-unit elements of the Boolean algebra.
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Proposition 12. Let V ⊆ W be models of set theory. Let P ∈ V be a forcing poset. Let G be
W -generic for P. Then G is V -generic for P as well.

Recall that for any model V of set theory and λ an ordinal, Vλ denote the set of elements of V
of rank less than λ.

Proposition 13. Let P ∈ V be a partial order. Let G be V -generic for P. Then for λ large enough,
Vλ[G] is a generic extension of Vλ, and Vλ[G] = (V [G])λ.

Definition 14. Let P be a forcing poset. Let κ be an uncountable regular cardinal.

(i) P has the countable chain condition (abbreviated as ccc) if for any A ⊆ P which is an antichain,
A is countable.

(ii) P is Knaster if for any uncountable subset A ⊆ P, there is an uncountable set B ⊆ A such
that for all p, q ∈ B, p ‖ q.

(iii) P has the κ-cc if for any A ⊂ P which is an antichain of P, |A| < κ.

(iv) P is κ-closed if for every ordinal λ < κ, for every strictly increasing, every increasing chain

p0 ≤ p1 ≤ . . . pα ≤ pα+1 ≤ . . . (α < λ)

of elements of P, there is an element p ∈ P such that for all α < λ, pα ≤ p. If κ = ℵ1, then P
is σ-closed. If the above condition holds for all ordinals less than κ, then P is < κ-closed.

(v) P is κ-distributive if the intersection of κ-many open dense sets of P is open dense. If
κ = ℵ0, then P is σ-distributive. If this condition holds for all cardinals less than κ, then P is
< κ-distributive.

Proposition 15. Let P be a forcing poset. Let κ be a regular cardinal. Then P is κ-distributive
iff forcing with P does not add any new κ-sized subsets of ordinals. If P is < κ+-closed, then it is
κ-distributive.

Corollary 16. Let P be a forcing poset. If P is σ-distributive, forcing with P cannot collapse ℵ1.

Proposition 17. Let P be a partial order and κ a cardinal such that P has the κ-cc. Then by
forcing with P no cardinals greater than or equal to κ are collapsed. In particular, if P has size less
than κ, then forcing with P cannot collapse ck. Al any partial order with the ccc does not collapse
any cardinals.

2.2.1 Cohen Reals

For us, ‘reals’ will be logician’s reals, that is, elements of the Baire space, ωω, of ω-length sequences
of natural numbers.

Recall that the forcing poset Coh to add a Cohen real is the following:

(i) The carrier set of Coh is ω<ω, the set of finite sequences of natural numbers;

(ii) If p, q ∈ Coh, then p ≥ q if q is an initial segment of p, denoted q 4 p.

Also, if p ∈ Coh, then by |p| we denote the length of p.
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Proposition 18. The partial order Coh is Knaster.

If G is a generic for the Cohen poset, then if we define c =
⋃
{p ∈ Coh | p ∈ G}, it is easy to

see by defining the right dense sets that c is an elment of the Baire space as well, and hence a real,
called a Cohen real.

Definition 19. Let V be a model of set theory. Let c be a real. Then c is Cohen over V , if for
each D ∈ V such that V �“D is a dense open subset of Coh”, there is a finite initial segment d of c
such that d ∈ D.

Notice that as this poset consists of finite sequences of ω1, any two transitive models of set
theory compute Coh in the same way. That is, for any two transitive models M,N of set theory,
CohM = CohN . Also, by coding the dense subsets for Coh by real numbers in a suitable way, it can
be shown that they remain dense subsets for Coh even in outer models:

Theorem 20. Let V ⊆W be models of set theory.

(i) Then CohV = CohW .

(ii) If c is Cohen over W , then c is Cohen over V .

(iii) In particular, if V ′ is a model of set theory and c is Cohen over V ′, then c is Cohen over L.

2.2.2 Product Forcing

Definition 21. Let M be a model of set theory and let P,Q ∈M be forcing posets. The product
of these posets, P×Q is the forcing poset defined as follows:

(i) The elements of P×Q are pairs (p, q) such that p ∈ P and q ∈ Q;

(ii) The order is given as follows: if (p1, q1), (p2, q2) ∈ P×Q are two conditions, then

(p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 and q1 ≤ q2.

Note that the from the above definition it follows that P×Q ∼= Q× P.

Definition 22. Let M be a model of set theory and let P,Q ∈M be forcing posets. Let G be a
subset of P×Q. Define the projections of G on P and Q as follows:

G1
∆
= {p ∈ P | ∃q ∈ Q[(p, q) ∈ G]}

G2
∆
= {p ∈ P | ∃p ∈ P[(p, q) ∈ G]}.

Proposition 23. Let M be a model of set theory and let P,Q ∈M be forcing posets. Let G be a
subset of P×Q. Then the following are equivalent:

(i) G is M -generic for P×Q;

(ii) G1 is M -generic for P and G2 is M [G1]-generic for Q.

Moreover, if this is the case, then M [G] = M [G1][G2].
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Proposition 24. Let κ be a regular cardinal. Let P,Q be forcing posets such that P is κ-closed. Let
V [G] be a generic extension by P×Q. Let G1 be the projection of G on Q. Then if S ∈ V [G] is a
subset of κ, then S ∈ V [G1].

Proposition 25. Let P be a Knaster poset and Q a poset with the countable chain condition. Then
P×Q has the countable chain condition.

Definition 26. Let I be an index set. Let P be a forcing poset whose bottom element is 0, and
whose ordering is given by ≤P. The finite support I-product of P is defined to be the partial order∏
I P defined as follows:

(i) The elements of
∏
I P consist of functions f : I → P such that {i ∈ I | f(i) 6= 0} is a finite set.

This set is called the support of f , denoted supp(f).

(ii) The ordering is given as follows: if f, g are two elements of the partial order, f ≤ g if
supp(f) ⊆ supp(g) and for all i ∈ supp(f), f(i) ≤P g(i).

For any p ∈
∏
I P, for any S ⊆ I, the projection of p to S, denoted pS , is defined as follows:

(i) supp(pS) = supp(p) ∩ S;

(ii) For i ∈ S, pS(i) = p(i).

For any subset of S ⊆ I, the projection of
∏
I P to S, denoted (

∏
I P)�S, is defined to be the suborder

of P given by {pS | p ∈ P}.

Note that since P is a forcing poset, then
∏
I P, and (

∏
I P)�S are both seen to be forcing posets.

Also, it is clear that (
∏
I P)�S ∼=

∏
S P. We shall henceforth identify the two.

Definition 27. Let P be a forcing poset, and I and index set. Let G be V -generic for
∏
I P. Let

S ⊆ I. Then G�S is defined to be the set {gS | g ∈ G}.

Proposition 28. Let P be a forcing poset, and I and index set. Let G be V -generic for
∏
I P. Let

S ⊆ I. Then G�S is generic for
∏
S P.

Proposition 29. Let P be a Knaster poset. Let I be any index set. Then
∏
I P is Knaster.

2.2.3 Iterated Forcing

Definition 30. Let M be a model of set theory and P ∈M . Let Q̇ be a P-name such that in any
forcing extension by P, the interpretation of Q̇ is a forcing poset. Then we can define the iteration
of P and Q̇, P ∗ Q̇, as follows:

(i) (p, q̇) ∈ P ∗ Q̇ if p ∈ P and P q̇ ∈ Q;

(ii) (p1, q̇1) ≤ (p2, q̇2) if p1 ≤ p2 and p2  q̇1 ≤ q̇2.

Theorem 31. Let M be a model of set theory and P ∈M a forcing poset. Let Q̇ be a P-name such
that in any forcing extension by P, the interpretation of Q̇ is a forcing poset.

12



(i) Let G be M-generic for P, and let Q = Q̇G be the interpretation of Q̇ in M [G]. Let H be
M [G]-generic for Q. Then

G ∗H = {(p, q̇) ∈ P ∗ Q̇ | p ∈ G and q̇G ∈ H}

is M -generic for P ∗ Q̇, and M [G ∗H] = M [G][H].

(ii) Let K be M -generic for P ∗ Q̇. Then

G = {p ∈ P | (p, q̇) ∈ K}

is M -generic on P, and
H = {q̇G | ∃p ∈ P[(p, q̇) inK]}

is M [G]-generic for Q = Q̇G, and K = G ∗H.

Iterated forcing can also be done with Boolean algebras, and the Boolean algebra analogues of
the above theorem hold true in this case as well. We shall need these facts in Chapter 4.

Definition 32. Let M be a model of set theory, B ∈M a complete atomless Boolean algebra, and
˙cba ∈MB a name such that ‖Ċ is a complete atomless Boolean algebra‖B = 1B. The iteration of B

and C, denoted B ∗ Ċ, is the complete atomless Boolean algebra D obtained as follows:

(i) Let D be the set of all ċ ∈ V B such that ‖ċ ∈ Ċ‖ = 1B. The carrier set of D is then the set D
quotiented by the following equivalence relation

ċ1 ≡ ċ2 if and only if ‖ċ1 = ċ2‖ = 1B.

(ii) If ċ1, ċ2 ∈ D, then ċ1 +D ċ2 is the unique ċ ∈ D such that ‖ċ = ċ1 +B ċ2‖ = 1B. The operations
·D and −D are defined similarly. For the ordering as well,

ċ1 ≤ ċ2 if and only if ‖ċ1 ≤ ċ2‖ = 1B.

Proposition 33. With these operations D is indeed a complete atomless Boolean algebra. Further,
B embeds in D as a complete subalgebra.

Theorem 34. Let M be a model of set theory, and let B and D be complete atomless Boolean
algebras such that B is a complete subalgera of D. Then in MB, there is a Ċ such that

‖Ċ is a complete Boolean algebra‖ = 1B,

and such that D = B ∗ Ċ.

Corollary 35. Let M be a model of set theory. If M [G] and M [H] are generic extensions of M
such that M [G] ⊂M [H], then M [H] is a generic extension of M [G].

Theorem 36. Let κ be a regular uncountable cardinal. Let P,Q be forcing posets. Then P ∗ Q̇ has
the κ-cc iff P“Q̇ has the κ-cc”.

13



2.3 Modal Logic Background

This section contains a concise introduction to the parts of modal logic that will be used in this
thesis. Unless explicitly mentioned, proofs of all of the statements mentioned in this section can
be found in any of the standard textbooks [BdRV02, CZ97]. The following are some well-studied
modal axioms:

K �(ϕ � ψ) � (�ϕ � �ψ)

Dual ¬♦ϕ↔ �¬ϕ
T �ϕ � ϕ

4 �ϕ � ��ϕ
.2 ♦�ϕ � �♦ϕ
.3 (♦ϕ ∧ ♦ψ) � ♦[(ϕ ∧ ♦ψ) ∨ (♦ϕ ∧ ψ)]

5 ♦�ϕ � ϕ

In this thesis a modal theory, will be a collection of modal axioms which are closed under modus
ponens, necessitation, and substitution. Any such modal theory is then completely described by
the axioms which generate it, and this is how modal theories will be referred to in this thesis. All
the modal theories discussed in this thesis will in fact be normal. That is, the axioms K and Dual
axioms will be in this theory. Hence, whenever we talk about a modal theory, the reader should
assume that we are talking about a theory which has all of these properties.

The following are some well-studied modal theories:

KDual = K + Dual

TKDual = K + Dual + T

S4 = K + Dual + T + 4

S4.2 = K + Dual + T + 4 + .2

S4.3 = K + Dual + T + 4 + .3

S5 = K + Dual + T + 4 + 5.

We point out that in the literature KDual and TKDual are often referred to simply as K and T
respectively. It is not very hard to see that S4 ` 5 � .3 and S4 ` .3 � .2, and therefore these theories
are linear, in the sense that:

KDual ⊆ TKDual ⊆ S4 ⊆ S4.2 ⊆ S4.3 ⊆ S5.

The standard notion of semantics for modal logic is that of Kripke models, which consist of an
underlying set called the set of worlds or nodes, and an order on the elements of this set, called
the accessibility relation (the two of these together are called a frame), and for each element of
the set of nodes, a valuation for each of the propositional variables. The modal operators are then
interpreted using the ordering. Given a Kripke model, its frame is referred to as the underlying
frame of the model.

If F is a frame, a modal assertion is valid for F if it is true at all worlds of all the Kripke models
having F as a frame. If C is a class of frames, a modal theory is sound with respect to C if every
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statement from the theory is valid on every frame in C. A modal theory is complete with respect to
C if every statement which is valid for every frame in C is in the theory, or equivalently, if for any
statement ϕ not in the theory, there is a model based on a frame in C and a node in the model which
satisfies ¬ϕ. Note that this is called weakly complete in [BdRV02]. A modal logic is characterised by
C if it is both sound and complete with respect to C. If M is a Kripke model, w a node of the frame,
and ϕ a modal formula, if ϕ is true at w then we write M,w  ϕ. Otherwise we write M,w 6 ϕ. If
ϕ is valid on M , we write this as M � ϕ.

Another very important notion that we will use throughout the thesis is the following:

Definition 37. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two Kripke models. A non-empty
relation Z ⊆ W ×W ′ is called a bisimulation between M and M ′ if the following conditions are
satisfied:

(i) If wZw′, then w and w′ satisfy the same proposition letters;

(ii) If wZw′ and Rwv, then there exists v′ ∈W ′ such that vZv′ and R′w′v′;

(iii) If wZw′ and R′w′v′, then there exists v ∈W such that vZv′ and Rwv.

In this case, we say that M and M ′ are bisimilar. Also, if w ∈W and w′ ∈W ′ are such that there
is a bisimulation Z between M and M ′ such that wZw′, then we say that w and w′ are bisimilar
nodes.

Proposition 38. Let M and M ′ be bisimilar Kripke models, and let w ∈ W and w′ ∈ W ′ be
bisimilar nodes. Then for each formula ϕ, M,w  ϕ if and only if M ′, w′  ϕ. Consequently, if
two Kripke models are bisimular, then the set of all formulas which are valid on them is exactly the
same.

Proposition 39. Let M and M ′ be bisimilar Kripke models. Let M ′′ be another Kripke model.
Then M and M ′′ are bisimilar if and only if M ′′ and M ′ are bisimilar.

The modal theories we have mentioned are characterised by some very natural classes of finite
frames. In Chapter 4, we shall see a method for proving such results, the method of canonical
models (see Definition 71).

Theorem 40. The modal logic KDual is characterised by the class of all finite frames.

Theorem 41. The modal logic TKDual is characterised by the class of all reflexive frames.

Theorem 42. The modal logic S4 is characterised by the class of finite pre-orders.

Theorem 43. The modal logic S5 is characterised by the classs of finite equivalence relations with
one equivalence class.

Theorem 44. The modal logic S4.3 is characterised by the class of finite linear pre-order frames.

The first half of the following theorem is from [HL08], whereas the second half is standard.

Theorem 45. The modal logic S4.2 is characterised by the class of finite pre-Boolean algebras as
well as by the class of finite directed pre-orders.
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Using these characterisation results, we can prove for example that each of the containments
between these logics that we mentioned above is strict.

Definition 46. Let M = (W,R, V ) be a Kripke frame. Let w be a node in M . Then the submodel
of M generated by w (also called the submodel of M rooted at w), M [w] = (W ′, R′, V ′), is the
following Kripke frame:

(i) The set of worlds is the smallest set W ′ ⊆ W such that w ∈ W ′, and for all w′ ∈ W ′, if v ∈ W
is such that Rw′v, then v ∈W ′;

(ii) The relation R′ is the restriction of R to W ′;

(iii) The valuation V ′ is the restriction of V to W ′.

If F is a Kripke frame, and w is a node in F , we can similarly define the subframe of F generated
by w (also called the subframe of F rooted at w, F [w].

Proposition 47. Let M be a Kripke frame, and w a node in M . Then for each node v in M [w],
for each formula ϕ,

M, v  ϕ iff M [w], v  ϕ.

Theorem 48. Let F be a class of frames, and Λ a modal theory. Let F ′ be the class of all rooted
subframes of frames in F . Then F ′ is sound and complete with respect to Λ if and only if F is.

Corollary 49. Let F be a class of frames such that the class of all rooted subframes of frames in F
is contained in F . Let Λ be a modal theory. Then F characterises Λ iff the subclass of all rooted
frames in F characterises Λ.

We note that all of the classes of frames that we will consider in this thesis are closed under
rooted subframes.

Definition 50. Let (W,R) be a rooted finite directed partial order. Let r be the root of W , and t
the top node. Then the unravelling of (W,R) is the partial order (U,≤U ) obtained as follows:

(i) U is the set of all paths from r to w, for w ∈W .

(ii) If u, v ∈ U , then u ≤U v if u is a subpath of v.

Further, if M = (W,R, V ) is a Kripke model based on (W,R), then the unravelling of M ′ is the
following Kripke model:

(i) The underlying frame of M ′ is the unravelling (U,≤U ) of (W,R).

(ii) The valuation V ′ is defined as follows: If u ∈ U is a path from r to some w ∈ W , then for
each propositional variable p,

M,w  p iff M ′, u  p.

Apart from these basic results, whenever more specific results from modal logic are needed in
some chapter, we will prove those results in that chapter.
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Chapter 3

Interpreting Modal Logic in Set
Theory

This chapter serves as an introduction to the modal logics of set-theoretic constructions. In
Section 3.1, we show formally how, given a relation Γ between models of set theory, modal logic can
be interpreted in set theory using Γ. We then give an approach to calculating this modal logic by
splitting up the task into one of finding upper and lower bounds for it. The lower bounds involve
proving general structural results about Γ, which we shall see in Section 3.2, whereas the upper
bounds involve finding special models M of set theory such that the subrelation of Γ generated
by M can be ‘nicely described’, which we shall see in Section 3.3. The operative definition of
‘nicely described’ requires the notion of a Γ-labelling, Definition 56, of a frame over a model of set
theory. The usefulness of this notion is witnessed by the next theorem, Theorem 57, which shows
how Γ-labellings of frames over a given model of set theory allow us to give upper bounds on the
Γ-interpretation of modal logic of this model. In the next section, Section 3.4 we establish some
useful techniques for obtaining upper bounds in this way. Finally, in the last section, Section 3.5,
we consider the example of ccc-forcing and use it to demonstrate the how our techniques work.

3.1 The Basic Setup

Let Γ be a relation between models of set theory. In this section we show how modal logic can
be interpreted in set theory using this relation. In order to do this, let us first develop some basic
vocabulary, and then fix a suitable language in which to do our investigation.

Definition 51. If (M,N) ∈ Γ, then we say that N is a Γ-extension of M . Further, the smallest
collection of models of set theory which contains M and is closed under the Γ-extension relation is
called the multiverse of M generated by Γ.

3.1.1 von Neumann-Bernays-Gödel Set Theory

The metatheory we work in in this thesis is von Neumann-Bernays-Gödel set theory, NBG, as
opposed to ZFC. The main difference between NBG and ZFC is that the former is a two-sorted
theory, with one sort for sets, and another sort for classes. Nonetheless, NBG is a conservative
extension of ZFC, and hence, any statement in the language of ZFC which NBG proves can be proved
in ZFC itself.
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That is, the language LNBG of NBG consists of set variables, which we denote by lower case
letters, and class variables, which we denote by upper case letters. The logical symbols of NBG
are quantifiers, and the relations = and ∈. If A and B are classes, then it cannot be the case that
A ∈ B. However, one may represent a class by a set, and each set is a class. The language of ZFC,
L∈, has the same symbols as LNBG, except that it has no class variables.

The axioms of NBG are the following (note that the names of those axioms which only deal with
sets are in lower case, and those which deal with classes are in upper case):

(i) The following axioms of ZFC: extensionality, union, pairing, powerset, infinity;

(ii) A version of Extensionality for classes, which says that ∀A∀B[∀x(x ∈ A)↔ (x ∈ B)] � A = B.

(iii) A version of Foundation, which says that each non-empty class contains an element which it is
disjoint from;

(iv) Size, which says that a class C is a set if and only if there is no class-bijection between it and
the class of all classes V ;

(v) A version of Comprehension, which says that for any formula ϕ which does not contain any
class-quantifiers, there is a class A such that x ∈ A↔ ϕ(x).

Further, the last item here is the only axiom scheme of NBG, and it can be shown to be equivalent
to a conjunction of finitely many instances of it. Hence, NBG is finitely axiomatisable. See [Men97]
for a detailed introduction to NBG.

3.1.2 The Interpretation

In order to interpret modal logic in set theory, we need to make some assumptions about Γ which
allow us to express the modalities in the language of set theory. Indeed, it was this motivation that
guided our choice of NBG as a metatheory. Given our choice of metatheory (and our motivation of
wanting to express the modalities in this language), it is then natural to restrict our choice of Γ to
those relations between models of set theory which are definable in NBG.

That is, we assume that there is a predicate ϕ(X,Y ) in the language LNBG with two free class
variables X and Y such that if M � NBG, then for any class N ,

N is a Γ-extension of M iff N has the same ordinals as M, and N � NBG, and ϕ(M,N).

Now, for the interpretation itself. Recall that the language of propositional modal logic, L�, has
propositional variables, logical connectives and the modal operators ♦ and �. Now, for any relation
between models of set theory, Γ, which is definable in NBG in the above sense, and any model M
of NBG, any assignment pi 7→ ψi of propositional variables to LNBG-statements in M recursively
extends to a Γ-translation T : L� � LNBG as follows:

T (pi) = ψi

T (η ∧ θ) = T (η) ∧ T (θ)

T (¬η) = ¬T (η)

T (�η) = �ΓT (η),
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where the last line means that T (η) holds in any Γ-extension of M (note that our assumptions imply
that this is LNBG-expressible). In this case, we say that T (η) is Γ-necessary in M .

More generally, an LNBG statement ϕ is Γ-necessary over a model of set theory, written �Γϕ, if
ϕ holds in every Γ-extension of the model. An LNBG statement ϕ is Γ-possible over a model of set
theory, written ♦Γϕ, if ϕ holds in some Γ-extension of the model. We call these the Γ-modalities. It
is easily seen that these modalities satisfy the requirements to define a normal modal logic:

K �Γ(ϕ � ψ) � (�Γϕ � �Γψ),

Dual ¬♦Γϕ↔ �Γ¬ϕ.

An important point to be made here is that in the case that Γ is in fact definable in L∈, that is,
definable in the language of ZFC, and that the assignment pi 7→ ψi sends propositional variables to
L∈-statements, then we can similarly make a translation T ′ : L� � L∈. Here, by definable we mean
the following: for any L∈-statement ψ, there is an L∈-statement ϕ such that

M � ϕ(pψq) if and only if for each Γ-extension N of M,N � ψ,

where pψq is a code for the formula ψ.
To clarify, in this thesis, we will be interested in three types of Γ:

(i) If P is some definable class of forcing notions, with some fixed definition, then the relation N
is a forcing extension of M by some forcing poset P ∈ PM (in this case we say that N is a
P-extension of M).

(ii) If P is as above, then the relation M is a forcing extension of N by some forcing poset P ∈ PN
(in this case we say that N is a P-ground of M , or that N is a P̄-extension of M).

(iii) N is a definable inner model of M with a formula whose parameters are in M .

Of these three, in the first two cases, this modality is indeed L∈-definable. This is easiest to see
in the first case: Here, �ΓT (η) holds in M if and only if

M � ∀B ∈ P, ‖T (η)‖ = 1B,

and clearly the above formula can be expressed in ZFC.
In the case of the second one this follows by the Laver-Woodin Theorem, Theorem 99, which

says that for any model M of ZFC, there is a formula ϕ defining a class of parameters P , and a Σ2

formula ψ such that all grounds of M are definable with this formula ψ from a parameter in P .
Therefore, any results that we prove about the modal logic of P-extensions or about the modal

logic of P-grounds can be proved using ZFC alone. On the other hand, when talking about the
modal logic of inner models, we have no such way to L∈-define the modalities, and in this case,
all of the results that we shall prove shall be in NBG. From now on, we do not focus on these
metamathematical matters, in the hope that the reader will use the above heuristic to gauge which
results can be proved in ZFC alone, and which require NBG.

Now, having done such a translation, we define the NBG-provable modal logic of Γ over M as
follows:

MLMΓ
∆
= {ϕ ∈ L� |M � T (ϕ) for all Γ-translations T : L� � LNBG}.
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Further, we can define the NBG-provable modal logic of Γ as follows:

MLΓ
∆
= {ϕ ∈ L� | NBG proves T (ϕ) for all Γ-translations T : L� � LNBG}.

In the case that Γ is the relation of being a P-extension for some definable P whose definition
we have fixed as well, then we define the ZFC-provable modal logic of P over M as follows:

MLMP
∆
= {ϕ ∈ L� |M � T (ϕ) for all Γ-translations T : L� � L∈},

and the ZFC-provable modal logic of P as follows:

MLP
∆
= {ϕ ∈ L� | ZFC proves T (ϕ) for all Γ-translations T : L� � L∈}.

We can similarly define the ZFC-provable modal logic of P-grounds over M , MLMP̄ , and the
ZFC-provable modal logic of P-grounds, MLP̄ .

Before we proceed, we make an important clarification. In the case that Γ is a definable relation in
some way, for example when it arises from the relation of taking P-extensions for some fixed definable
class of poset (with a fixed definition), then this definition needs to be interpreted appropriately in
each model of set theory. For example if Γ is obtained from the relation of P-extensions, where P is
the class of all ccc-posets, then we first fix a formula ϕ which defines this class, and then (M,N) ∈ Γ
iff there is a P ∈M such that M � ϕ(P) and N is the generic extension of M by P.

To see why this is relevant, note that if T ∈M is a Suslin tree, then there is a ccc-poset Q ∈M
such that in any generic extension N of M by Q, N �“T is not ccc”. See the Specialisation Theorem,
Theorem 136, in Chapter 5 for details.

3.2 Lower Bounds

Having fixed our language, we can now try to understand the procedure of computing MLΓ for some
Γ. The approach we take is to split the problem up into two parts, namely to establish separately
upper and lower bounds for MLΓ. The techniques required for these two parts are quite different,
and we now discuss these.

In the case of lower bounds, general results about Γ are required.

Definition 52. Let Γ be a relation on models of set theory.

(i) We say that Γ is reflexive if for each model M of set theory, (M,M) ∈ Γ. In the case when Γ
is obtained from some class of posets P , this corresponds to a trivial forcing poset being in P .

(ii) We say that Γ is transitive if for any models M1,M2,M3 such that (M1,M2) ∈ Γ and
(M2,M3) ∈ Γ, (M1,M3) ∈ Γ as well. This corresponds to P being closed under finite
iterations.

(iii) We say that Γ is directed if for any models M1,M2,M3 such that (M1,M2) ∈ Γ and (M1,M3) ∈
Γ, there is a model M4 such that (M2,M4) ∈ Γ and (M3,M4) ∈ Γ. The corresponding property
of P is that for any two posets P1,P2 ∈ P , there is a third poset P3 ∈ P such that the Boolean
completions of P1 and P2 both embed as complete subalgebras into the Boolean completion of
P3 (we say that in this case P3 absorbs both P1 and P2).
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There are many natural examples of P for which the corresponding Γ is reflexive, transitive and
directed. For example, when P is the class of all forcing notions, or the class of Knaster posets. This
can easily seen by noticing that any forcing (Knaster) poset stays a forcing (Knaster) poset in any
forcing (Knaster) extension. As observed in [HLL], any P which is transitive, persistent, and closed
under products gives rise to a directed Γ, where P is persistent if in any model V of set theory, for
any P,Q ∈ PV , Q ∈ PV P

. While reflexivity and transitivity are easily satisfied for many natural
classses of posets, directedness is much harder. In particular, as observed in [HL08] and [HLL],
directedness does not hold for any class of posets which contains all ccc posets and is contained in
the class of ω1-preserving posets. This can be seen by noticing that given a Suslin tree T , the two
ccc posets which respectively add a branch to T and specialise T cannot be simultaneously absorbed
by any ω1-preserving poset, see Theorem 67 for details. Hence, when P is the class of ccc posets, or
proper posets, or stationary-set preserving posets etc, Γ is not directed.

The importance of these structural properties is easy to see. The structures whose modal logic
we are studying can be seen as Kripke frames with universes of set theory at the nodes, and the
relations between them given by elements of Γ. It is then obvious that if this relation is, say, reflexive
then if M is a model such that all of its Γ-successors satisfy a certain sentence, them M itself must
satisy this sentence. The next proposition expresses this sort of reasoning.

Proposition 53. Let Γ be a relation between models of set theory.

(i) If Γ is reflexive, then S is valid for MLΓ.

(ii) If Γ is transitive, then 4 is valid for MLΓ.

(iii) If Γ is directed, then .2 is valid for MLΓ.

Proof. Trivial.

In this sense, proving general structural results about Γ allows us to give lower bounds for MLΓ.
In the case of P-extensions for natural classes of posets, it is usually easy to see which of these
structural properties are possessed by this relation. On the other hand, it is harder to give lower
bounds for the P-ground relation. For example, no answer is known to the following fundamental
question from [Rei06]:

Question 54. Let P be the class of all forcing posets. Is the relation of being a P-ground directed
(this modal logic is called the modal logic of grounds)?

A model M of set theory for which the above is true is said to satisfy the axiom of downwards
directedness of grounds (DDG). In all universes in which the truth value of DDG has been calculated,
it has been found to be true.

Indeed, in [HL13], Hamkins and Löwe prove the following theorem (we give a proof of this in
Chapter 4):

Theorem 55. If ZFC is consistent, then there is a model M of ZFC for which the modal logic
obtained of P-grounds (with P being the class of all forcing posets) is exactly S4.2.

If the answer to the above question is ‘yes’, then this result would show that the modal logic of
grounds is exactly S4.2. That is, the only obstacle in the path of showing that the modal logic of
grounds is S4.2 is that the best known lower bounds for this modal logic are S4, and that there is

21



no ZFC-proof of DDG. Indeed, in their proof, Hamkins and Löwe pick a model of ZFC which is a
model of DDG, and such that its ground models have enough structure to attain this lower bound.

We also point out that one might also ask variations of Question 54 about subclasses of the class
of all posets. For example, for the relation of ccc-grounds, or grounds via proper forcing etc.

3.3 Upper Bounds

In this section we explain our main technique to obtain upper bounds for MLΓ. Before we do this,
we fix some notation:

The next definition is a minor generalisation of a notion which was first defined in [HLL]. In
particular, in that paper, the Γ studied were those which arose from transitive forcing classes,
whereas our definition works for any Γ.

Definition 56. Let (F,≤F ) be a Kripke frame. A Γ-labelling of F for a model of set theory W is
an assignment to each node w in F a set-theoretic statement Φw such that

(i) The statements Φw form a mutually exclusive partition of truth in the multiverse of W
generated by Γ. That is, if W ′ is in the multiverse of W generated by Γ, then W ′ satisfies
exactly one of the Φw.

(ii) Any W ′ in the multiverse of W generated by Γ in which Φw is true satisfies ♦ΓΦu if and only
if w ≤F u.

(iii) If w0 is an initial element of F , then W � Φw0 .

The formal assertion of these properties is called the Jankov-Fine formula for F (cf. [HL08]).
The next theorem, which is also a similar minor generalisation of a theorem from [HLL] (which
itself generalises a result from [HL08]), is our main technique to calculate upper bound for MLΓ.
The same proof as in [HLL] suffices.

Theorem 57. Suppose that w 7→ Φw is a Γ-labelling of a finite Kripke frame F for a model of set
theory W and that w0 is an initial element of F . Then for any model M based on F , there is an
assignment of the propositional variables to set theoretic assertions p 7→ ψp such that for any modal
assertion ϕ(p0, p1, . . . , pn),

(M,w0)  ϕ(p0, p1, . . . , pn) iff W � ϕ(ψp0 , ψp1 , . . . , ψpn).

In particular, any modal assertion that fails at w0 in M also fails in W under this Γ-interpretation.
Consequently, the modal logic of Γ over W is contained in the modal logic of assertions valid in F .

Proof. Let w 7→ Φw be a labelling of F for W . Let M be a Kripke model with frame F . For each
propositional variable p, consider the formula

ψp
∆
=

∨
{Φw | (M,w)  p}.

Now, we prove the following more uniform claim that whenever W ′ is in the multiverse generated
by Γ of W , and W ′ � Φw, then

(M,w)  ϕ(p0, p1, . . . , pn) iff W ′ � ϕ(ψp0 , ψp1 , . . . , ψpn).
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We prove this for all W ′ simultaneously by induction on the complexity of ϕ. The atomic case
follows trivially from the definition of the ψp. The Boolean combinations also follow immediately
from this. What is left then is to prove this for the case when there are new modal operators
involved. If W ′ � ♦ϕ(ψp0 , ψp1 , . . . , ψpn) then there is a W ′′ such that (W ′,W ′′) ∈ Γ such that
W ′′ � ϕ(ψp0 , ψp1 , . . . , ψpn). In this case, W ′′ must satisfy some Φu, and then, by the induction
hypothesis, (M,u)  ϕ(p0, p1, . . . , pn). As Φu is true in a Γ-extension of W ′, where Φw is true, it
follows that w ≤F u, and hence, (M,w)  ♦ϕ(p0, p1, . . . , pn).

For the other direction, if (M,w)  ♦ϕ(p0, p1, . . . , pn), then there is a u such that w ≤F u and
(M,u)  ϕ(p0, p1, . . . , pn). Hence, by the induction hypothesis, any W ′ in the multiverse generated
by Γ of W with Φu must satisfy ϕ(ψp0 , ψp1 , . . . , ψpn). Now, for any W ′ where Φw is true, there is an
Γ-extension where Φu is true, it follows that any such W ′ will satisfy ♦ϕ(ψp0 , ψp1 , . . . , ψpn). The
rest is immediate.

Hence, proving upper bounds amounts to being able to describe all of the Γ-extensions of a
model of set theory by statements of set theory, as well as being able to describe which of these
Γ-extensions can be reached by Γ from the other Γ-extensions. A natural way to this is to pick a
well-understood object in some model of set theory M , and then describe the behaviour of this
object in all Γ-extensions of M . We shall see in Theorem 67 a small example of such a method, and
in Chapter 5 we shall see a much more technically involved attempt at using such a method.

3.4 Buttons and Switches

In this section we discuss a slightly different approach to labellings. Whereas the one we just
discussed involved understanding the combinatorial properties of a collection of objects in great
detail, the approach we present here is less ad hoc.

In Section 2.3 of Chapter 2, we say that many standard modal logics, are characterised by
some simple classes of frames. Often, these simple classes have an easy to describe branching
structure. The control statements we define now are an attempt to find this sort of branching
structure in statements of set theory. We note that in [HL08], where this concept was first isolated,
and where the ancestors of the theorems we will talk about in this section were first proved, these
ancestor-theorems were always stated as an equivalence between a modal logic being ‘consistent
with’ some control statements and being contained in some standard modal logic. See for example
[HL08, Theorem 11].

We will now stop mentioning Γ if it is clear from context. Also, in all that follows in this thesis,
our Γ will be reflexive and transitive, so for a model N to be in the multiverse of M generated by Γ
will be the same as for it to be an Γ-extension of M .

Let Γ be a reflexive transitive relation between models of set theory. Let M be a model of set
theory. A set-theoretic statement ψ is a (Γ-)switch in M if both s and ¬s are necessarily possible.
Modally, this amounts to M � �(♦ψ ∧ ♦¬ψ). We will say that a switch is ‘on’ in N if N � ϕ is
true. On the other hand, we will say that it is ‘off’ if N � ¬ϕ. A set-theoretic statement ψ is a
(Γ-)button in M if it is necessarily possibly necessary. Modally, this amounts to M � �♦�ψ. A
button ψ is said to be pushed if �ψ holds. Otherwise it is unpushed. A button is said to be pure in
M if whenever it is true, it become necessarily true. Modally, this amounts to M � �(ψ � �ψ). To
each button ψ we can associate a corresponding pure button �ψ. Often, pure buttons are more
convenient from the point of view of obtaining labellings.

23



A sequence of set-theoretic statements ϕ1, ϕ2, . . . , ϕn is said to be a (Γ-)ratchet of length n in
M if each is an unpushed pure button, each of them necessarily implies the previous, and each can
be pushed without pushing the next. Modally, this amounts to:

¬ϕi
�(ϕi � �ϕi)
�(ϕi+1 � ϕi)

�[¬ϕi+1 � ♦(ϕi ∧ ¬ϕi+1)].

Given such a ratchet, the value of the ratchet in a Γ-extension N of M is the largest i such that
N � ϕi.

Note that a ratchet is unidirectional: The value of the ratchet can only increase as we take
Γ-extensions. This allows us to divide all the Γ-extensions of M into levels, where a model N is in
level i if the value of the ratchet is i in N . We can also generalise this notion to infinite lengths: A
transfinite sequence of set-theoretic statements 〈ϕα | α < δ〉 (possibly involving parameters) is said
to be a ratchet of length δ in M if each is an unpushed pure button, each necessarily implies the
previous, and each can be pushed without pushing the next. The ratchet is said to be uniform if
there is a formula ϕ(x) with one free variable such that ϕα = ϕ(α). Every ratchet of a finite length
is uniform. The ratchet is said to be continuous if for every limit ordinal λ < δ the statement ϕλ is
equivalent to ∀α < λϕα. Any uniform ratchet can be made continuous by reindexing, by replacing
ϕβ by the statement ∀α < βϕα+1. A long ratchet is a uniform ratchet 〈ϕα | α ∈ ORD〉 of length
ORD in M , with the additional property that no Γ-extension of M satisfies all of the ϕα. Hence,
each Γ-extension of M has a well-defined ordinal ratchet value.

We stress here that each of the statements that we are talking about are set-theoretic statements.
That is, they are expressible in LNBG or L∈, depending on the context. A collection S of statements
are said to be (Γ-)independent in M if, necessarily, each of them can be ‘realised’ without affecting
the truth value of the others. Here, by realising we mean the following:

(i) Realising a button amounts to pushing it. So for a button to be independent of a collection
of statements means that we can push it without affecting the truth values of the other
statements.

(ii) Realising a switch amounts to switching it on and off. So for a switch to be independent of a
collection of statements means that we can switch it on and off without affecting the truth
values of the other statements.

(iii) Realising a ratchet is to increase the value of the ratchet by one. So for a ratchet to be
independent of a collection of statements means that we can increase its value by one without
affecting the truth values of the other statements.

The value of these control statements is that they allow us to modularise the process of labelling
frames. That is, we can break down the process of labelling many standard classes of frames to
one of finding a suitable collection of control statements with some suitable dependencies holding
between them. We shall now see some theorems (all of which are from [HLL], except Theorem 61,
which is from [HL08]) which support this claim. We do not give proofs for all of them, but only the
ones that we shall use.
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Theorem 58. If Γ is a reflexive transitive relation between models of set theory having arbitrarily
large finite independent families of switches over a model of set theory M , then MLMΓ (and hence,
MLΓ as well) is contained in the modal theory S5.

Theorem 59. If Γ is a reflexive transitive relation between models of set theory having arbitrarily
long finite ratchets mutually independent with arbitrarily large finite families of switches over a
model of set theory M , then MLMΓ (and hence, MLΓ as well) is contained in the modal theory S4.3.

Proof. Note that by Theorem 44, any modal statement which is not in S4.3 fails on a Kripke model
whose underlying frame is a finite linear pre-order. Then, by Theorem 57, if we can Γ-label each
finite linear pre-order, we will be done. Now, let F be such a frame. Notice that each such frame
consists of a finite increasing sequence of n clusters of mutually accessible worlds. That is, the kth
cluster consists of nk many worlds wk0 , w

k
1 , . . . w

k
nk−1 and the order is given by wkm ≤ wln iff k ≤ l.

By adding dummy copies of worlds in each cluster (this does not affect truth in the Kripke model),
we may assume that each of the clusters have the same size, and further, that this size is 2m for
some natural number m.

Let r1, r2, . . . rn be a ratchet of length n for M which is mutually independent with the m
switches s0, s1, . . . sm−1. We may assume that all of the switches are off. Let r̄k be the statement
that the ratchet value is exactly k. For each j < 2m, let s̄j be the statement that the pattern of
switches is exactly that of the m binary digits of j. For example, if m = 3 and j = 2, then s̄j is
the statement ¬s0 ∧ s1 ∧ ¬s2. Now, with the world wkj where k < n and j < 2m, we associate the
statement Φwk

j
= r̄k ∧ s̄j .

Now, since the ratchet value can never decrease, and any pattern of switches can be realised
without affecting the ratchet value, it is easy to see that if N is in the multiverse of M generated by
Γ, and N � Φwk

j
, then N � Φwl

i
if and only if k ≤ l. Also, since the ratchet value is 0 at M and all

the switches are off, it follows that M � Φw0
0
. Hence, we have shown how to Γ-label any finite linear

pre-order over M with these control statement, so the conclusions follow.

Often it is the case that when we can build ratchets, we can actually build a long ratchet. The
following theorem tells us that in such a scenario, we can get by without considering switches:

Theorem 60. If Γ is a reflexive transitive relation between models of set theory having a long
ratchet over a model of set theory M , then MLMΓ (and hence, MLΓ as well) is contained within the
modal theory S4.3.

Proof. Let 〈rα | α ∈ ORD〉 be a long ratchet over M . As we have already mentioned, we can obtain
a continuous ratchet from this one, so let us assume that this ratchet is itself continuous. By the
prevous theorem, it suffices to show that there are arbitrarily long finite ratchets independent from
arbitrarily large finite families of switches over M . To do this, we divide the ordinals into blocks of
length ω as follows: Each ordinal can be uniquely expressed in the form ω · α+ k where k < ω. We
can think of this ordinal as being the kth element of the αth block of ordinals.

Now, let si be the statement that if the current ratchet value is exactly ω · α+ k, then the ith
binary bit of k is 1. Let qα be the statement that the current ratchet value lies in the interval
[ω · α, ω · α+ ω). It is easy to see that the qα for a ratchet themselves, and the si are a collection of
switches which are mutually independet of this ratchet.
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The next theorem, which is from [HL08], was used by Hamkins and Löwe to show that the
modal logic obtained from the class of all forcing posets is exactly S4.2 in the paper that started
this investigation of the modal logics associated with set-theoretic constructions. We do not give its
proof because in Chapter 4, in the proof of Theorem 95, we shall see a slightly more complicated
version of this argument.

Theorem 61. If Γ is a reflexive transitive relation between models of set theory having arbitrarily
large finite families of mutually independent buttons and switches over a model M , then MLMΓ (and
hence, MLΓ as well) is contained within the modal theory S4.2.

Corollary 62. If Γ is a reflexive transitive relation between models of set theory having arbitrarily
large finite families of mutually independent buttons and switches over a model M , then MLMΓ (and
hence, MLΓ as well) is exactly the modal theory S4.2.

Proof. By Proposition 53, it is clear that S4.2 ⊆ MLΓ. On the other hand, by the previous theorem,
MLMΓ ⊆ S4.2. Hence, we have that S4.2 ⊆ MLΓ ⊆ MLMΓ ⊆ S4.2, and the result follows.

We now present a method from [HLL] which shows that in the case of Γ which are derived from
some definable class of forcing posets P, there is a natural way to extract a Γ-ratchet over L from
P by ‘measuring the distance’ of any other model in the multiverse so obtained from L.

Definition 63. A forcing notion P has essential size δ if the complete Boolean algebra corresponding
to P has size δ and P is not equivalent to any poset Q whose Boolean completion has smaller size.

Definition 64. If W is a generic extension of L, then the forcing distance of W from L is defined
as the least L-cardinal δ such that W = L[G] where G is P-generic over L for a forcing notion P of
essential size δ. In such a case, we write fdL = δ.

Now, it is natural to expect that if we have such a notion of distance from L, then the distance
can only increase if we go to any further forcing extensions. This is the content of the next lemma:

Lemma 65. If M � fdL = δ and H is Q-generic over M for some Q ∈M , then M [H] � fdL ≥ δ.

Proof. Let M [H] = L[G] for some G which is P-generic over L for some P ∈ L, and let B be
its Boolean completion in L. Since L ⊆ M ⊆ M [H] = L[G], by Grigorieff’s Theorem (this is
Theorem 101 in Chapter 4), there is a complete subalgebra C of B such that M = L[C ∩G]. But
now, we had assumed that M � fdL = δ, and therefore, |C|L ≥ δ. Since C is a complete subalgebra
of B, it follows that |B|L ≥ δ.

Theorem 66. Suppose that Γ is obtained from a reflexive transitive class of forcing posets P with
the property that there is a definable proper class C of regular cardinals in L such that in any forcing
extension L[G] by a forcing notion in P of essential size δ, and any larger λ ∈ C, there is a forcing
notion in PL[G] having essential size λ. Then MLL

Γ (and hence, MLΓ as well) is contained in S4.3.

Proof. We construct a long ratchet. For each ordinal α, let wα be the statement “fdL is larger than
the αth element of C”. By the previous lemma, each of the wα is an unpushed button in L. Our
assumptions about Γ and C ensure that in any set-forcing extension L[G], if wα is not satisfied, then
we can force wα ∧ wα+1 with some poset in P. Here, we use the fact that if δ is a regular cardinal,
and |B|L < δ and G is generic for B over L, and C ∈ L[G] is such that |C|L[G] = δ, then |B ∗ Ċ|L = δ,
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which can easily be seen by looking at the definition of B ∗ Ċ. Lastly, since any set-forcing extension
is obtained by a poset of some size, no such extension can satisfy wα. Therefore, 〈wα | α ∈ ORD〉 is
indeed a long ratchet. Now, we apply Theorem 60 to reach our conclusion.

3.5 An Example: ccc Forcing

In this section, we give a demonstration of our techniques by proving a theorem from [HLL] (though
the lower bound of S4 and that S4.2 is not an upper bound was already shown in [HL08]) which
gives some upper and lower bounds for the modal logic obtained from ccc forcing.

Theorem 67. S4 is a valid principle for MLccc, whereas S4.2 is not a valid principle for MLccc.
Also, MLccc is contained in S4.3.

Proof. To see that S4 is valid for MLccc, notice that the class of ccc posets is reflexive and transitive,
and hence by Proposition 53, S4 is valid for MLccc.

For the second part, we give a labelling of the two element fork frame which is a binary tree
with a single root which has two successors. It is then easy to find a modal statement ϕ which is in
S4.2, but not true on a Kripke model based on this frame.

2 3

1

Figure 3.1: The two element fork

The labelling is done as follows: let ϕ be the statement “The <L-least Suslin tree in L is non-
special Aronszajn”. Let ψ be the statement “The <L-least Suslin tree in L is not Aronszajn”. Let χ
be the statement “The <L-least Suslin tree in L is special Aronszajn”. Here, by ‘special’ we mean
this: An ω1-tree is special iff no ccc-poset can add a branch to it. This is not the standard definition,
but is weaker than it. However, by the Specialisation Theorem, Theorem 136, of Chapter 5, we can
specialise (in the traditional sense, and hence in our sense as well) any Aronszajn tree in a ccc-way.
On the other hand, by definition, there is a ccc-poset adding a branch to any non-special Aronszajn
tree. Hence, ϕ � ♦ψ and ϕ � ♦χ, and ψ � �ψ and χ � �χ. It is easy to see then that we can
label this three element frame with these statements.

For the third part, we use Theorem 66. In particular, we define C to be the class of uncountable
successor cardinals of L. We note that for each δ ∈ C, the forcing poset Cohδ, which adds δ many
Cohen reals has essential size δ in L and in all forcing extensions L[G] which are obtained by
set-forcing of essential size less than δ. Hence, the class of ccc posets satisfies all the requirements of
Theorem 66, and hence the conclusion follows.

27



Chapter 4

The Modal Logic of Inner Models

In this chapter we shall investigate the modal logic of inner models. In particular, in Section 4.1, we
shall augment the modal theory S4.2 with an extra axiom to obtain the modal theory S4.2Top, see
Definition 85. We will then show that this theory is sound and complete with respect to a certain
class of frames L, and that the modal logic of inner models of any model of set theory contains
S4.2Top. Next, we will relate the modal logic of inner models with the modal logic of grounds in
Section 4.2. We will then, in Section 4.3, exhibit a certain model of set theory whose modal logic of
inner models is exactly S4.2Top, hence reaching our conclusion. This model will be a modification
of the ‘bottomless model’ of Reitz [Rei07], which was also used by Hamkins and Löwe in their study
of the modal logic of grounds [HL13], and indeed, our approach to this chapter is to modify the
proof of their main theorem to the context of inner models.

4.1 Modal Logic

In this section, we shall prove the results from modal logic that we shall need in this chapter. We
use the method of canonical models [BdRV02, Chapter 4].

4.1.1 Canonical Models

First, we remind the reader of the basic results in the theory of canonical models. The proofs of all
of the results that we mention can be found in [BdRV02, Chapter 4.2]. Let Λ be a normal modal
theory.

Definition 68. A set of formulas Σ is Λ-consistent if there is a node in a Kripke model on which
Σ ∪ Λ is valid. A set of formulas Σ is maximal Λ-consistent if Σ is Λ-consistent and any set of
fomulas properly containing Σ is Λ-inconsistent. If Σ is maximal Λ-consistent, we say that it is an
Λ-MCS.

Proposition 69. Let Λ be a modal theory and Σ a Λ-MCS. Then:

(i) Σ is closed under modus ponens, necessitation and substitution;

(ii) Λ ⊆ Σ;

(iii) For all fomulas ϕ, either ϕ ∈ Σ or ¬ϕ ∈ Σ;
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(iv) For all formulas ϕ and ψ, ϕ ∨ ψ ∈ Σ iff ϕ ∈ Σ or ψ ∈ Σ.

Lemma 70. (Lindenbaum Lemma) Let Λ be a modal theory. If ∆ is Λ-consistent then there is Σ,
a Λ-MCS, such that ∆ ⊆ Σ.

Definition 71. The canonical model MΛ for a modal theory Λ is the Kripke model given by the
triple (WΛ,RΛ,VΛ), where

(i) WΛ is the set of all the Λ-MCS;

(ii) RΛ is the binary relation on WΛ defined by RΛwv if for all formulas ψ, if ψ ∈ v, then ♦ψ ∈ w.
RΛ is called the canonical relation;

(iii) VΛ is the valuation defined by VΛ(p) = {w ∈ WΛ | p ∈ w} for all propositional variables p. VΛ

is called the canonical valuation.

Also, we call the underlying frame F of M the canonical frame of the logic.

Lemma 72. For any modal theory Λ, RΛwv iff for all formulas ϕ, if �ϕ ∈ w then ϕ ∈ v.

Lemma 73. (Existence Lemma) For any modal theory Λ, and any node w ∈ WΛ, if ♦ϕ ∈ w, then
there is a node v ∈ WΛ such that RΛwv and ϕ ∈ v.

Lemma 74. (Truth Lemma) For any modal theory Λ, and any formula ϕ, MΛ, w  ϕ iff ϕ ∈ w.

Theorem 75. (Canonical Model Theorem) Any modal theory Λ is complete with respect to its
canonical model. That is, for any ϕ 6∈ Λ, there is a node w ∈ W such that M, w  ¬ϕ.

From now on, whenever the modal theory is clear from the context, it will not be explicitly
mentioned in the notation of its canonical model. We will also not mention it when talking about
consistent sets, with the understanding that in this context, we will, unless explicitly mentioned
otherwise, always be talking about Λ-consistency where Λ is the modal theory.

Another important notion that we shall need while proving chracterisation theorems is the
following:

Definition 76. A set of formulas Σ is subformula closed if for all formulas ϕ,ψ

(i) If ϕ ∨ ψ ∈ Σ, then ϕ,ψ ∈ Σ;

(ii) If ϕ ∧ ψ ∈ Σ, then ϕ,ψ ∈ Σ;

(iii) If ¬ϕ ∈ Σ, then ϕ ∈ Σ;

(iv) If ♦ϕ ∈ Σ, then ϕ ∈ Σ;

(v) If �ϕ ∈ Σ, then ϕ ∈ Σ.

Definition 77. Let M = (W,R, V ) be a Kripke model, and Σ a subformula-closed set. Let!Σ be
the equivalence relation on the states of M defined by:

w!Σ v iff for all ϕ ∈ Σ, [M,w  ϕ iff M,v  ϕ.]

Note that !Σ is an equivalence relation. The equivalence class of a node w of a Kripke model M
by this equivalence relation will be denoted |w|Σ. The map w 7→ |w|Σ is called the natural map.

Let WΣ = {|w|Σ | w ∈W}. Let Mf
Σ be any model (W f , Rf , V f ) such that:
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(i) W f = WΣ;

(ii) If Rwv, then Rf |w|Σ|v|Σ;

(iii) If Rf |w|Σ|v|Σ, then for all ♦ϕ ∈ Σ, if M,v  ϕ, then M,w  ♦ϕ;

(iv) V f (p) = {|w|Σ |M,w  p} for all propositional variables p.

Then Mf is called the filtration of M through Σ. We will often supress subscripts in the notation.

Theorem 78. Let Σ be a subformula-closed set. Let M be a Kripke model and Mf a filtration of
M through Σ. Let Λ be a set of formulas which is valid in M . Then for all formulas ϕ ∈ Λ

⋃
Σ,

and all nodes w ∈M ,
M,w  ϕ iff Mf , |w|Σ  ϕ.

In particular, all the formulas of Λ are still valid in Mf .

Proposition 79. Let Σ be a finite subformula closed set. Let M be a Kripke model, and let Λ be a
set of formulas which are valid on M . Then, if Mf is a filtration of M through Σ, then Mf is finite
Kripke model such that all the formulas of Λ are still valid in M .

4.1.2 Characterisation Theorems

In this section, we use the techniques developed in the previous subsection to prove some characteri-
sation theorems for some modal logics. Recall that a modal theory characterises a class of frames if
it is both sound and complete with respect to this class of frames. We remind the reader of the
following modal axioms which we have already discussed:

K �(ϕ � ψ) � (�ϕ � �ψ)

Dual ¬♦ϕ↔ �¬ϕ
S �ϕ � ϕ

4 �ϕ � ��ϕ
.2 ♦�ϕ � �♦ϕ

Theorem 80. Let Λ ⊇ S4.2 be a modal theory. Let M = (W,R,V) be its canonical model. Then
F is reflexive, transitive, and directed.

Proof. Let w ∈ F . Then as �ϕ � ϕ ∈ w, it follows by Lemma 72 that ϕ ∈ w for every ϕ such that
�ϕ ∈ w. Hence wRw, and we have reflexivity.

For transitivity, let u, v, w ∈ F be such that uRvRw. Then for every ϕ such that �ϕ ∈ u,
��ϕ ∈ u (by applying the Truth Lemma first, and then since u contains all instances of 4 and
is closed under modus ponens, and then applying the Truth Lemma again), hence �ϕ ∈ v, hence
ϕ ∈ w, where again we use Lemma 72. Summing up, for every formula ϕ, �ϕ ∈ u implies ϕ ∈ w.
Hence, by Lemma 72, uRw. This gives us transitivity.

For directedness, let uRv and uRw. If

Φ = {ϕ | �ϕ ∈ v or �ϕ ∈ w}
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is Λ-consistent, then by the Lindenbaum Lemma, Lemma 70, there must be u′ ∈ W, a Λ-MCS,
containing Φ. Further, by Lemma 72, vRu′ and wRu′, hence ensuring directedness. Towards a
contradiction then, assume that there is a finite subset Φ′ ⊆ Φ such that Φ′ is Λ-inconsistent. Let
Φ′ = Ψ1 ∪Ψ2 where

Ψ1 = {ϕ | �ϕ ∈ v}

and
Ψ2 = {ϕ | �ϕ ∈ w}.

Note (by the Truth Lemma) that v  �(∧Ψ1). Hence, by the definition of R, v  ♦�(∧Ψ1). But,
by the Truth Lemma, for every formula ϕ,

u  ♦�ϕ � �♦ϕ.

Hence, using the fact that the Λ-MCS corresponding to u is closed under modus ponens and then
by an application of the Truth Lemma, u  �♦(∧Ψ1). In particular, by Lemma 72, w  ♦(∧Ψ1).
Therefore, by the Existence Lemma, there is a node z such that wRz and z  ∧Ψ1. But w  �(∧Ψ2),
so, by Lemma 72, z  ∧Ψ2 as well. Summing up, z  (∧Ψ1)∧ (∧Ψ2). Hence Φ′ is Λ-consistent (note
that all of our nodes force Λ), and we have a contradiction. Hence, F is directed, and we are done.

We note that given the frequency of the usage of the results from Section 4.1.1 in the above
proof, it is inconvenient to keep citing all of the results we use at each step. Therefore, in what
follows, we will only mention the results from that section if we are using them in way that is not
obvious.

Corollary 81. The class of finite directed pre-orders characterises S4.2.

Proof. Soundness is trivial. For completeness, we have done most of the hard work already. Let ϕ
be a formula which is not in S4.2. Then there is a node w in the canonical model M = (W ,R,V) of
S4.2 such that ϕ 6∈ w. Let M[w] be the submodel of M generated by w. Let M′ = (W ′,R′,V ′) be
the model obtained from M[w] by filtrating by the finite subformula-closed set

Φ = {ψ | ψ is a subformula of ϕ}.

Clearly, F ′ is finite, and as F is reflexive, transitive and directed, so is M[w], and so is M′. Hence,
we have obtained a model M′ based on a finite directed pre-order such that M′ � S4.2 ∧ ¬ϕ, so we
are done.

Definition 82. A baled tree is a partial order (P,≤) such that there is a highest node b ∈ P such
that for every p ∈ P , p ≤ b, and further, (P \ {b},≤) is a tree. A baled pre-tree is a pre-order such
that its quotient by the natural equivalence relation yields a baled tree.

It is clear that any finite directed partial order can be unravelled to get a finite baled tree, and
that any finite directed pre-order can be unravelled to get a baled pre-tree. Also, note that for a
finite baled tree, we can define a join operation: we define the join of two nodes, denoted x ∨ y if
x and y are these nodes, to be the least node above them (where x is above y is x ≥ y). This is
unambiguous because if b is the topmost node of F , then for any two elements e, f ∈ F , either e ∨ f
is e, or f , or b because (P \ {b},≤) is a tree. Hence, either one of the elements is below the other,
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or their join is b. We can also extend this join operation to a Kripke model whose underlying frame
is a baled tree by saying that the join of two worlds is the world whose position in the baled tree
corresponds to the join of the positions of the elements.

We note that if F is a baled pre-tree, then we can also similarly define a cluster-join operation
which, given two clusters, returns a cluster. This operation is defined as follows: if e, f are two
clusters of F , then e ∨ f = d where d is the complete cluster such that if [e]≡, [f ]≡, [d]≡ are the
natural equivalence classes of e, f, d respectively, then [e]≡ ∨ [f ]≡ = [d]≡. We pick d to be a complete
cluster, so combining this with the previous discussion about the unambiguity of the join operation
on baled trees, we see that this cluster-join operation on baled pre-trees is unambiguous as well. We
can also similarly define this cluster-join operation on Kripke models based on baled pre-trees in the
obvious way.

Lemma 83. Let M be a model based on a finite directed pre-order. Then there is a model M ′ based
on a finite pre-Boolean algebra such that M is bisimilar to M ′.

Proof. Let F = (W,≤) be the frame underlying M and V the valuation on F . We can, without any
loss of generality, assume that F is a baled pre-tree. Now, we first consider the case where F is a
baled tree. Let r be the root of F . We call a node w ∈W non-trivial if it is not the root. Let S
be the set of non-trivial nodes of F . Let n be the cardinality of S. We show that there is a model
M ′ whose frame is the Boolean algebra on n generators which is bisimilar to M . We represent this
Boolean algebra as the Boolean algebra B of all subsets of n.

Now, fix a bijective map g : {1, 2, . . . n} → S. For each a ⊆ {1, 2, . . . , n}, let

wa
∆
=

∨
{g(e) | e ∈ a}.

Above, we define that w∅ = r for notational convenience. Also, note that we are taking the join of
worlds of the Kripke model. Note that by the discussion above, since F is a finite baled tree, the
above definition is unambiguous. Now, we define a valuation V ′ on the nodes of B in the following
way:

V ′(a)
∆
= {p | (M,wa)  p}

That is, we place a copy of wa at position a in the Boolean algebra. This model that we have defined
is the model M ′ on the Boolean algebra on n generators that we claim is bisimilar to M .

Before we prove this claim, we note that for a w ∈W , there may be multiple a ⊆ {1, 2, . . . n}
such that w = wa. For example, if t is the topmost node of F , and i is such that g(i) = t, then for
any a such that i ∈ a, wa = t.

Now, we show that M ′ is bisimilar to M . Towards this, we claim that if w = wa, then

{wb | b ⊇ a} = {v ∈W | v ≥ w}.

The reason why this suffices is this: Let T be the relation between M and M ′ given by wTa iff
w = wa. Then this is a bisimulation between M and M ′:

(i) If wTa, then w = wa, and so a and w have the same valuation by the definition of the valuation
V ′.

(ii) Let wTa and v ≥ w. Then by the claim, there is a b ⊇ a such that v = wb. Then, by the
definition of T , vTb.
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(iii) Let wTa and b ⊇ a. Then by the claim, there is a v ≥ w such that v = wb. Then, by the
definition of T , vTb.

Hence, we only have to prove our claim.
For the case that a = ∅, this is clear, since {w{e} | e ∈ {1, 2, . . . , n}} = S, and as this node itself

is reflexive, it follows that
{wb | b ⊇ ∅} = W = {v ∈W | v ≥ r}.

Now, suppose that w = wa. Let b ⊇ a. Let v = wb. Then

v = wb =
∨
{g(e) | e ∈ b} ≥

∨
{g(e) | e ∈ a} = wa = w,

hence
{wb | b ⊇ a} ⊆ {v ∈W | v ≥ w}.

For the other direction, let v > w (the case that v = w is obvious). Then v = g(e) for some
e ∈ {1, 2, . . . n}. Also, for any b ⊆ {1, 2, . . . , n} such that e ∈ b,

wb =
∨
{g(c) | c ∈ b} ≥ v > w = wa =

∨
{g(c) | c ∈ a},

which is not possible if e ∈ a. Now, let b = a ∪ {e}. Then

wb =
∨
{g(c) | c ∈ b} = g(e) ∨ (

∨
{g(c) | c ∈ a}) = v ∨ (

∨
{g(c) | c ∈ a}) = v ∨ wa = v ∨ w = v.

Hence,
{wb | b ⊇ a} ⊇ {v ∈W | v ≥ w}.

Therefore,
{wb | b ⊇ a} = {v ∈M | v ≥ w}

holds, and so we have that M and M ′ are bisimilar.
Now, for the case that F is a baled pre-tree, the argument is similar, except that in all cases,

nodes will be replaced by clusters. In particular, r will be the root cluster of F , S will be defined
as the set of all non-trivial clusters of F , n will be its size, the frame of M ′ will the pre-Boolean
algebra whose quotient is the Boolean algebra on a set of n elements, g : {1, 2, . . . , n} → S will be a
bijective map, for a ⊆ {1, 2, . . . , n}, wa will be the cluster-join of the g(e) for e ∈ a. Also, instead of
a single node at point a, we will place the cluster wa, and the bottom cluster of the pre-Boolean
algebra will be r, and so on. All the proofs are exactly the same as we have just shown except
that all occurrences of ‘node’ need to be replaced by ‘cluster’, with the requisite changes to the
bisimulation and the proofs.

Corollary 84. The class of finite pre-Boolean algebras characterises S4.2.

Proof. Again, soundness is trivial. For completeness, let ϕ 6∈ S4.2. By Corollary 81, let M be a
model based on a finite directed pre-order such that ϕ is not valid on M . By Lemma 83, let M ′ be
a model based on a finite pre-Boolean algebra which is bisimilar to M . Then clearly ϕ is not valid
on M ′ as well.
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However, the axioms of S4.2 are not sufficient to capture the modal logic of inner models. In
particular, we seek to model the property of L that it is an inner model of every model of NBG and
that it has no non-trivial inner models itself. This suggests the need for an axiom to capture this
notion of a single reflexive node on top of the entire frame. Towards this end, we introduce the
following axiom:

Top ♦((�ϕ↔ ϕ) ∧ (�¬ϕ↔ ¬ϕ))1.

Definition 85. The modal theory S4.2Top is defined to be the smallest normal modal theory
containing S4.2 and Top.

Definition 86. Let (P,≤) be a pre-order. We say that (P,≤) has a single top node if there is a
unique node t ∈ P such that for all s ∈ P , s ≤ t. We call t the top node of (P,≤).

Note that the above definition implies that in a pre-order with a single top node, if t is the top
node, then the equivalence class of t by the natural equivalence relation is a singleton set, consisting
of t.

Theorem 87. The class of finite directed pre-orders with a single top node characterises S4.2Top.

Proof. Again, soundness is trivial. For completeness, let ϕ be a formula which is not in S4.2Top.
Let M′ = (W ′,R′,V ′) be the canonical model of S4.2Top. Let w ∈ F ′ be a node such that ϕ 6∈ w.
LetM′[w] be the submodel ofM′ generated by w. LetM = (W,R,V) be the model obtained from
M′[w] by filtrating by the finite subformula-closed set

Φ = {ψ | ψ is a subformula of ϕ}.

We claim that F has a single top node. That is, a node t such that for all s ∈ F , sRt, and further,
tRs iff t = s.

It is clear that F is finite. Also, as S4.2Top ⊇ S4.2, it follows by Theorem 80 that F ′ is reflexive,
transitive and directed. Therefore, F is reflexive, transitive and directed as well. Now, let T ⊆ W
be a maximal cluster. Suppose towards a contradiction that T is not a singleton. Now, the nodes
of W ′ are S4.2Top-MCS. Therefore, if u, v ∈ W ′ are distinct, then there is a formula ϕ such that
it is forced by one of them, but not forced by the other. As M is obtained from M′ by taking a
generated submodel and then by filtrating it by a finite subformula-closed set, it follows that there
is a formula ψ such that it is true of atleast one node in T , but not true of all nodes in T . Then, for
every node s ∈ T ,

M, s  ♦((�ψ ↔ ψ) ∧ (�¬ψ ↔ ¬ψ)).

Therefore, there is some node t ∈ T such that

M, t  (�ψ ↔ ψ) ∧ (�¬ψ ↔ ¬ψ).

1In discussions with Nick Bezhanishvili we found out that the choice of this axiom is canonical in that it is equivalent
over the theory S4.2 to the cofinal subframe formula for the one element frame of a single reflexive node. A cofinal
subframe formula for a frame F is a formula ϕF such that for any other frame F ′, ϕF is valid for F ′ if and only if F is
a cofinal subframe of F ′. That is, for any node v of F , there is a node w of F and a p-morphism (also sometimes
called a bounded morphism in the literature) Φ : F ′ → F such that w ∈ ran(Φ). It is important that we are talking
about frames and p-morphisms (which is the natural notion of morphism for frames), since for example, a cofinal
subgraph of a finite directed graph is merely a terminal node. See [CZ97] for a discussion of these concepts.
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Thus, M, t  ψ iff for every node t′ ∈ T , M, t′  ψ, and M, t  ¬ψ iff for every node t′ ∈ T ,
M, t′  ¬ψ (since T is a cluster). As ψ was picked so that it is true of atleast one node in T but not
true of all nodes in T , this is a contradiction. Hence, T must be a singleton. Therefore, having been
given a formula ϕ 6∈ S4.2Top, we have obtained a model M, based on a finite, directed pre-order
with a single top node, such that M � S4.2Top ∧ ¬ϕ. The result follows.

Definition 88. A partial order (P,≤) is called a sharp pre-order if it is a pre-order, and there is
a unique node t ∈ P such that for each s ∈ P , s ≤ t, and the pre-order (P \ {t},≤) is a directed
pre-order.

Lemma 89. Let M be a model based on a finite directed pre-order with a single top node. Then
there is a model M ′ based on a finite sharp pre-order which is bisimilar to M .

Proof. Let t be the top node of M . Then we obtain M ′ from M by adding an extra node t′ above
t which has the same valuation as t. It is easy to see that M and M ′ are bisimilar, where the
bisimulation is the identity on all the nodes of M which are not t, and t ∈M is matched to both t
and t′ in M ′.

Corollary 90. The class of finite sharp pre-orders characterises S4.2Top.

Proof. Soundness is trivial. For completeness, let ϕ 6∈ S4.2Top. Then by Theorem 87, there is a
model M based on a finite directed pre-order with a single top node such that ϕ is not valid on
M . We can then use the previous corollary to obtain a model M ′ based on a finite sharp pre-order
which is bisimilar to M . Clearly then, ϕ is not valid on M ′.

Definition 91. A frame F is called an inverted lollipop if it is a finite pre-Boolean algebra with a
single extra node above all of the other elements. By L we denote the class of inverted lollipops.

5

4

2 3

1

Figure 4.1: An inverted lollipop

Lemma 92. Let M be a model based on a finite directed pre-order with a single top node. Then
there is a model M ′ whose underlying frame is an inverted lollipop such that M is bisimilar to M ′.

Proof. By Lemma 89, we can, without losing any generality, assume that M is based on a finite
sharp pre-order. Let F = (W,R) be the underlying frame of M , and let t be the top node. Let
W̄ = W \ {t}. Let R̄ = R∩ W̄ × W̄ . Let F̄ = (W̄ , R̄). Then F̄ is a finite directed pre-order. Also, if
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M̄ is the model with frame F̄ obtained from M by restricting the valuation of M to the nodes in
W̄ , then M̄ is a model based on a finite directed pre-order.

By Lemma 83, we can get a model M ′′ based on a finite pre-Boolean algebra which is bisimilar
to M̄ . M ′ is then obtained by adding a copy of t above the topmost cluster of M ′′. It is easy to see
that M ′ is an inverted lollipop and that it is bisimilar to M .

Theorem 93. The class of inverted lollipops characterises S4.2Top.

Proof. Straightforward.

We now introduce some variants of the control statements which we defined in Chapter 3. In
particular, these control statements will be parametrised by a pure button in the sense that the
nature of their behaviour depends on whether the button has been pushed or not. This is meant to
reflect the behaviour of a sharp pre-Boolean algebra or an inverted lollipop, or in general, a sharp
pre-order, of having a single node above all other elements.

Definition 94. Let Γ be a relation between models of set theory. Let M be a model of set theory.
Let ϕ be a fixed pure button in M .

(i) A statement ψ is called a (Γ-)ϕ-switch if, for any model M such that M � ¬ϕ, there are
models N1, N2 such that (M,N1) ∈ Γ and (M,N2) ∈ Γ, and N1 � ¬ϕ ∧ ψ and N2 � ¬ϕ ∧ ¬ψ.
That is, ψ is a conditional switch, which behaves as a switch so long as ϕ is not true. Modally,
this amounts to �(¬ϕ � ♦(¬ϕ ∧ ψ) ∧ ♦(¬ϕ ∧ ¬ψ)).

(ii) A statement ψ is called a (Γ-)ϕ-button if, necessarily, ϕ � ψ, and for any model M such that
M � ¬ϕ ∧ ¬ψ, there is a model N such that (M,N) ∈ Γ and N � ¬ϕ ∧ �ψ. That is, ψ
is a conditional button, conditioned on whether or not ϕ is true. Modally, this amounts to
�((¬ϕ) � (¬ϕ ∧ ψ)). ψ is called a pur ϕ-button if in addition to this, necessarily, whenever ψ
is true, it is necessarily true. Modally, this amounts to �(ψ � �ψ).

In the above cases, we say that ϕ is a fatal button for the statement ψ.

As usual, when Γ is clear from context, we will not explicitly mention it. Also, if the fatal
button is clear from context, then we do not explicitly mention that it is parametrising the control
statements. Realising a ϕ-switch in this case is switching it on or off without affecting the value of
ϕ. Realising a ϕ-button is pushing it without affecting the value of ϕ. The independence of these
control statements is defined in the obvious way. We make the trivial observation that if a collection
S of statements is independent, and ϕ is a fatal button for S, then if S contains a button, then for
each ψ ∈ S distinct from some button in S, it is Γ-necessarily not the case that ψ � ϕ.

An example of these control statements for the ground model modality (this also works with
inner models) is the following: for each natural number n, let ϕn assert that there are no Cohen
subsets of ℵLn , and let S = {ϕn | n ∈ ω}. Then it is clear that S is a family of V = L-buttons. In
Section 4.3 we shall see another example of a family S and a fatal button for this family. We shall
use these statements to label all inverted lollipops. The theorem which will let us do this is the
following:

Theorem 95. If Γ is a reflexive transitive relation between models of set theory and M is a model
of set theory such that there is a pure button ϕ in M , and arbitrarily large finite families of mutually
independent unpushed ϕ-buttons and ϕ-switches over M , then the valid principles of MLMΓ are
contained within S4.2Top.
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Proof. We show that the hypotheses allows us to label all inverted lollipops. The conclusion then
follows from the conjunction of Theorem 93 and Theorem 57.

Let Γ be a reflexive transitive relation between models of set theory having arbitrarily large
finite families of mutually independent buttons and switches over M .

Let L be a frame which is an inverted lollipop. Let F be the quotient partial order of L under
the natural equivalence relation. Then F is a finite Boolean algebra with a single extra node on
top (F is a sharp partial order in our terminology). Therefore, the partial order of non-maximal
elements of F is isomorphic to the powerset algebra P(A) for some finite set A. We fix such a set A.

With each element a ∈ F which is not maximal, there is associated a complete cluster
wa1 , w

a
2 , . . . w

a
ka

of worlds of L. By adding dummy nodes to each cluster, we may assume that
there is some natural number m such that for each non-maximal a ∈ F , the sizes ka of the complete
clusters at node a are the same, and equal to 2m. Also, suppose that F has size 2n + 1, that is, the
size of A is n, so there are n atoms in the Boolean algebra of non-maximal elements of F . We can
therefore think of the Boolean algebra of non-maximal elements of F as the worlds waj where a ⊆ A,
and j < 2m, with the order obtained by waj ≤ wci if and only if a ⊆ c. Also, since F consists exactly
of this pre-Boolean algebra and a single extra node above every element of it, we can consider F as
being made up of worlds waj where a ⊆ A, and j < 2m, with the order obtained by waj ≤ wci if and
only if a ⊆ c, and a node t with waj ≤ t for each a.

Associate with each element i ∈ A an unpushed pure ϕ-button bi such that the collection
{bi | i ∈ A} form a mutually independent family with m-many ϕ-switches s0, s1, . . . sm−1. For
j < 2m, let s̄j be the assertion that the pattern of switches corresponds to the binary digits of j.
We associate the node waj with the assertion

Φwa
j

= ¬ϕ ∧ (
∧
i∈a

bi) ∧ s̄j ,

and we associate the node t with the assertion Φt = ϕ. Clearly, we can assume that all of the
switches are off. Now, if W is a model in the multiverse of Γ generated by M , and W � Φwa

j
, then

by the mutual independence of buttons and switches combined with our remark that pushing these
buttons cannot push the fatal button ϕ, we see that W � Φwc

r
if and only if a ⊆ c.

Also, for any model W in the multiverse of M generated by Γ, if W � ¬ϕ, then as ϕ is itself
a button, it follows that W � ♦Φt. Therefore, if W � Φwa

j
, then W � Φt. Also, since all of these

buttons and switches are off in M , we have M � Φ∅0. Thus, we have provided a Γ-labelling of this
frame for W , hence demonstrating that we can label all inverted lollipops. The result follows.

Before we move on to the next section, we see a justification for considering the theory S4.2Top.

Theorem 96. For any model V of NBG, the modal logic of inner models always contains S4.2Top.

Proof. The axioms K, Dual, S and 4 are easily seen to hold. For .2 and Top, notice that every inner
model M of V has L as an inner model. Hence, if M � �ϕ for some ϕ, then L � ϕ. Consequently,
for every inner model N of M , N � ♦ϕ. Further, L has no proper inner model, and hence for every
ϕ, L � �ϕ↔ ϕ. Therefore, V � ♦((�ϕ↔ ϕ) ∧ (�¬ϕ↔ ¬ϕ)).

Hence, in order to show that the modal logic of inner models is exactly S4.2Top, we only need
to find a model whose modal logic of inner models contains S4.2Top. We show how to do so in what
follows.
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4.2 Relating the Modal Logic of Inner Models to the Modal Logic
of Grounds

Our aim in this chapter was to study the modal logic of the relation of being a definable inner
model. So far, we have seen that this moda logic is contains the theory S4.2Top. In order to show
that there is a model whose modal logic is exactly S4.2Top, we will first show that the relation of
being an inner model has, as an initial segment, a relation that we understand better, the relation of
being a forcing ground. Once we have shown this, we will be able to the results from [HL13], where
a model was constructed whose modal logic of grounds is exactly S4.2, to obtain our main result.

We fix some notation. Let ΓIM be the following relation:

(M,N) ∈ ΓIM iff N is a definable inner model of M,

and let ΓP̄ be the relation:

(M,N) ∈ ΓP̄ iff N is a forcing ground of M.

In order to show that ΓP̄ is an initial segment of ΓIM, we split the task into two parts, one where
we show that ΓP̄ is contained in ΓIM, and one where we show that the former is actually an initial
segment of the later.

4.2.1 The Laver-Woodin Theorem

The first task is achieved by the Laver-Woodin Theorem, which shows that if (M,N) ∈ ΓP̄ , then
(M,N) ∈ ΓIM. Our treatment follows [WDR12]. We note that while we talk about models of NBG
everywhere, all of the proofs go through with ZFC itself.

Definition 97. (Hamkins) Let δ be an uncountable regular cardinal. Let M be a transitive class
model of NBG.

(i) Then M is said to have the δ-covering property if for every σ ⊂ M with |σ| < δ, there is a
τ ∈M such that |τ | < δ and σ ⊆ τ .

(ii) The pair M is said to have the δ-approximation property if for every cardinal κ such that
cf(κ) ≥ δ and every ⊆-increasing sequence of sets 〈τα | α < κ〉 from M , ∪τα ∈M .

The next lemma shows that if V is a model of set theory, and V [G] is a forcing extension of it,
then V has these properties in V [G] for all cardinals which are large enough.

Lemma 98. Let V be a model of NBG. Let δ be an uncountable regular cardinal. Let P ∈ V be
a poset of size less than δ. Let G be a V -generic filter for P. Then V has the δ-covering and
δ-approximation properties in V [G].

Proof. We first show the δ-covering property. Let σ be a P-name and p ∈ P a condition such that
p “σ ⊂ V and |σ| < δ”. Now, let

S = {λ < δ | ∃q ≥ p[q  |σ| = λ]}.

Now, if q1, q2 ≥ p and λ1, λ2 are such that qi  |σ| = λi for λ1 6= λ2, then it follows that q1 ⊥ q2.
Therefore, as |P| < δ, it follows that |S| < δ. Let γ = supS. Then by the regularity of δ, it follows
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that γ < δ (since S ⊂ δ). In this case, let ḟ be a name such that p “ḟ : γ → σ is a surjection”.
Then if

τ = {x | ∃q ≥ p∃α < γ[q  ḟ(α) = x]}.,

it is clear that τ ∈ V , σ ⊆ τ and |τ | < δ, hence establishing the δ-covering property.
Now, for δ-approximation. Let p ∈ P be a condition such that

p  “cf(κ) ≥ δ and 〈τα | α < κ〉 is a ⊆ -increasing sequence of sets from V ”.

For each α < κ, let pα ≥ p be a condition which decides the value of τα. Since |P| < δ ≤ cf(κ), it
follows that there must be some q ∈ P such that for cofinally many α < κ, q = pα. Since

p  “〈τα | α < κ〉 is a ⊆ -increasing sequence of sets from V ”,

it follows that q decides the value of ∪τα, and hence, ∪τα ∈ V .

Theorem 99. (Laver [Lav07], Woodin) Let δ be in N a regular uncountable cardinal. Let M,N be
transitive class models of NBG such that both satisfy the δ-covering and δ-approximation property.
Suppose that δ+ = (δ+)M = (δ+)N , and that N ∩ P(δ) = M ∩ P(δ).

(i) Then M = N .

(ii) In particular, M is Σ2-definable from M ∩ P(δ).

Proof. (i) We show by induction on ordinals γ that for all A ⊆ γ,

A ∈M ⇐⇒ A ∈ N.

If γ ≤ δ, this is clear. Hence, assume that γ > δ. Then, by the induction hypothesis, M and
N have the same cardinals ≤ γ. Also, if γ is not a cardinal in these models, then in both the
models, there is a bijection between γ and |γ|, which allows us to conclude by applying the
induction hypothesis on |γ| that the powerset of γ is the same in both models. Hence, we may
assume that γ is a cardinal in both M and N .

(a) cf(γ) ≥ δ. Then A ∈ M iff A ∩ α ∈ M for each α < γ. The forward direction is clear,
and for the reverse direction, we use the δ-approximation property for the sequence of
sets 〈A ∩ α | α < γ〉. Therefore, by using the induction hypothesis on A ∩ α for α < γ,
we see that we are done.

(b) γ > δ, cf(γ) < δ, and |A| < δ. We will use the δ-approximation property to find a set
S ⊇ A such that S ∈ M ∩N . We do this by using the δ-covering property as follows:
define increasing sequences 〈Eα | α < δ〉 and 〈Fα | α < δ〉 of subsets of γ such that

(1) |Eα|, |Fα| < δ;

(2) A ⊆ E0;

(3) Eα ⊆ Fα;

(4)
⋃
α<β Fα ⊆ Eβ;

(5) Eα ∈M and Fα ∈ N .
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Then
S =

⋃
α<γ

Eα =
⋃
α<γ

Fα

clearly satisfies the requirements that A ⊆ S and S ∈M ∩N . Now, let θ be the ordertype
of S, and let π : S → θ be the Mostowski collapse of S. As subsets of ordinals can only
be collapsed in one way, it follows that π ∈M ∩N . Now, it is clear that |S| ≤ δ, and
hence, θ < δ+. But now, the hypothesis of the theorem tell us that

δ+ = (δ+)M = (δ+)N .

Applying now the induction hypothesis to δ+ and π(A) ⊂ δ+, it follows that

A ∈M ⇐⇒ π[A] ∈M ⇐⇒ π[A] ∈ N ⇐⇒ A ∈ N.

(c) γ > δ, cf(γ) < δ, and |A| ≥ δ. We claim that A ∈M iff

(1)M A ∩ α ∈M for all α < γ;

(2)M For every σ ⊆ γ such that |σ| < δ and σ ∈M , A ∩ σ ∈M ,

and analogously,A ∈ N iff (1)N and (2)N . If we could show this, then by the induction
hypothesis and Case (b), we would be done.

The forward direction is obvious, so assume (1)M and (2)M . Fix first a large θ with
cf(θ) > γ and a formula defining M which is absolute in Vθ. Now, define an increasing
chain 〈Xα | α < δ〉 of elementary substructures of Vθ and an increasing chain 〈Yα | α < δ〉
of subsets of Vθ ∩M such that:

(1) |Xα|, |Yα| < δ;

(2) A ∈ X0;

(3) sup(X0 ∩ γ) = γ;

(4) Xα ∩M ⊆ Yα;

(5) Yα ∈M ;

(6)
⋃
α<β(Yα ∪Xα) ⊆ Xβ.

To do this, use the Downward Löwenheim-Skolem Theorem to get the Xα, and the
δ-covering property on M to get Yα. Let X =

⋃
α<δXα and let Y =

⋃
α<δ Yα. Then

X ≺ Vθ and Y = X ∩M ≺ Vθ ∩M .

Since Yα ∈M and |Yα| < δ, it follows by assumption (2)M that for each α < δ, A∩Yα ∈M .
Then, by the δ-approximation property, it follows that A ∩ Y ∈M .

Now, for any α ∈ Y ∩ γ, notice that A ∩ α ∈ Y because A ∈ X and α ∈ X, and since
X ≺ Vθ, A ∩ α ∈ X. Also, by (1)M , A ∩ α ∈M . Hence, A ∩ α ∈ X ∩M = Y . Also, for
every b ∈ Y , if b ∩ Y = (A ∩ Y ) ∩ α, then Y � b = A ∩ α, and therefore, b = A ∩ α. This
is because Y ∩ α ∈M , and Y ≺ Vθ ∩M .

Therefore, the sequence 〈A∩α | α ∈ Y ∩ γ〉 is definable in M with parameters γ, Y,A∩Y .
In particular, this sequence belongs to M , and it follows then that A =

⋃
α<γ Aγ is in M .

(ii) This part follows: A ∈M if there is a large regular cardinal θ, and an N ⊂ Vθ which is a model
of NBG−Powerset satisfying δ-covering and δ-approximation and such that M∩P(δ) = N∩P(δ)
and A ∈ N . This is a Σ2 statement.

Corollary 100. The relation ΓP̄ is contained in ΓIM.
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4.2.2 Grigorieff’s Theorem

Now, we shall appeal to a theorem of Grigorieff to accomplish the second task, namely, show that
ΓP̄ is an initial segment of ΓIM.

Theorem 101. (Grigorieff) Let V be a model of NBG. Let B ∈ V be a complete atomless Boolean
algebra. Let G be V -generic for B and V [G] the corresponding generic extension. Let M be an inner
model of V [G] such that V ⊆M ⊆ V [G]. Then there is a complete atomless Boolean subalgebra C
of B in V such that M = V [C ∩G].

Corollary 102. Let V be a model of NBG. Let M ⊆ V be an inner model. If M is not a ground of
V , then there is no inner model of M which is a ground of V . That is, ΓP̄ is an initial segment of
ΓIM.

Proof. Let N ⊆M be an inner model of M and a ground of V . Let B ∈ N be a complete atomless
Boolean algebra and G an N -generic for this Boolean algebra such that V = N [G]. Then by
Grigorieff’s theorem, there is C, a complete subalgebra of B, in N and H an N -generic for C such
that M = N [H]. Then by Corollary 35, it follows that V is a generic extension of M as well. The
second part follows.

4.3 An Interesting Model

In this section, we construct a model of set theory which is a slight modification of a model from
[Rei06]2. Our aim in constructing this model is to find a model such that the modal logic of inner
models of this model is exactly S4.2Top.

Definition 103. Let γ be a regular cardinal. The forcing poset Add(γ) which adds a Cohen subset
of γ is the following:

(i) p ∈ Add(γ) if p is a function such that dom(p) ⊆ γ, range(p) ⊆ {0, 1}and |p| < γ.

(ii) If p, q ∈ Add(γ), then p ≤ q if p ⊆ q.

Note that for the case that γ = ω, Add(ω) is the same as Coh. The next two lemmas will come
in handy in our main proof. Their proofs are standard.

Lemma 104. Let M ⊆ N be models of set theory. Let γ be an infinite regular cardinal in N . In N ,
let S ⊆ γ. Then if S is a Cohen subset of γ over M , then for each ordinal α < γ, S ∩ α ∈M .

Lemma 105. Let γ be a regular cardinal. Then |Add(γ)| = 2<γ. Therefore, if 2<γ = γ, then
|Add(γ)| = γ.

We now define the class-forcing poset which we shall use to construct the model we want.

2The modification here is that in both, [Rei06] and [HL13], the class forcing which was used added a Cohen subset
to each regular cardinal of L. However, as we were unable to prove for this model that an analogue of Theorem 108
holds, we modified their construction to one for which we could do so.
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Definition 106. Let SuccL denote the class of infinite successor cardinals in L. Define in L the
following (class-sized) poset with Easton support:

P ∆
=

∏
γ∈SuccL

Add(γ).

That is, p ∈ P if

(i) p is a class function such that dom(p) = SuccL;

(ii) For each γ ∈ SuccL, p(γ) ∈ Add(γ);

(iii) For each such p, for each regular cardinal γ, |{λ ∈ SuccL | p(λ) 6= 0} ∩ γ| < γ (the class
{γ ∈ SuccL | p(γ) 6= 0} is called to be the support of p).

The ordering is defined by p ≤ q if p ⊆ q.
Also, for each p ∈ P and each γ ∈ SuccL, we can decompose p into three parts:

p<γ = p�[0, γ);

pγ = p�[γ, γ];

p>γ = p�(γ,∞).

Using this decomposition, for each γ ∈ SuccL, we can decompose P into three parts:

P<γ = {p<γ | p ∈ P};
Pγ = {pγ | p ∈ P};

P>γ = {p>γ | p ∈ P}.

It is clear that P ∼= P<γ × Pγ × P>γ .

Proposition 107. (V = L) Let γ ∈ SuccL. Then

(i) P>γ is ≤ γ-closed;

(ii) P<γ has size less than γ.

Proof. The first part is trivial. For the second part, let γ = κ+. We use the fact that the GCH is
true in L. The result then follows from the following chain of equivalences:

|P<γ | =
λ<γ∏

λ∈SuccL

|Add(λ)| =
λ<γ∏

λ∈SuccL

2<λ =

λ<γ∏
λ∈SuccL

λ ≤
λ<γ∏

λ∈SuccL

κ ≤ κ× κ = κ < γ.

Theorem 108. (V = L) Let γ be an infinite successor cardinal. Let Qγ = P<γ × P>γ. Then forcing
with Qγ does not add a Cohen subset of γ.
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Proof. Since Qγ = P<γ × P>γ and P>γ is ≤ γ-closed, by Proposition 24, we only need to show
that forcing with P<γ does not add a Cohen subset of γ. Suppose towards a contradiction that
this is not so. Let L[G] be a generic extension by P<γ such that S ∈ L[G] is a Cohen subset of γ.
Therefore, for each α < γ, S ∩ α ∈ L. Now, by the previous proposition, |P<γ | < γ. Hence, by
Lemma 98, it follows that L has the γ-approximation property in L[G]. But then, S =

⋃
α<γ(S ∩α),

and 〈S ∩α | α < γ〉 is a ⊆-increasing sequence of length γ of elements of L, and hence, S ∈ L, which
is a contradiction. Therefore, forcing with Qγ does not add any Cohen subsets of γ.

Definition 109. Let G be L-generic for P, and let MR
∆
= L[G]. Let γ be an infinite successor

cardinal. Then G>γ = G ∩ P>γ . Let

ϕR
∆
= ∀κ ∈ SuccL∃G ⊆ κ(G is an L-Cohen subset of κ).

Let
ψR

∆
= ∃B[(B is a complete atomless Boolean algebra ) ∧ (‖ϕR‖B = 1B)].

Clearly, MR � ϕR, and for any model N , N is a ground of MR if and only if N � ψR.
Hence, if N is an inner model of MR such that N � ¬ψR, then by Corollary 102, no further inner

model N ′ of N can be a model of ψR. That is, MR � �(¬ψR � �(¬ψR)). Hence, the statement
¬ψR is a pure button.

We now prove an interesting property of this model which we shall use in the next section,
namely that every ground of this model itself has a non-trivial ground.

Lemma 110. Let N be a ground of MR. Then there is an infinite successor cardinal γ such that
N ⊇ L[G>γ ]. In particular, L[G>γ ] is a ground (and hence, a definable inner model) of N .

Proof. Towards a contradiction, suppose this is not so. Let Q ∈ N be a forcing poset and let H be
Q-generic over N such that MR = N [H]. For some infinite successor cardinal γ large enough, let τ
be a name for G>γ . Let p ∈ Q be such that

p  “τ is P>γ-generic over L.

By assumption, G>γ is a class-function which is not in N , but in a forcing extension of N by Q
(which is a set). Therefore, for any q ≥ p, q can decide only a set-sized initial segment of G>γ .
However, for every β > α, there is a r ≥ p such that r decides G>γ�(γ, β). Therefore, we can form a
class-length strictly increasing chain of conditions in Q, thus contadicting that it is a set.

In [HL13], Hamkins and Löwe studied a model which was a slight modification of MR, and
proved a similar property of this model. They used this property to show that .2 is valid for the
modal logic of grounds of MR, and hence that the modal logic of grounds of this model is exactly
S4.2.

4.4 The Modal Logic of Inner Models

We are now in a position to calculate the modal logic of MR.

Lemma 111. In MR, there are arbitrarily large finite families of mutually independent ¬ψR-switches
and ¬ψR-buttons. Consequently, the modal logic of inner models of MR is exactly S4.2Top.
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Proof. For each natural number n, let bn be the statement “there is no L-generic subset of ℵLn”.
Clearly, each of the bn is a ¬ψR-button. Also, partition the regular cardinals above ℵω into ℵ0-many
classes, 〈Γn〉n∈ω such that each class contains unboundedly many cardinals. Enumerate each class
as Γn = {γnα | α ∈ ORD}. Let sn be the statement “the least α such that there is an L-generic
subset of γnα is even”. To see that each of the sn are a ¬ψR-switch, notice that any inner model
of MR such that MR � ψR is in fact a ground model of MR. Hence, it has a ground of the form
L[Gα] for α large enough. One can then choose a ground where any specific cardinals do not have
an L-generic subset, hence allowing us to obtain any possible combination of the switchboard. To
see that all of these switches and buttons are mutually independent, we appeal to Theorem 108.

Also, it is clear that ¬ψR is a fatal button for all of these statements. We then appeal to
Theorem 95 and Theorem 93 to see that we are done.

And finally, our main theorem:

Theorem 112. If NBG is consistent, then the NBG-provable modal logic of inner models is exactly
S4.2Top.
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Chapter 5

The Modal Logic of ccc Forcing

In this chapter, we improve upon the upper bounds for MLccc that were obtained in Theorem 67
by providing labellings for some Kripke frames. The labellings are a natural generalisation of
the labelling of the two element fork that was used to show that S4.2 is not valid for MLccc in
Theorem 67. In particular, we use ω1-trees for these labellings as well.

In Section 5.2 we study two classes of frames, spiked pre-Boolean algebras, Definition 113, and
topless pre-Boolean algebras, Definition 116, each of which contain the two element fork frame. Of
these, the first one is a notion that has not been considered in the literature before, whereas the
second has been. We give upper and lower bounds with respect to some standard modal theories for
both the modal theories that are characterised by these frames in the hierarchy of normal modal
logics upto containment. In particular, both these theories occupy a similar place in this hierarchy
with respect to many familiar logics. We then show that these two theories are not the same by
showing that one of them is not contained in the other.

In Section 5.3 we describe the labelling of one of these classes of frames. This requires the
existence of an arbitrarily large finite number of ω1-trees with some specific properties. In Section 5.3
we appeal to a theorem of Abraham and Shelah to obtain these trees in a model of ♦ω1 . We do not,
however, prove this result or its corollary that we use.

The existence of these labellings depends on being able to understand when a tree can be
specialised or made non-Aronszajn without adding a branch or specialising another. We study these
properties in Section 5.4. Using the results from this section, we show in Section 5.5 that these
labellings are complete. Finally, in the last section, Section 5.7, we discuss generalisations of this
method and some questions related to the modal logic of ccc forcing.

5.1 Preliminaries

Recall that a partial order (T,≤) is called a tree if for each element t ∈ T , the set {s ∈ T | s < t} is
well-ordered and if there is a unique node r ∈ T such that for every t ∈ T , r ≤ t. In this case, r
is called the root of T . For an element t ∈ T , the level or height of t, levT (t), is defined to be the
ordertype of the set {s ∈ T | s < t}. We may omit mentioning T here if it is clear from context.
Given an ordinal α, the αth level of T , Tα is defined to be the set {t ∈ T | levT (t) = α}. The height
of the tree T is defined to be the least ordinal λ such that Tλ = ∅. In such a case, we call T a λ-tree.

In this report we will only talk about ω1-trees. An ω1-tree is normal if the following hold:

(i) Every t ∈ T has ℵ0-many immediate successors.
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(ii) If α < ω1 is a limit ordinal, and if s, t ∈ Tα, then {p ∈ T | p < s} 6= {p ∈ T | p < t}.

Given p ∈ T , the tree Tp is defined as follows:

Tp
∆
= {q ∈ T | p ≤ q}.

While this terminology might seem to cause conflict with the definition of the αth level of T , this
will in practice not be so since elements of the tree will usually be denoted by letters of the English
alphabet and ordinals by letters of the Greek alphabet.

A branch of T is a downwards-closed subset b of T such that for any s, t ∈ b, s ‖ t. That is, a
branch is a downwards-closed linearly ordered subset of T . If T is an ω1-tree, then a branch b is
cofinal if its ordertype is ω1. By default, a branch is assumed to be cofinal.

Henceforth, all (ω1-)trees that will be mentioned will be normal unless specified otherwise. We
will also assume that their levels are countable. This justifies the choice of wording of the next
definition. An ω1-tree T is Aronszajn if it has no cofinal branches. It is Suslin if all of its antichains
are countable. Hence, a Suslin tree is a ccc (forcing) poset. A special (ω1-)tree will be an Aronszajn
tree to which no ccc poset can add a branch to by forcing. Note that this is not the standard
definition, which asserts that an ω1-tree is special if it is the union of countably many antichains.
However, this definition is weaker, in the sense that every tree which is special in the ‘traditional’
sense is special in this sense as well. It follows that standard results about special trees such as
the fact that any Aronszajn tree can be specialised by a ccc poset, and the standard method of
constructing a special ω1-tree can be used when speaking about special trees in this sense as well.
The matter is discussed in some more detail in Section 5.3.

Let S and T be two trees of the same height. Then

T ⊗ S ∆
= {(x, y) ∈ T × S | levT (x) = levS(y)}.

This set with the co-ordinatewise ordering is clearly also a tree (we call this tree the tensor product
of the composite trees). Further, the poset we obtain from this tree can be embedded as a dense
subset of the poset obtained from the product T × S in a canonical way. This implies in particular
that the largest size of an antichain in T × S is the same as the largest size of an antichain in T ⊗ S
(and vice versa). Also, this operation is clearly abelian, in the sense that S ⊗ T is isomorphic to
T ⊗S. It is also associative, in the sense that if T1, T2, T3 are Aronszajn trees, then (T1⊗ T2)⊗ T3 is
isomorphic to T1 ⊗ (T2 ⊗ T3). From this, we can, without any ambiguity, define the tensor product
of a finite set of trees as follows: if X = {T1, T2 · · ·Tn} is a set of trees, then⊗

X
∆
= T1 ⊗ T2 ⊗ · · · ⊗ Tn.

5.2 Frames

We now introduce the class of frames that we will label by ccc-forcing. As far as we are aware, these
frames have not been considered before in the literature of either modal logic or intuitionistic logic.
Indeed, the only reason for our discovery of these frames was that we were able to label them by ccc
posets.

Definition 113. A partial order (S,≤) is called a spiked Boolean algebra if the following hold:
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(i) There is a set T ⊆ S of maximal nodes of S such that S \ T is a complete Boolean algebra. We
call T the set of spikes of S, and Boolean algebra S \ T as the underlying or corresponding
Boolean algebra of T .

(ii) For each n ∈ S which is a penultimate node of S, there is exactly one t ∈ T such that n ≤ t.

2 3

1

4 5 6

2 3

1

Figure 5.1: The spiked Boolean algebras with two extreme nodes (left) and with three extreme
nodes (right)

Note that if S is a spiked Boolean algebra, then the definition is unambiguous because the set
of spikes is unique: If T1 and T2 are two distinct sets of spikes, then if t ∈ T1 \ T2, then there is a
t′ ∈ T2 such that t ≤ t′. This contradicts the assumption that t is a maximal node of S.

Only finite spiked Boolean algebras are considered in this thesis, and they can be imagined as
follows: they are complete Boolean algebras on an n-element set such that each element on the
penultimate level (recall that our frames grow upwards) has, in addition to the topmost node of the
Boolean algebra, an extra neighbour, to which none of the other nodes on the penultimate level
have access to. We will usually talk about a spiked Boolean algebra in terms of the number of its
extremal nodes, or in terms of the cardinality of the base set (this is one less than the number of
extremal nodes).

Just as a finite Boolean algebra can be represented as the collection of all subsets of some fixed
finite set, spiked Boolean algebras can also be represented in the following way: The spiked Boolean
algebra on an n-element set (or equivalently, with (n+ 1)-many extremal nodes) can be represented
by triples (a, b, c) of subsets of an n-element set (we take this to be {1, 2, . . . , n} here for convenience)
with the following properties:

(i) a ] b ] c = {1, 2, . . . , n}

(ii) |a| ≤ 1.

(iii) a 6= ∅ =⇒ c = ∅,

and the relation ≤ between the nodes is given by (a, b, c) ≤ (d, e, f) if:

(i) The first co-ordinate increases. That is, a ⊆ d.

(ii) The second co-ordinate increases. That is, b ⊆ e.

(iii) The third co-ordinate decreases. That is, c ⊇ f .
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The set of spikes correspond to the nodes where a 6= ∅, and the underlying Boolean algebra
corresponds to those nodes where a = ∅. This is clearly seen to be isomorphic to the Boolean algebra
on an n-element set. It is clear then that the spiked Boolean algebra on an n-element set has n+ 2n

nodes.

Definition 114. A spiked pre-Boolean algebra is a pre-order such that its quotient by the natural
equivalence relation is a spiked Boolean algebra.

Definition 115. The modal theory S4sBA is defined to be the set of all modal assertions which
are true on all Kripke models whose frame is a spiked pre-Boolean algebra.

Thus, this logic is by definition complete with respect to spiked pre-Boolean algebras.

5.2.1 Topless pre-Boolean Algebras

We now introduce a second class of frames.

Definition 116. A partial order T is called a topless Boolean algebra if, the partial order obtained
by adding a single node above all the elements of T is a Boolean algebra. A topless pre-Boolean
algebra is a partial pre-order such that its quotient partial order is a topless Boolean algebra.

Just as a finite Boolean algebra can be represented as the set of all subsets of a given finite set,
a finite topless Boolean algebra can be represented as the collection of all proper subsets of a given
finite set.

Definition 117. The modal theory S4tBA is defined to be the collection of all modal assertions
which are true in all Kripke models whose frame is a finite topless pre-Boolean algebra.

Thus, by definition, this logic is complete with respect to the class of finite topless pre-Boolean
algebras. This is a fairly natural logic, having previously been studied in the context of the modal
logic of forcing as well as that of intuitionistic logic. In particular, this logic is the smallest modal
companion of what is known as Medvedev’s Logic, which is a well-known intermediate logic.1 Also,
in the context of the modal logic of forcing, Hamkins, Leibman and Löwe also showed that the
modal logic of ω1-preserving forcing is contained in S4tBA.

A proof of the next theorem can be found in [HLL].

Theorem 118. The logic S4tBA is properly contained in S4.2.

It is clear that S4 is valid in any topless pre-Boolean algebra, and so it follows that S4 ⊆ S4tBA.
In fact, this containment is strict because all topless pre-Boolean algebras satisfy the principle that
whenever three mutually incompatible assertions are possibly necessary, then it is possible to exclude
one of them without deciding between the other two. The underlying property of topless Boolean
algebras being:

1An intermediate logic is a propositional logic between intuitionistic logic and classical logic. A modal logic Λ is
called the modal companion of an intermediate logic Λ′ if Λ consists exactly of the Gödel translations of the formulas
in Λ′. In such a case, if Λ is characterised by a class of frames C in the sense of the Kripke semantics for modal
logic, then Λ′ is characterised by the same class of frames in the sense of the Kripke semantics for intuitionistic logic.
Medvedev’s Logic is known to be characterised by the class of finite topless pre-Boolean algebras and to not be finitely
axiomatisable [Gab70], [MSS79]. See [BdJ06] for more on intuitionistic logic and for undefined terms. We note that
the results on Medvedev’s Logic naturally raise the question of the finite axiomatisability of S4sBA. We do not know
the answer to this question.
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Proposition 119. Let T be a finite topless Boolean algebra. Let s be an element in B and u, v, w
be elements of B such that no two of them have a join, and s ≤ u, v, w. Then there is an element t
in the algebra such that s ≤ t ≤ u, v but such that it is not the case that t ≤ w.

Proof. We identify T with the topless Boolean algebra of proper subsets of some finite set S. Let
s, u, v, w be as in the hypothesis. Then s ⊆ u ∩ v ∩ w. No two among u, v, w have a join, and this
implies that the union of any two of them is S. In particular, this implies that they are all distinct
and incomparable. Let c ∈ S be such that c 6∈ w. This implies that c ∈ u and c ∈ v. This implies
that u ∩ v 6⊆ w. It is also clear that s ⊆ u ∩ v. Then u ∩ v is the element t that we are looking
for.

It is easy to see that this result can then be carried over to the case of a finite topless pre-Boolean
algebra as well.

Corollary 120. Let T be a finite topless pre-Boolean algebra. Let s be an element in T and u, v, w
be elements of T such that no two of them have a join, and s ≤ u, v, w. Then there is an element
t ∈ T such that s ≤ t ≤ u, v but such that it is not the case that t ≤ w.

Proof. We know that s ≤ u, v, w and that no two of u, v, w have a join. Therefore, we can
conclude that s, u, v, w all lie in different equivalence classes of the natural equivalence relation on
T. Therefore, if we consider the finite topless Boolean algebra [T]≡, then [s]≡, [u]≡, [v]≡, [w]≡ all
satisfy the hypothesis of the previous proposition. Hence, we can find an element t ∈ B such that
[t]≡ ≤≡ [u]≡, [v]≡ but such that it is not the case that [t]≡ ≤ [w]≡. This t suffices for the result.

This is not valid for S4: using the characterisation of S4, Theorem 42, consider the frame that is
a tree with a root and three leaves and then assign a suitable valuation to it. We can easily find a
modal formula which is true on all topless Boolean algebras and which is not valid on this frame.
Hence, we can summarise the situation as:

S4 ( S4tBA ( S4.2 ( S4.3.

5.2.2 Spiked pre-Boolean Algebras

A similar result also holds for S4sBA.

Theorem 121. The logic S4sBA is properly contained in S4.2.

Proof. We argue that S4sBA is contained in S4.2 by showing that every Kripke model M based on
a finite pre-Boolean algebra is bisimilar to a modelM′ which is based on a finite spiked pre-Boolean
algebra. Consider first the case when the frame of M is actually a finite Boolean algebra. In this
case, M′ is obtained by adding above each penultimate node of M an extra reflexive node which
is not accessible to any other penultimate nodes of the Boolean algebra, and which has the same
valuation as the topmost node of the Boolean algebra. Hence, each of the penultimate nodes can
see exactly two bisimilar nodes, one of which is the topmost node of the Boolean algebra, and the
other is a ‘spike’ in the sense that no other penultimate node can access it. Clearly then, there is
a simple bisimulation between M′ and M which is the identity bisimulation on the nodes of the
Boolean algebra which are not maximal, and all of the maximal nodes of M′ (this includes the
topmost node of the Boolean algebra) are bisimilar to the topmost node of M. Hence, we see that
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for any formula ϕ, it is true on a node in M iff it is true on M′, and hence modal truth is preserved
by this frame transformation.

Now, in the case that M is a finite pre-Boolean algebra, one can do something similar, except
that all of the penultimate clusters get an extra cluster above them which is an exact copy of the
topmost cluster on the Boolean algebra. Here too, the bisimulation is the identity on all of the old
clusters of M′, and all of the new clusters are bisimilar to the topmost cluster of M. Here too, it
follows that modal truth is preserved by this transformation.

To show that the containment is strict, notice that spiked Boolean algebras are not directed,
whereas Boolean algebras are, and so one can easily construct a formula which is valid on a frame
only if the frame is directed. For example, one can assign different truth values to a statement on
some two different extremal nodes of the spiked Boolean algebras.

It is also easy to see that S4 is valid in S4sBA. It follows that S4 ⊆ S4sBA. Here too, the
containment can be proven to be strict. The corresponding observation about Kripke models based
on a spiked pre-Boolean algebra is that whenever two mutually incompatible assertions are possible,
then the node itself is an element of the Boolean algebra. Hence, if there are two such worlds, each
of which satisfy that there are some two mutually incompatible assertions that are possible, then
these two worlds must have a join. The underlying property in this case being:

Proposition 122. Let S be a finite spiked Boolean algebra. Let s, t, u, v, x, y be elements of S such
that s ≤ u, v and t ≤ x, y, and such that u and v do not have a join, and such that x and y do not
have a join either. Then there is an element w ∈ S such that s, t ≤ w.

Proof. Identify S with the collection of triples (a, b, c) of subsets of {1, 2, . . . , n} such that:

(i) a ] b ] c = {1, 2, . . . , n}

(ii) |a| ≤ 1.

(iii) a 6= ∅ =⇒ c = ∅,

and the relation between the nodes is given by (a, b, c)R(d, e, f) if:

(i) The first co-ordinate increases. That is, a ⊆ d.

(ii) The second co-ordinate increases. That is, b ⊆ e.

(iii) The third co-ordinate decreases. That is, c ⊇ f .

Also, in order to simplify notation, for r ∈ B, denote the corresponding triples as (r1, r2, r3).
Now, since s and t both see pairs of elements which do not have a join, it follows that both s and t
must be elements of the corresponding Boolean algebra. That is, s0 = t0 = ∅. It is then easy to see
that there is an element w in the Boolean algebra (their join) such that x, t ≤ t.

Using this, by similar arguments as were used in Corollary 120, we get the following:

Corollary 123. Let S be a finite spiked pre-Boolean algebra. Let s, t, u, v, x, y be elements of S such
that s ≤ u, v and t ≤ x, y, and such that u and v do not have a join, and such that x and y do not
have a join either. Then there is an element w ∈ S such that s, t ≤ w.
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This too is not true in S4: using the characterisation of S4, Theorem 42, consider the full binary
tree of height 3, and define a suitable valuation on it. This situation too can be encapsulated by a
modal formula, though we leave it for the reader to piece together the actual formulas using the
techniques that follow. The situation then can be summarised as follows:

S4 ( S4sBA ( S4.2 ( S4.3.

Hence, S4tBA and S4sBA occupy a similar position with respect to these natural modal logics.
We shall now prove that S4tBA is not contained in S4sBA. However, the exact relation between
S4sBA and S4tBA is unclear.

Question 124. Is S4sBA contained in S4tBA?

Question 125. Is S4sBA finitely axiomatisable?

5.2.3 Comparison of Topless pre-Boolean Algebras and Spiked pre-Boolean Al-
gebras

In this section, we shall separate the theories S4sBA and S4tBA. Our motivation for doing so is this:
recall that in Theorem 67, we showed that MLccc is not contained in S4.2 by ccc-labelling the two
element fork frame. Since the two element fork is a topless Boolean algebra, and since S4tBA is a
naturally occurring modal logic and has been studied in the context of the modal logic of forcing, it
is natural to conjecture that MLccc is contained in S4tBA.

However, as we will show, spiked Boolean algebras, which are also a generalisation of the two
element fork, paint a more accurate picture of MLccc, and in particular, MLccc is indeed contained
in S4sBA. This will also imply that MLccc is not contained in S4tBA by the main theorem of this
section.

2 3

1

Figure 5.2: The two element fork, which is both, a spiked Boolean algebra and a topless Boolean
algebra

The primary observation that we use to show that S4tBA is not contained in S4sBA is this:
Corollary 120 is not true of spiked Boolean algebras. Consider the spiked Boolean algebra with
exactly 3 extremal nodes, u, v and w, where w is the topmost element of the corresponding Boolean
algebra. No two of them have a join, but if t is an element such that t ≤ u and t ≤ v, then t must
be the bottom element of the Boolean algebra, and hence t ≤ w.

What is then needed to give the proof is to show how to use this observation to find a modal
formula which distinguishes between spiked Boolean algebras and topless Boolean algebras.

Definition 126. Let S be a finite set of modal formulas. Let T ⊆ S. The formula χST is defined as
follows:

χST
∆
=

∧
({ψ | ψ ∈ T} ∪ {¬ψ | ψ ∈ S \ T}).
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The formula θST is defined as follows:

θST
∆
= χST ∧�χST .

If S is clear from the context, it will not be mentioned in these formulas. That is, if the context is
clear, the notation for these formulas will be χT and θT .

It is clear that if T1 and T2 are distinct subsets of S, then (θT1 ∧ θT2) ↔ ⊥. The reason for
defining such formulas is the following: Let S be a set of atomic formulas and (W,R, V ) a finite
reflexive transitive Kripke frame. Now, if T ⊆ S and u ∈ W is such that u  θT , and v ∈ W is such
that uRv, then v  θT as well. If T ′ ⊆ S is distinct from T and w ∈ W is a node such that w  θT ′ ,
then there is no v ∈ W such that uRv and wRv. In particular, were the frame to be an algebra with
some sort of (necessarily partial) ‘join’ operation defined, then such u and w would have no join
in the algebra. This, together with our previous observation about the difference between the join
operation on spiked Boolean algebras and topless Boolean algebras will help us obtain the promised
formula.

Let p, q, r be distinct atomic propositions. Let ψ1 = θ{p}, ψ2 = θ{q} and ψ3 = θ{r} (S in this
case would be {p, q, r}). Consider the formula

ψ
∆
= (

∧
i≤3

♦ψi) � ♦(♦ψi ∧ ♦ψ2 ∧ ¬♦ψ3).

Lemma 127. Let T be any finite topless pre-Boolean algebra. Then ψ is valid on T. Hence,
ψ ∈ sftba.

Proof. Let V be a valuation on T and let h be a node of T such that h 
∧
i≤3 ♦ψi. Then there

are nodes d, e, f such that h ≤ d, e, f and d  ψ1, e  ψ2 and f  ψ3. It is also clear that no two
of these nodes can have a join in the algebra. By Corollary 120, we can find a node g such that
g ≤ d, e and g 6≤ f . If g 

∧
i≤3 ♦ψi, we can repeat this step again. As the frame is finite, after some

iterations we reach a node h′ such that h′  ♦ψi ∧ ♦ψ2 ∧ ¬♦ψ3. As the relation is transitive, we are
done.

Lemma 128. Let S be the spiked Boolean algebra with 3 extremal nodes, the extremal nodes being
u, v, w where w is the top node of the corresponding Boolean algebra. Then there is a valuation V
on S such that (S, V ) 6� ψ. Hence, ψ 6∈ S4sBA.

Proof. Let V be any valuation on S such that u  p∧¬q ∧¬r, v  ¬p∧ q ∧¬r and w  ¬p∧¬q ∧ r.
Let t be the root of S. Clearly, t 

∧
i≤3 ♦ψi. However, it is equally clear that there is no node s ∈ S

such that s  ♦ψi ∧ ♦ψ2 ∧ ¬♦ψ3.

Corollary 129. It is not the case that S4tBA is contained in S4sBA.

5.3 Labelling Frames

The aim of this section is to describe our strategy for labelling all spiked Boolean algebras. First,
we recall the ccc-labelling we have previously seen, that in Theorem 67.
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Let M be a model of set theory, and T ∈ V be an ω1-tree. Then all of the ccc-extensions of M
can be described in the following way:

ϕnA
∆
= T is non-Aronszajn;

ϕSp
∆
= T is special;

ϕSu
∆
= T is non-special Aronszajn.

These statements have the following properties, which were used to label the two element fork
frame in Theorem 67 where T was taken to be the <L-least Suslin tree:

ϕnA � �ϕnA,

ϕnA � �ϕnA,

ϕSu � (♦ϕnA) ∧ (♦ϕSp).

The labellings that are provided in this chapter are generalisations of this labelling to the case of
n-many ω1-trees, albeit with some restrictions on the treees. In particular, our starting combinatorial
structure is provided by the following theorem of Abraham-Shelah [AS93]:

Theorem 130. (♦ω1) Let Sp be a collection of non-empty finite subsets of ω1 closed under supersets,
and let Su be those non-empty finite sets e ⊂ ω1 which are not in Sp. Then there is a sequence of
trees 〈T γ | γ < ω1〉 such that for a finite set e ⊂ ω1,

(i) If e ∈ Sp, T e
∆
=

⊗
γ∈e T

γ is special.

(ii) If e ∈ Su, T e
∆
=

⊗
γ∈e T

γ is Suslin.

Corollary 131. (♦ω1) For every natural number n, there are Suslin trees T 1, T 2, . . . , Tn such that
if i, j ∈ {1, 2, . . . , n} then Ti ⊗ Tj is special.

Now, let us fix a natural number n and Suslin trees T 1, T 2, . . . , Tn in L with properties as above.
It is clear then that in any generic extension of L where ωL

1 is not collapsed, each of the T i is either
special, non-special Aronszajn, or non-Aronszajn. We can therefore describe all of the ccc-extensions
of L based on the properties that these trees possess in this extension.

Definition 132. Let n be a fixed natural number, and let T 1, T 2, . . . , Tn be trees as above. Let
M be a ccc-extension of L. Let (nA,Sp, Su) be a triple of subsets of {1, 2, . . . , n} such that
nA ] Sp ] Su = {1, 2, . . . , n}. We say that (nA,Sp,Su) is a description of M if the following holds:
For each i, 1 ≤ we ≤ n,

(i) i ∈ nA iff T i is not Aronszajn in M ;

(ii) i ∈ Sp iff T i is special in M ;

(iii) i ∈ Su iff T i is non-special Aronszajn in M .

Thus, it is clear that each ccc-extension M of L has a description by some triple. In fact, due to
the properties of our trees, we shall see in Proposition 133 that all of the ccc-extensions of L can be
described by triples (nA,Sp,Su) of subsets of {1, 2, . . . , n} with the following properties:
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(i) nA ] Sp ] Su = {1, 2, . . . , n};

(ii) |nA| ≤ 1;

(iii) nA 6= ∅ =⇒ Su = ∅.

If n is clear from context, we call a triple of subsets of {1, 2, . . . , n} which satisfies these properties
a valid triple.

Further, by Corollary 144, it follows that for each triple (nA,Sp,Su) with these properties, there
is a ccc-extension of L whose description is exactly this triple.

We shall then see in Lemma 145 that if M is a ccc-extension whose description is (nA,Sp, Su),
then for any other valid triple (nA′,Sp′, Su′) there is a ccc extension N of M which is described by
the triple (nA′, Sp′,Su′) if and only if:

(i) The first co-ordinate increases. That is, nA ⊆ nA′.

(ii) The second co-ordinate increases. That is, Sp ⊆ Sp′.

(iii) The third co-ordinate decreases. That is, Su ⊇ Su′.

This is clearly reminiscent of the spiked Boolean algebra on an n-element set, and we label this
partial order using statements that we derive from the behaviour of these trees in Theorem 146

We shall then see in Corollary 148 that adding an arbitrarily large number of L-Cohen reals
does not change the truth value of any of the statements that we use to label the topless Boolean
algebras. Hence, arbitrarily large clusters can also be added at each node of the frames, that is, any
finite spiked pre-Boolean algebra can be labelled by ccc forcing, hence giving the main theorem,
Theorem 150.

5.4 Adding Branches and Specialising

In this section, we prove some results about ω1-trees. The main concern is to show that under
certain conditions, a non-special Aronszajn tree can be made special or non-Aronszajn without
disturbing the non-special Aronszajn-ness of other trees. Before we do this, we first prove some
basic results about ω1-trees which will come in handy later.

The following are some basic properties of the tensor product operation that we are studying:

Proposition 133. Let T and S be ω1-trees. Then

(i) T ⊗ S is non-Aronszajn iff T and S are non-Aronszajn.

(ii) In general, if T is non-Aronszajn, then T ⊗ S is non-special, special or non-Aronszajn iff S is
as well.

(iii) If T is special, then T ⊗ S is special.

(iv) If T ⊗ S is special in a model M , and in some model N , M ⊂ N such that (ω1
1)M = (ω1)N , T

is non-Aronszajn, then S is special in N .

Proof. Trivial.
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We will also need the following folklore fact about adding branches to ω1-trees:

Lemma 134. Let P be a poset such that P× P is ccc. Let T be an ω1-tree. Then forcing with P
does not add any new branches to T .

Proof. Assume towards a contradiction that ḃ is a P-name such that P“ḃ is a new branch of T”.
Then for each p ∈ P and α < ω1, there is a ᾱ ≥ α and pα and qα which decide b�ᾱ incompatibly
(because ḃ is a new branch of T ). Using this, one inductively constructs a sequence 〈(pα, qα) | α < ω1〉
of elements of P× P satisfying the following:

(i) For α < β, pα < pβ, qβ.

(ii) For β < ω1, there is some δ ≥ γ such that pβ and qβ decide ḃ�δ incompatibly, where

γ = sup{λ | pα decides ḃ�λ for some α < β}.

It is then clear that this sequence is an uncountable antichain of P × P because for any α < ω1,
pα ⊥ qα, and for any α < β < ω1, pα < pβ, qβ.

5.4.1 The Specialisation Theorem

The primary task of this section is to understand how Aronszajn trees can be specialised, and made
non-Aronszajn. For the former, a theorem of Baumgartner [Bau70] provides a canonical method for
ccc-specialising an Aronszajn tree. Our treatment follows [Jec03, Chapter 16]. Note that this poset
and the results of this subsection talk about specialising ω1-trees in the ‘traditional sense’, but that
this implies that they are special in our sense as well.

Lemma 135. Let T be an Aronszajn tree and A an uncountable collection of pairwise disjoint finite
subsets of T . Then there are S, S′ ∈ A such that S ∪ S′ is an antichain of T .

Proof. Assume towards a contradiction that the claim is false. Therefore, for each distinct S, S′ ∈ A,
S ∪ S′ is not an antichain of T . Without loss of generality, assume that |A| = ℵ1. Also, assume
that there is a natural number n such that for each S ∈ A, |S| = n. We can do this because A
is uncountable, so there must be a natural number n such that uncountably many elements of A
have size n. For each S ∈ A, fix an enumeration of S. Thus, for each i, 1 ≤ i ≤ n, S(i) is the ith
element of S in this enumeration. Lastly, fix a uniform ultrafilter U on A. That is, an ultrafilter
with domain A such that for any X ∈ U , |X| = ℵ1. Such an ultrafilter can be found using the
Axiom of Choice. Now, by assumpton, for each distinct S, S′ ∈ A, S ∪ S′ is not an antichain T , so
there is an x ∈ S and x′ ∈ S′ such that x and x′ are comparable. Therefore, for each S ∈ A and
x ∈ S we can consider the set

Yx,k
∆
= {S′ ∈ A | x ‖ S′(k)}

for each k, 1 ≤ k ≤ n. By assumption, for each S′ 6= S, there is a k ≤ n and an x ∈ S such that
S′ ∈ Yx,k. Therefore,

A =
⋃
x∈S

n⋃
k=1

Yx,k

for each S ∈ A. We note that both of the unions are indexed by finite sets, and so we can appeal to
the ultrafilter U to give us, for each S ∈ A, an xS ∈ S and a kS , 1 ≤ kS ≤ n such that YxS ,kS ∈ U .
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Since A is uncountable, there is a 1 ≤ k ≤ n such that B = {S | kS = k} is uncountable. We will
now show that for any two S, S′ ∈ B, the elements xS and xS′ must be comparable, and show that
this implies that T is Aronszajn.

So, let x = xS and x′ = xS′ . Now, Yx,k and Yx′,k are both in U , so Y = Yx,k ∩ Yx′,k is in U
as well. If S′′ ∈ Y , then S′′(k) is then comparable with both x and x′. Now, recall that by our
hypothesis, any two elements of A are disjoint. Hence, any two elements of Y are disjoint. Hence,
for any distinct S1, S2 ∈ Y , S1(k) 6= S2(k). Now finally, recall that U was a uniform ultrafilter, so Y
is uncountable. Therefore, there are uncountably many distinct elements of T which are comparable
with both x and y. In particular, there is an element z whose height is larger than the heights of x
and y and which is comparable with both of them, and hence, x and y must be comparable.

Therefore, for any two distinct S, S′ ∈ B, xS and xS′ are (distinct and) comparable, and since
B is uncountable, this gives us an uncountable chain in T , which implies that T is not Aronszajn,
which is a contradiction.

Now, recall Baumgartner’s poset S(T ) that consists of functions p such that

(i) dom(p) is a finite subset of T ;

(ii) ran(p) ⊂ ω;

(iii) If x, y ∈ dom(p) are such that x ‖ y, then p(x) 6= p(y),

and ordered such that p ≥ q if p ⊇ q. At this point, the reader should take note that the ordering of
forcing notions is Jerusalem-style, so stronger conditions are actually larger in the poset.

The importance of this poset is because of the following theorem, which, in addition to showing
that an Aronszajn tree can be ccc-specialised, also states that to know whether T is Aronszajn or
not is the same as knowing whether S(T ) is ccc or not. Such a characterisation (in terms of the
ccc-ness of a poset) of the Aronszajn-ness of T will be particularly useful once we have proved the
Antichain Lemma, Lemma 140 at the end of this section.

Theorem 136. (Specialisation Theorem) Let T be an ω1-tree. The following are equivalent:

(i) T is Aronszajn.

(ii) S(T ) has the ccc.

Proof. For (ii) implies (i), we use contraposition. Let b be an uncountable branch of T , and n a
natural number. For each p ∈ b, let fp be the function whose domain is {p} and fp(p) = n. Consider
the following subset of S(T ):

A
∆
= {fp | p ∈ b}.

Clearly A is uncountable, and if g ∈ S(T ) is such that g ⊃ fp, then p ∈ dom(g), and g(p) = n.
Clearly then, for two distinct p, q ∈ b, it cannot be the case that g extends both fp and fq, as this
would imply that {p, q} ⊆ g−1(n), contradicting the third clause in the definition of S(T ). Hence, A
is an uncountable antichain of S(T ).

For (i) implies (ii) Let W be an uncountable subset of S(T ). Refine W in the following way:

(i) Using the ∆-System Lemma, obtain an uncountable V ⊆ W such that there is a finite set
S ⊂ T such that for any two distinct p, q ∈ V , dom(p) ∩ dom(q) = S.
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(ii) Now, V is uncountable, whereas for each p ∈ V , p�S is a finite subset of ω, hence has only
countably many possible values. Therefore, obtain an uncountable U ⊆ V such that for any
two p, q ∈ U , p�S = q�S.

Now, appeal to Lemma 135 to get elements p, q ∈ U such that (dom(p) \ S)) ∪ (dom(q) \ S) is an
antichain. Finally, we claim that p ∪ q is an element of S(T ) which extends both p and q, and so W
is not an antichain of S(T ), hence allowing us to conclude that S(T ) has the ccc.

So, suppose that p ∪ q is not an element of S(T ). This is only possible if condition (iii) is not
satisfied. But if x, y ∈ dom(p ∪ q) are such that x ‖ y, then it follows (because of the way we chose
p and q) that it cannot be the case that x ∈ dom(p) \ S and y ∈ dom(q) \ S. In particular, either
both of them are in dom(p) or both of them are in dom(q). In either case, since p and q are both
elements of S(T ), it cannot be the case then that (p ∪ q)(x) = (p ∪ q)(y). Hence, p ∪ q ∈ S(T ), and
the result follows.

Corollary 137. Let T be an Aronszajn tree. Then S(T ) × S(T ) has the ccc, and hence, S(T )
cannot add a branch to an ω1-tree.

Proof. By the above theorem, if T is Aronszajn, then S(T ) is ccc. But now, if we force with S(T ),
then T is special, and in particular, Aronszajn. It follows then that S(T )“S(T ) has the ccc”, and
hence by Theorem 36, S(T )× S(T ) has the ccc. The rest is immediate by Lemma 134.

5.4.2 The Subtree Theorem

We turn next to the problem of adding a branch to a non-special Aronszajn tree. Note that such a
tree need not necessarily be Suslin2. Indeed, one can construct using ♦ω1 a Suslin trees T such that
for any two nodes p, q on the same level of T , Tp can be specialised while ensuring that Tq remains
Suslin and vice-versa, see for example [DJ74] or [AS93] for a construction of such a Suslin tree3.
This implies that there can be Aronszajn trees with a special subtree and a Suslin subtree. Such a
tree is then non-special, but also clearly not Suslin.

Therefore, a tree being non-special Aronszajn only gives information that there is some ccc
poset which adds a branch to this tree, but does not a priori say anything about what the poset is.
However, it is clear that if T is an Aronszajn tree such that there is a node p ∈ T such that Tp is
Suslin, then T must be non-special, since a branch can always be added to T by forcing with Tp.
The next theorem shows that such a situation must occur if T is a non-special Aronszajn tree. We
point out that the one of the (non-obvious) directions of the theorem is proved in [BJ95, Lemma
9.7.19], which the authors attribute to [HS85].

Theorem 138. (Subtree Theorem) Let T be an Aronszajn tree. Then the following are equivalent4:

(i) There is a ccc poset adding a branch to T .

2There are, however, homogeneity conditions that can be imposed on the tree so that the two are equivalent; see
Section 5.7.

3The requisite condition that needs to be imposed on Tp and Tq is that Tp ⊗ Tq is Suslin, and then the Antichain
Lemma, Lemma 140, allows us to show the preservation results.

4It should be mentioned that Lemma 9.7.17 of [BJ95] says that the negation of (ii) above implies that the specialising
poset S(T ) is Knaster. Clearly, if a tree T is such that S(T ) is Knaster, a branch cannot be added to it by ccc forcing.
However, we are not fully convinced that the proof as given is correct, and have not been able to supply a proof
ourselves, so we do not add the extra item to this chain of equivalences.
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(ii) There is an uncountable subset S of T such that no uncountable S′ ⊆ S is an antichain.

(iii) There is a node p ∈ T such that Tp is Suslin

Proof. For (i) implies (ii), let P be a ccc poset, p ∈ P a condition, and τ a P-name such that p “τ
is a branch of T”. Let

A
∆
= {t ∈ T | ∃q ≥ p(q  ť ∈ τ)}.

As τ is a name for a confinal branch of this tree, A is uncountable. If B ⊆ A were an uncountable
antichain, then for each t ∈ B pick an element pt such that pt  ť ∈ τ . Then the set S = {pt | t ∈ B}
is clearly an uncountable antichain of P, contradicting that P is ccc. Hence no uncountable subset
of A can be an antichain.

For (ii) implies (iii), let S be such a subset of T . If S is not dense above any node p ∈ T , then

consider the set S′
∆
= {p ∈ S | S ∩ Tp = ∅}. Note that if p ∈ S′, then S′ ∩ Tp = ∅, and as T is a tree,

this implies that for any p, p′ ∈ S′, p ⊥ p′. Hence, S′ is an antichain of T . Also, for every p ∈ S,
there is a p′ ∈ S′ such that p′ ≥ p. Hence, S′ bounds the elements of S from above. Now, if S′ were
countable, this would imply that all elements of S are bounded by some level α in T . But as T
is an ω1-tree, and in particular, all the levels of T are countable, this implies that S is countable.
Hence, S′ must be an uncountable antichain of T , which contradicts the choice of S.

Consequently, let p ∈ T be such that S is dense above p. Suppose that Tp is not a Suslin tree,
and let A ⊂ Tp be an uncountable antichain. Then as S is dense above p, we can extend each
element of A to an element in S, obtaining a set S′, which is an uncountable subset of S which is
an antichain, which is not possible. Hence Tp must be Suslin.

The remaining direction, (iii) implies (i) is obvious.

5.4.3 The Antichain Lemma

So far, we have shown that there is a ccc-way to specialise Aronszajn trees, and that branches can
be added to non-special Aronszajn trees by a fairly well-understood poset. While this was quite
crucial to the endeavour, even more crucial is being able to do both of these things with one tree,
without affecting the another tree. While this is harder to understand with Aronszajn trees in
general, this is easier for the case of Suslin trees as we shall now see. The next definition and lemma
are from [Lar99].

Definition 139. Let M ⊂ N be models of ZFC. Let T be a tree in M , and A ∈ N \M an antichain
of T . Call A a deep antichain of T with respect to M if for all maximal antichains B of T in M ,
there is an element of A above some element of B in T .

Note that a deep antichain of a tree must be unbounded in the levels, and hence uncountable if
ω1 is not collapsed. Also note that if a poset adds a generic branch through a Suslin tree, it adds a
deep antichain as well. In fact, as any antichain in a Suslin tree is bounded by some level of the
tree, any poset that destroys the Suslinity of some tree adds a deep antichain to the tree.

Lemma 140. (Antichain Lemma) Let T be an ω1-tree and P a forcing poset. If forcing with P
can add a deep antichain on T with respect to the ground model, then forcing with T can put an
ω1-antichain through P.
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Proof. Let τ be a name and p ∈ P a condition such that p  “τ is a deep antichain of T”. Consider
the set

D
∆
= {α ∈ T | ∃q ∈ P, q ≥ p and q  α̌ ∈ τ}.

If D is not dense above any node of T , then the set

E
∆
= {α ∈ T | α ∈ D and ∀β > α(β 6∈ D)}

is a maximal antichain of T such that no node of τ is above any element of E, which is not possible.
Hence, D is dense below some node q ∈ T . Now clearly, a generic path through T which contains q
must meet D densely, and hence, ℵ1-many times. Let this set be {βγ | γ < ω1}. For each γ < ω1, fix
an element pγ ∈ P such that pγ ≥ p and pγ  βγ ∈ τ . Then the set {pγ | γ < ω1} is an uncountable
antichain of P since p  “τ is a deep antichain of T” and each of these elements is above p.

As mentioned above, deep antichains are easy to come by when the Suslinity of some tree has
been destroyed. This is also why the Subtree Theorem is useful for us; it tells us that if a non-special
Aronszajn tree is specialised, then there is a subtree of it to which a deep antichain has been added.
This allows the Antichain Lemma to ‘retaliate’ against this poset in a way that we will see below.

Before we see such an example, we point out the ‘can’ in the formulation of the Antichain
Lemma. The proof itself shows that if P adds a deep antichain to T , then there is a node p ∈ T
such that any generic branch of T through p adds an uncountable antichain to P. The next two
lemmas show that this can be rephrased in terms of a generic branch through Tp, which is often
more convenient for our purposes.

Lemma 141. Let T be an ω1-tree. If p ∈ T is a node, then adding a generic for Tp adds a generic
for T . In fact, if b′ is the Tp-generic branch, and V [b′] is the generic extension so obtained (i.e. V
is the ground model containing T ), then there is an object b ∈ V [b′] which is T -generic over V and
such that V [b′] = V [b]. That is, a Tp-generic extension is also a T -generic extension.

Proof. The first part follows from the observation that every dense open subset of T contains a
dense open subset of Tp as well. For the second part, b is obtained from b′ by prefixing the branch

(of length ht(p)) b′′
∆
= {q ∈ T | q < p} to b′. Clearly, b′′ is in the ground model, and so b and b′ are

inter-definable from the other over the ground model, so V [b′] = V [b]. This branch is generic by the
first part.

Corollary 142. Let T be an ω1-tree and P a poset which adds a deep antichain to T . Then there
is a node p ∈ T such that adding a generic branch to Tp adds an uncountable antichain to P.

A sample usage of the Antichain Lemma is the following:

Proposition 143. Let S and T be Aronszajn trees such that S ⊗ T is special. Let p ∈ S be a node
such that Sp is a Suslin tree. Then S(T ) does not destroy the Suslinity of Sp.

Proof. Towards a contradiction, assume the contrary. Then S(T ) adds a deep antichain to Sp. Then,
there is a q ∈ Sp such that forcing with Sq adds an uncountable antichain to S(T ), so it adds a
cofinal branch of T . But it also trivially adds a cofinal branch to S. Hence, by Proposition 133, it
adds a cofinal branch to S ⊗ T , hence collapsing ω1. But as Sp is Suslin, this is not possible.
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The reason for the hypothesis that there is a node p ∈ S such that Sp is Suslin is this: the
Subtree Theorem tells us that this is exactly what happens when S is a non-special Aronszajn tree.

Corollary 144. Let S and T be Aronszajn trees such that S ⊗ T is special. Further, assume that S
is non-special Aronszajn. Then after forcing with S(T ), S is still non-special Aronszajn.

Proof. By Corollary 137, it is clear that S(T ) cannot add a branch to S. Hence, S will be Aronszajn
in that extension. On the other hand, the above proposition tells us that it cannot destroy the
Suslinity of any Suslin subtree of S.

5.5 Labelling Kripke Frames

In this section, for each n, we give a complete labelling for all the finite spiked Boolean algebras
over L following the method we described in Section 5.3.

Fix a natural number n, and using ♦ω1 , let 〈T 1, T 2, . . . , Tn〉 be a sequence of Suslin trees in L
such that if i, j ∈ {1, 2, . . . , n} are distinct, then T i ⊗ T j is special. In fact, choose the sequence of
T i such that they are the <L-least such sequence. This will ensure that all the sentences that we
will use in the labelling can be expressed in ZFC.

The following result shows the exact accessibility relation that holds between valid triples in the
ccc-multiverse of L:

Lemma 145. Let M be a ccc-extension of L, and let the description of M be (a, b, c). Let (d, e, f)
be some other valid triple. Then there is a ccc-extension N of M such that the description of N is
(d, e, f) if an only if:

(i) The first co-ordinate increases. That is, a ⊆ d.

(ii) The second co-ordinate increases. That is, b ⊆ e.

(iii) The third co-ordinate decreases. That is, c ⊇ f .

Proof. It is clear that if T i is special in M , that is, if i ∈ b, then in any ccc-extension of M , T i

remains special. Similarly, if T i is non-Aronszajn in M , that is, if i ∈ b, then in any ccc-extension of
M , T i remains non-Aronszajn. Hence, it is clear the conditions on (d, e, f) are necessary.

For sufficiency, suppose that (d, e, f) satisfies these conditions. If (a, b, c) = (d, e, f), then there
is nothing to be done, so assume that this is not so. If d 6= ∅, then by Proposition 133, there is
exactly one i ∈ {1, 2, . . . , n} such that d = {i}, and f = ∅ and e = {1, 2, . . . , n} \ {i}. Also, as the
two triples are distinct, a = ∅, and in particular, i ∈ c, and so T i is non-special Aronszajn in M . In
this case, there is a ccc poset which adds a branch to T i, and it is easy to see that after forcing
with this poset, T i is not Aronszajn, and this implies that the description of the generic extension is
exactly (d, e, f).

On the other hand, if d = ∅, then by Corollary 144, we can one by one specialise each T i for
i ∈ e \ b without specialising or adding a branch to any other j ∈ f , and it is easy to see that after
finitely many steps we get a ccc-extension whose description is exactly (d, e, f).

We now show how we can give a complete labelling over L for the spiked Boolean algebra on an
n-element set, (S,≤), using these Suslin trees. We use our representation of S as a set of triples
(a, b, b) of subsets of {1, 2, . . . , n} of the following form (see Section 5.2):
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(i) a ] b ] c = {1, 2, . . . , n};

(ii) |a| ≤ 1;

(iii) a 6= ∅ =⇒ c = ∅;

with the relation ≤ between the nodes is given by (a, b, c) ≤ (d, e, f) if:

(i) The first co-ordinate increases. That is, a ⊆ d;

(ii) The second co-ordinate increases. That is, b ⊆ e;

(iii) The third co-ordinate decreases. That is, c ⊇ f ;

Note that the triples used in this representation are the same as what we call valid triples of
subsets of {1, 2, . . . , n}.

We recall here the definition of a labelling: A Γ-labelling of a frame F for a model of set theory
W is an assignment to each node w in F a set-theoretic statement Φw such that

(i) The statements Φw form a mutually exclusive partition of truth in the multiverse of W
generated by Γ. That is, if W ′ is in the multiverse of W generated by Γ, then W ′ satisfies
exactly one of the Φw.

(ii) Any W ′ in the multiverse of W generated by Γ in which Φw is true satisfies ♦Φu if and only if
w ≤F u.

(iii) If w0 is an initial element of F , then W � Φw0 .

For every valid triple (a, b, c), let ϕ(a,b,c) be the statement expressing that for the the <L-least
sequence 〈T 1, T 2, . . . Tn〉 of Suslin trees such that the product of any two distinct members of them
is special, the following holds:

(i) i ∈ a iff T i is not Aronszajn;

(ii) i ∈ b iff T i is special;

(iii) i ∈ c iff T i is non-special Aronszajn.

The map (a, b, c) 7→ ϕ(a,b,c) is then the labelling of S. To see that this is indeed a labelling, note
that:

(i) The initial element of S is represented by (∅, ∅, {1, 2, . . . , n}), and it is clear that L �
ϕ(∅,∅,{1,2,...,n});

(ii) In any ccc-extension M of L, there is exactly one valid triple (a, b, c) which describes it, and
hence, M � ϕ(a,b,c);

(iii) If M is a ccc-extension of L which satisfies ϕ(a,b,c), then the description of M is (a, b, c), and
hence, for any other triple (d, e, f), by Lemma 145, there is a ccc-extension N of M satisfying
ϕ(d,e,f) if and only if (a, b, c) ≤ (d, e, f) in S.

Theorem 146. For each natural number n, there is a ccc-labelling of the finite spiked Boolean
algebra on an n-element set for L.
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5.6 Switches

In this section we show that Cohen forcing allows us to add arbitrarily large finite clusters at each
node of our Kripke frames.

Definition 147. Let P be a forcing poset. We say that P is productively ccc if for any ccc poset Q,
P“Q is ccc”, or equivalently, P×Q is ccc.

Note that above, these two definitions are equivalent by Theorem 36. Any countable, Knaster,
or σ-centered poset is productively ccc. In particular, for any regular cardinal κ, the poset

∏
κ Coh

which adds κ-many Cohen reals is Knaster, and hence productively ccc.

Proposition 148. Let P be a productively ccc poset. Let T be a non-special Aronszajn tree. Then
P“T is a non-special Aronszajn tree”.

Proof. Since P is productively ccc, P× P is ccc, and hence, by Lemma 134, forcing with P does not
add any branches to T . On the other hand, if p ∈ T is such that Tp is a Suslin subtree (by the
Subtree Theorem, such a p must exist), then P× Tp has the ccc, and hence, by Theorem 36, P“Tp
is Suslin”. Therefore, after forcing with P, T remains a non-special Aronszajn tree.

Hence, in any generic extension of L, we can add as many Cohen reals as we like without adding
a branch to any Aronszajn tree, and without specialising any non-special Aronszajn tree. Also, by
Theorem 20, all of these reals must be Cohen over L as well. This informs our choice of switches in
the next lemma.

Lemma 149. Any finite spiked pre-Boolean algebra can be ccc-labelled over L. Consequently, MLL
ccc

is included in S4sBA.

Proof. Let S be a spiked pre-Boolean algebra. Let n be the number of nodes of the partial order
of S obtained by taking the quotient of this pre-order by the natural equivalence relation, and by
adding dummy nodes if required, let each of the clusters of S have size 2m.

For j < m, let sj be the statement “If p is the unique natural number such that there are
ℵω·α+p-many L-Cohen reals for some ordinal α, then the remainder of p when divided by m is j”.

Also, recall the statements ϕ(a,b,c) for (a, b, c) a valid triple of subsets of {1, 2, . . . , n} which we
used to prove Theorem 129. Each of the sm’s are independent switches, and one only needs to
add the relevant number of Cohen reals to flip a certain switch ‘on’ or ‘off’ without affecting the
other switches. Further, by Proposition 148, each of these switches can be flipped on or of without
affecting the truth values of any of the ϕ(a,b,c) that we used to label the spiked Boolean algebra on
an n-element set.

Now, we represent S in the following way: each element of S can be represented by a pair
((a, b, c), j) whose first co-ordinal is a valid triple of subsets of {1, 2, . . . , n}, and whose second
co-ordinate represents a position in the cluster. The relation between the nodes can be given by:

((a, b, c), j) ≤ ((d, e, f), k) iff (a, b, c) ≤ (d, e, f),

where the ordering on the right hand side is the one on the representation of the spiked Boolean
algebra on an n-element set.

The labelling is given by: ((a, b, c), j) 7→ ϕ(a,b,c) ∧ sj , and this labelling is easily seen to be
complete.
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Theorem 150. If ZFC is consistent, then the ZFC-provable modal logic of ccc forcing, MLccc, is
included in S4sBA.

Corollary 151. If ZFC is consistent, then the ZFC-provable modal logic of ccc-forcing, MLccc, does
not include S4tBA.

Proof. Follows from the above theorem and Corollary 129.

5.7 Generalisations

In this section, we discuss the scope of generalising our methods to the case of arbitrarily large finite
sets of Aronszajn trees, such that there are fewer restrictions than the trees, so as to enable us to
label a larger class of frames. The most natural such generalisation is the following:

For any natural number n, appealing to Theorem 130, start with a sequence of Suslin trees
T 1, T 2, . . . , Tn such that if i, j, k ∈ {1, 2, . . . , n} are distinct, then Ti ⊗ Tj ⊗ Tk is special, and such
that all other tensor products are Suslin. In this case, it is no longer true that the tensor product of
any two distinct trees is special, and so we would like to obtain an analogue of Corollary 144 which
would also be able to handle this case. Let us see the difficulties with doing this:

It is clear by Lemma 134 that if T, S are both non-special Aronszajn, then forcing with S(T )
does not add a branch to S, so all we need to ensure is that it does not specialise S either. Since S
is non-special Aronszajn, it follows by the Subtree Theorem, that there is a q ∈ S such that Sq is
Suslin. Now, if T does specialise S, then in particular, it specialises Sq. Appealing to the Antichain
Lemma, we get an r ∈ Sq, such that forcing with Sr adds a branch to T . Hence, by Proposition 133,
we see that by forcing with Sq we have added a branch to T ⊗ S.

Now, if T ⊗ S is special, then this would collapse ω1, which is not possible since Sr is Suslin.
Hence, we can specialise T while leaving S non-special Aronszajn if T ⊗ S is special. But if this is
not the case (by Proposition 133, this implies that T ⊗ S is non-special Aronszajn), then we do not
know how to prove the corresponding result.

On the other hand, if T ⊗ S were not just non-special Aronszajn, but Suslin (this implies that T
and S are themselves Suslin), then it is clear that after forcing with S, T is still Suslin, and since a
generic for Sr is the same as a generic for S which contains r (see Lemma 141), it follows that after
forcing with Sr, T must still be Suslin, and hence S(T ) cannot specialise S.

This suggests a way to deal with the obstacle we face. Namely, start with trees such that if they
are non-special Aronszajn, then they are Suslin.

Definition 152. Let T be an ω1-tree. We say that T is very homogenous if for any two p, q ∈ T ,
Tp ∼= Tq.

The following is an example of a very homogenous tree. All of the proofs can be found in [Lar99].

Definition 153 (Coherent ω1-trees). An ω1-tree is coherent if there exists a collection of is a
collection of maps {πα0α1 | lev(α0) = lev(α1)} satisfying the following:

(i) πα0α1 is a level preserving isomorphism from Tα0 to Tα1 and πα0α0 is the identity function.

(ii) (Commutativity) For all α0, α1, α2 on the same level of T , and all β ≥ α0, πα1α2(πα0α1(β)) =
πα0α2(β).
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(iii) (Coherence) Let α0, α1, β0, β1 be such that πα0α1(β0) = β1. Then πβ0β1 = πα0α1�Tβ0 .

(iv) (Transitivity) If β0, β1 are two nodes at some limit level of T , then there are α0, α1 such that
πα0α1(β0) = β1.

Note that coherent ω1-trees are also called strongly homogenous trees in the literature. These
trees have been studied quite extensively in the recent literature [LT02, Tod11]. These were also
the trees that Todorcevic used in his proof of Shelah’s result that adding a Cohen real adds a Suslin
tree [She84].

Theorem 154. There is a coherent Aronszajn tree.

Proposition 155. (♦ω1) There is a coherent Suslin tree.

Theorem 156. Let T be a coherent ω1-tree. Then it is very homogenous.

Now, by the Subtree Theorem, it follows that a very homogenous tree is non-special Aronszajn
if and only if it is Suslin. This suggests that the argument that we suggested above should work
with very homogenous trees, assuming that we can find very homogenous trees T, S such that T ⊗ S
is Suslin. However, this is not possible.

Proposition 157. Let T, S be very homogenous trees. Then T ⊗ S is very homogenous.

Proof sketch. Let p, q ∈ T and v,w ∈ S be some nodes. Let π : Tp ∼= Tq and νSu ∼= Sw be
automorphisms between their subtrees. Then (π, ν) : (T⊗S)(p,v)) ∼= (T⊗S)(q,w)) is an automorphism
as well.

Theorem 158. Let T and S be very homogenous ω1-trees. Then T ⊗ S cannot be Suslin. In
particular, if T and S are homogenously Suslin trees, then their product cannot be Suslin.

Proof. Towards a contradiction, assume this is not so, and let T, S be very homogenous ω1-trees
such that T ⊗S is Suslin. Then T ⊗S has the ccc, and so T“S has the ccc”. Then, by appealing to
Proposition 133, this implies that T“T⊗ is non-special Aronszajn”. But then the Subtree Theorem
tells us that in this generic extension, T ⊗S has a Suslin subtree, and since T ⊗S is very homogenous,
that T ⊗ S is Suslin. However, we can easily construct an uncountable antichain of T ⊗ S: since T
is non-Aronszajn, let A be an uncountable antichain of T , and for each p ∈ A, let qp ∈ S be chosen
such that (p, qp) ∈ T ⊗ S. Then B = {(p, qp) | p ∈ A} is clearly seen to be an uncountable antichain
of T ⊗ S.

Hence, a different method might be required to generalise these results.

5.8 Questions

The aim of this chapter was to understand the modal logic of ccc forcing, and while we have improved
on the existing upper bounds, we are nowhere close to a full computation of MLccc.

Question 159. What is the modal logic of ccc forcing?

Note that in [HL08], Hamkins and Löwe conjecture that the answer to this question is S4.
Another related question which we have not dealt with in this thesis is the following:
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Question 160. (MAω1) What is the modal logic of ccc forcing?

In [HL08], Hamkins and Löwe observe that since MAω1 implies that the product of ccc posets is
ccc, S4.2 is valid for the above logic. They also observe that an answer to this question would be
S4.2 if the following question has a positive answer:

Question 161. In the Solovay-Tennenbaum model L[G] of MAω1, are there arbitrarily large finite
families of independent ccc-buttons and switches?

Curiously, there are no known large families of mutually independent ccc-buttons.

Question 162. (ZFC) Are there arbitrarily large finite families of mutually independent ccc-buttons?

A weaker version of this question is the following:

Question 163. (ZFC + V = L) Are there arbitrarily large finite families of mutually independent
ccc-buttons?

One can also ask these questions for any of the other classes of forcing posets that are regularly
used in set theory. [HLL] contains all of the known results on this topic.

The Subtree Theorem raises the following interesting question:

Question 164. Let P be a class of forcing posets contained in the class of ω1-preserving posets.
Can one characterise the class of Aronszajn trees T such that there is a P ∈ P such that forcing
with P adds a branch to T without collapsing ω1?5

A related result can be found in [LT01], where Larson and Todorcevic construct assuming ♦ω1

an Aronszajn tree such that forcing with the tree destroys a stationary subset of ω1 but does not
collapse ω1. Larson [Lar13] modifed this construction to show that one can further ensure that if
an ω1-preserving poset adds a branch to this tree, then it must destroy a stationary set. Hence,
this is an example of an Aronszajn tree such that no proper poset adds a branch to it, but there is
an ω1-preserving poset which adds a branch to it. These trees might perhaps also give a positive
answer to Question 163.

An analysis of the standard method of proving that a forcing poset is proper suggests the
following question:

Question 165. Let T be an Aronszajn tree such that there is a proper poset which adds a branch to
T . Then does T have a Suslin subtree?

A positive answer to this question would show that all of the results in this chapter also extend
to the modal logic of proper forcing. We also do not know the answer to the following stronger
version of this question:

Question 166. Let T be an Aronszajn tree such that there is a poset which adds a branch to T and
does not destroy any stationary subsets of ω1. Does T have a Suslin subtree?

Another related question is this: if it is indeed the case that for any Aronszajn tree T , if no ccc
poset adds a branch to T , then S(T ) is Knaster, then the next two questions each generalise the
previous two questions:

5Questions similar in spirit to this one have been asked on Mathoverflow by Erin K. Carmody [Car] Paul McKenney
[McK].
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Question 167. Let P be a Knaster poset. Let Q be a proper poset. Then is it the case that Q“P
has the ccc”?

Question 168. Let P be a Knaster poset. Let Q be a stationary-set-preserving poset. Then is it
the case that Q“P has the ccc”?

These questions might perhaps be related to the research program on separating various
statements which lie between MAω1 and Suslin’s Hypothesis [TV87, LT01, Woo10]. For example,
one could classify how ccc a partial order is by the kind of posets that do not destroy its ccc-ness.

Another line of questions is this: the following axiom is known as C2 in the literature: “The
product of any two ccc posets is ccc”. This is known to follow from MAω1 . By Theorem 36, this
axiom is equivalent to the statement “Every ccc poset remains ccc after forcing with a ccc poset”.
For any P , a class of forcing posets which is contained in the class of ω1-preserving posets, one could
formulate the following statement, which we call CP : “Every ccc poset remains ccc after forcing
with any poset in P”.

Question 169. Let P be a class of forcing posets which is contained in the class of ω1-preserving
posets, and which strictly contains the class of all ccc posets. Is CP consistent?

One may also try to characterise other combinatorial obects of size ω1 based on the kind of
posets which affect their behaviour, for example towers. We note that such a study has already
been done for gaps, see [Sch93] for details.

Another area of investigation is the following: we know that if T is special in the traditional
sense, that is, if T =

⋃
i∈ω Ai, where each of the Ai is an antichain of T , then one cannot add

a branch to T without collapsing ω1. A reasonable question to ask is if the converse holds too.
Namely,

Question 170. Let T be an Aronszajn tree such that there is no ω1-preserving poset P which adds
a cofinal branch to T . Are there countably many antichains Ai for i ∈ ω such that T =

⋃
i∈ω Ai?

All of the questions above can also be asked in the context ω1-trees in general. We note that a
generalisation of the notion of ‘special’ to ω1-trees can be found in [Tod82].

Another interesting line of investigation related to the modal logic of ccc forcing is that of
investigating whether specific statements are ccc-buttons or ccc-switches. The following two were at
one stage contenders for being a topic of study in this thesis:

Question 171. Is Suslin’s Hypothesis a ccc-switch?

Question 172. Is MAω1 a ccc-switch?

Note that by results of Shelah [She84], one direction of both these questions is true. Namely, in
any model M of set theory, if we force with the Cohen poset to get M [r], then in M [r], there is a
Suslin tree, and hence, Suslin’s Hypothesis, and therefore MAω1 as well, does not hold.

We note that the näıve approach to restoring Martin’s approach does not work above. In
particular, Farah proved in [Far96] that forcing with a Suslin tree can never give a model of MAω1 .
Larson improved this in [Lar99] by showing that forcing with an Aronszajn tree which does not
collapse ω1 can never give a model of MAω1 . Larson also mentions the following question, which he
attributes to Woodin, which is similar in spirit, though not strictly related to ccc-forcing.:
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Question 173. (2ℵ0 > ℵ1 + ¬MAω1) Let P be a forcing poset such that the generic is a real. Can
forcing with P give a model of MAω1?

We point out that in the case that ¬MAω1 does not hold, the answer to this question is positive
by results of Carlson and Laver [CL89], who showed that adding a Sacks real to a model of PFA
gives a model where MAom continues to hold.

Question 174. (2ℵ0 > ℵ1 + ¬MAω1) Let P be a ccc poset of size less than the continuum. Can
forcing with P give a model of MAω1?

Also, Theorem 158 raises the following question:

Question 175. If they exist, are all homogenous Suslin trees isomorphic? If they exist, how many
non-isomorphic homogenous Suslin trees must there be?
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Chapter 6

Collapsing ℵ2

In this chapter, we give an exposition of Abraham’s method [Abr83] for collapsing ℵ2. Recall from
our discussion in the introduction, that Hamkins and Löwe, in one of their proofs that the modal
logic of forcing is exactly S4.2, assumed that for each natural number n ≤ 1, the statements bn=“ℵLn
is not a cardinal” form a mutually independent collection of buttons. However, they did not indicate
which forcing posets they would use to push these buttons.

The standard posets to collapse cardinals are the following:

Definition 176. Let λ be a regular cardinal, and let κ > λ be another cardinal. The Lev́y collapse
poset for collapsing κ to λ, Lev(λ, κ), is the following:

(i) A function p is in Lev(λ, κ) if dom(p) ⊆ λ, |dom(p)| < λ, and ran(p) ⊆ κ;

(ii) If p, q ∈ Lev(λ, κ) then p ≤ q if p ⊆ q.

The following properties of this poset are easy to see:

Proposition 177. Let λ be a regular cardinal, and let κ > λ be another cardinal.

(i) If G is generic for Lev(λ, κ), then ∪G is a surjection from λ onto κ. Hence, forcing with
Lev(λ, κ) collapses κ to λ.

(ii) Lev(λ, κ) is < λ-closed, and hence does not collapse any cardinal ≤ λ;

(iii) |Lev(λ, κ)| = κ<λ, and hence, if κ<λ = κ, then no cardinals larger than κ are collapsed.

(iv) Therefore, if κ<λ = κ, then Lev(λ, κ) collapses κ, and no other cardinals.

It is now easy to see that b1 is indeed a button and independent of all of the other statements,
as the poset Lev(ℵ0,ℵ1) has size ℵ<ℵ01 = ℵ1.

However, as Rittberg pointed out in [Rit10], the statement b2 need not be independent of b3. In
particular, if 2ℵ0 > ℵ2, then Lev(ℵ1,ℵ2) collapses 2ℵ0 to ℵ1, and hence, collapses ℵ3. We shall see a
proof in Section 6.2.

However, this does not rule out the possibility that b2 is indeed independent of each of the
statements bn for n 6= 2, or even that the proof by Hamkins and Löwe is not incorrect, but merely
incomplete. Recall:
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Question 1. Let n > 1 be a natural number. M be a generic extension of L sucn that M �“ℵLn is a
cardinal”. Then is there a generic extension N of M such that N �“ℵLn is not a cardinal” and such
that for all other natural numbers m > 1, if M �“ℵLm is a cardinal” then N �“ℵLm is a cardinal”?

While researching this question, we found that Abraham had already thought of questions of
a similar nature, and in particular, had given a proof that in any model of set theory, the second
uncountable cardinal can always be collapsed without collapsing any other cardinals. In this chapter,
we shall see a proof of this result. The organisation is as follows:

In Section 6.1 we shall see some basic results which will be used in Abraham’s proof. In
Section 6.2 we shall see a proof that if the continuum is larger than ℵ2, then Lev(ℵ1,ℵ2) necessarily
collapses the continuum, and hence ℵ3 as well. In Section 6.3 we shall describe Abraham’s idea. In
order to prove that ℵ1 is not collapsed, Abraham uses a covering theorem of Shelah’s. We see this
theorem in Section 6.4. In Section 6.5, we see the poset that Abraham uses, and why it collapses
ℵ2, but does not collapse any cardinals larger than ℵ2. In Section 6.6 we see a proof that ℵ1 is
not collapsed by this poset, hence completing the proof. Abraham’s theorem only answers the case
n = 2 of Question 1, and in Section 6.7 we discuss attempts to generalise Abraham’s construction
and other related questions.

6.1 Basic Results about Cohen Reals and Elementary Submodels

In this section we prove some basic results about Cohen reals and elementary submodels that we
shall use later in this chapter.

6.1.1 Cohen Reals

Recall that the poset Coh to add a Cohen real is the following:

(i) The carrier set of Coh is ω<ω, the set of finite sequences of natural numbers;

(ii) If p, q ∈ Coh, then p ≥ q if q is an initial segment of p, denoted q 4 p.

Definition 178. The poset C is the finite support ω1-product of Coh. For any γ < ω1, C≥γ is
defined as the suborder of C which consists of functions whose support is a subset of [γ, ω1), that is,
C�[γ, ω1). The poset C<γ is defined as the suborder of C which consists of functions whose support
is a subset of [0, γ) that is, C�[0, γ).

As Coh is Knaster, it follows by Proposition 29 that C is Knaster as well, and in particular
ccc. Also, it is easy to see that for any γ < ω1, C ∼= C<γ × C≥γ . Also, as ω1 is an indecomposable
ordinal (that is, if α, β < ω1 are such that the ordinal sum α+ β = ω1, then β = ω1), it is clear that
C ∼= C≥γ for any γ < ω1.

Proposition 179. Let M be a model of set theory, and let G be M-generic for C, then f =
⋃
G

has the following properties:

(i) f : ω1 → ωω, that is, f is a function whose domain is ω1, and for each α ∈ ω1, f(α) ∈ ωω.

(ii) For each γ < ω1, f(γ) is a Cohen real over M .

Proof sketch. The results follow once we make the following observations:
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(i) For any α < ω1, and n ∈ ω, the set

Dα
n = {p ∈ C | α ∈ supp(p) and |p(α)| ≥ n}

is a dense open subset of C.

(ii) For any γ < ω1, for any S an open dense set of Coh in M , the set

DS
γ = {p ∈ P | γ ∈ supp(p) and p(γ) ∈ S}

is a dense open subset of C.

Corollary 180. Let M be a model of set theory and G be M-generic for C. Let f =
⋃
G. Then

for any γ ≤ η < ω1, f(η) is a Cohen real over M [G<γ ].

Proposition 181. Let M be a model of set theory and G be M -generic for C. Let X ⊆M be a set
in M [G] such that

M [G] � “X is countable”.

Then there is a Y ∈M such that
M � “Y is countable”,

and M [G] � X ⊆ Y .

Proof sketch. If Ẋ is a name for X, and p ∈ C a condition and Ḟ a C-name such that

p  “Ḟ : ℵ0 → X is a bijection”,

then for each n ∈ ℵ0, the set

Xn
∆
= {y ∈ V | ∃q ≥ p[q  Ḟ (n) = y̌]}

is countable as C has the ccc, and hence Y =
⋃
Xn is the countable set in M that we wanted.

Corollary 182. Let M be a model of set theory and G be M -generic for C. Let X ∈M [G] be such
that

M [G] � “X is countable”.

Then there is γ < ω1 such that X ∈M [G<γ ], and

M [G<γ ] � “X is countable”.

Proof sketch. By the previous proposition, there is, in M , a countable set Y such that M [G] � X ⊆ Y .
If we then pick a nice name Ẋ for X as a subset of Y , then

Ẋ =
⋃
y∈Y
{y̌} ×Ay,

where each Ay is an antichain of C. Since C has the ccc, there is a γ < ω1 such that for each y ∈ Y ,
for each p ∈ Ay, supp(p) ⊆ [0, γ). The result follows.

Proposition 183. Let G be M -generic for C. Then M [G] � 2ℵ0 = (2ℵ0)V .
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6.1.2 Elementary submodels

We end this section with a discussion of elementary submodels of large fragments of set theory. When
discussing Abraham’s proof, we shall talk about an elementary substructures M ≺ (Vλ,∈, <, . . .)
“for some large ordinal λ”. In practice, we can take λ to be some ordinal larger than the cardinality
of the set P(P(γ)), where γ is any ordinal which is larger than the ranks of all the objects we talk
about in our proof. The < is some unspecified well-ordering of Vλ which allows us to do inductive
constructions in M . The extra unspecified parameters are those that we use in the proof. The only
thing we will require of λ will be that Vλ is a model of some large fragment of ZFC, and that it
contains enough information about all of the objects that we are interested in. Such a λ can be
found by the Montague-Lévy Reflection Principle. In this case, if A ∈M and B is a set which is
definable from some formula ϕ(x) which only involves parameters from A, then we can assume that
B ∈ M by picking λ large enough as to be a model of ∃y[∀x[x ∈ y ↔ ϕ(x)]. In particular, any
object which is definable without any parameters can be assumed to be in M . For example, all the
natural numbers, ω, ω1, ω2 etc. It is however important to note that M need not be transitive. For
example, if M is countable, then clearly even though ω1 ∈M , ω1 6⊂M .

On the other hand, if S is some countable set and S ∈M , then as Vλ �“S is countable”, M �“S
is countable”. In particular, there is a f ∈M which M sees as witnessing this countability. That is,
M �“f : ω → S is surjective”. In this case, since ω ⊆M , and since Vλ � ∀n ∈ ω∃y[f(n) = y], and
since the formulas in the language of set theory which express the sentences “f is a function”, “n is
in the domain of f”, “f(n) = y” are absolute, it follows that firstly M � ∀n ∈ ω∃y[f(n) = y], and
therefore, for each natural number n, there is a y ∈M such that M � f(n) = y. But in this case,
by appealing to the absoluteness, it follows that Vλ � f(n) = y. The following fact captures the
argument that we have given:

Proposition 184. Let M ≺ Vλ for λ large enough. If A,B ∈M and f : A→ B is a function, then
there is a g : A→ B such that g ∈M . Further, if f is injective, surjective, bijective etc., then a g
can be found with the same property. If A ⊆M , then range(g) ⊆M . In particular, if S ∈M has a
size which is some definable cardinal λ (for example ℵn for some natural number n), then S has the
same size in M . If in addition λ ⊆M , then S ⊂M .

Hence, it is not always true that if S ∈M then S ⊆M . The opposite direction always holds:
for any S ⊆M , S ∈M . A useful corollary of this fact is the following:

Corollary 185. Let M ≺ Vλ for λ large enough be a countable elementary substructure. Then
M ∩ ℵ1 ⊂M .

A detailed exposition of countable elementary submodels can be found in [JW97].

6.2 The Lévy Collapse

Before we see Abraham’s technique, we shall first see why the standard technique does not work.
Recall that our goal is to show that in any generic extension M of L where ℵL2 is a cardinal, there is
a further generic extension N in which ℵL2 is collapsed, but no other ℵLm. We show that in some
generic extensions of L, the standard poset for collapsing ℵ2 does not work.

This standard forcing poset for collapsing ℵ2 is the poset Lev(ℵ1,ℵ2) which consists of functions
p such that:
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(i) dom(p) is a countable subset of ℵ1;

(ii) ran(p) is a subset of ℵ2;

(iii) p ≥ q if p ⊇ q.

If G is V -generic for Lev(ℵ1,ℵ2), then it is easily seen that f
∆
=

⋃
G is a function such that

ran(f) = ℵ1, and dom(f) = ℵ2. Hence,

V [G] � “f : (ℵ1)V → (ℵ2)V is surjective”,

and hence, by using the axiom of choice, we can obtain a h ∈ V [G] such that

V [G] � “h : (ℵ2)V → (ℵ1)V is injective”,

and since V [G] � (ℵ1)V ⊂ (ℵ2)V , it follows that V [G] � |ℵ1| = |ℵ2|.
Also, it is easily seen that P is σ-closed, and so by Proposition 15, we see that for any h ∈ V [G]

such that
V [G] � h : ℵ0 → ORD,

we have h ∈ V . It follows that (ℵ1)V cannot have been collapsed when going from V to V [G], and
hence, V [G] � (ℵ1)V = ℵ1.

Hence, forcing with Lev(ℵ1,ℵ2) collapses ℵ2, and does not collapse ℵ1. Further, if we assume
2ℵ0 ≤ ℵ2, then

|Lev(ℵ1,ℵ2)| = ℵ<ℵ12 = ℵ1 × ℵℵ02 = ℵ1 × ℵ2 = ℵ2.

Therefore, in this case, Lev(ℵ1,ℵ2) trivially has the ℵ3-cc , and so by Theorem 17, forcing with
Lev(ℵ1,ℵ2) cannot collapse any cardinals from ℵ3 onwards.

However, if 2ℵ0 > ℵ2, then

|Lev(ℵ1,ℵ2)| = ℵ<ℵ12 = ℵ1 × ℵℵ02 = ℵℵ02 ≤ (2ℵ0)ℵ0 = 2ℵ0 ≤ ℵℵ02 .

Hence,
|Lev(ℵ1,ℵ2)| = ℵℵ02 = 2ℵ0 > ℵ2.

Before we show that this implies that Lev(ℵ1,ℵ2) collapses cardinals other than ℵ2, we make
the following observation: since we used no properties of ℵ2 in the definition of Lev(ℵ1,ℵ2), and
in the arguments that followed, we could also have defined Lev(ℵ1, S) for any arbitrary set S,
and if |S| ≥ ℵ1, then the generic G would have given us a surjection from ℵ1 onto S, and by
appealing to the axiom of choice, we could have obtained an injection from S into ℵ1. Then, by the
Bernstein-Cantor-Schröder Theorem, we would have gotten a bijection between ℵ1 and S in V [G].
Hence, to show that some cardinal other than ℵ2 is collapsed by this forcing, it suffices to prove that
there is a set S whose cardinality is larger than ℵ2 whose cardinality is changed by forcing with this
poset, and this itself can be shown if we can find a generic for the poset Lev(ℵ1, S) in V [G].

Now, we use this strategy to show that if 2ℵ0 > ℵ2, then some cardinal other than ℵ2 is collapsed
by Lev(ℵ1,ℵ2):

Proposition 186. Lev(ℵ1,ℵℵ02 ) can be embedded as a dense subset of Lev(ℵ1,ℵ2). Hence, if
ℵℵ02 > ℵ2, then forcing with Lev(ℵ1,ℵ2) collapses ℵ3 as well.
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Proof. Note that we can see ℵ1 as being composed of ℵ1-many blocks of size ℵ0. That is, fix a
partition ℵ1 =

⋃
α∈ω1

Pα. Then, by σ-closedness of Lev(ℵ1,ℵ2), for any p ∈ Lev(ℵ1,ℵ2), we can find
q ≥ p such that if γ ∈ dom(q) and α ∈ ω1 is such that γ ∈ Pα, then for all Pα ⊆ dom(q). That
is, the domain of q is the union of countably many blocks from this partition. We call such a q
saturated. Hence, the set of all saturated elements of Lev(ℵ1,ℵ2) is a dense subset of Lev(ℵ1,ℵ2).

But clearly, for each saturated element q we can get a function q̄ whose domain is a countable
subset of ℵ1 and whose range is a subset of ℵℵ02 as follows:

(i) dom(q̄) = {α | there is a γ ∈ dom(q) such that γ ∈ Pα}.

(ii) For α ∈ dom(q̄), q′(α) = q�Pα.

Since q is saturated, for each α ∈ dom(q̄), q̄(α) : ℵ0 → ℵ2. Hence, this ¯ operation is well-defined,
and for each saturated q, it is the case that q̄ ∈ Lev(ℵ1,ℵℵ02 ) since dom(q) is countable, and hence
dom(q̄) is countable as well.

Also, if p ≥ q are both saturated, then for any α ∈ dom(q̄), α ∈ dom(p̄) as well, and further,
since q is saturated, for any α ∈ dom(q̄), we have that q̄(α) : ℵ0 → ℵ2, and then because p ⊇ q, it
follows that q̄(α) = p̄(α). Hence, p̄ ⊇ q̄, and hence p̄ ≥ q̄ in Lev(ℵ1,ℵℵ02 ).

To summarise, the poset of saturated elements is a dense suborder of Lev(ℵ1,ℵ2), and further,
this poset can be embedded into Lev(ℵ1,ℵℵ02 ,) using the ¯ operation. But also, it is easy to see
that for any r ∈ Lev(ℵ1,ℵℵ02 ), we can find an s ∈ Lev(ℵ1,ℵ2,) such that s̄ = r. Hence, the poset of
saturated elements of Lev(ℵ1,ℵ2) is isomorphic to Lev(ℵ1,ℵℵ02 ), and since it is a dense suborder
of Lev(ℵ1,ℵ2), it follows that adding a generic for Lev(ℵ1,ℵ2) adds a generic for Lev(ℵ1,ℵℵ02 ).
Therefore, forcing with Lev(ℵ1,ℵ2) adds a bijection between ℵ1 and ℵℵ02 . However, if the latter is
larger than ℵ2, then clearly ℵ3 is collapsed in this extension.

6.3 Abraham’s Idea

We have seen how Lev(ℵ1,ℵℵ02 ) can be densely embedded into Lev(ℵ1,ℵ2). Hence, when ℵℵ02 > ℵ2,
Lev(ℵ1,ℵ2) collapses cardinals other than ℵ2. We now start with explaining Abraham’s method for
collapsing the second uncountable cardinal in ay model of set theory.

Now, since we want to show that in any model we can collapse ℵ2, we can clearly not assume
that ℵℵ02 ≤ ℵ2. On the other hand, we know that in L, the GCH is true, and in particular, ℵℵ02 = ℵ2.
However, we are in an arbitrary model of set theory, so it is possible that (ℵℵ02 )L 6= ℵℵ02 . We can
however get around this trick by picking a model W which is intermediate between L and V and
which does compute ℵ2 correctly. The next fact lets us do this. We do not prove it as its proof
would involve a lengthy detour into the theory of constructibility. Its proof can be found in Chapter
13 of [Jec03]:

Proposition 187. Let V be a model of set theory. Let κ = ℵV2 . Then there is a A ⊆ ℵ2 in V such

that ℵL[A]
2 = ℵV2 . Further, L[A] � 2ℵ0 ≤ ℵ2.

Hence, in L[A], |Lev(ℵ1,ℵ2)| = ℵ2. Also, an L[A]-generic for (Lev(ℵ1,ℵ2))L[A] adds a bijection

between ℵL[A]
2 and ℵL[A]

1 . However, ℵL[A]
2 = ℵ2, and hence ℵL[A]

1 = ℵ1. Also, since L[A] ⊆ V , any V -
generic for (Lev(ℵ1,ℵ2))L[A] is also an L[A]-generic, and hence, if we force in V with (Lev(ℵ1,ℵ2))L[A],
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then we add a bijection between ℵV1 and ℵV2 . In particular, forcing with this poset collapses ℵV2 ,
and since V � |(Lev(ℵ1,ℵ2))L[A]| = ℵ2, no cardinals larger than ℵ2 can be collapsed by this poset.

This does not mean that we are done however. In particular, in L[A], (Lev(ℵ1,ℵ2))L[A] is
σ-closed, and hence forcing with (Lev(ℵ1,ℵ2))L[A] over L[A] does not collapse ℵ1. But V might
have many more countable sequences of ordinals. Hence, it is possible that (Lev(ℵ1,ℵ2))L[A] is not
σ-closed in V , and maybe even not σ-distributive. Therefore, there is no way to guarantee that by
forcing over V with the poset (Lev(ℵ1,ℵ2))L[A], we do not collapse ℵ1.

Abraham gets around this obstacle by first adding ℵ1-many Cohen reals by finite support to V
to obtain a generic extension V [G], and then applying the above idea to use the poset Lev(ℵ1,ℵ2)
as defined in some suitable inner model to collapse ℵ2. The preparatory forcing allows us to show
that this poset is σ-distributive, by allowing us to approximate countable elementary substructures
of Vλ[G] for some large λ in some model intermediate between V and V [G].

The structure of the rest of this chapter is as follows: in Section 6.4 we prove a covering theorem
which will let us do these approximations. In Section 6.5, we describe Abraham’s construction in
detail and prove some basic facts about it. In Section 6.6 we prove that this construction does not
collapse ℵ1.

6.4 Facts about Pκ(λ)
Definition 188. Let κ be an uncountable regular cardinal.

(i) For λ ≥ κ, Pκ(λ)
∆
= {S ⊆ λ | |X| < κ}.

(ii) A set S ⊆ Pκ(λ) is unbounded if for each X ∈ Pκ(λ), there is a X ′ ∈ S such that X ⊆ X ′.

(iii) S is closed if for γ < κ, for any sequence of elements 〈Xα | α < γ〉 of S,
⋃
α∈γ Xα ∈ S.

(iv) We say that S is a club subset of Pκ(λ) if it is both closed and unbounded in Pκ(λ).

(v) If T ⊆ Pκ(λ) is such that its intersection with all club subsets of Pκ(λ) is non-empty, then we
say that T is a stationary subsets of Pκ(λ).

(vi) For f : [λ]<ω → Pκ(λ), we say that X ⊆ λ is closed under f if
⋃
f ′′[X]<ω ⊆ X.

(vii) Given a function f : [λ]<ω → Pκ(λ), we define the set

Cf
∆
= {X ⊆ Pκ(λ) | X is closed under f}.

The proofs of the following basic facts can be found in Chapter 8 of [Jec03]:

Proposition 189. Let κ be an uncountable regular cardinal, and let λ ≥ κ be another cardinal.

(i) For any f : [λ]<ω → Pκ(λ), Cf is a club.

(ii) If S is a club in Pκ(λ), then for some f : [λ]<ω → Pκ(λ), Cf ⊆ S.

(iii) If γ is a cardinal such that κ ≤ γ ≤ κ, and if S is a club in Pκ(λ), then the set

S�γ
∆
= {X ∩ γ | X ∈ S}

contains a club subset of Pκ(γ).
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Let W ⊆ W ′ be models of set thoery with the same ordinals and such that W is transitive in W ′.
For any cardinal κ, we denote by κ+n the n-th successor cardinal of κ. We can naturally relativise
this to particular models of set theory. For example, if κ is a cardinal in W , then (κ+n)W is the nth
successor cardinal of κ in W .

The following is a theorem which Abraham attributes to Shelah and mentions has been generalised
by Shelah in [She82, Chapter 13].

Theorem 190. Let κ be a regular cardinal in W ′. If (κ+n)W = (κ+n)W
′

for some n < ω, then in
W ′:

(i) Pκ(κ+n) ∩W is a stationary subset of Pκ(κ+n).

(ii) For any cardinal λ and X ∈ Pκ(W ′λ), there is an elementary substructure M ≺ (W ′λ) of size
less than κ such that X ⊆M and M ∩ κ+n ∈W .

(iii) If κ = µ+ and µ<µ = µ in W ′, then for any cardinal λ and any X ∈ Pκ(W ′λ), there is an
elementary substructure M ≺ W ′λ such that X ⊆M , M ∩ κ+n ∈ W , and further, for every
subset Y of M ∩ κ+n of size less than µ in W , Y ∈M .

6.5 Abraham’s Construction

For the rest of this chapter we fix the model of set theory V that we are in. We want to show that
there is a poset Q in V such that forcing over V with Q collapses exactly ℵ2. Clearly, if 2ℵ0 ≤ ℵ2,
then we could just use Lev(ℵ1,ℵ0). Therefore, we assume that 2ℵ0 > ℵ2.

Using Proposition 187, fix a subset A ⊆ ℵ2 such that ℵ2 = ℵL[A]
2 . Note that this also implies

that ℵL[A]
1 = ℵ1. Let Coh and C be respectively the Cohen poset and the finite support ω1-product

of the Cohen poset as defined in L[A]. We note that though it does not make a difference whether
these posets are defined in L[A] or in V (because any two models compute Coh in the same way
because the definition involves only finite strings of natural numbers, and because L[A] computes ω1

correctly, that is, ω
L[A]
1 = ωV1 , so both these models compute C correctly), we shall use the fact that

C ∈ L[A], and in particular, that there is a formula defining C using A and ωL
1 = ω1 as parameters.

To be precise:

Fact 191. Let W be a model of set theory such that V ⊆W , and let λ be some large ordinal such
that M ≺Wλ is an elementary substructure, and A ∈M . In W , let M̄ be the transitive collapse of
M , and π : M → M̄ the collapsing map. Then C ∈M , and π(C) = C�π(ℵ1). Also, if W contains a
V -generic subset G for C, and if G ∈M , then π(G) = G ∩ π(C).

Now, let G be V -generic for C. Then G is L[A]-generic for C as well. As L[A] � |C| ≤ 2ℵ0 , and
since L[A] � 2ℵ0 ≤ ℵ2, it follows that L[A] � |C| ≤ ℵ2. Hence, by Proposition 183, it follows that
L[A,G] � 2ℵ0 ≤ ℵ2.

Now, let P be the Lévy collapse poseter as defined in L[A,G]. That is,

P ∆
= (Lev(ℵ1,ℵ2))L[A,G].

Since L[A,G] � 2ℵ0 ≤ ℵ2, it follows that

L[A,G] � |(Lev(ℵ1,ℵ2))L[A,G]| = ℵ2,
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and since ℵL[A,G]
2 = (ℵ2)V , it follows that V � |P| = ℵ2. Hence, by forcing with P, we cannot collapse

cardinals larger than ℵ2.
On the other hand, P is σ-closed in L[A,G], but V [G] clearly contains more countable sets of

ordinals (since L[A,G] � 2ℵ0 ≤ ℵ2), so P need not be σ-closed in V [G]. However, we can still show
that P is σ-distributive in V [G], and therefore, ℵ1 is not collapsed. We do so in the next section.

6.6 ℵ1 is not collapsed

This entire section is devoted to a proof of the next lemma.

Lemma 192. P is σ-distributive in V [G]. That is, forcing with P does not add any new countable
subsets of V [G].

Proof. Let Ḟ ∈ V [G] be a P-name and p0 ∈ P a condition such that p0  Ḟ : ℵ0 → ORD. We
would like to find a p ≥ p0 deciding all the values of Ḟ . Now, since P has size ℵ2 in V [G], let
E = 〈pα | α < ℵ2〉 be an enumeration of P in L[A,G]. Now, using part (ii) of Theorem 190 for the
case of W = L[A,G] and W ′ = V [G], n = 1 and κ = ℵ1, obtain a countable model M ≺ Vλ[G] such
that:

(i) λ is large enough so that Vλ[G] = (V [G])λ (this is possible by Proposition 13), and F , P, E,
A, p0, ℵ1, ℵ2, G ∈ Vλ[G].

(ii) M ∩ ℵ2 ∈ L[A,G].

Let M̄ be the transitive collapse of M , and π : M → M̄ the collapsing function. We make the
following observations:

(i) As M ∩ ℵ2 is a set of ordinals, M ∩ ℵ2 can be collapsed in exactly one way. Further, as
M ∩ ℵ2 ∈ L[A,G], it follows that π(M ∩ ℵ2) ∈ L[A,G].

(ii) By a similar argument, A ⊆ ℵ2 is also a set of ordinals such that A ∈ L[A,G], and hence
π(A) ∈ L[A,G].

(iii) C was defined in L[A], and hence is definable by a formula whose parameters consist of A and

ω
L[A]
1 . Now, since L[A] and V compute ℵ2 correctly, they also compute ℵ1 correctly, and in

particular ωV1 = ω
L[A]
1 . Further, V [G] is obtained from V by forcing with a poset which does

not collapse any cardinals, and hence,

ω1 = ω
V [G]
1 = ωV1 = ω

L[A]
1 .

It follows then that the same formula which defines C in L[A] from A and ω
L[A]
1 can be used

to define π(C) from π(A) and π(ω1) = π(ω
L[A]
1 ). Therefore, π(C) ∈ L[A,G] as π(A) and π(ℵ1)

are in L[A,G], but further, by Fact 191, π(C) = C�π(ℵ1), and π(G) = G ∩ π(C).

(iv) P was defined in L[A,G] using ℵ0,ℵ1,ℵ2 as parameters. However, L[A], L[A,G], V , and V [G]
all compute these parameters in the same way. Hence, we can define π(P) from the parameters
π(A), π(ℵ0), π(ℵ1) and π(ℵ2). Since all of these parameters are in L[A,G] (because they are
ordinals), it follows that π(P) ∈ L[A,G].
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(v) Let π(E) = 〈p∗α | α < π(ℵ2)〉. Then this is an enumeration of π(P) in M̄ . Further, since E was
an enumeration of P of length ℵ2 in L[A,G], and π(A), π(ℵ2), π(G) are in L[A,G], it follows
that π(E) ∈ L[A,G].

(vi) Since M is countable, M̄ is countable as well, and hence, π(ℵ2) is countable. Hence, we can
fix a bijection h : ℵ0 → π(ℵ2) in L[A,G].

(vii) So far, we have shown that the image under π of each of the elements A, M ∩ ℵ2, C, G, P, E,
ℵ0, ℵ1, ℵ2 is in L[A,G]. Also, G is V -generic for C, and hence, L[A]-generic as well. Therefore,
we have shown that a finite set (the set of transitive collapses of each of these elements) is
contained in the generic extension of L[A] by C, and now we can appeal to Corollary 182 over
the model L[A] to give a γ′ < ω1 such that this finite set is already in L[A,G<γ′ ].

(viii) Now, since M̄ is countable, we can appeal to Corollary 182 over the model V to give a γ < ω1

such that γ′ < γ such M̄ ∈ V [G<γ ]. Note that this also implies that the finite set from the
previous item is already in L[A,G<γ ].

(ix) Also, by Corollary 180, if g =
⋃
{c ∈ C | c ∈ G}, then g : ω1 → ωω such that for each

α < β < ω1, g(β) is Cohen over V [G<α]. Then, if we let d = g(γ), then d is Cohen over
V [G<γ ].

Now, we inductively define a sequence 〈p′i | i ∈ ω〉 of elements of π(P) in the following way:
p′0 = π(p0), for each natural number n, p′n ≤ p′n+1 so that

p′n+1 = p∗h(d(n)) if p∗h(d(n)) ≥ p
′
n,

= p′n otherwise.

Since this is an inductive process such that all of the parameters d,h, π(P), π(p0),π(E) are in
L[A,G], it follows that 〈p′i | i ∈ ω〉 ∈ L[A,G]. Hence, 〈π−1(p′i) | i ∈ ω〉 ∈ L[A,G] is an increasing
sequence in P. Using the σ-closedness of P in L, let p = ∪i∈ωπ−1(p′i) ∈ P.

We now claim that for each n < ω, there is an ordinal α such that p  Ḟ (n) = α. That is, p
decides all values of Ḟ .

In order to prove this claim, we prove that the sequence 〈p′i | i ∈ ω〉 ∈ L[A,G] is M̄ -generic over
π(P). The reason why this would suffice is the following:

For any n < ω, and any condition p′ ∈ π(P) such that p′ ≥ π(p0), since p0  Ḟ : ℵ0 → ORD, by
the definability of forcing, π(p0)  π(Ḟ ) : ℵ0 → ORD. Hence, there is a p′′ ≥ p′ and an ordinal α
such that p′′  π(Ḟ )(n) = α. That is, the set

Dn
∆
= {p′ ∈ π(P) | for some ordinal α, p′  π(Ḟ )(n) = α},

defined in M̄ , is a dense open subset of π(P) below π(p0) in M̄ . It follows then that there is
some k < ω such that p′k ∈ Dn, and thus, (p′k  π(Ḟ )(n) = α)M̄ for some ordinal α. Thus, by
the definability of forcing, (π−1(p′k)  Ḟ (n) = π−1(α))M , and then, because M is an elementary
substructure of Vλ[G] for some large λ, it follows that π−1(p′k)  Ḟ (n) = π−1(α). Therefore, p
decides the value of Ḟ (n).

Hence, all we need to do now is to show that the sequence 〈p′i | i ∈ ω〉 ∈ L[A,G] is M̄ -generic
over π(P). In order to do this, we use the fact that d is Cohen over V [G<α], and that M̄ ∈ V [G<α],
and so are the previously mentioned finite set of parameters. Let C(γ) denote the poset C�{γ}. We

77



note that C(γ) is the same as the Cohen poset Coh. The reason for our notation is that we want to
show that for each dense open subset D ∈ M̄ of π(P), the following is a dense open subset of C(γ)
in V [G<γ ]:

{c ∈ Cγ | c  ∃k < ω[p′k ∈ D]}.

Towards this, let c ∈ Cγ. Let l = length(c). Then c  d�l = c. Now, if we know d�l, then we can
perform our inductive construction (which only uses d(k) to construct p′k+1 if it has access to p′k,
h, π(P), and π(E)) of 〈p′i | i ∈ ω〉 upto stage l. That is, we can construct 〈p′i | i ≤ l〉 already. In
particular, there is some p′ ∈ π(P) such that c  p′l = p′. Using the density of D in M̄ , pick p′′ ≥ p′
be in D. Then there is an α < π(ℵ2) such that p′′ = p∗α. Let i = h(m) for some m < ω, and finally,
let q′ = qˆm. Then q′ ≥ q is an element of C(γ), and q′  d(l) = m. Hence, q′  p′l+1 = p′′, and
consequently, q′  p′l+1 ∈ D. Therefore, the set

{c ∈ Cγ | c  ∃k < ω[p′k ∈ D]}

is a dense open subset of C(γ) in V [G<γ ], and hence we are done.

Theorem 193. Let V be a model of set theory. Then there is a poset Q ∈ V such that forcing with
Q collapses ℵ2, and does not collapse any other cardinals.

Corollary 194. In any model M of set theory, if ℵL2 is still a cardinal, then there is a generic
extension N of M such that in N , ℵL2 is not a cardinal, and further, for any other natural number
n > 0, if ℵLn is a cardinal in M , then it remains a cardinal in N . Consequently, the statement b2 is
a button which is mutually independent of all other buttons bn for n 6= 2.

6.7 Generalisations and Questions

The theorem we have just seen naturally raises the following question:

Question 195. (Abraham) In any model of set theory, is there always a poset such that forcing
with it collapses ℵ3 and does not collapse any other cardinals?

Also, given the motivating question of the chapter, the following weaker version of the above
question also seems relevant:

Question 196. Let M be a model of set theory such that ℵL3 is still a cardinal. Then is there a
poset such that forcing with it collapses ℵL3 but does not collapse any other cardinals?

Note that in this case, if ℵL3 6= (ℵ3)M , then this question has an answer using either the standard
Lévy collapse if ℵL3 = (ℵ1)M or Abraham’s construction if ℵL3 = (ℵ2)M . Hence, for the remaining
case, Theorem 190 might be applicable.

The problem with generalising Abraham’s method in the most näıve way, that is, by increasing
all of the indices by 1 is this: it was crucial in his argument that the preparatory forcing was done
by adding Cohen reals. In the last step, this aspect of Cohen reals, that any initial segment of a
Cohen real is in the ground model, was used in a crucial way in the last density argument. But the
standard way to add a subset S of ω1 such that for each ordinal α < ω1, S ∩ α is in the ground
model (call this a new subset of ω1) is Add(ω1), which collapses the continuum.

Generalising Abraham’s argument in this way would then require showing that in any model of
set theory, there is always a poset which adds a new subset of ω1 without collapsing any cardinals.
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Theorem 197. (Todorcevic [Tod82]) If it is consistent with ZFC that there is an inaccessible
cardinal, then it is consistent with ZFC that there is no poset which adds a new subset of ω1 without
collapsing either ℵ1 or ℵ2.

The model that Todorcevic used was the Mitchell model of [Mit72] which was used to show the
independence of the Kurepa Hypothesis, where an inaccessible cardinal is collapsed to become ℵ2.
This raises the following question:

Question 198. (Abraham-Shelah [AS83]) Is the innaccessible cardinal necessary in the above
theorem?

Note that because in the Mitchell model an inaccessible cardinal is collapsed to ℵ2, for each
natural number n > 2, the statement bn is already pushed. Hence, the theorem of Todorcevic should
not discourage us from trying to answer a revised version of Question 1:

Question 199. Let n > 2 be a natural number. M be a generic extension of L sucn that M �“ℵLn
is a cardinal”. Then, is there a generic extension N of M such that N �“ℵLn is not a cardinal”
and such that for all other natural numbers m > 2, if M �“ℵLm is a cardinal”, then N �“ℵLm is a
cardinal”?

Another interesting phenomenon which is witnessed by the theorems of Abraham and Todorcevic
is this: many forcing constructions in set theory require cardinal arithmetic assumptions so as
to not have unintended consequences, such as Lev(ℵ1,ℵ2), Add(ω1) etc. Also, in iterated forcing
constructions, cardinal arithmetic requirements are needed to do the bookkeeping, for example, in
the standard iterated forcing construction of a model of MAω1 , CH is assumed in the ground model
for this purpose. In both of these cases, can we either show that these requirements can be done
away with or are necessary?

Question 200. Let M be a model of set theory such that M � 2ℵ0 > ℵ1 + ¬MAω1. Is there a
generic extension N of M obtained without collapsing the continuum such that N � MAω1?

The above question can also be asked for various other statements which are obtained by iterated
forcing, for example Suslin’s hypothesis. Also note that it is a weaker form of Question 172 and
Question 174.
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