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Abstract

This thesis is a study of the notion of canonicity (as is understood e.g. in modal logic) from an
algebraic viewpoint. The main conceptual contribution of this thesis is a better understanding of
the connection between the Jónsson-style canonicity proof and the canonicity-via-correspondence.
The main results of this thesis include an ALBA-aided Jónsson-style canonicity proof for inductive
inequalities in distributive modal logic and a Jónsson-style canonicity proof for a certain fragment
of the distributive modal µ-calculus.
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Chapter 1

Introduction

Canonicity theory is a fruitful research area originating in modal logic, which is applied to the proof
of completeness results. Its main research question can be roughly stated as follows: Under which
syntactic restrictions, for a formula or an inequality ϕ, does the following preservation hold:

S � ϕ ⇒ Sδ � ϕ

where, on the algebraic side, S is an algebra and Sδ is its canonical extension, and on the frame side,
S is a frame with topological structure (e.g. a descriptive general frame), and Sδ is its underlying
frame.

The relevance of canonicity theory is that, on the relational side, we can get completeness results for
the normal modal logic Λ(ϕ) generated by ϕ with respect to the class of Kripke frames validating ϕ.
Thanks to the duality between algebras and Kripke frames, this same question can be transferred
to algebras and be studied in a purely algebraic and order-topological way.

Before moving on to the motivation of our thesis, let us briefly explain in the next section the link
between completeness and canonicity.

1.1 Completeness via Canonicity

It is well known from general model theory that there is a Galois connection between (modal)
logics, understood as deductively closed sets of modal formulas, and the classes of their modally
defined frames. This Galois connection is defined by associating any deductively closed set of modal
formulas Λ with the class Fr(Λ) of frames which validate every formula in Λ, and by associating
any class K of Kripke frames with the deductively closed set Th(K) of modal formulas which are
valid on every frame in K.

If a modal formula ϕ is canonical, then the normal modal logic Λ(ϕ) generated by ϕ is complete
with respect to Fr(Λ(ϕ)). The definition of canonicity provides a uniform method to proving this
completeness result, namely the canonical model construction. Indeed, the model-theoretic version
of the definition of canonicity for ϕ means that the canonical frame associated with Λ(ϕ) belongs
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to Fr(Λ(ϕ)).

From the perspective of duality theory, the canonical frame can be associated with two algebras:
the first one is the Lindenbaum-Tarski algebra; indeed, the canonical frame is the ultrafilter frame
of the Lindenbaum-Tarski algebra. The second one is the complex algebra associated with the
canonical frame.

This 3-way relationship can be encoded in purely algebraic terms, and completely reconstructed in
the algebraic setting, thanks to the notion of canonical extension. Indeed, the complex algebra of
the canonical frame is the canonical extension of the Lindenbaum-Tarski algebra. Hence, given the
fact that the validity of formulas/inequalities is preserved and reflected by the duality between a
frame and its complex algebra, and given that, by its definition, the Lindenbaum-Tarski algebra of
Λ(ϕ) validates exactly the formulas in Λ(ϕ), the crucial step in the completeness proof mentioned
above can be equivalently reformulated by the preservation condition displayed at the beginning.
We refer the reader to [3] for further discussion on this.

1.2 Overview of Existing Literature

The canonicity results in the literature belong to two main approaches:

The Jónsson-style approach to canonicity (Jónsson [21], Ghilardi and Meloni [19], Gehrke, Na-
gahashi and Venema [17], Suzuki [24]) is purely algebraic, pursues canonicity independently from
correspondence (we will come back to discussing correspondence below), and relies on canonical
extensions and on the fact that the algebraic operations interpreting the logical connectives can be
extended to operations on the canonical extension. The canonicity results are then obtained via a
study of the order-theoretic properties of the compositions of these extended operations. The work
in [19] and in [21] is mutually independent, while [17] builds on [21] and recognizes its similarity to
[19]; the paper [24] builds on the work of [19] and works constructively. Chapter 3 will be dedicated
to illustrating this methodology.

The canonicity-via-correspondence approach, initiated by van Benthem [25], Sambin and Vaccaro
[23], and also developed by Goranko and Vakarelov [20], Conradie and Palmigiano [10] and Bezhan-
ishvili and Hodkinson [2], is relational and also topological, is closely related to the well-known proof
of canonicity via d-persistence (cf. Proposition 5.85 in [3]), and its crucial tools are Esakia lemma,
intersection lemma and Ackermann lemma. The strategy of this approach can be illustrated by the
following U-shaped argument:

G 
 ϕ F 
 ϕ
m

F 
G ϕ m
m

F �GFO(ϕ) ⇔ F �FO(ϕ).

In the diagram above, G = (F, τ) is the descriptive general frame with F as its underlying frame,
and τ is its additional topological structure. The U-shaped argument relies on the existence of
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a first-order sentence FO(ϕ), the first-order correspondent of ϕ, which holds of F as a first-order
model iff ϕ is valid on F, as shown in the right-hand side of the diagram. On the left-hand side,
by definition, ϕ is valid on G iff ϕ is satisfied on F with respect to every admissible valuation (as
the notation 
G intends to represent). The proof is finished if an analogous correspondence-type
result holds restricted to admissible valuations, as represented by the vertical equivalence in the
lower left-hand side of the diagram. Indeed, the bottom equivalence always holds, since the fact
that FO(ϕ) holds does not depend on admissible valuations, or, in other words, FO(ϕ) cannot
distinguish between F and G.

As outlined by the U-shaped argument, this second approach focuses mainly on correspondence,
and its main contributions have been the design of algorithms, such as the Sahlqvist-van Benthem
algorithm ([22], [25]), and more recently SQEMA [7], for computing the first-order correspondents
of large classes of formulas. The core of the Sahlqvist-van Benthem algorithm is the well-known
“minimal valuation argument” (see [3] and also [11] for a discussion).

The algorithm SQEMA is based on the recognition that the Ackermann lemma [1] encodes the so
called “minimal valuation argument”, see [6] for a discussion. Another interesting contribution of
this line of research is the syntactic characterization of the class of the so called “inductive” [20] and
“recursive” [8] formulas. Inductive formulas, in particular, extend Sahlqvist formulas in the sense
that formulas in each class both have a first-order correspondent and are canonical. Intuitively,
both the inductive formulas and the recursive formulas are classes of formulas where the minimal
valuation argument, encoded in the form of the Ackermann lemma, is guaranteed to succeed.

Recent developments in this line of research involve modal µ-calculus. In [29], Sahlqvist correspon-
dence has been extended to modal µ-formulas on a classical base. In particular, the class of modal
µ-formulas identified as Sahlqvist is rather large, as it includes even more than the inductive formu-
las, and fixed points are allowed on critical branches (see Definition 2.38). These results have been
extended to the modal µ-calculus on an intuitionistic base in [5]. In [2], some canonicity results for
µ-formulas with respect to clopen semantics in the classical case have been achieved for a fragment
of µ-formulas which is much more restricted than the class of formulas defined in [29]. In particular,
fixed points are not allowed on critical branches.

In [10], the two lines of research come together. Indeed, the correspondence results can be achieved
algebraically by the algorithm ALBA, which is the algebraic counterpart of SQEMA in the dis-
tributive case. In [9], a purely algebraic proof of canonicity in non-distributive setting is given, via
a version of ALBA which is sound on non-distributive lattices. Also, the results in [5] are based on
an adaptation of ALBA for the intuitionistic modal µ-calculus.

1.3 Open Issues, and Aim of this Thesis

The state-of-the-art up to ALBA reflects a kind of division of labor between the two approaches:
namely, algebras are used for studying canonicity independently from correspondence, and Kripke
frames and general frames are used for canonicity-via-correspondence. The research yielding to
ALBA made clear that correspondence, and hence canonicity-via-correspondence, can also be de-
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veloped on algebras. Moreover, together with [11], it made clear that algebraic correspondence
is grounded on exactly the same order-theoretic principles which guarantee the purely algebraic
canonicity. However, what is striking is that, even if the two treatments use exactly the same
order-theoretic principles and exactly the same setting of perfect algebras, they look so radically
different, to the point that their relationship can be qualified as a mystery. So it is natural to try
and clarify how these two approaches are related to each other.

In [30], an analysis was given of the Jónsson-style canonicity proof of [17] for Sahlqvist inequalities
in distributive modal logic. This analysis was motivated by an attempt at extending the Jónsson-
style canonicity method to the inductive inequalities. As a result of this analysis, a close connection
emerged between the n-trick—the key tool in the canonicity proof in [17]—and the Ackermann
lemma, which, as mentioned above, is the key tool in the SQEMA-type algorithms. However, in
[30], the attempt at giving a Jónsson-style proof of canonicity for inductive inequality failed, and it
was observed that the Jónsson strategy for proving canonicity of Sahlqvist formulas in the language
of distributive modal logic cannot be straightforwardly extended to inductive formulas as defined
in [10] (see Section 3.2 below for more details on this issue). So these remarks actually made the
situation even more mysterious: from the point of view of correspondence, both Sahlqvist and in-
ductive formulas are designed to guarantee that the minimal valuation argument, as encoded by
the Ackermann lemma, succeeds; moreover, the Ackermann lemma and the n-trick are essentially
one and the same thing. So why should the intimate similarity between Sahlqvist and inductive
formulas break down when it comes to Jónsson-style canonicity? Hopefully, by solving this question,
we could gain enough tools and insights to also extend the Sahlqvist canonicity results obtained in
[2] to the modal µ-calculus on non-classical base.

The aim of this thesis is to address these open issues: firstly, to clarify the relationship between the
two approaches to canonicity, and, by doing this, to extend the Jónsson-style canonicity proof to
the inductive inequalities; secondly, to improve the canonicity results for µ-formulas.

As a brief summary, the main contributions of this thesis are listed in the following section.

1.4 Main Contributions

The contributions of this thesis include, but are not limited to:

• an analysis of the Jónsson-style canonicity proof for Sahlqvist inequalities in distributive
modal logic in [17] (Chapter 3), which puts an emphasis on the compositional structure of
σ-expanding terms. The proof in [17] is refined by removing one tricky lemma (Lemma 5.11
in [17]), and an explanation of why this method does not generalize to inductive inequalities
is also given.

• a generalized definition of canonical extensions of maps (Chapter 6) whose co-domain need
not be the set of clopen elements, and conditions on the compositional structure of maps
which guarantee these maps to be contracting or expanding. These are the tools to be able
to extend the Jónsson-style canonicity treatment to inequalities in the expanded language for
correspondence introduced in [10].
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• a new methodology combining the two approaches on canonicity (Chapter 7), aimed at giving
an ALBA-aided Jónsson-style canonicity proof for inductive inequalities in the language of
distributive modal logic. Especially when restricted to Sahlqvist inequalities, we recognize
the two approaches as two faces of the same coin: see Section 7.3 for further discussion.

• a Jónsson-style canonicity proof for the Sahlqvist fragment of distributive modal µ-calculus
(Chapter 8), generalizing the Sahlqvist formulas of modal µ-calculus in classical setting defined
in [2].

1.5 Structure of the Thesis

The structure of this thesis is the following:

In Chapter 2, the relevant preliminaries on distributive modal logic and its algebraic semantics are
given, as well as the definitions of Sahlqvist and inductive inequalities.

In Chapter 3, the Jónsson-style canonicity proof for Sahlqvist inequalities in distributive modal
logic given in [17] is reviewed. The outline of the proof is sketched, and the two key tools of the
proof, i.e. the n-trick and the contracting or expanding terms, are pointed out. In Section 3.1.3, a
refinement of the proof is given which shows that one tricky lemma (Lemma 5.11 in [17]) is actually
not needed. Then an analysis is given that the two tools above are not enough to prove canonicity
for inductive inequalities.

In Chapter 4, the Ackermann lemma is reformulated and proved in a purely algebraic setting.

In Chapter 5, the ALBA-style canonicity proof is reformulated in an algebraic way, and the alge-
braic idea behind this approach is explained.

The following three chapters are the main part of this thesis:

In Chapter 6, a generalized version of canonical extension is defined as an approximation method
for computing values of functions on arbitrary elements based on their values on clopen elements,
and conditions for maps to be contracting or expanding are given.

In Chapter 7, the results on contracting and expanding terms are generalized to the expanded
language L++ of distributive modal logic containing the adjoints and residuals for all connectives,
and the proof is given that ALBA inequalities are canonical. From this, the canonicity of inductive
inequalities straightforwardly follows, given that the ALBA inequalities are by definition those on
which the ALBA algorithm is guaranteed to succeed, and in [10], ALBA has been proved to succeed
on all inductive inequalities. The proof strategy combines the Jónsson approach with the ALBA
approach, and makes full use of the ALBA algorithm. In this ALBA-aided Jónsson-style approach,
the manipulation steps in ALBA are recognized as admissible manipulations aimed at equivalently
transforming the inequality into some desired shape, to which the proof strategy in the Jónsson-
style canonicity proof for Sahlqvist inequalities can be applied. A parallel comparison between the
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two approaches to canonicity is also given.

In Chapter 8, a Jónsson-style canonicity proof is given for the Sahlqvist fragment of distributive
modal µ-calculus, generalizing the Sahlqvist formulas of modal µ-calculus on a classical base, as
defined in [2].

In Chapter 9, the main results of this thesis are summarized and two future directions are men-
tioned.
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Chapter 2

Preliminaries

In this chapter, we review very concisely the preliminary definitions and facts; we refer the reader
to [10], [12], [16], [17] and [30] for a more expanded discussion.

2.1 Distributive Modal Logic

Distributive modal logic (DML, cf. Definition 2.1 in [17]) is introduced in [17], and further discussed
in [10] and [30]. Algebraically, distributive modal logic is interpreted in the bounded distributive
lattice setting, and in its signature, we have the fragment of propositional logic with ∧,∨,>,⊥ as
well as modalities 3,2, and modalities �,� as weak forms of negation. Intuitively, 3,2,�,� mean
“it is possible that”, “it is necessary that”, “it is impossible that”, “it is possibly not the case that
”, respectively. Since the logic does not have the deduction detachment theorem, hence entailment
cannot be computed by theoremhood, we need to use sequents of the form α⇒ β to formalize the
axiomatization of distributive modal logic. Distributive modal logic has both a relational semantics
and an algebraic semantics, but here we only work with the algebraic semantics. We recall some
preliminary definitions of the basic language L of distributive modal logic from [17] and [10], with
some slight revision.

Given a set Prop of proposition variables, the formulas of distributive modal logic are defined as
follows:

α ::= p | > | ⊥ | α ∧ β | α ∨ β | 3α | 2α | �α | �α,

where p ∈ Prop. We denote the set of all proposition variables occurring in α as Prop(α). In the
algebraic setting, we also call a formula α a term, as the syntax of a term function in an algebra.
We denote the set of all formulas as Lterm.

For the reasons mentioned early on, DML is introduced in the form of sequents α ⇒ β, where α
and β are formulas defined above, and ⇒ is a meta-level implication capturing entailment. In the
algebraic setting, we prefer to use the inequality notation α ≤ β for sequents. We denote the set of all
inequalities as L≤. We will also work with quasi-inequalities of the form α1 ≤ β1& . . .&αn ≤ βn ⇒
α ≤ β for convenience of discussion, where & and ⇒ are meta-level conjunction and implication,
respectively. Let us denote the set of all quasi-inequalities as Lquasi.
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Definition 2.1 (Distributive Modal Logic). A distributive modal logic (DML) is a set of in-
equalities containing the following axioms:

p⇒ p ⊥ ⇒ p p⇒ > p ∧ (q ∨ r)⇒ (p ∧ q) ∨ (p ∧ r)
p⇒ p ∨ q q ⇒ p ∨ q p ∧ q ⇒ p p ∧ q ⇒ q

3(p ∨ q)⇒ 3p ∨3q 3 ⊥ ⇒ ⊥
2p ∧2q ⇒ 2(p ∧ q) > ⇒ 2>
�p ∧�q ⇒ �(p ∨ q) > ⇒ � ⊥
�(p ∧ q)⇒ �p ∨�q �> ⇒ ⊥

and closed under the following inference rules:

α⇒ β β ⇒ γ
α⇒ γ

α⇒ β

α(γ/x)⇒ β(γ/x)

α⇒ γ β ⇒ γ

α ∨ β ⇒ γ

γ ⇒ α γ ⇒ β

γ ⇒ α ∧ β

α⇒ β

3α⇒ 3β

α⇒ β

2α⇒ 2β

α⇒ β

�β ⇒ �α

α⇒ β

�β ⇒ �α

where p, q, r ∈ Prop and α, β, γ ∈ Lterm.

Similar to classical modal logic, we use KDML to denote the smallest distributive modal logic and
KDML+Γ to denote the smallest distributive modal logic containing the axioms in Γ, where Γ is a
set of inequalities.

2.2 Distributive Modal Algebras

As is well known, given an algebra A, a formula α(p1, . . . , pn) induces an n-ary function αA :
An → A. Given an assignment h : Prop → A, the formula α is then interpreted as the element
[α]Ah = αA(h(p1), . . . , h(pn)) ∈ A. Then satisfaction with respect to assignments and validity of
sequents α⇒ β in A are respectively defined in terms of the inequality [α]Ah ≤ [β]Ah being true in A,
and of the inequality αA ≤ βA being true pointwise in the function space [An → A] (see Section 2.6
for more details). Hence, we prefer to use the inequality notation instead of the sequent notation in
the algebraic setting. The formulas and sequents in DML are interpreted over a distributive modal
algebra (cf. Definition 2.9 in [17]) defined as follows:

Definition 2.2 (Distributive Modal Algebra). A distributive modal algebra (DMA) is an al-
gebra A = (A,∨,∧,⊥,>,3,2,�,�), where (A,∨,∧,⊥,>) is a bounded distributive lattice (BDL)
with unary operations 3,2,�,� satisfying the following identities:

3(a ∨ b) = 3a ∨3b 3 ⊥ = ⊥ 2(a ∧ b) = 2a ∧2b 2> = >
�(a ∨ b) = �a ∧�b � ⊥ = > �(a ∧ b) = �a ∨�b �> = ⊥

The underlying BDL of a DMA A is denoted by DA. Therefore we use the notation A = (DA,3,2,�,�).
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Since, in the setting of DMA, we have both order-preserving and order-reversing operations, it will
be convenient to introduce the following terminology about order duals (cf. Definition 2.10 in [17]):

Definition 2.3 (Dual Lattice). Given a BDL A = (A,∨,∧,⊥,>), we denote the dual lattice
(A,∧,∨,>,⊥) as A∂. We also use the notation A1 = A.

An n-order type ε is an element of {1, ∂}n, and its i-th coordinate is denoted as εi. We omit n when
it is clear from the context. We use ε∂ to denote the dual order type of ε where ε∂i = 1 (resp. ∂) if
εi = ∂ (resp. 1). Given an order type ε, we denote Aε as the algebra Aε1 × . . .× Aεn .

2.3 Canonical Extensions

Definition 2.4 (Canonical Extension of BDL, cf. Definition 2.12 in [17]). The canonical
extension of a BDL A is a complete BDL Aδ containing A as a sublattice, such that

1. (denseness) every element of Aδ can be expressed both as a join of meets and as a meet of
joins of elements from A;

2. (compactness) for all S, T ⊆ A with
∧
S ≤

∨
T in Aδ, there exist finite sets F ⊆ S and G ⊆ T

such that
∧
F ≤

∨
G.

It can be shown that the canonical extension of a BDL is unique up to isomorphism (for a proof,
see e.g. Theorem 1 in [18]). It turns out that the canonical extension of a BDL is a perfect BDL
(cf. Definition 2.14 in [17]), as defined below.

Definition 2.5 (Perfect Lattice). We call a BDL A perfect, if it is complete, completely distribu-
tive and completely join generated by the set J∞(A) of the completely join-irreducible elements
of A as well as completely meet generated by the set M∞(A) of the completely meet-irreducible
elements of A.

Theorem 2.6. If A is a BDL, then Aδ is perfect.

An element x ∈ Aδ is closed (resp. open), if it is the meet (resp. join) of a subset of A. The set
of closed and open elements of Aδ are denoted by K(Aδ) and O(Aδ), respectively. It is easy to see
that the denseness condition in the definition of canonical extension implies J∞(Aδ) ⊆ K(Aδ) and
M∞(Aδ) ⊆ O(Aδ) (cf. Page 9 in [17]).

It is easy to check that the following properties about the interaction among canonical extension,
order duals, and products hold:

Lemma 2.7. 1. (A∂)δ ∼= (Aδ)∂;

2. (An)δ ∼= (Aδ)n;

3. (Aε)δ ∼= (Aδ)ε;

4. K((A∂)δ) = O(Aδ)∂;
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5. O((A∂)δ) = K(Aδ)∂;

6. K((An)δ) = (K(Aδ))n;

7. O((An)δ) = (O(Aδ))n.

2.3.1 Canonical Extensions of Maps

Let A,B be BDLs. A given map f : A→ B can be extended to a map : Aδ → Bδ in two canonical
ways. Let fσ and fπ respectively denote the σ and π-extension of f (cf. Definition 2.15 in [17])
defined as follows:

Definition 2.8 (σ- and π-Extension). Given f : A→ B, for all u ∈ Aδ, we define

fσ(u) =
∨
{
∧
{f(a) : a ∈ A and x ≤ a ≤ y} : K(Aδ) 3 x ≤ u ≤ y ∈ O(Aδ)}

fπ(u) =
∧
{
∨
{f(a) : a ∈ A and x ≤ a ≤ y} : K(Aδ) 3 x ≤ u ≤ y ∈ O(Aδ)}

Notice that the order of the codomain is all that matters; indeed, by this definition, for maps
f : A→ B and g : A∂ → B where f(a) = g(a) for all a ∈ A, their canonical extensions are the same
in the sense that fσ(u) = gσ(u) and fπ(u) = gπ(u) for all u ∈ Aδ. However, if we take the order
dual of the codomain, then for maps f : A → B and g : A → B∂ where f(a) = g(a) for all a ∈ A,
we have fσ(u) = gπ(u) and fπ(u) = gσ(u) for all u ∈ Aδ.

Remark 2.9. For maps which are order-preserving, the definition of canonical extensions can be
simplified as follows:

Proposition 2.10 (cf. Remark 2.17 in [17]). If f : A→ B is order-preserving, then for all u ∈ Aδ,

fσ(u) =
∨
{
∧
{f(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aδ)}

fπ(u) =
∧
{
∨
{f(a) : y ≥ a ∈ A} : u ≤ y ∈ O(Aδ)}.

For f : A → B, by defining f∂ : A∂ → B∂ where f∂(a) = f(a) for all a ∈ A, we have that
(f∂)σ = (fπ)∂ and (f∂)π = (fσ)∂.

2.3.2 Continuity Properties

In this subsection, we define some continuity properties which will be used in the Jónsson-style
canonicity proofs. Here A and B are arbitrary BDLs.

Definition 2.11 (Upper and Lower Continuity). Given any map f : Aδ → Bδ, we say that:

1. f is upper continuous (UC), if for all u ∈ Aδ and all q ∈ J∞(Bδ), if q ≤ f(u) then there exist
some x, y such that K(Aδ) 3 x ≤ u ≤ y ∈ O(Aδ) and q ≤ f(v) for all x ≤ v ≤ y;

2. f is lower continuous (LC), if for all u ∈ Aδ and all n ∈M∞(Bδ), if n ≥ f(u) then there exist
some x, y such that K(Aδ) 3 x ≤ u ≤ y ∈ O(Aδ) and n ≥ f(v) for all x ≤ v ≤ y.

12



Theorem 2.12 (cf. Theorem 2.15 in [16]). Given any map f : A→ B,

1. fσ : Aδ → Bδ is the largest UC extension of f to Aδ;

2. fπ : Aδ → Bδ is the smallest LC extension of f to Aδ.

For order-preserving maps, the definitions of UC and LC can be simplified to the following:

Proposition 2.13. Given any order-preserving map f : Aδ → Bδ,

1. f is UC iff for all u ∈ Aδ and all q ∈ J∞(Bδ), if q ≤ f(u) then there exists some x ∈ K(Aδ)
such that x ≤ u and q ≤ f(x);

2. f is LC iff for all u ∈ Aδ and all n ∈M∞(Bδ), if n ≥ f(u) then there exists some y ∈ O(Aδ)
such that y ≥ u and n ≥ f(y).

For order-preserving maps, the following definitions will also be needed in the following chapters.
In fact, these definitions also make sense for arbitrary maps, similarly to the definition of UC and
LC, but in this thesis we will only use them for order-preserving maps.

Definition 2.14 (Strong Upper and Lower Continuity). For any order-preserving map f :
Aδ → Bδ,

1. f is strongly upper continuous (SUC), if for all u ∈ Aδ and all q ∈ K(Bδ), if q ≤ f(u) then
there exists some x ∈ K(Aδ) such that x ≤ u and q ≤ f(x);

2. f is strongly lower continuous (SLC), if for all u ∈ Aδ and all n ∈ O(Bδ), if n ≥ f(u) then
there exists some y ∈ O(Aδ) such that y ≥ u and n ≥ f(y).

Definition 2.15 (Scott and Dual Scott Continuity). For any order-preserving map f : Aδ →
Bδ,

1. f is Scott continuous, if for all u ∈ Aδ and all q ∈ J∞(Bδ), if q ≤ f(u) then there exists some
x ∈ J∞(Aδ) such that x ≤ u and q ≤ f(x);

2. f is dual Scott continuous, if for all u ∈ Aδ and all n ∈M∞(Bδ), if n ≥ f(u) then there exists
some y ∈M∞(Aδ) such that y ≥ u and n ≥ f(y).

2.3.3 Canonical Extensions of DMAs

Since each unary operation in a DMA is either meet-preserving, join-preserving, join-reversing (i.e.
turning joins into meets), or meet-reversing (i.e. turning meets into joins), each of them is smooth
in the sense that 2σ = 2π, 3σ = 3π,�σ = �π,�σ = �π (for a proof, see Lemma 2.25 in [16]).
Therefore, we can define the canonical extension of a DMA (cf. Definition 2.19 and Definition 2.20
in [17]) as follows:

Definition 2.16 (Canonical Extension of DMA). Given any DMA A = (DA, 3, 2, �, �), the
canonical extension Aδ of A is defined as Aδ = (DδA, 3σ, 2σ, �σ, �σ) = (DδA, 3π, 2π, �π, �π). We
also use (DδA, 3, 2, �, �) to denote Aδ.
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Definition 2.17 (Perfect DMA). A DMA A = (DA,3,2,�,�) is perfect, if DA is a perfect BDL,
and the operations satisfy the following complete distribution properties:

3(
∨
X) =

∨
3(X) �(

∨
X) =

∧
�(X)

2(
∧
X) =

∧
2(X) �(

∧
X) =

∨
�(X)

Theorem 2.18 (cf. Lemma 2.21 in [17]). For any DMA A, its canonical extension Aδ is perfect.

Then every α ∈ Lterm is interpreted in Aδ as a composition of operations in Aδ as a DMA; but on
the other hand, as a term function αA, it can be extended via σ- or π-extension. The following
definitions (cf. Definition 5.2 in [17]) compare these functions:

Definition 2.19 (Stable, Expanding and Contracting Terms). Let α ∈ Lterm, and λ ∈ {σ, π}.
We say that

• α is λ-stable if αA
δ

= (αA)λ for all DMA A;

• α is λ-expanding if αA
δ ≤ (αA)λ for all DMA A;

• α is λ-contracting if αA
δ ≥ (αA)λ for all DMA A.

The same definitions apply more in general than terms:

Definition 2.20 (Stable, Expanding and Contracting Maps). Given BDLs A, B and maps
fA : A→ B, fA

δ
: Aδ → Bδ where fA

δ
extends fA, λ ∈ {σ, π}. We say that

• fAδ is λ-stable if fA
δ

= (fA)λ;

• fAδ is λ-expanding if fA
δ ≤ (fA)λ;

• fAδ is λ-contracting if fA
δ ≥ (fA)λ.

2.4 Adjoints and Residuals

The algebraic and algorithmic correspondence theory (cf. [10]) makes crucial use of an expanded
language, whose additional connectives are interpreted as the adjoints of the original connectives.
In this section, we give the relevant preliminaries on adjoints and residuals, in order to define the
expanded languages of distributive modal logic. In this section, C and C′ are complete lattices (in
fact, these definitions can be given for arbitrary lattices, but in this thesis, we only need them for
complete lattices), and we will often use subscripts to indicate the underlying lattice/algebra of the
order/meet/join. For the proofs of the propositions in this section, see [12].

Definition 2.21 (Adjoint Pair). The monotone maps f : C→ C′ and g : C′ → C form an adjoint
pair (notation: f a g), if for every x ∈ C, y ∈ C′,

f(x) ≤C′ y iff x ≤C g(y).

Whenever f a g, f is called the left adjoint of g and g the right adjoint of f . We also say f is a left
adjoint and g is a right adjoint.
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An important property of adjoint pairs of maps is that if a map has a left (resp. right) adjoint, then
the adjoint is unique and can be computed pointwise from the map itself and the order relation on
the lattices. This means that having a left (resp. right) adjoint is an intrinsically order-theoretic
property of maps.

Proposition 2.22. For monotone maps f : C → C′ and g : C′ → C such that f a g, for every
x ∈ C, y ∈ C′,

1. f(x) =
∧
C′{y ∈ C′ : x ≤C g(y)};

2. g(y) =
∨
C{x ∈ C : f(x) ≤C′ y}.

Proposition 2.23. For any map f : C→ C′,

1. f is completely join-preserving iff it has a right adjoint;

2. f is completely meet-preserving iff it has a left adjoint.

Definition 2.24 (Residual Pair). For n-ary maps f : Cn → C and g : Cn → C, they form a
residual pair in the ith coordinate (notation: f ai g), if for all x1, . . . , xn, y ∈ C,

f(x1, . . . , xi, . . . , xn) ≤C y iff xi ≤C g(x1, . . . , y, . . . , xn).

Whenever f ai g, f is called the left residual of g in the ith coordinate and g the right residual of
f in the ith coordinate. We also say f is a left residual and g is a right residual.

Similar to the adjoint case, we have the following:

Proposition 2.25. For f : Cn → C and g : Cn → C such that f ai g, for all x1, . . . , xn, y ∈ C,

1. f(x1, . . . , xi, . . . , xn) =
∧
C{y ∈ C : xi ≤C g(x1, . . . , y, . . . , xn)};

2. g(x1, . . . , y, . . . , xn) =
∨
C{xi ∈ C : f(x1, . . . , xi, . . . , xn) ≤C y}.

Proposition 2.26. For any n-ary map f : Cn → C,

1. f is completely join-preserving in the i-th coordinate iff it has a right residual in that same
coordinate;

2. f is completely meet-preserving in the i-th coordinate iff it has a left residual in that same
coordinate.

Notice that the following fact is easy to see:

Proposition 2.27. For an adjoint pair f a g where f : C → C′ and g : C′ → C, consider
f∂ : C∂ → C′∂ and g∂ : C′∂ → C∂ such that f(x) = f∂(x) for all x ∈ C and g(y) = g∂(y) for all
y ∈ C′, then g∂ a f∂.

The fact above plays an important role when considering the compositional structure of Sahlqvist
terms. Now we give some examples of adjoints and residuals, some of which will be part of the
expanded language in the following sections:
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Example 2.28. Given a perfect DMA A, the operations 3 : A→ A and 2 : A→ A are completely
join- and meet-preserving, respectively, and therefore are left and right adjoints, respectively. Hence
there are operations � : A→ A and ♦ : A→ A such that for every x, y ∈ A,

3x ≤A y iff x ≤A � y,
x ≤A 2y iff ♦x ≤A y.

Therefore, by Proposition 2.22, ♦x =
∧
A{y ∈ A : x ≤A 2y} and � y =

∨
A{x ∈ A : 3x ≤A y}.

Example 2.29. Given a perfect DMA A, the operations � : A∂ → A and � : A∂ → A are
completely meet- and join-preserving, respectively (note that meet in A∂ is the same as join in A,
and vice versa), and therefore have left and right adjoints, respectively. Hence there are operations
I: A→ A∂ and J: A→ A∂ such that for every x, y ∈ A,

x ≤A �y iff I x ≤A∂ y iff y ≤A I x,
�x ≤A y iff x ≤A∂ J y iff J y ≤A x.

Therefore, by Proposition 2.22, I x =
∧
A∂{y ∈ A∂ : x ≤A �y} =

∨
A{y ∈ A : x ≤A �y} and

J y =
∨
A∂{x ∈ A∂ : �x ≤A y} =

∧
A{x ∈ A : �x ≤A y}.

Example 2.30. Given a perfect DMA A, the binary operations ∧ : A×A→ A and ∨ : A×A→ A
are completely join and meet preserving in each coordinate, respectively, and therefore have right
and left residuals, respectively. Hence there are binary operations→: A∂×A→ A and − : A×A∂ →
A such that for every x, y, z ∈ A,

x ∧ y ≤A z iff x ≤A y → z,
x− y ≤A z iff x ≤A y ∨ z.

Therefore, by Proposition 2.25, y → z =
∨
A{x ∈ A : x∧y ≤A z} and x−y =

∧
A{z ∈ A : x ≤A y∨z}.

Example 2.31. Given a perfect DMA A, consider the following binary operations n : A×A∂ → A
and l : A∂ × A→ A such that for all x, y ∈ A,

n(x, y) :=

{
⊥ if x ≤A y
> if x �A y,

l(x, y) :=

{
⊥ if x �A y
> if x ≤A y,

then there are binary operations m : A× A→ A and k : A× A→ A such that for all x, y ∈ A,

m(x, y) :=

{
y if y = >
x if y 6= >,

k(x, y) :=

{
x if x = ⊥
y if x 6= ⊥,

such that for all x, y, z ∈ A,

16



k(x, y) ≤A z iff x ≤A l(y, z),
n(x, y) ≤A z iff x ≤A m(y, z),

therefore n is a left residual in its first coordinate and l is a right residual in its second coordinate.

In fact, we can see that m(x, y) = x ∨ l(>, y) and k(x, y) = y ∧ n(x,⊥).

Example 2.32 (∆-Adjoints). Consider the diagonal map ∆ : C→ C×C, defined by the assign-
ment x 7→ (x, x). The defining clauses of the least upper bound and greatest lower bound can be
equivalently restated by saying that the operations ∨ and ∧ are the left and the right adjoints of
the diagonal map ∆, respectively:

x ≤C y ∧ z iff x ≤C y and x ≤C z, iff ∆(x) ≤C×C (y, z),
y ∨ z ≤C x iff y ≤C x and z ≤C x, iff (y, z) ≤C×C ∆(x).

Sometimes we will refer to ∧ and ∨ collectively as ∆-adjoints.

2.5 The Distributive Modal Languages L+ and L++

In this section, we expand our distributive modal language to a generalized setting, which will be
used in the canonicity proofs.

We expand our basic language L with special variables, called nominals (NOM) and conominals
(CO-NOM), which range over the set of completely join-irreducible (J∞(Aδ)) and completely meet-
irreducible (M∞(Aδ)) elements of Aδ, as well as with some new operations introduced in Example
2.28, 2.29, 2.30, 2.31 in the previous section. The formulas of the expanded language L+

term are
defined as follows:

α ::= ⊥ | > | p | i | m | α ∧ β | α ∨ β | 3α | 2α | �α | �α | α→ β | α− β | ♦α | �α | Jα | Iα

where p ∈ Prop, i ∈ NOM and m ∈ CO-NOM. L+
≤, L+

quasi are defined similarly. A formula α ∈ L+
term

is pure, if no proposition variable occur in it. Note that the expanded language can only be inter-
preted in Aδ, since A is not a “tense algebra” in general.

One crucial technical trick for our study is to be able to incorporate the meta-level symbols &
and ⇒ as well as the inequality relation ≤ into our language. We will achieve this by defining an
expanded language L++ in which terms of the form n(α, β) and l(α, β) are allowed as well. We
incorporate & as ∧ for truth values, ⇒ as l for truth values, and ≤ as l for terms. n can also be
seen as � or ;. Although it is not necessary to consider the inequalities L++

≤ and quasi-inequalities
L++
quasi in L++, we will still find it convenient to use them.

2.6 Algebraic Semantics of L, L+ and L++

In this section, we define the algebraic semantics of distributive modal logic for all the three lan-
guages L, L+ and L++:
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2.6.1 Interpretation of Connectives

In this subsection we give the interpretation for the connectives in L, L+ and L++.

Definition 2.33. For any DMA A = (A,∨,∧,⊥,>,3,2,�,�), the connectives ∨,∧,⊥,>,3,2,�,�
in L are interpreted as the binary, nullary and unary functions on A, respectively, denoted with the
same notations. The symbols n, l are interpreted as in Example 2.31. Note that, contrary to the
additional connectives in L+, the symbols n, l can be interpreted also in arbitrary DMA A.

The symbols ♦,� ,J,I,→,− can only be interpreted in the canonical extension Aδ of DMA A.
Their interpretations are already given in Example 2.28, 2.29, 2.30.

In order to distinguish the syntax from the semantic interpretation, we can add a superscript A (or
Aδ) to the connectives, but we often omit it when it is clear from the context.

We prefer to see all maps as monotone functions for convenience. Therefore, we interpret the
connectives as maps Aε → A (or (Aδ)ε → Aδ), where A is any DMA. Here ε is

• (1, 1), for ∨,∧;

• (1), for 3,2,♦,� ;

• (∂), for �,�,I,J;

• (1, ∂), for n,−;

• (∂, 1), for l,→.

Sometimes, we also consider their dual maps, especially when proving the contracting and expand-
ing results for Sahlqvist terms (see e.g. Theorem 7.17). We take 2 : Aδ → Aδ and ♦ : Aδ → Aδ
as an example: by taking 2∂ : (Aδ)∂ → (Aδ)∂ and ♦∂ : (Aδ)∂ → (Aδ)∂ such that 2∂u = 2u and
♦∂u = ♦u for all u ∈ Aδ, by Proposition 2.27, we have that 2∂ a ♦∂, hence by Proposition 2.23,
2∂ is completely join-preserving in (Aδ)∂ (which is equivalent to completely meet-preserving in Aδ),
and ♦∂ is completely meet-preserving in (Aδ)∂.

Therefore, by taking the dual map f∂ : (Aε)∂ → A∂ of f : Aε → A, f∂ and f are set-theoretically
the same, but right (resp. left) adjoints/residuals become left (resp. right) adjoints/residuals, com-
pletely meet (resp. join)-preserving become completely join (resp. meet)-preserving, and (f∂)σ = fπ,
(f∂)π = fσ.

2.6.2 Algebraic Semantics

In this subsection, we give the formal definition of the algebraic semantics for L, L+ and L++. We
start with L, and then generalize it to L+ and L++.

Definition 2.34. For any DMA A, an assignment on A is a map h : Prop→ A. The interpretation
of a formula α ∈ Lterm in A under the assignment h is defined as follows:
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[p]Ah = h(p)
[⊥]Ah =⊥A [3β]Ah = 3A[β]Ah
[>]Ah = >A [2β]Ah = 2A[β]Ah

[β ∧ γ]Ah = [β]Ah ∧A [γ]Ah [�β]Ah = �A[β]Ah
[β ∨ γ]Ah = [β]Ah ∨A [γ]Ah [�β]Ah = �A[β]Ah .

We will also interpret α(~p) as a term function αA : An → A such that for all ~a ∈ A, αA(~a) = [α]Ah
where h(~p) = ~a.

For any DMA A and any assignment h on A, any inequality α ≤ β in L≤, we denote

A, h � α ≤ β,

if [α]Ah ≤ [β]Ah in A. For any quasi-inequality α1 ≤ β1& . . .&αn ≤ βn ⇒ α ≤ β in Lquasi, we denote

A, h � α1 ≤ β1& . . .&αn ≤ βn ⇒ α ≤ β,

if whenever [αi]
A
h ≤ [βi]

A
h in A for all 1 ≤ i ≤ n we also have [α]Ah ≤ [β]Ah in A. We denote

A � α ≤ β, or αA ≤ βA,

and say α ≤ β is valid on A, if for all assignments h on A, we have A, h � α ≤ β. Validity of
quasi-inequalities is defined similarly.

The definitions above can be extended to L+ and L++. Recall that L+- and L++-formulas are
interpreted in Aδ. An assignment in this setting is a map h : Prop ∪ NOM ∪ CO-NOM → Aδ
such that h(i) ∈ J∞(Aδ) for any i ∈ NOM and h(m) ∈ M∞(Aδ) for any m ∈ CO-NOM. For the
interpretation of formulas, the following clauses are added to the ones above:

[i]A
δ

h = h(i)

[m]A
δ

h = h(m) [♦β]A
δ

h = ♦Aδ [β]A
δ

h

[β → γ]A
δ

h = [β]A
δ

h →Aδ [γ]A
δ

h [� β]A
δ

h = � Aδ [β]A
δ

h

[β − γ]A
δ

h = [β]A
δ

h −A
δ

[γ]A
δ

h [I β]A
δ

h =IA
δ

[β]A
δ

h

[n(β, γ)]A
δ

h = nA
δ
([β]A

δ

h , [γ]A
δ

h ) [J β]A
δ

h =JA
δ

[β]A
δ

h .

[l(β, γ)]A
δ

h = lA
δ
([β]A

δ

h , [γ]A
δ

h )

Term functions, interpretation of inequalities and quasi-inequalities and validity can be defined
similarly to the L case. In the setting of L++, we say that an assignment h : Prop ∪ NOM ∪
CO-NOM → Aδ is admissible, if h(p) ∈ A for any p ∈ Prop. Then we can speak of an inequality
α ≤ β being admissibly valid (notation: Aδ �A α ≤ β), if for all admissible assignments h on Aδ,
we have Aδ, h � α ≤ β. For quasi-inequalities, the definition of admissible validity is similar.

It is easy to see that for α ≤ β ∈ L≤, Aδ �A α ≤ β iff A � α ≤ β.

Definition 2.35 (Soundness and Completeness). A deductively closed class Λ of inequalities
in L≤ is sound with respect to a class C of DMAs, if A � α ≤ β for all A ∈ C and all α ≤ β ∈ Λ.

A class Λ of inequalities in L≤ is complete with respect to a class C of DMAs, if whenever A � α ≤ β
for all A ∈ C, we have α ≤ β ∈ Λ.
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Definition 2.36 (Canonicity). A class of DMAs is canonical if it closed under taking canonical
extensions. An inequality, formula, set of formulas, or set of inequalities, is called canonical, if the
class of DMAs defined by the inequality, formula, set of formulas, or set of inequalities, is canonical.

Therefore, in our setting, we say that an inequality α ≤ β is canonical, if the class of DMAs defined
by α ≤ β is closed under taking canonical extensions, i.e., for all DMAs A, we have

A |= α ≤ β ⇒ Aδ |= α ≤ β.

2.7 Sahlqvist and Inductive Inequalities

In this section we define Sahlqvist and inductive inequalities in the basic language L. Note that
many definitions apply also to L+ and L++, therefore we define them in the expanded language
L++ whenever possible. Here we only give the definitions and examples of Sahlqvist and induc-
tive inequalities; the intuition behind these definitions is discussed in [10]. Further discussions on
Sahlqvist and inductive inequalities in distributive modal logic can be found in [10], [17] and [30].

Definition 2.37 (Signed Generation Tree). A positive (resp. negative) signed generation tree
for a term s ∈ L++

term is defined as follows:

• The root node +s (resp. −s) is the root node of the positive (resp. negative) generation tree
of s signed with + (resp. −).

• If a node is labelled with ∨,∧,2,3,� ,♦, assign the same sign to its child node(s).

• If a node is labelled with �, �,J,I, assign the opposite sign to its child node.

• If a node is labelled with →, l, assign the opposite sign to its left child node and the same
sign to its right child node.

• If a node is labelled with −,n, assign the same sign to its left child node and the opposite
sign to its right child node.

We say that a node in the signed generation tree is positive (resp. negative), if it is signed + (resp.
−).

We use the notation +s (resp. −s) for the positive (resp. negative) signed generation tree of the
term s ∈ L++

term and ?α ≺ ∗s to denote ?α is a subtree of ∗s, where ?, ∗ ∈ {+,−}. Sometimes we
will refer to the symbols such as +s and −s as “terms”, and we will write e.g. +s ∈ L++

term even if
this is an abuse of notation. We denote α ≺ s if α is a subterm of s.

Definition 2.38. Given an order type ε = (ε1, . . . , εn), a term s(p1, . . . , pn) ∈ L++
term and ∗ ∈ {+,−},

• an ε-critical node in the signed generation tree ∗s is a leaf node +pi if εi = 1 or −pi if εi = ∂;
sometimes we will say that this occurrence of pi in ∗s agrees with ε;

• an ε-critical branch in the tree is a branch terminating in an ε-critical node;
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• ∗s agrees with ε if every occurrence of every proposition variable in ∗s agrees with ε. We also
call ∗s ε-uniform;

• ∗s is said to be uniform, if there exists an ε such that ∗s is ε-uniform.

The following definitions are given for L only:

Definition 2.39 (Universal and Choice Nodes). For ∗ ∈ {+,−}, a node in the signed generation
tree of a term ∗s ∈ Lterm is

• a choice node, if it is either positive and labelled ∨,3,�, or negative and labelled ∧,2,�;

• a universal node, if it is either positive and labelled 2,�, or negative and labelled 3,�.

An explanation why those nodes are called “universal” or “choice” has been given and discussed in
[10].

Definition 2.40 (Sahlqvist Inequality). Given an order type ε = (ε1, . . . , εn), ∗ ∈ {+,−}, the
signed generation tree ∗s of a term s(p1, . . . , pn) ∈ Lterm is ε-Sahlqvist, if on every ε-critical branch
with leaf labelled pi, 1 ≤ i ≤ n, no choice node has a universal node as ancestor. Here we say that
+s is ε-left Sahlqvist, and −s is ε-right Sahlqvist. An inequality s ≤ t is ε-Sahlqvist if the trees +s
and −t are both ε-Sahlqvist. An inequality s ≤ t is Sahlqvist if it is ε-Sahlqvist for some ε. If ∗s is
ε-Sahlqvist and agrees with ε, then we say that ∗s is ε-uniform Sahlqvist. ε-uniform left Sahlqvist
and ε-uniform right Sahlqvist are defined similarly.

Example 2.41. 32p ≤ 23p, which is the distributive counterpart of the Geach axiom 32p →
23p, is ε-Sahlqvist for ε = (1).

In classical modal logic, a correspondence and canonicity theorem analogous to Sahlqvist has been
given for an extended class of formulas called inductive formulas by Goranko and Vakarelov in [20].
In the distributive modal logic setting, the class of Sahlqvist inequalities has also been extended to
inductive inequalities as defined in [10].

Definition 2.42 (Inductive Inequality). Given an order type ε, and an irreflexive and transitive
relation Ω on the proposition variables p1, . . . , pn, ∗ ∈ {+,−}, the signed generation tree of a term
∗s(p1, . . . , pn) ∈ Lterm is (Ω, ε)-inductive if, on every ε-critical branch with leaf labelled pi, 1 ≤ i ≤ n,
every choice node c with a universal node as ancestor is binary, hence labelled with ?(α ◦ β), where
? ∈ {+,−}, and moreover:

1. ?α is of order type ε∂;

2. pj <Ω pi for every pj occurring in α.

Clearly, the conditions above imply that the ε-critical branches all run through β. We will refer to
Ω as the dependency order on the variables. (Ω, ε)-left inductive and (Ω, ε)-right inductive terms are
defined similarly to ε-left Sahlqvist and ε-right Sahlqvist. An inequality s ≤ t is (Ω, ε)-inductive if
the trees +s and −t are both (Ω, ε)-inductive. An inequality s ≤ t is inductive if it is (Ω, ε)-inductive
for some Ω and ε.

Example 2.43. Consider the inequality 2(p ∨ �q) ∧ 2q ≤ 3(p ∧ q) in L≤, it is (Ω, ε)-inductive
with q ≤Ω p, εp = 1 and εq = 1, but it is not ε-Sahlqvist for any ε.
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Figure 2.1: Signed generation tree for 2(p ∨�q) ∧2q ≤ 3(p ∧ q)
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Chapter 3

Jónsson-Style Canonicity

In this chapter we review the Jónsson-style canonicity proof for Sahlqvist inequalities in distributive
modal logic, as given in [17], with slight revisions. In Subsection 3.1.3, we discuss a refinement of
this proof, and then in Section 3.2, we briefly discuss the difficulties in generalizing this method to
inductive inequalities, and propose some directions for a solution.

3.1 Jónsson-Style Canonicity for Sahlqvist Inequalities

Let A be any DMA, let Aδ be its canonical extension and α ≤ β be an inequality in the basic
distributive modal language. In [17], it was shown that if α ≤ β is a Sahlqvist inequality, then it is
preserved under taking canonical extensions:

A |= α ≤ β ⇒ Aδ |= α ≤ β.

The following theorem states the Jónsson-style canonicity for Sahlqvist inequalities given in [17].

Theorem 3.1 (cf. Theorem 5.1 in [17]). Every Sahlqvist inequality α ≤ β is canonical.

Proof. We need to show that A |= α ≤ β ⇒ Aδ |= α ≤ β for any DMA A. The proof consists of
the motivation of the following chain:

A |= α ≤ β

⇐⇒ αA ≤ βA (by definition)

⇐⇒ αA1 ≤ βA1 ∨ γA (see Lemma 3.2 below)

⇐⇒
(
αA1
)σ ≤ (βA1 ∨ γA)σ (by the definition of σ-extension)

=⇒
(
αA1
)σ ≤ (βA1 )π ∨ (γA)σ (see Lemma 3.3 below)

=⇒ αA
δ

1 ≤ βA
δ

1 ∨ γA
δ

(see Lemma 3.4 and 3.5 below)

⇐⇒ αA
δ ≤ βA

δ
(see Lemma 3.2 below)

⇐⇒ Aδ |= α ≤ β (by definition).
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The lemmas needed in this proof are listed below. They rely on Definitions 2.8 and 2.19.

Lemma 3.2 (cf. Lemma 5.14 in [17]). Every ε-Sahlqvist inequality α ≤ β is equivalent to an
inequality α1 ≤ β1 ∨ γ where +α1 is ε′-uniform left Sahlqvist, −β1 is ε′-uniform right Sahlqvist, and
+γ is ε′-uniform, for some ε′ extending ε.

Lemma 3.3 (cf. Lemma 5.11 in [17]). If f, g : A → B are maps between BDLs such that f is
order-preserving and g is order-reversing then (f ∨ g)σ ≤ fσ ∨ gπ .

Lemma 3.4 (cf. Lemma 5.5 in [17], with slight revision). Every uniform term in Lnterm is both
σ-contracting and π-expanding.

Lemma 3.5 (cf. Lemma 5.10 in [17], with slight revision). Every ε-uniform left Sahlqvist term is
σ-expanding, and every ε-uniform right Sahlqvist term is π-contracting.

There are two key steps to the proof of Theorem 3.1: the first step transforms the inequality α ≤ β
into some inequality α1 ≤ β1 ∨ γ such that α1, β1 and γ are uniform terms and satisfy certain
additional conditions (Lemma 3.2); the second step shows that left (resp. right) Sahlqvist terms are
σ-expanding (resp. π-contracting) (Lemma 3.5), and that uniform terms are σ-contracting (Lemma
3.4).

One of the reasons why this proof is not point-free is that it depends on Lemma 3.3, and in the
proof of this lemma, completely join-irreducible elements (which are points in algebraic disguise)
are used. In Subsection 3.1.3 we will show that this lemma is not really needed. However, having
been able to dispense with it does not completely eliminate the use of points. Indeed, completely
join-irreducible elements play an essential role in the definition of upper continuity and Scott con-
tinuity (see Definitions 2.11 and 2.15), hence the proof is still not point-free.

In what follows we look into the details of these issues.

3.1.1 Minimal Collapse Algorithm, n-Trick, and Ackermann Lemma

We are set to show that every ε-Sahlqvist inequality α ≤ β is equivalent to some inequality
α1 ≤ β1 ∨ γ, where α1 is ε′-uniform left Sahlqvist, β1 is ε′-uniform right Sahlqvist, and γ is ε′-
uniform for some ε′ extending ε. Towards this end, we use the n operation in Example 2.31 to
separate the ε∂-parts from +α and −β to form γ.

First of all, we recall the definition of the n-term:

Definition 3.6 (n-Term). For a DMA A, we define the binary operation nA : A× A∂ → A by

nA(a, b) :=

{
⊥ if a ≤ b
> if a � b.

It is easy to check that nA : A×A∂ → A is an operator, preserving binary joins in the first coordinate
and turning binary meets (in A) into binary joins (in A) in the second coordinate.
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We denote the language L expanded with n as Ln. The languages Lnterm, Ln≤ and Lnquasi can be
defined similarly to what is done in Section 2.5, and stable, expanding and contracting terms can
be defined similarly to Definition 2.19.

Then we use the following n-trick to separate the ε∂-part, which we also sometimes will call n-part,
from the Sahlqvist “skeleton” (for further details, see discussion below Lemma 3.8). The idea used
in its proof is very close to the “minimal valuation” argument in the van Benthem’s strategy (see
[26]) for correspondence. This is because, as mentioned early on, the Ackermann lemma encodes the
minimal valuation argument (see [6] for more discussion), and because there is a striking similarity
between Lemma 3.7 and Lemma 3.9 below.

Lemma 3.7 (n-Trick). Let terms α, β, s ∈ Lnterm and z be a new variable not occurring in α or β,
then:

1. if +s ≺ +α and +s ≺ −β, then A |= α ≤ β iff A |= α(z/s) ≤ β(z/s) ∨ n(z, s);

2. if −s ≺ +α and −s ≺ −β, then A |= α ≤ β iff A |= α(z/s) ≤ β(z/s) ∨ n(s, z).

Proof. See Lemma 2.1.5. and Corollary 2.1.6. in [30].

Repeated applications of the Lemma 3.7 make it possible to transform Sahlqvist inequalities into
uniform Sahlqvist inequalities, following what is called “the minimal collapse algorithm” in [30].
This is the content of the following lemma, which is obtained by exhaustive application of the
n-trick:

Lemma 3.8 (cf. Lemma 5.14 in [17]). Given an inequality α ≤ β in Ln≤, let +si ≺ +α for 1 ≤ i ≤ m,
−s′i ≺ +α for 1 ≤ i ≤ m′, +ti ≺ −β for 1 ≤ i ≤ l and −t′i ≺ −β for 1 ≤ i ≤ l′ be all the subterms
of +α and −β which are maximal ε∂-subterms. The following are equivalent:

1. αA ≤ βA;

2. αA1 ≤ βA1 ∨γA, where α1 = α(~z/~s, ~z′/~s′), β1 = β(~w/~t, ~w′/~t′), γ =
∨m
i=1 n(zi, si)∨

∨m′

i=1 n(s′i, z
′
i)∨∨l

i=1 n(wi, ti) ∨
∨l′

i=1 n(t′i, w
′
i).

In addition, α1 is ε′-uniform left Sahlqvist, β1 is ε′-uniform right Sahlqvist and γ is ε′-uniform,
where ε′ is ε extended by defining ~z, ~w to be of order type 1 and ~z′, ~w′ of order type ∂.

The lemma above is a reformulation of Lemma 3.2, showing how to obtain α1, β1 and γ in an
effective way. In item 2. above, the γ is the ε∂-part, which has been effectively separated from the
ε-part α1 and β1, which we call the Sahlqvist “skeleton”.

In fact, it is easy to see that the following universal1 versions of Ackermann lemmas are equivalent
to the n-trick.

1The statement of Lemma 3.9 is referred to as “universal” because when applied to a logical setting, it is about
the validity of term inequalities on algebras. In Chapter 4, we will treat the existential version, which, when applied
to a logical setting, is about the satisfaction of term inequalities.
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Lemma 3.9 (Universal Ackermann Lemmas). Let A be a DMA, α ≤ β be an inequality in Ln≤, and
z be a new variable which does not occur in both α and β. Then:

1. if +s ≺ +α and +s ≺ −β, then A |= α ≤ β iff A |= z ≤ s⇒ α(z/s) ≤ β(z/s);

2. if −s ≺ +α and −s ≺ −β, then A |= α ≤ β iff A |= s ≤ z ⇒ α(z/s) ≤ β(z/s).

The equivalence between e.g. items 1. of Lemma 3.8 and Lemma 3.9 relies on the equivalence
between the following conditions, for any DMA A and any assignment h on A:

1. A, h |= α(z/s) ≤ β(z/s) ∨ n(z, s);

2. A, h |= z ≤ s⇒ α(z/s) ≤ β(z/s).

Indeed, if z � s is true under h, then the two conditions are trivially true. If the z ≤ s is true, then
both conditions hold iff α(z/s) ≤ β(z/s) is true under h.

This shows that the n-trick encodes the universal version of the Ackermann lemma which is a
statement in the meta-language, into the object-level syntax by means of the binary operation n.

3.1.2 Contracting and Expanding Terms

After extracting all the ε∂-parts in +α and −β, we get to an inequality of the form α1 ≤ β1 ∨ γ,
where α1 is ε′-uniform left Sahlqvist, β1 is ε′-uniform right Sahlqvist, and γ is ε′-uniform for some ε′

extending ε. Therefore, the next thing to show is that α1, β1 and γ are contracting and expanding
as required by Lemma 3.4 and Lemma 3.5.

The fact that the term γ is σ-contracting follows from its being uniform and from the following
lemma:

Lemma 3.10 (cf. Lemma 5.5 in [17], with slight revision). Every uniform term in Lnterm is both
σ-contracting and π-expanding.

Finally, we are left to show that uniform left (resp. right) Sahlqvist terms are σ-expanding (resp.
π-contracting). Without loss of generality, we consider left Sahlqvist terms here. By Theorem 2.12,
fσ is the largest UC map extending f . Hence, in order to show that a term t ∈ Lnterm is σ-expanding,
i.e., tA

δ ≤ (tA)σ, it suffices to show that tA
δ

is a UC map. Recall that, for order-preserving maps,

• upper continuity is a condition of the form “for all q ∈ J∞(Bδ) and u ∈ Aδ there exists an
x ∈ K(Aδ) . . . ”, which we abbreviate with the symbol (∀J∃K);

• Scott continuity is a condition of the form “for all q ∈ J∞(Bδ) and u ∈ Aδ there exists an
x ∈ J∞(Aδ) . . . ”, which we abbreviate with the symbol (∀J∃J);

• strong upper continuity is a condition of the form “for all q ∈ K(Bδ) and u ∈ Aδ there exists
an x ∈ K(Aδ) . . . ”, which we abbreviate with the symbol (∀K∃K).
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Hence, the core of the Jónsson-style canonicity is that, for order-preserving maps f : A → B,
g : B → C and their σ-extensions fσ : Aδ → Bδ and gσ : Bδ → Cδ, there are two immediately
available sufficient conditions on f and g which guarantee that gσfσ is UC:

• fσ satisfies UC (∀J∃K) and gσ satisfies Scott continuity (∀J∃J);

• fσ satisfies SUC (∀K∃K) and gσ satisfies UC (∀J∃K).

Since the σ-extensions are always UC, the first case holds when g is join-preserving in each coordi-
nate (here g is also called an operator) (Corollary 3.12), and the second case holds when and f is
meet-preserving (Corollary 3.14).

Hence, we can make the term t be σ-expanding by requiring the inner operations to be meet-
preserving and the outer operations to be operators. In fact, this is one aspect of the idea behind
“universal” and “choice”: all non-universal ones are operators, and all non-choice ones are meet-
preserving, therefore by forbidding choice nodes to appear in the scope of universal nodes, the
compositional structure of t guarantees that the outer components are operators and the inner
components are meet-preserving (note that for any negative node, the codomain of its corresponding
function is A∂). Now we list the relevant results without proofs.

Theorem 3.11 (cf. Theorem 5.6 in [17], with slight revision). If the BDL map g : Bε → C is an
operator, then gσ is Scott continuous.

Corollary 3.12 (cf. Corollary 5.7 in [17], with slight revision). If f : A→ Bε is any map between
BDLs and g : Bε → C is an operator, then gσfσ ≤ (gf)σ.

Theorem 3.13 (cf. Theorem 5.8 in [17]). If the BDL map f : A→ B is meet-preserving, then fσ

is SUC.

Corollary 3.14 (cf. Corollary 5.9 [17]). If f : A → B is meet-preserving and g : B → C is
order-preserving, then gσfσ ≤ (gf)σ.

Therefore, by an induction on the term structure, the following lemma can be proved for Sahlqvist
terms:

Lemma 3.15 (cf. Lemma 5.10 in [17], with slight revision). Every ε-uniform left (resp. right)
Sahlqvist term is σ-expanding (resp. π-contracting).

3.1.3 A Proof Refinement

In this subsection we will give a refinement to the proof above, showing that the Lemma 3.3 is not
needed for this proof. The strategy is to use n to put the uniform left Sahlqvist term α1 and uniform
right Sahlqvist term β1 together to get n(α1, β1), then transform α1 ≤ β1 ∨ γ into n(α1, β1) ≤ γ,
and show that n(α1, β1) is σ-expanding. The proof chain becomes the following (here we only mark
the parts which are different from the proof we discussed above):
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A |= α ≤ β

⇐⇒ αA ≤ βA

⇐⇒ αA1 ≤ βA1 ∨ γA

⇐⇒ (n(α1, β1))A ≤ γA (see Lemma 3.16 below)

⇐⇒
(
(n(α1, β1))A

)σ ≤ (γA)σ (by the definition of the σ-extension)

=⇒ (n(α1, β1))A
δ ≤

(
γA
)σ

(see Lemma 3.18 below)

=⇒ (n(α1, β1))A
δ ≤ γA

δ

⇐⇒ αA
δ

1 ≤ βA
δ

1 ∨ γA
δ

(see Lemma 3.16 below)

⇐⇒ αA
δ ≤ βA

δ

⇐⇒ Aδ |= α ≤ β.

In the following we are going to prove the additional lemmas needed in this refined proof.

Lemma 3.16 (The Second n-Trick). For any terms α, β, γ ∈ Lnterm such that γ is of the form∨
n(s, t), for any DMA A, αA1 ≤ βA1 ∨ γA iff (n(α1, β1))A ≤ γA.

Proof. We need to show that for any assignment h,

[α1]Ah ≤ [β1]Ah ∨ [γ]Ah iff [n(α1, β1)]Ah ≤ [γ]Ah .

Let h be any assignment. First of all, we notice that γ is of the form
∨

n(s, t), therefore [γ]Ah = >
or ⊥.

⇒: If [γ]Ah =⊥, then [α1]Ah ≤ [β1]Ah ∨ [γ]Ah = [β1]Ah∨ ⊥= [β1]Ah , therefore [n(α1, β1)]Ah =⊥≤ [γ]Ah . If
[γ]Ah = >, then [n(α1, β1)]Ah ≤ > = [γ]Ah .

⇐: If [γ]Ah =⊥, then [n(α1, β1)]Ah =⊥, therefore [α1]Ah ≤ [β1]Ah ≤ [β1]Ah ∨ [γ]Ah . If [γ]Ah = >, then
[α1]Ah ≤ > = [β1]Ah ∨ > = [β1]Ah ∨ [γ]Ah .

In order to prove that n(α1, β1) is σ-expanding, we need the following lemma:

Lemma 3.17 (cf. Lemma 5.15 in [17]). (nA)σ = nA
δ
, i.e. n is σ-stable.

Then we come to the lemma stating that n(α1, β1) is σ-expanding. In this proof, the key feature is
that the n-term is an operator.

Lemma 3.18. If α1 is ε-left Sahlqvist and β1 is ε-right Sahlqvist, then n(α1, β1) is σ-expanding.

Proof. Since nA : A×A∂ → A is an operator, by taking αA1 : Aε → A and βA1 : (Aε)∂ → A (therefore
(βA1 )∂ : Aε → A∂), we have that nA, αA1 and (βA1 )∂ are all order-preserving, so (n(α1, β1))A =
nA(αA1 , (β

A
1 )∂). By Corollary 3.12 and Lemma 3.17, we have ((n(α1, β1))A)σ ≥ (nA)σ(αA1 , (β

A
1 )∂)σ =

nA
δ
((αA1 )σ, ((βA1 )∂)σ) = nA

δ
((αA1 )σ, ((βA1 )π)∂). Since α1 is ε-left Sahlqvist and β1 is ε-right Sahlqvist,

by Lemma 3.15, α1 is σ-expanding and β1 is π-contracting, i.e., (αA1 )σ ≥ αA
δ

1 and (βA1 )π ≤ βA
δ

1 ,
i.e. ((βA1 )π)∂ ≥ (βA

δ

1 )∂. So we get ((n(α1, β1))A)σ ≥ nA
δ
((αA1 )σ, ((βA1 )π)∂) ≥ nA

δ
(αA

δ

1 , (βA
δ

1 )∂) =
(n(α1, β1))A

δ
. Therefore n(α1, β1) is σ-expanding.
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Remark 3.19. By this refinement, we can see that in the Jónsson-style canonicity proof of [17],
the key point is to separate the σ-contracting part (i.e. the ε∂-part) from the σ-expanding part (i.e.
the ε-part). To guarantee this, we need some syntactic restrictions on these two parts. For the σ-
contracting part, uniformity is enough; however, for the σ-expanding part, additional compositional
restrictions on the syntactic shape of the terms are needed, namely operators as the outer skeleton
and meet-preserving maps as the inner structure. However, since all uniform terms in Lnterm are
σ-contracting, this signature is not the right setting to a deeper understanding of this property.
Indeed, in Chapter 6, we will show that in the expanded language L++, σ-contracting terms are
exactly those enjoying the so called “closed Esakia condition”, as defined in Definition 6.6.

3.2 Why the n-Trick alone Fails on Inductive Inequalities,

and Ideas for a Solution

In this section we discuss why the attempt in [30] to prove the canonicity of inductive inequalities
using the n-trick fails. For simplicity of discussion, we use the original proof strategy in [17] without
the second n-trick.

For an ε-inductive inequality α ≤ β, similar to the Sahlqvist case, we use the same minimal collapse
algorithm to get to an inequality α1 ≤ β1 ∨ γ, where α1, γ are ε′-uniform and β1 is ε′∂-uniform.
However, by an example in [30], we have that after executing the minimal collapse algorithm, the
resulting α1 and β1 might not be inductive terms:

Example 3.20 (cf. Example 5.1.3 in [30]). For α = 2(�x ∨ y), it is (Ω, ε)-left inductive for
ε = (1, 1) and x ≤Ω y. After the minimal collapse algorithm, the resulting formula is α1 = 2(z ∨ y)
for order type ε′ = (1, 1, 1). However, this is not (Ω′, ε′)-left inductive for any Ω′.

In the Jónsson-style canonicity proof which makes use of the n-trick, the crucial thing for the re-
sulting α1 is that α1 is ε′-uniform and σ-expanding. Therefore, even if α1 is not inductive, we still
hope to show that it is σ-expanding. However, by our existing tools, we cannot show this.

Indeed, as we have already seen in the previous section, to prove that gσfσ ≤ (gf)σ, there are
two possibilities, namely Corollary 3.12 and Corollary 3.14: the first one is to make fσ satisfy UC
(∀J∃K) and gσ satisfy Scott continuity (∀J∃J), and the second one is to make fσ satisfy SUC
(∀K∃K) and gσ satisfy UC (∀J∃K). Therefore, for any order-preserving maps f and g, the first
case holds when g is an operator, and the second case holds when f is meet-preserving.

For α = 2(z ∨ y), we cannot employ the first possibility, since in general 2 is not an operator.

We cannot employ the second one either, since ∨ is not always SUC (in fact, the following example
is essentially the same as Example 2.26 in [16]).

Indeed, consider a DMA A and its canonical extension Aδ, where the underlying lattice of Aδ is an
infinite Boolean algebra, and K(Aδ)∪O(Aδ) 6= Aδ. Then consider Aδ ×Aδ, (x, y) ∈ Aδ ×Aδ where
x is the complement of y and x, y /∈ K(Aδ) ∪ O(Aδ), then for z = > ∈ K(Aδ), we have z ≤ x ∨ y,
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but there is no (u, v) ∈ K(Aδ × Aδ) such that z ≤ u ∨ v (i.e., u ∨ v = >) and (u, v) ≤ (x, y).

Therefore, with the tools about contracting and expanding terms we have employed up to now, just
using the n-trick and minimal collapse algorithm is not enough to show the canonicity of inductive
inequalities.

Notice that the order-theoretic properties of the basic logic connectives that we have used up to
now are either completely join- or meet-preserving or reversing in each coordinate, or they are
completely join- or meet-preserving or reversing in the product where they are defined as binary
operations. It is well known that in the context of complete lattices (actually, perfect distributive
lattices) in which we are, these properties can be equivalently stated in terms of the existence of
the appropriate adjoint and residuals of each connective. Hence, the language expansion L+, which
we have already seen in Section 2.5, will hopefully provide us with a better array of tools with
which more syntactic manipulations will be possible, aimed at reaching a shape in which one of
the two possibilities mentioned above, namely Corollary 3.12 and Corollary 3.14, can be applied.
In fact, in some sense, using the syntactic machinery already introduced for correspondence, also
for canonicity proof, is after all in line with the spirit of the n-trick: indeed, the n-trick consists in
expanding the language with a new term which makes it possible to express at the level of terms
more things that could be expressed before.

The next two chapters report on the ALBA-style canonicity-via-correspondence proof. Then in
Chapter 6, we start building the formal tools for the result in Chapter 7, where canonicity is
proven for all ALBA inequalities (i.e. those inequalities on which ALBA succeeds) in the language
of distributive modal logic using a mixed method.
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Chapter 4

Algebraic Ackermann Lemmas

In this chapter, we are going to build some of the tools which will be needed to prove the ALBA-
aided Jónsson-style canonicity as well as the ALBA-style canonicity of the inductive inequalities.
In particular, we are going to focus on the proof of the purely algebraic version of the topological
Ackermann lemmas, which are the algebraic counterparts of the frame-theoretic proofs of Lemmas
9.3 and 9.4 in [10]. The proofs in this chapter are non-trivial reformulations of those in [10], for
instance, the dependency order of the lemmas is different from the frame-theoretic proof. Moreover,
they are an improvement in the sense that they hold in a point-free setting. We prove the existential
versions of the algebraic Ackermann lemmas, both the plain version (Lemma 4.1 and 4.2) and the
topological version (Lemma 4.4 and 4.5), in an algebraic way. In this chapter we are mainly working
with the language L+.

As discussed in the introduction, a proof strategy alternative to the Jónsson-style canonicity is the
so called “canonicity-via-correspondence”. This strategy is based on finding a first-order sentence
that the validity of an inequality is equivalent to. If this first-order condition exists, then, as
discussed in the introduction, the admissible validity implies validity, which is enough to prove
that an inequality is canonical. The algorithm ALBA provides a way to calculate the first-order
correspondent ALBA(ϕ ≤ ψ) of a given inequality ϕ ≤ ψ, and canonicity is proved at the same
time, as the following U-shaped argument shows (notice that the meaning of ALBA(ϕ ≤ ψ) here is
different from Chapter 5):

Aδ �A ϕ ≤ ψ Aδ � ϕ ≤ ψ
m m

Aδ �AALBA(ϕ ≤ ψ) ⇔ Aδ �ALBA(ϕ ≤ ψ)

The Ackermann lemmas are the crucial steps in the ALBA-based correspondence proof, which is
represented in the right-hand side of the diagram above. The topological version of the Ackermann
lemmas is the crucial step of the left-hand equivalence, and the plain version of the Ackermann
lemmas is the crucial step of the right-hand equivalence. Below we state the plain version, in the
sense that no topology is involved.

Lemma 4.1 (Plain Right-handed Ackermann Lemma). Let α be such that p /∈ Prop(α), β1(p), . . . , βn(p)
be positive in p and γ1(p), . . . , γn(p) negative in p, and let ~q,~j, ~m be all the proposition variables,
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nominals, co-nominals, respectively, occurring in α, β1(p), . . . , βn(p), γ1(p), . . . , γn(p) other than p.
Then for all ~u ∈ Aδ, ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ), the following are equivalent:

1. βA
δ

i (~u, ~x, ~y, αA
δ
(~u, ~x, ~y)) ≤ γA

δ

i (~u, ~x, ~y, αA
δ
(~u, ~x, ~y)) for 1 ≤ i ≤ n;

2. There exists u0 ∈ Aδ such that αA
δ
(~u, ~x, ~y) ≤ u0 and βA

δ

i (~u, ~x, ~y, u0) ≤ γA
δ

i (~u, ~x, ~y, u0) for
1 ≤ i ≤ n.

Lemma 4.2 (Plain Left-handed Ackermann Lemma). Let α be such that p /∈ Prop(α), β1(p), . . . , βn(p)
be negative in p and γ1(p), . . . , γn(p) positive in p, and let ~q,~j, ~m be all the proposition variables,
nominals, co-nominals, respectively, occurring in α, β1(p), . . . , βn(p), γ1(p), . . . , γn(p) other than p.
Then for all ~u ∈ Aδ, ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ), the following are equivalent:

1. βA
δ

i (~u, ~x, ~y, αA
δ
(~u, ~x, ~y)) ≤ γA

δ

i (~u, ~x, ~y, αA
δ
(~u, ~x, ~y)) for 1 ≤ i ≤ n;

2. There exists u0 ∈ Aδ such that u0 ≤ αA
δ
(~u, ~x, ~y) and βA

δ

i (~u, ~x, ~y, u0) ≤ γA
δ

i (~u, ~x, ~y, u0) for
1 ≤ i ≤ n.

Proof. The two lemmas are order variants, so we only discuss the right-handed version here. The
direction from top to bottom holds by taking u0 to be αA

δ
(~u, ~x, ~y). The other direction holds by

the monotonicity of βA
δ

i (p) and the antitonicity of γA
δ

i (p) in p.

However, if we try to adapt these lemmas to the “admissible” case, i.e. the case in which the val-
uations for all proposition variables and u0 are restricted to A, then there would be some problem
with u0. Indeed, the element u0 we take needs to be in A, but taking u0 = αA

δ
(~u, ~x, ~y) might not

be an admissible choice, since α is a term in the expanded language L+, therefore it might contain
nominals, co-nominals and expanded operators under which the subalgebra A might not be closed,
therefore the value of α might be out of the subalgebra A.

Therefore, the topological versions of the Ackermann lemmas (Lemma 4.4 and Lemma 4.5) are
needed, which will depend on the syntactic shape of the formulas in such a way that compactness
can be applied to find a suitable admissible element u0 ∈ A (in the following we are going to use a0

to denote this element).

In order to prove the new topological version of Ackermann lemmas, we first introduce the following
definitions (in fact, this very definition applies as it stands to L++; however, in this chapter we are
only interested in L+):

Definition 4.3 (Syntactically Closed and Open Formulas). 1. A formula in L+ is syntac-
tically closed if all occurences of nominals, J,♦,− are positive, and all occurences of co-
nominals, I,� ,→ are negative;

2. A formula in L+ is syntactically open if all occurences of nominals, J,♦,− are negative, and
all occurences of co-nominals, I,� ,→ are positive.
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The intuition behind these definitions is that the value of a syntactically open (resp. closed) formula
under an admissible assignment is always an open (resp. closed) element in Aδ, i.e., in O(Aδ) (resp.
K(Aδ)), therefore we can apply compactness to obtain an admissible element a0. In Section 7.1, the
syntactic closeness and openness will play an important role in proving the intersection lemmas.

The proofs of the topological Ackermann lemmas given below are improved by being purely algebraic
and point-free:

Lemma 4.4 (Right-handed Topological Ackermann Lemma). Let α be syntactically closed, p /∈
Prop(α), let β1(p), . . . , βn(p) be syntactically closed and positive in p, and let γ1(p), . . . , γn(p) be
syntactically open and negative in p, and let ~q,~j, ~m be all the proposition variables, nominals, co-
nominals, respectively, occurring in α, β1(p), . . . , βn(p), γ1(p), . . . , γn(p) other than p. Then for all
~a ∈ A, ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ), the following are equivalent:

1. βA
δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) ≤ γA

δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) for 1 ≤ i ≤ n;

2. There exists a0 ∈ A such that αA
δ
(~a, ~x, ~y) ≤ a0 and βA

δ

i (~a, ~x, ~y, a0) ≤ γA
δ

i (~a, ~x, ~y, a0) for
1 ≤ i ≤ n.

Lemma 4.5 (Left-handed Topological Ackermann Lemma). Let α be syntactically open, p /∈
Prop(α), let β1(p), . . . , βn(p) be syntactically closed and negative in p, and let γ1(p), . . . , γn(p) be
syntactically open and positive in p, and let ~q,~j, ~m be all the proposition variables, nominals, co-
nominals, respectively, occurring in α, β1(p), . . . , βn(p), γ1(p), . . . , γn(p) other than p. Then for all
~a ∈ A, ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ), the following are equivalent:

1. βA
δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) ≤ γA

δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) for 1 ≤ i ≤ n;

2. There exists a0 ∈ A such that a0 ≤ αA
δ
(~a, ~x, ~y) and βA

δ

i (~a, ~x, ~y, a0) ≤ γA
δ

i (~a, ~x, ~y, a0) for
1 ≤ i ≤ n.

To prove the topological Ackermann lemmas, we need some properties of the modalities in the ex-
panded language, which will be proved in the following. We can notice that in the algebraic proof,
the dependence order of the following lemmas is different from the order of those in the frame-
theoretic proof in [10]. Notice also that no complete join-irreducibles or complete meet-irreducibles
are substantially used in the proofs, which means that the statements hold in a point-free setting
as well.

The following statement immediately follows from the definition of the closed and open elements of
Aδ, as well as the fact that 2A

δ
= (2A)σ,3Aδ = (3A)π,�Aδ = (�A)σ,�Aδ = (�A)π.

Lemma 4.6. For all c ∈ K(Aδ) and o ∈ O(Aδ),

1. 2c ∈ K(Aδ);

2. 3o ∈ O(Aδ);

3. �o ∈ K(Aδ);
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4. �c ∈ O(Aδ).

Lemma 4.7. For all c ∈ K(Aδ) and o ∈ O(Aδ),

1. ♦c ∈ K(Aδ);

2. � o ∈ O(Aδ);

3. Jo ∈ K(Aδ);

4. Ic ∈ O(Aδ);

5. c− o ∈ K(Aδ);

6. c→ o ∈ O(Aδ).

Proof. 1. By denseness, ♦c =
∧
{o ∈ O(Aδ) : ♦c ≤ o}. Let Y = {o ∈ O(Aδ) : ♦c ≤ o} and

X = {a ∈ A : ♦c ≤ a}. To show that ♦c ∈ K(Aδ), it is enough to show that
∧
X =

∧
Y . Since

clopens are opens, X ⊆ Y , so
∧
Y ≤

∧
X. In order to show that

∧
X ≤

∧
Y , it suffices to show that

for every o ∈ Y there exists some a ∈ X such that a ≤ o. Let o ∈ Y , i.e., ♦c ≤ o. By adjunction,
c ≤ 2o. Since c ∈ K(Aδ), and 2o = 2πo =

∨
{2a : a ∈ A and a ≤ o}, and 2a ∈ A ⊆ O(Aδ), we

may apply compactness and get that c ≤ 2a1∨· · ·∨2an for some a1, . . . , an ∈ A s.t. a1, . . . , an ≤ o.
Let a = a1 ∨ · · · ∨ an ≤ o. By the monotonicity of 2 we have c ≤ 2a1 ∨ · · · ∨2an ≤ 2a, and hence
♦c ≤ a. 2. 3. and 4. are order-variants of 1.

5. By denseness, c − o =
∧
{o′ ∈ O(Aδ) : c − o ≤ o′}. Let Y = {o′ ∈ O(Aδ) : c − o ≤ o′} and

X = {a ∈ A : c − o ≤ a}. To show that c − o ∈ K(Aδ), it is enough to show that
∧
X =

∧
Y .

Since clopens are opens, X ⊆ Y , so
∧
Y ≤

∧
X. In order to show that

∧
X ≤

∧
Y , it suffices to

show that for every o′ ∈ Y there exists some a ∈ X such that a ≤ o′. Consider any o′ ∈ Y , then
c−o ≤ o′, since c ∈ K(Aδ) and o, o′ ∈ O(Aδ), there areA1,A2,A3 ⊆ A such that c =

∧
A1, o =

∨
A2

and o′ =
∨
A3, then by adjunction we have

∧
A1 ≤

∨
A2 ∨

∨
A3, then by compactness we have

that there is a finite A′3 ⊆ A3 such that
∧
A1 ≤

∨
A2 ∨

∨
A′3, so by adjunction again we have∧

A1 −
∨
A2 ≤

∨
A′3, i.e. c− o ≤

∨
A′3. Take a =

∨
A′3, then a ∈ A, c− o ≤ a, so a ∈ X and also

a =
∨
A′3 ≤

∨
A3 = o′. 6. is order-variant of 5.

The following kind of lemma is first proved in [13], and further used in [23].

Lemma 4.8 (Esakia Lemmas). Let C = {ci : i ∈ I} ⊆ K(Aδ) be downward-directed, O = {oi : i ∈
I} ⊆ O(Aδ) be upward-directed, then

1. 2
∨
O =

∨
{2o : o ∈ O};

2. 3
∧
C =

∧
{3c : c ∈ C};

3. �
∧
C =

∨
{�c : c ∈ C};

4. �
∨
O =

∧
{�o : o ∈ O}.
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Proof. 1. By denseness, 2
∨
O =

∨
{c ∈ K(Aδ) : c ≤ 2

∨
O}. Let Y = {c ∈ K(Aδ) : c ≤ 2

∨
O}

and X = {2o : o ∈ O}, then it suffices to show that
∨
Y =

∨
X.
∨
X ≤ 2

∨
O =

∨
Y immediately

follows from the monotonicity of 2. For the other direction it suffices to show that for every c ∈ Y
there exists some o ∈ O such that c ≤ 2o. Fix c ∈ Y , i.e., assume c ≤ 2

∨
O, by adjunction, we

get ♦c ≤
∨
O. Then by Lemma 4.7, ♦c ∈ K(Aδ), by compactness there is a finite O0 ⊆ O such

that ♦c ≤
∨
O0, therefore by upward-directedness of O, there is an o ∈ O such that

∨
O0 ≤ o,

therefore ♦c ≤ o, again by adjunction we have c ≤ 2o. 2. 3. and 4. are order-variants of 1.

As an immediate consequence of the previous lemma, since any singleton is both upward-directed
and downward-directed, we can get the following corollary:

Corollary 4.9. For all c ∈ K(Aδ) and o ∈ O(Aδ),

1. 2o ∈ O(Aδ);

2. 3c ∈ K(Aδ);

3. �c ∈ O(Aδ);

4. �o ∈ K(Aδ).

Notice that in the proof of Lemma 4.8, the fact that the operations 2A
δ
,3Aδ ,�Aδ ,�Aδ are σ- or

π-extensions of the corresponding operations in A plays no rule, hence the same proof applies also
to � ,♦,I,J, respectively, and yields the following Esakia lemmas for the new operations:

Lemma 4.10 (Esakia Lemmas). Let C = {ci : i ∈ I} ⊆ K(Aδ) be downward-directed, O = {oi : i ∈
I} ⊆ O(Aδ) be upward-directed, then

1. �
∨
O =

∨
{� o : o ∈ O};

2. ♦
∧
C =

∧
{♦c : c ∈ C};

3. I
∧
C =

∨
{I c : c ∈ C};

4. J
∨
O =

∧
{J o : o ∈ O};

5.
∧
C −

∨
O =

∧
{c− o : c ∈ C, o ∈ O};

6.
∧
C →

∨
O =

∨
{c→ o : c ∈ C, o ∈ O}.

Proof. 5. By denseness,
∧
C −

∨
O =

∧
{o′ ∈ O(Aδ) :

∧
C −

∨
O ≤ o′}. Let Y = {o′ ∈ O(Aδ) :∧

C−
∨
O ≤ o′} and X = {c−o : c ∈ C, o ∈ O}. To show that

∧
C−
∨
O =

∧
{c−o : c ∈ C, o ∈ O},

it is enough to show that
∧
X =

∧
Y . Since − is monotone in the first coordinate and antitone in

the second coordinate, we have
∧
Y ≤ c − o for all c − o ∈ X, so

∧
Y ≤

∧
X. In order to show

that
∧
X ≤

∧
Y , it suffices to show that for every o′ ∈ Y there exists some c − o ∈ X such that

c− o ≤ o′. Consider any o′ ∈ Y , then
∧
C −

∨
O ≤ o′, by adjunction we have

∧
C ≤

∨
O∨ o′, since

C ⊆ K(Aδ), O ⊆ O(Aδ) and o′ ∈ O(Aδ), by compactness, there are finite C ′ ⊆ C and O′ ⊆ O such
that

∧
C ′ ≤

∨
O′ ∨ o′, then by downward-directedness of C and upward-directedness of O we have

that there are c ∈ C and o ∈ O such that c ≤
∧
C ′ and

∨
O′ ≤ o, so c ≤

∧
C ′ ≤

∨
O′ ∨ o′ ≤ o ∨ o′,

so by adjunction again we have c− o ≤ o′, and also c− o ∈ X. 6. is order-variant of 5.
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Lemma 4.11. Let ϕ(p) be syntactically closed and ψ(p) syntactically open, and let ~p,~j, ~m be all the
proposition variables, nominals, co-nominals, respectively, occuring in ϕ(p) and ψ(p) other than p,
~a ∈ A, ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ), c ∈ K(Aδ), o ∈ O(Aδ), then

1. If ϕ(p) is positive in p, then ϕA
δ
(~a, ~x, ~y, c) ∈ K(Aδ);

2. If ψ(p) is negative in p, then ψA
δ
(~a, ~x, ~y, c) ∈ O(Aδ);

3. If ϕ(p) is negative in p, then ϕA
δ
(~a, ~x, ~y, o) ∈ K(Aδ);

4. If ψ(p) is positive in p, then ψA
δ
(~a, ~x, ~y, o) ∈ O(Aδ).

Proof. By simultaneous induction on ϕ and ψ, using Lemma 4.6, 4.7 and 4.9.

Lemma 4.12 (Intersection lemma). Let ϕ(p) be syntactically closed, ψ(p) be syntactically open, and
let ~p,~j, ~m be all the proposition variables, nominals, co-nominals, respectively, occuring in ϕ(p) and
ψ(p) other than p, ~a ∈ A, ~x ∈ J∞(Aδ), ~y ∈ M∞(Aδ), {ci : i ∈ I} ⊆ K(Aδ) be downward-directed,
{oi : i ∈ I} ⊆ O(Aδ) be upward-directed, then

1. If ϕ(p) is positive in p, then ϕA
δ
(~a, ~x, ~y,

∧
{ci : i ∈ I}) =

∧
{ϕAδ(~a, ~x, ~y, ci) : i ∈ I};

2. If ψ(p) is negative in p, then ψA
δ
(~a, ~x, ~y,

∧
{ci : i ∈ I}) =

∨
{ψAδ(~a, ~x, ~y, ci) : i ∈ I};

3. If ϕ(p) is negative in p, then ϕA
δ
(~a, ~x, ~y,

∨
{oi : i ∈ I}) =

∧
{ϕAδ(~a, ~x, ~y, oi) : i ∈ I};

4. If ψ(p) is positive in p, then ψA
δ
(~a, ~x, ~y,

∨
{oi : i ∈ I}) =

∨
{ψAδ(~a, ~x, ~y, oi) : i ∈ I}.

Proof. We prove by simultaneous induction on ϕ and ψ. It is easy to see that ϕ cannot be m and
the outmost connective of ϕ cannot be � ,I,→, and similarly, ψ cannot be i and the outmost
connective of ψ cannot be ♦,J,−. In the proof we omit ~a, ~x, ~y and the superscript Aδ, just write
ϕ(a) and ψ(a) where p is assigned a.

1. For the basic cases where ϕ =⊥,>, p, q, i and ψ =⊥,>, p, q,m, easy.

2. For the case where ϕ(p) = ϕ1(p) ∧ ϕ2(p),

If ϕ(p) is positive in p, then ϕ1(p) and ϕ2(p) are syntactically closed and positive in p, by
induction hypothesis, ϕ1(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I} and ϕ2(

∧
{ci : i ∈ I}) =∧

{ϕ2(ci) : i ∈ I}, so ϕ(
∧
{ci : i ∈ I}) = ϕ1(

∧
{ci : i ∈ I}) ∧ ϕ2(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) :

i ∈ I} ∧
∧
{ϕ2(ci) : i ∈ I} =

∧
{ϕ1(ci) ∧ ϕ2(ci) : i ∈ I} =

∧
{ϕ(ci) : i ∈ I}. The negative case

is order-variant of the positive case.

For the case where ψ(p) = ψ1(p) ∨ ψ2(p), similar to ϕ(p) = ϕ1(p) ∧ ϕ2(p) case.

3. For the case where ϕ(p) = ϕ1(p) ∨ ϕ2(p),

If ϕ(p) is positive in p, then ϕ1(p) and ϕ2(p) are syntactically closed and positive in p, by
induction hypothesis, ϕ1(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I} and ϕ2(

∧
{ci : i ∈ I}) =∧

{ϕ2(ci) : i ∈ I}, so ϕ(
∧
{ci : i ∈ I}) = ϕ1(

∧
{ci : i ∈ I}) ∨ ϕ2(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) :

i ∈ I} ∨
∧
{ϕ2(ci) : i ∈ I} =

∧
{ϕ1(ci) ∨ ϕ2(ci′) : i, i′ ∈ I}, while

∧
{ϕ(ci) : i ∈ I} =∧

{ϕ1(ci) ∨ ϕ2(ci) : i ∈ I}, so it suffices to show that
∧
{ϕ1(ci) ∨ ϕ2(ci′) : i, i′ ∈ I} =
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∧
{ϕ1(ci) ∨ ϕ2(ci) : i ∈ I}, i.e.,

∧
{ϕ1(ci) ∨ ϕ2(ci′) : i, i′ ∈ I} ≤

∧
{ϕ1(ci) ∨ ϕ2(ci) : i ∈ I}

and
∧
{ϕ1(ci) ∨ ϕ2(ci) : i ∈ I} ≤

∧
{ϕ1(ci) ∨ ϕ2(ci′) : i, i′ ∈ I}. The first inequation is easy,

and for the second inequation, it suffices to show that for all i, i′ ∈ I there is an i′′ ∈ I such
that ϕ1(ci′′) ∨ ϕ2(ci′′) ≤ ϕ1(ci) ∨ ϕ2(ci′). Now fix i, i′ ∈ I, then by the downward-directedness
of {ci : i ∈ I} we have that there is an i′′ ∈ I such that ci′′ ≤ ci and ci′′ ≤ ci′ , then by the
monotonicity of ϕ1(p) and ϕ2(p) we have that ϕ1(ci′′) ≤ ϕ1(ci) and ϕ2(ci′′) ≤ ϕ2(ci′), therefore
ϕ1(ci′′) ∨ ϕ2(ci′′) ≤ ϕ1(ci) ∨ ϕ2(ci′). The negative case is order-variant of the positive case.

For the case where ψ(p) = ψ1(p) ∧ ψ2(p), similar to ϕ(p) = ϕ1(p) ∨ ϕ2(p) case.

4. For the case where ϕ(p) = 2ϕ1(p),

If ϕ(p) is positive in p, then ϕ1(p) is syntactically closed and positive in p, by induction
hypothesis, ϕ1(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I}, therefore by the complete distributivity

of 2 and ∧ we have that ϕ(
∧
{ci : i ∈ I}) = 2ϕ1(

∧
{ci : i ∈ I}) = 2

∧
{ϕ1(ci) : i ∈ I} =∧

{2ϕ1(ci) : i ∈ I} =
∧
{ϕ(ci) : i ∈ I}. The negative case is order-variant of the positive case.

For the cases where ϕ(p) = �ϕ1(p), ψ(p) = 3ψ1(p),�ψ1(p), similar to ϕ(p) = 2ϕ1(p) case.

5. For the case where ϕ(p) = 3ϕ1(p),

If ϕ(p) is positive in p, then ϕ1(p) is syntactically closed and positive in p, by induction
hypothesis, ϕ1(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I}. We define C = {ϕ1(ci) : i ∈ I},

then by Lemma 4.11, C ⊆ K(Aδ), while for any ϕ1(ci), ϕ1(ci′) ∈ C, we have that i, i′ ∈ I,
by the downward-directedness of {ci : i ∈ I} we have that there is an i′′ ∈ I such that
ci′′ ≤ ci ∧ ci′ , since ϕ1(p) is positive in p, we have that ϕ1(ci′′) ≤ ϕ1(ci ∧ ci′) ≤ ϕ1(ci) and
similarly ϕ1(ci′′) ≤ ϕ1(ci′), so there is an i′′ ∈ I such that ϕ1(ci′′) ≤ ϕ1(ci) ∧ ϕ1(ci′), therefore
C is downward-directed. By Lemma 4.8, we have that ϕ(

∧
{ci : i ∈ I}) = 3ϕ1(

∧
{ci : i ∈

I}) = 3
∧
{ϕ1(ci) : i ∈ I} =

∧
{3ϕ1(ci) : i ∈ I} =

∧
{ϕ(ci) : i ∈ I}. The negative case is

order-variant of the positive case.

For the cases where ϕ(p) = �ϕ1(p),♦ϕ1(p), J ϕ1(p), ψ(p) = 2ψ1(p), �ψ1(p), �ψ1(p),I
ψ1(p), similar to ϕ(p) = 3ϕ1(p) case.

6. For the case where ϕ(p) = ϕ1(p)− ϕ2(p),

If ϕ(p) is positive in p, then ϕ1(p) is syntactically closed and positive in p, while ϕ2(p) is
open and negative in p. By induction hypothesis, ϕ1(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I}

and ϕ2(
∧
{ci : i ∈ I}) =

∨
{ϕ2(ci) : i ∈ I}. Therefore, ϕ(

∧
{ci : i ∈ I}) = ϕ1(

∧
{ci : i ∈

I}) − ϕ2(
∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I} −

∨
{ϕ2(ci) : i ∈ I}, and

∧
{ϕ(ci) : i ∈ I} =∧

{ϕ1(ci)− ϕ2(ci) : i ∈ I}. By an argument similar to the ϕ(p) = 3ϕ1(p) case, we have that
C = {ϕ1(ci) : i ∈ I} is downward-directed and O = {ϕ2(ci) : i ∈ I} is upward-directed, so
by Lemma 4.10, we have that ϕ(

∧
{ci : i ∈ I}) =

∧
{ϕ1(ci) : i ∈ I} −

∨
{ϕ2(ci) : i ∈ I} =∧

{ϕ1(ci)− ϕ2(ci′) : i, i′ ∈ I}, so to show that ϕ(
∧
{ci : i ∈ I}) =

∧
{ϕ(ci) : i ∈ I}, it suffices

to show that
∧
{ϕ1(ci) − ϕ2(ci′) : i, i′ ∈ I} =

∧
{ϕ1(ci) − ϕ2(ci) : i ∈ I}. For this step, the

proof is similar to the ϕ(p) = ϕ1(p) ∨ ϕ2(p) case. The negative case is order-variant of the
positive case.

For the case where ψ(p) = ψ1(p)→ ψ2(p), similar to ϕ(p) = ϕ1(p)− ϕ2(p) case.
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Corollary 4.13. Let ϕ be syntactically closed and ψ syntactically open, and let ~p,~j, ~m be all
the proposition variables, nominals, co-nominals, respectively, occuring in ϕ and ψ, ~a ∈ A, ~x ∈
J∞(Aδ), ~y ∈M∞(Aδ), then

1. ϕA
δ
(~a, ~x, ~y) ∈ K(Aδ);

2. ψA
δ
(~a, ~x, ~y) ∈ O(Aδ).

Proof of Topological Ackermann Lemma. We prove the right-handed topological Ackermann Lemma,
and the left-handed topological Ackermann Lemma is similar.

⇐: By the monotonicity of βi(p) and antitonicity of γi(p) in p for 1 ≤ i ≤ n, together with
αA

δ
(~a, ~x, ~y) ≤ a0 we have that βA

δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) ≤ βA

δ

i (~a, ~x, ~y, a0) ≤ γAδi (~a, ~x, ~y, a0)≤ γAδi (~a, ~x, ~y,
αA

δ
(~a, ~x, ~y)).

⇒: Suppose that βA
δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) ≤ γA

δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) for 1 ≤ i ≤ n, then by Corollary

4.13, αA
δ
(~a, ~x, ~y) ∈ K(Aδ), therefore by the definition of K(Aδ) we have that αA

δ
(~a, ~x, ~y) =

∧
U ,

where U = {u ∈ A : αA
δ
(~a, ~x, ~y) ≤ u}, making it the meet of a downward-directed set of clopen

elements. Therefore, for all 1 ≤ i ≤ n, βA
δ

i (~a, ~x, ~y,
∧
U) ≤ γA

δ

i (~a, ~x, ~y,
∧
U). Since βi is syntactically

closed and positive in p and γi is syntactically open and negative in p, by Lemma 4.12 we have that∧
{βAδi (~a, ~x, ~y, u) : u ∈ U} ≤

∨
{γAδi (~a, ~x, ~y, u) : u ∈ U} for 1 ≤ i ≤ n. Again by Corollary 4.13,

βA
δ

i (~a, ~x, ~y, u) ∈ K(Aδ) and γA
δ

i (~a, ~x, ~y, u) ∈ O(Aδ) for 1 ≤ i ≤ n, therefore by compactness, there is
a finite set U0 ⊆ U such that

∧
{βAδi (~a, ~x, ~y, u) : u ∈ U0} ≤

∨
{γAδi (~a, ~x, ~y, u) : u ∈ U0} for 1 ≤ i ≤ n.

Then take a0 =
∧
U0 ∈ A, we have that αA

δ
(~a, ~x, ~y) =

∧
U ≤

∧
U0 = a0 and by the monotonicity

of βi(p) and antitonicity of γi(p) in p for 1 ≤ i ≤ n, we have βA
δ

i (~a, ~x, ~y, a0) ≤ βA
δ

i (~a, ~x, ~y, u)
and γA

δ

i (~a, ~x, ~y, u) ≤ γA
δ

i (~a, ~x, ~y, a0) for all u ∈ U0 and 1 ≤ i ≤ n, therefore βA
δ

i (~a, ~x, ~y, a0) ≤∧
{βAδi (~a, ~x, ~y, u) : u ∈ U0} ≤

∨
{γAδi (~a, ~x, ~y, u) : u ∈ U0} ≤ γA

δ

i (~a, ~x, ~y, a0) for 1 ≤ i ≤ n.
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Chapter 5

ALBA-Style Canonicity

In this chapter we review the proof of canonicity of ALBA-inequalities which has been given in
[10]. Notice that even if we have refined the proof of the topological Ackermann lemmas so that
it is now point-free, the overall proof of canonicity-via-correspondence relies on the existence of
enough points and hence is certainly not point-free. However, these results, which in [10] were
formulated in a frame-theoretic setting, are reformulated here in a purely algebraic setting, replacing
descriptive general frames and their underlying Kripke frames with their dual DMAs and their
canonical extensions, respectively.

5.1 The Algorithm ALBA

We recall the Ackermann’s Lemma Based Algorithm (ALBA) formulated in [10], with slight revi-
sion, and give an example showing how it works. In our setting, we limit ourselves to eliminate all
proposition variables, but we do not extensively compute the first-order correspondent in the final
step of the algorithm, since this requires introducing the relational semantics for DML, which we
do not use in this thesis.

The discussion below relies on the definition of signed generation tree in Section 2.7. ALBA proceeds
in three stages:

1. Preprocessing and first approximation:

In the generation tree of +ϕ and −ψ,

(a) Apply the distribution rules:

i. Push down +3,+∧ and −�, by distributing them over nodes labelled with +∨
which are not below universal nodes, and

ii. Push down −2,−∨ and +�, by distributing them over nodes labelled with −∧
which are not below universal nodes.

(b) Apply the splitting rules:

α ≤ β ∧ γ
α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ
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(c) Apply the monotone and antitone variable-elimination rules:

α(p) ≤ β(p)

α(⊥) ≤ β(⊥)

β(p) ≤ α(p)

β(>) ≤ α(>)

for β(p) positive in p and α(p) negative in p.

We denote by Preprocess(ϕ ≤ ψ) the finite set {ϕi ≤ ψi}i∈I of inequalities obtained after the
exhaustive application of the previous rules. Then we apply the following first approximation
rule to every inequality in Preprocess(ϕ ≤ ψ) :

ϕi ≤ ψi
i0 ≤ ϕi ψi ≤ m0

Here, i0 and m0 are special nominals and co-nominals. Now we get a set of inequalities
{i0 ≤ ϕi, ψi ≤ m0}i∈I .

2. The reduction-elimination cycle:

In this stage, for each {i0 ≤ ϕi, ψi ≤ m0}, we apply the following rules together with the
splitting rules in the previous stage to eliminate all the proposition variables in {i0 ≤ ϕi, ψi ≤
m0}:

(a) Residuation rules:

α ∧ β ≤ γ

α ≤ β → γ

α ≤ β ∨ γ
α− β ≤ γ

3α ≤ β

α ≤ � β
α ≤ 2β

♦α ≤ β

�α ≤ β

J β ≤ α

α ≤ �β

β ≤I α

(b) Approximation rules:

i ≤ 3α
j ≤ α i ≤ 3j

2α ≤ m
α ≤ n 2n ≤ m

i ≤ �α
α ≤ m i ≤ �m

�α ≤ m
i ≤ α � i ≤ m

The nominals and co-nominals introduced by the approximation rules must not occur in
the system before applying the rule.

(c) The Ackermann rules. These two rules are the core of ALBA, since their application
eliminates proposition variables. In fact, all the preceding steps are aimed at reaching a
shape in which the rules can be applied. Notice that an important feature of these rules
is that they are executed on the whole set of inequalities, and not on a single inequality.

The right-handed Ackermann rule:

The system



α1 ≤ p
...
αn ≤ p
β1 ≤ γ1
...
βm ≤ γm

is replaced by


β1((α1 ∨ . . . ∨ αn)/p) ≤ γ1((α1 ∨ . . . ∨ αn)/p)
...
βm((α1 ∨ . . . ∨ αn)/p) ≤ γm((α1 ∨ . . . ∨ αn)/p)

where:
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i. p does not occur in α1, . . . , αn;

ii. Each βi is positive, and each γi negative in p, for 1 ≤ i ≤ m.

The left-handed Ackermann rule:

The system



p ≤ α1
...
p ≤ αn
β1 ≤ γ1
...
βm ≤ γm

is replaced by


β1((α1 ∧ . . . ∧ αn)/p) ≤ γ1((α1 ∧ . . . ∧ αn)/p)
...
βm((α1 ∧ . . . ∧ αn)/p) ≤ γm((α1 ∧ . . . ∧ αn)/p)

where:

i. p does not occur in α1, . . . , αn;

ii. Each βi is negative, and each γi positive in p, for 1 ≤ i ≤ m.

3. Output: If in the previous stage, for some {i0 ≤ ϕi, ψi ≤ m0}, the algorithm gets stuck, i.e.
some proposition variables cannot be eliminated by the application of the reduction rules, then
the algorithm halts and output “failure”. Otherwise, each initial tuple {i0 ≤ ϕi, ψi ≤ m0}
of inequalities after the first approximation has been reduced to a set of pure inequalities
Reduce(ϕi ≤ ψi), and then the output is a set of quasi-inequalities {&Reduce(ϕi ≤ ψi) ⇒
i0 ≤ m0 : ϕi ≤ ψi ∈Preprocess(ϕ ≤ ψ)}.

We give the following example to show how ALBA works:

Example 5.1. Consider the inequality 3((2p ∧ q) ∨ 2(�p ∨ 2(�q ∨ r))) ≤ �p ∨ �q ∨ �r ∨ r,
we can see that this inequality is (Ω, ε)-inductive (see Definition 2.42) for the dependence order
p <Ω q <Ω r and order type ε = (1, 1, 1).

Stage 1:

By the distribution rules and splitting rules, we get

{3(2p ∧ q) ≤ �p ∨�q ∨�r ∨ r,32(�p ∨2(�q ∨ r)) ≤ �p ∨�q ∨�r ∨ r};

then by the monotone and antitone variable elimination rule, we get

{3(2> ∧>) ≤ �> ∨�> ∨�r ∨ r,32(�p ∨2(�q ∨ r)) ≤ �p ∨�q ∨�r ∨ r};

then by the approximation rule,we get

{i0 ≤ 3(2>∧>),�>∨�>∨�r ∨ r ≤ m0}, {i0 ≤ 32(�p∨2(�q ∨ r)),�p∨�q ∨�r ∨ r ≤ m0}.

Stage 2:

For the first set of inequalities {i0 ≤ 3(2> ∧>),�> ∨�> ∨�r ∨ r ≤ m0},
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by splitting rule we get

{i0 ≤ 3(2> ∧>),�> ≤ m0,�r ≤ m0, r ≤ m0};

by lefthanded Ackermann rule, we get

{i0 ≤ 3(2> ∧>),�> ≤ m0,�m0 ≤ m0}, which is pure.

For the second set of inequalities {i0 ≤ 32(�p ∨2(�q ∨ r)),�p ∨�q ∨�r ∨ r ≤ m0},

by splitting rule we get

{i0 ≤ 32(�p ∨2(�q ∨ r)),�p ≤ m0,�q ≤ m0,�r ≤ m0, r ≤ m0};

by approximation rule we get

{i0 ≤ 3i1, i1 ≤ 2(�p ∨2(�q ∨ r)), i2 ≤ p, i3 ≤ q, i4 ≤ r,�i2 ≤ m0,�i3 ≤ m0,�i4 ≤ m0, r ≤ m0};

by residuation rule we get

{i0 ≤ 3i1,♦i1 ≤ �p ∨2(�q ∨ r), i2 ≤ p, i3 ≤ q, i4 ≤ r,�i2 ≤ m0,�i3 ≤ m0,�i4 ≤ m0, r ≤ m0};

then we use right-handed Ackermann rule to eliminate p:

{i0 ≤ 3i1,♦i1 ≤ �i2 ∨2(�q ∨ r), i3 ≤ q, i4 ≤ r,�i2 ≤ m0,�i3 ≤ m0,�i4 ≤ m0, r ≤ m0};

then by residuation rule and right-handed Ackermann rule we can eliminate q:

{i0 ≤ 3i1,♦(♦i1 −�i2) ≤ �i3 ∨ r, i4 ≤ r,�i2 ≤ m0,�i3 ≤ m0,�i4 ≤ m0, r ≤ m0};

finally by residuation rule and right-handed Ackermann rule we can eliminate r:

{i0 ≤ 3i1, (♦(♦i1 −�i2)−�i3) ∨ i4 ≤ m0,�i2 ≤ m0,�i3 ≤ m0,�i4 ≤ m0}, which is pure.

Stage 3:

Output {&{i0 ≤ 3(2> ∧ >),�> ≤ m0,�m0 ≤ m0} ⇒ i0 ≤ m0,&{i0 ≤ 3i1, (♦(♦i1 − �i2) −
�i3) ∨ i4 ≤ m0,�i2 ≤ m0,�i3 ≤ m0,�i4 ≤ m0} ⇒ i0 ≤ m0}.

In fact, we have the following result (for a proof, see [10]):

Theorem 5.2. ALBA succeeds on all inductive inequalities.

Intuitively, each formula on the left-hand side of an inductive inequality looks as follows, and the
right-hand side formula can be seen order-dually1:

1This picture has been created by Willem Conradie.
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Right Adjoints/Right Residuals

+p−p −p

ϕ

Operators/∆-Adjoints

This specific shape guarantees that every inductive inequality can be processed by ALBA in the
following way:

By applying the approximation and splitting rules to the nodes of the upper part, we can always
obtain a transformation in which the “lower part is in display”. Namely, all the subformulas whose
main node does not belong anymore to the upper part, which is shaded in the picture, and which
contain critical occurrences of proposition variables, occur now as the main formulas either on the
left or on the right of inequalities, i.e. they occur “in display”. The syntactic restrictions on induc-
tive and Sahlqvist inequalities guarantee that if such a formula is in display on the left (resp. right),
then it is a left (resp. right) adjoint or a left (resp. right) residual in the critical coordinate; hence,
by applying the appropriate adjunction or residuation rules, the given inequality can be equivalently
rewritten in such a way that the critical occurrence is now in display, either on the left or on the
right. This provides us with a “minimal valuation”, namely with inequalities of the form α ≤ p if the
order-type of p is 1, and of the form p ≤ α if the order-type of p is ∂. The non-critical occurrences
of the proposition variable p will have the appropriate polarity to receive the minimal valuation,
hence inductive and Sahlqvist inequalities make sure that the Ackermann rule can always be applied.

Finally, referring back to the discussion in Chapter 3, we noticed that the compositional struc-
ture of Sahlqvist formulas guarantees that at least one of the two routes which constitutes the
core of the Jónsson-style strategy. Here, the same order-theoretic properties guarantee that the
decompositional strategy of the ALBA is always successful. In Chapter 7, we will continue this
discussion.

5.2 ALBA-Style Canonicity

Suppose ALBA succeeds on ϕ ≤ ψ. Let ALBA(ϕ ≤ ψ) be the set of quasi-inequalities &Reduce(ϕi ≤
ψi) ⇒ i0 ≤ m0 for ϕi ≤ ψi ∈Preprocess(ϕ ≤ ψ). It is easy to see that all quasi-inequalities in
ALBA(ϕ ≤ ψ) are pure. In the following we will call the inequalities ϕ ≤ ψ on which ALBA
succeeds ALBA inequalities. It is stated in Theorem 5.2 that the inductive inequalities are included
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in ALBA inequalities.

The following theorem is the main result of this chapter:

Theorem 5.3. All inequalities on which ALBA succeeds are canonical, therefore by Theorem 5.2,
inductive inequalities are canonical.

Proof. For the proof, consider the inequality ϕ ≤ ψ and the resulting quasi-inequalities ALBA(ϕ ≤
ψ) after executing ALBA. We can see that the quasi-inequalities in ALBA(ϕ ≤ ψ) are pure, therefore
Aδ �ALBA(ϕ ≤ ψ) holds iff Aδ �AALBA(ϕ ≤ ψ) holds, hence we can use the U-shaped argument
represented below to show that from Aδ �A ϕ ≤ ψ (i.e. A � ϕ ≤ ψ) we can get Aδ � ϕ ≤ ψ:

Aδ �A ϕ ≤ ψ Aδ � ϕ ≤ ψ
m m

Aδ �AALBA(ϕ ≤ ψ) ⇔ Aδ �ALBA(ϕ ≤ ψ).

The right-hand equivalence is proved in Theorem 5.4 below, the bottom-line equivalence holds by
the fact that the value of ALBA(ϕ ≤ ψ) depends only on the assignment for nominals and co-
nominals, so there is no difference between admissible assignment and arbitrary assignment. The
proof strategy for the right-hand equivalence is similar to that of the left-hand equivalence. In fact,
almost for all steps, the proofs are similar (by the admissible assignment versions of Lemma 5.5, 5.6,
5.7), except for the Ackermann rule, which, as discussed in the previous chapter, is sound thanks
to the topological Ackermann lemmas only when additional syntactic constraints are satisfied. By
Lemma 5.8 (for a proof, see [10]), these syntactic constraints are satisfied, therefore the Ackermann
rule preserves the equivalence for admissible assignments. Hence, we get the canonicity of all ALBA
inequalities.

In the following we list the theorems and lemmas needed in the proof of Theorem 5.3.

Theorem 5.4. If ALBA succeeds on ϕ ≤ ψ and yields ALBA(ϕ ≤ ψ), then Aδ � ϕ ≤ ψ iff
Aδ �ALBA(ϕ ≤ ψ).

Proof. The correctness of the algorithm on the Aδ side follows from the following chain of equiva-
lences:

1. Aδ � ϕ ≤ ψ;

2. Aδ �Preprocess(ϕ ≤ ψ);

3. Aδ � j0 ≤ ϕ′ & ψ′ ≤ m0 ⇒ j0 ≤ m0 for all ϕ′ ≤ ψ′ ∈Preprocess(ϕ ≤ ψ);

4. Aδ � &Reduce(ϕ′ ≤ ψ′)⇒ j0 ≤ m0 for all ϕ′ ≤ ψ′ ∈Preprocess(ϕ ≤ ψ);

5. Aδ �ALBA(ϕ ≤ ψ).

The equivalence between (1) and (2) is given in Lemma 5.5, the equivalence between (2) and (3)
is given in Lemma 5.6, the equivalence between (3) and (4) is given in Lemma 5.7, the equivalence
between (4) and (5) is trivial. For the proofs of these lemmas (in frame-theoretic setting), see
[10].
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Lemma 5.5. If a set S ′ of inequalities is obtained from a set S by the application of one step of
preprocessing rule, then Aδ � S iff Aδ � S ′.

Lemma 5.6. Aδ � ϕ′ ≤ ψ′ iff Aδ � j0 ≤ ϕ′ & ψ′ ≤ m0 ⇒ j0 ≤ m0.

Lemma 5.7. Let S be a finite system of inequalities and S ′ be a system of inequalities obtained
from S by applying one of the reduction rules, and h be any assignment. Then

1. If Aδ, h � S, then Aδ, h′ � S ′ for some h′ such that h′(j0) = h(j0), h′(m0) = h(m0);

2. If Aδ, h � S ′, then Aδ, h′ � S for some h′ such that h′(j0) = h(j0), h′(m0) = h(m0).

Lemma 5.8 (cf. Lemma 9.5 in [10]). In every non-pure inequality ϕ′ ≤ ψ′ obtained when ALBA is
run on an inequality ϕ ≤ ψ, the left-hand side ϕ′ is always syntactically closed while the right-hand
side ψ′ is always syntactically open.
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Chapter 6

Generalized Canonical Extensions for
Maps

The success in the use of the expanded language to prove the canonicity result via the ALBA al-
gorithm inspires us to consider the magic power of the expanded language and the possibility of
proving Jónsson-style canonicity using the expanded language. However, for the expanded language,
the subalgebra A might not be closed under the new operations, therefore the standard definition
for canonical extension needs to be revised, and we need a theory of generalized canonical extension
for functions fA : A→ Bδ such that the value of fA is not restricted to clopen elements in B.

In this chapter, we define a notion of generalized canonical extension (fA)λ : Aδ → Bδ for functions
fA : A→ Bδ which are restrictions of fA

δ
: Aδ → Bδ to A, in such a way that the value of fA

δ
(u) for

u ∈ Aδ can be approximated by the set of values fA(a) for a ∈ A. The spirit of generalized canon-
ical extensions of maps is similar to the fact that the value of a continuous real variable function
on an irrational real number can be taken as a limit of its values on rational numbers. Although
the definition we are going to give looks the same as in the standard case, the generalized version
here is intended for getting approximations of functions fA

δ
: Aδ → Bδ based on their values on

clopen elements in A and then comparing fA
δ

and (fA)λ so as to show whether fA
δ

is contracting
or expanding. In fact, the idea of this chapter elaborates on Section 2.3 of [16] on the continuous
extensions of maps; however, in [16], canonical extensions are fully discussed only for functions
fA : A→ B, not for functions fA : A→ Bδ, and here we fill in the gap.

In the following we use superscripts to indicate the domain of the function, therefore fA is the
restriction of fA

δ
to A or Aε, depending on the context. Here we abuse the notation: ♦A is not an

operation on A, but a map from A to Aδ, which is the restriction of ♦Aδ to A. In this chapter, A,
B,C are always BDLs.

6.1 Generalized Canonical Extensions for Maps

First of all, we have the following observation:

Proposition 6.1. For any monotone function fA : A→ B and its extension fA
δ

: Aδ → Bδ,
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1. (fA)σ ≤ fA
δ

iff the following closed Esakia condition holds: fA
δ
(
∧
{ci : i ∈ I}) =

∧
{fAδ(ci) :

i ∈ I} for any downward-directed collection {ci : i ∈ I} ⊆ K(Aδ);

2. fA
δ ≤ (fA)π iff the following open Esakia condition holds: fA

δ
(
∨
{oi : i ∈ I}) =

∨
{fAδ(oi) :

i ∈ I} for any upward-directed collection {oi : i ∈ I} ⊆ O(Aδ).

Proof. We prove 1, statement 2 being an order-variant of 1.

⇐: Assume the closed Esakia condition holds for fA
δ
. To show that (fA)σ ≤ fA

δ
, we have to

show that for all u ∈ Aδ,
∨
{
∧
{fA(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aδ)} ≤ fA

δ
(u), i.e., for all

u ∈ Aδ, all x ∈ K(Aδ) such that x ≤ u,
∧
{fA(a) : x ≤ a ∈ A} ≤ fA

δ
(u). By the mono-

tonicity of fA
δ

and that fA and fA
δ

coincide on A, it suffices to show that for all x ∈ K(Aδ),∧
{fAδ(a) : x ≤ a ∈ A} ≤ fA

δ
(x), which follows easily from the closed Esakia condition.

⇒: Suppose we have (fA)σ ≤ fA
δ
, i.e., for all u ∈ Aδ,

∨
{
∧
{fA(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aδ)} ≤

fA
δ
(u). Then let us preliminarily show that

∧
{fAδ(a) : x ≤ a ∈ A} = fA

δ
(x) for all x ∈ K(Aδ):

For any x ∈ K(Aδ), we have
∧
{fA(a) : x ≤ a ∈ A} =

∨
{
∧
{fA(a) : x′ ≤ a ∈ A} : x ≥ x′ ∈

K(Aδ)} ≤ fA
δ
(x). Since fA and fA

δ
coincide on A, we have

∧
{fAδ(a) : x ≤ a ∈ A} ≤ fA

δ
(x). The

converse inequality follows from the monotonicity of fA
δ
.

Let us prove that fA
δ

satisfies the closed Esakia condition, i.e., for any downward-directed collection
{ci : i ∈ I} ⊆ K(Aδ), fAδ(

∧
{ci : i ∈ I}) =

∧
{fAδ(ci) : i ∈ I}:

The inequality fA
δ
(
∧
{ci : i ∈ I}) ≤

∧
{fAδ(ci) : i ∈ I} straightforwardly follows from the mono-

tonicity of fA
δ
. For the converse direction

∧
{fAδ(ci) : i ∈ I} ≤ fA

δ
(
∧
{ci : i ∈ I}), let x =

∧
{ci :

i ∈ I} ∈ K(Aδ). By the preliminary fact shown above, we have that fA
δ
(x) =

∧
{fAδ(a) : a ∈ A

and x ≤ a}. Hence, it is enough to show that
∧
{fAδ(ci) : i ∈ I} ≤

∧
{fAδ(a) : a ∈ A and

x ≤ a}, i.e., we need to show that for each a ∈ A, if x ≤ a, then there exists an i0 ∈ I such that
fA

δ
(ci0) ≤ fA

δ
(a). By compactness, from

∧
{ci : i ∈ I} = x ≤ a we get that x′ =

∧
{ci : i ∈ I ′} ≤ a

for some finite I ′ ⊆ I. By the downward-directedness of {ci : i ∈ I}, we get ci0 ≤ x′ ≤ a for some
i0 ∈ I. Therefore, fA

δ
(ci0) ≤ fA

δ
(a).

From the proposition above, we can see that the essential property for a term to be σ-contracting
(resp. π-expanding) is the closed (resp. open) Esakia condition. By checking the proof details, we
can see that the fact that fA maps elements in A to clopen elements in B plays no role. Therefore
the result still holds if we allow fA to map elements in A to non-clopen elements in Bδ, so we can
work in a setting in which terms in the expanded signature L++ can also be accounted for. There-
fore, we can define the generalized canonical extension fA

δ
: Aδ → Bδ for functions fA : A → Bδ,

which we will give below.

The following definitions are very similar to those in Chapter 2, the only difference being the
codomain of the functions, but for the sake of clarity we repeat them in full.

Definition 6.2 (Generalized Canonical Extension for Maps). For any map fA : A→ Bδ, for
all u ∈ Aδ, we define
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(fA)σ(u) =
∨
{
∧
{f(a) : a ∈ A, x ≤ a ≤ y} : K(Aδ) 3 x ≤ u ≤ y ∈ O(Aδ)}

(fA)π(u) =
∧
{
∨
{f(a) : a ∈ A, x ≤ a ≤ y} : K(Aδ) 3 x ≤ u ≤ y ∈ O(Aδ)}.

For example, we can consider ♦Aδ ; let ♦A : A → Aδ be its restriction to A. Then the generalized
canonical extension of ♦A is (♦A)λ, where λ ∈ {σ, π}. Then we will show that (♦A)σ = (♦A)π = ♦Aδ

(see Section 7.1.2).

For order-preserving maps, we also have the following:

Theorem 6.3. If fA : A→ Bδ is order-preserving, then for all u ∈ Aδ,

(fA)σ(u) =
∨
{
∧
{fA(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aδ)}

(fA)π(u) =
∧
{
∨
{fA(a) : y ≥ a ∈ A} : u ≤ y ∈ O(Aδ)}.

In the following, we are mainly working with order-preserving maps.

Many properties about σ- and π-extensions still hold in the generalized setting. Here we state some
of them without proof.

Proposition 6.4. For any order-preserving map fA : A→ Bδ,

1. Both (fA)σ and (fA)π are order-preserving;

2. (fA)σ(x) =
∧
{fA(a) : x ≤ a ∈ A} for x ∈ K(Aδ);

3. (fA)π(y) =
∨
{fA(a) : y ≥ a ∈ A} for y ∈ O(Aδ);

4. (fA)σ(a) = (fA)π(a) = fA(a) for all a ∈ A;

5. (fA)σ(u) ≤ (fA)π(u) for all u ∈ Aδ, and “ = ” holds for u ∈ K(Aδ) ∪O(Aδ).

Proof. The items 1.-4. follows straightforwardly from the definition. The proof of item 5. is very
similar to the proof of Theorem 3.1 in [15].

We can also generalize the definition of stable, expanding and contracting maps to this new setting:

Definition 6.5 (Generalized Stable, Expanding and Contracting Maps). For any order-
preserving maps fA : A → Bδ and fA

δ
: Aδ → Bδ where fA

δ
extends fA, λ ∈ {σ, π}, we say

that

• fAδ is λ-stable if fA
δ

= (fA)λ;

• fAδ is λ-expanding if fA
δ ≤ (fA)λ;

• fAδ is λ-contracting if fA
δ ≥ (fA)λ.
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6.2 Generalized σ-Contracting and π-Expanding Maps

In this section we give a characterization of σ-contracting and π-expanding maps in terms of the
Esakia conditions and the intersection conditions.

We first give the generalized definition of the Esakia conditions for order-preserving maps from Aδ
to Bδ, and also generalize Proposition 6.1.

Definition 6.6 (Generalized Esakia Conditions). For any order-preserving map fA
δ

: Aδ → Bδ,

1. fA
δ

satisfies the closed Esakia condition, if for any downward-directed collection C = {ci : i ∈
I} ⊆ K(Aδ), fAδ(

∧
{ci : i ∈ I}) =

∧
fA

δ
({ci : i ∈ I});

2. fA
δ

satisfies the open Esakia condition, if for any upward-directed collection O = {oi : i ∈
I} ⊆ O(Aδ), fAδ(

∨
{oi : i ∈ I}) =

∨
fA

δ
({oi : i ∈ I}).

Theorem 6.7. For any order-preserving map fA
δ

: Aδ → Bδ, both (fA)σ and (fA)π satisfy both the
open and the closed Esakia condition.

Proof. We prove only the open Esakia condition, the closed Esakia condition being similar.

For (fA)π, for any upward-directed collection O = {oi : i ∈ I} ⊆ O(Aδ), we have that (fA)π(
∨
O) =∨

{fA(a) : A 3 a ≤
∨
O} and

∨
{(fA)π(o) : o ∈ O} =

∨
{fA(a) : A 3 a ≤ o for some o ∈ O}, there-

fore it suffices to show that for all a ∈ A, a ≤
∨
O iff a ≤ o for some o ∈ O. By compactness and

upward-directedness of O, it is easy to check. Therefore (fA)π satisfies the open Esakia condition.

For (fA)σ, for any upward-directed collection O ⊆ O(Aδ), we have that

(fA)σ(
∨
O)

= (fA)π(
∨
O) (by Proposition 6.4(5))

=
∨
{(fA)π(o) : o ∈ O} (by (fA)π satisfying the open Esakia condition)

=
∨
{(fA)σ(o) : o ∈ O} (by Proposition 6.4(5)),

therefore (fA)σ satisfies the open Esakia condition.

Theorem 6.8. Given any order-preserving map fA
δ

: Aδ → Bδ,

1. fA
δ

is σ-contracting iff fA
δ

satisfies the closed Esakia condition;

2. fA
δ

is π-expanding iff fA
δ

satisfies the open Esakia condition.

Proof. Straightforward generalization the proof of Proposition 6.1.

In fact, for n-ary order-preserving maps, we can also show that the Esakia conditions of Definition
6.6 are equivalent to the following much more manageable intersection conditions, which will be
used in the discussion about the comparison between the two approaches to canonicity:

Definition 6.9 (Intersection Conditions). For any order-preserving map fA
δ
(~u,~v) : (Aδ)ε → Bδ

where the order type is 1 for coordinates in ~u and ∂ for coordinates in ~v,
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1. fA
δ

satisfies the closed intersection condition, if for any coordinate w picked up from ~u,~v
(however, we abuse notation, and we denote the function fA

δ
as fA

δ
(~u,~v, w)), for any ~c ∈

K(Aδ), ~o ∈ O(Aδ), any downward-directed collection {ci : i ∈ I} ⊆ K(Aδ), any upward-
directed collection {oi : i ∈ I} ⊆ O(Aδ), the following holds:

• if the order type of w is 1, then fA
δ
(~c, ~o,

∧
{ci : i ∈ I}) =

∧
{fAδ(~c, ~o, ci) : i ∈ I};

• if the order type of w is ∂, then fA
δ
(~c, ~o,

∨
{oi : i ∈ I}) =

∧
{fAδ(~c, ~o, oi) : i ∈ I}.

2. fA
δ

satisfies the open intersection condition, if for any coordinate w picked up from ~u,~v (we
use the same abuse of notation, and we denote the function fA

δ
as fA

δ
(~u,~v, w)), for any

~c ∈ K(Aδ), ~o ∈ O(Aδ), any downward-directed collection {ci : i ∈ I} ⊆ K(Aδ), any upward-
directed collection {oi : i ∈ I} ⊆ O(Aδ), the following holds:

• if the order type of w is 1, then fA
δ
(~o,~c,

∨
{oi : i ∈ I}) =

∨
{fAδ(~o,~c, oi) : i ∈ I};

• if the order type of w is ∂, then fA
δ
(~o,~c,

∧
{ci : i ∈ I}) =

∨
{fAδ(~o,~c, ci) : i ∈ I}.

In this definition, we can see that the intersection conditions are the coordinatewise version of the
Esakia conditions, and we can prove the following equivalence:

Lemma 6.10. Given any order-preserving map fA
δ
(~u,~v) : (Aδ)ε → Bδ where the order type is 1 for

coordinates in ~u and ∂ for coordinates in ~v,

1. fA
δ

satisfies the closed Esakia condition iff it satisfies the closed intersection condition;

2. fA
δ

satisfies the open Esakia condition iff it satisfies the open intersection condition;

Proof. We only give the proof of item 2, item 1. being order-dual.

⇒: It is easy to see that the open intersection condition is a special case of the open Esakia con-
dition. Indeed, for any ~o,~c, {oi : i ∈ I} and {ci : i ∈ I} as above, the set {(~o,~c, oi) : i ∈ I} is an
upward-directed collection in O((Aδ)ε) if the order-type of w is 1, and the set {(~o,~c, ci) : i ∈ I} is
an upward-directed collection in O((Aδ)ε) if the order-type of w is ∂.

⇐: To keep notation manageable, here we only give the proof in the special case in which both ~u
and ~v are of length 2. Let us denote Aδ × Aδ × (Aδ)∂ × (Aδ)∂ by (Aδ)ε. Then fA

δ
(u1, u2, v1, v2) :

(Aδ)ε → Bδ, and O((Aδ)ε) = O(Aδ) × O(Aδ) ×K(Aδ) ×K(Aδ). This can be easily generalized to
an arbitrary number of coordinates.
We are going to show that, for any upward-directed collection {(oi, o′i, ci, c′i) : i ∈ I} ⊆ O((Aδ)ε),

fA
δ

(o, o′, c, c′) =
∨
{fAδ(oi, o′i, ci, c′i) : i ∈ I},

where o =
∨
{oi : i ∈ I}, o′ =

∨
{o′i : i ∈ I}, c =

∧
{ci : i ∈ I}, c′ =

∧
{c′i : i ∈ I}.

The inequality ≥ follows by the monotonicity properties of fA
δ
. As to the converse inequality, since

by assumption, fA
δ

satisfies the open intersection condition, we have that

fA
δ

(o, o′, c, c′) =
∨
{fAδ(oi1 , o′i2 , ci3 , c

′
i4

) : i1, i2, i3, i4 ∈ I},
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it suffices to show that for any i1, i2, i3, i4 ∈ I, there is an i ∈ I such that

fA
δ

(oi1 , o
′
i2
, ci3 , c

′
i4

) ≤ fA
δ

(oi, o
′
i, ci, c

′
i).

Fix i1, i2, i3, i4 ∈ I, and consider the finite subset

{(oik , o′ik , cik , c
′
ik

) : 1 ≤ k ≤ 4} ⊆ {(oi, o′i, ci, c′i) : i ∈ I};

by the upward-directedness of {(oi, o′i, ci, c′i) : i ∈ I} in (Aδ)ε, this finite subset has a common upper
bound in {(oi, o′i, ci, c′i) : i ∈ I}. That is, there exists some i ∈ I such that (oik , o

′
ik
, cik , c

′
ik

) ≤ε
(oi, o

′
i, ci, c

′
i) for 1 ≤ k ≤ 4. This implies that (oi1 , o

′
i2
, ci3 , c

′
i4

) ≤ε (oi, o
′
i, ci, c

′
i), and thus by the

ε-monotonicity of fA
δ
, we get fA

δ
(oi1 , o

′
i2
, ci3 , c

′
i4

) ≤ fA
δ
(oi, o

′
i, ci, c

′
i).

6.3 Generalized σ-Expanding and π-Contracting Maps

In this section we give sufficient conditions for maps to be σ-expanding or π-contracting. In the
following we only give the proofs for the property of being σ-expanding, and the proofs for the
property of being π-contracting can be obtained order dually.

6.3.1 Sufficient Conditions

First of all, we can generalize the result stating that fσ (resp. fπ) is the largest UC (resp. smallest
LC) extension of f to the setting of generalized canonical extensions of maps. The proof strategy
is the same as Proposition 117 in Chapter 6 in [4].

Theorem 6.11. Given any order-preserving map fA : A→ Bδ,

1. (fA)σ is the largest order-preserving UC extension of fA to Aδ.

2. (fA)π is the smallest order-preserving LC extension of fA to Aδ.

Proof. Here we only give the proof of 1, and the proof of 2. can be obtained order dually. The
upper continuity of (fA)σ easily follows from the definition of generalized σ-extension. To show
that (fA)σ is the largest such map, suppose we have another order-preserving map gA

δ
: Aδ → Bδ

extending fA satisfying UC, then it suffices to show that gA
δ ≤ (fA)σ:

Suppose otherwise, there is a u ∈ Aδ such that gA
δ
(u) � (fA)σ(u), then there is an i ∈ J∞(Bδ)

such that i ≤ gA
δ
(u) but i � (fA)σ(u), then since gA

δ
satisfies UC, we have that there is an x such

that K(Aδ) 3 x ≤ u such that i ≤ gA
δ
(x). Then by the monotonicity of gA

δ
and the fact that both

(fA)σ and gA
δ

extend fA, we have that i ≤ gA
δ
(x) ≤ gA

δ
(a) = fA(a) for all a such that A 3 a ≥ x.

Therefore i ≤
∧
{fA(a) : A 3 a ≥ x} = (fA)σ(x) ≤ (fA)σ(u), a contradiction.

The following facts then immediately follow as a corollary of the theorem above:

Corollary 6.12. Given any order-preserving map gA
δ

: Aδ → Bδ,

1. if gA
δ

is UC, then gA
δ ≤ (gA)σ, i.e. g is σ-expanding;

2. if gA
δ

is LC, then gA
δ ≥ (gA)π, i.e. g is π-contracting.
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6.3.2 Scott and Dual Scott Continuity

In this subsection we consider operators, i.e., order-preserving maps fA : Aε → Bδ that preserve finite
joins in each coordinate. Recall that complete operators are order-preserving maps fA : Aε → Bδ
that preserve arbitrary joins in each coordinate. Dual operators and complete dual operators are
defined dually.

Lemma 6.13. Given any order-preserving map fA : Aε → Bδ,

1. if fA is an operator, then (fA)σ : (Aε)δ → Bδ is a complete operator;

2. if fA is a dual operator, then (fA)π : (Aε)δ → Bδ is a complete dual operator.

Proof. Similar to Lemma 2.22 in [16].

Then we have the following theorem:

Theorem 6.14. Given any order-preserving map fA
δ

: (Aε)δ → Bδ,

1. if fA
δ

is a complete operator, then fA
δ

is Scott continuous, hence σ-expanding;

2. if fA
δ

is a complete dual operator, then fA
δ

is dual Scott continuous, hence π-contracting.

Proof. Here we only prove 1, and 2. can be obtained order dually. For the first half about Scott
continuity, the proof is similar to Theorem 5.6 in [17]. For the second half, since Scott continuity is
a special case of UC, for complete operator fA

δ
: (Aε)δ → Bδ, fAδ is UC, by Corollary 6.12, fA

δ
is

σ-expanding.

Then we can generalize Corollary 5.7 in [17] as follows:

Lemma 6.15. Given any order-preserving maps fA
δ

: Aδ → (Bδ)ε and gB
δ

: (Bδ)ε → Cδ and (g◦f)A

obtained by restricting gB
δ
fA

δ
to A,

1. if gB
δ

is a complete operator, then gB
δ
(fA)σ ≤ ((g ◦ f)A)σ;

2. if gB
δ

is a complete dual operator, then gB
δ
(fA)π ≥ ((g ◦ f)A)π.

Proof. Here we only prove 1, and 2. can be obtained order dually. By Theorem 6.11, (fA)σ is UC.
By Theorem 6.14, gB

δ
is Scott continuous, hence gB

δ
(fA)σ is UC. By Theorem 6.11 again, ((g◦f)A)σ

is the largest order-preserving UC extension of (g ◦ f)A to Aδ. It is also easy to see that gB
δ
(fA)σ

coincode with (g ◦ f)A on A, hence gB
δ
(fA)σ is also an order-preserving UC extension of (g ◦ f)A to

Aδ. Therefore we have gB
δ
(fA)σ ≤ ((g ◦ f)A)σ.

52



6.3.3 Strong Upper and Lower Continuity

In [17], it is proved that for meet-preserving maps fA : A → B, (fA)σ is SUC. Here we generalize
this result as the following theorem:

Theorem 6.16. 1. Let fA
δ

: Aδ → Bδ be completely meet-preserving, satisfying the open Esakia
condition (cf. Definition 6.6), and such that fA

δ
(a) ∈ O(Bδ) for all a ∈ A. Then it is SUC.

Hence, fA
δ

is also σ-expanding.

2. Let fA
δ

: Aδ → Bδ be completely join-preserving, satisfying the closed Esakia condition (cf.
Definition 6.6), and such that fA

δ
(a) ∈ K(Bδ) for all a ∈ A. Then it is SLC. Hence, fA

δ
is

also π-contracting.

Proof. Here we only prove 1, and 2. can be obtained order dually. Let u ∈ Aδ and q ∈ K(Bδ)
such that q ≤ fA

δ
(u). Then u =

∧
{
∨
{a : y ≥ a ∈ A} : u ≤ y ∈ O(Aδ)}. Since fA

δ
is completely

meet-preserving, we have that q ≤
∧
{fAδ(

∨
{a : y ≥ a ∈ A}) : u ≤ y ∈ O(Aδ)}. Hence for all y

such that O(Aδ) 3 y ≥ u, we have that q ≤ fA
δ
(
∨
{a : y ≥ a ∈ A}). Since by the open Esakia

condition, we have that fA
δ
(
∨
{a : y ≥ a ∈ A}) =

∨
{fAδ(a) : y ≥ a ∈ A}, by compactness we

have that there is a finite subset A0 ⊆ {a : y ≥ a ∈ A} such that q ≤
∨
{fAδ(a) : a ∈ A0},

therefore by taking ay =
∨
A0 ∈ A, we have that q ≤ fA

δ
(ay) by the monotonicity of fA

δ
. Hence,

we have that q ≤
∧
{fAδ(ay) : O(Aδ) 3 y ≥ u}, and since fA

δ
is completely meet preserving, we

have q ≤ fA
δ
(
∧
{ay : O(Aδ) 3 y ≥ u}). Since ay =

∨
A0 ≤

∨
{a : y ≥ a ∈ A} = y for all y such

that O(Aδ) 3 y ≥ u, we have
∧
{ay : O(Aδ) 3 y ≥ u} ≤ u.

∧
{ay : O(Aδ) 3 y ≥ u} ∈ K(Aδ) follows

from that ay ∈ A for all y such that O(Aδ) 3 y ≥ u.

As to the second part of the statement, since SUC is a special case of UC, we have that fA
δ

satisfies
UC, since (fA)σ is the largest order-preserving UC map extending fA, we have that fA

δ ≤ (fA)σ,
therefore fA

δ
is σ-expanding.

We can also generalize Corollary 5.9 in [17] as follows:

Lemma 6.17. Given any order-preserving maps fA
δ

: Aδ → (Bδ)ε and gB
δ

: (Bδ)ε → Cδ and (g◦f)A

obtained by restricting gB
δ
fA

δ
to A,

1. if fA
δ

is completely meet-preserving, satisfies the open Esakia condition and is such that
fA

δ
(a) ∈ O(Bδ) for all a ∈ A, and gB

δ
satisfies the open Esakia condition, then (gB)σfA

δ ≤
((g ◦ f)A)σ;

2. if fA
δ

is completely join-preserving, satisfies the closed Esakia condition and is such that
fA

δ
(a) ∈ K(Bδ) for all a ∈ A, and gB

δ
satisfies the closed Esakia condition, then (gB)πfA

δ ≥
((g ◦ f)A)π.

Proof. Here we only prove 1, and 2. can be obtained order dually. By Theorem 6.11, (gB)σ is UC.
By Theorem 6.16, fA

δ
is SUC, hence (gB)σfA

δ
is UC. By Theorem 6.11 again, ((g ◦ f)A)σ is the

largest order-preserving UC extension of (g ◦ f)A to Aδ. Since fA
δ
(a) ∈ O(Bδ) for all a ∈ A, by

Theorem 6.7 and that gB
δ

satisfies the open Esakia condition, (gB)σfA
δ

coincode with gB
δ
fA

δ
on

A, hence (gB)σfA
δ

is also an order-preserving UC extension of (g ◦ f)A to Aδ. Therefore we have
(gB)σfA

δ ≤ ((g ◦ f)A)σ.
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Chapter 7

ALBA-Aided Jónsson-Style Canonicity

In this chapter, we prove the canonicity of ALBA inequalities in the language of distributive modal
logic using the method of generalized canonical extensions of maps. As we have already seen in
Section 3.2, when trying to prove the canonicity of inductive inequalities within the original signa-
ture DML, the term functions for α1 and β1 do not have the good properties (namely, the property
of being σ-expanding for α1 and the property of being π-contracting for β1) which would be suffi-
cient to guarantee the canonicity according to the strategy in [17]. Therefore, in this chapter we
generalize the proof scheme (in fact, the proof scheme after the refinement in Section 3.1.3) to the
expanded signature L++, by making manipulations aimed at reformulating the inequality α ≤ β
into inequalities of the form α1 ≤ γ, where α1 is of order type ε and σ-expanding, i.e., it is general-
ized ε-left Sahlqvist, and γ is of order type ε and σ-contracting, i.e., it is a generalized n-part (see
Section 3.1.1, discussion before Lemma 3.7). However, we need to use more complex manipulations
than the simple n-trick in order to make full use of the expanded signature. After the proof, a
comparison between the Jónsson-style canonicity and the ALBA-style canonicity is given.

Before getting into the details, we first define canonical extensions for terms in L++, and prove
some results about the corresponding contracting or expanding term functions.

7.1 Generalized Canonical Extensions for L++

In this section, we define generalized canonical extensions for the expanded language L++, and show
that certain terms in L++ are contracting or expanding, which will be used in the canonicity proof
for ALBA inequalities in distributive modal logic in Section 7.2.

7.1.1 Generalized Canonical Extensions for Term Functions in L++

Since, in L++, not only new logical symbols are introduced, but also nominals and co-nominals
(see Section 2.5), we need to generalize the definitions of term functions, canonical extensions and
contracting and expanding terms to this setting. Here we give two different kinds of definitions of
term functions for convenience of work: the first one takes nominals and co-nominals as already
assigned constants, the second one takes them as arguments.

Definition 7.1 (Term Functions in L++). Let A be a DMA and t(~p,~j, ~m) be an L++-term,
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where the proposition variables, nominals and co-nominals actually occurring in t are in ~p,~j, ~m,
respectively. For any arrays ~x, ~y of suitable lengths, and such that x ∈ J∞(Aδ) for each coordinate
x in ~x, and y ∈M∞(Aδ) for each coordinate y in ~y, we use tA

δ

~x,~y to denote the term function

(Aδ)n → Aδ

such that the variables in ~j, ~m are orderly interpreted as elements in ~x, ~y, respectively. In the
following, we abuse notation and write expressions such as ~x ∈ J∞(Aδ), even if they are not set
theoretically proper. We use the symbol tA

δ
to denote as usual the function

(Aδ)n × (J∞(Aδ))k × (M∞(Aδ))l → Aδ.

Finally, we use the symbols tA~x,~y, t
A to respectively denote the restrictions of the term functions tA

δ

~x,~y

and tA
δ

to An. In other words, we have:

tA~x,~y : (A)n → Aδ

and

tA : (A)n × (J∞(Aδ))k × (M∞(Aδ))l → Aδ,

respectively.

The theory developed in Chapter 6 now can be applied to L++-term functions where nominals and
co-nominals have been fixed. So we start by giving the following definition which is nothing else
but the Definition 6.2 applied to tA~x,~y:

Definition 7.2 (Generalized Canonical Extensions for Term Functions in L++). Let the
term t(~p, ~q,~j, ~m) be a uniform L++-term, such that the nominals and co-nominals actually occurring
in t are in ~j, ~m, and let ~p, ~q be the arrays of positive and negative variables, respectively. For any
DMA A and all ~u,~v ∈ Aδ, ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ), let

(tA~x,~y)
σ : (Aδ)n1 × ((Aδ)∂)n2 → Aδ and (tA~x,~y)

π : (Aδ)n1 × ((Aδ)∂)n2 → Aδ

be respectively defined by the assignments (~u,~v) 7→ (tA)σ(~u,~v, ~x, ~y), and (~u,~v) 7→ (tA)π(~u,~v, ~x, ~y),
where:

(tA)σ(~u,~v, ~x, ~y) =
∨
{
∧
{tA(~a,~b, ~x, ~y) : ~c ≤ ~a ∈ A, ~o ≥ ~b ∈ A} : ~u ≥ ~c ∈ K(Aδ), ~v ≤ ~o ∈ O(Aδ)}

(tA)π(~u,~v, ~x, ~y) =
∧
{
∨
{tA(~a,~b, ~x, ~y) : ~o ≥ ~a ∈ A,~c ≤ ~b ∈ A} : ~u ≤ ~o ∈ O(Aδ), ~v ≥ ~c ∈ K(Aδ)}.

Next, we give the corresponding definition of contracting and expanding terms:

Definition 7.3 (Generalized Contracting and Expanding Terms in L++). For a uniform
term t(~p,~j, ~m) in L++ where ~j, ~m are all nominals and co-nominals in t, and λ ∈ {σ, π},

• t is λ-stable, if for all DMAs A, tA
δ

= (tA)λ, i.e. tA
δ

~x,~y = (tA~x,~y)
λ for all ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ);
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• t is λ-expanding, if for all DMAs A, tA
δ ≤ (tA)λ, i.e. tA

δ

~x,~y ≤ (tA~x,~y)
λ for all ~x ∈ J∞(Aδ),

~y ∈M∞(Aδ);

• t is λ-contracting, if for all DMAs A, tA
δ ≥ (tA)λ, i.e. tA

δ

~x,~y ≥ (tA~x,~y)
λ for all ~x ∈ J∞(Aδ),

~y ∈M∞(Aδ).

The new connectives turn out to be very well behaved, as we are going to discuss in the next
subsection.

7.1.2 σ- and π-Stability of Connectives in the Expanded Signature

The Esakia properties of � ,♦,I,J,−,→ were fundamental to prove the topological Ackermann
lemmas in Chapter 4. In this part, we will use them again to establish the stability properties of
these connectives, as well as those of n, l. Throughout this section, we omit superscripts of term
functions when they are clear from the context, since their domain is typically Aδ.

In the lemma below, we list all the preservation properties which follow from the fact, well known
from the general order theory (see [12]), that each of the new operators is either a right or left
residual or adjoint.

Lemma 7.4. For any A ⊆ Aδ, u ∈ Aδ,

1. �
∧
A =

∧
{� v : v ∈ A};

2. ♦
∨
A =

∨
{♦v : v ∈ A};

3. I
∨
A =

∧
{I v : v ∈ A};

4. J
∧
A =

∨
{J v : v ∈ A};

5. u−
∧
A =

∨
{u− v : v ∈ A},

∨
A− u =

∨
{v − u : v ∈ A};

6. u→
∧
A =

∧
{u→ v : v ∈ A},

∨
A → u =

∧
{v → u : v ∈ A};

7. n(u,
∧
A) =

∨
{n(u, v) : v ∈ A}, n(

∨
A, u) =

∨
{n(v, u) : v ∈ A};

8. l(u,
∧
A) =

∧
{l(u, v) : v ∈ A}, l(

∨
A, u) =

∧
{l(v, u) : v ∈ A}.

This implies in particular that � ,I,→, l satisfy the closed Esakia condition, and ♦,J,−,n satisfy
the open Esakia condition (see Definition 6.6).

The next step is to prove the following proposition:

Proposition 7.5. � ,♦,I,J,−,→,n, l are both σ-contracting and π-expanding.
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Proof. By Theorem 6.8, it is enough to show that all the connectives mentioned above satisfy both
the open and the closed Esakia condition (see Definition 6.6). By the conclusion of Lemma 7.4,
it remains to be shown that � ,I,→, l satisfy the open Esakia condition, and ♦,J,−,n satisfy
the closed Esakia condition. Lemma 4.10 equivalently says that � ,I,→ enjoy the open Esakia
condition, and that ♦,J,− enjoy the closed Esakia condition. Actually, for the binary connectives
− and→, Lemma 4.10 states that they enjoy the intersection condition. However, by Lemma 6.10,
this condition is equivalent to the Esakia condition we require. Finally, Lemma 7.6 below takes care
of the remaining intersection conditions for n and l, which again by Lemma 6.10 imply the required
Esakia conditions.

Lemma 7.6. Let C = {ci : i ∈ I} ⊆ K(Aδ) be downward-directed, O = {oi : i ∈ I} ⊆ O(Aδ) be
upward-directed. Then:

1. n(
∧
C,
∨
O) =

∧
{n(c, o) : c ∈ C, o ∈ O};

2. l(
∧
C,
∨
O) =

∨
{l(c, o) : c ∈ C, o ∈ O}.

Proof. We prove 2., since 1. is an order-variant of 2. To show 2, notice that the inequality from
right to left straightforwardly follows by the (∂, 1)-monotonicity of l. For the converse, since the
value of l is either > or ⊥, we only consider the case in which l(

∧
C,
∨
O) = >, and show that there

exist some c ∈ C and o ∈ O such that l(c, o) = >. From l(
∧
C,
∨
O) = > we have that

∧
C ≤

∨
O,

hence by compactness,
∧
C0 ≤

∨
O0 for some finite C0 ⊆ C and O0 ⊆ O. By the directedness of C

and O, there exist some c ∈ C and o ∈ O such that c ≤
∧
C0 ≤

∨
O0 ≤ o, therefore l(c, o) = >.

Next, we are in a position to prove the following:

Proposition 7.7. � ,♦,I,J are both σ-stable and π-stable.

Proof. By Theorem 6.16.1, in order to prove that� : Aδ → Aδ andI : (Aδ)∂ → Aδ are σ-expanding,
it is enough to show that they are completely meet-preserving, satisfying the open Esakia condition,
and such that their value on clopen input is always open. These conditions are respectively satisfied
by Lemmas 7.4, 4.10, and 4.7. Likewise, in order to prove that ♦ : Aδ → Aδ and J : (Aδ)∂ → Aδ are
π-contracting, we use Theorem 6.16.2 and Lemmas 7.4, 4.10, and 4.7. Together with Proposition
7.5, this proves that � and I are σ-stable, and that ♦ and J are π-stable.

For the remaining parts of the statement, let us prove that � is π-stable, the others being order-
variants of it. In the following proof, to make the domain of the functions clear, we use superscripts.
Indeed, for any u ∈ Aδ, since � Aδ is completely meet-preserving and satisfies the open Esakia
condition, the following chain of identities holds:

� Aδu = � Aδ(
∧
{
∨
{a : o ≥ a ∈ A} : u ≤ o ∈ O(Aδ)})

=
∧
{� Aδ(

∨
{a : o ≥ a ∈ A}) : u ≤ o ∈ O(Aδ)}

=
∧
{
∨
{� Aδa : o ≥ a ∈ A} : u ≤ o ∈ O(Aδ)}

=
∧
{
∨
{� Aa : o ≥ a ∈ A} : u ≤ o ∈ O(Aδ)}

= (� A)π(u).
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Finally, we state the stability properties enjoyed by the remaining binary connectives.

Proposition 7.8. n,− are σ-stable and l,→ are π-stable.

Proof. By Proposition 7.5, it remains to be shown that n,− are σ-expanding and l,→ are π-
contracting. By Theorem 6.14.1, to show that n,− : Aδ× (Aδ)∂ → Aδ are σ-expanding, it is enough
to show that they are complete operators, which follows from Lemma 7.4. Likewise, in order to
prove that l,→: (Aδ)∂ × Aδ → Aδ are π-contracting, we use Theorem 6.14.2, Proposition 7.5, and
Lemma 7.4.

7.1.3 Generalized σ-Contracting and π-Expanding Terms in L++

The aim of this subsection is to show that all uniform syntactically closed (resp. open) terms are
σ-contracting (resp. π-expanding) (Theorem 7.11). This will be useful to treat the ε∂-part in the
Jónsson-style canonicity strategy.

Lemma 7.9 (Intersection Lemma). Let ϕ(~p, ~q, r,~j, ~m) and ψ(~p, ~q, r,~j, ~m) be uniform syntactically
closed and open terms in L++, respectively, where ~p and ~q respectively occur positively and negatively,
and ~j, ~m are all nominals and co-nominals occuring in ϕ and ψ. Let ~x ∈ J∞(Aδ), ~y ∈ M∞(Aδ),
~c ∈ K(Aδ), ~o ∈ O(Aδ), {ci : i ∈ I} ⊆ K(Aδ) be downward-directed, {oi : i ∈ I} ⊆ O(Aδ) be
upward-directed.

1. If ϕ(~p, ~q, r,~j, ~m) is positive in r, then ϕA
δ
(~c, ~o,

∧
{ci : i ∈ I}, ~x, ~y) =

∧
i∈I
ϕA

δ
(~c, ~o, ci, ~x, ~y).

2. If ψ(~p, ~q, r,~j, ~m) is negative in r, then ψA
δ
(~o,~c,

∧
{ci : i ∈ I}, ~x, ~y) =

∨
i∈I
ψA

δ
(~o,~c, ci, ~x, ~y).

3. If ϕ(~p, ~q, r,~j, ~m) is negative in r, then ϕA
δ
(~c, ~o,

∨
{oi : i ∈ I}, ~x, ~y) =

∧
i∈I
ϕA

δ
(~c, ~o, oi, ~x, ~y).

4. If ψ(~p, ~q, r,~j, ~m) is positive in r, then ψA
δ
(~o,~c,

∨
{oi : i ∈ I}, ~x, ~y) =

∨
i∈I
ψA

δ
(~o,~c, oi, ~x, ~y).

Proof. The proof goes by simultaneous induction on ϕ and ψ, which is similar to the proof of
Lemma 4.12.

Corollary 7.10. Let ϕ(~p,~j, ~m) and ψ(~p,~j, ~m) be uniform syntactically closed and open terms in
L++, respectively, where ~p,~j, ~m are all proposition variables, nominals and co-nominals occuring in
ϕ and ψ, respectively. Let ~x ∈ J∞(Aδ), ~y ∈M∞(Aδ). Then,

1. ϕA
δ

~x,~y(~p) satisfies the closed Esakia condition;

2. ψA
δ

~x,~y(~p) satisfies the open Esakia condition.

Proof. By Lemma 6.10, it is enough to show that the intersection conditions hold, which have been
verified in Lemma 7.9.

Theorem 7.11. In L++, every uniform syntactically closed term is σ-contracting, and every uni-
form syntactically open term is π-expanding.

58



Proof. By Corollary 7.10, for a uniform syntactically closed term ϕ(~p,~j, ~m) and arbitrary DMA
A, ~x ∈ J∞(Aδ), ~y ∈ M∞(Aδ), ϕAδ~x,~y(~p) satisfies the closed Esakia condition, therefore by Theorem

6.8, ϕA
δ

~x,~y(~p) is σ-contracting, hence by Definition 7.3, ϕ is σ-contracting. The second part of the
statement is proven similarly.

7.1.4 Generalized σ-Expanding and π-Contracting Terms in L++

In this subsection, we consider generalized σ-expanding and π-contracting terms in L++, give the
definition of generalized Sahlqvist terms (i.e., pseudo inductive terms) in L++ (Definition 7.14),
and show that all left (resp. right) pseudo inductive terms are σ-expanding (resp. π-contracting)
(Theorem 7.17).

We first give the following lemma, which is proved, analogously to Lemma 4.11, by simultaneous
induction on the shape of ϕ and ψ:

Lemma 7.12. Let ϕ(~p, ~q,~j, ~m) and ψ(~p, ~q,~j, ~m) be uniform syntactically closed and open terms
in L++, respectively, where ~p and ~q respectively occur positively and negatively, and ~j, ~m are all
nominals and co-nominals occuring in ϕ and ψ. Let ~x ∈ J∞(Aδ), ~y ∈ M∞(Aδ), ~c ∈ K(Aδ), ~o ∈
O(Aδ), then

1. ϕA
δ
(~c, ~o, ~x, ~y) ∈ K(Aδ);

2. ψA
δ
(~o,~c, ~x, ~y) ∈ O(Aδ).

By Corollary 7.10, given the valuation for nominals and co-nominals, for any uniform syntactically
open term t, the term function tA

δ

~x,~y satisfies the open Esakia condition. Hence we have the following:

Corollary 7.13. For any DMA A, ~x ∈ J∞(Aδ) and ~y ∈M∞(Aδ),

1. for any uniform syntactically open term t in L++, if tA
δ

~x,~y is completely meet-preserving, then

tA
δ

~x,~y is SUC;

2. if a term t in L++ is uniform syntactically open and completely meet-preserving in proposition
variables, then it is σ-expanding.

Proof. By Corollary 7.10, tA
δ

~x,~y satisfies the open Esakia condition; by Lemma 7.12, for all ~a,~a′ ∈ A,

tA
δ

~x,~y(~a,~a
′) ∈ O(Aδ); since tA

δ

~x,~y is completely meet-preserving, by Theorem 6.16, tA
δ

~x,~y is SUC. The
second part follows easily from the first part and Theorem 6.16.

The corollary above is all we need to apply in the proof of canonicity for the ALBA inequalities in
Section 7.2. In fact, we can use the results in Section 6.3 about sufficient conditions for terms to be
σ-expanding and π-contracting to define pseudo inductive terms, and show that left (resp. right)
pseudo inductive terms in L++ are σ-expanding (resp. π-contracting).

In Chapter 6, we showed that in order to guarantee that a function fA
δ

is σ-expanding (resp. π-
contracting), it suffices to show that fA

δ
satisfies UC (resp. LC). These results make it possible to

reproduce the Jónsson-style core strategy which was discussed in Subsection 3.1.2 in the context
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Polarity Outer Skeleton
+
−

∧ ∨ 3 � ♦ J − n
∨ ∧ 2 � � I → l

Inner Structure
+
−

∧ 2 � � I → l ∨
∨ 3 � ♦ J − n ∧

Table 7.1: Classification of Nodes for Pseudo Inductive Terms

of generalized canonical extensions. Here we take UC as an example: as discussed in Subsection
3.1.2, UC is of the form (∀J∃K), and hence this property can be guaranteed in two ways: either by
requiring the inner function to satisfy UC (∀J∃K) and the outer function to satisfy Scott continuity
(∀J∃J), or by requiring the inner function to satisfy SUC (∀K∃K) and the outer function to satisfy
UC (∀J∃K). In addition, the differences between this generalized setting and the standard one
require that we put extra constraints on the terms in order to make them satisfy the assumptions
of Lemma 6.15 and Lemma 6.17, e.g. the positive (resp. negative) inner component need to be
syntactically open (resp. closed). These extra constraints are given in the following definition in
the form of Sahlqvist-style syntactic conditions on L++-terms. Instead of giving a choice/universal
classification of nodes, we give a classification in “positive configuration” style as in [6].

Definition 7.14 (Pseudo Inductive Terms in L++). Given an order type ε, the signed generation
tree of an L++-term +s(p1, . . . , pn) (resp. −s(p1, . . . , pn)) is ε-left pseudo inductive, abbreviated as
ε-LPI (resp. ε-right pseudo inductive, abbreviated as ε-RPI), if:

• it agrees with ε;

• on every branch with some pi as its leaf, going from the root to the leaf, there are two groups
of nodes, as given in Table 7.1. The first group (outer skeleton) occurs before the second
group (inner structure); in fact, either group can be empty;

• the binary nodes in the inner structure part of branches ending with some pi are in either of
the following forms:

Polarity
+ α→ β γ → δ l(α, β) l(γ, δ) δ ∨ γ γ ∨ δ δ ∧ γ γ ∧ δ β ∧ γ
− γ − δ α− β n(γ, δ) n(α, β) α ∧ β β ∧ α α ∨ β β ∨ α β ∨ γ

where α is a syntactically closed pure term (see Definition 4.3), δ is a syntactically open pure
term, β and γ are not pure.

Let us use the abbreviation PI for pseudo inductive terms.

Remark 7.15. The following facts are worth noticing about the definition above:

60



1. The definition above ensures that if t is a left-LPI term and A is a DMA, then, regarding tA
δ

as a composition of order-preserving maps with respect to an appropriate order-type, tA
δ

is
composed of two parts: the interpretation of the outer skeleton, which is the composition of
complete operators, and the interpretation of the inner structure, which is the composition
of completely meet-preserving maps such that each subterm in the inner structure is an open
(resp. closed) term if it is labelled + (resp. −). Proposition 7.16 below describes the inner
structure more in detail.

2. Pure terms are trivially both left and right ε-LPI for any ε, since none of their branches end
with a proposition variable.

3. All uniform Sahlqvist terms in the basic DML signature are pseudo inductive terms.

4. This definition reminds of inductive formulas, in a sense which can be made more precise
as follows. Consider a non-pure PI term t in which only symbols in L occur on branches
ending with some pi; suppose that on such branches, any choice node occurring in the scope
of a universal node is of the form +(δ ∨ γ) or −(α ∧ β), where δ is a syntactically open
pure term and α is a syntactically closed pure term. Suppose that n, l do not occur in t,
and i,m,♦,J,−,� ,I,→ only occur in terms δ or α mentioned above, and nowhere else.
If we replace each δ with a new proposition variable p+δ of order type ∂ and α with a new
proposition variable p−α of order type 1, and put all the new variables below all existing
variables in the dependence order, then the term we obtain is inductive. Since the minimal
valuation for a variable of order type 1 (resp. ∂) is a syntactically closed (resp. open) term, PI
terms can be regarded as inductive terms after substituting some minimal valuations into its
order dual part. This also explains why the expanded language is a crucial tool when dealing
with the canonicity of inductive inequalities.

Proposition 7.16. For any non-pure PI term ∗s, if the outer skeleton of ∗s is empty, then for
every subterm ?t of ∗s, t is syntactically open (resp. closed) if ? is + (resp. −).

Proof. The proof is simple but very lengthy, and hence we omit it.

Theorem 7.17. If α is an ε-LPI (resp. ε-RPI) term, then α is σ-expanding (resp. π-contracting).

Proof. The proof is similar to Lemma 5.10 in [17], by simultaneous induction on the syntactic struc-
ture of LPI and RPI terms. Here we consider ε-LPI terms, ε-RPI terms being order dual. For basic
cases, the proof is trivial. For pure terms, it is also easy to check that they are both σ-stable and
π-stable. Hence, without loss of generality, we only consider non-pure terms; for the inductive step,
suppose that for the ε-LPI term α, the outmost operation is f . Now the discussion breaks into cases.

If f is a node in the outer skeleton, then it is among ∧, ∨, 3, �, ♦, J, −, n. We consider α = β−γ,
since other cases are easier. It can be readily checked that +β is ε-LPI and −γ is ε-RPI; indeed,
if not, then their flaw would make +α non-LPI. Hence, by induction hypothesis, β is σ-expanding
and γ is π-contracting, i.e.

βA
δ

~x,~y ≤ (βA~x,~y)
σ and (γA~x,~y)

π ≤ γA
δ

~x,~y, i.e. (γA
δ

~x,~y)
∂ ≤ ((γA~x,~y)

∂)σ

for any DMA A, any ~x ∈ J∞(Aδ), any ~y ∈M∞(Aδ), and where βA
δ

~x,~y and γA
δ

~x,~y are regarded as follows:
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βA
δ

~x,~y : (Aδ)ε → Aδ and γA
δ

~x,~y : ((Aδ)ε)∂ → Aδ.

Since −Aδ : Aδ × (Aδ)∂ → Aδ is a complete operator and αA
δ

~x,~y = −Aδ(βAδ~x,~y, (γA
δ

~x,~y)
∂) is a composition

of the order-preserving maps (βA
δ

~x,~y, (γ
Aδ
~x,~y)

∂) : (Aδ)ε → Aδ × (Aδ)∂ and −Aδ : Aδ × (Aδ)∂ → Aδ, by
Lemma 6.15, we have

(β − γ)A
δ

~x,~y = −Aδ(βAδ~x,~y, (γA
δ

~x,~y)
∂)

≤ −Aδ((βA~x,~y)σ, ((γA~x,~y)∂)σ) (by induction hypothesis)

= −Aδ(βA~x,~y, (γA~x,~y)∂)σ
≤ ((β − γ)A~x,~y)

σ (by Lemma 6.15).

If f is a node in the inner structure, then by Proposition 7.16, α is syntactically open, and by
appropriately flipping the polarity of coordinates and functions, αA

δ

~x,~y is a composition of completely
meet-preserving maps, therefore by Corollary 7.13, α is σ-expanding.

7.2 ALBA-Aided Jónsson-Style Canonicity for ALBA In-

equalities

The aim of the present section is to prove the following:

Theorem 7.18. ALBA inequalities in distributive modal logic are canonical.

Proof. Our proof strategy is a combination of ALBA-style canonicity and Jónsson-style canonicity.
The main structure of the proof is similar to the U-shaped argument in ALBA-style canonicity on
Page 44, while for the bottom line, the proof strategy is similar to the Jónsson-style canonicity.

Let ϕ ≤ ψ be an ALBA inequality, on which ALBA succeeds. Let us run ALBA up to the point (in
the second stage, therefore we are dealing with systems of inequalities) in which for every system,
only one proposition variable remains, and the systems are in Ackermann shape, i.e., each system
is either in the right-handed Ackermann form:

α1 ≤ p
...
αm ≤ p
β1(p) ≤ γ1(p)
...
βn(p) ≤ γn(p)
δ1 ≤ θ1
...
δk ≤ θk

where the αls are pure and syntactically closed, Prop(βj(p)) ∪ Prop(γj(p)) = {p}, the βj(p)s are
syntactically closed and positive in p, the γj(p)s are syntactically open and negative in p, the δhs and
θhs are pure; or in the left-handed Ackermann form, which is the analogous but symmetric situation.
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Since we treat each system independently of the others, we can assume for simplicity that all the
systems of inequalities are of the right-handed Ackermann form {αi,1 ≤ pi, . . . , αi,m ≤ pi, βi,1(pi) ≤
γi,1(pi), . . . , βi,n(pi) ≤ γi,n(pi), δi,1 ≤ θi,1, . . . , δi,k ≤ θi,k}, which we denote as RAF(ϕi ≤ ψi).

Our goal now is to show that the Jónsson-style strategy can be applied to prove the equivalence
between items 2. and 3. in the following list:

1. Aδ �A ϕ ≤ ψ;

2. Aδ �A &RAF(ϕi ≤ ψi)⇒ i0 ≤ m0 for all ϕi ≤ ψi;

3. Aδ � &RAF(ϕi ≤ ψi)⇒ i0 ≤ m0 for all ϕi ≤ ψi;

4. Aδ � ϕ ≤ ψ.

The equivalence between 3. and 4. follows from the soundness of ALBA, and the equivalence be-
tween 1. and 2. similarly follows from the soundness of ALBA when the valuations are admissible1.
So the crucial step is the equivalence between 2. and 3.

To show that 2. implies 3, we adapt the chain of entailments discussed in the proof of Theorem 3.1.
Below, we use the following abbreviations:

A(pi) = αi,1 ∨ . . . ∨ αi,m ≤ pi,
BG(pi) = βi,1(pi) ≤ γi,1(pi)& . . .&βi,n(pi) ≤ γi,n(pi),
DT = δi,1 ≤ θi,1& . . .&δi,k ≤ θi,k,
l(α, pi) = l(αi,1 ∨ . . . ∨ αi,m, pi),
PURE = n(i0,m0) ∧

∧
1≤j≤k

l(δi,j, θi,j),

γ(pi) =
∨

1≤j≤n
n(βi,j(pi), γi,j(pi)).

In what follows, the arrays ~x and ~y are taken in J∞(Aδ) and M∞(Aδ), respectively.

1Notice that the fact that we are using the ALBA manipulations does not mean that this proof is a canonicity-
via-correspondence one. More details on this are given in Remark 7.21 and Section 7.3.
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Aδ �A & RAF (ϕi ≤ ψi)⇒ i0 ≤ m0

⇐⇒ Aδ �A (A(pi)& BG (pi)& DT)⇒ i0 ≤ m0 (trivial)

⇐⇒ Aδ �A l(α, pi) ∧
∧

1≤j≤n
l(βi,j(pi), γi,j(pi)) ∧

∧
1≤j≤k

l(δi,j, θi,j) ≤ l(i0,m0) (∗)

⇐⇒ Aδ �A l(α, pi) ∧ n(i0,m0) ∧
∧

1≤j≤k
l(δi,j, θi,j) ≤

∨
1≤j≤n

n(βi,j(pi), γi,j(pi)) (∗)

⇐⇒ (l(α, pi)∧ PURE)A~x,~y ≤ (γ(pi))
A
~x,~y for all ~x, ~y (trivial)

⇐⇒ ((l(α, pi)∧ PURE)A~x,~y)
σ ≤ ((γ(pi))

A
~x,~y)

σ for all ~x, ~y (Def. σ-extension)

=⇒ ((l(α, pi)∧ PURE)A~x,~y)
σ ≤ (γ(pi))

Aδ
~x,~y for all ~x, ~y (Lemma 7.19)

=⇒ (l(α, pi)∧ PURE)A
δ

~x,~y ≤ (γ(pi))
Aδ
~x,~y for all ~x, ~y (Lemma 7.20)

⇐⇒ Aδ � l(α, pi)∧ PURE ≤ γ(pi) (trivial)

⇐⇒ Aδ � & RAF (ϕi ≤ ψi)⇒ i0 ≤ m0 (∗).

The equivalences marked with (∗) can be shown by straightforward algebraic manipulations by
using the definitions of n and l. Finally, the proof is complete with the lemmas below.

Lemma 7.19. γ(pi) is σ-contracting.

Proof. Recall that γ(pi) =
∨

1≤j≤n
n(βi,j(pi), γi,j(pi)) where the βs are syntactically closed and positive

in pi, and the γs are syntactically open and negative in pi. Hence γ(pi) is syntactically closed and
positive in pi. Then the statement follows from Theorem 7.11.

Lemma 7.20. l(α, pi)∧PURE is σ-expanding.

Proof. By Theorem 7.17, it is enough to show that l(α, pi)∧PURE is LPI with order type (1).
Let us recall that PURE is of the form n(i0,m0) ∧

∧
1≤j≤k

l(δi,j, θi,j), and l(α, pi) is of the form

l(αi,1 ∨ . . . ∨ αi,m, pi). The outer skeleton of l(α, pi)∧PURE only consists of the node +∧, and
the inner structure only consists of the subterm +l(αi,1 ∨ . . . ∨ αi,m, pi), where αi,1 ∨ . . . ∨ αi,m is
syntactically closed (cf. Lemma 5.8) and pure.

Remark 7.21. • The tool of ALBA has been used for two different purposes: in [10], it was
used to calculate a first-order correspondent for formulas or inequalities; in this chapter, ALBA
is used to manipulate the initial inequality into a shape to which the Jónsson strategy can be
applied.

• Since the inductive inequalities are ALBA inequalities, their Jónsson-style canonicity for them
follows straightforwardly from the theorem above.

• Some aspects of the proof might still look to be a bit ad hoc, e.g. the fact that we run ALBA
up to the point immediately before the last application of the Ackermann rule. We will discuss
this aspect in Section 7.3.1.
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7.3 Discussion: Comparing the Two Approaches

Certainly, the main motivation for the proof above is methodological. Namely, we were looking for
a better understanding of the relationship between the two proof strategies for canonicity. Indeed,
we are able to recognize that some ingredients of the two approaches are two faces of the same coin.
In this part, we collect our findings in this respect.

7.3.1 General Strategy

We now summarize the two proof strategies restricted to Sahlqvist inequalities (in fact, the situation
complicates a bit when dealing with formulas or inequalities outside this class, but we will come
back to those later on).

• As discussed below Lemma 3.8, in the Jónsson-style canonicity of Sahlqvist inequalities, the
n-trick is used to transform Sahlqvist inequalities of the form α ≤ β into inequalities of the
form α1 ≤ β1 ∨ γ; in this new shape, there is a clear separation between the n-part γ and the
Sahlqvist part α1, β1; it is then shown that the Sahlqvist part α1 (resp. β1) is σ-expanding
(resp. π-contracting), and the n-part γ, which is uniform, is σ-contracting.

• In the ALBA-style canonicity-via-correspondence, all the essentially algebraic and order-
topological manipulation steps aim at achieving pure quasi-inequalities. Immediately before
the last application of the Ackermann rule, the inequalities in a system can be classified into
two types: the first type, which we call minimal valuation part, contains inequalities which
are used to compute the minimal valuation; the second type, which we will call receiving part,
contains the inequalities where the minimal valuation is going to be substituted into.

The most notable difference between the two approaches is that the Jónsson-style transformations
preserve the integrity of the initial inequality and proceed from the bottom of the generation tree
by taking out subformulas and moving them to the γ-part, whereas the ALBA-style approach sys-
tematically decomposes the initial inequality into systems of inequalities and proceeds from the top
of the generation tree. However, the two approaches are similar in that they both aim at achieving
a state in which the ingredients are neatly separated into two types: in the Jónsson-style approach,
the two types are the Sahlqvist part and the n-part, and in the ALBA-style approach, they are the
minimal valuation part and the receiving part.

The core of the ALBA-aided Jónsson-style canonicity is the recognition that, modulo some manipu-
lations, the minimal valuation part is σ-expanding and the receiving part is σ-contracting2. Namely,
the minimal valuation part and the receiving part, generated by ALBA, respectively enjoy the same
properties enjoyed by the Sahlqvist part and the n-part respectively, and which are crucial in the
Jónsson-style canonicity. In the following subsections, we will expand on this. Finally, the ad hoc
aspect of the proof, namely the fact that ALBA runs up to the step immediately before the last
application of the Ackermann rule, is in fact motivated by the need to highlight this recognition in
a simple way; however, this is not in general the only step in which this recognition is possible.

2Of course, in order to be able to formally express these facts, we had to introduce the extra connectives n and l.
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7.3.2 The Sahlqvist Part and the Minimal Valuation Part

In this subsection, we expand on the roles of the Sahlqvist part in the Jónsson-style canonicity, and
of the minimal valuation part in the ALBA-style canonicity. We first consider the case of Sahlqvist
inequalities, then briefly discuss the situation in the case of inductive inequalities. Without loss of
generality, we consider left Sahlqvist and left inductive terms.

The Sahlqvist Case

Let us sum up the observations so far, relative to the treatment of Sahlqvist inequalities in the two
approaches:

• In the Jónsson-style canonicity, the compositional structure of uniform left Sahlqvist terms
crucially guarantees that they are σ-expanding. Indeed, uniform left Sahlqvist terms consist
of operators, which are Scott continuous (∀J∃J), as the outer skeleton, and meet-preserving
maps, which are SUC (∀K∃K), as the inner structure. This guarantees that the resulting
composition is UC (∀J∃K), which guarantees their being σ-expanding.

• In the ALBA-style canonicity-via-correspondence, the uniform left Sahlqvist terms are decom-
posed to “get out” the critical occurrences of proposition variables, which are the ones to be
minimally valued. After the first approximation, we get inequalities e.g. of the form i ≤ α,
where α is of certain restricted left Sahlqvist form. The algorithm proceeds deconstruct-
ing this inequality, and this deconstruction is made possible by the structure of α (without
loss of generality we only consider critical occurrences of proposition variables of order type 1).

Indeed, we recall that the structure of α consists of connectives in the outer skeleton which
are interpreted in Aδ as maps which are completely join-preserving in each coordinate, and
of connectives in the inner structure which are interpreted in Aδ as maps which are right
adjoints. Hence, the inequality i ≤ α is decomposed in two stages:

1. The first stage transforms the inequality i ≤ f(β1, . . . , βn) into inequalities i ≤ f(i1, . . . , in),
i1 ≤ β1, . . ., in ≤ βn, which keep nominals (interpreted as completely join-irreducibles)
in the left-hand side of the inequalities. These transformations are sound thanks to the
properties of the outer skeleton, namely that complete operators are completely join-
preserving in each coordinate.

In fact, in the algorithm, the rule above is not applied to ∧ and ∨, since they have even
better properties: the outer ∨ has been eliminated in the first stage due to its being the
left adjoint of ∆, and ∧ is the right adjoint of ∆, which makes it possible to apply the
corresponding splitting rule, which preserves the nominals on the left-hand side.

2. The second stage transforms inequalities β ≤ g(α) where g is completely meet-preserving,
into inequalities g′(β) ≤ α, where g′ a g. These transformations are sound thanks to
the properties of the inner structure, namely that completely meet-preserving maps are
right adjoints.
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Finally, after having performed the transformations in the second stage exhaustively (recall
that we are only considering critical occurrences of proposition variables of order type 1), all
the critical occurrences of p have been dragged out and we are reduced to a set of inequalities
of the form β ≤ p, which gives the minimal valuation part of a set of inequalities in Ackermann
form.

This account is intended to stress the fact that one and the same syntactic structure, namely that
of Sahlqvist terms, is used in two different ways to achieve canonicity. Namely, it is used in a
compositional way in the Jónsson strategy, and in a decompositional way for the ALBA strategy.
The order-theoretic properties relevant to Jónsson-style canonicity, and guaranteed by the Sahlqvist
shape, are: complete join-preservation in each coordinate for the outer skeleton and complete meet-
preservation for the inner part, whereas, the order-theoretic properties relevant to ALBA, and
guaranteed by the Sahlqvist shape, are: complete join-preservation in each coordinate for the outer
skeleton and being a right adjoint for the inner part. The equivalence between completely meet-
preserving maps and right adjoints is another aspect of this two-faces-of-same-coin situation.

The Inductive Case

In [30], it has been observed that the Jónsson-style canonicity proof cannot be straightforwardly
extended to inductive inequalities. In Section 3.2, we have seen that the minimal collapse algo-
rithm, which is based on the plain n-trick, does not work on inductive inequalities, because it
transforms inductive inequalities into inequalities which do not enjoy the required order-theoretic
properties in general. However, from this we can only conclude that this kind of manipulation is
too rough, since the order-theoretic properties guaranteed by the inductive shape are enough for
the order-topological ALBA-style analysis. For instance, by Lemma 5.8, we know that the ALBA
manipulations preserve the syntactic closedness and openness of terms.

Therefore, in order to achieve Jónsson-style canonicity for inductive/ALBA inequalities, we re-
alized the need to supplement the n-trick with additional syntactic manipulations coming from
ALBA. Hence, we have combined the two approaches, and used ALBA to transform the inductive
inequalities into some suitable form where the Jónsson-style strategy for canonicity can be applied.
Analogously to the original proof in [17], this suitable form exhibits a separation between a part
corresponding to the minimal valuation part, which in its turn plays the role of what we called the
“Sahlqvist part” in [17], and a part corresponding to the receiving part, which in its turn plays
the role of what we called the “n-part” in [17]. In particular, it is shown in Lemma 7.20 that the
term corresponding to the minimal valuation part is LPI. In Remark 7.15, we mention that pseudo
inductive terms can be recognized as inductive terms with minimal valuations substituted into. The
fact that pseudo inductive terms have good enough compositional structure to guarantee that they
are σ-expanding or π-contracting makes it possible for the Jónsson-style strategy to go through.

7.3.3 The n-Part and the Receiving Part

The similarity between the n-part and the receiving part is even more straightforward:

• In the Jónsson-style canonicity, the n-part is σ-contracting. However, in [17], the proof goes
through only on the basis of the fact that it is uniform. This is due to the fact that the setting
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of that proof only treats the original signature. When moving to the expanded signature,
the hidden mechanism of σ-contracting and π-expanding terms starts to appear: namely, the
Esakia conditions, or equivalently, the intersection conditions (cf. Section 6.2).

• In the ALBA-style canonicity, at the stage before the last application of the Ackermann rule,
the left-hand side of the receiving part is syntactically closed and uniform in p, its right-hand
side is syntactically open and uniform in p. In Lemma 7.10 and the discussion in Section 6.2,
we highlighted the connections between these properties and σ-contracting or π-expanding
maps. In the ALBA-aided Jónsson-style canonicity, these two aspects, which provide another
two-faces-of-same-coin instance, come together. Namely, the receiving part is shown to be
σ-contracting.

In the next chapter, we will turn to the signature of distributive modal µ-calculus. In this set-
ting, we will explore further the connection between σ-contracting and π-expanding terms and the
intersection property.
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Chapter 8

Jónsson-Style Canonicity in Distributive
Modal µ-Calculus

Recently, Sahlqvist theory for modal µ-calculus has been explored, concerning both correspondence
and canonicity, e.g. in [27, 28, 29, 5, 2]. In [29], Sahlqvist correspondence has been extended to
modal µ-formulas on a classical base, and these results have been extended to the modal µ-calculus
on an intuitionistic base in [5]. In [2], some completeness results for µ-formulas with respect to
clopen semantics in the classical case have been achieved for a fragment of µ-formulas which is
much more restricted than the class of formulas defined in [29]. In particular, fixed points are not
allowed on critical branches.

In [2], the completeness proof has some canonicity flavor: indeed, Theorem 5.3 in [2], viewed alge-
braically, is a canonicity result. The proof is frame-theoretic, and its crucial tools are the Esakia
lemma and the intersection lemma, following the route of [23]. In particular, it is proven that the
positive µ-formulas, which play an analogous role to the n-part, satisfy the closed intersection con-
dition, which, as we have proved, is equivalent to being σ-contracting. Therefore, it is imaginable
that this proof can be done also in Jónsson-style.

In this chapter, we generalize the result in [2] to the distributive setting. Our proof is in Jónsson-
style, and comes as an application of the connection between the two canonicity approaches. Par-
ticularly important for the proof is the connection between being σ-contracting and satisfying the
closed intersection condition.

8.1 Distributive Modal µ-Calculus

In this section we consider the distributive modal µ-calculus (µ-DML), which is an extension of
distributive modal logic with fixed point operators. Given a set Prop of proposition variables and
a set FVar of fixed point variables, the formulas of µ-DML are given by the following inductive
definition:

α ::= p | x | > | ⊥ | α ∧ β | α ∨ β | 3α | 2α | �α | �α | µx.α | νx.α,

where p ∈ Prop, x ∈ FVar and x occurs positively in α, i.e. in the scope of an even number of
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triangles. We denote the language as Lµ, and Lµterm, Lµ≤, Lµquasi are defined similarly to Section
2.1. We interpret the formulas over distributive modal algebras (DMA). In fact, many definitions
concerning the syntax and semantics of distributive modal logic can be carried over to distributive
modal µ-calculus, therefore we only mention the ones which are new or need revision.

Definition 8.1 (Free and Bound Variables). For any formula α ∈ Lµ and fixed point variable
x occurring in α, we say

• an occurrence of x in α is free, if it is not in the scope of µx or νx;

• an occurrence of x in α is bound, if it is in the scope of µx or νx;

• x is a free variable, if there is a free occurrence of x in α;

• x is a bound variable, if all occurences of x in α are bound;

• α is a sentence, if there is no free occurence of any fixed point variables.

We denote Var(α) as the set of all free fixed point variables in α.

Therefore, in any DMA A, α induces a term function αA : Prop(α)∪Var(α)→ A. Let A be a DMA
and h : Prop∪ FVar→ A be an assignment. We use the symbol [α]Ah to denote the interpretation of
α in A under the assignment h, as defined in Chapter 2. The interpretation for µx.α (resp. νx.α)
is defined as the least fixed point (resp. greatest fixed point) of the term function α with respect to
x, namely,

[µx.α]Ah =
∧
{a ∈ A : [α]Ahax ≤ a}

[νx.α]Ah =
∨
{a ∈ A : a ≤ [α]Ahax},

where hax is the assignment which is the same as h except that it maps x to a ∈ A. It is easy to see
that the value of [µx.α]Ah (resp. [νx.α]Ah ) might not exist, since A might not be closed under taking
arbitrary meets (resp. joins), therefore we only consider DMAs A such that all the required meets
and joins exist:

Definition 8.2 (Distributive Modal µ-Algebra). A DMA A is a distributive modal µ-algebra
(µ-DMA), if the interpretations [µx.α]Ah and [νx.α]Ah of µx.α and νx.α, respectively, exist for all
formulas α ∈ Lµterm (where x occurs positively in α) and all assignments h on A.

Definition 8.3 (F-Canonical Extension of µ-DMA). Let A be a µ-DMA, and let F be a
subalgebra of Aδ considering A is a DMA. The F-canonical extension AδF of A is defined as the
canonical extension Aδ of the underlying DMA, while for the interpretation of fixed point formulas,
the least and greatest fixed points on AδF are computed relatively to F . That is,

[µx.α]
AδF
h =

∧
{a ∈ F : [α]

AδF
hax
≤ a}

[νx.α]
AδF
h =

∨
{a ∈ F : a ≤ [α]

AδF
hax
}.

When interpreting µ-terms on canonical extensions, we call clopen semantics the interpretation
of terms on the A-canonical extensions, and we call set-theoretic semantics the interpretation of
terms on the Aδ-canonical extensions. Admissible assignments and admissible validity are defined
similarly to Section 2.6.
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As is discussed in Chapter 7 in [2], the clopen semantics looks unnatural, since, in this semantics, the
interpretation of µ- and ν-formulas is not necessarily given by fixed points as the name suggests.
However, when proving completeness (and also canonicity), this semantics is more manageable,
especially when it comes to the Esakia lemma and the intersection lemma. This will be clear in the
next section.

8.2 Jónsson-Style Canonicity for µ-Sahlqvist Inequalities

In this section we define the notion of µ-Sahlqvist inequalities. This definition generalizes the µ-
Sahlqvist formulas defined in [2]. We prove that µ-Sahlqvist inequalities α ≤ β are A-canonical in
the following sense:

A |= α ≤ β ⇒ AδA |= α ≤ β.

where A is an arbitrary µ-DMA.

Before defining the µ-Sahlqvist inequalities, we first generalize the definition of signed generation
tree, by adding the clause that when a node is labelled by µx or νx, its child node inherits the same
sign. We erase the sign of any bound occurrence of a fixed point variable, and we consider such an
occurence non-critical by default. Hence, every ε-critical branch ends with a proposition variable
or with a free occurrence of a fixed point variable. Extending the choice/universal classification to
fixed point nodes is irrelevant in this setting, since these nodes never occur on critical branches.
Since we are going to use the n-trick in the proof, we will also consider the language Lnµ which is
Lµ expanded by n.

Definition 8.4 (µ-Terms and ν-Terms). Let +s be the positive generation tree of a term
s(p1, . . . , pn) ∈ Lnµterm.

1. s is a µ-term if every µ (resp. ν) node on +s is labelled + (resp. −);

2. s is a ν-term if every ν (resp. µ) node on +s is labelled + (resp. −).

Definition 8.5 (µ-Sahlqvist Inequalities). Given an order type ε and ∗ ∈ {−,+}, the term
∗s(p1, . . . , pn) ∈ Lµterm is (ε, µ)-Sahlqvist if

1. no µ or ν node appears on an ε-critical branch;

2. on every ε-critical branch with pi as a leaf, for 1 ≤ i ≤ n, no choice node has a universal node
as ancestor;

3. every µ node is labelled − and every ν node is labelled +.

An inequality s ≤ t ∈ Lµ≤ is (ε, µ)-Sahlqvist if both +s and −t are (ε, µ)-Sahlqvist. An inequality
s ≤ t is µ-Sahlqvist if it is (ε, µ)-Sahlqvist for some ε.
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According to the definition above, in µ-Sahlqvist inequalities, the skeleton part on the ε-critical
branches is the same as in the case of Sahlqvist inequalities in the basic DML signature. The
difference between the two definitions is that we allow fixed point operators to appear on non
ε-critical branches. Note, however, that the occurrences of fixed point nodes are restricted by
condition 3 in the definition above.

Example 8.6. The inequality 3p ≤ 2µx.(p ∨3x) is (ε, µ)-Sahlqvist for ε = (1).

Theorem 8.7. Every µ-Sahlqvist inequality s ≤ t is A-canonical, i.e., for every µ-DMA A, if
A |= s ≤ t, then AδA |= s ≤ t.

Proof. The proof strategy is an adaptation of the Jónsson-style canonicity of Sahlqvist inequalities
in the basic DML signature. Namely, we use the n-trick to separate the maximal non ε-critical parts
(i.e. both the ε∂-parts and the parts under the scope of fixed points) from the Sahlqvist “skeleton”.
Note that µ and ν nodes can occur neither on ε-critical branches nor on ε∂-critical branches, where
all the leaf nodes are bound occurences of fixed point variables. The essential facts we use are that
n(α1, β1) is σ-expanding (Lemma 3.18), and the n-part is σ-contracting.

The proof strategy goes as follows:

A |= α ≤ β

⇐⇒ A |= α1 ≤ β1 ∨ γ (n-trick in µ-DML, see Lemma 8.8)

⇐⇒ αA1 ≤ (β1 ∨ γ)A (trivial)

⇐⇒ (n(α1, β1))A ≤ γA (Lemma 3.16)

⇐⇒
(
(n(α1, β1))A

)σ ≤ (γA)σ (Def. of σ-extension)

=⇒
(
(n(α1, β1))A

)σ ≤ γA
δ
A (Lemma 8.8 and Lemma 8.11)

=⇒ (n(α1, β1))A
δ
A ≤ γA

δ
A (Lemma 3.18)

⇐⇒ α
AδA
1 ≤ β

AδA
1 ∨ γA

δ
A (see Lemma 3.16)

⇐⇒ AδA |= α1 ≤ β1 ∨ γ (trivial)

⇐⇒ AδA |= α ≤ β (n-trick in µ-DML, see Lemma 8.8).

Most of the steps are the same as in the case of distributive modal logic, for instance, the n-trick
and the second n-trick can be applied as in the basic DML case. A bit of extra complication arises
to show that the uniform µ-terms in the γ-parts are σ-contracting. The rest of this chapter focuses
mainly on this issue.

Lemma 8.8 (µ-Analogue of Lemma 5.14 in [17]). Every (ε, µ)-Sahlqvist inequality α ≤ β is equiv-
alent to an inequality α1 ≤ β1 ∨ γ where +α1 is ε-uniform left Sahlqvist in the basic DML sense,
−β1 is ε-uniform right Sahlqvist in the basic DML sense, and +γ is an ε-uniform µ-term.
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Proof. Since every fixed point node only occurs in the non ε-critical part, the n-trick can be applied
so as to separate all the maximal non ε-critical parts, therefore the statement follows straightfor-
wardly from the results in Subsection 3.1.1. By the definition of (ε, µ)-Sahlqvist inequalities, it is
easy to check that +α1 is ε-uniform left Sahlqvist in the basic DML sense, −β1 is ε-uniform right
Sahlqvist in the basic DML sense, and +γ is an ε-uniform µ-term.

Lemma 8.9. Let ϕ(~p, ~q) be a µ-term and ψ(~p, ~q) be a ν-term where ~p occur positively and ~q occur
negatively, and let ~c ∈ K(AδA), ~o ∈ O(AδA). Then

1. ϕA
δ
A(~c, ~o) ∈ K(AδA).

2. ψA
δ
A(~o,~c) ∈ O(AδA).

Proof. We prove 1. and 2. by simultaneous induction on ϕ and ψ. The base case and connective
cases are easily obtained by Lemma 4.6 and 4.9. For the case where ϕ(~p, ~q) = µx.θ(~p, ~q, x), since
ϕA

δ
A(~c, ~o) = (µx.θ)A

δ
A(~c, ~o, x) =

∧
{a ∈ A : θA

δ
A(~c, ~o, a) ≤ a}, we have that ϕA

δ
A(~c, ~o) ∈ K(AδA). The

case of ψ(~p, ~q) is similar.

Lemma 8.10 (Intersection Lemma). Let ϕ(~p, ~q, r) be a µ-term and ψ(~p, ~q, r) be a ν-term where ~p
occur positively and ~q occur negatively, and let ~c ∈ K(AδA), ~o ∈ O(AδA), {ci : i ∈ I} ⊆ K(AδA) be
downward-directed, {oi : i ∈ I} ⊆ O(AδA) be upward-directed. Then

1. if ϕ(~p, ~q, r) is positive in r, then ϕA
δ
A(~c, ~o,

∧
{ci : i ∈ I}) =

∧
{ϕAδA(~c, ~o, ci) : i ∈ I};

2. if ψ(~p, ~q, r) is negative in r, then ψA
δ
A(~o,~c,

∧
{ci : i ∈ I}) =

∨
{ψAδA(~o,~c, ci) : i ∈ I};

3. if ϕ(~p, ~q, r) is negative in r, then ϕA
δ
A(~c, ~o,

∨
{oi : i ∈ I}) =

∧
{ϕAδA(~c, ~o, oi) : i ∈ I};

4. if ψ(~p, ~q, r) is positive in r, then ψA
δ
A(~o,~c,

∨
{oi : i ∈ I}) =

∨
{ψAδA(~o,~c, oi) : i ∈ I}.

Proof. We prove 1.-4. by simultaneous induction on ϕ and ψ. The base case and connective cases
are similar to the proof of Lemma 4.12. We only consider the case where ϕ(~p, ~q, r) = µx.θ(~p, ~q, r, x)
is positive in r, the remaining cases being order-variants.
Spelling out the relevant definitions, we obtain:

ϕA
δ
A(~c, ~o,

∧
{ci : i ∈ I})

= (µx.θ)A
δ
A(~c, ~o,

∧
{ci : i ∈ I}, x)

=
∧
{a ∈ A : θA

δ
A(~c, ~o,

∧
{ci : i ∈ I}, a) ≤ a} (by Definition 8.3)

∧
{ϕAδA(~c, ~o, ci) : i ∈ I}

=
∧
{(µx.θ)AδA(~c, ~o, ci, x) : i ∈ I}

=
∧
{
∧
{a ∈ A : θA

δ
A(~c, ~o, ci, a) ≤ a} : i ∈ I} (by Definition 8.3)

=
∧
{a ∈ A : (∃i ∈ I)θA

δ
A(~c, ~o, ci, a) ≤ a}.

73



Hence we need to prove the equality between the last members of the two chains of equalities above.

The inequality
∧
{a ∈ A : θA

δ
A(~c, ~o,

∧
{ci : i ∈ I}, a) ≤ a} ≤

∧
{a ∈ A : (∃i ∈ I)θA

δ
A(~c, ~o, ci, a) ≤ a}

immediately follows from the hypothesis that ϕ, and hence θ, is positive in r.

Conversely, let us show that if a ∈ A, and θA
δ
A(~c, ~o,

∧
{ci : i ∈ I}, a) ≤ a, then θA

δ
A(~c, ~o, ci, a) ≤ a for

some i ∈ I. By induction hypothesis,∧
{θAδA(~c, ~o, ci, a) : i ∈ I} = θA

δ
A(~c, ~o,

∧
{ci : i ∈ I}, a) ≤ a.

Since ϕ is a µ-term and is positive in r, so is θ. By Lemma 8.9, this implies that θA
δ
A(~c, ~o, ci, a) ∈

K(AδA). Hence, by compactness,
∧
{θAδA(~c, ~o, ci, a) : i ∈ I ′} ≤ a for some finite I ′ ⊆ I, and by the

downward-directedness of {ci : i ∈ I}, there exists some i0 ∈ I such that

θA
δ
A(~c, ~o, ci0 , a) ≤

∧
{θAδA(~c, ~o, ci, a) : i ∈ I ′} ≤ a.

The proof above shows that the clopen semantics plays an important role in applying compactness.

Lemma 8.11. Every uniform µ-term s(~p, ~q) is σ-contracting, and every uniform ν-term t(~p, ~q) is
π-expanding, where ~p occur positively and ~q occur negatively.

Proof. Straightforwardly follows from Theorem 6.8, Lemma 6.10 and Lemma 8.10.

74



Chapter 9

Conclusion and Future Work

9.1 Conclusion

Summing up, the main results of this thesis are:

• a treatment of terms in the expanded signature L++ within a generalized definition of canonical
extensions of maps (Chapter 6 and 7), and conditions on their compositional structure which
guarantee them to be contracting or expanding.

• a new proof of canonicity of ALBA inequalities in the language of distributive modal logic
(Chapter 7). This proof is Jónsson-style, and ALBA-aided.

• a Jónsson-style canonicity proof for the Sahlqvist fragment of distributive modal µ-calculus
(Chapter 8), generalizing the Sahlqvist formulas of modal µ-calculus in the classical setting
defined in [2].

9.2 Future Work

9.2.1 Extending Algebraic Canonicity to µ-Inductive Fragment

In Chapter 8, we generalize the result in [2] to the distributive setting. However, compared to the
correspondence results proved in e.g. [29] and [5], the fragment identified by [2] is very restricted,
especially in the sense that fixed point nodes are not allowed on critical branches; in addition, the
more interesting set-theoretic semantics is unexplored regarding completeness and canonicity results.

In the future, along this line of research, the following directions are of interest:

• to generalize the µ-Sahlqvist inequalities to µ-inductive inequalities, using the inductive skele-
ton instead of the Sahlqvist skeleton, while still restricting fixed point nodes on non ε-critical
branches.

• to allow fixed point nodes to appear on critical branches. This requires additional properties
on the terms in the scope of those fixed points.
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• to consider the set-theoretic semantics. The main difficulties here are due to the lack of good
topological properties of µ and ν formulas.

9.2.2 Algebraic Canonicity Using Additive Terms

Although the Jónsson-style canonicity and the order-topological ALBA-style canonicity have many
similarities on Sahlqvist and inductive inequalities as discussed in Section 7.3, the power of the com-
bination of the two methods is still unexplored, and is certainly not limited to the previous chapters.

As is shown in [21] and discussed in [30], the Jónsson-style canonicity has the advantage that
canonicity is independent from correspondence. This is particularly important for formulas (e.g.
Fine formula in [14]) which do not have a first-order correspondent. In this section, we briefly discuss
one example given in [21], which can serve as a case study, towards of improving both Jónsson-style
canonicity (by proving that larger classes of terms enjoy sufficient conditions for being contracting
or expanding), and the order-topological ALBA-style canonicity (by proving that compositions
of certain connectives have adjoints). In the following we will only briefly discuss this issue, its
systematic study being a future direction.

Example in Jónsson’s Paper

Example 9.1 (cf. Theorem 6.1 in [21], with revision). For a uniform σ-stable term t(p) in Lterm
with order type (1), t(p ∨ q) ≤ t(p) ∨ t(q) is canonical.

Proof. We sketch the idea behind the proof, as is discussed in [21]. The aim is to prove that for
any DMA A,

A |= t(p ∨ q) ≤ t(p) ∨ t(q) ⇒ Aδ |= t(p ∨ q) ≤ t(p) ∨ t(q).

Consider tA. Since t(p) is uniform and positive in p, from A |= t(p ∨ q) ≤ t(p) ∨ t(q) we have that
tA(a∨ b) = tA(a)∨ tA(b), therefore tA is an operator. By Lemma 6.13, (tA)σ is a complete operator.
Since by assumption, t(p) is a uniform σ-stable term, this implies (tA)σ = tA

δ
. Hence, tA

δ
is also a

complete operator, and so Aδ |= t(p ∨ q) ≤ t(p) ∨ t(q).

The example above shows that the power of Jónsson-style canonicity method is not confined to
what we discussed in the previous chapters. In fact, this example can inspire further enhancements
of both the Jónsson-style canonicity proofs and the ALBA-style canonicity proofs when considering
the canonicity of the set {t(p∨ q) ≤ t(p)∨ t(q), ϕ ≤ ψ}, as we will briefly mention in the following.

Enhancement of Jónsson-Style Canonicity Proofs

In the Jónsson-style canonicity, the compositional structure of the uniform Sahlqvist terms is key,
and, as we know, it consists of the outer skeleton, made with operators, and the inner structure,
made of meet-preserving operations. Therefore, when we restrict ourselves to the class of all DMAs
validating t(p∨q) ≤ t(p)∨t(q) where t is σ-stable, more terms will have the order-theoretic properties
guaranteed by the Sahlqvist structure when interpreted on such algebras. For instance, we can take
t(p) as a whole to act as a generalized diamond with respect to that class; therefore, in the definition
of Sahlqvist terms, the outer skeleton part can contain terms like t. Possible future work includes
generalizing this idea to generalized boxes, triangles and n-ary operators, as well as incorporating
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the results in [31] stating that equations like t(p ∨ q) ↔ t(p) ∨ t(q) are canonical for all positive
terms t(p).

Enhancement of ALBA-Style Canonicity Proofs

In the proof of Example 9.1, one essential property is that the σ-extension of an operator is a
complete operator. Since being completely join-preserving and being a left adjoint are two faces
of the same coin, we can make use of this fact in the design of strengthenings of ALBA. In the
presence of an inequality such as t(p ∨ q) ≤ t(p) ∨ t(q) where t(p) is a σ-stable term, to show the
canonicity of {t(p∨ q) ≤ t(p)∨ t(q), ϕ ≤ ψ}, we can add the following rules on manipulating ϕ ≤ ψ:

i ≤ t(α)

j ≤ α i ≤ t(j)

t(α) ≤ m

α ≤ � tm

Here tA
δ

is completely join-preserving and � Aδ
t is the right adjoint of tA

δ
. The resulting “Jónsson-

aided version” of ALBA can be used in its turn to prove more canonicity results.

Pseudo Correspondence

As we mentioned above, in [31], canonicity results are given, generalizing Jónsson’s example to
equations such as t(p ∨ q) ↔ t(p) ∨ t(q) for any positive terms t(p). It is also proved that these
equations have pseudo first-order correspondence. Therefore, a natural question is whether these
and other pseudo correspondence results can be obtained from the Jónsson-aided ALBA enhance-
ment.
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