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Abstract

We introduce a new topological semantics for belief logics in which the belief
modality is interpreted as the closure of the interior operator. We show
that our semantics validates the axioms of Stalnaker’s combined system of
knowledge and belief, in fact, that it constitutes the most general extensional
(and compositional) semantics validating these axioms. We further prove
that in this semantics the logic KD45 is sound and complete with respect
to the class of extremally disconnected spaces. We have a critical look at the
topological interpretation of belief in terms of the derived set operator [45]
and compare it with our proposal. We also provide two topological semantics
for conditional beliefs of which especially the latter is quite successful in
capturing the rationality postulates of AGM theory. We further investigate a
topological analogue of dynamic belief change, namely, update. In addition,
we provide a completeness result of the system wKD45, a weakened version
of KD45.
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Chapter 1

Introduction

1.1 Logics for Knowledge and Belief

Ever since Hintikka [28] interpreted knowledge and belief in terms of standard Kripke
semantics, the properties of knowledge and belief have come to be formulated as axioms
in the language of basic modal logic. Hintikka evaluated knowledge and belief as modal
operators K and B by providing possible world semantics similar to the one for the
modal operator of necessity and assigning them the following readings:

Kϕ reads the agent knows ϕ

Bϕ reads the agent believes ϕ.1

More precisely, knowledge/belief is interpreted as truth in all possible worlds that are
epistemically/doxastically accessible to the agent where epistemic/doxastic accessibility
is defined by means of a binary relation that is a primitive component of a Kripke model.
Although modeling knowledge and belief in the possible worlds framework boils down to
imposing constraints on the accessibility relation of a Kripke frame2, this simplification
has a downside: since tautologies are true in all possible worlds, the agents know/believe
all tautologies. Moreover, the K-axiom (also known as Normality)

K(ϕ→ ψ)→ (Kϕ→ Kψ)3

is valid in all Kripke frames independent of the properties of the accessibility relation.
This axiom states that the agent knows all the consequences of her knowledge [44, 51].

1In this thesis, we only consider the single agent case. In a multi agent case, knowledge and belief
modalities of each agent are generally denoted together with a subscript specifying the corresponding
agent. For example, the knowledge modality for agent a is denoted by Ka and reads agent a knows ϕ.

2Many well-known axioms of basic modal logic, including the ones concerning knowledge and belief
that we will see below, correspond to a property of the accessibility relation of a Kripke frame. In
this sense, by specifying the modal axioms which characterize the properties of knowledge/belief in
a syntactic way, we can easily construct the Kripke model in which the respective axioms are valid.
We will introduce some frame properties together with the corresponding modal axioms in the next
chapter.

3We state the same axiom for belief by replacing K with B.

1



Chapter 1. Introduction 2

Our agents are therefore logically omniscient, highly idealized reasoners. In this thesis,
we refrain from the issue of logical omniscience and work within this idealized frame-
work4.

1.1.1 Properties of Knowledge and Belief

There has been a great debate among philosophers about which axioms of basic modal
logic characterize the notions of knowledge and belief and how they are related to each
other (see, e.g., [35] for a review). We now give a brief summary of these issues.

One of the more uncontroversial properties of knowledge is its being factive, which
is captured by the T-axiom

Kϕ→ ϕ

also known as Truthfulness of Knowledge [5] or Veridicality [27, 51] in the epistemic
logic literature5. This property is considered to be the essential one that distinguishes
knowledge from belief. Another commonly accepted, yet more controversial axiom, is
the so-called axiom of Positive Introspection for Knowledge6

Kϕ→ KKϕ

stating that the agent knows what he knows. Above principles together with the K-
axiom and the inference rules Necessitation and Modus Ponens constitute the modal
system S4. Some authors, such as e.g., Hintikka, consider this system to capture the
right notion of knowledge. Lastly, we elaborate on the axiom

¬Kϕ→ K¬Kϕ

of Negative Introspection for Knowledge7 saying that the agent knows what she does
not know. From a philosophical point of view, this axiom is arguably the most contro-
versial in the characterization of knowledge. It could be considered odd that negative
introspection is more debatable than positive introspection, as one could think that if
an agent knows what she knows, she should also know what she does not know; the in-
trospection must work both ways. However, if not the axiom of Negative Introspection
alone, its consequences when added to the other epistemic axioms contradict certain
intuitively accepted principles, e.g., it makes it impossible for a rational agent to believe
that she knows something which is in fact false8 [44].

4We refer the reader to [22,43] for a more detailed survey of the problem of logical omniscience and
to [23,26,29] for some proposed solutions.

5Throughout this thesis, we refer to this axiom as Truthfulness of Knowledge in the context of a
logic of knowledge.

6In formal epistemology, it is also named the KK-principle (see, e.g. [28]). In the modal logic
literature, it is known as axiom 4.

7This axiom is also known as axiom 5 and yields the modal system S5 when added to S4.
8Negative Introspection together with Truthfulness of Knowledge entails (¬ϕ → K¬Kϕ) in the

system S5, i.e. (¬ϕ→ K¬Kϕ) is a theorem of S5. Suppose that ϕ is not true, but the agent believes
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On the other hand, public announcement logics have been studied assuming the S5
properties of knowledge (see, e.g. [50, 58, 60]). Moreover, S5-type knowledge is widely
accepted in the applications of epistemic logic to areas such as computer science and
artificial intelligence.

Other than the above mentioned extremes of logics of knowledge, S4 and S5, we
present in Chapter 2 intermediate systems such as S4.2 and S4.3 which are also con-
sidered to be knowledge systems of different strengths. In fact, our main focus in this
thesis will be the system S4.2 as a logic of knowledge.

The axioms listed above, except for the T-axiom, can also be stated for belief by
simply replacing K with B and assigned a doxastic interpretation in a similar way as
was done in the epistemic case. More precisely, we obtain the (doxastic) axioms

B(ϕ→ ψ)→ (Bϕ→ Bψ)

of Normality
Bϕ→ BBϕ

of Positive Introspection for Belief and

¬Bϕ→ B¬Bϕ

of Negative Introspection for Belief 9 by replacing K with B in the respective epistemic
axioms. The T-axiom, however, does not apply to belief. Intuitively, it makes perfect
sense to assume that an agent might believe things that are not true. For example, it is
very likely that a master student, who is working really hard on her thesis and very close
to the deadline, loses track of the days and believes it to be Wednesday today when in
fact it is Thursday10. The T-axiom thus needs to be abandoned when characterizing
belief in order to avoid truthfulness of belief. However, instead of the T-axiom, we add
the D-axiom

Bϕ→ ¬B¬ϕ
saying that the agent cannot believe both ϕ and ¬ϕ at the same time. Therefore, we
obtain the system KD45 which is usually assumed to be the standard logic of belief
(see, e.g., [40, 44, 58]). In this thesis, we choose to work with the system KD45 as our
main reference point of a logic of belief.

Besides the modal systems in which only knowledge or only belief modalities occur,
it is also very interesting to study frameworks in which both, knowledge and belief
modalities, as primitive operators, occur since these systems allow us to investigate the
interaction between the two (see, e.g., [35, 44,56,59]).

that she knows ϕ, i.e. ¬ϕ ∧BKϕ is true. If the agent has consistent beliefs, she does not believe that
she does not know ϕ (¬B¬Kϕ is the case), and therefore she does not know that she knows ϕ, i.e.
¬K¬Kϕ is the case, contradicting ¬ϕ→ K¬Kϕ [28, 44].

9From a philosophical point of view, as belief is a more subjective notion than knowledge, the Neg-
ative Introspection principle is less debatable for belief than it is for knowledge: “If we take knowledge
to be a relation between an agent and an external reality, then it is as problematic to account for an
agent’s knowledge of their own knowledge as it is to account for any other type of knowledge. But
to the extent that belief is an “internal” relation, it seems easier to say that fully-aware agents should
have access to their own beliefs” [6, p. 490].

10This example is a slightly modified version of the example given in [58, p. 38].
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1.1.2 Relation between Knowledge and Belief

Epistemologists assumed for a long time that the correct analysis of knowledge is the
one concluded from Plato’s dialogue Theaetetus, i.e. that ‘knowledge is true, justified
belief’. This analysis is often abbreviated as “JTB” for ‘justified true belief’ [30]. Ac-
cording to JTB, an agent knows ϕ iff ϕ is true, she believes that it is true and she is
justified in believing that ϕ11. However, in his paper [25], Edmund Gettier presented
two counterexamples to the JTB analysis of knowledge showing that having a justified
true belief is not sufficient for having knowledge. A Gettier-type example could run as
follows: Suppose that you see the driving license of your classmate Pablo and that it
is a Spanish driving license, when Pablo is in fact, unbeknownst to you, Mexican. You
have also heard him speaking perfect Spanish. You therefore have strong evidence for
the proposition

(a) Pablo is Spanish.

and, on the basis of (a), you believe

(b) One of your classmates is Spanish.

You are thereby justified in believing (b). Also unbeknownst to you, your classmate
David is Spanish. Therefore, your justified belief in (b) is true, but it does not constitute
knowledge, since (b), from which you inferred (a), is in fact false. Your belief in (b) is
true by mere coincidence. Gettier’s arguments against JTB invited an interesting dis-
cussion among formal epistemologists and philosophers concerned with understanding
the correct relation between knowledge and belief, and, in particular, with identifying
the exact properties and conditions that distinguishes a piece of belief from a piece of
knowledge and vice versa.

This question can be approached from two angles; on the one hand, one can assume
that the JTB approach is on the right track and start with the weakest notion of true
justified belief, then enhance it by adding new conditions X that render the enhanced
analysis JTB+X immune to Gettier counterexamples. On the other hand, one can take
a preferred notion of knowledge as primitive and weaken it to obtain a “good” (e.g.
consistent, strong, introspective, possibly false) notion of belief. Most of the proposals
found in the literature responding to this issue fall under the first approach. An example
of this is the defeasibility analysis of knowledge proposed by Lehrer and Paxson [34] and
later by Klein [32]. They analyzed the Gettier counterexamples and found a common
underlying feature: In each case the justification for the agent’s belief is defeasible by a
piece of new true information. They therefore proposed to define knowledge as true be-
lief with undefeated justification [34] in order to prevent it from being ‘gettiered’. More
precisely, according to this approach, knowledge must be resistant to new true infor-
mation. Other responses to the Gettier challenge include, among others, the sensitivity
account [39], the contextualist account [17] and the safety account [42]12.

11For a discussion on what justification consists in, we refer the reader to [48].
12For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader

to [30,41].
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Moreover, the standard topological semantics for knowledge (based on the interior
operator) can be considered to belong to the first category in which knowledge is defined
as “correctly justified belief”: according to the interior semantics, a proposition P is
known iff there exists “true evidence” (i.e. an open set U which includes the real world)
that entails P (i.e. U ⊆ P ).

The second approach, on the other hand, has received much less attention from
formal epistemologists than the first one. In fact, the only formal account following it
that we are aware of (prior to our own work) is the one given by Stalnaker [44], using
a relational semantics for knowledge based on reflexive, transitive and directed Kripke
models. In his work, Stalnaker analyzes the relation between knowledge and belief and
builds a combined modal system for these notions with the axioms extracted from his
analysis. He intends to capture a strong notion of belief based on the conception of
“subjective certainty”

Bϕ→ BKϕ

meaning that believing implies believing that one knows [44, p. 179]. Stalnaker refers to
this concept as “strong belief”, but we prefer to call it full belief as in [3]13. In fact, the
above axiom holds biconditionally in his system and belief therefore becomes subjectively
indistinguishable from knowledge: an agent (fully) believes ϕ iff she (fully) believes that
she knows ϕ [3]. Moreover, Stalnaker argues that the ‘true’ logic of knowledge is S4.2
and that (full) belief can be defined as epistemic possibility of knowledge. More precisely,

Bϕ = ¬K¬Kϕ

meaning that an agent believes ϕ iff she does’t know that she does’t know ϕ.

1.2 Topology and Modal Logic

The first significant work on topological semantics for modal logic was conducted by
McKinsey and Tarski [36]. They interpreted the modal operator �, which in this
thesis is denoted by K in the context of an epistemic logic, as the interior operator
on topological spaces and showed that S4 is complete wrt the class of all topological
spaces. They further improved this result and showed that S4 is also the complete logic
of any dense-in-itself separable metric space14.

In general, the work of relating topology and modal logic can be approached from
two directions: on the one hand, the primarily interest can lie in spatial structures, in
particular, topological spaces and building modal logics as tools to reason about them.
In this case, the respective modal logic can be seen as a formal machinery for topological

13This terminology was first used in [3] and it was acknowledged that the authors of [3] wanted
to avoid clash with the very different notion of strong belief (due to Battigalli and Siniscalchi [9])
that is standard in epistemic game theory and emphasize the similarity between the intuitions behind
Stalnaker’s notion and ones behind Van Fraassen’s probabilistic concept of full belief [24].

14In recent years, there has been increase in the work that provides topological completeness proofs
of S4 for some special class of spaces such as for the Cantor space [1,37], the rational line [53] and the
real line [1, 12]. For a general overview of these results, we refer the reader to [52].
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reasoning (see, e.g., [1,11,12,37]). For instance, given that the modality � is interpreted
as the interior operator and S4 is the complete logic of all topological spaces, the axiom

�ϕ→ ϕ

of the system S4 admits a topological interpretation saying that every subset of a
topological space includes its interior. In this approach, the success of the respective
modal logic is judged by how much it helps in reasoning about topological spaces, how
it facilitates topological reasoning [52] .

On the other hand, topological spaces can be seen as natural mathematical struc-
tures which provide new semantics for some already well-established and interesting
modal systems, such as epistemic and doxastic logics (see, e.g. [38, 40, 46, 55]) 15). Our
work in this thesis is in line with the latter approach. In this section, we provide an
overview of the features of topological semantics concerning interpretations of knowl-
edge and belief.

Topological Semantics vs. Kripke Semantics for Knowledge. It is well-known
that every reflexive and transitive Kripke frame16 corresponds to an Alexandroff space17

(see, e.g., [1, 13, 52]). This close connection remains at the level of models as well: the
evaluation of a modal formula in a reflexive and transitive Kripke frame coincides with
its evaluation in the corresponding Alexandroff space wrt the interior-based semantics.
Thus, as topological semantics includes standard Kripke semantics as a particular case
in the from of Alexandroff spaces, we can say that interior-based topological semantics
generalizes the standard Kripke semantics.

One of the reasons why the interior-based topological semantics provides a nice inter-
pretation for knowledge is that while all topological spaces validate the axioms of S418,
in particular, the axioms

Kϕ→ ϕ

of Truthfulness of Knowledge and

Kϕ→ KKϕ

of Positive Introspection, the philosophically debatable axiom (for reasons mentioned
in the previous sections)

¬Kϕ→ K¬Kϕ
15In their work [38], Moss and Parikh pursue a slightly different direction: while interior-based

topological semantics for modal logic is based on a unimodal language interpreted on topological spaces,
Moss and Parikh consider a bimodal language interpreted on a larger class of spaces, namely, subset
spaces. They interpret the two modalities in their system as knowledge and effort, respectively, and
the subsets of a space as the possible observations. For the interested reader we refer to [38,40].

16Reflexive and transitive Kripke frames are also called S4-frames, since S4 is sound and complete
wrt the class of reflexive and transitive Kripke frames.

17This connection will be further explained in later chapters
18Recall that S4 can be assumed to be the weakest logic for knowledge.
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of Negative Introspection is not valid on all topological spaces. Moreover, just as for
the standard Kripke semantics, we can obtain completeness results for stronger logics of
knowledge such as S4.2 and S5 wrt some interesting classes of topological spaces (see,
e.g. Chapter 3 or [52, p. 253]). Another argument in favor of topological models for
logics of knowledge is of a more ‘semantic’ nature. Dating back to the 1930’s, topological
models have been used for an epistemic interpretation in the context of intuitionistic
logic [49] where open sets are interpreted as ‘pieces of evidence’, e.g. about the location
of a point [13, 55]. We can employ this idea in the context of logics of knowledge and
interpret Kϕ in a topological model as there exists a piece of evidence (i.e an open set
in the corresponding space) which validates ϕ.

Another important topological semantics for modal logic is given via the derived
set operator which was originally suggested by Tarski and McKinsey [36] and mostly
developed by Esakia (see, e.g., [10,11,20,21]). In this semantics, the modality �, which
in this thesis is denoted by B in the context of a doxastic logic, is interpreted as the
co-derived set operator t on topological spaces19. This semantics has been studied from
a mathematical perspective for a long time. Several topological completeness results
have been provided for the logic K4 and for its normal extensions 20.

C. Steinsvold [45, 46] was the first to interpret the co-derived set operator as be-
lief. He provides a topological completeness result for the belief logic KD45 wrt the
class of DSO-spaces.

1.3 In This Thesis

In this thesis, we aim to provide topological semantics for belief logics which can also
account for the relation between knowledge and belief. To this end, we choose to work
with Stalnaker’s combined system for knowledge and belief presented in [44]. We think
that this system provides an accurate analysis of the relation between knowledge and be-
lief both because the first principles he starts with are very natural and uncontroversial
and because it gives a concrete definition of belief in terms of knowledge. Moreover, we
claim that our topological belief semantics provides a nice interpretation for Stalnaker’s
notion of belief as ‘subjective certainty’.

We generalize Stalnaker’s formalization to a topological setting, making it inde-
pendent from the relational framework. We then provide the most general extensional
semantics21 validating the axioms of Stalnaker’s system and prove that it is indeed
topological. We do it so by extending the interior-based semantics for knowledge with
a semantic clause for belief in terms of the closure of interior operator. Furthermore,

19Given the derived set operator d on a topological space (X, τ) and a subset A ⊆ X, the co-derived
set operator t is defined as t(A) := X \ d(X \A).

20For instance, it has been proven in [20] that the logic K4 sound and complete for Td spaces wrt the
co-derived set-based semantics. See, e.g., [52] for an overview of the topological completeness results
for some normal extensions of K4.

21An extensional semantics is a semantics that assigns the same meaning to the sentences having
the same extension. It takes a meaning of a sentence to be given by U.C.L.A propositions, i.e., a set
of possible worlds [3].
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we focus on the unimodal fragments of Stalnaker’s system having knowledge and belief,
respectively, as only modalities and prove that while the complete logic of knowledge in
this setting is S4.2, the complete logic of belief isKD45. We further aim at providing a
topological account for static and dynamic belief revision, in particular, for conditional
beliefs and update modalities. To this end, we supplement Stalnaker’s system with
conditional belief and update modalities and further extend our proposed topological
semantics with semantic clauses for these modalities in a standard way: we obtain the
semantic clause for conditional belief modalities from the semantic clause for the simple
belief modality by relativizing the interior and the closure operators and the semantic
clause for the update modalities by restricting topological spaces to the proposition
representing the new information. We further improve the conditional belief semantics
obtained the aforementioned way by using an advantage of working with extremally
disconnected spaces. Extremally disconnected spaces allow for an alternative semantic
definition of conditional beliefs which is more successful in capturing the rationality
postulates of AGM theory in a modal framework.

As mentioned, it is well-known that the interior-based topological semantics and the
standard Kripke models are strongly connected. In our topological completeness proofs,
we benefit from this connection and use Kripke semantics and relational completeness
results of the respective logics. This thesis is structured as follows:

In Chapter 2, we introduce the standard Kripke semantics for logics of knowledge
and logics of belief and mention some important frame properties. Moreover, we list
relational completeness results relevant to our work.

Chapter 3 aims to provide sufficient topological background for understanding this
thesis and introduces the two aforementioned topological approaches to basic modal
logic: the interior semantics and the co-derived semantics together with topological
completeness results for the logics of knowledge, S4 and S4.2, wrt the interior semantics
and for the logic of belief KD45 wrt the co-derived semantics.

Chapter 4 and Chapter 5 constitute the original part of this thesis. In Chapter 4
we introduce Stalnaker’s combined logic and briefly outline his analysis regarding the
relation between knowledge and belief. We then propose a topological semantics for the
system, carry it to an extensional framework and show that our proposed topological
semantics is the most general extensional semantics validating the axioms of Stalnaker’s
system. Furthermore, we prove that his system in fact forms a complete axiomatization
of extremally disconnected spaces in our setting. We then continue with investigating
the unimodal fragments S4.2 for knowledge and KD45 for belief of Stalnaker’s sys-
tem, and give topological completeness results for these logics, again wrt the class of
extremally disconnected spaces. We also compare our topological belief semantics with
Steinsvold’s co-derived set semantics.

Chapter 5 focuses on topological semantics for belief revision, assuming the distinc-
tion between static and dynamic belief revision made in, e.g., [4, 5, 50, 57]. It includes
two proposals: the basic and the refined topological semantics for conditional beliefs.
The former is obtained from the semantic clause of the (simple) belief modality by rela-
tivization, yet, it does not give a ‘good’ semantics for conditional beliefs in the sense of
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capturing the rationality postulates of AGM theory. However, by using the properties
of extremally disconnected spaces, we improve the first proposal and obtain a ‘better’
(the refined) semantics for conditional beliefs. We further investigate the natural topo-
logical analogue of updates. Our last original result in Chapter 5 is of a more technical
nature. The refined semantics that we introduce for conditional beliefs invites us to
further explore the setting without restricting our models to extremally disconnected
spaces. In the last section of this chapter, we define a more complex semantics for the
belief modality and provide a completeness result for a weaker logic, wKD45, wrt a
larger class of spaces, namely, wrt the class of all topological spaces.

Finally we conclude with Chapter 6 by giving a brief summary of this thesis and
pointing out number of directions for future research.

NOTE: Work on this thesis resulted in the joint paper The Topology of Belief, Belief
Revision and Defeasible Knowledge by A. Baltag, N. Bezhanishvili, A. Özgün and S.
Smets to appear in Proceedings of the Fourth International Workshop Logic, Rationality
and Interaction (LORI 2013). Chapter 4 and parts of Chapter 5, here in particular the
sections on the basic topological semantics for conditional beliefs and dynamic belief
revision, are based on the work presented in this paper. The proofs of the theorems are
missing from the paper and are presented in this thesis.



Chapter 2

A Brief Introduction to Logics of
Knowledge and Belief

2.1 Kripke Semantics for Logics of Knowledge and Belief

In the previous chapter, we briefly mentioned some of the important properties of knowl-
edge and belief and the modal systems used in reasoning about them. In this section,
we introduce the formal setting properly and supply the most standard semantics, i.e.
Kripke semantics, for those logics. Here and throughout the thesis we focus on the
single agent case. The reader familiar with the topic can skip this chapter.

We start with the logics of knowledge by recalling the standard unimodal language
LK . The language LK has a countable set of propositional letters Prop, Boolean op-
erators ¬,∧ and a modal operator K. The language LK is then given by following
grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ

where p ∈ Prop. Abbreviations for the connectives ∨,→ and↔ are standard. Moreover,
the existential modal operator 〈K〉 is defined as ¬K¬ and ⊥ := p ∧ ¬p.

Definition 1 (Kripke Frame/Model). A Kripke frame F = (X,R) is a pair where X is
a non-empty set and R is a binary relation on X. A Kripke modelM = (X,R, ν) is a
tuple where (X,R) is a Kripke frame and ν is a valuation, i.e. a map ν : Prop→ P(X).

Elements of X are called states or possible worlds and R is known as the accessibility
relation.

Definition 2 (Standard Kripke Semantics). LetM = (X,R, ν) be a Kripke model and
x be a state in X. The truth of modal formulas at a world x inM is defined recursively
as:

M, x |= p iff x ∈ ν(p)
M, x |= ¬ϕ iff notM, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ andM, x |= ψ
M, x |= Kϕ iff (∀y ∈ X)(xRy →M, y |= ϕ)

10
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It is useful to note that

M, x |= 〈K〉ϕ iff (∃y ∈ X)(xRy ∧M, y |= ϕ).

We say that ϕ is true inM if it is true in all the states ofM. We say that ϕ is valid
in a Kripke frame F if it is true in every model based on F . Finally, we say that ϕ is
valid in a class of Kripke frames if it is valid in every member of the class.

We let ‖ϕ‖M = {x ∈ X : M, x |= ϕ} and call ‖ϕ‖M the extension of the modal
formula ϕ inM. In other words, we write x ∈ ‖ϕ‖M forM, x |= ϕ1. We skip the index
when it is clear from the context. It is useful to give the equivalent definitions of truth
and validity on Kripke models in terms of extensional notation:

• ϕ is true inM = (X,R, ν) if ‖ϕ‖M = X,

• ϕ is valid in F = (X,R) if ‖ϕ‖M = X for all Kripke modelsM based on F , and

• ϕ is valid in a class of Kripke frames if ϕ is valid in every member of the class.

As mentioned in the introduction, some well-known modal axioms characterize some
properties of the accessibility relation of a Kripke frame. Here, we only introduce the
relational properties that are relevant to our work. They are given in the following
Table2:

Name of the Property Condition on R
Reflexivity ∀x(xRx)
Symmetry (∀x, y)(xRy → yRx)
Transitivity (∀x, y, z)(xRy ∧ yRz → xRz)
Seriality (∀x)(∃y)(xRy)
Euclidean-ness (∀x, y, z)(xRy ∧ xRz → yRz)
Directedness (∀x, y, z)(xRy ∧ xRz)→ (∃w)(yRw ∧ zRw)
Connectedness (∀x, y)(xRy ∨ yRz)

Table 1: Frame Conditions

We discussed some of the modal axioms together with their interpretation regarding
knowledge and belief in the introduction. The following table provides a complete list
of the knowledge axioms that we will use to in the remainder of the thesis together with
their traditional names.

1For the most parts we will use the extensional notation in the proofs, since a similar notation for
topological semantics renders it more intuitive.

2For a more extensive presentation of relational properties, we refer to [14–16].
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Name Axiom
K K(ϕ→ ψ)→ (Kϕ→ Kψ)
T Kϕ→ ϕ
4 Kϕ→ KKϕ
5 〈K〉ϕ→ K〈K〉ϕ
.2 〈K〉Kϕ→ K〈K〉ϕ
.3 K(Kϕ→ Kψ) ∨K(Kψ → Kϕ)

Table 2: Knowledge Axioms

As mentioned before, the axioms T, 4, 5 are known as Truthfulness of Knowledge, Posi-
tive Introspection and Negative Introspection respectively in the context of an epistemic
logic.

A very important property of Kripke semantics is that each of the above axioms
corresponds to a constraint on the accessibility relation of a Kripke frame such as the
ones listed in Table 1. For instance, the T-axiom is valid on a Kripke frame F if and
only if its accessibility relation is reflexive. The logics of knowledge we have considered
and the corresponding frame conditions of Kripke frames wrt which they are sound and
complete are listed in the following table. The logics are listed in increasing order of
strength.

Logic of Knowledge Axioms Frame Condition
S4 K + T + 4 Reflexivity + Transitivity
S4.2 K + T + 4 + .2 Reflexivity + Transitivity +Directedness
S4.3 K + T + 4 + .3 Reflexivity + Transitivity + Connectedness
S5 K + T + 4 + 5 Reflexivity + Transitivity + Symmetric

Inference Rules
Modus Ponens From ϕ and ϕ→ ψ infer ψ
Necessitation From ϕ infer Kϕ

Table 3: Some Soundness and Completeness Results

We read the table in the following manner: S4.3 is sound and complete wrt the class of
reflexive, transitive and connected frames. The reader can find a complete presentation
of the soundness and completeness results mentioned above in, e.g., [14–16].

The standard Kripke semantics for logics of belief can be presented the same way
as for logics of knowledge. For belief logics, we work with the unimodal language LB
obtained by replacing B for K in LK . The Kripke semantics for the language LB is
exactly the same as it is for LK .

As mentioned in the introduction, the standard logic of belief, and the one we assume
in this thesis, is the system KD45, whose axioms and inference rules are given in the
following table:



Chapter 2. A Brief Introduction to Logics of Knowledge and Belief 13

Name Axiom
K B(ϕ→ ψ)→ (Bϕ→ Bψ)
D Bϕ→ 〈B〉ϕ
4 Bϕ→ BBϕ
5 〈B〉ϕ→ B〈B〉ϕ
Inference Rules
Modus Ponens From ϕ and ϕ→ ψ infer ψ
Necessitation From ϕ infer Bϕ

Table 4: The system KD45

In the presence the other axioms, the D-axiom is equivalent to ¬B⊥3 and called Con-
sistency of Belief.

Since the Kripke semantics for the language LB is defined the same way as for
LK , we have a similar correspondence between the axioms of KD45 and properties of
the accessibility relation on Kripke frames. The frame conditions corresponding to the
axiom 4 and 5 are already given in Table 4. In addition to this, the D-axiom is valid
in a Kripke frame F iff its accessibility relation satisfies seriality. Moreover, the belief
system KD45 is sound and complete wrt the class of all serial, transitive and Euclidean
Kripke frames (see, e.g [14]).

2.2 Belief Revision Theory

2.2.1 Static Belief Revision: AGM Theory vs. Conditional Beliefs

AGM Theory

In their seminal work [2], Alchourrón, Gärdenfors and Makinson proposed a syntactic
approach, known as AGM theory, to the theory of belief change. In this system, the
beliefs of an agent are represented as a logically closed, consistent set of sentences (her
belief set) from a given propositional language L0. Belief revision is defined as an
operation ∗ that associates with every belief set T and formula ϕ ∈ L0 a new belief
set T ∗ ϕ representing the agent’s revised beliefs4. The authors of [2] then imposed
certain constraints on this operation, known as AGM Postulates for revision, in order
to capture the belief change of a rational agent. Since they take the belief set of an
agent to be a consistent set of sentences, they already capture the idea that a rational

3(Bϕ→ ¬B¬ϕ)↔ (¬Bϕ ∨ ¬B¬ϕ)↔ ¬(Bϕ ∧B¬ϕ)↔ ¬B(ϕ ∧ ¬ϕ).
4In fact, AGM theory captures three different kinds of belief change: revision, expansion and con-

traction. However, only revision is of interest to us in the context of this thesis.
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agent should have consistent beliefs. They further postulate the following conditions:

(1) Closure : T ∗ ϕ is a belief set
(2) Success : ϕ ∈ T ∗ ϕ
(3) Inclusion : T ∗ ϕ ⊆ T + ϕ
(4) Preservation : If ¬ϕ 6∈ T then T + ϕ ⊆ T ∗ ϕ
(5) Vacuity : T ∗ ϕ is inconsistent iff ` ¬ϕ
(6) Extensionality : If ` ϕ↔ ψ then T ∗ ϕ = T ∗ ψ
(7) Subexpansion : T ∗ (ϕ ∧ ψ) ⊆ (T ∗ ϕ) + ψ
(8) Superexpansion : If ¬ψ 6∈ T ∗ ϕ then (T ∗ ϕ) + ψ ⊆ T ∗ (ϕ ∧ ψ)

where the expansion T + ϕ of a belief set T with a sentence ϕ is defined as T + ϕ =
{ψ : T ∪ {ϕ} ` ψ}.

The syntactic approach of AGM turns out to be too limited to explicitly model
the beliefs and higher-order beliefs of an introspective agent. To be able to capture
the properties of belief introspection, AGM should be able to talk about ‘beliefs about
beliefs’, i.e. higher-order beliefs. However, while ϕ ∈ T for some belief set T and formula
ϕ ∈ L0, we can express neither Bϕ ∈ T nor ¬Bϕ ∈ T (since the belief sets by design
include only sentences from a propositional language L0). Moreover, even if we allow
for higher-order beliefs in belief sets, the AGM postulates are too weak to retain the
consistency of the revised belief set of an introspective agent. This is illustrated by the
Paradox of Serious Possibility: suppose ϕ is a consistent sentence and the agent believes
neither ϕ nor ¬ϕ. By negative introspection, we then have ¬Bϕ ∈ T and ¬B¬ϕ ∈ T ,
where T is the agent’s initial belief set. Hence, by preservation, we have ¬Bϕ ∈ T ∗ ϕ.
Now let the agent learn ϕ. Then, positive introspection and the success postulate yield
Bϕ ∈ T ∗ ϕ, contradicting the consistency of T ∗ ϕ, i.e. the closure postulate5 [58, p.
59].

One way of defending AGM theory is by simply accepting that it can only model the
beliefs about ontic facts and cannot deal with higher-order beliefs. On the other hand,
it can be saved as a coherent theory for belief revision by using the distinction between
static and dynamic belief revision made in [4, 5, 50, 57]. Against this background, we
can interpret ∗ as static belief revision operator: T ∗ ϕ captures the beliefs of an agent
after learning ϕ about what was the case before the learning, i.e. AGM theory is static
in the sense that it captures the agent’s changing beliefs about an unchanging world [5].
This static interpretation of AGM theory is captured by conditional beliefs in a modal
framework, in the style of dynamic epistemic logic.

Conditional Beliefs

In Dynamic Epistemic Logic, static belief revision captures the agent’s revised beliefs
about how the world was before learning new information and is implemented by con-
ditional belief operators Bϕψ. Using van Benthem’s terminology, “[c]onditional beliefs

5Another example concerning the limitations of AGM theory with regard to belief introspection
is the Moore Paradox which results from the conflict between the Success Postulate and positive
introspection (see, e.g., [58, p. 60]).
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pre-encode beliefs that we would have if we learnt certain things.” [50, p. 139]. The
statement Bϕψ says that if the agent would learn ϕ, then she would come to believe
that ψ was the case before the learning [5, p. 12]. That means conditional beliefs
are hypothetical by nature, hinting at possible future belief changes of the agent. The
semantics for conditional beliefs is generally given in terms of plausibility models (or
equivalently, in terms of sphere models) [5, 50,54].

Plausibility Models. A plausibility model M = (X,≤, ν) is simply a Kripke model
where ≤ is a well-founded6, reflexive and transitive accessibility relation. For any non-
empty subset P ⊆ X, the set of minimal elements belonging to P is defined as follows:

min≤P := {y ∈ P : y ≤ x for all x ∈ P}.

In plausibility models, the accessibility relation is called the plausibility relation and
for any x, y ∈ X, x ≤ y is read as “the state x is at least as plausible as y”. min≤P
therefore is the set of the most plausible worlds in P .

We can now introduce semantics for knowledge, belief and conditional beliefs on
plausibility models. Let L be the modal language obtained by adding to LK the modal-
ities B and Bϕ for belief and conditional beliefs. The clauses for the propositional
variables and Boolean connectives are defined the same way as in standard Kripke
semantics. For the knowledge K and the belief B modalities we put

x ∈ ‖Kϕ‖M iff ‖ϕ‖M = X
x ∈ ‖Bϕ‖M iff min≤X ⊆ ‖ϕ‖M.

The interpretation of knowledge and belief on plausibility models is thus different from
the one on standard Kripke models: while knowledge is interpreted as “truth in all
possible worlds”, belief is interpreted as “truth in the most plausible worlds”. Moreover,
the semantic clause for conditional beliefs Bϕψ is obtained from the semantic clause
of the belief modality in a natural way by relativizing the minimal states (the most
plausible worlds) of the model to the set of worlds in which the new information ϕ is
true (i.e. to the ‖ϕ‖M-worlds):

x ∈ ‖Bϕψ‖M iff min≤‖ϕ‖M ⊆ ‖ψ‖M

where min≤‖ϕ‖M = min≤X ∩‖ϕ‖M. We again emphasize that the semantics for none
of the modalities K, B and Bϕ on plausibility models is given by the standard Kripke
semantics introduced in the previous section.

Given a plausibility model M = (X,≤, ν) and a state x ∈ X, we can define the
current belief set T of an agent at state x as

T = {ψ ∈ L : x ∈ ‖Bψ‖M}

and the revised belief set T ∗ ϕ as

T ∗ ϕ = {ψ ∈ L : x ∈ ‖Bϕψ‖M}.
6A binary relation R is well-founded iff every non-empty subset of X has a minimal element wrt R.



Chapter 2. A Brief Introduction to Logics of Knowledge and Belief 16

Hence, saying that ψ belongs to the agent’s revised theory T ∗ ϕ at state x boils down
to saying that the agent believes ψ conditional on ϕ at state x [5]. This way, i.e by
interpreting AGM revision as static conditioning, we can in fact embed AGM theory
into the following complete modal system CDL.

The logic of conditional beliefs (CDL) [4, 5]7. The syntax of CDL is given by

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕϕ

and the semantics is given on plausibility models as above. In this system, knowledge
and belief are defined as Kϕ := B¬ϕϕ and Bϕ := B>ϕ, where > := ¬(p ∧ ¬p) is some
tautological sentence. A sound and complete system of CDL (wrt plausibility models)
is given as follows:

The inference rules and axioms of propositional logic
Necessitation Rule: From ` ϕ infer ` Bψϕ
Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
Truthfulness of Knowledge: Kϕ→ ϕ
Persistence of Knowledge: Kϕ→ Bθϕ
Strong Positive Introspection: Bθϕ→ KBθϕ
Strong Negative Introspection: ¬Bθϕ→ K¬Bθϕ
Success of Belief Revision: Bϕϕ
Consistency of Revision: ¬K¬ϕ→ ¬Bϕ⊥
Inclusion: Bϕ∧ψθ → Bϕ(ψ → θ)
Rational Monotonicity: Bϕ(ψ → θ) ∧ ¬Bϕ¬ψ → Bϕ∧ψθ

In later chapters, we propose topological semantics for conditional beliefs and judge its
success in representing AGM theory by checking the validity of the CDL axioms within
the new semantics.

2.2.2 Dynamic Belief Revision: Updates

Unlike conditional beliefs, a belief update captures the agent’s beliefs about a world as
it is after the update. In Dynamic Epistemic Logic, update is represented by dynamic
modalities such as [!ϕ]Bψ, meaning that the agent would come to believe ψ is the case
(in the world after the learning) after learning ϕ. An agent updates her beliefs when
she receives “hard information”, i.e. when the information comes from an infallible and
truthful source.

We now add dynamic modalities [!ϕ]ψ associated with updates to the language,
where [!ϕ]ψ means that if ϕ is true then after the agent learns it ψ becomes true. 〈!ϕ〉
is defined in the usual way as ¬[!ϕ]¬ and 〈!ϕ〉ψ is read as ϕ is true and after the agent
learns it ψ becomes true.

7This system was first introduced in [4] with common knowledge and common belief operators. We
work with the simplified version introduced in [5].
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An update with a piece of true information ϕ is modeled by simply deleting the
worlds in which ϕ is not true from the current modelM, i.e. by restricting M to the
‖ϕ‖M-worlds. Given a plausibility modelM = (X,≤, ν) and a formula ϕ, we let

Mϕ = (‖ϕ‖,≤‖ϕ‖, ν‖ϕ‖)

be the restricted model where ‖ϕ‖ = ‖ϕ‖M, ≤‖ϕ‖=≤ ∩‖ϕ‖ × ‖ϕ‖ and ν‖ϕ‖(p) =
ν(p) ∩ ‖ϕ‖ for each propositional variable p. The semantics for an update modality
[!ϕ]ψ is given in the following way on a plausibility model M = (X,≤, ν) at a world
x ∈ X:

x ∈ ‖[!ϕ]ψ‖M iff x ∈ ‖ϕ‖M implies x ∈ ‖ψ‖Mϕ .

Why plausibility models are preferred over Kripke models for belief update:
Consider the following two-state KD45 Kripke modelM [50, pp. 137-138]:

•p // ◦¬phh

modeling the case where p is true and the agent believes ¬p8. Suppose the agent learns
p from an infallible source, i.e. the agent receives the hard information p. Then, after
the update, we obtain the relativized modelMp

•p
with an empty accessibility relation. The agent therefore comes to believe everything,
in particular ⊥, contradicting the principle Consistency of Belief. On the other hand,
on a plausibility model M′ we have min≤‖ϕ‖M

′ 6= ∅ for any new true information
ϕ, since plausibility models are well-founded. More precisely, it is never the case that
min≤‖ϕ‖M

′ ⊆ ‖⊥‖M′
ϕ on a plausibility model M′. Hence, the agent never comes to

believe ⊥ after learning true information ϕ9.

8• in the figure represents the actual world.
9‖⊥‖M = ∅ for all plausibility and Kripke modelsM.



Chapter 3

Topological Semantics for Modal
Logic

3.1 Topological Preliminaries

We start by introducing the basic topological concepts that will be used throughout this
thesis. For a more detailed discussion of general topology we refer the reader to [18,19].

Definition 3 (Topological Space). A topological space X = (X, τ) is a pair consisting
of a set X and a family τ of subsets of X satisfying the following conditions:

(O1) ∅ ∈ τ and X ∈ τ .

(O2) If U1 ∈ τ and U2 ∈ τ , then U1 ∩ U2 ∈ τ .

(O3) If A ⊆ τ , then
⋃
A ∈ τ .

The set X is called space, the elements of X are called points of the space. The subsets
of X belonging to τ are called open sets (or opens) in the space; the family τ of open
subsets of X is also called a topology on X. If for some x ∈ X and an open U ⊆ X we
have x ∈ U , we say that U is an open neighborhood of x. The complements of opens
are called closed in the space.

A point x is called an interior point of a set A ⊆ X if there is an open neighborhood
U of x such that U ⊆ A. The set of all interior points of A is called the interior of
A and denoted by Int(A). We can then easily observe that for any A ⊆ X, Int(A) is
the largest open subset of A. Dually, for any x ∈ X, x belongs to Cl(A) if and only if
U ∩ A 6= ∅ for each open neighborhood U of x. Cl(A) is called the closure of A. It is
not hard to see that Cl(A) is the smallest closed set containing A. We call Int and Cl
the interior operator and the closure operator of X , respectively.

A point x ∈ X is called a limit point (or accumulation point) of a set A ⊆ X if for
each open neighborhood U of x, we have A ∩ (U \ {x}) 6= ∅. The set of all limit points
of A is called the derived set of A and denoted by d(A). For any A ⊆ X, we also let
t(A) = X \d(X \A) and call t(A) the co-derived set of A. It is easy to see that x ∈ t(A)

18
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if and only if there exists an open neighborhood U of x such that U ⊆ A \ {x}. We
call d the derived set operator and t the co-derived set operator of X . Moreover, a set
A ⊆ X is called dense-in-itself if A ⊆ d(A) and a space X is called dense-in-itself if
X = d(X).

3.2 The Interior Semantics for Modal Logic

In this section, we aim at providing the formal background for the aforementioned
interior-based topological semantics that started with the work of McKinsey and Tarski
[36]. In this semantics, the universal modal operator is interpreted as the interior
operator on topological spaces. Referring to this fact, we call the semantics the interior
semantics. While presenting some important completeness results (concerning logics
of knowledge) of previous works, we also explain the connection between the interior
semantics and standard Kripke semantics and focus on the topological (evidence-based)
interpretation of knowledge.

Definition 4 (Topological Model). A topological model (or simply a topo-model)M =
(X, τ, ν) is a triple where (X, τ) is a topological space and ν : Prop → P(X) is a
valuation function.

Since our focus is the topological interpretation of knowledge, we work with the uni-
modal epistemic language LK introduced in Chapter 2.

Definition 5 (Interior Semantics). LetM = (X, τ, ν) be a topo-model and x be a point
in X. The truth of modal formulas at a world x inM is defined recursively as:

M, x |= p iff x ∈ ν(p)
M, x |= ¬ϕ iff notM, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ andM, x |= ψ
M, x |= Kϕ iff (∃U ∈ τ)(x ∈ U ∧ ∀y ∈ U, M, y |= ϕ)

It is useful to note a pointwise definition for the semantics of 〈K〉:

M, x |= 〈K〉ϕ iff (∀U ∈ τ)(x ∈ U → ∃y ∈ U, M, y |= ϕ)

Truth and validity of a modal formula ϕ are defined the same way as for standard Kripke
semantics. We let [[ϕ]]M = {x ∈ X | M, x |= ϕ} denote the extension of a modal formula
ϕ in M (where M is a topo-model and |= refers to the interior semantics)1. We skip
the index when it is clear from context. It is now easy to see that [[Kϕ]] = Int([[ϕ]]) and
[[〈K〉ϕ]] = Cl([[ϕ]]). We use this extensional notation throughout the thesis as it makes
clear the fact that we interpret the modalities in terms of a specific topological operator.
In particular, as stated above, in the case of the interior semantics we interpret K as
the interior operator and, dually, 〈K〉 as the closure operator.

1Recall that we denote the extension of a modal formula ϕ in a Kripke model M by ‖ϕ‖M. The
reader should be aware of this distinction, especially for the proofs in which we use both the interior
and the Kripke semantics.
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We are now ready to introduce the topological soundness and completeness results
of the epistemic logics S4 and S4.2 which are of particular interest to us.

It is well-known that the interior (Int) and the closure (Cl) operators of a topological
space X = (X, τ) satisfy the following properties (the so-called Kuratowski axioms) for
any A,B ⊆ X (see, e.g., [19, pp. 14-15]):

(I1) Int(X) = X (C1) Cl(∅) = ∅
(I2) Int(A) ⊆ A (C2) A ⊆ Cl(A)
(I3) Int(A ∩B) = Int(A) ∩ Int(B) (C3) Cl(A ∪B) = Cl(A) ∪ Cl(B)
(I4) Int(Int(A)) = Int(A) (C4) Cl(Cl(A)) = Cl(A)

Moreover, as in the case for modal operators K and 〈K〉, Int and Cl are duals of each
other:

Int(A) = X \ Cl(X \A).

Given the interior semantics, it is not hard to see that above properties (Kuratowski
axioms) of the interior operator are the axioms of the system S4 written in topological
terms. This implies the soundness of S4 with respect to the class of all topological
spaces in the interior semantics2. In order to give the topological completeness result
for S4 which was first proven in [36], we further investigate the connection between
standard Kripke semantics and the interior semantics.

Connection between Kripke models and topo-models.

Definition 6 (Alexandroff space). A topological space X = (X, τ) is called Alexandroff
if τ is closed under arbitrary intersections, i.e.,

⋂
A ∈ τ for any A ⊆ τ.

A very important feature of an Alexandroff space X is that every point x ∈ X has
a smallest open neighborhood around it. It is well-known that there is a one-to-one
correspondence between reflexive and transitive Kripke frames and Alexandroff spaces
[13,40,52]. Given a reflexive and transitive Kripke frame F = (X,R), we can construct
a topological space, indeed an Alexandroff space, X = (X, τR) by defining τR to be the
set of all upsets3 of F . R(x) = {y ∈ X | xRy} forms the smallest open neighborhood
containing the point x. Conversely, for every topological space (X, τ), the relation Rτ
defined by

xRτy iff x ∈ Cl({y})

is reflexive and transitive. (X,Rτ ) hence constitutes a reflexive and transitive Kripke
frame. We also have that R = RτR if and only if X is Alexandroff [7,52].

The very same connection also exists between reflexive and transitive Kripke models
and Alexandroff topo-models: the extension of a modal formula ϕ ∈ LK in a reflexive
and transitive Kripke frame coincides with its extension in the corresponding Alexan-
droff space.

2See [13,40,52] for a more detailed discussion of the topological soundness of S4.
3A set A ⊆ X is called an upset of (X,R) if for each x, y ∈ X, xRy and x ∈ A imply y ∈ A.
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Proposition 1 (Parikh et al., 2007). For all reflexive and transitive Kripke models
M = (X,R, ν) and all ϕ ∈ LK ,

‖ϕ‖M = [[ϕ]]MτR

whereMτR = (X, τR, ν).

Proof. By induction on the complexity of ϕ, see [40, p. 306].

Theorem 1. S4 is sound and complete wrt the class of all topological spaces in the
interior semantics.

Proof. The soundness proof is a routine check and in fact immediately follows from
the Kuratowski axioms for the interior operator (see, e.g., [52, p. 237] for a detailed
proof). For completeness, let ϕ ∈ LK such that ϕ is not a theorem of S4, i.e., S4 6` ϕ.
Then, by the relational completeness of S4, there exists a reflexive and transitive Kripke
model M = (X,R, ν) such that ‖ϕ‖M 6= X. Hence, by Proposition 1, we have that
[[ϕ]]MτR 6= X whereMτR = (X, τR, ν) is the corresponding topo-model4.

Since we will mainly work with the logic S4.2 in later chapters, we also elaborate on
the soundness and completeness of S4.2 in the interior semantics.

Definition 7 (Extremally Disconnected Space). A topological space X = (X, τ) is
called extremally disconnected if the closure of each open subset of X is open.

Recall that S4.2 is a strengthening of S4 defined as

S4.2 = S4 + (〈K〉Kϕ→ K〈K〉ϕ)

where L+ ϕ is the smallest logic including L and ϕ.

Proposition 2. For any topological space X ,

〈K〉Kϕ→ K〈K〉ϕ is valid in X iff X is extremally disconnected

Proof. [52, p. 253]
Let X = (X, τ) be a topological space andM = (X, τ, ν) be a topo-model on X . Then,

[[〈K〉Kϕ→ K〈K〉ϕ]]M = X iff Cl(Int([[ϕ]]M)) ⊆ Int(Cl([[ϕ]]M))
iff Cl(Int([[ϕ]]M)) = Int(Cl(Int([[ϕ]]M)))
iff (X, τ) is extremally disconnected.

Just as in the case for S4, we can prove the topological completeness of S4.2 by using
its relational completeness wrt the reflexive, transitive and directed Kripke models.

4A more elegant proof via topo-canonical models can be found in [52].
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Proposition 3. For any reflexive, transitive and directed Kripke frame (X,R), the
corresponding Alexandroff space (X, τR) is extremally disconnected.

Proof. Let (X,R) be a reflexive, transitive and directed Kripke frame and U ∈ τR. We
want to show that Cl(U) ∈ τR. As stated before, the elements of τR are the upsets
of (X,R). Hence, it suffices to show that Cl(U) is an upset. Let x, y ∈ X such that
x ∈ Cl(U) and xRy. x ∈ Cl(U) implies that V ∩ U 6= ∅ for every open neighborhood
V of x. Recall that (X, τR) is an Alexandroff space. Hence, R(x) is the smallest open
neighborhood of x. Thus, x ∈ Cl(U) implies, in particular, that R(x) ∩ U 6= ∅ . Then,
there exists a z ∈ X such that z ∈ R(x), i.e. xRz, and z ∈ U . Since R is directed, xRy
and xRz, there exists a w ∈ X such that yRw and zRw. yRw means that w ∈ R(y).
Moreover, as R being transitive and xRyRw, we have xRw. Then, w ∈ U (since x ∈ U
and U is an upset). Thus, w ∈ R(y) ∩ U implying R(y) ∩ U 6= ∅. Since R(y) is the
smallest open neighborhood of y, we have that V ′∩U 6= ∅ for every open neighborhood
V ′ of y. Therefore, y ∈ Cl(U).

Theorem 2. S4.2 is sound and complete wrt the class of extremally disconnected spaces
in the interior semantics.

Proof. The soundness result is obtained from soundness of S4 and Proposition 2. The
completeness proof follows from Proposition 3 and Proposition 1 in a similar way as in
the proof of Theorem 1.

In fact, the following more general result about the completeness of the normal ex-
tensions of S4 concerning the connection between topo-models and Kripke models has
been proven:

Proposition 4 (van Benthem et al., 2007). Every normal extension of S4 that is
complete with respect to the standard Kripke semantics is also complete with respect to
the interior semantics.

As implied by Proposition 4, the standard Kripke semantics is a particular case of the
interior semantics. A relational completeness together with a soundness result in the
interior semantics for S4, more generally, for any normal extension of S4, directly yields
the topological completeness result in the interior semantics.

3.2.1 Evidential-Based Interpretation of Knowledge

As very briefly mentioned in the introduction, the interior semantics provides a deeper
insight into the evidence-based interpretation of knowledge. We can interpret opens in
a topological model as ‘pieces of evidence’ and, in particular, open neighborhoods of a
state x as the pieces of true (sound, correct) evidence that are observable by the agent
at state x. Opens being closed under finite intersection captures the ability of an agent
to combine finitely many pieces of evidence into a single piece. If an open set U is
included in the extension of a proposition ϕ in a topo-modelM, i.e. if U ⊆ [[ϕ]]M, we
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say that the piece of evidence U entails (supports, justifies) the proposition ϕ. Recall
that, for any topo-modelM = (X, τ, ν), any x ∈ X and any ϕ ∈ LK , we have

x ∈ [[Kϕ]]M iff (∃U ∈ τ)(x ∈ U ∧ U ⊆ [[ϕ]]M).

Thus, taking open sets as pieces of evidence and in fact open neighborhoods of a point
x as true pieces of evidence (that the agent can observe at x), we obtain the following
evidence-based interpretation for knowledge: the agent knows ϕ iff she has a true piece
of evidence U that justifies ϕ. In other words, knowing ϕ is the same as having a
correct justification for ϕ. The necessary and sufficient conditions for one’s belief to
qualify as knowledge consist in it being not only truthful, but also in having a correct
(evidential) justification. Therefore, the interior semantics implements the widespread
intuitive response to Gettier’s challenge: knowledge is correctly justified belief (rather
than being simply true justified belief) [3].

3.3 The Co-derived Semantics for Belief

In this section, we introduce another topological semantics in which the existential
modality (denoted by 〈B〉) of the language of basic modal logic is interpreted as the
derived set operator d and, dually, B as the co-derived set operator t5. Since the
universal modal operator B is interpreted as the co-derived set operator on topo-models,
we call this semantics the co-derived semantics, analogous to the case for the interior
semantics and the knowledge modality K. In his recent work [45], Steinsvold proposed
a doxastic interpretation for the co-derived semantics and proved that the belief logic
KD45 is sound and complete wrt the class of DSO-spaces6.
As our focus is the topological interpretation of belief, we work with the unimodal
doxastic language LB introduced in Chapter 2.

Definition 8 (Co-derived Semantics). Let M = (X, τ, ν) be a topo-model and x be a
point in X. The truth of modal formulas at a world x inM is defined recursively as:

M, x |=d p iff x ∈ ν(p)
M, x |=d ¬ϕ iff notM, x |=d ϕ
M, x |=d ϕ ∧ ψ iff M, x |=d ϕ andM, x |=d ψ
M, x |=d Bϕ iff (∃U ∈ τ)(x ∈ U ∧ ∀y ∈ U \ {x}, M, y |=d ϕ)

A pointwise definition for the semantics of 〈B〉 is then given as:

M, x |=d 〈B〉ϕ iff (∀U ∈ τ)(x ∈ U → ∃y ∈ U \ {x}, M, y |=d ϕ)

In order to clarify in which topological semantics we work, we say d-true, d-valid, d-
sound, d-complete, etc. (following the notation in [11] and [52]) when we work in the
co-derived semantics.

5This semantics was also first suggested by McKinsey and Tarski in [36], and then mainly developed
by Esakia and his colleagues (see, e.g., [11,20,21]).

6For the interested reader, Steinsvold, in his work [47], also gives completeness proofs for extensions
of the logic K4 via canonical models.
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d-truth and d-validity of modal formulas in the co-derived semantics are defined the
same way as in the interior semantics.

We again let [[ϕ]]Md = {x ∈ X | M, x |=d ϕ} for the d-extension of a modal formula
ϕ ∈ LB and skip the indices if they are clear from context. It is easy to see that
[[Bϕ]] = t([[ϕ]]) and [[〈B〉ϕ]] = d([[ϕ]]).

We can now focus on the main issue: soundness and completeness. It is well-known
that the co-derived set and the derived set operators of a topological space X satisfy
the following properties for each A,B ⊆ X:

(t1) t(X) = X (d1) d(∅) = ∅
(t2) t(A ∩B) = t(A) ∩ t(B) (d2) d(A ∪B) = d(A) ∪ d(B)
(t3) A ∩ t(A) ⊆ t(t(A)) (d3) d(d(A)) ⊆ A ∪ d(A)

Recall that the logic wK4 (weak K4) is defined as

wK4 = K + ((ϕ ∧Bϕ)→ BBϕ).

Just as in the case of S4, the properties of the co-derived set operator match exactly the
axioms of wK4. This proves the d-soundness of wK4 wrt the class of all topological
spaces. Moreover, it has been proven in [20] that wK4 is d-complete wrt the class of
all topological spaces.

We finish this section by introducing a recently established d-completeness result of
the system KD45 wrt the class of DSO-spaces [45].

d-Completeness of KD45 wrt the class of DSO-spaces.

Definition 9 (Td-space7). A topological space X = (X, τ) is called a Td-space if every
singleton is the intersection of an open and a closed set. Equivalently, X is a Td-space
if and only if d(d(A)) ⊆ d(A) for each A ⊆ X.

We call a space X a DSO-space if it is dense-in itself and d(A) is open for every
A ⊆ X [13, 40, 45]. A nice example for a DSO-space is the topology (N, τ) where N is
the set of natural numbers and τ = {∅, all cofinite sets} [13, p. 32]. Then, for each
A ⊆ N, we have

d(A) =
{
∅ if A is finite
N otherwise

As in Kripke semantics, each of the axioms D, 4 and 5 corresponds to a property of a
topological space within the co-derived semantics:

Proposition 5 (Parikh et al., 2007). For any topological space X ,

1. Bϕ→ 〈B〉ϕ is d-valid in X iff X is dense-in-itself,

2. Bϕ→ BBϕ is d-valid in X iff X is a Td-space,
7Td-spaces are also known as T 1

2
-spaces (see, e.g., [19]).
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3. ¬Bϕ→ B¬Bϕ is d-valid in X iff for all A ⊆ X, d(A) is open.

Proof. See [40, p. 335], Theorem 6.27.

Proposition 6 (Parikh et al., 2007). Every DSO-space is a Td-space.

Proof. See [40, p. 333], Proposition 6.24.

Theorem 3. KD45 is d-sound and d-complete wrt the class of DSO-spaces.

Proof. The d-soundness follows from Proposition 5 and Proposition 6. The proof of
the d-completeness of KD45 is rather intricate and, for the purpose of this thesis, its
details are not relevant. We refer the reader to [40,45,47] for the proof.



Chapter 4

The Topology of Full Belief and
Knowledge

4.1 Stalnaker’s Combined Logic of Knowledge and Belief

In his paper [44], Stalnaker focuses on the properties of belief and its relation with
knowledge and proposes an interesting analysis. Most research in the formal episte-
mology literature concerning the relation between knowledge and belief, in particular,
dealing with the attempt to provide a definition of the one in terms of the other, takes
belief as a primitive notion and tries to determine additional properties which render
a piece of belief knowledge (see, e.g., [17, 32, 34, 39, 41]). In contrast, Stalnaker chooses
to start with a notion of knowledge and weakens it to have a “good” notion of belief.
He initially considers knowledge to be an S4-type modality and analyzes belief based
on the conception of “subjective certainty”: if the agent believes ϕ she believes that she
knows it. To remind the reader, in this thesis we refer to Stalnaker’s notion of belief as
“full belief”1.

The bimodal language LKB of knowledge and full belief is given by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ

where p ∈ Prop. Abbreviations for the connectives → and ↔ are standard. The ex-
istential modalities 〈K〉 and 〈B〉 are defined as ¬K¬ and ¬B¬ respectively. We call
Stalnaker’s system, given in the following table, KB:

1In [44] he calls it “strong belief”.

26
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Stalnaker’s Epistemic-Doxastic Axioms
(K) K(ϕ→ ψ)→ (Kϕ→ Kψ) Knowledge is additive
(T) Kϕ→ ϕ Knowledge implies truth

(KK) Kϕ→ KKϕ Positive introspection for K
(CB) Bϕ→ ¬B¬ϕ Consistency of belief
(PI) Bϕ→ KBϕ (Strong) positive introspection of B
(NI) ¬Bϕ→ K¬Bϕ (Strong) negative introspection of B
(KB) Kϕ→ Bϕ Knowledge implies Belief
(FB) Bϕ→ BKϕ Full Belief

Inference Rules
(MP) From ϕ and ϕ→ ψ infer ψ. Modus Ponens

(K-Nec) From ϕ infer Kϕ. Necessitation

Table 5: Stalnaker’s System KB

Stalnaker takes the axioms of the logic S4 as his axioms for knowledge and, based on
his analysis of the relationship between knowledge and belief, adds above combined
principles to his logic. He argues that our agents, as they are idealized, should have
introspective access to their own beliefs: the agents know what they believe and what not.
In a sense, “...beliefs are conscious, in the sense of known” [56, p. 272]. This principle is
captured by (PI) and (NI). Recall that the analogous principle for knowledge, namely
Negative Introspection for Knowledge, is considered to be unreasonable because of its
consequences together with the principle Truth of Knowledge [28, 35, 44]. Since belief
is assumed to be non-factive, the corresponding principle ¬Bϕ → K¬Bϕ does not
encounter the same problem. Moreover, it is reasonable to assume and commonly
accepted that our logically omniscient agents have consistent beliefs, which is captured
by the axiom (CB). Given that knowledge is a stronger notion than belief and belief is
more subjective than knowledge, it is quite uncontroversial (at least for our idealized
agents) that the agents believe everything that they know, as the axiom (KB) says.
Lastly, (FB) captures the intended meaning of full belief as subjective certainty.

Proposition 7 (Stalnaker). All axioms of the standard belief systemKD45 are provable
in the system KB. More precisely, the axioms

(K) B(ϕ→ ψ)→ (Bϕ→ Bψ)

(D) Bϕ→ 〈B〉ϕ

(4) Bϕ→ BBϕ

(5) ¬Bϕ→ B¬Bϕ

are provable in KB.

Proposition 7 thus says that Stalnaker’s logic KB of knowledge and full belief yields
the belief logic KD45. Moreover, one can define belief in terms of knowledge in this
system.
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Proposition 8. The following equivalence is provable in the system KB:

Bϕ↔ 〈K〉Kϕ

Proof.

(⇒) Bϕ→ 〈K〉Kϕ

1. K¬Kϕ→ B¬Kϕ Ax.(KB)
2. B¬Kϕ→ ¬BKϕ Ax.(CB)
3. ¬BKϕ→ ¬Bϕ Ax.(FB)
4. K¬Kϕ→ ¬Bϕ Propositional tautology and MP
5. Bϕ→ 〈K〉Kϕ Contraposition, 4

(⇐) 〈K〉Kϕ→ Bϕ

1. ¬Bϕ→ K¬Bϕ Ax.(NI)
2. ¬Bϕ→ ¬Kϕ Ax.(KB)
3. K(¬Bϕ→ ¬Kϕ) K-Nec, 2
4. K(¬Bϕ→ ¬Kϕ)→ (K¬Bϕ→ K¬Kϕ) Ax.(K)
5. K¬Bϕ→ K¬Kϕ MP, 3, 4
6. ¬Bϕ→ K¬Kϕ Propositional tautology and MP
7. 〈K〉Kϕ→ Bϕ Contraposition, 6

Proposition 8 in fact constitutes one of the most important features of Stalnaker’s
combined systemKB. This equivalence allows us to have a combined logic of knowledge
and belief in which the only modality is K and the belief modality B is defined in terms
of it. We therefore obtain “...a more economical formulation of the combined belief-
knowledge logic...” [44, p. 179]. Moreover, substituting 〈K〉Kϕ for Bϕ in the axiom
(CB) results in the modal axiom

〈K〉Kϕ→ K〈K〉ϕ

also known as the (.2)-axiom in the modal logic literature [14]. Recall that we obtain
the logic of knowledge S4.2 by adding the (.2)-axiom to the system S4. If we substitute
〈K〉K for B in all the other axioms of KB, they turn out to be theorems of S4.2 [44].
Therefore, given the equivalence Bϕ ↔ 〈K〉Kϕ, we can obtain the unimodal logic of
knowledge S4.2 by substituting 〈K〉K for B in all the axioms of KB implying that the
logic S4.2 by itself forms a unimodal combined logic of knowledge and belief2. Stalnaker
then argues that his analysis of the relation between knowledge and belief suggests that
the “true” logic of knowledge should be S4.2 and that belief can be defined as the
epistemic possibility of knowledge: the agent believes ϕ if and only if it is possible, for
all that she knows, that she knows ϕ.

We will elaborate on the unimodal fragment LB for belief of LKB later in more
detail. We now introduce a topological semantics for KB.

2We already pointed out in Chapter 2 that the logic S4.2 is sound and complete wrt the class of
extremally disconnected spaces in the interior semantics [52] (also see Chapter 2).
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4.2 Topological Semantics for KB

In this section, we introduce a new topological semantics for the language LKB, which
is an extension of the interior semantics for knowledge with a new topological semantics
for belief given by the closure of the interior operator.

Definition 10 (Topological Semantics for Full Belief and Knowledge). Let M =
(X, τ, ν) be a topological model. The semantics for the formulas in LKB is defined
for Boolean cases and Kϕ the same way as in the interior semantics. The semantics
for Bϕ is defined as

[[Bϕ]]M = Cl(Int([[ϕ]]M)).

Truth and validity of a formula is defined the same way as in the interior semantics.

We now generalize the above semantics given on topological spaces to an extensional
framework independent from topologies and show that the most general extensional (and
compositional) semantics validating the axioms of the system KB is again topological
and based on extremally disconnected spaces.

Definition 11 (Extensional Semantics for LKB). An extensional (and compositional)
semantics for the language LKB of knowledge and full belief is a triple (X,K,B), where
X is a set of possible worlds and K : P(X)→ P(X) and B : P(X)→ P(X) are unary
operations on (sub)sets of worlds.

Any extensional semantics (X,K,B), together with a valuation ν : Prop → P(X),
gives us an extensional modelM = (X,K,B, ν), in which we can interpret the formulas
ϕ of LKB in the obvious way: the clauses for propositional connectives are the same as
in the topological semantics above, and the remaining cases are given by

[[Kϕ]]M = K[[ϕ]]M

[[Bϕ]]M = B[[ϕ]]M.

As usual, a formula ϕ ∈ LKB is valid in an extensional semantics (X,K,B) if [[ϕ]]M = X
for all extensional modelsM based on (X,K,B).

Our proposed topological semantics given by Definition 10 is in fact a special case
of the extensional semantics for the language LKB:

Definition 12 (Topological Extensional Semantics). A topological extensional seman-
tics for the language LKB is an extensional semantics (X,Kτ ,Bτ ), where (X, τ) is a
topological space, Kτ = Intτ is the interior operator and Bτ = Clτ (Intτ ) is the closure
of the interior operator with respect to the topology τ .

We can now state one of the main results of this section; a topological representation
theorem for extensional models of KB:

Theorem 4. An extensional semantics (X,K,B) validates all the axioms and rules of
Stalnaker’s systemKB iff it is a topological extensional semantics given by an extremally
disconnected topology τ on X, such that K = Kτ = Intτ and B = Bτ = Clτ (Intτ ).
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Proof.
(⇐) Observe that for any extensional semantics (X,K,B) and for any ϕ, ψ ∈ LKB,

[[ϕ→ ψ]] = X iff [[ϕ]] ⊆ [[ψ]].

Let (X,K,B) be a topological extensional semantics given by an extremally discon-
nected topology τ on X. The validity of the axioms (K), (T), (KK) and the inference
rules follows from the soundness of S4 wrt the interior semantics.

(CB):

X = [[Bϕ→ 〈B〉ϕ]] iff [[Bϕ]] ⊆ [[〈B〉ϕ]]
iff Clτ (Intτ ([[ϕ]])) ⊆ Intτ (Clτ ([[ϕ]]))
iff Clτ (Intτ ([[ϕ]])) = Intτ (Clτ (Intτ ([[ϕ]])))
iff (X, τ) is extremally disconnected.

(PI):

X = [[Bϕ→ KBϕ]] iff [[Bϕ]] ⊆ [[KBϕ]]
iff Clτ (Intτ ([[ϕ]])) ⊆ Intτ (Clτ (Intτ ([[ϕ]])))
iff (X, τ) is extremally disconnected.

(NI):

X = [[¬Bϕ→ K¬Bϕ]] iff [[¬Bϕ]] ⊆ [[K¬Bϕ]]
iff X \ (Clτ (Intτ ([[ϕ]]))) ⊆ Intτ (X \ (Clτ (Intτ ([[ϕ]]))))
iff Intτ (Clτ (X \ [[ϕ]])) ⊆ Intτ (Intτ (Clτ (X \ [[ϕ]])))

Since Intτ (Clτ (X \ [[ϕ]])) = Intτ (Intτ (Clτ (X \ [[ϕ]]))) is true in all topological
spaces (by (I4) in Chapter 3), (NI) is valid. The proof for the validity of the
axioms (KB) and (FB) are very similar to the ones above and they both are valid
in all topological extensional semantics.

(⇒) Let (X,K,B) be an extensional semantics which validates all the axioms of
KB. As we stated before, the axioms (K), (T), (KK) together with the inference
rules of KB yields the knowledge logic S4. Hence, K satisfies the properties of an
interior operator on X, thus, generates a topology τ on X in which K = Intτ by
the Theorem 5.3 in [18, p. 74] (see also Proposition 1.2.9 in [19, p. 23]). Then,
since (X,K,B) validates all the axioms of KB, we have [[Bϕ ↔ 〈K〉Kϕ]]M = X
for any model M = (X,K,B, ν) and for all ϕ ∈ LKB by Proposition 8. Hence,
[[Bϕ]]M = B[[ϕ]]M = Clτ (Intτ ([[ϕ]]M), i.e., B = Clτ (Intτ ). Thus, (X,K,B) is a
topological extensional semantics. Finally, the validity of the axiom (CB) proves
that (X, τ) is extremally disconnected.
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Theorem 4 shows that KB is just another axiomatization of extremally disconnected
spaces in which both the interior (Int) and the closure of the interior (Cl(Int)) are taken
to be primitive operators of a topological space (corresponding to the primitive modal-
ities K and B in KB, respectively). We also conclude that our topological semantics
for full belief and knowledge is the most general extensional semantics validating the
axioms of KB.

Theorem 5. The sound and complete logic of knowledge and belief on extremally dis-
connected spaces is given by Stalnaker’s system KB.

Proof. Since axioms of KB are Sahlqvist formulas, KB is canonical, hence, complete
wrt its canonical model. However, the canonical model of KB is in fact an extensional
model validating all of its axioms. Thus, by Theorem 4, we have that KB is sound and
complete wrt the class of extremally disconnected spaces.

4.2.1 Unimodal Logic for Belief: KD45

As mentioned in the previous section, Stalnaker’s system KB yields the logic of belief
KD45. In this section, we introduce a new semantics for the unimodal language LB
in which the closure of interior operator is taken to be the only primitive operator.
This approach can be seen as the unimodal component of the topological semantics for
full belief and knowledge, capturing only the notion of belief. We name our proposed
semantics in this section topological belief semantics. The main result of this section
is the topological soundness and completeness for KD45 wrt the class of extremally
disconnected spaces in the topological belief semantics.

The language LB of KD45 is given by

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕ

and we again denote ¬B¬ with 〈B〉. LetM = (X, τ, ν) be a topo-model. The semantic
clauses for the propositional variables and the Boolean connectives are the same as in
the interior semantics. For the modal operator B, we put

[[Bϕ]]M = Cl(Int([[ϕ]]M))

and the semantic clause for 〈B〉 is easily obtained as

[[〈B〉ϕ]]M = Int(Cl([[ϕ]]M)).

Throughout this section, we use the notation [ϕ]M for the extension of a formula ϕ ∈ LK
wrt the interior semantics in order to make clear in which semantics we work. We
reserve the notation [[ϕ]]M for the extension of the formula ϕ ∈ LB wrt the topological
belief semantics. We skip the index when confusion is unlikely to occur.

Definition 13 (Translation (.)∗ : LB → LK). For any ϕ ∈ LB, the translation (ϕ)∗ of
ϕ into LK is defined recursively as follows:
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1. (⊥)∗ = ⊥

2. (p)∗ = p, where p ∈ Prop

3. (¬ϕ)∗ = ¬ϕ∗

4. (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

5. (Bϕ)∗ = 〈K〉Kϕ∗

6. (〈B〉ϕ)∗ = K〈K〉ϕ∗

Proposition 9. For any topo-model M = (X, τ, ν) and for any formula ϕ ∈ LB we
have

[[ϕ]]M = [ϕ∗]M.

Proof. We prove the lemma by induction on the complexity of ϕ. The cases for

1. ϕ = ⊥,

2. ϕ = p,

3. ϕ = ¬ψ, and

4. ϕ = ψ ∧ χ

are straightforward. Now let ϕ = Bψ, then

[[ϕ]]M = [[Bψ]]M

= Cl(Int([[ψ]]M)) (by the topological belief semantics for LB)
= Cl(Int([ψ∗]M)) (by I.H.)
= [〈K〉Kψ∗]M (by the interior semantics for LK .)
= [(Bψ)∗]M (by the translation.)
= [ϕ∗]M.

Soundness of KD45

The proof of soundness follows as usual. Recall that

KD45 = K + (Bϕ→ 〈B〉ϕ) + (Bϕ→ BBϕ) + (〈B〉ϕ→ B〈B〉ϕ).

Proposition 10. For any topo-modelM = (X, τ, ν) and any ϕ ∈ LB we have

1. [[Bϕ→ BBϕ]] = X,

2. [[〈B〉ϕ→ B〈B〉ϕ]] = X.



Chapter 4. The Topology of Full Belief and Knowledge 33

Proof. LetM = (X, τ, ν) be a topo-model and ϕ ∈ LB. Note that for any ϕ,ψ ∈ LB
we have

[[ϕ→ ψ]] = X iff [[ϕ]] ⊆ [[ψ]]. (4.1)

1. By equation (1), it suffices to show that [[Bϕ]] ⊆ [[BBϕ]]. By our semantics, we
have [[Bϕ]] = Cl(Int([[ϕ]])) and [[BBϕ]] = Cl(Int(Cl(Int([[ϕ]])))).

As known, the closure of an open set is a closed domain3 [19, p. 20]. We then
have

Cl(Int([[ϕ]])) = Cl(Int(Cl(Int([[ϕ]])))).

as Int([[ϕ]]) is open in (X, τ). Therefore, we obtain [[Bϕ]] = [[BBϕ]] which implies
[[Bϕ→ BBϕ]] = X.

2. Similar to part-(1), it suffices to show that [[〈B〉ϕ]] ⊆ [[B〈B〉ϕ]] and the proof
follows:

[[〈B〉ϕ]] = Int(Cl([[ϕ]]))
⊆ Cl(Int(Cl([[ϕ]]))) (by (C2))
= Cl(Int(Int(Cl([[ϕ]])))) (by (I4))
= [[B〈B〉ϕ]].

Therefore, by (1), we have [[〈B〉ϕ→ B〈B〉ϕ]] = X.

It follows from Proposition 10 that all topological spaces validate the axioms 4 and 5
wrt the topological belief semantics. However, the K-axiom Bϕ ∧ Bψ → B(ϕ ∧ ψ)
and the D-axiom Bϕ→ 〈B〉ψ are not valid on all topological spaces. We thus have to
restrict the class of topological spaces in order to obtain a topological soundness result
for the belief logic KD45. Moreover, we use the translation defined above in order to
prove the validity of the K-axiom. Recall that for any Kripke modelM, we denote the
extension of the formula ϕ inM wrt the standard Kripke semantics by ‖ϕ‖M.

Lemma 1. For any ϕ ∈ LK , S4.2 ` 〈K〉Kϕ ∧ 〈K〉Kψ → 〈K〉K(ϕ ∧ ψ).

Proof. We know that S4.2 is complete wrt the class of reflexive, transitive and directed
Kripke frames. So, it suffices to show that 〈K〉Kϕ ∧ 〈K〉Kψ → 〈K〉K(ϕ ∧ ψ) is valid
on all reflexive, transitive and directed Kripke frames.

Let F = (X,R) be a reflexive, transitive and directed Kripke frame,M = (X,R, ν)
be a model on F and x ∈ X. Suppose x ∈ ‖〈K〉Kϕ ∧ 〈K〉Kψ‖. Hence, x ∈ ‖〈K〉Kϕ‖
and x ∈ ‖〈K〉Kψ‖. Then, there exist y, z ∈ X with xRy and xRz such that y ∈ ‖Kϕ‖
and z ∈ ‖Kψ‖. By directedness of R, there exists a w ∈ X such that yRw and
zRw. Since y ∈ ‖Kϕ‖, z ∈ ‖Kψ‖ and R is transitive, w ∈ ‖Kϕ‖ and w ∈ ‖Kψ‖, i.e.,
w ∈ ‖Kϕ∧Kψ‖. So w ∈ ‖K(ϕ∧ψ)‖ and by reflexivity of R, x ∈ ‖〈K〉K(ϕ∧ψ)‖. Hence,
〈K〉Kϕ∧〈K〉Kψ → 〈K〉K(ϕ∧ψ) is valid in all reflexive, transitive and directed Kripke
frames. Therefore, by the completeness of S4.2, we have S4.2 ` 〈K〉Kϕ ∧ 〈K〉Kψ →
〈K〉K(ϕ ∧ ψ).

3A subset A of a topological space is called closed domain if A = Cl(Int(A)) [19, p. 20]. In the
literature, a closed domain is also called regular closed.
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Proposition 11. A topological space validates the K-axiom if it is extremally discon-
nected.

Proof. Let (X, τ) be an extremally disconnected space and M = (X, τ, ν) be a topo-
model on it. Also suppose ϕ,ψ ∈ LB. Then,

[[Bϕ ∧Bψ → B(ϕ ∧ ψ)]]M = [(Bϕ ∧Bψ → B(ϕ ∧ ψ))∗]M (by Proposition 9)
= [〈K〉Kϕ∗ ∧ 〈K〉Kψ∗ → 〈K〉K(ϕ∗ ∧ ψ∗)]M (by the translation)
= X (by Lemma 1)

Hence, (X, τ) validates Bϕ ∧Bψ → B(ϕ ∧ ψ).4

Proposition 12. A topological space (X, τ) validates the D-axiom iff (X, τ) is ex-
tremally disconnected.

Proof. See the proof of Theorem 4-(CB).

It follows from Proposition 12 that the D-axiom is not only valid on extremally discon-
nected spaces, it also characterizes them wrt the topological belief semantics. Hence, the
class of extremally disconnected spaces is the largest class of topological spaces which
validates the D-axiom in topological belief semantics. In fact, this result together with
the previous ones yields the soundness of KD45:

Theorem 6. The belief logic KD45 is sound wrt the class of extremally disconnected
spaces in topological belief semantics. In fact, a topological space (X, τ) validates all the
axioms and rules of the system KD45 in the topological belief semantics iff (X, τ) is
extremally disconnected.

Proof. The validity of the axioms of KD45 follows from Propositions 10, 24 and 12.
We only need to show that the inference rules Necessitation and Modus Ponens preserve
validity.

Necessitation: Let ϕ ∈ LB such that Bϕ is not valid. Then, there exists a topo-
model M = (X, τ, ν) such that [[Bϕ]]M 6= X, i.e., Cl(Int([[ϕ]]M)) 6= X. Hence,
[[ϕ]]M 6= X implying that ϕ is not valid.

MP: Let ϕ,ψ ∈ LB such that ϕ and ϕ → ψ are valid in all topological spaces.
Let (X, τ) be a topological space andM = (X, τ, ν) be a topo-model on (X, τ).
By assumption, [[ϕ]]M = X and [[ϕ → ψ]]M = X. Note that [[ϕ → ψ]]M =
(X \ [[ϕ]]M) ∪ [[ψ]]M. As [[ϕ]]M = X, we obtain X \ [[ϕ]]M = ∅ implying that
[[ψ]]M = X. As (X, τ) has been chosen arbitrarily, ψ is valid in all topological
spaces as well.

4In his paper [31], D.S. Janković provided a series of equivalent conditions characterizing extremally
disconnected spaces. One of these conditions is that a topological space (X,R) is extremally discon-
nected iff for every U, V ∈ τ we have Cl(U) ∩ Cl(V ) = Cl(U ∩ V ). By using this fact, Proposition 24
can also be proven directly.
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Completeness of KD45

We prove the completeness of KD45 by using the translation of the language LB into
the language LK defined above and the completeness of S4.2 wrt the class of extremally
disconnected spaces in the interior semantics.

For the topological completeness proof of KD45 we also make use of the complete-
ness of KD45 and S4.2 in the standard Kripke semantics. We first recall some frame
conditions concerning the relational completeness of the corresponding systems.

Let (X,R) be a transitive Kripke frame. A non-empty subset C ⊆ X is a cluster if

(1) for each x, y ∈ C we have xRy, and

(2) there is no D ⊆ X such that C ⊂ D and D satisfies (1).

A point x ∈ X is called a maximal point if there is no y ∈ X such that xRy and
¬(yRx). We call a cluster a final cluster if all its points are maximal. It is not hard
to see that for any final cluster C of (X,R) and any x ∈ C, we have R(x) = C. A
transitive Kripke frame (X,R) is called cofinal if it has a unique final cluster C such
that for each x ∈ X and y ∈ C we have xRy. We call a cofinal frame a brush if X \ C
is an irreflexive antichain, i.e., for each x, y ∈ X \ C we have ¬(xRy) where C is the
final cluster. A brush with a singleton X \C is called a pin. By definition, every brush
and every pin is transitive. Finally, a transitive frame (X,R) is called rooted, if there
is an x ∈ X, called a root, such that for each y ∈ X with x 6= y we have xRy. Hence,
every rooted brush is in fact a pin. The following figures illustrate brushes and pins:

Cluster

... ... ...

Figure 4.1: Brush

Cluster

Figure 4.2: Pin

Lemma 2.

1. Each reflexive and transitive cofinal frame is an S4.2-frame. Moreover, S4.2 is
sound and complete wrt the class of finite rooted reflexive and transitive cofinal
frames.

2. Each brush is a KD45-frame. Moreover, KD45 is sound and complete wrt the
class of finite brushes, indeed, wrt the class of finite pins.

Proof. See, e.g., [15, Chapter 5].

For any reflexive and transitive cofinal frame (X,R) we define RB on X by

xRBy if y ∈ C
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for each x, y ∈ X where C is the final cluster of (X,R). It is easy to see that for each
x ∈ X, we have RB(x) = C.

Lemma 3. For any reflexive and transitive cofinal frame (X,R),

1. (X,RB) is a brush.

2. For any valuation ν on X and for each formula ϕ ∈ LB we have

‖ϕ∗‖M = ‖ϕ‖MB

whereM = (X,R, ν) andMB = (X,RB, ν).

Proof. Let (X,R) be a reflexive and transitive cofinal frame.

1. By its definition, RB is transitive. We can also show that the final cluster C of
(X,R) is also a cluster (X,RB). For each x, y ∈ C, xRBy by definition of RB.
Moreover, suppose for a contradiction that there is a D ⊆ X such that C ⊂ D and
for each x, y ∈ D we have xRBy. As C ⊂ D, there is an x0 ∈ D such that x0 6∈ C
contradicting that xRBx0 for all x ∈ D. Hence, C is a cluster of (X,RB) too. By
definition of RB, we also have that for any x ∈ X, RB(x) = C, i.e., for any x ∈ X
and y ∈ C we have xRBy. Hence, (X,RB) is a cofinal frame with the final cluster
C. Now consider X \ C. Suppose there is an x ∈ X \ C such that xRBx. This
implies, by definition of RB, that x ∈ C contradicting our assumption. Hence,
each point x ∈ X \ C is irreflexive. Suppose also that X \ C is not an antichain,
i.e., there exist x, y ∈ X \ C such that either xRBy or yRBx. W.l.o.g, assume
xRBy. This also implies, by definition of RB, that y ∈ C contradicting y ∈ X \C.
Hence, (X,RB) is a brush.

2. We prove this item by induction on the complexity of ϕ. Let M = (X, τ, ν) be
a model on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are
straightforward. Let ϕ = Bψ.

(⊆) Let x ∈ ‖(Bψ)∗‖M = ‖〈K〉Kψ∗‖M. Then, by the standard Kripke semantics,
there is a y ∈ X with xRy such that R(y) ⊆ ‖ψ∗‖M. Since (X,R) is a cofinal
frame, we have C ⊆ R(y), hence, C ⊆ ‖ψ∗‖M. Then, by induction hypothesis,
C ⊆ ‖ψ‖MB . Since RB(x) = C in the brush (X,RB), we have RB(x) ⊆ ‖ψ‖MB

implying that x ∈ ‖Bψ‖MB .

(⊇) Let x ∈ ‖Bψ‖MB . Then, by the standard Kripke semantics, for all y ∈ X
with xRBy we have y ∈ ‖ψ‖MB , i.e., RB(x) ⊆ ‖ψ‖MB . Then, C ⊆ ‖ψ‖MB , since
RB(x) = C. Hence, by induction hypothesis, C ⊆ ‖ψ∗‖M. By definition of a final
cluster, we have R(y) = C for any y ∈ C. Hence, y ∈ ‖Kψ∗‖M for any y ∈ C.
Since (X,R) is a cofinal frame, xRy for any y ∈ C. Thus, x ∈ ‖〈K〉Kψ∗‖M, i.e.,
x ∈ ‖(Bψ)∗‖M.

For each Kripke frame (X,R) we let R+ be the reflexive closure of R.
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Lemma 4. For any brush (X,R),

1. (X,R+) is a reflexive and transitive cofinal frame.

2. For any valuation ν on X and for each formula ϕ ∈ LB we have

‖ϕ‖M = ‖ϕ∗‖M+

whereM = (X,R, ν) andM+ = (X,R+, ν).

Proof. Let (X,R) be a brush.

1. Since a brush is also a transitive cofinal frame, (X,R+) is also transitive and
cofinal. Moreover, R+ is reflexive by definition. Therefore, (X,R+) is a reflexive
and transitive cofinal frame.

Cluster

... ... ...

R+

−−→

Cluster

... ... ...

2. We prove (2) by induction on the complexity of ϕ. LetM = (X, τ, ν) be a model
on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are straightforward.
Let ϕ = Bψ.

(⊆) Let x ∈ ‖Bψ‖M. Then, by the standard Kripke semantics, for all y ∈ X
with xRy we have y ∈ ‖ψ‖M, i.e., R(x) ⊆ ‖ψ‖M. This implies, since M is a
model based on a brush, C ⊆ ‖ψ‖M. By I.H., C ⊆ ‖ψ∗‖M+ . Since (X,R+)
is in fact just a reflexive brush, C ⊆ R+(x). Hence there is a z ∈ C such
that xRz and, since R+(z) = C and C ⊆ ‖ψ∗‖M+ , z ∈ ‖Kψ∗‖M+ . Therefore,
x ∈ ‖〈K〉Kψ∗‖M+

= ‖(Bψ)∗‖M+ .

(⊇) Let x ∈ ‖(Bψ)∗‖M+
= ‖〈K〉Kψ∗‖M+ . Then, by the standard Kripke se-

mantics, there is a y ∈ X with xR+y such that R+(y) ⊆ ‖ψ∗‖M+ . Observe that
either y = x or xRy (equivalently, y ∈ C).

If x = y, R+(y) ⊆ ‖ψ∗‖M+ means that R+(x) ⊆ ‖ψ∗‖M+ . Then, since R(x) ⊆
R+(x), we have R(x) ⊆ ‖ψ‖M by induction hypothesis. Therefore, x ∈ ‖Bψ‖M.

If xRy, i.e., y ∈ C, we have R(x) = R+(y). Hence, by induction hypothesis,
R(x) ⊆ ‖ψ‖M. Therefore, x ∈ ‖Bψ‖M.

Theorem 7. For each formula ϕ ∈ LB,

S4.2 ` ϕ∗ iff KD45 ` ϕ

.
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Proof. Let ϕ ∈ LB.

(⇒) Suppose KD45 6` ϕ. By Lemma 2(2), there exists a Kripke model M =
(X,R, ν) where (X,R) is a finite pin such that ‖ϕ‖M 6= X. Then, by Lemma 4,
M+ is a model based on the finite reflexive and transitive cofinal frame (X,R+)
and ‖ϕ∗‖M+ 6= X. Hence, by Lemma 2(1), we have S4.2 6` ϕ∗.

(⇐) Suppose S4.2 6` ϕ∗. By Lemma 2(1), there exists a Kripke model M =
(X,R, ν) where (X,R) is a finite reflexive and transitive cofinal frame such that
‖ϕ∗‖M 6= X. Then, by Lemma 3, MB is a model based on the brush (X,RB)
and ‖ϕ‖MB 6= X. Hence, by Lemma 2(2), we have KD45 6` ϕ.

Theorem 8. KD45 is complete wrt the class of extremally disconnected spaces in the
topological belief semantics.

Proof. Let ϕ ∈ LB such that KD45 6` ϕ. By Theorem 7, S4.2 6` ϕ∗. Hence, by
topological completeness of S4.2 wrt the class of extremally disconnected spaces in
the interior semantics, there exists a topo-model M = (X, τ, ν) where (X, τ) is an
extremally disconnected space such that [ϕ∗]M 6= X. Then, by Proposition 9, [[ϕ]]M 6=
X. Thus, we found an extremally disconnected space (X, τ) which refutes ϕ in the
topological belief semantics. Hence, KD45 is complete wrt the class of extremally
disconnected spaces in the topological belief semantics.

Comparison with Related Work

Although the coincidence between the interior operator and S4-type knowledge was
realized quite early and has been studied together with its extensions to multi-agent
cases [53,55], to common knowledge [53], to logics of learning known as topo-logic [38,40]
extensively, Steinsvold was the first to acknowledge the match between the co-derived set
operator and belief, and propose a doxastic interpretation for the co-derived semantics
in his work [45]. We will now have a critical look at Steinsvold’s proposal and compare
it with our topological semantics for belief.

As emphasized in the introduction, one of the desirable properties of belief is a
negative one; namely the property of its being non-factive. This implies that a right
notion of belief should hold the possibility of error : it must be possible for an agents
to have false beliefs. A good semantics for belief should therefore allow for models
and worlds at which some beliefs are false. However, the co-derived semantics entails
that there is at least one false belief in all worlds of every topo-model, i.e., it demands
not only the possibility, but also the necessity of error. We take this to be a defect of
the co-derived semantics which results from the definition of the derived set operator.
Recall that for any topological space (X, τ), any subset A ⊆ X and any x ∈ X, we have

x ∈ d(A) iff for all open neighborhoods U of x, x ∈ U ∩ (A \ {x}).
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This implies, in particular that x 6∈ d({x}) for any x ∈ X, i.e., no x ∈ X is in the
derived set of its singleton set {x}. As is standard, we take the set of states where the
proposition P is true to represent this proposition (see, e.g., [5, 22]). More precisely,
we say that P is true at x iff x ∈ P . We now consider an arbitrary topological space
(X, τ) and the singleton proposition {x}5 where x ∈ X. By definition of d, we have
x 6∈ d({x}), i.e., x 6∈ 〈B〉({x}). Hence, x ∈ B(X \ {x}) meaning that the agent believes
the proposition X \ {x} at the world x. However, X \ {x} is in fact false at x since
x 6∈ X \ {x}. This argument holds for any topological space (X, τ) and any x ∈ X
implying that the co-derived semantics entails the necessity of error : “the actual world
is always dis-believed” [3].

Another objection against the co-derived semantics concerns in the relation between
knowledge and belief: it is vulnerable to Gettier counterexamples. For any topological
space (X, τ) and any A ⊆ X, we have

Int(A) = t(A) ∩A.

Assuming that the interior operator corresponds to the knowledge modality, we have

KP = BP ∧ P

for any proposition P . Therefore, the co-derived set interpretation of belief together
with the interior-based interpretation of knowledge yields that knowledge is true belief.
Even if true belief comes with a canonical justification, it can easily be ‘gettiered’.

The last argument concerning the advantages of our proposal over the co-derived set
semantics is of a technical nature. While the belief logic KD45 is sound and complete
wrt the class of extremally disconnected spaces in the topological belief semantics, it
is sound and complete wrt only the class of DSO-spaces in the co-derived semantics.
Therefore, as the following proposition shows, our topological interpretation of belief
works on a larger class of frames than the co-derived semantics does:

Proposition 13. Every DSO-space is extremally disconnected. However, not every
extremally disconnected space is a DSO-space.

Proof. Let (X, τ) be a DSO-space and U ∈ τ . Recall that for any A ⊆ X, Cl(A) =
d(A) ∪ A. So Cl(U) = d(U) ∪ U . Since (X, τ) is a DSO-space, d(U) is an open subset
of X. Thus, since U is open as well, d(U)∪U = Cl(U) is open. Therefore, (X, τ) is an
extremally disconnected spaces.

Now consider the topological space (X, τ) whereX = {1, 2, 3} and τ = {X, ∅, {2}, {1, 2}}.
It is easy to check that for all U ∈ τ , Cl(U) is open (in fact, for each U ∈ τ , Cl(U) = X).
Hence, (X, τ) is an extremally disconnected space. However, as Cl(X \ {2}) = {1, 3},
we have 2 6∈ d(X). Thus, (X, τ) is not dense in itself and thus not a DSO-space.

5We can consider the singleton proposition {x} as the complete description of the world x.



Chapter 5

Topological Semantics for Belief
Revision

5.1 Static Belief Revision: Conditional Beliefs

As discussed in Chapter 2, AGM theory is not successful in dealing with dynamic belief
change and it is in fact assumed to be static in the sense that it captures the agent’s
changing beliefs about an unchanging world [5]. Following [4, 5, 50, 57], we capture
“static” belief revision, i.e. AGM theory, in a modal framework by adding conditional
belief operators Bϕψ -which generalize the notion of belief- to our language LKB1.

As conditional beliefs capture hypothetical belief changes of an agent in case she
would learn certain things, we can obtain the semantics for a conditional belief modal-
ity Bϕψ in a natural and standard way by relativizing the semantics for the simple
belief modality to the extension of the learnt formula ϕ. By relativization we mean a
local change in the sense that it only affects one occurrence of the belief modality Bϕ.
It does not cause a change in the model (i.e., a global change) due to its static nature.
In this section, we investigate the natural topological analogue of modeling static belief
revision.

The basic topological semantics for conditional beliefs. For any subset P of
a topological space (X, τ), we can generalize the belief operator B on the topological
extensional frames given in the previous section by relativizing the closure and the
interior operators to the set P . More precisely, we define the conditional belief operator
BP : P(X)→ P(X) as

BP(A) = Cl(P ∩ Int(P → A))

for any A ⊆ X where P → A := (X \ P ) ∪ A. This immediately gives us a topological
semantics for the language LKCB obtained by adding the conditional belief modalities
Bϕψ to LKB . Given a topological modelM = (X, τ, ν), the additional semantic clause

1Conditional beliefs generalize simple beliefs in the sense that the latter can be defined in terms of
the former.

40
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reads
[[Bϕψ]]M = Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M))

where [[ϕ]]M → [[ψ]]M := (X \ [[ϕ]]M) ∪ [[ψ]]M. We refer to this semantics as the basic
topological semantics for conditional beliefs and knowledge.

Proposition 14. The following equivalences are valid in all topological spaces wrt the
basic topological semantics for conditional beliefs and knowledge

Bϕψ ↔ ¬K(ϕ→ ¬K(ϕ→ ψ)) ↔ 〈K〉(ϕ ∧K(ϕ→ ψ)).

Proof. Follows immediately from the semantics of conditional belief modalities and of
the knowledge modality.

Proposition 14 shows that, just like simple beliefs, conditional beliefs can be defined
in terms of knowledge. It also constitutes another justification for the semantic clause
of the conditional belief operator: the topological semantics for conditional beliefs and
knowledge validates above equivalence which generalizes the one2 for simple beliefs in
a natural way. More precisely, as a corollary of above proposition, we have

B>ψ ↔ 〈K〉(> ∧K(> → ψ)) ↔ 〈K〉Kψ ↔ Bψ.

Therefore, the logic KCB of knowledge and conditional beliefs, KB, and even the
unimodal fragment of KB having K as the only modality, have the same expressive
power, since we can define conditional beliefs and simple beliefs in terms of knowledge.
We thereby obtain the completeness for KCB trivially:

Theorem 9. The logic KCB of knowledge and conditional beliefs is axiomatized com-
pletely by the system S4.2 for the knowledge modality K together with the following
equivalences:

1. Bϕψ ↔ 〈K〉(ϕ ∧K(ϕ→ ψ))

2. Bϕ↔ B>ϕ

Proof. The validity of (1) and (2) is given by Proposition 14. While the latter reduces
belief to conditional belief, the former reduces conditional beliefs to knowledge. Hence,
the proof follows from the topological completeness of S4.2.

As a last observation on definability of the modalities in LKCB in terms of each other
we note that, unlike in the case of simple beliefs, knowledge can be defined in terms of
conditional beliefs.

Proposition 15. The following equivalences are valid in all topological spaces wrt the
basic topological semantics for conditional beliefs and knowledge

Kϕ ↔ ¬B¬ϕ> ↔ ¬B¬ϕ¬ϕ.
2The corresponding equivalence for simple beliefs is stated in Proposition 8.
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Proof. Follows immediately from the semantics of conditional belief modalities and of
the knowledge modality.

Proposition 15 also implies that the conditional belief operator is not a normal modal-
ity, i.e. it does not obey the necessitation rule. In particular, Bϕ> is not always valid.

Observations on AGM theory. As mentioned in the beginning of the section
and explained in Chapter 2, we try to embody AGM theory as static belief revision by
adding conditional belief modalities to our language and providing a semantics for them.
Now it is time to see how successful our topological analogue of static conditioning is
in representing AGM theory and its 8 postulates presented in Chapter 2.

The second equivalence in Proposition 15 implies that the modal formula Bϕϕ
corresponding to the AGM Success Postulate is not valid and that it has to be restricted
to new information that is consistent with the agent’s knowledge3:

Proposition 16. The formula ¬K¬ϕ→ Bϕϕ is valid in all topological spaces wrt the
basic topological semantics for conditional beliefs and knowledge.

Proof. Follows immediately from the semantics of conditional belief modalities and of
the knowledge modality.

This actually means that as long as the new information ϕ is consistent with the agent’s
knowledge, the agent could come to believe ϕ was the case (before the learning) if she
would learn ϕ.

Another valid axiom in our system is the so-called Consistency of Revision:

Proposition 17. The formula ¬Bϕ⊥ is valid in all topological spaces wrt the basic
topological semantics for conditional beliefs and knowledge.

Proof. Follows immediately from the semantics of conditional belief modalities.

This axiom corresponds to the AGM postulate Non-Vacuity. Although this postulate
is criticized for being too liberal in case the agent’s knowledge is taken into account,
above validity successfully captures said postulate of AGM theory.

Ideally, we would like to have all the AGM postulates in the appropriate form stated
in terms of conditional beliefs to be valid in our semantics. Our semantics validates
some of those, such as Non-vacuity and a restricted version of Success as stated above,
however, it does not validate Sub- and Super-expansion4. The basic topological seman-
tics for conditional beliefs is thus not optimal in capturing all of the AGM postulates
for static belief revision. This motivates the search for an alternative semantics for con-
ditional beliefs which captures more of the AGM postulates and is compatible with the

3Proposition 15 implies that B¬ϕ> ↔ B¬ϕ¬ϕ is valid. Hence, since Bϕ> is not always valid, Bϕϕ
is not valid either. However, we have ¬K¬ϕ↔ ¬¬B¬¬ϕ¬¬ϕ↔ Bϕϕ by Proposition 15.

4In modal terms, these postulates correspond to the axioms Inclusion and Rational Monotonicity,
respectively, given in Chapter 2.
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notion of belief in Stalnaker’s system. Fortunately, the definition of extremally discon-
nected spaces suggests an alternative semantics for conditional beliefs. We now present
this refined semantics for conditional beliefs and see how well it does in representing the
rationality postulates of AGM theory by checking the validity of the axioms of CDL.

5.1.1 A ‘Refined’ Topological Semantics for Conditional Beliefs

We start by recalling some properties of extremally disconnected spaces and topological
belief semantics. A topological space (X, τ) is extremally disconnected if the closure of
every open set in it is open. Equivalently, (X, τ) is extremally disconnected if for any
A ⊆ X we have Cl(Int(A)) = Int(Cl(Int(A))). Hence, given a topological extensional
frame (X,Kτ ,Bτ ) based on an extremally disconnected topology τ , we obtain

Bτ (A) = Clτ (Intτ (A)) = Intτ (Clτ (Intτ (A)))

for any A ⊆ X. Therefore, for any subset P of an extremally disconnected space (X, τ)
we can generalize the belief operator B on topological extensional frames (based on
extremally disconnected topologies) the same way as we did for topological semantics
for conditional beliefs and knowledge, i.e. by relativizing the closure and the interior
operators to the set P . However, this time we use the alternative definition Int(Cl(Int))
for the belief operator which is supplied by extremally disconnected spaces. More
precisely, we can define the new conditional belief operator BP : P(X)→ P(X) as

BP (A) = Int(P → Cl(P ∩ Int(P → A)))

for any A ⊆ X. This again immediately gives us a topological semantics for the language
LKCB. Given a topological modelM = (X, τ, ν), the additional semantic clause reads

[[Bϕψ]]M = Int([[ϕ]]M → Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M))).

We consider this semantics an improvement of the basic topological semantics of condi-
tional beliefs and knowledge, since, as we will see in Theorem 11, it is more successful
in capturing the rationality postulates of AGM theory. We refer to this semantics as
the refined topological semantics for conditional beliefs and knowledge. We denote the
logic of conditional beliefs and knowledge as KCB′ in this section, since its axiomati-
zation, which will be given in Theorem 10, is slightly different than the one previously
presented.

Proposition 18. The following equivalence is valid in all topological spaces wrt the
refined topological semantics for conditional beliefs and knowledge

Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))).

Proof. Follows immediately from the semantics of conditional belief modalities and of
the knowledge modality.
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Proposition 18 is indeed an analogue to Proposition 14 in the refined semantics; it
says that conditional beliefs can be defined in terms of knowledge. Moreover, the
refined topological semantics for conditional beliefs and knowledge also generalizes the
equivalence for simple beliefs given in Proposition 8:

Corollary 1. The following equivalences are valid in all topological spaces wrt the re-
fined topological semantics for conditional beliefs and knowledge

B>ψ ↔ K(> → 〈K〉(> ∧K(> → ψ)) ↔ K〈K〉Kψ.

Proof. Follows from Proposition 18 and the semantics of belief modality.

Proposition 19. The following equivalence is valid in all extremally disconnected spaces
wrt the refined topological semantics for conditional beliefs and knowledge

B>ψ ↔ Bψ.

Proof. Let (X, τ) be an extremally disconnected space and M = (X, τ, ν) be a model
on it. By the semantic clause for K, we have [[K〈K〉Kψ]]M = Int(Cl(Int([[ϕ]]M))).
Then, since (X, τ) is extremally disconnected, [[K〈K〉Kψ]]M = Cl(Int([[ϕ]]M)). Hence,
by the semantic clause for B, we have

[[K〈K〉Kψ]]M = Cl(Int([[ϕ]]M)) = [[Bϕ]]M

implying that K〈K〉Kψ ↔ Bϕ is valid on all extremally disconnected spaces. Then, by
Corollary 1, we have that B>ψ ↔ Bϕ is valid on all extremally disconnected spaces.

Therefore, we again trivially obtain the completeness result for KCB′:

Theorem 10. The logic KCB′ of knowledge and conditional beliefs is axiomatized
completely by the system S4.2 for the knowledge modality K together with the following
equivalences:

1. Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ)))

2. Bϕ↔ B>ϕ

Proof. The validity of (1) and (2) is given by Proposition 18 and 19, respectively. While
the latter reduces belief to conditional belief, the former reduces conditional beliefs to
knowledge. Hence, the proof follows from the topological completeness of S4.2.

Once again, the logic KCB′ of knowledge and conditional beliefs, Stalnaker’s system
KB of knowledge and full belief, and the unimodal fragment of KB having K as the
only modality are co-expressive. Furthermore, just as in the previous case, we can define
knowledge in terms of conditional beliefs:
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Proposition 20. The following equivalences are valid in all topological spaces wrt the
refined topological semantics for conditional beliefs and knowledge

Kϕ ↔ B¬ϕ⊥ ↔ B¬ϕϕ.

Proof. Follows immediately from the semantics of conditional belief modalities and of
the knowledge modality.

As a corollary of Proposition 20, we can also say that even the unimodal fragmentKCB
having only conditional belief modalities is as expressive as the logics stated above.

AGM theory vs. the refined topological semantics for conditional beliefs

Now it is time to demonstrate what we promised at the beginning of this section, i.e.
that the refined semantics provides a better semantics for conditional beliefs in the sense
that most of the AGM postulates in the appropriate form are valid in all topological
spaces wrt the refined topological semantics for conditional beliefs and knowledge or, in
other words, that most of the axioms of the system CDL are valid wrt this semantics.

Theorem 11. The following formulas are valid in all topological spaces wrt the refined
topological semantics for conditional beliefs and knowledge

Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
Truthfulness of Knowledge: Kϕ→ ϕ
Persistence of Knowledge: Kϕ→ Bθϕ
Strong Positive Introspection: Bθϕ→ KBθϕ
Success of Belief Revision: Bϕϕ
Consistency of Revision: ¬K¬ϕ→ ¬Bϕ⊥
Inclusion: Bϕ∧ψθ → Bϕ(ψ → θ)
Cautious Monotonicity: Bϕψ ∧Bϕθ → Bϕ∧ψθ

Moreover, the Necessitation rule for conditional beliefs:

From ` ϕ infer ` Bψϕ

preserves validity.

Proof. See proof in the Appendix.

The validity of the Normality principle and the Necessitation rule shows that, unlike
in case of the basic topological semantics for conditional beliefs, the conditional belief
modality is a normal modal operator with respect to the refined semantics. Moreover,
the refined semantics also validates the Success Postulate without any restriction5.
However, in this case, we have to restrict the principle of Consistency of Belief Revision
to the formulas that are consistent with the agent’s knowledge. This is in fact a desirable

5Recall that the basic semantics demands to restrict the Success Postulate to the formulas that are
consistent with the agent’s knowledge.
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restriction, as mentioned before, taking into account the agent’s knowledge. If the
agent knows ¬ϕ with some degree of certainty, she should not revise her beliefs with
ϕ. As conditional beliefs pre-encode possible future belief changes of an agent and the
future belief changes must be based on the new information consistent with the agent’s
knowledge, her consistent conditional beliefs must pre-encode the possibilities that are
in fact consistent with her knowledge.

More generally, all the axioms of the system CDL except for Strong Negative Intro-
spection and Rational Monotonicity are valid on all topological spaces wrt the refined
topological semantics for conditional beliefs and knowledge. In fact, the failure of
Strong Negative Introspection is an expected result for the following reasons. First of
all, observe that Theorem 10 and Theorem 11 imply that all the formulas stated in
Theorem 11 are theorems of the system KCB′. Recall that

¬Bθϕ→ K¬Bθϕ

is the principle of Strong Negative Introspection. If this principle were a theorem of
KCB′, then in particular ¬B¬ϕϕ → K¬B¬ϕϕ would be a theorem of KCB′. Then,
by Proposition 20, we would obtain

¬Kϕ→ K¬Kϕ

as a theorem of KCB′. However, Theorem 10 says that the knowledge modality of
KCB′ is an S4.2-type modality implying that ¬Kϕ→ K¬Kϕ is not a theorem of the
system.

Moreover, even the extremally disconnected spaces fail to validate Rational Mono-
tonicity, which captures the AGM postulate of Superexpansion, wrt the refined topo-
logical semantics for conditional beliefs and knowledge. However, a weaker principle,
namely, the principle of Cautious Monotonicity is valid in all topological spaces. This
principle says that if the agent would come to believe ψ and would also come to believe
θ if she would learn ϕ, her learning ψ should not defeat her belief in θ and vice versa.
In [33], the authors state that D. Gabbay also gives a convincing argument to accept
Cautious Monotonicity: “if ϕ is an enough reason to believe ψ and also to believe θ,
then ϕ and ψ should also be enough to make us believe θ, since ϕ was enough anyway
and, on this basis, ψ was accepted” [33, p. 178].

The refined conditional belief semantics therefore captures the AGM postulates 1-7
together with a weaker version of 8. It is thus more successful than the basic one in
modeling static belief change of a rational agent.

5.2 Dynamic Belief Revision: Updates

In Dynamic Epistemic Logic, update (dynamic conditioning) corresponds to change of
beliefs through learning hard information. It is the operation of taking the restriction
of the model to the set of worlds in which the new information is true [50]. Unlike the
case for conditional beliefs, update induces a global change in the model.
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The topological analogue of this corresponds to taking the restriction of a topology
τ on X to a subset P ⊆ X (see, e.g. [7, 8, 61]). This way, we obtain a subspace of a
given topological space.

Definition 14 (Subspace). Given a topological space (X, τ) and a set P ⊆ X, a space
(P, τP ) is called a subspace of (X, τ) where τP = {U ∩ P : U ∈ τ}.

We can define the closure operator ClτP and the interior operator IntτP of the subspace
(P, τP ) in terms of the closure and the interior operators of the space (X, τ) as follows6:

ClτP (A) = Cl(A) ∩ P

IntτP (A) = Int(P → A) ∩ P .

Topological semantics for update modalities. We now add to the language LKCB
new modalities 〈!ϕ〉 to be thought of as (existential) dynamic modalities associated with
updates. 〈!ϕ〉ψ means that ϕ is true and after the agent learns the new information ϕ,
ψ becomes true. The dual [!ϕ] is defined as ¬〈!ϕ〉¬ as usual and [!ϕ]ϕ means that if ϕ
is true then after the agent learns the new information ϕ, ψ becomes true.

Let (X, τ, ν) be a topological model and P ⊆ X. We letMP = (P, τP , νP ) denote a
new model where (P, τP ) is a subspace of (X, τ) and νP (p) = ν(p)∩P for each p ∈ Prop.
Given a formula ϕ, we denote the restricted model as

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

where [[ϕ]] = [[ϕ]]M. Then, the semantics for 〈!ϕ〉ψ on a model M = (X, τ, ν) is given
as follows for any x ∈ X :

x ∈ [[〈!ϕ〉ψ]]M iff x ∈ [[ϕ]]M and x ∈ [[ψ]]Mϕ .

Hence,
x ∈ [[〈!ϕ〉ψ]]M iff x ∈ [[ϕ]]M ∩ [[ψ]]Mϕ .

As [[ψ]]Mϕ ⊆ [[ϕ]], the semantics for 〈!ϕ〉ψ boils down to

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ (5.1)

Proposition 21. LetM = (X, τ, ν) be a topo-model, ϕ be a formula and p be an atomic
sentence. Then we have

[[Bp]]Mϕ = [[ϕ ∧Bϕp]]M

As a consequence, the following formula is valid:

〈!ϕ〉Bp ↔ (ϕ ∧Bϕp).

More generally, the following Reduction Law for belief is valid, for arbitrary formulas
ϕ,ψ:

〈!ϕ〉Bψ ↔ (ϕ ∧Bϕ〈!ϕ〉ψ).
6See [19, pp. 65-74].
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Proof. We will only prove that 〈!ϕ〉Bψ ↔ (ϕ ∧Bϕ〈!ϕ〉ψ) is valid on any topo-model,
the previous equivalences follow from this one.

LetM = (X, τ, ν) be a topo-model and ϕ,ψ be any two formulas. Then,

[[〈!ϕ〉Bψ]]M = [[Bψ]]Mϕ

= Intτ[[ϕ]]
(Clτ[[ϕ]]

(Intτ[[ϕ]]
([[ψ]]Mϕ)))

= Intτ[[ϕ]]
(Clτ[[ϕ]]

(Intτ[[ϕ]]
([[〈!ϕ〉ψ]]M)))

= Intτ[[ϕ]]
(Clτ[[ϕ]]

(Int([[ϕ]]M → [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]M))

= Intτ[[ϕ]]
(Cl(Int([[ϕ]]M → [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]M) ∩ [[ϕ]]M)

= Int([[ϕ]]M → (Cl(Int([[ϕ]]M → [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]M) ∩ [[ϕ]]M)) ∩ [[ϕ]]M

= Int([[ϕ]]M → Cl(Int([[ϕ]]M → [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]M)) ∩ [[ϕ]]M

= B[[ϕ]]M [[〈!ϕ〉ψ]]M ∩ [[ϕ]]M

= [[Bϕ〈!ϕ〉ψ]]M ∩ [[ϕ]]M

= [[Bϕ〈!ϕ〉ψ ∧ ϕ]]M

Therefore, asM has been chosen arbitrarily, 〈!ϕ〉Bψ ↔ (ϕ∧Bϕ〈!ϕ〉ψ) is valid on any
topo-model.

Theorem 12. The logic obtained by adding update modalities to the language LKCB
is axiomatized completely by adding the following reduction axioms to any complete
axiomatization of the logic KCB′:

1. 〈!ϕ〉p ↔ (ϕ ∧ p)

2. 〈!ϕ〉¬ψ ↔ (ϕ ∧ ¬〈!ϕ〉ψ)

3. 〈!ϕ〉(ψ ∧ θ) ↔ (〈!ϕ〉ψ ∧ 〈!ϕ〉θ)

4. 〈!ϕ〉Kψ ↔ (ϕ ∧K(ϕ→ 〈!ϕ〉ψ))

5. 〈!ϕ〉Bθψ ↔ (ϕ ∧B〈!ϕ〉θ〈!ϕ〉ψ)

Proof. See proof in the Appendix.

5.3 A Unimodal Case: wKD45

The result in this section is of a more technical nature. We propose another topological
semantics for the language LB and present a soundness and completeness result for the
system wKD45, a weakening of KD45 which will be presented below, wrt the class of
all topological semantics.

Recall that given an extremally disconnected space (X, τ), we have

Cl(Int(A)) = Int(Cl(Int(A)))
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for any A ⊆ X. Hence, given a topo-modelM = (X, τ, ν), the semantic clause for the
belief modality can be written in the following equivalent forms

[[Bϕ]]M = Cl(Int([[ϕ]]M)) = Int(Cl(Int([[ϕ]]M)))

if (X, τ) is an extremally disconnected space. However, Cl(Int(A)) = Int(Cl(Int(A)))
is not always the case for all topological spaces and all A ⊆ X; the equation demands
the restriction to extremally disconnected spaces. In this section, we investigate the
topological semantics based on the interior of the closure of the interior operator on
the class of all topological spaces, i.e. without the restriction to extremally disconnected
topologies.

5.3.1 The system wKD45 and its topological semantics

We define the logic wKD45 as

wKD45 = K + (Bϕ→ 〈B〉ϕ) + (Bϕ→ BBϕ) + (B〈B〉Bϕ→ Bϕ).

and call it weak KD45. This logic is weaker than KD45 since it is obtained by
replacing the 5-axiom with the axiom B〈B〉Bϕ → Bϕ and while B〈B〉Bϕ → Bϕ
is a theorem of KD45, the 5-axiom is not a theorem of wKD45. More precisely,
KD45 ` B〈B〉Bϕ → Bϕ but wKD45 6` 〈B〉ϕ → B〈B〉ϕ. We find it hard to give
a direct and clear interpretation for this axiom as is given for the axiom of Negative
Introspection, since it is too complex in the sense that it includes three consecutive
modalities. However, we can interpret it on the basis of the axioms that we have al-
ready given an interpretation, in particular, based on the interpretation of Negative
Introspection. It is easier to see the correspondence if we state the weak axiom in the
following equivalent form:

¬Bϕ→ 〈B〉B¬Bϕ.
Recall that the principle of Negative Introspection says that if an agent does not believe
ϕ, then she believes that she does not believe ϕ. On the other hand, taking the reading
of Negative Introspection as the reference point, one possible doxastic reading for this
axiom can be given as if the agent does not believe ϕ, then it is doxastically possible to
her that she believes that she does not believe ϕ.

Semantics. Let M = (X, τ, ν) be a topo-model. The semantic clauses for the
propositional variables and the Boolean connectives are the same as in the interior
semantics. For the modal operator B, we put

[[Bϕ]]M = Int(Cl(Int([[ϕ]]M)))

and the semantic clause for 〈B〉 is easily obtained as

[[〈B〉ϕ]]M = Cl(Int(Cl([[ϕ]]M))).

Validity of a formula is defined as usual. We call this semantics w-topological belief
semantics referring to the system wKD45 for which we will prove soundness and com-
pleteness. This way we distinguish it from the topological belief semantics presented
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in Chapter 4 wrt to which we proved the soundness and completeness of the system
KD45. Throughout this section, we again use the notation [ϕ]M for the extension of a
formula ϕ ∈ LK wrt the interior semantics in order to make clear in which semantics
we work. We reserve the notation [[ϕ]]M for the extensions of the formulas ϕ ∈ LB
wrt the w-topological belief semantics. We skip the index when confusion is unlikely to
occur.

Definition 15 (Translation (.)~ : LB → LK). For any ϕ ∈ LB, the translation (ϕ)~

of ϕ into LK is defined recursively as follows:

1. (⊥)~ = ⊥

2. (p)~ = p, where p ∈ Prop

3. (¬ϕ)~ = ¬ϕ~

4. (ϕ ∧ ψ)~ = ϕ~ ∧ ψ~

5. (Bϕ)~ = K〈K〉Kϕ~

6. (〈B〉ϕ)~ = 〈K〉K〈K〉ϕ~

Proposition 22. For any topo-model M = (X, τ, ν) and for any formula ϕ ∈ LB we
have

[[ϕ]]M = [ϕ~]M.

Proof. We prove the lemma by induction on the complexity of ϕ. The cases for

1. ϕ = ⊥,

2. ϕ = p,

3. ϕ = ¬ψ, and

4. ϕ = ψ ∧ χ

are straightforward. Now let ϕ = Bψ, then

[[ϕ]]M = [[Bψ]]M

= Int(Cl(Int([[ψ]]M))) (by the w-topological belief semantics for LB)
= Int(Cl(Int([ψ~]M))) (by I.H.)
= [K〈K〉Kψ∗]M (by the interior semantics for LK .)
= [(Bψ)~]M (by the translation ~.)
= [ϕ~]M.
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5.3.2 Soundness of wKD45

The proof of soundness follows as usual.

Proposition 23. For any topo-modelM = (X, τ, ν) and any ϕ ∈ LB we have

1. [[Bϕ→ 〈B〉ϕ]] = X

2. [[Bϕ→ BBϕ]] = X,

3. [[B〈B〉Bϕ→ Bϕ]] = X.

Proof. LetM = (X, τ, ν) be a topo-model and ϕ ∈ LB. Note that for any ϕ,ψ ∈ LB
we have

[[ϕ→ ψ]] = X iff [[ϕ]] ⊆ [[ψ]]. (5.2)

1. By equation 5.2, it suffices to show that [[Bϕ]] ⊆ [[〈B〉Bϕ]] and the proof follows:

[[Bϕ]] = Int(Cl(Int([[ϕ]])))
⊆ Int(Cl(([[ϕ]]))) (by (I2) and (C2))
⊆ Cl(Int(Cl([[ϕ]]))) (by (C2))
= [[〈B〉ϕ]].

2. Similar to part-(1), it suffices to show that [[Bϕ]] ⊆ [[BBϕ]]. As known, the interior
of a closed set is an open domain7 [19, p. 20]. We then have

[[Bϕ]] = Int(Cl(Int([[ϕ]]))) = Int(Cl(Int(Cl(Int([[ϕ]])))))

as Cl(Int([[ϕ]])) is closed in (X, τ). Then, we have

Int(Cl(Int(Cl(Int([[ϕ]]))))) = Int(Cl(Int(Int(Cl(Int([[ϕ]])))))) (by (I4))
= [[BBϕ]]

Therefore, we obtain [[Bϕ]] = [[BBϕ]] which implies [[Bϕ→ BBϕ]] = X.

3. The proof proceeds in a similar way as in above cases:

[[B〈B〉Bϕ]] = Int(Cl(Int(Cl(Int(Cl(Int(Cl(Int(([[ϕ]]))))))))))
⊆ Int(Cl(Int([[ϕ]]))) (by the argument on open domains in (2))
= [[Bϕ]].

Therefore, by equation 5.2, we have [[B〈B〉Bϕ→ Bϕ]] = X.

7A subset A of a topological space is called an open domain if A = Int(Cl(A)) [19, p. 20]. In the
literature, an open domain is also called regular open.
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Proposition 22 therefore shows that all the modal axioms of wKD45 except for the
K-axiom are valid on all topological spaces wrt the w-topological belief semantics.
However, just as in the case for KD45 and the topological belief semantics, we will
use the Kripke semantics and the defined translation in order to prove validity of the
K-axiom.

Lemma 5. For any ϕ ∈ LK , S4 ` K〈K〉Kϕ ∧K〈K〉Kψ → K〈K〉K(ϕ ∧ ψ).

Proof. We know that S4 is complete wrt the class of reflexive and transitive Kripke
frames. So, it suffices to show that K〈K〉Kϕ∧K〈K〉Kψ → K〈K〉K(ϕ∧ψ) is valid on
all reflexive and transitive Kripke frames.
Let F = (X,R) be a reflexive and transitive Kripke frame, M = (X,R, ν) a model
on F and x ∈ X. Suppose x ∈ ‖K〈K〉Kϕ ∧K〈K〉Kψ‖. Hence, x ∈ ‖K〈K〉Kϕ‖ and
x ∈ ‖K〈K〉Kψ‖. This implies

R(x) ⊆ ‖〈K〉Kϕ‖ and R(x) ⊆ ‖〈K〉Kψ‖ (5.3)

Note that, since R is reflexive, R(x) 6= ∅. Now let y ∈ R(x). Then, by 5.3, y ∈
‖〈K〉Kϕ‖ and y ∈ ‖〈K〉Kψ‖. Hence, there exists a z1 ∈ X with yRz1 such that z1 ∈
‖Kϕ‖. Since R is transitive and xRyRz1, we have xRz1. Then, by 5.3, z1 ∈ ‖〈K〉Kψ‖.
Thus, there exists z2 ∈ X with z1Rz2 such that z2 ∈ ‖Kψ‖. Since R is transitive
and z1Rz2, z1 ∈ ‖Kϕ‖ implies that z2 ∈ ‖Kϕ‖ as well. Hence, z2 ∈ ‖Kϕ ∧ Kψ‖
implying z2 ∈ ‖K(ϕ ∧ ψ)‖. Since R is transitive and yRz1Rz2, y ∈ ‖〈K〉K(ϕ ∧ ψ)‖.
Since y has been chosen arbitrarily from R(x), it holds for all y ∈ R(x). Therefore,
x ∈ ‖K〈K〉K(ϕ∧ψ)‖. Therefore, by the completeness of S4, we have S4 ` K〈K〉Kϕ∧
K〈K〉Kψ → K〈K〉K(ϕ ∧ ψ).

Proposition 24. The K-axiom Bϕ ∧Bψ → B(ϕ ∧ ψ) is valid in all topological spaces
wrt the w-topological belief semantics.

Proof. Let (X, τ) be a topological space andM = (X, τ, ν) be a topo-model on it. Also
suppose ϕ,ψ ∈ LB. Then,

[[Bϕ ∧Bψ → B(ϕ ∧ ψ)]]M = [(Bϕ ∧Bψ → B(ϕ ∧ ψ))~]M (by Proposition 22)
= [K〈K〉Kϕ~ ∧K〈K〉Kψ~ → K〈K〉K(ϕ~ ∧ ψ~)]M

= X (by Lemma 5)

Hence, (X, τ) validates Bϕ ∧Bψ → B(ϕ ∧ ψ).

Theorem 13. The logic wKD45 is sound wrt the class all topological spaces in w-
topological belief semantics.

Proof. The validity of the axioms of wKD45 follows from Propositions 23 and 24. We
only need to show that the inference rules Necessitation and Modus Ponens preserve
validity.
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Necessitation: Let ϕ ∈ LB such that Bϕ is not valid. Then, there exists a
topo-modelM = (X, τ, ν) such that [[Bϕ]]M 6= X, i.e., Int(Cl(Int([[ϕ]]M))) 6= X.
Hence, [[ϕ]]M 6= X implying that ϕ is not valid.

MP: See the proof of Theorem 6.

Completeness of wKD45

We prove the completeness of wKD45 by using the translation ~ from the language
LB into the language LK and the topological completeness of S4. In other words, we
follow the same strategy as in the proof of the completeness forKD45 in the topological
belief semantics presented in Chapter 4.

For the topological completeness proof of wKD45 we also make use of the com-
pleteness of wKD45 and S4 in the standard Kripke semantics. We first recall some
frame conditions concerning the relational completeness of the respective systems.

We denote the set of final clusters of a transitive Kripke frame (X,R) by CR. A
transitive Kripke frame (X,R) having at least one final cluster is called weak cofinal
if for each x ∈ X there is a C ∈ CR such that for all y ∈ C we have xRy. In fact,
every finite reflexive and transitive frame is weak cofinal. We call a weak cofinal frame
a weak brush if X \

⋃
CR is an irreflexive anti-chain, i.e., for each x, y ∈ X \

⋃
CR

we have ¬(xRy). A weak brush with a singleton X \
⋃

CR is called a weak pin. By
definition, every weak brush and every weak pin is transitive and also serial. Note that
a brush (defined in Chapter 4) is a weak brush with a singleton CR. Finally, we say
that a transitive frame (X,R) is of depth n if there is a chain of points x1Rx2R . . . Rxn
such that ¬(xi+1Rxi) for any i ≤ n and there is no chain of greater length satisfying
this condition. It is hard to draw a generic picture of a weak brush, but the following
figures illustrate weak pins and how a weak brush could look like (where top squares
correspond to final clusters).

...

Figure 5.1: Weak pin Figure 5.2: An example of a weak brush

Lemma 6. If F = (X,R) is a rooted wKD45-frame with depth at least 2 then it is a
weak pin.

Proof. Let F = (X,R) be a rooted wKD45-frame with depth of at least 2 and x be the
root. F is both transitive and serial since it validates the axioms D and 5. Moreover,
as it is a frame of depth 2, there exists a y0 ∈ X such that xRy0 and ¬(y0Rx). As
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F is serial, every maximal point of it is in a final cluster. Hence, for any x ∈ X, x is
maximal point iff there is a final cluster C of F such that x ∈ C, i.e. the set of maximal
points of F is

⋃
CR. Recall that a weak pin is a weak cofinal frame with a singleton

irreflexive X \
⋃

CR. We hence need to show that x is an irreflexive point and every
successor of x is a maximal point. Suppose for a contradiction that xRx or there is a
t0 ∈ X such that xRt0 and t0 is not a maximal point of F .

• Case 1 : xRx

Consider the valuation ν on (X,R) such that ν(p) = X \ {x} for some p ∈ Prop.
We want to show that x ∈ ‖B〈B〉Bp‖ but x 6∈ ‖Bp‖. Let y ∈ X such that xRy.

Case 1.1: x = y
Since ¬(y0Rx) and xRx, we have that y0 6= x and x 6∈ R(y0). Hence,
R(y0) ⊆ (X \ {x}). Then, as ν(p) = X \ {x}, R(y0) ⊆ ν(p) implying that
y0 ∈ ‖Bp‖. Therefore, since yRy0, y ∈ ‖〈B〉Bp‖.
Case 1.2: x 6= y
If yRx, then by transitivity of R we have yRy0. Since y0 ∈ ‖Bp‖, we obtain
that y ∈ ‖〈B〉Bp‖.
If ¬(yRx) then for all z ∈ R(y) we have ¬(zRx) by transitivity of R. Hence,
for all z ∈ R(y), x 6∈ R(z) implying that R(z) ⊆ (X \ {x}) (since R is serial,
R(y) 6= ∅). Therefore, R(z) ⊆ ν(p). Hence, as yRz, y ∈ ‖〈B〉Bp‖.
Therefore x ∈ ‖B〈B〉Bp‖. On the other hand, as xRx and x 6∈ ν(p), x 6∈
‖Bp‖. We then have that (X,R) refutes B〈B〉Bp → Bp implying that F
cannot be a wKD45 frame. Therefore, x is an irreflexive point.

• Case 2 :

There is a t0 ∈ X such that xRt0 and t0 is not a maximal point of F . Since
t0 is not a maximal point, there exists a z0 ∈ X such that t0Rz0 but ¬(z0Rt0).
Consider the valuation ν on (X,R) such that ν(p) = X \ {t0} for some p ∈ Prop.
Observe that, as t0 6∈ R(z0), R(z0) ⊆ (X \ {t0}), thus, z0 ∈ ‖Bp‖. We want to
show that x ∈ ‖B〈B〉Bp‖ but x 6∈ ‖Bp‖. Let y ∈ X such that xRy. Then, since
x is an irreflexive point, y 6= x.

Case 2.1: yRz0
Then, as z0 ∈ ‖Bp‖, we have y ∈ ‖〈B〉Bp‖.
Case 2.2: ¬(yRz0)
Then, ¬(yRt0) by transitivity of R. This implies t0 6∈ R(y). Therefore,
R(y) ⊆ X \ {t0} meaning that R(y) ⊆ ν(p). Hence, y ∈ ‖Bp‖. Then, by
seriality and transitivity of R, we have y ∈ ‖〈B〉Bp‖.
Therefore x ∈ ‖B〈B〉Bp‖. On the other hand, as xRt0 and t0 6∈ ν(p),
x 6∈ ‖Bp‖. We then have that (X,R) refutes B〈B〉Bp → Bp implying that
every successor of x is a maximal point.



Chapter 5. Topological Semantics for Belief Revision 55

Therefore, every rooted wKD45 frame which is of depth at least 2 is a weak pin.
This implies that every rooted wKD45 is of at most depth 2.

Lemma 7.

1. Each reflexive and transitive weak cofinal frame is an S4-frame. Moreover, S4
is sound and complete wrt the class of finite rooted reflexive and transitive weak
cofinal frames.

2. Each weak brush is a wKD45-frame. Moreover, wKD45 is sound and complete
wrt the class of finite weak brushes, indeed, wrt the class of finite weak pins.

Proof. (1) is a very well-known and we refer to [14,15]. For (2), we proved in Lemma 6
that the wKD45-frames are of finite depth. It is well known that every logic over K4
that has finite depth has the finite model property (e.g., [15, Chapter 12 (tabularity)]).
This implies that wKD45 has the finite model property.

For any reflexive and transitive weak cofinal frame (X,R) we define RB on X by

xRBy if y ∈
⋃

CR(x)

for each x, y ∈ X, where
⋃

CR(x) = R(x) ∩
⋃

CR. In other words, RB(x) =
⋃

CR(x) for
each x ∈ X. Moreover, we have the following equivalence:

Lemma 8. For any reflexive and transitive weak cofinal frame (X,R),⋃
CRB =

⋃
CR.

Proof. Let (X,R) be a reflexive and transitive weak cofinal frame and x ∈ X.
(⊆) Suppose x ∈

⋃
CRB and x 6∈

⋃
CR. x ∈

⋃
CRB means that x ∈ C for some

C ∈ CRB . As C is a final cluster, there is no y ∈ X such that xRBy and ¬(yRBx).
On the other hand, since (X,R) is a weak cofinal frame, there is a C ′ ∈ CR such
that xRz for all z ∈ C ′. Hence, C ′ ⊆

⋃
CR(x). Thus, by definition of RB, we have

C ′ ⊆ RB(x). However, as x 6∈
⋃

CR, we have that ¬(zRx) and thus ¬(zRBx) for any
z ∈ C ′ contradicting x ∈ C for a final cluster C of (X,RB).in fact, there is a unique
C ∈ CRB such that RB(x) = C since C is a final cluster.

(⊇) Suppose x ∈
⋃

CR. Then, there is a (unique) C ∈ CR such that x ∈ C and
in fact R(x) = C. Also suppose that x 6∈

⋃
CRB . Hence, there is a y0 ∈ X such

that xRBy0 and ¬(y0RBx). Then, y0 ∈
⋃

CR(x) but x 6∈
⋃

CR(y0) by definition of
RB. By definition of RB, xRBy0 implies xRy0. Hence, as y0 ∈ R(x), we also have
R(y0) = R(x) = C. Thus,

⋃
CR(y0) =

⋃
CR(x). As R is reflexive, x ∈

⋃
CR(x) and

hence x ∈
⋃

CR(y0) contradicting ¬(y0RBx).
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Lemma 9. For any reflexive and transitive weak cofinal Kripke modelM = (X,R, ν),
any ϕ ∈ LK and any x ∈ X, we have⋃

CR(x) ⊆ ‖ϕ‖M iff x ∈ ‖K〈K〉Kϕ‖M.

Proof. LetM = (X,R, ν) be a reflexive and transitive weak cofinal model, ϕ ∈ LK and
x ∈ X.

(⇒) Suppose
⋃

CR(x) ⊆ ‖ϕ‖M. Let y ∈ X such that xRy. As R is transitive
and xRy, R(y) ⊆ R(x) implying that

⋃
CR(y) ⊆

⋃
CR(x). Hence, by assumption,⋃

CR(y) ⊆ ‖ϕ‖M. Thus, there is a C ∈ CR such that C ⊆ R(y) and C ⊆ ‖ϕ‖M. Since
for all z ∈ C, we have R(z) = C and C ⊆ ‖ϕ‖M, we have C ⊆ ‖Kϕ‖M. As C ⊆ R(y),
we have y ∈ ‖〈K〉Kϕ‖M. Therefore, since y has been chosen arbitrarily from R(x),
x ∈ ‖K〈K〉Kϕ‖M.

(⇐) Suppose
⋃

CR(x) 6⊆ ‖ϕ‖M. This implies that there exists a y ∈
⋃

CR(x) such
that y 6∈ ‖ϕ‖M. y ∈

⋃
CR(x) implies that there is a C ∈ CR such that R(y) = C and

R(y) ⊆ R(x). As zRy for all z ∈ C and y 6∈ ‖ϕ‖M, we have z 6∈ ‖Kϕ‖M for all z ∈ C.
Then, as R(y) = C, y 6∈ ‖〈K〉Kϕ‖M. Then, since xRy, x 6∈ ‖K〈K〉Kϕ‖M.

Lemma 10. For any reflexive and transitive weak cofinal frame (X,R),

1. (X,RB) is a weak brush.

2. For any valuation ν on X and for each formula ϕ ∈ LB we have

‖ϕ~‖M = ‖ϕ‖MB

whereM = (X,R, ν) andMB = (X,RB, ν).

Proof. Let (X,R) be a reflexive and transitive weak cofinal frame.

1. • Transitivity: Let x, y, z ∈ X such that xRBy and yRBz. This means that
y ∈

⋃
CR(x) and z ∈

⋃
CR(y). As R being transitive and xRy,

⋃
CR(y) ⊆⋃

CR(y). Hence, z ∈
⋃

CR(x), i.e., xRBz.

• Seriality: Let x ∈ X. Since (X,R) is weak cofinal, there is a y ∈
⋃

CR(x),
i.e., xRBy.

• Irreflexive, antichain: Suppose there is an x ∈ X \
⋃

CRB such that xRBx.
This implies, x ∈

⋃
CR(x), thus, x ∈

⋃
CR Then, by Lemma 8, x ∈

⋃
CRB

which contradicts our assumption. Moreover, suppose that X \
⋃

CRB is
not an antichain, i.e., there are x, y ∈ X \

⋃
CRB such that either xRBy or

yRBx. W.l.o.g., suppose xRBy. Hence, by definition of RB, y ∈
⋃

CR(x).
Thus, y ∈

⋃
CR and, by Lemma 8, y ∈

⋃
CRB contradicting y ∈ X \

⋃
CRB .

2. We prove this item by induction on the complexity of ϕ. Let M = (X,R, ν)
be a model on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are
straightforward. Let ϕ = Bψ.
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(⊆) Let x ∈ ‖(Bψ)~‖M = ‖K〈K〉Kψ~‖M. Then, by Lemma 9,
⋃

CR(x) ⊆
‖ψ~‖M. By I.H, we obtain

⋃
CR(x) ⊆ ‖ψ‖MB . Since

⋃
CR(x) = RB(x), we have

RB(x) ⊆ ‖ψ‖MB implying that x ∈ ‖Bψ‖MB .

(⊇) Let x ∈ ‖Bψ‖MB . Then, by the standard Kripke semantics, we have RB(x) ⊆
‖ψ‖MB . By I.H, we obtain RB(x) ⊆ ‖ψ~‖M. Since

⋃
CR(x) = RB(x), we have⋃

CR(x) ⊆ ‖ψ~‖M. Thus, by Lemma 9, x ∈ ‖K〈K〉Kψ~‖M = ‖(Bψ)~‖M.

Lemma 11. For any weak brush (X,R),

1. (X,R+) is a reflexive and transitive weak cofinal frame.

2. For any valuation ν on X and for each formula ϕ ∈ LB we have

‖ϕ‖M = ‖ϕ~‖M+

whereM = (X,R, ν) andM+ = (X,R+, ν).

Proof. Let (X,R) be a serial weak brush.

1. Since R is transitive, R+ is also transitive and it is reflexive by definition. More-
over, (X,R+) is weak cofinal since (X,R) is a weak brush.

2. We prove (2) by induction on the complexity of ϕ. LetM = (X, τ, ν) be a model
on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are straightforward.
Let ϕ = Bψ.

(⊆) Let x ∈ ‖Bψ‖M. Then, by the standard Kripke semantics, we have R(x) ⊆
‖ψ‖M. Hence, by I.H., R(x) ⊆ ‖ψ~‖M+ . Since (X,R) is a weak brush, R(x) =⋃

CR(x) ⊆
⋃

CR+(x). Hence, x ∈
⋃

CR+(x). Then, by Lemma 9, x ∈ ‖K〈K〉Kψ~‖M+ .

(⊇) Let x ∈ ‖K〈K〉Kψ~‖M+ . Then, by Lemma 9,
⋃

CR+(x)‖ψ~‖M+ . Thus, by
I.H.,

⋃
CR+(x)‖ψ‖M. Then, by a similar argument above, R(x) ⊆ ‖ψ‖M implying

that x ∈ ‖Bψ‖M.

Theorem 14. For each formula ϕ ∈ LB,

S4 ` ϕ~ iff wKD45 ` ϕ

.

Proof. Let ϕ ∈ LB.

(⇒) Suppose wKD45 6` ϕ. By Lemma 7(2), there exists a Kripke model M =
(X,R, ν) where (X,R) is a finite weak pin such that ‖ϕ‖M 6= X. Then, by
Lemma 11,M+ is a model based on the finite reflexive and transitive weak cofinal
frame (X,R+) and ‖ϕ~‖M+ 6= X. Hence, by Lemma 7(1), we have S4 6` ϕ~.
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(⇐) Suppose S4 6` ϕ~. By Lemma 7(1), there exists a Kripke model M =
(X,R, ν) where (X,R) is a finite reflexive and transitive weak cofinal frame such
that ‖ϕ~‖M 6= X. Then, by Lemma 10,MB is a model based on the (finite) weak
brush (X,RB) and ‖ϕ‖MB 6= X. Hence, by Lemma 7(2), we have wKD45 6` ϕ.

Theorem 15. wKD45 is complete wrt the class of all topological spaces in the w-
topological belief semantics.

Proof. Let ϕ ∈ LB such that wKD45 6` ϕ. By Theorem 14, S4 6` ϕ~. Hence, by
topological completeness of S4 wrt the class of all topological spaces in the interior
semantics, there exists a topo-model M = (X, τ, ν) such that [ϕ~]M 6= X. Then, by
Proposition 22, [[ϕ]]M 6= X. Thus, we found a topological space (X, τ) which refutes ϕ
in the w-topological belief semantics. Hence, wKD45 is complete wrt the class of all
topological spaces in the w-topological belief semantics.



Chapter 6

Conclusion

6.1 Summary

In this thesis, we proposed a new topological semantics for belief in terms of the closure
of the interior operator. Combining it with the interior semantics for knowledge, our
topological semantics for (full) belief constitutes the most general extensional semantics
for Stalnaker’s system of full belief and knowledge. Moreover, our proposal provides an
intuitive interpretation of Stalnaker’s conception of (full) belief as subjective certainty
due to the nature of topological spaces, in particular, through the definitions of interior
and closure operators. Recall that for any subset P of a topological space (X, τ) and
any x ∈ X,

x ∈ Int(P ) iff (∃U ∈ τ)(x ∈ U ∧ U ⊆ P ).

In other words, a state x is in the interior of P iff there is an open neighborhood U of
x such that U ∩ (X \ P ) = ∅, i.e., x can be sharply distinguished from all non-P states
by an open neighborhood U . Therefore, under this interpretation, we can say that an
agent knows P at a world x iff she can sharply distinguish it from all the non-P worlds.
Dually,

x ∈ Cl(P ) iff (∀U ∈ τ)(x ∈ U → U ∩ P 6= ∅)

meaning that a state x is in the closure of P iff it is very close to P , i.e., it cannot be
sharply distinguished from P states. Thus, according to our topological belief semantics,
an agent (fully) believes P at a state x iff she cannot sharply distinguish x from the
worlds in which she has knowledge of P , i.e., the agent cannot sharply distinguish
the states in which she has belief of P from the states in which she has knowledge of
P . Belief, under this semantics, therefore becomes subjectively indistinguishable from
knowledge, implying that our topological semantics perfectly captures the conception
of belief as ‘subjective certainty’.

Furthermore, we explore topological analogues of static and dynamic conditioning
by providing a topological semantics for conditional belief and update modalities. We
proposed two, basic and refined, topological semantics for conditional beliefs the latter of
which is an improvement of the former. We demonstrated that the refined semantics for
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conditional beliefs quite successfully captures the rationality postulates of AGM theory:
it validates the appropriate versions of the AGM postulates 1-7 and a weaker version
of postulate 8. We moreover gave a complete axiomatization of the logic of conditional
beliefs, as well as a complete axiomatization of the corresponding dynamic logic. Finally,
we concluded the thesis with a result of a more technical nature by providing a more
complex topological semantics for the language LB and proved completeness for the
logic wKD45 obtained from KD45 by weakening the 5-axiom.

The majority of approaches to knowledge and belief take belief – as the weaker
notion, – as basic and then strengthen it to obtain a ‘good’ concept of knowledge.
Our work provides a semantics for Stalnaker’s system which approaches the issue from
the other direction, i.e. taking knowledge as primitive. The formal setting developed
in our studies therefore adds a precise semantic framework to a rather non-standard
approach to knowledge and belief, providing a novel semantics to Stalnaker’s system
and imparting if not additional momentum at least an additional interpretation of it.

Moreover, on a purely formal level this thesis follows an only recently initiated
approach [45,46] to doxastic notions by interpreting them in a topological setting; these
having traditionally been modeled in relational or probabilistic frameworks. This in
itself provides interesting new insights, but also allows for an intuitive interpretation.

6.2 Future Work

There are several directions in which this work can be extended. In this thesis, we
focused on providing nice topological semantics for single agent logics for knowledge,
belief, conditional beliefs and updates. However, reasoning about knowledge, belief
and especially about information change becomes especially interesting when applied
to multi-agent cases. One natural continuation of this work therefore consists in ex-
tending our framework to a multi-agent setting and providing topological semantics for
operators, such as common knowledge and common belief, in line with, e.g., [45, 55].

Here, we focused on only one type of dynamic belief change, namely, updates. How-
ever, there are many ways to change the beliefs of an agent depending on the information
she receives. While receiving ‘hard’ information (information coming from an infallible
source) corresponds to updates, receiving ‘soft’ information (information coming from
a less reliable source) corresponds to lexicographic upgrade or conservative upgrade, as
e.g. presented in [50] based on the plausibility models. On a plausibility model, while
lexicographic upgrade with ϕ makes all ϕ-worlds more plausible than all ¬ϕ-worlds,
conservative upgrade with ϕ changes the model by making the most plausible ϕ-worlds
the most plausible worlds of the model. It would be worth trying to capture these belief
revision policies in our topological setting.

We are not entirely satisfied with the doxastic interpretation given to the new axiom
of the system wKD45 presented in Chapter 5. A better understanding of this axiom
and its doxastic implications are instrumental in providing a satisfactory doxastic in-
terpretation of wKD45.

Moreover, the topological nature of the effort modality as introduced in the language



Chapter 6. Conclusion 61

of ‘topo-logic’, proposed by Parikh and Moss [38], indicates a close connection to our
framework. This suggests the attempt of embedding said modality into our setting and
investigating its epistemic/doxastic interpretation within this new context.

Last but not least, the interaction between topology and learning theory, and learn-
ing theory and dynamic epistemic logic, suggests learning theory to be a fruitful direc-
tion in which to extend our framework.



Appendix A

Proofs for Chapter 5

Theorem 11.

Proof. By Proposition 18, we know that each of the axioms can be rewritten by using
only the knowledge modality K. We also know that the logic of knowledge S4 is
complete wrt to the class of reflexive and transitive Kripke frames. In this proof, we
will first show that each of the axioms is a theorem of S4 by using Kripke frames and
the relational completeness of S4. Then, we can conclude that these axioms are also
valid on all topological spaces, since S4 is sound wrt the class of all topological spaces
in the interior semantics. Recall that the semantic clauses for knowledge in the interior
semantics and in the refined topological semantics for conditional beliefs and knowledge
coincide.

Let (X,R) be a reflexive and transitive Kripke frame, M = (X,R, ν) a model on
(X,R) and x any element of X.

1. Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
By Proposition 18, we can rewrite the Normality principle as

K(θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ))))→
(K(θ → 〈K〉(θ ∧K(θ → ϕ)))→ K(θ → 〈K〉(θ ∧K(θ → ψ)))).

Suppose x ∈ ‖K(θ → 〈K〉(θ ∧ K(θ → (ϕ → ψ))))‖ and x ∈ ‖K(θ → 〈K〉(θ ∧
K(θ → ϕ)))‖ . This implies,

R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ)))‖ (A.1)
R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → ϕ))‖ (A.2)

We want to show that R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → ψ))‖

62



Appendix 63

Let y ∈ X such that xRy, i.e. y ∈ R(x). Suppose y ∈ ‖θ‖. Then,

y ∈ ‖〈K〉(θ ∧K(θ → (ϕ→ ψ))‖ by (A.1)
y ∈ ‖〈K〉(θ ∧K(θ → ϕ))‖ by (A.2)

These imply that there exists a y1 ∈ X with yRy1 such that y1 ∈ ‖θ∧K(θ → (ϕ→
ψ))‖, and there exists a y2 ∈ X with yRy2 such that y2 ∈ ‖θ ∧K(θ → ϕ)‖. Since
R is transitive and xRyRy2, we also have y2 ∈ ‖θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ))‖,
by (A.1).
Similar as above, there exists y′2 ∈ X with y2Ry

′
2 such that y′2 ∈ ‖θ ∧ K(θ →

(ϕ→ ψ))‖. Hence, we have
y′2 ∈ ‖θ‖, and (A.3)

R(y′2) ⊆ ‖θ → (ϕ→ ψ)‖. (A.4)

As y2 ∈ ‖K(θ → ϕ)‖, y2Ry
′
2 and R is transitive, y′2 ∈ ‖K(θ → ϕ)‖ as well. Hence,

R(y′2) ⊆ ‖θ → ϕ‖. (A.5)

Thus, since ((θ → (ϕ→ ψ)) ∧ (θ → ϕ))→ (θ → ψ) is a tautology, R(y′2) ⊆ ‖θ →
ψ‖ by (A.4) and (A.5).
Hence, y′2 ∈ ‖K(θ → ψ)‖. Then, by (A.3), y′2 ∈ ‖θ ∧K(θ → ψ)‖.
Thus, as yRy2Ry

′
2 and R is transitive, we have y ∈ ‖〈K〉(θ ∧ K(θ → ψ))‖.

Therefore, y ∈ ‖θ → 〈K〉(θ ∧ K(θ → ψ))‖. Since we have chosen y arbitrarily
from R(x),

R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → ψ))‖, implying that

x ∈ ‖K(θ → 〈K〉(θ ∧K(θ → ψ)))‖.

2. Success of Belief Revision: Bϕϕ
By Proposition 18, we can rewrite this axiom as

K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ))).

We want to show that x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ)))‖, i.e., that
R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ))‖.
Let y ∈ X such that y ∈ R(x) and y ∈ ‖ϕ‖. As R is reflexive,

y ∈ ‖〈K〉ϕ‖ (A.6)

Observe that (ϕ ∧K(ϕ → ϕ)) ↔ ϕ. Thus, (A.6) implies y ∈ ‖〈K〉(ϕ ∧K(ϕ →
ϕ))‖. Therefore, y ∈ ‖ϕ → 〈K〉(ϕ ∧ K(ϕ → ϕ))‖. Since we have chosen y
arbitrarily from R(x),

R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ))‖, implying that

x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ)))‖.
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3. Truthfulness of Knowledge: Kϕ→ ϕ
This is the T axiom of S4, hence its validity immediately follows from the sounde-
ness of S4 wrt the class of reflexive and transitive frames.

4. Persistence of Knowledge: Kϕ→ Bψϕ
By Proposition 18, we can rewrite this axiom as

Kϕ→ K(ψ → 〈K〉(ψ ∧K(ψ → ϕ))).

Suppose x ∈ ‖Kϕ‖ and let y ∈ X such that xRy and y ∈ ‖ψ‖. By the first
assumption, y ∈ ‖ϕ‖ as well. As x ∈ ‖Kϕ‖, x ∈ ‖K(ψ → ϕ)‖. Then, since xRy
and R is tarnsitive, y ∈ ‖K(ψ → ϕ)‖ too. Thus, y ∈ ‖ψ ∧ K(ψ → ϕ)‖ and by
reflexivity of R, y ∈ ‖〈K〉(ψ ∧K(ψ → ϕ))‖. Hence, y ∈ ‖ψ → 〈K〉(ψ ∧K(ψ →
ϕ))‖. As y has been chosen arbitrarily from R(x), x ∈ ‖K(ψ → 〈K〉(ψ ∧K(ψ →
ϕ)))‖.

5. Strong Positive Introspection: Bψϕ→ KBψϕ
By Proposition 18, we can rewrite this axiom as

K(ψ → 〈K〉(ψ ∧K(ψ → ϕ)))→ KK(ψ → 〈K〉(ψ ∧K(ψ → ϕ))).

Obviously, it is an instance of the 4-axiom. Hence, it is valid.

6. Inclusin: Bϕ∧ψθ → Bϕ(ψ → θ)
By Proposition 18, we can rewrite this axiom as

K((ϕ∧ψ)→ 〈K〉(ϕ∧ψ∧K(ϕ∧ψ → θ)))→ K(ϕ→ 〈K〉(ϕ∧K(ϕ→ (ψ → θ))))

Suppose x ∈ ‖K((ϕ ∧ ψ) → 〈K〉(ϕ ∧ ψ ∧ K(ϕ ∧ ψ → θ)))‖. This implies,
R(x) ⊆ ‖(ϕ ∧ ψ)→ 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖, i.e.,
R(x) ⊆ ‖ϕ→ (ψ → 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖.

We want to show that R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ (ψ → θ)))‖.
Let y ∈ X with y ∈ R(x) such that y ∈ ‖ϕ‖. Then, by assumption,

y ∈ ‖ψ → 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖.

Case 1: y 6∈ ‖ψ‖
Suppose for contradiction that y 6∈ ‖〈K〉(ϕ ∧ K(ϕ → (ψ → θ)))‖. This
implies, for every z ∈ X with yRz, z 6∈ ‖ϕ ∧K(ϕ → (ψ → θ))‖. Hence, for
every z ∈ X with yRz, z 6∈ ‖ϕ‖ or z 6∈ ‖K(ϕ → (ψ → θ))‖. Then, since
y ∈ ‖ϕ‖ and R is reflexive, y 6∈ ‖K(ϕ→ (ψ → θ))‖. Thus, there is a z0 ∈ X
with yRz0 such that z0 6∈ ‖ϕ → (ψ → θ)‖, i.e., z0 ∈ ‖ϕ‖, z0 ∈ ‖ψ‖ but
z0 6∈ ‖θ‖.
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On the other hand, as xRyRz0 and R being transitive,
z0 ∈ ‖ϕ→ (ψ → 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ)))‖ by the first assumption.
Thus, z0 ∈ ‖〈K〉(ϕ∧ψ∧K(ϕ∧ψ → θ))‖. This implies, there is a z1 ∈ X with
z0Rz1 such that z1 ∈ ‖ϕ∧ψ∧K(ϕ∧ψ → θ)‖. Hence, z1 ∈ ‖K(ϕ∧ψ → θ)‖.

Then, as yRz0Rz1, we have by the first asuumption of this case that z1 6∈ ‖ϕ‖
or z1 6∈ ‖K(ϕ→ (ψ → θ))‖, which contradictions above fact. Hence,

y ∈ ‖〈K〉(ϕ ∧K(ϕ→ (ψ → θ)))‖.

Case 2: y ∈ ‖〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖
This implies that ∃z0 ∈ X with yRz0 such that z0 ∈ ‖ϕ∧ψ∧K(ϕ∧ψ → θ)‖.
Hencce, z0 ∈ ‖ϕ ∧K(ϕ ∧ ψ → θ)‖ as well. Thus,

y ∈ ‖〈K〉(ϕ ∧K(ϕ→ (ψ → θ)))‖.

Therefore, y ∈ ‖ϕ → 〈K〉(ϕ ∧ K(ϕ → (ψ → θ)))‖. Sinca y has been choosen
arbitrarily,

x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ (ψ → θ))))‖.

7. Cautious Monotonicity: Bϕψ ∧Bϕθ → Bϕ∧ψθ
By Proposition 18, we can rewrite this axiom as

K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))) ∧K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ θ)))→
K((ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ))).

Suppose x ∈ ‖K(ϕ → 〈K〉(ϕ ∧ K(ϕ → ψ))) ∧ K(ϕ → 〈K〉(ϕ ∧ K(ϕ → θ)))‖.
Then,

R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))‖, and (A.7)
R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ θ))‖ (A.8)

We want to show that R(x) ⊆ ‖(ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ))‖
Let y ∈ R(x) such that y ∈ ‖ϕ ∧ ψ‖. Then, by (A.7) and (A.8), we have y ∈
‖〈K〉(ϕ ∧K(ϕ→ ψ))‖ and y ∈ ‖〈K〉(ϕ ∧K(ϕ→ θ))‖, respectively. These imply
there exists a z0 ∈ X with yRz0 such that

z0 ∈ ‖ϕ ∧K(ϕ→ ψ)‖ (A.9)

and there exists a z1 ∈ X with z1Ry such that

z1 ∈ ‖ϕ ∧K(ϕ→ θ)‖. (A.10)

Hence, as R is reflexive, we have z0 ∈ ‖ψ‖ and thus z0 ∈ ‖ϕ∧ψ‖ by (A.9). Then,
since xRyRz0 and R is transitive, we have z0 ∈ ‖ϕ → 〈K〉(ϕ ∧K(ϕ → θ))‖, by
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(A.8). Thus, as z0 ∈ ‖ϕ‖, we obtain z0 ∈ ‖〈K〉(ϕ ∧ K(ϕ → θ))‖. This implies
that these is a z2 ∈ X with z0Rz2 such that z2 ∈ ‖ϕ∧K(ϕ→ θ)‖. Then, since R
is transitive and z0 ∈ ‖K(ϕ → ψ)‖, we have z2 ∈ ‖K(ϕ → ψ)‖. Hence, since R
is reflexive and z2 ∈ ‖ϕ‖, we get z2 ∈ ‖ψ‖ implying that z2 ∈ ‖ϕ∧ψ‖. Moreover,
z2 ∈ ‖K(ϕ → ψ)‖ and z2 ∈ ‖K(ϕ → θ)‖ imply that z2 ∈ ‖K((ϕ ∧ ψ) → θ)‖.
Therefore, z2 ∈ ‖(ϕ ∧ ψ) ∧ K((ϕ ∧ ψ) → θ)‖. Hence, as yRz0Rz2 and R is
transitive, y ∈ ‖〈K〉((ϕ ∧ ψ) ∧ K((ϕ ∧ ψ) → θ))‖. Hence, y ∈ ‖(ϕ ∧ ψ) →
〈K〉((ϕ∧ψ)∧K((ϕ∧ψ)→ θ))‖. Sinca y has been choosen arbitrarily from R(x),
we have R(x) ⊆ ‖(ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ))‖, i.e.

x ∈ ‖K((ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ)))‖.

Therefore, each of the above axioms is valid on all reflexive and transitive Kripke
frames. Thus, they are theorems of S4, since S4 is complete wrt the class of all
reflexive and transitive Kripke frames. Then, by Theorem 1, we obtain that they
are valid on all topological spaces in the interior semantics. As the semantic clause
of knowledge in the interior semantics and the semantic clause of knowledge in the
refined topological semantics for conditional beliefs and knowledge are the same,
the above axioms are also valid in all topological spaces wrt the refined semantics.

We finally prove that the Necessitation Rule for conditional beliefs preserves va-
lidity:
Let ϕ,ψ ∈ LKBC such that Bψϕ is not valid. Then, there exists a topo-model
M = (X, τ, ν) such that [[Bψϕ]]M 6= X, i.e., Int([[ψ]] → Cl([[ψ]] ∧ Int([[ψ]] →
[[ϕ]]))) 6= X. Now suppose [[ϕ]] = X. Then,

Int([[ψ]]→ Cl([[ψ]] ∩ Int([[ψ]]→ [[ϕ]]))) = Int((X \ [[ψ]]) ∪ Cl([[ψ]] ∩ Int((X \ [[ψ]]) ∪X)))
= Int((X \ [[ψ]]) ∪ Cl([[ψ]]))
= Int(X)
= X

contradicting [[Bψϕ]] = X. Hence, [[ϕ]] 6= X

Theorem 12.

Proof. The result follows from the validity of the new axioms. The cases for (1-3) are
straightforward. We only prove the validity of (4) and (5). Let M = (X, τ, ν) be a
topo-model and ϕ,ψ two formulas in the language. Then,
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4.

[[〈!ϕ〉Kψ]]M = [[Kψ]]Mϕ

= Intτ[[ϕ]]
([[ψ]]Mϕ)

= Intτ[[ϕ]]
([[〈!ϕ〉ψ]]M)

= Int([[ϕ]]M → [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]M

= [[K(ϕ→ 〈!ϕ〉ψ)]]M ∩ [[ϕ]]M

= [[K(ϕ→ 〈!ϕ〉ψ) ∧ ϕ]]M

5.

[[〈!ϕ〉Bθψ]]M = [[Bθψ]]Mϕ

= Intτ[[ϕ]]
([[θ]]Mϕ → Clτ[[ϕ]]

([[θ]]Mϕ ∩ Intτ[[ϕ]]
([[θ]]Mϕ → [[ψ]]Mϕ)))

= Int([[ϕ]]→ ([[θ]]Mϕ → Clτ[[ϕ]]
([[θ]]Mϕ ∩ Intτ[[ϕ]]

([[θ]]Mϕ → [[ψ]]Mϕ)))) ∩ [[ϕ]]

= Int(([[ϕ]] ∧ [[θ]]Mϕ)→ (Clτ[[ϕ]]
([[θ]]Mϕ ∩ Intτ[[ϕ]]

([[θ]]Mϕ → [[ψ]]Mϕ)))) ∩ [[ϕ]]

= Int(([[ϕ]] ∧ [[θ]]Mϕ)→ (Cl([[θ]]Mϕ ∩ Intτ[[ϕ]]
([[θ]]Mϕ → [[ψ]]Mϕ)) ∩ [[ϕ]])) ∩ [[ϕ]]

= Int([[θ]]Mϕ → (Cl([[θ]]Mϕ ∩ Intτ[[ϕ]]
([[θ]]Mϕ → [[ψ]]Mϕ)) ∩ [[ϕ]])) ∩ [[ϕ]]

= Int([[θ]]Mϕ → (Cl([[θ]]Mϕ ∩ (Int([[ϕ]] ∩ [[θ]]Mϕ)→ [[ψ]]Mϕ) ∩ [[ϕ]]))) ∩ [[ϕ]]
= Int([[〈!ϕ〉θ]]M → (Cl([[〈!ϕ〉θ]]M ∩ (Int([[ϕ]] ∩ [[〈!ϕ〉θ]]M)→ [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]))) ∩ [[ϕ]]
= [[B〈!ϕ〉θ〈!ϕ〉ψ]]M ∩ [[ϕ]]
= [[ϕ ∧B〈!ϕ〉θ〈!ϕ〉ψ]]M
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