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Introduction

In the present thesis, we will expand Restall's completeness proof [Restall 2005] and present it on a wider

context. He proposes an adaptation of the completeness proof for constant domains predicate modal logic

found in [Garson 2001] to the wider case of a distributive setting expanded with unary modal operators

and enriched with constant domains quanti�cation. The overall motivation stems from the pending problem

of �nding a clearer semantics for quanti�ed relevance logics. First, unlike Restall's paper, soundness and the

truth lemma are explicitly proved, in fact the overall proof is presented in a more clari�ed and structured

way, in line with classic literature on modal completeness. Moreover, a �aw in the original proof is repaired.

Another modest contribution of this thesis will be to provide an overview of some of the most central

concepts and methods of modal logic on a wide array of settings, starting with quanti�ed distributive modal

logic and arriving at propositional non-distributive modal-substructural logic. In both cases we start with

preliminaries that provide the general understanding of the subject and then we present completeness proofs

that illustrate the di�erent methods and their powerful insights. Thus Chapter 1 will present the syntax

and semantics (and associated discrete duality) of quanti�ed substructural modal logic for the distributive

setting. Chapters 2 (soundness) and 3 (completeness) will portray the canonical model method for relational

semantics completeness, giving a �rst glimpse at how the classical methods look under a �rst jump in

algebraic generality (from Boolean to distributive context). On Chapter 4 we now take a step further in this

line of generalization and expose the non-distributive setting, seen as a natural descendant of classical and

distributive settings. Here the algebraic and dualization methods show their true potential in guiding the

far more obscure relational enterprise. On Chapter 5, the last part of the thesis, we will make explicit the

methods underlying a proof of completeness for non-distributive modal logic, as presented in [Gehrke 2006],

this time restricting ourselves to the propositional case only. While Restall's completeness proof proceeds via

the canonical model, thus working on the frame side, the present proof will rather work on the algebraic side,

or more precisely with the complex algebra of the canonical model better known as the (canonical extension

of) the Lindenbaum Tarski algebra of the logic (we can identify both up to isomorphism).

In this way, not only we provide a wider context to Restall's initial problem, but we present an array

of methods and techniques along with their natural habitats in a hopefully more uni�ed -and thus more

transparent- view than usually found in the literature, showing the interplay between these techniques and

the di�erent logical settings. Throughout the entire presentation we emphasize the modularity of each

component (classical vs distributive vs non-distributive settings, propositional vs 1st order logic, unary vs

binary modal operators, etc.)
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CHAPTER 1

Preliminaries

In this chapter we introduce the preliminaries on both the syntax and the relational semantics of substructural

modal logic with constant domain quanti�cation. The relational semantics for the propositional reduct is

presented in Section 1.2. along with the discrete duality for the substructural operators (viewed as modal

operators). The discrete duality will mostly help to show the path when jumping from the distributive

setting -and its frame-based canonical model strategy- (Chapter 3) to the non-distributive one, worked

from the algebraic side with the canonical extension method (Chapter 5). Such presentation, which is an

adaptation of the material found in [Conradie & Palmigiano 2012], is rounded up with an overview of

the residuation laws linking the three main substructural operators. Finally, on Section 1.3. the models for

(constant domain) quanti�ed substructural logic are de�ned. Our initial intention was to extend Restall's

proof to encompass the substructural connectives, fusion, implication and co-implication. The associated

truth lemma for them turned harder than expected and we decided to leave them for later research. For

uniformity's sake, we keep the general presentation as originally intended, with the full substructural logic

as main player, restricting to distributive modal logic when detailing Restall's proof.

1.1. The constant domains quanti�ed substructural modal logic

In order to make transparent the link between the quanti�ed distributive case and the big picture schematized

in the introduction, we should present propositional distributive modal logic on its own (DML henceforth).

However, as this comes out straightforwardly by considering only the propositional and modal reduct of

Constant Domains Quanti�ed Substructural Modal logic (CQSML from now on), which is a lattice-based

logic, we prefer to get straight into the syntax of the latter while clearly highlighting the di�erent modules

of this logic.

1.1.1. Syntax and axioms. The propositional and modal reduct of CQSML is the propositional dis-

tributive modal logic as introduced for the �rst time in

[Gehrke, Nagahashi & Venema-2005]. Since its main feature consists in removing Boolean negation,

it is closely related with Dunn's Positive Modal Logic (PML) [Dunn 1995]. In classical modal logic, propo-

sitional logic is expanded with modalities. Here we are to expand the positive fragment of propositional logic

with four normal modalities �,♦, /, . where the last two represent weak forms of negation. Moreover, we will

handle quanti�ers within the restricted arena of constant domains and the substructural operators, fusion ◦
and its residuals → and ←.

In the classical setting, any of the four modal operators can be used to syntactically de�ne the other three with

the help of negation, likewise the quanti�ers are also inter-de�nable via negation. But here, since we have no

negation, the modalities �,♦, . and / are no longer inter-de�nable in this way and need to be explicitly intro-

duced as primitives

[Gehrke, Nagahashi & Venema-2005], the same happens with the existential quanti�er now in need of in-

dependent treatment. Thus we de�ne our distributive modal language of type {⊥,>,∧,∨,�,♦, /, ., ◦,→,←,∃,∀}
as the set LSQ of formulas given by the rule

6



1.1. THE CONSTANT DOMAINS QUANTIFIED SUBSTRUCTURAL MODAL LOGIC 7

ϕ ::= P (x1, . . . , xn) ∈ AtProp | > |⊥ |xi = xj |ϕ ∨ ψ |ϕ ∧ ψ |♦ϕ |�ϕ | C ϕ | B ϕ |ϕ ◦ ψ |
ϕ→ ψ |ϕ← ψ | ∃yϕ | ∀yϕ

where P is an n-ary predicate and {x1, x2, . . . , xn} ⊆ V ar the set of denumerably many individual variables

and AtProp a denumerably in�nite set of propositions. The notion of free and bound occurrences of variables

are de�ned as expected. Equality is a designated primitive binary predicate symbol that is treated separately

from the rest of predicates as it will be given a �xed interpretation as the identity relation on the domain of

quanti�cation.

If x̄ is a list of distinct variables and ȳ a list of variables of the same length as x̄, then ψ [ȳ/x̄] is the formula ψ

where the variables ȳ have been simultaneously substituted for all free occurrences of the variables x̄. Thus

we assume that no variable xi in x̄ occurs free in ψ within the scope of a quanti�er Qyi -we thus follow the

conventions in [Braüner & Ghilardi 2007]-.1

The following normal properties still hold, however, as in classical modal logic:

• diamond preserves disjunction and bottom: ♦ (ϕ ∨ ψ) = ♦ϕ∨♦ψ and ♦⊥ = ⊥ (note that ⊥ =
∨

∅
so ♦

∨
∅ =

∨
♦∅ =

∨
∅).

• the box preserves conjunction and top: � (ϕ ∧ ψ) = �ϕ ∧�ψ and �> = > (note that > =
∧
∅ so

�
∧
∅ =

∧
�∅ =

∧
∅).

• the modal operator . reverses disjunction and bottom: . (ϕ ∨ ψ) = .ϕ ∧ .ψ and .⊥ = >.
• �nally, the modal operator / reverses conjunction and top: / (ϕ ∧ ψ) = /ϕ ∨ /ψ and /> = ⊥.

Thus, the four modalities can be seen as weak forms of negation or, regarding this normal behaviour, as

combinations of a classical modality with negation (.ϕ ≡ �¬ϕ and /ϕ ≡ ¬�ϕ).2 Thus the intuitive meanings

of �ϕ, ♦ϕ,/ϕ and .ϕ are as expected: ϕ is necessary, ϕ is possible, ϕ might not be the case, ϕ is impossible.

For sake of generality, they will be interpreted by four di�erent accessibility relations, as will be clear in the

relational semantics presented in the next section (1.2.1.).

Coming back to syntax proper, the logics for lattices lack in general the expressive power required to de�ne

an implication connective in terms of the primitive connectives. More precisely, whenever ¬ is not present in

the language of a logic Λ, we can no longer de�ne ¬ (A ∧ ¬B) a`Λ A→ B a`Λ ¬A∨B. Thereby entailment

relations cannot be recovered from the set of tautologies alone, for entailment can no longer be represented

as a tautological formula of conditional shape -or to state it syntactically, a theorem-. This amounts to a

failure of the deduction theorem in these non-classical settings. To compensate this de�ciency we must take

sequents into account.3

1In full detail, letting Q ∈ {∃, ∀}, this amounts to de�ne ψ [y/x] as the result of taking a bound alphabetic variant of ψ in which
there is no quanti�er Qy and then replacing every x free in such variant of ψ by y. Two well-formed formulas ψ and ψ′ are
bound alphabetic variants of each other i� ψ has a well formed part Qxδ where ψ′ has Qxγ, and γ, δ di�er only in that γ has
free instances of x where and only where δ has free instances of y [Hughes & Cresswell 1996]
2As noted in [Gehrke, Nagahashi & Venema-2005] this may be seen as a generalization of classical modal logics: when .
and / are taken to be the classical negation ¬ then the classical normal modal logics are those DMLs containing the sequents:
.α⇒ /α, /α⇒ .α, ♦α⇒ .� . α, .� . α⇒ ♦α, > ⇒ α ∨ .α and α ∧ .α⇒ ⊥.
3The deduction theorem is one of the main ingredients -the other one being compactness- needed to reduce entailments from any
kind of assumptions to tautologies (which can be seen as entailments from empty assumptions). When both properties hold,
and given an entailment Γ `Λ ϕ in a logic Λ with Γ a set of formulas, we can assume by compactness that there is a �nite set
Γ′ ⊆ Γ such that

∧
Γ′ `Λ ϕ. But now the deduction theorem states that

∧
Γ′ `Λ ϕ i� `Λ

∧
Γ′ → ϕ . So we have captured or

reduced an arbitrary inference (with nontrivial assumptions) to an entailment with empty assumptions, i.e. a tautology. That
is, compactness and the deduction theorem together imply that entailment in a logic Λ can be reduced to theoremhood in Λ.
Hence, the set of all tautologies (theorems) in the logic Λ captures all the inferential power of Λ. But when the deduction
theorem fails, tautologies are no longer su�cient to capture the inferential properties of our logic and deducibility has to be
captured directly in terms of sequents.
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A sequent is a pair of formulas from L such that the second follows from the �rst. A pair (ϕ,ψ) which forms

a Λ-sequent is written ϕ `Λ ψ, as expected.4 Sequents allow us to express any entailment. Thus, now a logic

will be a set of sequents -rather than a set of formulas- containing certain axioms and closed under certain

inference rules.

Definition 1. A Constant Domains Quanti�ed Substructural Modal logic (CQSML) Λ is the smallest set

of sequents ϕ⇒ ψ with ϕ,ψ ∈ LSQ such that

• Λ contains all instances of the following axiom schemes:

(1) Distributive lattice axioms :

(a) ϕ⇒ ϕ

(b) ⊥ ⇒ ϕ and ϕ⇒ >
(c) ϕ⇒ ϕ ∨ ψ and ψ ⇒ ϕ ∨ ψ
(d) ϕ ∧ ψ ⇒ ϕ and ϕ ∧ ψ ⇒ ψ

(e) ϕ ∧ (ψ ∨ χ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

(2) Unary modalities axioms:

(a) �ϕ ∧�ψ ⇒ �(ϕ ∧ ψ) and > ⇒ �>
(b) ♦(ϕ ∨ ψ)⇒ ♦ϕ ∨ ♦ψ and ♦⊥ ⇒ ⊥
(c) C(ϕ ∧ ψ)⇒ Cϕ ∨Cψ and C> ⇒ ⊥
(d) Bϕ ∧Bψ ⇒ B (ϕ ∨ ψ) and > ⇒ B⊥

(3) Binary modalities axioms:

(a) (ϕ ∨ ψ) ◦ χ⇒ (ϕ ◦ χ) ∨ (ψ ◦ χ) and χ ◦ (ϕ ∨ ψ)⇒ (χ ◦ ϕ) ∨ (χ ◦ ψ)
(b) ⊥ ◦ ϕ⇒ ⊥ and ϕ ◦ ⊥ ⇒ ⊥

(4) Quanti�ers laws

(a) ∀xϕ⇒ ϕ [y/x] , with y being free for x in ϕ 5

(i) As corollary of a, [∀ left]: ϕ(y)⇒ψ
∀xϕ(x)⇒ψ (immediately follows by cut from ∀xϕ (x) ⇒by 4(a)

ϕ (y)⇒by assumption ψ)

(b) ϕ [y/x]⇒ ∃xϕ, with y being free for x in ϕ.

(i) As corollary of b, [∃ right]: ψ⇒ϕ(y)
ψ⇒∃xϕ(x) (immediately follows by cut from ψ ⇒by assumption

ϕ (y)⇒by 4(b) ∃xϕ (x))

(5) Barcan law's

(a) �∀xϕ⇔ ∀x�ϕ and ♦∃xϕ⇔ ∃x♦ϕ
(b) C∀xϕ⇔ ∃xC ϕ and B∃xϕ⇔ ∀xB ϕ

(c) ∃x(ϕ ◦ ψ)⇔ ∃xϕ ◦ ψ provided x does not occur free in ψ

(d) ϕ ◦ ∃xψ ⇔ ∃x(ϕ ◦ ψ) provided x does not occur free in ϕ

4However, when sequents are taken themselves as basic syntactic objects, they are often written ϕ⇒ ψ to reserve the turnstile
` for deductions between sequents. Note as well that the symbols Σ,Π,∆,Γ, . . . are sometimes taken as lists -rather than sets-
of �nite formulas and accordingly ϕ,ψ are taken to be lists of at most one formula.
5�y being free for x� means that we exclude the cases where y becomes bounded when replacing x. For more details, see
[van Dalen 2004] p.66, and for quanti�er rules p.98.
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• Λ is closed under the following inference rules (where x, y, z and α, β, γ are arbitrary variables and

arbitrary terms respectively) :

Structural rules Lattice rules unary modalities rules

(1a)

cut

α⇒ β β ⇒ γ

α⇒ γ
(2a)

α⇒ γ β ⇒ γ

α ∨ β ⇒ γ
(3a)

α⇒ β

♦α⇒ ♦β

(1b)

weakening to the left

α⇒ γ

α ∧ β ⇒ γ

β ⇒ γ

α ∧ β ⇒ γ
(2b)

γ ⇒ α γ ⇒ β

γ ⇒ α ∧ β
(3b)

α⇒ β

�α⇒ �β

(1c)

weakening to the right

γ ⇒ α

γ ⇒ α ∨ β
γ ⇒ β

γ ⇒ α ∨ β
(2c)

α1 ⇒ β1 α2 ⇒ β2
α1 ∨ α2 ⇒ β1 ∨ β2

(3c)
α⇒ β

/β ⇒ /α

(2d)
α1 ⇒ β1 α2 ⇒ β2
α1 ∧ α2 ⇒ β1 ∧ β2

(3d)
α⇒ β

.β ⇒ .α

binary modalities rules �rst order rules

(4a)
α⇒ γ ← β

(4b)
β ⇒ α→ γ

α ◦ β ⇒ γ

(5a)
α⇒ β [y/x]

α⇒ ∀xβ (x)
provided xdoes not occur free in α

(4c)
α1 ⇒ β1 α2 ⇒ β2
α1 ◦ α2 ⇒ β1 ◦ β2

(5b)
α [y/x]⇒ β

∃xα (x)⇒ β
provided xdoes not occur free in β

(5c)

substitution

α⇒ β

α (γ/x)⇒ β (γ/x)

Notice that (2a) amounts to state that ∨ is the least upper bound for ⇒, namely, α ∨ β ⇒ γ i� α ⇒ γ and

β ⇒ γ. The left to right direction trivially follows from order theoretic properties and thus is usually not

explicitly stated as part of the inference rule. A similar observation applies to (2b) and ∧ as greatest lower

bound for ⇒.

In what follows we will often make reference to the axioms and inference rules stated above. While making

reference to them we will use the following notation: for an axiom as ϕ⇒ ϕ we will use (A.1a) as reference

and for an inference rule as cut we will use (IR.1a) as reference.

On chapters 2 and 3 in which we detail Restall's completeness proof, we will work with a smaller language

LQ ⊂ LSQ and an accordingly reduced set of axioms and rules, namely, all the ones concerned with substruc-

tural operators ◦,→,← will be dropped. As expected, LQ ⊆ LSQ is given by the rule:

ϕ ::= P (x1, . . . , xn) ∈ AtProp | > | ⊥ | xi = xj | ϕ ∨ ψ | ϕ ∧ ψ | ♦ϕ | �ϕ | C ϕ | B ϕ | ∃yϕ | ∀yϕ

Similarly, LS ⊂ LSQ is given by the rule:

ϕ ::= p ∈ AtProp | > | ⊥ | ϕ ∨ ψ | ϕ ∧ ψ | ♦ϕ | �ϕ | C ϕ | B ϕ | ϕ ◦ ψ | ϕ→ ψ | ϕ← ψ

1.2. Substructural discrete duality

1.2.1. Relational semantics for the propositional distributive modal reduct. A relational se-

mantics interprets a (modal) logic on a Kripke frame. A Kripke frame for a distributive modal logic is based

on a partially ordered set (W,≤) and equipped with four binary relations, one for each modal operator of a
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DML. Given such poset, we use ℘↑ (W ) to denote the set of all its upsets (upward closed sets). The language

associated to this propositional modal reduct is given by the set L ⊆ LQ ⊆ LSQ of formulas given by the

rule:

ϕ ::= p ∈ AtProp | > | ⊥ | ϕ ∨ ψ | ϕ ∧ ψ | ♦ϕ | �ϕ | C ϕ | B ϕ

Definition 2. (DML-frame or Kripke frame for distributive modal logic). An (ordered) Kripke frame for

DML is a structure F = ((W,≤) , R�, R♦, R., R/) where W is a non-empty set, ≤ is a partial order on W ,

and R�, R♦, R., R/ are binary relations onW satisfying the following weak set of inclusion conditions (WIC):

(1) ≥ ◦R♦ ⊆ R♦◦ ≥ that is ∀t, u, v [(t ≥ u ∧ R♦uv)→ ∃w (R♦tw ∧ w ≥ v)]
(2) ≤ ◦R� ⊆ R�◦ ≤ that is ∀t, u, v [(t ≤ u ∧ R�uv)→ ∃w(R�tw ∧ w ≤ v]
(3) ≤ ◦R. ⊆ R.◦ ≥ that is ∀t, u, v, w [(t ≤ u ∧ R.uv)→ ∃w (R.tw ∧ w ≥ v)]
(4) ≥ ◦R/ ⊆ R/◦ ≤ that is ∀t, u, v [(t ≥ u ∧ R/uv)→ ∃w (R/tw ∧ w ≤ v)]

The symbol ◦ denotes relation composition, i.e. given relations R and S,

R ◦ S = {〈x, z〉 | ∃y (〈x, y〉 ∈ R& 〈y, z〉 ∈ S)}. Then, for instance, ≥ ◦R♦ = {〈x, z〉 | ∃y (x ≥ y & yR♦z)}.6

Remark 3. Classic Kripke frames are special cases of DML-frames with an implicit ordering relation a ≤ b
i� a = b and the relations R�, R. and R/ are subsumed by R♦.

Remark 4. Observe that the conditions imposed on the relations have no other purpose than to guarantee

a well de�ned complex algebra F+ (the dual of F). They constitute the �rst-order properties of R♦ , R�,

R. and R/ needed to obtain modal operations 〈R♦〉, [R�], [R.〉 and 〈R/] such that they map upsets onto

upsets and thus well-de�ned on ℘↑ (W ), the carrier of the complex algebra of F. In other words, they are the

�rst order properties of R♦, R�, R. and R/ that are equivalent via correspondence to the closure of ℘↑ (W )

under 〈R♦〉, [R�], [R.〉 and 〈R/]. 7

Thus, these conditions on the frames lead to a nice behaviour of the modal (algebraic) operations -to preserve

the property of being an upset- which, in turn, allows us to de�ne a lattice of upsets à la Birkho�, extended

with these operations. That is, we can set the dual or complex algebra of F as in de�nition 9 further down.

Let us now come back to the frame-based semantics by introducing the de�nitions of model, valuations and

validity.

6I will depart from standard notation, which would consist in reading ◦ in the same way as functional composition, with ≥ ◦R♦

read as �≥ after R♦� just as f ◦ g reads �f after g� (cf [Meulen, Partee & Wall 1990]). Instead I follow the same notation
as in [Conradie & Palmigiano 2012], with ≥ ◦R♦ read as �≥ and then R♦�, which is more convenient for readability.
7We should warn the reader that some papers (see for instance [Gehrke, Nagahashi & Venema-2005]) choose a slightly
di�erent -and stronger- set of inclusion conditions (IC):

(1) ≥ ◦R♦◦ ≥ ⊆ R♦ that is ∀t, u, v, w [(t ≥ u ∧ R♦uv ∧ v ≥ w)→ R♦tw]

(2) ≤ ◦R�◦ ≤ ⊆ R� that is ∀t, u, v, w [(t ≤ u ∧ R�uv ∧ v ≤ w)→ R�tw]

(3) ≤ ◦R.◦ ≥ ⊆ R. that is ∀t, u, v, w [(t ≤ u ∧ R.uv ∧ v ≥ w)→ R.tw]
(4) ≥ ◦R/◦ ≤ ⊆ R/ that is ∀t, u, v, w [(t ≥ u ∧ R/uv ∧ v ≤ w)→ R/tw]

We have adopted, however, the weaker set of inclusion conditions shown above (WIC) because the fact that we are working
with upsets is all we need to get the same result (namely that ℘↑ (W ) is closed under modal operations). The weaker conditions
(WIC) allow us to use the assumption that X ⊆ W is an upset, for if we had (IC) this is not needed, i.e. these conditions are
really stronger than necessary here: for instance, (IC) implies that 〈R/] : ℘ (W ) −→ ℘↑ (W ) is well de�ned, whereas (WIC) by
itself does not. Rather, we need to consider 〈R/] : ℘↑ (W ) −→ ℘↑ (W ) instead and use the fact that the inputs are upsets.
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Definition 5. Valuations, Models and Validity

• A valuation on a frame F is a map V : AtProp −→ ℘ (W ) from the set AtProp of propositional

variables to the power set of the domain W of F. We say that such a valuation is persistent if it

assigns an upset for each variable x, as a result, if v ∈ V (x) and v ≤ w then w ∈ V (x).

• A model based on a DML-frame F is a tuple M = (F, V ) where V : AtProp −→ ℘↑ (W ) is a

persistent valuation on F.
• A model M validates a sequent α⇒ β (notation: M 
 α⇒ β) if for each w ∈W such that M, w 
 α

we have M, v 
 β for all v ∈W with w ≤ v.
• A frame F validates a sequent α ⇒ β at a point w (notation: F, w 
 α ⇒ β) if for each model

(F, V ) -with V a persistent valuation- we have (F, V ) , w 
 α⇒ β.

• A frame F validates a sequent α ⇒ β (notation: F 
 α ⇒ β) if for each model (F, V ) -with V a

persistent valuation- we have (F, V ) , w 
 α⇒ β for any point w ∈W .

• A frame F validates a set of sequents Γ (notation: F 
 Γ) if for each sequent α ⇒ β ∈ Γ we have

F 
 α⇒ β.

Now �x a model M = (F, V ) with F = 〈(W,≤) , R�, R♦, R/, R.〉 and a point w ∈ W . Then the semantics of

our propositional language L is given by:

• M, w 
 >, is always the case.
• M, w 1 ⊥ , is never the case.

• For p ∈ AtProp, M, w 
 p i� w ∈ V (p).

• M, w 
 α ∨ β i� M, w 
 α or M, w 
 β.

• M, w 
 α ∧ β i� M, w 
 α and M, w 
 β.

• M, w 
 ♦α i� there exists a v ∈W such that R♦wv and M, v 
 α.

• M, w 
 �α i� for all v ∈W such that R�wv we have M, v 
 α.

• M, w 
 .α i� for all v ∈W such that R.wv we have M, v 1 α.

• M, w 
 /α i� there exists a v ∈W such that R/wv and M, v 1 α.

Remark 6. Notice that when V is a persistent valuation, then 
 is an hereditary satisfaction relation.

1.2.2. Perfect distributive modal algebras and their correspondence with frames. Now we

introduce the algebraic semantics for distributive modal logics. By considering each sequent α ⇒ β as an

algebraic inequality α ≤ β (which by lattice theoretic laws amounts to an equality of shape α ∧ β = α or

α ∨ β = β), the algebraic face of distributive modal logics is immediately apparent. Seen like this, DMLs

are equational theories corresponding to varieties of algebras. In fact, just as modal algebras are obtained

by adding modal operators to Boolean algebras, distributive modal algebras (DMA) are obtained by adding

modal operators to distributive lattices presented as algebras.

Definition 7. A distributive modal algebra (DMA) is an algebra A = (A,∨,∧,⊥,>,♦,�, /, .) where

(A,∨,∧,⊥,>) is a bounded distributive lattice (DL) and the additional modal operations satisfy the fol-

lowing conditions:

� (x ∧ y) = �x ∧�y �> = >
♦ (x ∨ y) = ♦x ∨ ♦y ♦⊥ = ⊥
. (x ∨ y) = .x ∧ .y .⊥ = >
/ (x ∧ y) = /x ∨ /y /> = ⊥
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Remark 8. In the Boolean setting it was furthermore possible to obtain again a frame from a given modal

algebra by using the ultra�lter frame construction, where ultra�lters -generalizing the notion of atom- are

taken as points of the frame. In the case of distributive modal algebras it is no longer possible to use the

exact same construction: in general, there are not enough ultra�lters to ensure that every proper �lter is an

intersection of all the ultra�lters extending it. Fortunately for us, it is still the case that every proper �lter

of a distributive lattice is the intersection of all prime �lters extending it [Conradie & Palmigiano 2012].

This crucial fact allows for the extension of classical constructions and results like the stone duality to

accommodate the present setting. Thus, just as any BAO A can give rise to an ultra�lter frame whose points

are the ultra�lters of A, every DMA D can be associated with its prime �lter frame whose points are the

prime �lters of D. Ultra�lters form an anti-chain by de�nition, (since they are maximal, if an ultra�lter is

included in another then they are the same, so they are only order-related to themselves) while the inclusion

ordering between prime �lters is non trivial and thereby needs to be recorded in the associated frame which is

henceforth based on a poset rather than on a set. We introduce these prime �lter frames later (de�nition 18),

but �rst we present the opposite construction, namely, how the obtain a DMA from a given DML-frame.

Definition 9. Complex algebra of a DML-frame. Given a DML-frame F = ((W,≤) , R♦, R�, R., R/), let

℘↑ (W ) be the collection of all upward closed sets (that is, the upsets) of W . For every binary accessibility

relation R} ⊆W ×W with R} ∈ {R♦, R�, R., R/} and for every S ⊆W we de�ne the following operations

on subsets of W :8

• 〈R♦〉S := {x ∈W | ∃v (R♦xv ∧ v ∈ S)} = {x ∈W | R♦ [x] ∩ S 6= ∅} = R−1♦ [S]

• [R�]S := {x ∈W | ∀v (R�xv → v ∈ S)} = {x ∈W | R� [x] ⊆ S} =
(
R−1� [Sc]

)c
• [R.〉S := {x ∈W | ∀v (R.xv → v /∈ S)} = {x ∈W | R. [x] ⊆ Sc} =

(
R−1. [S]

)c
• 〈R/]S := {x ∈W | ∃v (R/xv ∧ v /∈ S)} = {x ∈W | R/ [x] ∩ Sc 6= ∅} = R−1/ [Sc]

Then the complex algebra of F is F+ =
(
℘↑ (W ) ,∩,∪,∅,W, 〈R♦〉 , [R�] , [R.〉 , 〈R/]

)
Claim 10. :℘↑ (W ) is closed under the operations [R�], 〈R♦〉, [R.〉 and 〈R/].

Proof. The claim will follow from the weaker inclusion conditions (WIC) that any distributive modal

frame satis�es by de�nition and the fact that the carrier of F+ only contains upsets. �

In the modal classical setting the complex algebras of Kripke frames can be characterized abstractly (that

is, independently of the discrete duality linking them to frames) as follows: in pure algebraic terms they

are precisely (up to isomorphism) the complete and atomic Boolean algebras with operators (also known

as Perfect BAOs). This extends to the distributive case where the complex algebras of DML-frames are

characterized as perfect DMAs with properties that constitute generalizations of the ones held by perfect

BAOs. In particular, a more relaxed notion than atomicity is needed. The following de�nitions generalize

the notion of atom to the non-Boolean cases (since the set of completely join-prime elements of a complete

Boolean algebra is precisely the set of its atoms).

8For any S ⊆W , Sc is the complement of S relative to W . For every relation R ⊆W ×W and every S ⊆W let:

• R [Y ] := {x ∈W | ∃y (y ∈ Y ∧ yRx)} = the set of R-successors of points in Y , i.e the R-closure of Y .
• R−1 [Y ] := {x ∈W | ∃y (y ∈ Y ∧ xRy)} = the set of R-predecessors of points in Y .

We will adopt the convenient abbreviations of R [{x}] and R−1 [{x}] as R [x] and R−1 [x]. Now for any set S, let ↑ S be the
upward closure of S under ≤. Applying the previous abbreviation, we will write: ↑ p =≤ [p] =≤ [{p}] = {a ∈W | a ≥ p} instead
of ↑ {p}. Likewise, ↓ p = {a ∈W | a ≤ p}. A subset S ⊆ W in a partial order (W,≤) is an upset if u ≥ v ∈ S implies u ∈ S,
that is S =↑ S =≤ [S]. Order closures generated by singletons are called principal upsets/down-sets respectively. Observe that
the principal upset of p is the smallest upset that contains p and thus is included in all upsets of p.
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Definition 11. (Join prime element/Meet prime element) Let L be a complete lattice, then

• a ∈ L is said to be join-prime if and only if for any b, c ∈ L if a ≤ b ∨ c then a ≤ b or a ≤ c.
• a ∈ L is said to be completely join-prime if and only if for any bi ∈ L (i ∈ I) if a ≤

∨
i∈I bi then

a ≤ bi for some i ∈ I.
• a ∈ L is said to be meet-prime if and only if for any b, c ∈ L if a ≥ b ∧ c then a ≥ b or a ≥ c.
• a ∈ L is said to be completely meet-prime if and only if for any bi ∈ L (i ∈ I) if a ≥

∧
i∈I bi then

a ≥ bi for some i ∈ I.
• The set of completely join-primes of L is denoted J∞P (L), the set of completely meet-primes of L is

denoted M∞P (L)

Definition 12. (Join irreducible element/Meet irreducible element) Let L be a complete lattice, then

• a ∈ L is said to be join-irreducible if and only if for any b, c ∈ L if a = b ∨ c then a = b or a = c (it

is not the �nite join of strictly smaller elements).

• a ∈ L is said to be completely join-irreducible if and only if for any bi ∈ L (i ∈ I) if a =
∨
i∈I bi

then a = bi for some i ∈ I (it is not the supremum of all elements strictly below it).

• a ∈ L is said to be meet-irreducible if and only if for any b, c ∈ L if a = b∧ c then a = b or a = c (it

is not the �nite meet of strictly greater elements).

• a ∈ L is said to be completely meet-irreducible if and only if for any bi ∈ L (i ∈ I) if a =
∧
i∈I bi

then a = bi for some i ∈ I (it is not the in�mum of all elements strictly above it).

• The set of completely join-irreducibles of L is denoted J∞ (L), the set of completely meet-irreducibles

of L is denoted M∞ (L)

Clearly, any (completely) join-prime element is (completely) join-irreducible as well. The converse is not

true in general, but it is a nice property of distributive lattices which allows us to set J∞ (A) = J∞P (A) and
M∞ (A) =M∞P (A) in de�nition (15) below. That is, the set of all completely join irreducible elements of A
is the set of all completely join prime elements, and the set of all completely meet irreducible elements of A
is the set of all completely meet prime elements, respectively.

Definition 13. A complete lattice L is called perfect if it is join-generated by its completely join-irreducibles

and meet-generated by its completely meet-irreducibles, that is, if for any x ∈ L we have∨
{j ∈ J∞ (L) | j ≤ x} = x =

∧
{m ∈M∞ (L) | m ≥ x}. It is then said that J∞ (L) and M∞ (L) are

join-dense and meet-dense (respectively) in L.

Notice that this de�nition encompasses both distributive and non-distributive complete lattices, but for a

lattice to qualify as a perfect distributive lattice it also needs to be completely distributive (arbitrary meets

distribute over arbitrary joins). Perfect distributive lattices can also be pinned down as those lattices that

are isomorphic to ℘↑ (P ) for some poset P, just as the complete and atomic Boolean algebras are precisely the

Boolean algebras that happen to be isomorphic to ℘ (X) for some set X [Conradie & Palmigiano 2012].

Furthermore, for any perfect distributive lattice L, when J∞ (L) and M∞ (L) are seen as subposets of L, the
following proposition holds:

Proposition 14. The maps κ :

J∞ (L) −→M∞ (L)

j 7−→
∨
{u ∈ L |u � j}

and λ :

M∞ (L) −→ J∞ (L)

m 7−→
∧
{u ∈ L |u � m}

are

order isomorphisms

Definition 15. A DMA A is a perfect distributive modal algebra (DMA+) if, in addition, (A,∨,∧,⊥,>)
is complete, completely distributive, join generated by J∞P (A) (as well as meet generated by M∞P (A)) and
such that:
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• ♦ (
∨
X) =

∨
(♦X) =

∨
{♦x |x ∈ X}

• � (
∧
X) =

∧
(�X) =

∧
{�x |x ∈ X}

• . (
∨
X) =

∧
(.X) =

∧
{.x |x ∈ X}

• / (
∧
X) =

∨
(/X) =

∨
{/x |x ∈ X}

Remark 16. Via the discrete duality, Perfect DMAs can be seen as frames in algebraic

disguise (cf.[Gehrke, Nagahashi & Venema-2005])

Proposition 17. Given any DML-frame F, F+ is a perfect distributive modal algebra.

In the classical case, by following the discrete duality, any complete and atomic Boolean algebra with operators

can retrieve back a Kripke frame based on the set of its atoms, it then comes as no surprise that a similar

fact holds regarding the perfect DMAs and their sets of join-prime irreducibles.

Definition 18. For every perfect DMA A, the associated prime structure-frame is de�ned

as A+ = ((J∞ (A) ,≥) , R♦, R�, R., R/) where (J∞ (A) ,≥) is the dualized9 subposet of the completely join-

prime elements of A, and for every j, j′ ∈ J∞ (A)

• jR♦j
′i� j ≤ ♦j′

• jR/j′i� j ≤ /κ (j′)
• jR�j

′i� �κ (j′) ≤ κ (j)
• jR.j′i� .j′ ≤ κ (j)

The following captures the discrete duality in the distributive setting (details in

[Conradie & Palmigiano 2012]).

Proposition 19. For every perfect DMA A and every DML-frame F, the following holds: (A+)
+ ∼= A and

(F+)+
∼= F

1.2.3. The expanded language with substructural connectives. We now add the extra connec-

tives of LS to the discrete duality picture.

Definition 20. (SDML-frame or Substructural Distributive Modal logic frame). A structure

F = ((W,≤) , R�, R♦, R., R/, R◦, R→, R←, D) is a SDML-frame if ((W,≤) , R�, R♦, R., R/) is aDML-frame,

D is a non-empty set of objects which remains the same for all w ∈W , and R◦, R→, R← are binary relations

on W satisfying the following weak set of inclusion conditions (WIC):10

(1) (≥) ◦R◦ ⊆ R◦ ◦ (≥,≥) that is: ∀t, u, v, z [(t ≥ u ∧ R◦uvz)→ ∃w,w′ (R◦tww′ ∧ w ≥ v ∧ w′ ≥ z)]
(2) (≥)◦R→ ⊆ R→◦(≤,≥) that is: ∀t, u, v, z [(t ≥ u ∧ R→uvz)→ ∃w,w′ (R→tww′ ∧ w ≤ v ∧ w′ ≥ z)]
(3) (≥)◦R← ⊆ R←◦(≥,≤) that is: ∀t, u, v, z [(t ≥ u ∧ R←uvz)→ ∃w,w′ (R←tww′ ∧ w ≥ v ∧ w′ ≤ z)]

As expected, these conditions are there to ensure that the corresponding operations in the complex algebra

of a SDML-frame are well behaved (sending upsets to upsets and thus well-de�ned on ℘↑ (W ), the carrier

of the complex algebra of F).

Remark 21. Notice that just as the frames for classical �rst order modal logic -which are simply Kripke-

frames as used for classical propositional modal logic (cf. p.244 [Hughes & Cresswell 1996] and p.272

[Garson 2001])-, here we will be using SDML-frames for CQSML logic. The added complexity of the

9We mean order-dual, since (J∞ (A) ,≥) has inverse order to the one inherited from A
10As the �rst order formula makes explicit, the relation composition is to be read component-wise
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quanti�cation over objects is built into the de�nition of the models for these logics, keeping the frames un-

touched. This means that we need to delay our frame-semantics to the last subsection of this chapter where

we present such model de�nitions.

Definition 22. A Substructural distributive modal algebra (SDMA) is an algebra

A = (A,∨,∧,⊥,>,♦,�, /, ., ◦,→,←) where (A,∨,∧,⊥,>,♦,�, /, .) is a DMA and the additional (binary

modal) operations satisfy the following conditions:

(1) (ϕ ∨ ψ) ◦ χ = (ϕ ◦ χ) ∨ (ψ ◦ χ) and χ ◦ (ϕ ∨ ψ) = (χ ◦ ϕ) ∨ (χ ◦ ψ)
(2) ⊥ ◦ ϕ = ⊥ and ϕ ◦ ⊥ = ⊥
(3) (the residuation law) For all a, b, c ∈ A we have a ◦ b ≤ c ⇐⇒ b ≤ a→ c ⇐⇒ a ≤ c← b

Definition 23. Complex algebra of a SDML-frame. Given a SDML-frame

F = ((W,≤) , R�, R♦, R., R/, R◦, R→, R←), let ℘↑ (W ) be the collection of all upward closed sets (that is,

the upsets) of W . For every binary accessibility relation R} ⊆ W ×W with R} ∈ {R♦, R�, R., R/} and
for every S ⊆ W we have the same operations as before (de�nition 9). But for every ternary accessibility

relation R@ ⊆ W ×W ×W with R@ ∈ {R◦, R→, R←} and for every T, S ⊆ W we de�ne new operations on

subsets of W :11

〈R◦〉 (T, S) : = {x ∈W | ∃t, s (R◦xts ∧ t ∈ T ∧ s ∈ S)} = {x ∈W | R◦ [x] ∩ T × S 6= ∅}

= R−1◦ [(T, S)]

〈R→〉 (T, S) : = {x ∈W | ∀v, u (R→xvu ⇒ (v ∈ T c) ∨ (u ∈ S))}

= {x ∈W | R→ [x] ⊆ ((T c ×W ) ∪ (W × S))} = R−1→ [((T ×W ) ∩ (W × Sc)) ↓c]

〈R←〉 (T, S) : = {x ∈W | ∀v, u (R←xvu ⇒ (u ∈ T c) ∨ (v ∈ S))}

= {x ∈W | R← [x] ⊆ ((W × T c) ∪ (S ×W ))} = R−1← [((W × T ) ∩ (Sc ×W )) ↓c]

Then the complex algebra of F is F+ =
(
℘↑ (W ) ,∩,∪,∅,W, 〈R♦〉 , [R�] , [R.〉 , 〈R/] , 〈R◦〉 , (R→) , (R←)

)
12

Remark 24. Observe the standard procedure to de�ne the function 〈R�〉 associated as dual -in the complex

algebra- to a given n-ary relation R� in the frame. While we usually consider a point w in the frame and

then look for its R�-successors (where a successor is a sequence of points of length n− 1), the corresponding

operation in the complex algebra works in the opposite direction: it takes n− 1 sets of points and retrieves

back some operation on the set of R�-antecedents of the elements in the product of such sets. So if the

relation is n-ary, then the corresponding operation is (n− 1)-ary. This general scheme comes handy when we

know how the operations look like in the algebra (cf. fusion, implication and co-implication in proposition

26 below) and we wish to de�ne relations in the frame that emulate or mirror such behaviour.

The conditions on the ternary relations in de�nition 20 should guarantee now that the corresponding opera-

tions in the complex algebra above are well behaved. We show the fusion case to illustrate, all others being

similar.

11For ease of notation we treat here R◦ as a binary relation between points and pairs of points. So R◦ [x] has pairs of points as
elements and R◦ [x] ∩ T × S is to be read accordingly.
12Notice that we use 〈−〉 for a diamond-like operator and [−] for a box-like operator, similarly, 〈−] is an operator that is
diamond-like from the outside and box-like on the inside. However, in the case of binary operators corresponding to → and
← the notation no longer works quite right as each coordinate is treated di�erently (the behaviour on the �rst coordinate is
anti-tone with (R→) and monotone with (R←), but the inverse happens on the second coordinate of these same operators).
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Proof. Closure under 〈R◦〉: Assume X,Z ⊆ W are upsets. We have to show that: 〈R◦〉 (X,Z) :=

{x ∈W | R◦ [x] ∩X × Z 6= ∅} = R−1◦ [(X,S)] is an upset. Fix an a ∈ 〈R◦〉 (X,Z) and suppose a ≤ a′ for

some a′ ∈ W . We have to show that a′ ∈ 〈R◦〉 (X,Z). Since a ∈ 〈R◦〉 (X,Z) then there are some b, b′ such

that aR◦bb
′ and b ∈ X, b′ ∈ Z. Hence we have ful�lled the antecedent of WIC5. Therefore there are c, c′ with

c ≥ b and c′ ≥ b′ and , a′R◦cc
′. Since b ∈ X, b′ ∈ Z with X,Z upsets, then c ∈ X and c′ ∈ Z . Therefore

a′ ∈ 〈R◦〉 (X,Z) �

1.2.3.1. Fusion and its residuals as a generalization of meet and implication. There is hardly any con-

nective as prominent for logicians as → is (the role it plays in the deduction theorem is one key reason). It is

worth noticing that the two connectives → and ← as residuals of fusion are a generalization of the intuition-

istic implication→ as residual of ∧ (which again is an order-theoretical generalization of classical implication

→ and its residual ∧). But within the growing �eld of substructural logic, the focus has somewhat shifted

to the study on how the properties of fusion determine those of the implication as its residual. The reason

for this shift of focus is undoubtedly due to the fact that fusion is simpler to study than implication. In fact,

the same relation R◦ can be used -with relevant coordinate permutations- to interpret all three operators

◦,→,←, since the corresponding relations are just systematic swappings of one of them.

(b, a, c) ∈ R→ i� (a, b, c) ∈ R◦ i� (a, c, b) ∈ R←

Fusion allows us to consider the three properties of meet (associativity, commutativity and absorption)

modularly and constitutes a generalization of meet (conjunction) in two directions:

(1) it is not commutative in general and thus has two di�erent residuals/adjoints → and ←, associ-

ated each with one of its coordinates (when commutative, fusion has the same adjoint for both

coordinates)

(2) the relation R◦ that interprets ◦ is non-trivial, i.e. fusion has a clear modal �avor

Fusion has a modal �avor in that its interpretation is linked to an accessibility relation R◦, while ∧ is a

special case of fusion where R∧ is the diagonal relation along all three of its coordinates, that is, R∧ :=

{(x, x, x) |x ∈W}. It follows immediately that R→ := {(x, x, x) |x ∈W} as well, since swapping the coor-

dinates does not yield any di�erence. This amounts to both ∧ and → being interpreted locally regarding the

underlying accessibility relations R∧ and R→ which can be ignored -in other words, these connectives don't

have any modal �avor anymore. Regarding its modal properties, fusion behaves like a binary diamond, it is

join preserving in both coordinates13 and sends closed sets to closed sets.

In this more general setting, where ∧ is not in general commutative (and thus written '◦') we have still have
the residuation laws A ◦B ` C i�B ` A→ C

A ◦B ` C i�A ` C ← B

Since ◦ is not commutative, A ◦B is not equivalent to B ◦A withB ◦A ` C i�A ` B → C

B ◦A ` C i�B ` C ← A

13In fact it is a complete operator, it preserves meets on both sides as well.
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But in the particular case where ◦ is commutative, in which case we write it as ∧, we have

A ∧B ` C i�A ` C ← B (1)

A ∧B ` C i�B ` A→ C (2)

m by commutativity of ∧

B ∧A ` C i�A ` B → C (3)

B ∧A ` C i�B ` C ← A (4)

where A∧B i� B∧A, and thus the residuals→ and← collapse into a single one, as they are indistinguishable

due to the commutativity bridge which leads to(1)A ` C ← B iff (3)A ` B → C

(2)B ` A→ C iff (4)B ` C ← A

Both intuitionistically and classically, the following residuation law holds: A∧B ` C i� B ` A→ C a simple

replacement of symbols gives: B ∧A ` C i� A ` B → C as well.

Now let us take a closer look to residuation.

1.2.3.2. Preliminaries on residuation. Let P, Q and R be partial orders and let

f : P×Q→ R

g : P× R→ Q

h : R×Q→ P

We say that g is the right residual (or right adjoint) of f if and only if for every p ∈ P , q ∈ Q and r ∈ R,
and once p is �xed:

f(p, q) ≤ r i� q ≤ g(p, r).

We say that h is the left residual (or left adjoint) of f i� for every p ∈ P , q ∈ Q and r ∈ R, and once q is

�xed:14

f(p, q) ≤ r i� p ≤ h(r, q).

Graphically:

P R Q

h(r, q) r
h(−,q)

oo
g(p,−)

// g(p, r)

p
f(−,q)

//

≤

OO

f(p, q)

≤

OO

q
f(p,−)

oo

≤

OO

The following lemma states some useful facts about residual maps.

14Note that both h and g are upper adjoints while f is their lower adjoint.
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Lemma 25. If g and h are the right and left residual of f respectively, then

(1) f : P×Q→ R, g : P∂ ×R→ Q and h : R×Q∂ → P are order preserving (where X∂ denotes the

order-dual of the poset X)
(2) If P, Q and R are complete lattices, then f : P×Q→ R preserves arbitrary joins in each coordinate,

and g : P∂ × R→ Q and h : R×Q∂ → P preserve arbitrary meets in each coordinate.

Proof. (1) The fact that g is right residual of f implies that both f and g are order preserving in

the second coordinate, indeed let p ∈ P , q1, q2 ∈ Q, and assume that q1 ≤ q2. As f(p, q2) ≤ f(p, q2)

then by applying right residuation we get q1 ≤ q2 ≤ g(p, f(p, q2)), and so by applying right residuation

again f(p, q1) ≤ f(p, q2). Analogously, one can show that for every p ∈ P , r1, r2 ∈ R, if r1 ≤ r2 then

g(p, r1) ≤ g(p, r2). Similarly, one can show that h being left residual of f implies that both f and h are order

preserving in the �rst coordinate.

Let us show that g is order reversing in the �rst coordinate: indeed let r ∈ R, p1, p2 ∈ P , and assume

that p1 ≤ p2. As g(p2, r) ≤ g(p2, r) then by applying right residuation we get f(p2, g(p2, r)) ≤ r, and as

g is order preserving in the second coordinate, then g(p1, f(p2, g(p2, r))) ≤ g(p1, r). As p1 ≤ p2 and f is

order preserving in the �rst coordinate, then f(p1, g(p2, r)) ≤ f(p2, g(p2, r)), hence g(p1, f(p1, g(p2, r))) ≤
g(p1, f(p2, g(p2, r))) ≤ g(p1, r). So the proof is complete if we show that g(p2, r) ≤ g(p1, f(p1, g(p2, r))). By

right residuation, this is true i� f(p1, g(p2, r)) ≤ f(p1, g(p2, r)), which is indeed the case. Similarly, one can

show that h is order reversing in the second coordinate.

(2) The fact that h is left residual of f implies that f preserves complete joins in the �rst coordinate and

h preserves complete meets in the �rst coordinate. Let X ⊆ P , y ∈ Q and let us show that f(
∨
X, y) =∨

{f(x, y) | x ∈ X}.

As h is left residual of f , then, by item 1 of this lemma, f is order preserving in the �rst coordinate, hence

f(x, y) ≤ f(
∨
X, y) for every x ∈ X, and so

∨
{f(x, y) | x ∈ X} ≤ f(

∨
X, y).

Let us now show that f(
∨
X, y) ≤

∨
{f(x, y) | x ∈ X}. By applying left residuation, this is equivalent to

show that
∨
X ≤ h(

∨
{f(x, y) | x ∈ X}, y). As f(x, y) ≤ f(x, y) for every x ∈ X, then by left residuation

x ≤ h(f(x, y), y) , hence
∨
X ≤

∨
{h(f(x, y), y) | x ∈ X}. To show that

∨
{h(f(x, y), y) | x ∈ X} ≤

h(
∨
{f(x, y) | x ∈ X}, y) it is enough to verify that for every x ∈ X, h(f(x, y), y) ≤ h(

∨
{f(x, y) | x ∈ X}, y).

As h is left residual of f , then, by item 1 of this lemma, h is order preserving in the �rst coordinate, hence

this last inequality follows from the fact that f(x, y) ≤
∨
{f(x, y) | x ∈ X} for every x ∈ X.

The proof that h preserves complete meets in the �rst coordinate is similar, and analogously one can show

that the fact that g is right residual of f implies that both f preserves complete joins in second coordinate

and g preserve complete meets in second coordinate.

Let us show that g being right residual of f and f preserving complete joins in the �rst coordinate imply

together that g reverses complete joins in �rst coordinate: Let X ⊆ P and z ∈ R to show that g(
∨
X, z) =∧

{f(x, z) | x ∈ X}. As g is right residual of f and f is order preserving in �rst coordinate, then by item

1 of this lemma, g is order reversing in the �rst coordinate, hence g(
∨
X, z) ≤ g(x, z) for every x ∈ X, and

so g(
∨
X, z) ≤

∧
{g(x, z) | x ∈ X}. Let us show that

∧
{g(x, z) | x ∈ X} ≤ g(

∨
X, z). By right residuation,

this is equivalent to show that f(
∨
X,
∧
{g(x, z) | x ∈ X}) ≤ z. As g(x, z) ≤ g(x, z) for every x ∈ X, then,

by applying right residuation, f(x, g(x, z)) ≤ z for every x ∈ X, hence
∨
{f(x, g(x, z)) | x ∈ X} ≤ z. As f is

order preserving in the second coordinate and preserves arbitrary joins in the �rst coordinate, then for every

x ∈ X, f(
∨
X,
∧
{g(x, z) | x ∈ X}) ≤ f(

∨
X, g(x, z)) =

∨
{f(x, g(x, z)) | x ∈ X} ≤ z.
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Similarly, one can show that h being left residual of f and f preserving complete joins in second coordinate

imply together that h reverses complete joins in the second coordinate. �

By applying the above lemma to our present connectives, we get:

Proposition 26. Fusion ◦ ismonotone in both coordinates. Its right residual, implication→, is anti-tone in

the �rst coordinate and monotone in the second coordinate. Its left residual, co-implication←, is monotone in

the �rst coordinate and anti-tone in the second coordinate. On perfect lattices, fusion ◦ preserves arbitrary
joins in each coordinate, implication → sends joins to meets in the �rst coordinate and preserves meets in

the second coordinate, and �nally, co-implication ← preserves meets in the �rst coordinate but sends joins

to meets on the second coordinate.

We illustrate with a similar diagram as above:

C C C

r ← q r
(−←q)

oo
(p→−)

// p→ r

p
(−◦q)

//

≤

OO

p ◦ q

≤

OO

q
(p◦−)

oo

≤

OO

1.3. Models for quanti�ers

Once we have frames for substructural distributive modal logics, models for propositional SDML would

amount to add valuations. But here we are interested in models to interpret (constant domain) quanti�ed

SDML. Thus we need to handle more detailed models.

In general, �rst order modal logic semantics requires to split the meaning of an expression between the two

notions of extension and intension. Given a set W of points, the intension of an expression is a function

that takes each such point and associates it with an extension for that expression. Thus we reconcile the fact

the a given expression has the same intensional meaning (embodies the same concept) across worlds in the

frame with the fact that such expression does not have the same extensional meaning in each world. In such

general setting, a model is de�ned as follows:15

15We follow [Garson 2001] presentation but for one detail, we keep variables-assignments separate from the models
themselves as done in [Braüner & Ghilardi 2007], the convenience of this separation is argued for in page 238 of
[Hughes & Cresswell 1996]
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Definition 27. A model for a �rst order modal logic of similarity type τ is a tuple〈
(W,≤) , {R5}5∈τ , D, Q, {Vw}w∈W

〉
where

• W is a non-empty set of points

• ≤ is a partial order over W (in the classical case this boils down to a trivial order in which x ≤ y

i� x = y, and hence it is usually omitted)

• {R5}5∈τ is the family of accessibility relations that interpret each one of the modal operators 5
contained in the modal similarity type τ .

• D -for Domain of quanti�cation- is a non-empty set of all possible objects

• Q :

W −→ ℘ (D)

w −→ Dw

is a function that determines the (possibly di�erent) domain of quanti�cation

Dw ⊆ D associated to each point w ∈W .

• Vw is valuation at w that to each n-place predicate symbol assigns a subset of Dn
w (both the resulting

set and Dn
w maybe di�erent depending on w)

A particular instance of such general de�nition consists of the following simpli�cation: We consider only a

single �xed domain D shared by all the points w ∈W and independent of them. In such case, it is said that

we are in a constant domain system and Q : W −→ ℘ (D) is the constant function λx.D that assigns the

same domain of quanti�cation Q (w) = Dw = D to all w ∈W . Such simpli�cation allows us to add the usual

satisfaction conditions for ∀x to the semantics of a modal logic without further complications. Moreover, we

will later need the Barcan law (∀x�ϕ ` �∀xϕ) and its converse, which together do enforce constant domains.

Remark 28. Since in a propositional environment the addition of a valuation is enough to have a model,

[Braüner & Ghilardi 2007] introduce an intermediate concept between the concept of a frame -which only

consists of F :=
〈
(W,≤) , {R5}5∈τ

〉
- and the concept of a (�rst-order) model -as in de�nition 27-. The

intermediate concept is that of a skeleton, which consists of 〈F, D, Q〉 , that is: a frame enriched with an

object domain system. In this way, we recover again the idea that a model is essentially given by valuations.

Then such models can be based on a frame (which is enough to interpret a propositional language) or on a

skeleton (required to interpret languages with non-trivial predicates). Validity is then understood as expected,

relative to frames or relative to frame-skeleton pairs, respectively.

Thus our models can be greatly simpli�ed and in fact we end up with a distributive version of a �xed domain

objectual model with rigid terms, called Q1-model in [Garson 2001], where the domain of quanti�cation is

D for all points16

Definition 29. In general, a model for Constant Domains Quanti�ed Substructural Modal logic (CQSML)

of similarity type τ is a tuple
〈
(W,≤) , {R5}5∈τ , D, {Vw}w∈W

〉
where

• W is a non-empty set of points

• ≤ is a partial order over W

• {R5}5∈τ is the family of accessibility relations that interpret each of the modal operators contained

in the modal similarity type τ .

• D is a non-empty set of all possible objects, which acts as the domain of quanti�cation for all

w ∈W (that is, the function Q from the previous de�nition assigns D to every point as domain of

quanti�cation) .

16In fact, the satisfaction conditions (i.e. the semantics) also get much simpler. In particular, g -the function assigning denotation
to terms in Garson's presentation- meets the rigidity condition that turns term's intensions into constant functions (Rigidity
condition: g (t) (w) = g (t) (w′) for all w, w′ in W ). Thus, terms are rigid designators which are assigned constant functions as
intensions (or equivalently, they are assigned extensions directly).
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• Vw is valuation at w that to each n-place predicate symbol assigns a subset of Dn (such subset

maybe di�erent depending on w), and moreover, since we are constrained to persistent valuations:

w ≤ w′ implies Vw (P ) ⊆ Vw′ (P ) for all points w,w′ ∈ W and for all predicates P ∈ LPredSQ (with

LPredSQ the set of predicates of LSQ) .

Remark 30. Notice that we could use a di�erent way of de�ning the interpretation of predicates to make it

more similar to the propositional semantics presentation: for each n-place predicate symbol P ∈ LPredSQ there

is valuation VP : Dn −→ F+ which to each n−tuple of objects assigns the (up)set of worlds w ∈W in which

the property P applies to them.17 Then we could state that V is a map such that for every predicate symbol

P of arity n, V (P ) = VP . In such case, we would de�ne the model as
〈
(W,≤) , {R5}5∈τ , D, {VP }P∈LPred

SQ

〉
To capture our satisfaction conditions for formulas in the language LSQ, besides a model based on a constant

domain skeleton, we will need to use assignments. An assignment is a map g : V ar −→ D. If g, g′ agree on

all variables but (possibly) y we write g′ ≡y g. Now to de�ne the satisfaction relation 
⊆W × Form, �x a

model M =
(
F, D, {Vw}w∈W

)
with F a SDML-frame and �x a point w ∈W and an an assignment g. Then

the Kripke-semantics of our �rst order modal language LSQ is given by the rules:

• M, w, g 
 >, is always the case.
• M, w, g 1 ⊥ , is never the case.

• M, w, g 
 P (x1 . . . xn) i� 〈g (x1) . . . g (xn)〉 ∈ Vw (P )

• M, w, g 
 x1 = x2 i� g (x1) = g (x2)

• M, w, g 
 α ∨ β i� M, w, g 
 α or M, w, g 
 β.

• M, w, g 
 α ∧ β i� M, w, g 
 α and M, w, g 
 β.

• M, w, g 
 ♦α i� there exists a v ∈W such that R♦wv and M, v, g 
 α.

• M, w, g 
 �α i� for all v ∈W such that R�wv we have M, v, g 
 α.

• M, w, g 
 .α i� for all v ∈W such that R.wv we have M, v, g 1 α.

• M, w, g 
 /α i� there exists a v ∈W such that R/wv and M, v, g 1 α

• M, w, g 
 ∀xA i� for each g′ such that g′ ≡x g we have M, w, g′ 
 A

• M, w, g 
 ∃xA i� for some g′ such that g′ ≡x g we have M, w, g′ 
 A

• M, w, g 
 ϕ ◦ ψ i� ∃a, b ∈W (wR◦ab & M, a, g 
 ϕ & M, b, g 
 ψ)

• M, w, g 
 ϕ→ ψ i� ∀a, b ∈W (bR→aw ⇒ if M, b, g 
 ϕ thenM, a, g 
 ψ)18

• M, w, g 
 ψ ← ϕ i� ∀a, b ∈W (aR←bw ⇒ if M, b, g 
 ϕ thenM, a, g 
 ψ) 19

A formula ϕ is true at a point w ∈W if M, w, g 
 ϕ for an assignment g and false at w otherwise. M, w 
 ϕ is

to be read as: M, w, g 
 ϕ for all assignments g, and M, w 1 ϕ is to be read as M, w, g 1 ϕ for all assignments

g.

Remark 31. The Kripke-semantics of the �rst order modal language LQ is obtained by simply deleting the

semantic rules for ◦.→,←.

17Since we are interested in persistent valuations, once a predicate applies to a given sequence of objects at a point w, it will hold
for such sequence in all ≤ −successive worlds. This allows a simpli�cation. Instead of having to consider a separate valuation
for each world w, we simply have a global valuation from pairs of predicates and n-tuples into upsets of worlds.
18This can also be rewritten as ∀a, b ∈ W (aR◦bw ⇒ if M, b, g 
 ϕ then M, a, g 
 ψ) and the condition for M, w, g 
 ψ ← ϕ
below can likewise be rewritten as ∀a, b ∈W (aR◦wb ⇒ if M, a, g 
 ϕ then M, b, g 
 ψ).
19The alternative notation of ψ → ϕ as ψ�ϕ and ψ ← ϕ as ψ�ϕ is sometimes used.



CHAPTER 2

Soundness

In this chapter we brie�y verify the soundness of the axioms and inference rules put forward in de�nition 1

which amounts to show that no theorem derived from them is falsi�ed anywhere in the class of SDML-frames.

The proof of soundness for the corresponding set of axioms and rules in the reduced language LQ with respect

to DML-frames is entirely skipped in [Restall 2005] except for IR.5a and the second equivalence of A.5b.

Here we will dedicate a short space to it.

2.1. Soundness of the axiom schemes.

We will �rst show that the axioms are valid in any constant domain skeleton based on a SDML-frame (or a

DML-frame, when dealing with the corresponding logic deprived of substructural operators ◦,→,←).

Proof. let us �x an CQSML-model M =
(
F, D, {Vw}w∈W

)
based on a SDML-frame F. If dealing

with the corresponding logic deprived of substructural operators ◦,→,← then we �x an CQML-model M =(
F, D, {Vw}w∈W

)
based on a DML-frame F. In such case, all axioms and rules involving ◦,→,← are

obviously ignored.

Now, the sequents (A1b) ⊥⇒ ϕ and ϕ ⇒ > are trivially valid in M. For ⊥⇒ ϕ, notice that by de�nition

of the semantics, the antecedent is never satis�ed at any point which makes the sequent vacuously true at

all points. Also by de�nition, > is satis�ed everywhere and thus can be deduced at any point. To verify the

2nd part of axioms of (A2a-b-c-d) is straightforward, since for similar reasons , ♦ ⊥⇒ ⊥ and > ⇒ �> are

valid (♦ ⊥ is not satis�ed anywhere and �> is satis�ed everywhere, including terminal points). The validity

of /> ⇒ ⊥ and > ⇒ .⊥ and �nally of (A3b) ⊥ ◦ ϕ ⇒ ⊥ and ϕ ◦ ⊥ ⇒ ⊥ are shown likewise. The sequent

(A1a) ϕ ⇒ ϕ is trivially valid as well because if a point w ∈ F is such that w, g 
 ϕ, then we can deduce ϕ

at this point under the given assignment. If on the other hand w 1 ϕ, then the antecedent of the sequent is

not satis�ed and thus ϕ⇒ ϕ will not be falsi�ed at w.

For the rest, let us �x a point w ∈ F and an assignment g. Then:

(1) Suppose that M, w, g 
 ϕ. Then by de�nition M, w, g 
 ϕ ∨ ψ with ψ any formula. Thus given ϕ

we can semantically deduce ϕ∨ψ. Since w is arbitrary, the (A1c) sequent ϕ⇒ ϕ∨ψ is valid in M.

Similar reasoning shows that sequents (A1c-d) ψ ⇒ ϕ ∨ ψ, ϕ ∧ ψ ⇒ ϕ and ϕ ∧ ψ ⇒ ψ are valid in

M.

(2) Now suppose that M, w, g 
 χ ∧ (ϕ ∨ ψ). By de�nition, this means that M, w, g 
 χ and M, w, g 


ϕ ∨ ψ, which then gives either (a) M, w, g 
 χ and M, w, g 
 ϕ or (b) M, w, g 
 χ and M, w, g 
 ψ.

Again by de�nition, we have M, w, g 
 (χ ∧ ϕ) ∨ (χ ∧ ψ). Since w is arbitrary, the sequent (A1e)

ϕ ∧ (ψ ∨ χ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ) is valid in M
(3) Suppose that M, w, g 
 ♦ (ϕ ∨ ψ). By de�nition there exists a point v such that R♦wv and M, v, g 


ϕ∨ψ, which again semantically implies thatM, v, g 
 ϕ orM, v, g 
 ψ. Hence, eitherM, w, g 
 ♦ϕ or

M, w, g 
 ♦ψ, that isM, w, g 
 ♦ϕ∨♦ψ. Since w is arbitrary the sequent (A2b) ♦ (ϕ ∨ ψ)⇒ ♦ϕ∨♦ψ
is valid in M.

22
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(4) Suppose that M, w, g 
 �ϕ ∧ �ψ . Hence M, w, g 
 �ϕ and M, w, g 
 �ψ. Then, by de�nition,

for all points v such that R�wv we have M, v, g 
 ϕ ∧ ψ, which again semantically implies that

for all points v such that R�wv : M, w, g 
 � (ϕ ∧ ψ). Since w is arbitrary, the sequent (A2a)

�ϕ ∧�ψ ⇒ � (ϕ ∧ ψ) is valid in M.

(5) Suppose that M, w, g 
 .ϕ ∧ .ψ. Then M, w, g 
 .ϕ and M, w, g 
 .ψ which semantically imply

that for all points v such that R.wv we have M, v, g 1 ϕ and M, v, g 1 ψ. Hence for all points v

such that R.wv we have M, v, g 1 ϕ∨ψ, which again semantically implies that M, w, g 
 . (ϕ ∨ ψ).
Since w is arbitrary, the sequent (A2d) .ϕ ∧ .ψ ⇒ . (ϕ ∨ ψ) is valid in M.

(6) Suppose that M, w, g 
 / (ϕ ∧ ψ). Then there exists a point v such that R/wv and M, v, g 1 ϕ∧ψ,
which by de�nition implies that either M, v, g 1 ϕ or M, v, g 1 ψ. This semantically implies that,

either M, w, g 
 /ϕ or M, w, g 
 /ψ (respectively) and thus M, w, g 
 /ϕ∨ /ψ. Since w is arbitrary,

the sequent (A2c) / (ϕ ∧ ψ)⇒ /ϕ ∨ /ψ is valid in M.

(7) Now suppose that M, w, g 
 χ◦(ϕ ∨ ψ). Then there exist s, t ∈W such that wR◦st with M, s, g 
 χ

and M, t, g 
 ϕ ∨ ψ, that is M, t, g 
 ϕ or M, t, g 
 ψ. This means that there exist s, t ∈ W such

that (a) M, s, g 
 χ and M, t, g 
 ϕ or (b) M, s, g 
 χ and M, t, g 
 ψ. So, by de�nition we have

M, w, g 
 (χ ◦ ϕ) ∨ (χ ◦ ψ). Since w is arbitrary, the sequent χ ◦ (ϕ ∨ ψ) ⇒ (χ ◦ ϕ) ∨ (χ ◦ ψ) in

(A3a) is valid in M and a similar reasoning proves the same for (ϕ ∨ ψ) ◦ χ⇒ (ϕ ◦ χ) ∨ (ψ ◦ χ).
(8) Let M, w, g 
 �∀xϕ. Then for each v ∈W such that R�wv we have M, v, g 
 ∀xϕ. Let us �x v, we

have for each g′ ≡x g , M, v, g′ 
 ϕ. Since we have a constant domain (which makes assignments

point-independent) and v was an arbitrary point (such that R�wv) this means that M, w, g′ 
 �ϕ

for all g′ ≡x g and thus M, w, g 
 ∀x�ϕ. Now for the opposite direction, let M, w, g 
 ∀x�ϕ.
Then we have M, w, g′ 
 �ϕ for each g′ ≡x g. Fix g′, then we have -given the point-independence

of assignments- M, v, g′ 
 ϕ for all v ∈ W such that R�wv, and since g′ ∈ [g]≡x
is arbitrary, we

get M, v 
 ∀xϕ for all v ∈ W such that R�wv. Hence M, w, g 
 �∀xϕ. Since w is arbitrary, the

sequent �∀xϕ a` ∀x�ϕ in (A5a) is valid in M.

(9) Let M, w, g 
 ♦∃xϕ. By constant domain, the assignments of each R♦−successor of w are still

the same assignments of w and thus there is a point v ∈ W such that R♦wv and M, v, g 
 ∃xϕ.
Hence there is an assignment g′ ≡x g with M, v, g′ 
 ϕ and then M, w, g′ 
 ♦ϕ. Therefore

M, w, g 
 ∃x♦ϕ. Now for the opposite direction, let M, w, g 
 ∃x♦ϕ. Then there is an assignment

g′ ≡x g with M, w, g′ 
 ♦ϕ. Again, by the point-independence of assignments, we get M, v, g′ 
 ϕ

for the witness v of ♦ϕ with R♦wv. But then M, v, g 
 ∃xϕ and therefore M, w, g 
 ♦∃xϕ. Since
w is arbitrary, the sequent ♦∃xϕ a` ∃x♦ϕ in (A5a) is valid in M .

(10) Let M, w, g 
 .∃xϕ. Then for each v ∈ W such that R.wv we have M, v, g 1 ∃xϕ. Fix such a v.

This means that M, v, g′ 1 ϕ for all assignments g′ ≡x g . Since assignments are point-independent

and v was an arbitrary state (such that R.wv) this means that M, w, g′ 
 .ϕ for all assignments

g′ ≡x g and thus M, w, g 
 ∀x B ϕ. For the opposite direction, let M, w, g 
 ∀x B ϕ. Then for

all g′ ≡x g we have M, w, g′ 
 Bϕ, or in di�erent words, for all v ∈ W such that R.wv we get

M, v, g′ 1 ϕ (again, because assignments are point-independent). But then M, v, g 1 ∃xϕ for all

v ∈W such that R.wv, and henceM, w, g 
 .∃xϕ. Since w is arbitrary, the sequent B∃xϕ a` ∀xBϕ
in (A5b) is valid in M .

(11) Let M, w, g 
 /∀xϕ. Then there is a v ∈W such that R/wv and M, v, g 1 ∀xϕ. Therefore M, v, g′ 1
ϕ for some assignment g′ ≡x g. By point-independence of assignments we obtain M, w, g 
 ∃xC ϕ

with g′ itself being the g′ ≡x g witness assignment. For the opposite direction, let M, w, g 
 ∃xCϕ.
Then there is an assignment g′ ≡x g such that M, w, g′ 
 Cϕ. Hence there is a point v ∈ W

such that R/wv and M, v, g′ 1 ϕ (we used again the fact that assignments are point-independent).
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Therefore M, v, g 1 ∀xϕ and thus M, w, g 
 /∀xϕ. Since w is arbitrary, the sequent C∀xϕ a` ∃xCϕ
in (A5b) is valid in M.

(12) Let M, w, g 
 ∃xϕ ◦ ψ with x not free in ψ. Then there are points v, v′ ∈ W such that R◦wvv
′

, M, v, g 
 ∃xϕ and M, v′, g 
 ψ. Then there is an assignment g′ ≡x g with M, v, g′ 
 ϕ. Since

assignments are point independent, we obtain M, w, g 
 ∃x (ϕ ◦ ψ) via the assignment g′ ≡x g since
M, w, g′ 
 ϕ◦ψ. For the opposite direction, letM, w, g 
 ∃x (ϕ ◦ ψ) with x not free in ψ. Then there

is an assignment g′ ≡x g with M, w, g′ 
 ϕ ◦ ψ . Again, by point-independence of assignments, we

can write for the witness points v, v′ ∈W with R◦wvv
′: M, v, g′ 
 ϕ and M, v′, g′ 
 ψ. Since x not

free in ψ, the assignment g′ which varies at most on x is irrelevant and we simplify as M, v′, g 
 ψ.

From M, v, g′ 
 ϕ we obtain M, v, g 
 ∃xϕ, and thus M, w, g 
 ∃xϕ ◦ ψ . Since w is arbitrary, the

sequent (A5c) ∃xϕ ◦ψ a` ∃x(ϕ ◦ψ) is valid in M provided x does not occur free in ψ, and a similar

reasoning proves the same for (A5d) ϕ ◦ ∃xψ a` ∃x(ϕ ◦ ψ) provided x does not occur free in ϕ.

(13) Let M, w, g 
 ∀xϕ. Then we have M, w, g′ 
 ϕ for each g′ ≡x g. One class of such assignments is

gy=xi∈V ar with y not occurring in ϕ, which assign the same value i (whichever this might be) to both

x and y. Hence M, w, gy=xi 
 ϕ for all i ∈ V ar, with x being free in ϕ, and thus M, w, g 
 ϕ [y/x] .

Since w is arbitrary, the sequent (A4a) ∀xϕ ` ϕ [y/x], with x being free in ϕ, is valid in M.

(14) Let M, w, g 
 ϕ [y/x] with x being free in ϕ. Then there is an assignment g′ ≡x g such that

g′ (x) = g′ (y) and M, w, g′ 
 ϕ , therefore M, w, g 
 ∃xϕ. Since w is arbitrary, the sequent (A4b)

ϕ [y/x] ` ∃xϕ , with x being free in ϕ , is valid in M .

Since the model M and SDML-frame F were arbitrary then the axioms are valid in any SDML-frame based

constant domain skeleton. �

2.2. Soundness of the inference rules

We now verify that the inference rules preserve validity on any SDML-frame based constant domain skeleton

(or a DML-frame, when dealing with the corresponding logic deprived of substructural operators ◦,→,←).

(IR.1a) Fix a model M, a point w and a trio of formulas ϕ,ψ, χ . Assume that M, w, g 
 ϕ and that both

ϕ ` ψ and ψ ` χ are valid. By such validity it will follow that M, w, g 
 ψ and consequently M, w, g 
 χ.

Since the model, the formulas and the point were arbitrary, this gives us our result. In fact all structural

rules (IR1a-b-c) and all lattice rules (IR2a-b-c-d) are trivially sound as we interpret the sequent symbol ⇒
by the partial order ≤ in the poset (W,≤) and given ∧ and ∨ interpreted as lattice meet and join.

Soundness of (IR.5a)

Proof. Fix a model M, a point w and:

(1) assume that ϕ⇒ ψ [y/x] is valid.

(2) suppose that M, w, g 
 ϕ, with x not occurring free in it,

Observe that M, w, g 
 ∀xψ (x) i� M, w, g′ 
 ψ (x) for all g′ ≡x g, but since x does not occur free in ϕ

then any variation on the assignment of x does not destroy the satisfaction relation assumed in (2). In other

words, since we assumed M, w, g 
 ϕ, with x not occurring free, then we have M, w, g′ 
 ϕ for all g′ ≡x g.
But then by applying (1) to all these satisfaction instances, we obtain: M, w, g′ 
 ψ [y/x] for all g′ ≡x g, and
therefore M, w, g 
 ∀xψ (x) as desired. �

Soundness of (IR.5b)

Proof. Fix a model M, a point w and :
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(1) assume that ϕ [y/x]⇒ ψ (with x not occurring free in ψ) is valid

(2) suppose that M, w, g 
 ∃xϕ (x)

Then by (2) we have M, w, g′ 
 ϕ (x) for some g′ ≡x g, and by applying (1) we get M, w, g′ 
 ψ (notice that

ϕ [y/x] means that y is free for x -it will not get bound- and replaces only free instances of x, so we can

simply take w.l.o.g. the special case where y = x, i.e. ϕ [x/x]). But since x does not occur free in ψ then

any variation on the assignment of x does not destroy the satisfaction relation just obtained. Therefore by

changing the assignment of x in order to reconvert g′ into g, we still have M, w, g 
 ψ, as desired. �

Soundness of (IR.3c) -veri�cation of IR.3a/3b/3d are all similar-

Proof. Fix a model M, a point w and a pair of formulas ϕ,ψ . Assume that M, w, g 
 /ψ and that

ϕ ` ψ is valid. By the satisfaction conditions on / we know that there is an v ∈ W such that R/wv and

M, v, g 1 ψ. By the validity of ϕ ` ψ it must be the case that M, v, g 1 ϕ and therefore the conditions

are given for M, w, g 
 /ϕ. Since the model, the formulas and the point were arbitrary, this gives us our

result. �

Soundness of inference rules IR.4a IR.4b IR.4c :

We will verify that ϕ ◦ ψ ⇒ χ semantically implies ψ ⇒ ϕ→ χ .

Proof. Fix a model M, a point c ∈W and a let ϕ,ψ, χ be formulas. Assume that M, c, g 
 ψ and that

ϕ ◦ ψ ⇒ χ is valid. We aim to show M, c, g 
 ϕ→ χ, so suppose there exists a, b ∈W such that bR→ac and

M, b, g 
 ϕ to try and reach M, c, g 
 χ. Since bR→ac then aR◦bc, and since M, b, g 
 ϕ and M, c, g 
 ψ

then M, a, g 
 ϕ ◦ ψ and thus M, a, g 
 χ because ϕ ◦ ψ ⇒ χ is valid. Thus if bR→ac and M, b, g 
 ϕ, we get

M, a, g 
 χ Therefore M, c, g 
 ϕ→ χ as desired. �

We will verify that ϕ ◦ ψ ⇒ χ semantically implies ϕ⇒ χ← ψ .

Fix a model M, a point b ∈W and a let ϕ,ψ, χ be formulas.

Proof. Assume that M, b, g 
 ϕ and that ϕ ◦ ψ ⇒ χ is valid. We aim to show M, b, g 
 χ ← ψ, so

suppose there exists a, c ∈ W such that aR←cb and M, c, g 
 ψ to try and reach M, a, g 
 χ. Since aR←cb

then aR◦bc, and since M, b, g 
 ϕ and M, c, g 
 ψ then M, a, g 
 ϕ◦ψ and thus M, a, g 
 χ because ϕ◦ψ ⇒ χ

is valid. Thus if aR←cb and M, c, g 
 ψ, we get M, a, g 
 χ Therefore M, b, g 
 χ← ψ as desired. �

We will verify that ψ ⇒ ϕ→ χ semantically implies ϕ ◦ ψ ⇒ χ .

Proof. Fix a model M, a point c ∈ W and a let ϕ,ψ, χ be formulas. Assume that M, a, g 
 ϕ ◦ ψ and

that ψ ⇒ ϕ → χ is valid. We aim to show M, a, g 
 χ. Since M, a, g 
 ϕ ◦ ψ then there are b, c ∈ W such

that aR◦bc, and M, b, g 
 ϕ and M, c, g 
 ψ. From the latter we obtain M, c, g 
 ϕ → χ. From aR◦bc and

M, b, g 
 ϕ we get M, a, g 
 ϕ ◦ (ϕ→ χ), namely M, a, g 
 χ, as desired. �

That ϕ⇒ χ← ψ semantically implies ϕ ◦ ψ ⇒ χ is proven similarly.



CHAPTER 3

Completeness theorem for constant domains quanti�ed modal logic

(CQML)

The main goal of this part is to prove a completeness theorem for (constant domains) quanti�ed distributive

modal logic. This is not an original contribution, but rather a detailed exposition of [Restall 2005]'s proof.

This will not be entirely redundant, though, because Restall's exposition is quite schematic, skipping or

condensing many parts of the proof. In particular, the Truth lemma is omitted altogether. No veri�cation

is made as to the question whether the canonical frame is indeed member of the class of DML-frames. But

moreover, the sketchy nature of some key points makes enough room for potential mistakes. A crucial step on

the proof requires a Lindenbaum lemma analogue for pairs of sets of formulas (lemma 46 below). That is, we

need to prove that given any pair (of sets of formulas), such pair can be extended to a full quanti�ed-suited

pair. At this stage, Restall's presentation of the proof seems to fail. He makes use of a single enumeration

of formulas of a language which is not clearly speci�ed: is it the original language L or the language L+

extended with countably many new constants? (In our presentation of the proof, named as LQ and L+
Q

′
see

de�nition 44) while in fact two enumerations are needed: the enumeration of all formulas from the extended

language L+ and the enumeration of all constants in L+.

Remark 32. Notice that the language we are using here is such that all terms are variables (while Restall

uses also constants). We will follow [Hughes & Cresswell 1996] p256 in using the set of variables as the

domain of quanti�cation (V ar = D), thus taking advantage of the language to build up the canonical model.

Regarding our initial goal to extend Restall's proof with the addition of substructural connectives to the

proof, we have encountered di�culties to provide witness points for when another point has ϕ ◦ ψ within its

members or fails to have ϕ→ ψ as one of them. We will brie�y comment on these after the presentation of

the proof for (constant domain) quanti�ed distributive modal logic.

Before advancing any further, let us �rst recall the de�nition of completeness as stated for the non-Boolean

case:

Definition 33. (completeness) A distributive modal logic Λ is strongly complete w.r.t. a class S of structures

i� for every pair Σ 0Λ ∆ there is a model M based on some F ∈ S such that Σ 1M ∆ (i.e. there exists a

point w ∈ F such that M, w 
 Σ and M, w 1 ∆).

Remark 34. We purposively leave some vagueness on the de�nition above as to the structures involved.

These can be algebraic structures (and then w ∈ F is to be read as �w belongs to the carrier of the algebra

F�) or relational ones (and then w ∈ F is to be read as �w belongs to the universe of the frame F�).

As it can be guessed from the de�nition above, completeness theorems are model-existence theorems, and

the corresponding proof shows (in the classical setting) that for every consistent set of formulas there is a

point, in a model suitable for the logic, that makes them simultaneously true. In fact a big conceptual part

of the proof consists precisely in building such model out of the formulas from the logic's language. If we

are seeking an algebraic completeness, the standard construction of a suitable model for the logic is known

26
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as the Lindenbaum-Tarski Algebra. But here we are concerned with a completeness result w.r.t. a relational

semantics. We need to build a frame and then a canonical model based on a constant domain skeleton over

it.

Three crucial properties are required from this model to work as a universal counterexample-source for our

logic:

• any pair of formula sets such that the �rst one does not deduce any formula of the second (denoted

Σ 0 ∆) has to be represented by at least one point in the canonical model's frame. That is, we

need to show that if Σ 0 ∆ then there is a point 〈Σ′,Γ′〉 in the canonical model with Σ ⊆ Σ′ and

∆ ⊆ ∆′ . In the classical case this is assured by the Lindenbaum lemma, while here we will use a

version of it -the pair extension in a new language lemma 46-.

• From the fact that Σ ⊆ Σ′ and ∆ ⊆ ∆′ we still need to be able to deduce that, by the canonical

valuation, 〈Σ′,Γ′〉 is a point in which every element of Σ is true but every element of ∆ is false (we

may refer to Σ′ as the positive side and to ∆′ as the negative side of the point 〈Σ′,Γ′〉). It must

be the case for any formula ψ of our logic and any point 〈Σ,Γ〉 in our model that V〈Σ,Γ〉 (ψ) = 1 i�

ψ ∈ Σ, i.e. that under the canonical valuation any formula is true at a point i� it is contained in

the positive side of the point. While the canonical valuation de�nition ( on page 32) already tells us

that the truth at point w of any atomic sentence on the canonical model amounts to membership in

the positive side of w, this only constitutes the �rst step. The lemma that lifts this property to all

formulas is classically known as the truth-lemma. The truth lemma has the shape: Σ 
 ψ ⇐⇒ ψ ∈ Σ

for an arbitrary formula ψ.

• the canonical model must suitable for the logic Λ, i.e. we need to verify that the underlying frame

belongs to the class of frames that satisfy the logic Λ.

As a guide reference we show here a dependence diagrams on the several lemmas we will be proving in next

sections:

Pair extension

on anew language

lemma (46) ↘
Completeness

PrimeTheory Truth lemma ↗ Proof

Claim (40) −→ (∧,∨)− cases
Well − behaved
quantifiers

lemma (43) −→ (∀,∃)− cases
|

witnessing − pair Truth lemma

existence

↗ lemma (55) −→ (�,♦, ., /, ◦,→,←)

Finite addition ↗ −cases
lemma (53) −→ Pair extension

in the

same language

lemma (54)
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3.1. The canonical frame

The whole intuition behind canonical models is to try to capture the logic in a single model by using the

language itself as building material, thus in classical modal logic the points of the frame are maximal consistent

sets of formulas, while here we need to have pairs of sets such that the �rst does not entail the second (they are

still �maximal� in the sense that they constitute a partition of all formulas). Both the accessibility relations

and the canonical valuation are de�ned in terms of formulas membership to one of the sides of the points

concerned.

Remark 35. Even though we are talking of the pairs as the points of the canonical frame, it should be clear

that since these pairs 〈Γ,Ω〉 are full (Γ ∪ Ω = L+′

Q ), each 〈Γ,Ω〉 is fully determined by the �rst coordinate Γ

(this property will disappear when we drop distributivity). In this sense, the points of the canonical frame

are rather the �rst coordinates Γ of each pair 〈Γ,Ω〉, which are Prime (�lter) theories by the claim 40. Order

dually, then, each second coordinate Ω is an Prime Ideal theory. Together they form a perfect �cut� of

the logical space. Notice also that each point 〈Γ,Ω〉 speci�es explicitly both the set Γ of formulas that are

contained in the positive side of the point (and thus will be true at that point by the canonical valuation

and the truth lemma) and the set Ω of formulas that are contained in the negative side of the point (and

thus will be false at that point by the canonical valuation and the truth lemma). In the classical modal case,

each point of the canonical model only speci�es explicitly the formulas that are true in it, the negative side

is omitted altogether because the false propositions are directly expressed in the language and end up as

(negative) formulas being true in the point. Since here we have not Boolean negation, we need to explicitly

list the false propositions in Ω. The maximal consistent sets of classical modal logic are special cases of

pairs: all point of the model are of the shape 〈Σ, [⊥]≡〉, in other words, they do not derive bottom, they are

consistent.

Let us �rst take a brief view at the ingredients of a canonical model approach to completeness for a classical

quanti�ed modal logic Λ with Barcan formulas (i.e. with constant domains).

3.1.1. The main properties required from the frame points in the classical setting. In the

classical setting, as said previously, the points are maximal Λ−consistent sets of formulas (in fact, maximal

�lters in ℘ (Form)). The task of showing that any consistent set of formulas can be satis�ed in the canonical

model requires �rst the guarantee that any such set will be represented by at least one point in the canonical

frame (which more concretely means it will be contained in such point). That is what the well-known

Lindenbaum lemma provides:

Lemma 36. (Lindenbaum lemma) Suppose Γ is an Λ-consistent set of well-formed formulas, then there is a

maximally Λ-consistent set of well-formed formulas Γ′ such that Γ ⊆ Γ′.

The shape of this lemma will change accordingly to the setting we are in. When Boolean complementation

is dropped we require a reformulation like lemma 46 in the sense that incomplete points to be extended have

now both an explicit positive assertion side and an explicit negative assertion side (while Lemma 34 treats

points that only have explicitly a positive assertion side). To see more clearly the continuity with the classical

case, it is worth noticing that what we call the positive side of a point is in fact a prime �lter in ℘ (Form),

while the negative side is its complement: a prime ideal.

The lemma 46 is a bit more complex since in fact it also deals with an extra component: the quanti�ers. To

fully grasp what role these play in the extra requirements that the points need to comply, it is worth to pick

up the matter right from the start, in the classical setting.
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3.1.1.1. Omega-saturation. Given LQ∪{¬} the language of quanti�ed classical modal logic, we need to

take care of the quanti�ers, and in particular we want the model to satisfy the natural condition that if ∀xϕ
does not hold at a point, there must be some object in the domain of quanti�cation for which ϕ does not hold

at that point. Since our domain D is in fact the set V ar of individual variables of LQ∪{¬}, we can rephrase

this property as follows: for any given point of the model, if ¬∀xϕ holds then there must be some y ∈ V ar
such that ¬ϕ [y/x] holds as well.

Clearly it is not enough to have maximal consistency for such a property to arise. Let Ω = {¬∀xϕx, ϕy1, ϕy2 . . .}
be the set that consists of ¬∀xϕ together with all formulas ϕ [y/x] for y ∈ V ar. Every �nite subset of Ω being

consistent (hence, having a model), the set Ω will be consistent as well by the compactness theorem of �rst

order logic (a set of sentences has a model i� every �nite subset has a model) which thereby has a maximal

consistent extension Ω′. But we cannot hope for Ω′ to have a witness ¬ϕ [y/x] supporting the falsehood of

¬∀xϕ, because y = yi for some i ∈ N and thus ϕ [y/x] ∈ Ω ⊆ Ω′. So having both ¬ϕ [y/x] and ϕ [y/x] in Ω′

would lead to inconsistency. This is so for any y ∈ V ar so not only Ω′ has not such witness but we cannot

hope to add it either. Hence the points of our (classical) canonical model need to independently satisfy the

following additional property besides being maximally consistent:

Definition 37. (ω-completeness) A set Γ of well-formed formulas is ω-complete i� for every formula ϕ and

every individual variable x there is some individual variable y such that ϕ [y/x]→ ∀xϕ ∈ Γ.

This property ensures that if Γ is a point in our (canonical) model and ∀xϕ /∈ Γ then there is an individual

variable y ∈ V ar such that ϕ [y/x] /∈ Γ. For if ϕ [z/x] ∈ Γ for all variables z, then certainly ϕ [y/x] ∈ Γ and

thus by ϕ [y/x] → ∀xϕ ∈ Γ we get ∀xϕ ∈ Γ. This property is precisely what will make the quanti�ers case

of the Truth-lemma work: the ω-completeness encoded as de�nition 37 is su�cient to obtain Σ ` ∀xϕ (x) i�

∀xϕ (x) ∈ Σ. 1 Since ∃ and ∀ are inter-de�nable via Boolean negation, we get Σ ` ∃xϕ (x) i� ∃xϕ (x) ∈ Σ in

the same shot.

Clearly, the maximal consistent set Ω′ exempli�ed above is not ω-complete, but we need to include it somehow

in the model otherwise a consistent set of formulas will not be satis�ed by the model. The solution turns

out to be the extension of LQ∪{¬} with countably many new variables so that Ω′ can �nd a proper witness

y′ ∈ V ar′ such that ϕ [y′/x] → ∀xϕ ∈ Ω in the new language L′Q∪{¬} ⊃ LQ∪{¬}. This is possible because

predicate logic (and its modal extension) has the property that if Γ is a consistent set of formulas from

L, it remains consistent in L′Q∪{¬} [Hughes & Cresswell 1996]. On lemma 46, instead of extending the

(non-Boolean analogues of) consistent sets to maximally consistent ones �rst, and then ensuring that all such

sets acquire the ω-completeness property, we do both simultaneously.

In the distributive case, we don't have Boolean negation anymore and thus the ω-completeness property

won't give us the existential case which depended on quanti�er interde�nability. Now the statement of this

property as de�nition 37 is no longer su�cient and turns out as too weak. So the ω-completeness property

has to be strengthened with what we may call a �super-primeness� condition as can be seen on de�nition 41.

3.1.2. The points of the canonical frame in a non-Boolean setting. It is a standard practice

to extend the relation ` to relate sets of sentences. For every Σ,∆ ⊆ Form we set Σ ` ∆ i�
∧
Σ0 `

∨
∆0

for some Σ0 ⊆ω Σ and some ∆0 ⊆ω ∆, where ⊆ω denotes �nitary inclusion. Note that Σ and ∆ may not

1The property ensures (via contrapositive) the right-to-left direction of this key sentence: ∀xϕ (x) ∈ Σ i� ϕ (y) ∈ Σ for all
y ∈ V ar. Then by IH ϕ (y) ∈ Σ for all y ∈ V ar i� Σ ` ϕ (y) for all y ∈ V ar, and in the logic Σ ` ϕ (y) for all y ∈ V ar i�
Σ ` ∀xϕ (x) (where the left-to-right direction follows from order theoretic properties of lattices: since Σ is an upset and ∀xϕ (x)

is a meet, namely ∀xϕ (x) ≡
∧

g′≡xg ‖ϕ (x)‖g
′
, then if ∀xϕ (x) ∈ Σ we must have ϕ (y) ∈ Σ for all y ∈ V ar as well, since the

meet is below all of is members).
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be �nite, but by Σ ` ∆ we always mean that some �nite conjunction of elements in Σ entail some �nite

disjunction of elements in ∆, as formally stated. Let C(Σ) = {ψ | Σ ` ψ} and Cd(∆) = {φ | φ ` ∆}, then

Proposition 38. Both C and Cd are closure operators on ℘ (Form).

Given a pair of formula-sets 〈Σ,∆〉, it is said to be a `-pair if Σ 0 ∆. From now on we will refer to a pair

(no extra properties) as an ordered pair and to a `-pair simply as a pair. Moreover, a pair 〈Σ,∆〉 is said to

be full in a language L i� Σ ∪∆ = Form (L), with Form (L) the set of all formulas in L.

Since we are in a non-Boolean setting, the dual frame of the Lindenbaum-Tarski algebra will have prime-�lters

rather than ultra�lters as points. Accordingly, the points of the canonical model will be prime theories, rather

than maximally consistent ones.

Definition 39. A set T of sentences is a prime theory if:

• T is a theory, i.e. it is closed under derivability2, and

• φ ∨ ψ ∈ T i� φ ∈ T or ψ ∈ T .

All points in our canonical frame will be full pairs, and thereby also prime theories:

Claim 40. If 〈Σ,∆〉 is a full pair, then Σ is a prime theory.

Proof. Suppose 〈Σ,∆〉 is a full pair. Then Σ 0 ∆ and Σ ∪∆ = Form (L). From this we can show a

number of facts:

• Σ is closed under derivability. Observe that everything that is derivable from Σ is contained in

either Σ or ∆ by fullness. Only the �rst is possible, because otherwise Σ ` ∆ which contradicts our

assumption thatΣ 0 ∆. So the claim holds. This brings trivially that:

� ϕ∧ψ ∈ Σ i� ϕ ∈ Σ and ψ ∈ Σ. For left to right direction, if ϕ∧ψ ∈ Σ then both ϕ and ψ must

be in Σ as well. To see why, suppose that at least one of ϕ and ψ is not in Σ. Then it is in ∆

since Σ∪∆ = Form (L). But then Σ ` ∆ because ϕ∧ψ ` . . .∨ϕ∨ . . . and ϕ∧ψ ` . . .∨ψ∨ . . .,
which contradicts Σ 0 ∆. Thus ϕ and ψ are in Σ. A similar argument shows that if ϕ ∈ Σ and

ψ ∈ Σ then ϕ ∧ ψ ∈ Σ. Thus ϕ ∧ ψ ∈ Σ i� ϕ ∈ Σ and ψ ∈ Σ.

� ⊥ /∈ Σ. For everything can be derived from bottom. Now since Σ 0 ∆ then ⊥ /∈ Σ because

otherwise everything could be derived from Σ, in particular ∆.

� > ∈ Σ. > is derivable from anything. So if > ∈ ∆ then Σ ` ∆. But Σ 0 ∆ so > /∈ ∆. It

follows immediately that > ∈ Σ because Σ ∪∆ = Form (L).
• Suppose ϕ ∨ ψ ∈ Σ then either ϕ or ψ must be in Σ as well, otherwise they are both in ∆ since

Σ ∪∆ = Form (L). But then Σ ` ∆ because ϕ ∨ ψ ` . . . ∨ ϕ ∨ ψ ∨ . . . (note that ϕ ∨ ψ 0 ϕ and

ϕ ∨ ψ 0 ψ so it is enough for one of them to be in Σ). A similar argument shows that if ϕ ∈ Σ or

ψ ∈ Σ then ϕ ∨ ψ ∈ Σ. Thus ϕ ∨ ψ ∈ Σ i� ϕ ∈ Σ or ψ ∈ Σ.

Thus, Σ is a prime theory. �

The non-Boolean setting also means we have to pay special attention to both quanti�ers instead of only

focusing on the universal one. The ω-completeness property -in a distributive setting- has to be formulated

for each quanti�er separately, as follows:

2Observe that this, stated algebraically as ∀x ((x ∈ T & x ≤ y) → y ∈ T ) and ∀x, y ((x ∈ T & y ∈ T ) → x ∧ y ∈ T ) , means that
T is a �lter.
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Definition 41. Quanti�er suited pairs.

A pair 〈Σ,∆〉 is quanti�er suited i� the following two conditions hold:

• (QS1) If Σ ` ∆ ∪ {A (x)} for all x ∈ V ar then Σ ` ∆ ∪ {∀vA [v/x]} .
• (QS2) If Σ ∪ {A (x)} ` ∆ for each x ∈ V ar then Σ ∪ {∃vA [v/x]} ` ∆.

Remark 42. Observe that, to bring it closer to the classical case formulation (de�nition 37), (QS1) can be

stated contrapositively: Σ 0 ∆ ∪ {∀xA (x)} implies Σ 0 ∆ ∪ {A (x)} for some x ∈ V ar. The contrapositive
of (QS2) would be Σ ∪ {∃xA (x)} 0 ∆ implies Σ ∪ {A (x)} 0 ∆ for some x ∈ V ar.3

Observe that the conditions (QS1) -a sort of �super-�lter� condition- and (QS2) -a sort of �super-prime�

condition- are non-trivial since they implicitly appeal to compactness. 4Namely for (QS1), if Σ ` ∆∪{A (x)}
for each x ∈ V ar then we get Σ ` ∆∪{A (x0) ∧A (x1) ∧ . . . ∧A (xn)} for any n ∈ N (we assume the language

has countably many variables). This means that models satisfying Σ do satisfy the union of delta with any

�nite set of formulas of shape A (v) with v ∈ V ar, and thus by compactness they also satisfy the union of

delta with the entire set of such formulas.

By ensuring that a pair if both quanti�er suited and full, we obtain the expected behaviour of quanti�ers:

Lemma 43. If 〈Σ,∆〉 is a full and quanti�er suited pair, then

• ∃vA ∈ Σ i� A (x) ∈ Σ for some x ∈ V ar
• ∀vA ∈ Σ i� A (x) ∈ Σ for all x ∈ V ar.

Proof. Assume 〈Σ,∆〉 is a full and quanti�er suited pair. Then Σ 0 ∆ and Σ ∪∆ = Form (LQ).

First claim

(⇒) Suppose ∃vA ∈ Σ. If A (x) ∈ ∆ for some x ∈ V ar then Σ∪{A (x)} ` ∆. By the (QS2), Σ∪{∃vA [v/x]} `
∆. Thus, since ∃vA ∈ Σ we have in fact Σ ` ∆. But by assumption Σ 0 ∆, contradiction! Hence A (x) /∈ ∆.

Since Σ ∪∆ = Form (LQ), it follows that A (x) ∈ Σ.

(⇐) Suppose that A (x) ∈ Σ for some x ∈ V ar. Clearly Σ ` A (x). Then Σ ` ∃vA by (A.4bi) from

de�nition 1 (we can assume that a �nite subset Γ ⊆ Σ su�ces, namely Γ = {A (x)}, so we apply the rule

with
∧
Γ ` A (x)). Since Σ 0 ∆ then ∃vA /∈ ∆. So ∃vA ∈ Σ because Σ ∪∆ = Form (LQ).

Thus, ∃vA ∈ Σ i� A (x) ∈ Σ for some x ∈ V ar.

Second claim follows in an analogous way:

(⇒) Suppose ∀vA ∈ Σ. Then Σ ` A (x) for each x ∈ V ar, by application of universal instantiation (A.4a)

(we have non-empty domain)5. If A (x) ∈ ∆ for some x then we have Σ ` ∆. But by assumption we have

3If Σ is maximal and Σ∪{∃xA (x)} 0 ∆ we must have ∃xA (x) ∈ Σ, otherwise Σ is notmaximally consistent (from Σ∪{∃xA (x)} 0
∆ we can see that Σ ∪ {∃xA (x)} is consistent, since bottom would derive anything, in particular ∆). Same reasoning goes for
the consequent part of (2), it implies A (x) ∈ Σ for all x ∈ V ar, by maximality. This is what we could call Σ-super primeness:
∃xA (x) ∈ Σ ⇒ A (y) ∈ Σ for some y ∈ V ar.
4In contrast, the analogous conditions 1 and 2 below, are completely trivial as they follow from usual inference rules for
quanti�ers, or algebraically from order theory.

(1) If Σ∪{A (x)} ` ∆ for all x ∈ V ar, then Σ∪{∀vA [v/x]} ` ∆. This trivially holds since Σ∪{∀vAv} can be instantiated
into Σ ∪ {A (x)} for any x in the domain which clearly is assumed non-empty. The domain is non-empty since the
assumption contains a variable and V ar = D. Algebraically, this implication follows on order-theoretic grounds:
∀vAv is the meet of the set {A (x) | x ∈ V ar}, thus if every component of the meet is below ∆, so is the meet (we
interpret ` as ≤).

(2) If Σ ` ∆ ∪ {A (x)} for each x ∈ V ar then Σ ` ∆ ∪ {∃vA [v/x]}. This trivially holds by existential generalization.
Algebraically, this implication follows on order-theoretic grounds: ∃vA is the join of the set {A (x) | x ∈ V ar}, thus
if every component of the join is above Σ, so is the join.

5Again, we can assume that a �nite subset Γ ⊆ Σ su�ces, namely Γ = {∀vA}
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Σ 0 ∆. Hence for all x ∈ V ar it holds that A (x) /∈ ∆. Since Σ ∪∆ = Form (LQ), it follows that A (x) ∈ Σ

for all variables x.

(⇐) Suppose that A (x) ∈ Σ for all x ∈ V ar. Then Σ ` ∆ ∪ {A (x)} for each x ∈ V ar. By the quanti�er

suited condition QS1, Σ ` ∆∪{∀vA}. Since Σ 0 ∆ then ∀vA /∈ ∆. So ∀vA ∈ Σ because Σ∪∆ = Form (LQ).

Thus, ∀vA ∈ Σ i� A (x) ∈ Σ for all x ∈ V ar. �

To built our canonical frame, the strategy is as follows. If Σ 0 ∆ we extend 〈Σ,∆〉 to a full quanti�er-suited

pair 〈Σ′,∆′〉 using the lemma 46. Then we use the class of full quanti�er-suited pairs in this language L+
Q

′
as

the universe of points W of the canonical frame. Because they are full and quanti�er-suited, it is guaranteed

that these points, as prime theories, will interpret the extensional part of the language adequately. But we

still must guarantee that the modal part of the language is also adequately interpreted. A �rst step towards

this goal is given by the de�nition of the accessibility relations in the canonical frame, which are as expected.

Definition 44. The Canonical model Mc for a CDML-logic on the language L+
Q

′
is tuple〈

(W,⊆∗) , Rc�, Rc♦, Rc., Rc/, V ar, V c
〉
, where:

• The language L+
Q

′
is the extension of L+

Q with (intuitionistic) implication and substraction connec-

tives, and L+
Q is LQ extended with countably many new variables.

• The domain (of quanti�cation) of this frame is the set V ar of variables in the language LQ .

• The universe of the frame is (W,⊆∗) with W as the set of all full quanti�er-suited pairs in the

language L+
Q

′
and ⊆∗ the ordering relation between them. We set 〈Σ,∆〉⊆∗〈Γ,Π〉 i� Σ ⊆ Γ.

• The canonical relations Rc� , Rc♦ , Rc. ,R
c
/ are de�ned as follows:

� 〈Σ,∆〉Rc� 〈Γ,Π〉 i� for each ϕ ∈ L+
Q

′
we have �ϕ ∈ Σ⇒ ϕ ∈ Γ

� 〈Σ,∆〉Rc♦ 〈Γ,Π〉 i� for each ϕ ∈ L+
Q

′
we have ϕ ∈ Γ⇒ ♦ϕ ∈ Σ

� 〈Σ,∆〉Rc. 〈Γ,Π〉 i� for each ϕ ∈ L+
Q

′
we have .ϕ ∈ Σ⇒ ϕ /∈ Γ

� 〈Σ,∆〉Rc/ 〈Γ,Π〉 i� for each ϕ ∈ L+
Q

′
we have ϕ /∈ Γ⇒ /ϕ ∈ Σ

• The canonical valuation V c is de�ned such that the extension V c〈Γ,Π〉 (F ) of a predicate F at a point

〈Γ,Π〉 of the frame is the set of n-tuples 〈x1, . . . , xn〉 such that F (x1, . . . , xn) ∈ Γ.

We will see below that these conditions guarantee that the accessibility relations in the canonical frame

maintain the right interactions with the ordering on the canonical frame universe. Such ordering is the

inclusion relation ⊆ between prime theories. As for the evaluation conditions of modal operators, however,

these de�nitions only do half the job. Take � as example. The half that is achieved is that when �ϕ ∈ Σ

then for each Γ with R�ΣΓ we have ϕ ∈ Γ. But we need to complement this with the property that if

�ϕ /∈ Σ then there is some Γ such that R�ΣΓ and ϕ /∈ Γ. In other words, we need to ensure that there are

appropriate witnessing points when a universal quanti�cation fails (box-like operators) or when an existential

one occurs (diamond-like operators). This is more di�cult than in the propositional case, for we need to not

only construct the theory but also ensure that it is quanti�er-suited in the same language. To achieve this

we will use lemma 55.

Claim 45. the canonical frame de�ned above is of the appropriate kind, namely, it is an DML-frame.

We verify that the canonical frame is an DML-frame (de�nition 2) by checking that the conditions on the

accessibility relations are ful�lled.

(1) ≥ ◦R♦ ⊆ R♦◦ ≥ that is ∀t, u, v [(t ≥ u ∧ R♦uv)→ ∃w (R♦tw ∧ w ≥ v)]. In the canonical frame,

such condition takes the following shape (we assume universal closure):(
〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ,∆〉Rc♦ 〈Γ,Π〉

)
⇒ ∃〈Γ′,Π′〉

(
〈Σ′,∆′〉Rc♦ 〈Γ′,Π′〉 & 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉

)
.
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Proof. Let 〈Σ,∆〉 , 〈Γ,Π〉 and 〈Σ′,∆′〉 be full quanti�ed-suited pairs from L+
Q

′
such that

〈Σ,∆〉Rc♦ 〈Γ,Π〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. Then for each ϕ ∈ L+
Q

′
we have ϕ ∈ Γ ⇒ ♦ϕ ∈ Σ,

and since Σ ⊆ Σ′ then ϕ ∈ Γ ⇒ ♦ϕ ∈ Σ ⇒ ♦ϕ ∈ Σ′. Therefore 〈Σ′,∆′〉Rc♦ 〈Γ,Π〉. So just take

〈Γ′,Π′〉 = 〈Γ,Π〉 as the witness point. �

(2) ≤ ◦R� ⊆ R�◦ ≤ that is ∀t, u, v [(t ≤ u ∧ R�uv)→ ∃w(R�tw ∧ w ≤ v]. In the canonical frame,

such condition takes the following shape (we assume universal closure):(
〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ′,∆′〉Rc� 〈Γ′,Π′〉

)
⇒ ∃〈Γ,Π〉

(
〈Σ,∆〉Rc� 〈Γ,Π〉 & 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉

)
.

Proof. Let 〈Σ,∆〉 , 〈Γ′,Π′〉 and 〈Σ′,∆′〉 be full quanti�ed-suited pairs from L+
Q

′
such that

〈Σ′,∆′〉Rc� 〈Γ′,Π′〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. By de�nition of the canonical relation Rc�, we have,

for each ϕ ∈ L+
Q

′
, �ϕ ∈ Σ′ ⇒ ϕ ∈ Γ′, and since Σ ⊆ Σ′, then �ϕ ∈ Σ ⇒ �ϕ ∈ Σ′ ⇒ ϕ ∈ Γ′.

Hence 〈Σ,∆〉Rc� 〈Γ′,Π′〉. But then, there exists a point 〈Γ,Π〉 such that 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉 and
〈Σ,∆〉Rc� 〈Γ,Π〉, for we can just take 〈Γ,Π〉 = 〈Γ′,Π′〉. �

(3) ≤ ◦R. ⊆ R.◦ ≥ that is ∀t, u, v, w [(t ≤ u ∧ R.uv)→ ∃w (R.tw ∧ w ≥ v)]. In the present case, such
condition is rather written like this (we assume universal closure):

(〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ′,∆′〉Rc. 〈Γ,Π〉)⇒ ∃〈Γ′,Π′〉 (〈Σ,∆〉Rc. 〈Γ′,Π′〉 & 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉).

Proof. Let 〈Σ,∆〉 , 〈Γ,Π〉 and 〈Σ′,∆′〉 be full quanti�ed-suited pairs from L+
Q

′
such that

〈Σ′,∆′〉Rc. 〈Γ,Π〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. Then for each ϕ ∈ L+
Q

′
we have .ϕ ∈ Σ′ ⇒ ϕ /∈ Γ,

by de�nition of the relation Rc.. By Σ ⊆ Σ′ we get .ϕ ∈ Σ ⇒ .ϕ ∈ Σ′ ⇒ ϕ /∈ Γ for each ϕ ∈ L+
Q

′
,

and thus 〈Σ,∆〉Rc. 〈Γ,Π〉. But then, there exists a point 〈Γ′,Π′〉 such that 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉 and
〈Σ,∆〉Rc. 〈Γ′,Π′〉, as we can just take 〈Γ′,Π′〉 = 〈Γ,Π〉. �

(4) ≥ ◦R/ ⊆ R/◦ ≤ that is ∀t, u, v [(t ≥ u ∧ R/uv)→ ∃w (R/tw ∧ w ≤ v)]. In the present case, such

condition is rather written like this (we assume universal closure):

(〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ,∆〉Rc/ 〈Γ′,Π′〉)⇒ ∃〈Γ,Π〉 (〈Σ′,∆′〉Rc/ 〈Γ,Π〉 & 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉).

Proof. Let 〈Σ,∆〉 , 〈Γ′,Π′〉 and 〈Σ′,∆′〉 be full quanti�ed-suited pairs from L+
Q

′
such that

〈Σ,∆〉Rc/ 〈Γ′,Π′〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. Then for each ϕ ∈ L+
Q

′
we have ϕ /∈ Γ′ ⇒ /ϕ ∈ Σ,

and since Σ ⊆ Σ′ then ϕ /∈ Γ′ ⇒ /ϕ ∈ Σ ⇒ /ϕ ∈ Σ′. Hence 〈Σ′,∆′〉Rc/ 〈Γ′,Π′〉. So just take

〈Γ,Π〉 = 〈Γ′,Π′〉. �

3.1.3. Lindenbaum lemma analogue to extend theories to prime theories (pairs to full pairs).

Here we present the Lindenbaum lemma analogue for the distributive setting, which also takes care to enforce

ω-completeness (quanti�er suitedness).

Lemma 46. (Pair Extension on a new language). If 〈Σ,∆〉 is a pair then there is also a full quanti�er-suited

pair 〈Σ′,∆′〉 extending 〈Σ,∆〉, in a new language L+′

Q extending the original language L′Q by at most countably

many new variables.

Proof. We will prove the result by construction.

Construction:

Let L+′

Q be the language L′Q extended with countably many new variables. Let Enum
(
L+′

Q

)
= {An | n ∈ ω}

be an enumeration of all the formulas A0, A1, . . . of L+
Q

′
, and V ar+ = {xn | n ∈ ω} an enumeration of all the

variables in L+
Q

′
. 6 Now de�ne 〈Σ0,∆0〉 := 〈Σ,∆〉, and 〈Σn+1,∆n+1〉 is de�ned as follows:

6The original proof on [Restall 2005] seems to only use an enumeration on L′Q which only labels formulas from the old language,

and thus, the veri�cation stage of the proof fails, since the construction does not take care of new formulas made from the added
variables.
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Case 1. If Σn ∪ {An} 0 ∆n and An is not of the form ∃vB then 〈Σn+1,∆n+1〉 := 〈Σn ∪ {An} ,∆n〉. 7

Case 2. If Σn ∪ {An} 0 ∆n and An is of the form ∃vB then 〈Σn+1,∆n+1〉 := 〈Σn ∪ {An, B (x)} ,∆n〉,
where x is the �rst new variable in the enumeration V ar+ not appearing in Σn, An or ∆n (The

well-foundedness of N guarantees that every non-empty set of indices has a least element and thus

we can choose the �rst such variable).8

Case 3. If Σn∪{An} ` ∆n and An is not of the form ∀vB then 〈Σn+1,∆n+1〉 := 〈Σn,∆n ∪ {An}〉 (suppose
it is of form ∃vB, then any witness will be added by construction to ∆ as well because any witness

derives ∃vB, by (A.4b) and thus derives ∆n, so no extra precaution is needed).

Case 4. If Σn∪{An} ` ∆n and An is of the form ∀vB then 〈Σn+1,∆n+1〉 := 〈Σn,∆n ∪ {An, B (x)}〉, where
x is a new variable not appearing in Σn, An or ∆n.

9 .

Then we set 〈Σ′,∆′〉 := 〈
⋃
nΣn,

⋃
n∆n〉, which by construction is a partition of the formulas: every formula

An ∈ Form
(
L+
Q

′
)
is either in Σ′ or in ∆′, thus 〈Σ′,∆′〉 is full. �

Verification:

We just remarked that all formulas in the enumeration of L+
Q

′
are put either in ∆′ or Σ′, so fullness is

guaranteed. Remains to verify the rest of the properties.

Claim 47. 〈Σ′,∆′〉 := 〈
⋃
nΣn,

⋃
n∆n〉 is a pair.

Proof. First, we show by induction on n and m that Σn 0 ∆m for all n,m. Notice that we can assume

w.l.o.g. that n = m for if n 6= m, it su�ces to use weakening and add premises to the conjunction of Σn in

case n < m (those added premises are exactly the formulas that are added to Σ′ on stages i with n < i ≤ m)

or add disjuncts to the consequent ∆m in case n > m. So in fact this reduces to show by induction on n that

Σn 0 ∆n for all n.

(1) Base case: n = 0. Since 〈Σ0,∆0〉 := 〈Σ,∆〉 and 〈Σ,∆〉 is a pair, we have Σ0 0 ∆0.

(2) Inductive step. n+ 1.

Suppose towards a contradiction that Σn 0 ∆n but Σn+1 ` ∆n+1.

7Suppose An is of form ∀vB, then there is no problem, because we are sure that:
(1) since Σn ∪ {∀vB} 0 ∆n then ∆n contains no instantiation B [x/v] and it is safe to add it to Σn,
(2) the universal quanti�er is properly interpreted: the instantiations B [x/v], for x ∈ V ar+, and not already in Σ will be

added later by construction because all such formulas are in the enumeration and they are such that Σn ∪ {B (x)} 0 ∆n

by (a).

8

(1) we need a variable not appearing in ∆n for obvious reasons: to be sure we avoid deducibility of ∆n+1 from Σn+1, just in
case that formulas of shape B (x) , B (x) ∨ ϕ, etc. are in ∆n

(2) we need a variable not appearing in Σn because then we could get deducibility of ∆n+1 from Σn+1, with for instance,
ϕ (x) in Σ and something like ϕ (x) ∧B (x) in ∆ (which would be deducible once we have added B (x) to Σ),

(3) we need a variable not appearing in An because otherwise we would get something stronger. Observe that with x in An

we would have something like An = ∃vϕ (v, x). Then the instantiation ϕ (x, x) added to Σ would make both ∃vϕ (v, x)
and ∃vϕ (v, v) deducible from Σ. If the second happens to be in ∆n, we get deducibility of ∆n from Σ.

(4) But more importantly: note that since Σ and ∆ contain only formulas from LQ and for any n ∈ ω, Σn and ∆n are

composed of �nite formulas and contain only �nitely many from L+Q
′
, then we can always �nd an x new to Σn, An and

∆n. Notice also that �x new to Σn, An and ∆n� entails that B (x) has not appeared earlier in the enumeration. Otherwise
B (x) = Am would have been checked at stage m < n and thrown into Σm or ∆m. It cannot be checked at stage n either,
otherwise B (x) = An. In both cases, x would not be new to Σn, An and ∆n.

9Observe that you add the witness B (x) to ∆ so that Σ will no longer contain all witnesses, and thus, cannot derive ∀vB = An;
if x appears in Σ it might be that B (x) is in Σ and thus you would get derivability of ∆. So we need x not appearing in Σn.
Moreover, observe that with x in An we would have something like ∀vϕ (v, x) then the instantiation ϕ (x, x) added to ∆ would
make both ∀vϕ (v, x) and ∀vϕ (v, v) unsuitable for Σ (Only the �rst is desired). So we also reject x from appearing in An. The
main reason to get x new to ∆n, is again the guarantee that B (x) has not occurred previously in the enumeration.
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Case 1. Consider the case 1 of the construction. By hypothesis Σn ∪ {An} 0 ∆n, hence Σn+1 0
∆n+1 because Σn+1 = Σn ∪ {An} and ∆n+1 = ∆n. Clearly we get a contradiction with

our assumption that Σn+1 ` ∆n+1.�

Case 2. Then Σn ∪ {An} 0 4n with An of the form ∃vB. We assumed that Σn+1 ` ∆n+1 and in

this case Σn+1 = Σn∪{An, B (x)} (where x does not appear in Σn,∆n or An) and∆n+1 =

∆n. Hence, there is a conjunction C of formulas in Σn and a disjunction D of formulas

in ∆n such that C ∧An∧B (x) ` D. By existential generalization we can set ∃vχ ` χ (x)

with χ := C ∧ An ∧ B (x) because x has not previously appeared and thus carries no

assumptions along with it. Hence we have ∃x (C ∧An ∧B (x)) ` C ∧ An ∧ B (x) ` D
and then C ∧ An ∧ ∃xB (x) ` ∃x (C ∧An ∧B (x)) ` C ∧ An ∧ B (x) ` D by existential

distribution.10 Finally C ∧ An ∧ ∃xB (x) ` D by cut, and since An is of the form ∃vB
we have C ∧An ` D, which contradicts the fact that Σn ∪ {An} 0 ∆n.�

Case 3. Then Σn ∪ {An} ` ∆n . Now suppose that Σn ` ∆n ∪ {An} (that is Σn+1 ` ∆n+1).

By the �rst assumption, for some conjunction C of members of Σn and some disjunction

D from ∆n we have C ∧ An ` D and, by the second assumption, we get C ` An ∨ D
(observe that we can assume w.l.o.g. that the disjunction D from ∆n is the same in both

cases -if they are di�erent just take the disjunction of both and replace D by this new

disjunction-). Now notice that:

(a) By disjointing D to the �rst antecedent we have (C ∧An)∨D ` D (by instantiation

of rule (C∧An)`D D`D
(C∧An)∨D`D since both disjuncts derive D)

(b) By conjoining C to the second consequent we have C ` C ∧ (An ∨D) (trivially,

from C ` C and C ` An ∨D by instantiation of rule C`C C`An∨D
C`C∧(An∨D) ).

(c) By an instance of the distribution law we have C ∧ (An ∨D) ` (C ∧An) ∨D.

Thus C ` (C ∧An) ∨D by using (b)-(c) and cut. Then by applying (a) to the previous

result, we get C ` (C ∧An) ∨D ` D, that is C ` D. But this contradicts our starting

point, namely Σn 0 ∆n.�

Case 4. Assume that Σn ∪ {An} ` ∆n and An is of the form ∀vB. Now suppose that Σn `
4n ∪ {An, B (x)} where x is a new variable not appearing in Σn, An or ∆n (that is, we

assume Σn+1 ` ∆n+1). Then for some conjunction C of elements in Σn and a disjunction

D of elements in∆n we have C∧An ` D, by the �rst assumption, and C ` An∨B (x)∨D,

by the second one (again, w.l.o.g. we can use the same C and D in both cases). Now

notice that:

(a) By disjointing D to the �rst antecedent we have (C ∧An) ∨D ` D (as before)

10C ∧ An ∧ ∃xB (x) ` ∃x (C ∧An ∧B (x)) can be seen algebraically as ‖C ∧An‖g ∧
(∨

g′≡xg ‖B (x)‖g′
)
≤∨

g′≡xg

{
‖C ∧An‖g′ ∧ ‖B (x)‖g′

}
which involves a strong form of distributivity (complete lattices that satisfy it are known as

Heyting algebras). It is worth noticing that since x does not occur in C∧An, then ‖C ∧An‖g′ = ‖C ∧An‖g . The opposite direc-

tion (with α = C ∧An) ‖α‖g ∧
(∨

g′≡xg ‖B (x)‖g′
)
≥

∨
g′≡xg

{
‖α‖g′ ∧ ‖B (x)‖g′

}
always holds in any complete lattice, which

allows binary meets to distribute over arbitrary joins. To see why, consider that for any g” such that g” ≡x g it is clear that
(∨

g′≡xg ‖B (x)‖g′
)
≥ ‖B (x)‖g” ≥

(
‖B (x)‖g” ∧ ‖α‖g”

)
and ‖α‖g” ≥

(
‖B (x)‖g” ∧ ‖α‖g”

) , where ‖α‖g” = ‖α‖g . Hence
((∨

g′≡xg ‖B (x)‖g′
)
∧ ‖α‖g

)
≥(

‖B (x)‖g” ∧ ‖α‖g”
)
, in other words, since

(
‖B (x)‖g” ∧ ‖α‖g”

)
is below each element of the meet, then it is below the meet

as well. Since this holds for any g” such that g” ≡x g it is clear that
((∨

g′≡xg ‖B (x)‖g′
)
∧ ‖α‖g

)
≥ ‖B (x)‖g” ∧ ‖α‖g” for

all members of the join
∨

g′≡xg

{
‖B (x)‖g′ ∧ ‖α‖g′

}
. Therefore

((∨
g′≡xg ‖B (x)‖g′

)
∧ ‖α‖g

)
≥

∨
g′≡xg

{
‖B (x)‖g′ ∧ ‖α‖g′

}
, in di�erent words, since

((∨
g′≡xg ‖B (x)‖g′

)
∧ ‖α‖g

)
is above each element of the join, then it is above the join as well.
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(b) By conjoining C to the second consequent we have C ` C ∧ (An ∨B (x) ∨D) with

(*) x absent from C, An and D.

We obtain C ` ∀v (C ∧ (An ∨B (v) ∨D)) ` C ∧ (An ∨ ∀vB (v) ∨D), the �rst entailment

by rule (5a) applied to (b), and then -on second entailment- the quanti�er is pushed

inside by (*). So C ` C ∧ (An ∨ ∀vB ∨D) by cut. Now C ∧ (An ∨ ∀vB ∨D) is the

same as C ∧ (An ∨D) because An = ∀vB , so C ` C ∧ (An ∨D). By an instance of

the distribution law we have C ∧ (An ∨D) ` (C ∧An) ∨ D. Thus C ` (C ∧An) ∨ D,

and through (a) we get C ` (C ∧An) ∨ D ` D, that is C ` D. But this contradicts

Σn 0 ∆n.�

We have a contradiction in all cases, which proves Σn+1 0 ∆n+1. Hence for all n we have Σn 0 ∆n, which

implies Σ′ 0 ∆′ . For suppose Σ′ ` ∆′. Then by compactness, there exists a �nite Γ ⊆ Σ′ such that Γ ` D
for some disjunction of elements in ∆. Since {Σi}i∈ω and {∆i}i∈ω form increasing chains, Γ is �nite and D

has an index in the enumeration of L+
Q

′
, we know there exists z ∈ ω such that Γ ⊆ Σz and D ∈ ∆z, i.e. such

that Σz ` ∆z. This contradicts the fact that for all n we have Σn 0 ∆n, and henceforth Σ′ 0 ∆′ and the

claim is proved. �

Remark 48. It is quite clear that 〈Σ′,∆′〉 is a pair given the proof above. It is instructive, however, to discuss
what happens with the formulas Am that are inserted as companion witnesses of an existential formula At

with t < m (recall that we do know for sure that t < m because the witness uses a new variable not present

on any formula added at a stage s ≤ t). Suppose we are at stage m and we are to examine the formula Am

which was previously entered in Σt at stage t < m as witness companion of a formula At = ∃vB (i.e., we

assume for stage t that we are in case 2 with Σt ∪ {∃vB} 0 ∆t and Am = B (y) , y a fresh variable, is the

witness). These are the cases when Am is checked.

Case 1. Am is put into Σ, but then it is all �ne since Am was already in Σ since stage t.

Case 2. As previous case, but now we add the witness corresponding to Am.

Case 3. (and Case 4 ) If we were indeed in these cases we would be in trouble because Σm ∪ {Am} ` ∆m

and Am ∈ Σt<m by assumption. But note that we have Am = B (y) and Σt∪{∃vB} 0 ∆t. By the

latter, certainly ∃vB 0 ∆t. Since, algebraically speaking, ∃vB is the join of all witnesses B (x),

and ≤ interprets `, then clearly B (x) 0 ∆t for all x ∈ V ar+. In particular Am 0 ∆t so it is �ne

that Am ∈ Σt<m. Moreover, since Am enters Σ at stage t, then the construction takes care to

preserve pairness afterwards, so Σm ∪ {Am} ` ∆m (that is Σm ` ∆m) cannot be the case.

Claim 49. The pair 〈Σ′,∆′〉 is quanti�er-suited by construction.

Proof. (QS1) Universal quanti�er. We just proved Σ′ 0 ∆′ so if Σ′ ` ∆′ ∪ {A (x)} then we must have

A (x) ∈ Σ′, for all x ∈ V ar+. But then ∀vA [v/x] ∈ Σ′ for otherwise ∀vA [v/x] ∈ ∆′ since 〈Σ′,∆′〉 is full, and
this would lead to Σ′ ` ∆′ through universal generalization (A.5a) applied to Σ′ ` ∆′ ∪ {A (x)}. Therefore
Σ′ ` ∆′ ∪ {∀vA}, as desired.

(QS2) Existential quanti�er. We just proved Σ′ 0 ∆′ so, for all x ∈ V ar+, if Σ′ ∪ {A (x)} ` ∆′ then we must

have A (x) ∈ ∆′. But then ∃vA ∈ ∆′ (otherwise ∃vA ∈ Σ′ since 〈Σ′,∆′〉 is full, and then Σ′ ` ∆′ through

existential instantiation (A.4bi)), therefore Σ′ ∪ {∃vA} ` ∆′, as desired. �

3.2. Witnessing-pair existence lemma

In this section we will prove three lemmas, amongst which the witnessing-pair existence lemma is the key

result. The other two lemmas are preparatory steps. The pair extension in the same language lemma will
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be used within the truth-lemma to turn each witnessing-information nucleus provided by lemma 55 into an

actual point of the frame. The �nite addition lemma, for which the language needs an extension, is used in

both the witnessing-pair lemma proof and in the truth lemma.

Extending the language conservatively

We will conservatively add two connectives ⊃ and − to our language LQ of distributive lattice logic as they

will be required to push the proof of the �nite addition lemma 53 through. The resulting language will be

denoted by L′Q . By conservatively we mean that the set of tautologies of our logic Λ will not be a�ected in

any way.

Definition 50. Conservative extension of a language

• The logic Λ′ based on L′Q ⊇ LQ is an extension of the logic Λ if Λ ⊆ Λ′,

• it is a conservative extension if moreover Λ′ ∩ LQ = Λ, that is Λ′ ` ϕ ⇒ Λ ` ϕ for any ϕ not

containing the new connectives.

To keep the extension conservative we de�ne the new connectives by linking them to what we already have:

Definition 51. new connectives (NC):

(1) ϕ ∧ ψ ` χ i� ϕ ` ψ ⊃ χ (thus ⊃ is intuitionistic implication)

(2) ϕ ` ψ ∨ χ i� ϕ− ψ ` χ

The satisfaction relation 
 needs to be extended accordingly:

(1) M, w, g 
 ϕ ⊃ ψ i� for all v with w ≤ v, M, v, g 
 ϕ⇒M, v, g 
 ψ

(2) M, w, g 
 ϕ− ψ i� ∃v ≤ w (M, v, g 
 ϕ&M, v, g 1 ψ),

Remark 52. De�ned algebraically, intuitionistic ⊃ is the following operation: A ⊃ B :=
∨
{C | C ∧A = B},

that is, the biggest C such that C ∧ A ≤ B. When interpreted on an algebra of upsets, then A ⊃ B :=

(A ∩Bc) ↓c. If we delete the arrow, we get the classical interpretation of ⊃.

From the axioms we already have and the de�nitions of the new connectives, it can be shown that the

following rules characterize the interaction between the new connectives and the quanti�ers (we refer the

reader to [Restall 2005] for details).

(QN) Quanti�ers and the new connectives (ϕ,ψ stand for any formula)

(1) ∀v (ϕ ⊃ ψ) ` ∀vϕ ⊃ ∀vψ
(2) ∀v (ϕ ⊃ ψ) ` ∃vϕ ⊃ ψ , with v not free in ψ

(3) ∃vψ − ∃vϕ ` ∃v (ψ − ϕ)
(4) ψ − ∀vϕ ` ∃v (ψ − ϕ), with v not free in ψ

We can now proceed with the proof of the �nite addition lemma.

Lemma 53. Finite addition lemma.

If 〈Σ,∆〉 is a quanti�er-suited pair and X and Y are �nite sets of formulas in the same language, and one

of Σ and ∆ is �nite, then 〈Σ ∪X,∆ ∪ Y 〉 is also quanti�er-suited.11

11Observe that the resulting sequence 〈Σ ∪X,∆ ∪ Y 〉 might not be -in general- a pair, we only claim that if it is a pair, it will
be quanti�er-suited. Accordingly, the proof does not take care of tracking the deducibility of ∆ ∪ Y from Σ ∪X.
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Proof. Assume that 〈Σ,∆〉 is a quanti�er-suited pair.

Case 1. Σ is �nite. X and Y are �nite, so w.l.o.g. we can assume they are singletons X = {ϕ} and

Y = {ψ}.
Case i. (QS2) subcase. Fix an x ∈ V ar+. If Σ∪X∪{A (x)} ` ∆∪Y , we have

∧
Σ∧ϕ∧A (x) `

D ∨ ψ, with D a �nite disjunction in ∆ (
∧
Σ ∧ ϕ ∧ A (x) is a formula since Σ is

�nite). Equivalently (
∧

Σ ∧ ϕ ∧A (x)) − ψ ` D by substraction. Now assume that

Σ ∪X ∪ {A (x)} ` ∆ ∪ Y for all x ∈ V ar+. Therefore, by lattice rule (IR.2a) and for

any n ∈ ω we have:[(∧
Σ ∧ ϕ ∧A (x0)

)
− ψ

]
∨
[(∧

Σ ∧ ϕ ∧A (x1)
)
− ψ

]
∨ . . . ∨

[(∧
Σ ∧ ϕ ∧A (xn)

)
− ψ

]
` D

Since (− ) is order-preserving on the left argument (proposition 26), then (− ψ) is

order-preserving and thus we can push the disjunction inside the left argument of sub-

straction, to obtain[(∧
Σ ∧ ϕ ∧A (x0)

)
∨
(∧

Σ ∧ ϕ ∧A (x1)
)
∨ . . . ∨

(∧
Σ ∧ ϕ ∧A (xn)

)]
− ψ ` D

(Alternatively, we can take f (x) = (x−
∨
Y ), and use the well known proposition in

lattice theory which states that in a lattice L, f being order preserving is a property

equivalent to f (a) ∨ f (b) ≤ f (a ∨ b) -and order-dually f (a) ∧ f (b) ≥ f (a ∧ b)- for all
a, b ∈ L ([Davey & Priestley 2002] p.44 proposition 2.19).12 Then we take deduction

as the ordering relation). By compactness13 we �nally have: ∃v (
∧
Σ ∧ ϕ ∧A [v/x]) −

ψ ` D -we can choose v not free in
∧
Σ ∧ ϕ since it is a �nite formula- and then

∃v (
∧
Σ ∧ ϕ ∧A [v/x]) ` D∨ψ and (

∧
Σ ∧ ϕ ∧ ∃vA [v/x]) ` D∨ψ. So Σ∪X ∪{∃vA} `

∆ ∪ Y as desired and 〈Σ ∪X,∆ ∪ Y 〉 ful�lls (QS2).�
Case ii. (QS1) subcase. Fix an x ∈ V ar+. If Σ ∪ X ` ∆ ∪ Y ∪ {A (x)}, we have

∧
Σ ∧ ϕ `

D ∨ ψ ∨ A (x), with D a �nite disjunction in ∆ (
∧
Σ ∧ ϕ is a formula since Σ is

�nite). Equivalently (
∧
Σ ∧ ϕ) − (ψ ∨A (x)) ` D, by substraction. Now assume that

Σ ∪X ` ∆ ∪ Y ∪ {A (x)} for all x ∈ V ar+. Therefore, by lattice rule (IR.2a) and for

any n ∈ ω we have:[(∧
Σ ∧ ϕ

)
− (ψ ∨A (x0))

]
∨
[(∧

Σ ∧ ϕ
)
− (ψ ∨A (x1))

]
∨ . . . ∨

[(∧
Σ ∧ ϕ

)
− (ψ ∨A (xn))

]
` D

Since (− ) is order-reversing on the right argument, then ((
∧
Σ ∧ ϕ)− ) is order-

reversing and thus we can push the disjunction inside the right argument of substraction,

to obtain(∧
Σ ∧ ϕ

)
− [(ψ ∨A (x0)) ∧ (ψ ∨A (x1)) ∧ . . . ∧ (ψ ∨A (xn))] ` D

By compactness we �nally have: (
∧
Σ ∧ ϕ) − ∀v (ψ ∨A [v/x]) ` D, -w.l.o.g. we can

choose v not free in ψ - and then (
∧

Σ ∧ ϕ) ` D ∨ ∀v (ψ ∨A [v/x]). Hence Σ ∪ X `
∆ ∪ Y ∪ {∀vA} as desired. Thus 〈Σ ∪X,∆ ∪ Y 〉 ful�lls (QS1).�

Case 2. ∆ is �nite. This case is dual with implication instead of substraction.

Case i. (QS1) subcase. Fix an x ∈ V ar+. If Σ∪X∪{A (x)} ` ∆∪Y , we have
∧
C∧ϕ∧A (x) `∨

∆ ∨ ψ, with C a �nite conjunction in Σ (
∨

∆ ∨ ψ is a formula since ∆ is �nite)

12Observe that

{
a ≤ a ∨ b
b ≤ a ∨ b

⇒by monotonicity of f

{
f (a) ≤ f (a ∨ b)
f (b) ≤ f (a ∨ b)

and since f (a ∨ b) is above both f (a) and f (b) then

by lattice-theoretic principles, it is above its join f (a) ∨ f (b) as well.
13The model of any �nite set

⋃
0≤i≤n {[(

∧
Σ ∧ ϕ ∧A (x0)) ∨ (

∧
Σ ∧ ϕ ∧A (x1)) ∨ . . . ∨ (

∧
Σ ∧ ϕ ∧A (xi))]− ψ} with n ∈ ω is

a model of D, so the in�nite set
⋃

i∈ω {[(
∧

Σ ∧ ϕ ∧A (x0)) ∨ (
∧

Σ ∧ ϕ ∧A (x1)) ∨ . . . ∨ (
∧

Σ ∧ ϕ ∧A (xi))]− ψ} is a model of
D as well.
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and equivalently
∧
Σ ` (ϕ ∧A (x)) ⊃ (

∨
∆ ∨ ψ) by implication. Now assume that

Σ∪X ∪{A (x)} ` ∆∪Y for all x ∈ V ar+. Then, by lattice rule (2b) and for any n ∈ ω
we have:∧

Σ `
[
(ϕ ∧A (x0)) ⊃

(∨
∆ ∨ ψ

)]
∧
[
(ϕ ∧A (x1)) ⊃

(∨
∆ ∨ ψ

)]
∧ . . . ∧

[
(ϕ ∧A (xn)) ⊃

(∨
∆ ∨ ψ

)]
Since implication is order-reversing on the left argument, by pushing the conjunction

inside the implication we obtain:∧
Σ ` [(ϕ ∧A (x0)) ∨ (ϕ ∧A (x1)) ∨ . . . ∨ (ϕ ∧A (xn))] ⊃

(∨
∆ ∨ ψ

)
By compactness we �nally have:

∧
Σ ` ∃v (ϕ ∧A [v/x]) ⊃ (

∨
∆ ∨ ψ) , -w.l.o.g. we

can choose v not free in ϕ - and then
∧

Σ ` (ϕ ∧ ∃vA [v/x]) ⊃ (
∨

∆ ∨ ψ). Hence∧
Σ ∧ ϕ ∧ ∃vA [v/x] `

∨
∆ ∨ ψ and Σ ∪ X ∪ {∃vA (v)} ` ∆ ∪ Y , as desired. Thus

〈Σ ∪X,∆ ∪ Y 〉 ful�lls (QS1).�
Case ii. (QS2) subcase. Fix an x ∈ V ar+. If Σ ∪ X ` ∆ ∪ Y ∪ {A (x)}, we have

∧
C ∧ ϕ `∨

∆ ∨ ψ ∨ A (x), with C a �nite conjunction in Σ (
∨

∆ ∨ ψ is a formula since ∆ is

�nite) and equivalently
∧
C ` ϕ ⊃ (

∨
∆ ∨ ψ ∨A (x)) by implication. Now assume that

Σ∪X ` ∆∪Y ∪{A (x)} for all x ∈ V ar+. Then, by lattice rule (2b) and for any n ∈ ω
we have:∧

C `
[
ϕ ⊃

(∨
∆ ∨ ψ ∨A (x0)

)]
∧
[
ϕ ⊃

(∨
∆ ∨ ψ ∨A (x1)

)]
∧ . . . ∧

[
ϕ ⊃

(∨
∆ ∨ ψ ∨A (xn)

)]
Since implication is order-preserving on the second argument, by pushing the conjunc-

tion inside the implication we obtain:∧
C ` ϕ ⊃

[(∨
∆ ∨ ψ ∨A (x0)

)
∧
(∨

∆ ∨ ψ ∨A (x1)
)
∧ . . . ∧

(∨
∆ ∨ ψ ∨A (xn)

)]
By compactness we �nally have:

∧
C ` ϕ ⊃ ∀v (

∨
∆ ∨ ψ ∨A [v/x]) , -w.l.o.g. we can

choose v not free in ψ nor ∆- and then
∧
C ` ϕ ⊃ (

∨
∆ ∨ ψ ∨ ∀vA [v/x]) to �nalize

with
∧
C ∧ ϕ `

∨
∆ ∨ ψ ∨ ∀vA [v/x]. So Σ ∪ X ` ∆ ∪ Y ∪ {∀vA} as desired. Thus

〈Σ ∪X,∆ ∪ Y 〉 ful�lls (QS2).�

�

Lemma 54. (pair extension in the same language).

If 〈Σ,∆〉 is a quanti�er-suited pair, and if one of Σ and ∆ is �nite, then there is a full quanti�er-suited pair

〈Σ′,∆′〉 extending 〈Σ,∆〉 in the same language.

Proof. The procedure is similar to the one used in the proof of the pair extension lemma on an extended

language (lemma 46). But now, instead of adding a new witness for each existential quanti�er we show that

an old one su�ces.

Let Enum
(
L+
Q

′
)

= {An | n ∈ ω} be an enumeration of all the formulas A0, A1, . . . of L+
Q

′
, and V ar+ =

{xn | n ∈ ω} an enumeration of all the variables in L+
Q

′
. Now de�ne 〈Σ0,∆0〉 := 〈Σ,∆〉, and we let

〈Σn+1,∆n+1〉 to be de�ned as follows:

Case 1. (as in lemma 46) If Σn ∪ {An} 0 ∆n and An is not of the form ∃vB then 〈Σn+1,∆n+1〉 :=

〈Σn ∪ {An} ,∆n〉.
Case 2. If Σn ∪ {An} 0 ∆n and An is of the form ∃vB then 〈Σn+1,∆n+1〉 := 〈Σn ∪ {An, B (x)} ,∆n〉, for

some x ∈ V ar+ where Σn ∪
{
An, Bg′(v)=x

}
0 ∆n with g′ ≡v g.
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Case 3. (as in lemma 46) If Σn ∪ {An} ` ∆n and An is not of the form ∀vB then 〈Σn+1,∆n+1〉 :=

〈Σn,∆n ∪ {An}〉.
Case 4. If Σn ∪ {An} ` ∆n and An is of the form ∀vB then 〈Σn+1,∆n+1〉 := 〈Σn,∆n ∪ {An, B (x)}〉, for

some x ∈ V ar+ where Σn 0 ∆n ∪ {An, B (x)}

Then we set 〈Σ′,∆′〉 := 〈
⋃
n Σn,

⋃
n∆n〉, which by construction is a partition of the formulas, as before:

every formula An is either in Σ′ or in ∆′, thus 〈Σ′,∆′〉 is full.

Veri�cation. Assume 〈Σ,∆〉 is a quanti�er-suited pair, and one of Σ and ∆ is �nite. Cases 1 and 3 are

as before, so we are done with them. The crucial cases are 2 and 4, which previously added lots of new

constants to the initial language. We need to show that at each stage n, if we use the 2nd or 4th cases

of the construction, an appropriate x can be found in the same language L+
Q

′
. This is where the �nite

addition lemma (lemma 53) is used. Each 〈Σn,∆n〉 is quanti�er-suited, as it is a �nite extension to the

quanti�er-suited 〈Σ,∆〉 and one of Σ or ∆ is �nite (note that an extension might be �nite even if the original

Σ or ∆ -and thus the resulting extended set- is in�nite).

Case 1. Case where Σ is �nite.

Case i. Case 2 of construction: Σn ∪ {An} 0 ∆n and An is of the form ∃vB. Assume there

is no suitable x ∈ V ar+ in the language such that Σn ∪
{
An, B (v)g′(v)=x

}
0 ∆n with

g′ ≡v g.14 Then it follows that for all y ∈ V ar+ we have Σn ∪ {An, B (y)} ` ∆n

. Then there is a �nite D ∈ ∆n such that
∧
Σn ∧ An ∧ B (y) `

∨
D, which leads

us to Σn ∪ {An ∧B (y)} ` ∆n. But 〈Σn,∆n〉 is quanti�er-suited, thus by (QS2) we

have Σn ∪ {∃v (∃vB ∧B (v))} ` ∆n. Since v is not free in the �rst occurrence of B,

we get: Σn ∪ {(∃vB ∧ ∃vB)} ` ∆n, that is Σn ∪ {∃vB} ` ∆n. But by assumption

Σn ∪ {An} 0 ∆n with An of the form ∃vB, contradiction! Hence there is such suitable

x ∈ V ar+.
Case ii. Case 4 of construction (dual): Σn ∪ {An} ` ∆n with An the form ∀vB. Assume there

is no suitable x ∈ V ar+ in the language such that Σn 0 ∆n ∪
{
An, B (v)g′(v)=x

}
with g′ ≡v g. Then it follows that for all y ∈ V ar+ we have Σn ` ∆n ∪ {An, B (y)}.
Then there is a �nite D ∈ ∆n such that

∧
Σn `

∨
D ∨ An ∨ B (y) which leads us to

Σn ` ∆n ∪ {An ∨B (y)} . By quanti�er suitedness of 〈Σn,∆n〉 we can apply (QS1)

and get Σn ` ∆n ∪ {∀v (∀vB ∨B (v))}. Since v is not free in the �rst occurrence of

B, we get: Σn ` ∆n ∪ {(∀vB ∨ ∀vB)} that is Σn ` ∆n ∪ {∀vB}. But then we have

Σn ` ∆n ∪ {An} and Σn 0 ∆n ∪ {An, B [v := c]}, contradiction! Hence there is such

suitable x ∈ V ar+.
Case 2. Case where ∆ is �nite.

Case i. Case 2 of construction: exactly the same proof as above, just change �Then there is a

�nite D ∈ ∆n such that
∧
Σn ∧ An ∧ B (y) `

∨
D � by �Then there is a �nite C ∈ Σn

such that
∧
C ∧An ∧B (y) ` ∆n �.

Case ii. Case 4: same proof as above with similar change as previous case.

Proof is complete. �

Now we are almost ready. The following lemma will ultimately provide witness-points for the hard direction

of the truth lemma. Since we extended the language conservatively, the additional connectives ⊃ and - need

to be treated as well.

14Observe that g′ (v) = x implies that x ∈ V ar ⊂ V ar+since the universe of objects is V ar
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Lemma 55. witnessing-pair existence lemma15

If 〈Σ,∆〉 is full and quanti�er-suited, then

(1) If �ψ /∈ Σ then
〈
�−1Σ, {ψ}

〉
is a quanti�er-suited pair.

(2) If .ψ /∈ Σ then
〈
{ψ} , .−1Σ

〉
is a quanti�er-suited pair.

(3) If ♦ψ ∈ Σ then
〈
{ψ} ,♦−1∆

〉
is a quanti�er-suited pair.

(4) If /ψ ∈ Σ then
〈
/−1∆, {ψ}

〉
is a quanti�er-suited pair.

(5) If ϕ ⊃ ψ /∈ Σ then 〈Σ ∪ {ϕ} , {ψ}〉 is a quanti�er-suited pair.

(6) If ϕ− ψ ∈ Σ then 〈{ϕ} , {ψ} ∪∆〉is a quanti�er-suited pair.

In all the claims that follow assume that 〈Σ,∆〉 is a full and quanti�er-suited pair.

Claim 56. If �ψ /∈ Σ then
〈
�−1Σ, {ψ}

〉
is a quanti�er-suited pair.

Proof. Assume that �ψ /∈ Σ.

We �rst show that
〈
�−1Σ, {ψ}

〉
is a pair. We know that

〈
�−1Σ, {ψ}

〉
is a pair i�

∧
Sn 0 ψ for any �nite

subset Sn ⊆ω �−1Σ (each s a formula, and
∧
Sn = s0 ∧ s1 ∧ . . . ∧ sn−1). Assume towards a contradiction

that
∧
Sn ` ψ for some n ∈ ω, then �

∧
Sn ` �ψ (by IR.3b). But we have

∧
0≤i≤n−1 �si ` �

∧
Sn ` �ψ

(�rst entailment is an instance of A.2a) and hence
∧

0≤i≤n−1 �si ` �ψ by cut. Since �−1Σ := {ϕ | �ϕ ∈ Σ}
and each si ∈ �−1Σ then each �si ∈ Σ and therefore Σ ` {�ψ}. So �ψ /∈ ∆ by the assumption of 〈Σ,∆〉
being a pair and then �ψ ∈ Σ by fullness. But by assumption �ψ /∈ Σ, contradiction! Thus

∧
Sn ` ψ is not

the case for any n ∈ ω. We have
∧
Sn 0 ψ for any �nite subset Sn ⊆ω �−1Σ, as desired, so

〈
�−1Σ, {ψ}

〉
is

a pair .�

We now show that
〈
�−1Σ, {ψ}

〉
is quanti�er-suited. By the �nite addition lemma (lemma 53),

〈
�−1Σ, {ψ}

〉
is quanti�er-suited if

〈
�−1Σ,∅

〉
is. So let us show the second.

So, for QS1, �x an x ∈ V ar+ and assume �−1Σ ` ∅∪{ζ (x)}. Then there is a �nite set of ϕis in �−1Σ such

that
∧
i ϕi ` ζ (x). Then �

∧
i ϕi ` �ζ (x), by (IR.3b), and thus

∧
i�ϕi ` �ζ (x) by (A.2a) and cut. Then,

because �−1Σ := {ϕ | �ϕ ∈ Σ} and each ϕi ∈ �−1Σ, we get each �ϕi ∈ Σ. Hence Σ ` �ζ (x). Now since x

is arbitrary this holds for every x ∈ V ar+ and since 〈Σ,∆〉 is quanti�er-suited, from Σ ` ∅ ∪ {�ζ (x)} for
each x ∈ V ar+, we get Σ ` ∅ ∪ {∀v�ζ}, that is C ` ∀v�ζ for a �nite conjunction C from Σ. The Barcan

formula (A.5a) gives C ` ∀v�ζ ` �∀vζ and thus Σ ` {�∀vζ} by cut. This leads to �∀vζ /∈ ∆ by the pair

condition and then to �∀vζ ∈ Σ by fullness. So ∀vζ ∈ �−1Σ because ∀vζ is boxed in Σ. This means that

�−1Σ ` ∅ ∪ {∀vζ}, as desired.�

For QS2, �x an x ∈ V ar+ and assume that �−1Σ ∪ {ζ (x)} ` ∅. Then C ∧ ζ (x) `
∨
∅, with

∨
∅ = ⊥ and

C a �nite conjunction of formulas in �−1Σ. Then C ` ζ (x) ⊃ ⊥ by implication. Hence �−1Σ ` {ζ (x) ⊃ ⊥}
and the previous result (QS1 holds) can be used to get �−1Σ ` {∀v (ζ (v) ⊃ ⊥)}. So C ` ∀v (ζ (v) ⊃ ⊥).
Now we have C ` ∀v (ζ (v) ⊃ ⊥) ` (∃vζ (v) ⊃ ⊥) by QN2, since obviously v does not occur in ⊥. Then

C ` (∃vζ ⊃ ⊥) by cut and C∧∃vζ ` ⊥ follows immediately. This leads to our �nal result: �−1Σ∪{∃vζ} ` ∅
as desired.�

Since
〈
�−1Σ,∅

〉
is quanti�er suited then

〈
�−1Σ, {ψ}

〉
is quanti�er suited as well. �

15We will use the following notation:

• �−1Σ := {ϕ | �ϕ ∈ Σ}, i.e. the set of formulas that are boxed in Σ.
• .−1Σ := {ϕ | .ϕ ∈ Σ},
• ♦−1∆ := {ϕ | ♦ϕ ∈ ∆},
• /−1∆ := {ϕ | /ϕ ∈ ∆},
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Claim 57. If .ψ /∈ Σ then
〈
{ψ} , .−1Σ

〉
is a quanti�er-suited pair.

Proof. Assume that .ψ /∈ Σ .

We �rst show that
〈
{ψ} , .−1Σ

〉
is a pair. This is the case i� ψ 0 .−1Σ, that is, ψ 0

∧
Sn for any �nite

subset Sn ⊆ω .−1Σ (each s a formula, and
∧
Sn = s0 ∧ s1 ∧ . . . ∧ sn−1). Assume towards a contradiction

that ψ `
∧
Sn for some n ∈ ω, then .

∧
Sn ` .ψ by (IR.3d). But we have

∧
0≤i≤n−1 .si ` .

∧
Sn ` .ψ (�rst

entailment is an instance of A.2d) and hence
∧

0≤i≤n−1 .si ` .ψ by cut. Since .−1Σ := {ϕ | .ϕ ∈ Σ} and
each si ∈ .−1Σ then each .si ∈ Σ and therefore Σ ` {.ψ}. So .ψ /∈ ∆ by the assumption of 〈Σ,∆〉 being a

pair and then .ψ ∈ Σ by fullness. But by assumption .ψ /∈ Σ, contradiction! Thus ψ `
∧
Sn is not the case

for any n ∈ ω. We have ψ 0
∧
Sn for any �nite subset Sn ⊆ω .−1Σ, as desired, so

〈
{ψ} , .−1Σ

〉
is a pair .�

We now show that
〈
{ψ} , .−1Σ

〉
is quanti�er-suited. By the �nite addition lemma (lemma 53),

〈
{ψ} , .−1Σ

〉
is quanti�er-suited if

〈
∅, .−1Σ

〉
is. So let us show the second.

So, for QS2, �x an x ∈ V ar+ and assume ∅ ∪ {ζ (x)} ` .−1Σ. Then there is a �nite set of ϕis in .−1Σ

such that > ∧ ζ (x) `
∨
i ϕi. Since for any formula δ we have > ∧ δ a` δ, then ζ (x) `

∨
i ϕi and �nally

.
∨
i ϕi ` .ζ (x) by (IR.3d). Therefore

∧
i .ϕi ` .

∨
i ϕi ` .ζ (x) by (A.2d) and

∧
i .ϕi ` .ζ (x) by cut. Then,

because .−1Σ := {ϕ | .ϕ ∈ Σ} and each ϕi ∈ .−1Σ, we get each .ϕi ∈ Σ. Hence Σ ` {.ζ (x)} and by

weakening (IR.1c) the consequent with ∆ we get Σ ` ∆ ∪ {.ζ (x)}. Now since x is arbitrary this holds for

every x ∈ V ar+ and since 〈Σ,∆〉 is quanti�er-suited� we get Σ ` ∆ ∪ {∀v . ζ (v)}, that is C ` D ∨ ∀v . ζ (v)
for a �nite conjunction C from Σ and a �nite disjunction D from ∆. The Barcan formula (A.5b) gives

C ` D ∨ ∀v . ζ (v) ` D ∨ .∃vζ (v) and thus C ` D ∨ .∃vζ (v) by cut. This leads to .∃vζ (v) /∈ ∆ by the

assumption that 〈Σ,∆〉 is a pair. But then to .∃vζ (v) ∈ Σ by fullness. So ∃vζ (v) ∈ .−1Σ. This means that

∅ ∪ {∃vζ (v)} ` .−1Σ as desired.�

Now, for QS1, �x an x ∈ V ar+ and assume ∅ ` .−1Σ ∪ {ζ (x)}. Then there is a �nite set of ϕis in .
−1Σ

such that > `
∨
i ϕi ∨ ζ (x) and then > − ζ (x) `

∨
i ϕi by substraction. Since (QS2) holds, we obtain

∃v (>− ζ (v)) `
∨
i ϕi and by QN4 we have >−∀vζ (v) ` ∃v (>− ζ (v)) `

∨
i ϕi , that is >−∀vζ (v) `

∨
i ϕi

by cut. Finally, > `
∨
i ϕi ∨ ∀vζ (v) which leads to ∅ ` .−1Σ ∪ {∀vζ (v)} as desired.� �

Claim 58. If ♦ψ ∈ Σ then
〈
{ψ} ,♦−1∆

〉
is a quanti�er-suited pair.

Proof. Assume that ♦ψ ∈ Σ.

We �rst show that
〈
{ψ} ,♦−1∆

〉
is a pair. Suppose towards a contradiction that {ψ} ` ♦−1∆, then there

exists a �nite subset of formulas {ϕi}i∈I ⊆ω ♦−1∆ such that ψ `
∨
i∈I ψi. But then by (IR.3a) we have

♦ψ ` ♦
∨
i∈I ϕi and then ♦ψ ` ♦

∨
i∈I ϕi `

∨
i∈I ♦ϕi by (A.2b). So ♦ψ `

∨
i∈I ♦ϕi by cut. Since ϕi ∈ ♦−1∆

for all i ∈ I, then ♦ϕi ∈ ∆ for all i ∈ I. Thus {♦ψ} ` ∆. Now since by assumption ♦ψ ∈ Σ, then Σ ` ∆. This

contradicts the assumption of 〈Σ,∆〉 being a pair, hence for any �nite subset of formulas {ϕi}i∈I ⊆ ♦−1∆

we have ψ 0
∨
i∈I ϕi and

〈
{ψ} ,♦−1∆

〉
is a pair.�

Now we show that
〈
{ψ} ,♦−1∆

〉
is quanti�er-suited. By the �nite addition lemma (lemma 53), for this it

su�ces to show that
〈
∅,♦−1∆

〉
is quanti�er-suited.

For (QS2) �x an x ∈ V ar+. If ∅ ∪ {ζ (x)} ` ♦−1∆ , there is a �nite set {ϕi}i∈I ⊆ ♦−1∆ such that ζ (x) `∨
i∈I ϕi . Thus by (IR.3a) we get ♦ζ (x) ` ♦

∨
i∈I ϕi . But then, by (A.2b): ♦ζ (x) ` ♦

∨
i∈I ϕi `

∨
i∈I ♦ϕi

. Now since {ϕi}i∈I ⊆ω ♦−1∆ , then {♦ϕi}i∈I ⊆ω ∆, and therefore {♦ζ (x)} ` ∆. Now assume that

∅ ∪ {ζ (x)} ` ♦−1∆ for all x ∈ V ar+, by weakening the antecedent with Σ, we get Σ ∪ {♦ζ (x)} ` ∆ and

then Σ ∪ {∃v♦ζ (v)} ` ∆ by quanti�er-suitedness of 〈Σ,∆〉. Now by Barcan laws (A.5a), Σ ∪ {♦∃vζ (v)} `
Σ ∪ {∃v♦ζ (v)} ` ∆ and then Σ ∪ {♦∃vζ (v)} ` ∆ by cut. Now because 〈Σ,∆〉 is a pair, {♦∃vζ (v)} ` ∆ and
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♦∃vζ (v) /∈ Σ. So by fullness ♦∃vζ (v) ∈ ∆ and then ∃vζ (v) ∈ ♦−1∆. So clearly ∅ ∪ {∃vζ (v)} ` ♦−1∆, as

desired. This proves that (QS2) holds for
〈
∅,♦−1∆

〉
.�

For (QS1) �x an x ∈ V ar+. If ∅ ` ♦−1∆∪ {ζ (x)} then there is a �nite set {ϕi}i∈I ⊆ω ♦−1∆ such that > `
ζ (x)∨

(∨
i∈I ϕi

)
. Then >−ζ (x) `

∨
i∈I ϕi by substraction. Now by (IR.3a) we get ♦ (>− ζ (x)) ` ♦

∨
i∈I ϕi

and then, by (A.2b): ♦ (>− ζ (x)) ` ♦
∨
i∈I ϕi `

∨
i∈I ♦ϕi. Since {ϕi}i∈I ⊆ω ♦−1∆ then {♦ϕi}i∈I ⊆ω ∆,

and therefore {♦ (>− ζ (x))} ` ∆. Now assume that ∅ ` ♦−1∆∪{ζ (x)} for all x ∈ V ar+. By weakening the
antecedent with Σ, we get Σ∪{♦ (>− ζ (x))} ` ∆ for all x ∈ V ar+ and then Σ∪{∃v♦ (>− ζ (v))} ` ∆ by the

quanti�er-suitedness of 〈Σ,∆〉. Now by Barcan laws (5a), Σ∪{♦∃v (>− ζ (v))} ` Σ∪{∃v♦ (>− ζ (v))} ` ∆

and then Σ ∪ {♦∃v (>− ζ (v))} ` ∆ by cut. Now because 〈Σ,∆〉 is a pair, {♦∃v (>− ζ (v))} ` ∆ and

♦∃v (>− ζ (v)) /∈ Σ. So by fullness ♦∃v (>− ζ (v)) ∈ ∆ and then ∃v (>− ζ (v)) ∈ ♦−1∆. So clearly

{∃v (>− ζ (v))} ` ♦−1∆. Now observe that > − ∀vζ (v) ` ∃v (>− ζ (v)) ` D for some �nite disjunction D

of formulas in ♦−1∆. Hence > − ∀vζ (v) ` D and then > ` D ∨ ∀vζ (v). So ∅ ` ♦−1∆ ∪ {∀vζ (v)} which
proves that (QS1) holds for

〈
∅,♦−1∆

〉
.� �

Claim 59. If /ψ ∈ Σ then
〈
/−1∆, {ψ}

〉
is a quanti�er-suited pair.

Proof. Assume that /ψ ∈ Σ.

First we show that
〈
/−1∆, {ψ}

〉
is a pair. Assume towards a contradiction that /−1∆ ` {ψ}, then there

exists a �nite subset of formulas {ϕi}i∈I ⊆ω /−1∆ such that
∧
i ϕi ` ψ. Then /ψ ` /

∧
i ϕi by (IR.3c),

and /
∧
i ϕi `

∨
i /ϕi by (A.2c). This gives us /ψ `

∨
i /ϕi by cut, and since by assumption /ψ ∈ Σ and

ϕi ∈ /−1∆, this implies that Σ ` ∆. But we assumed 〈Σ,∆〉 to be a pair, so this is a contradiction! So∧
i ϕi ` ψ cannot be the case and we have

∧
i ϕi 0 ψ for any �nite subset of formulas {ϕi}i∈I ⊆ω /−1∆ and

thus /−1∆ 0 {ψ} as desired.�

We now show that
〈
/−1∆, {ψ}

〉
is quanti�er-suited. By the �nite addition lemma (lemma 53),

〈
/−1∆, {ψ}

〉
is a quanti�er-suited if

〈
/−1∆,∅

〉
is. So let us prove the second.

For (QS1) �x an x ∈ V ar+. If /−1∆ ` ∅ ∪ ζ (x) then there is a �nite subset of formulas {ϕi}i∈I ⊆ω /−1∆
such that such that

∧
i ϕi ` ζ (x) . Then /ζ (x) ` /

∧
i ϕi by (IR.3c), and thus /ζ (x) `

∨
i /ϕi by (A.2c)

and cut. Then, because /−1∆ := {ϕ | /ϕ ∈ ∆} and ϕi ∈ /−1∆, we get each /ϕi ∈ ∆. Hence {/ζ (x)} ` ∆.

By weakening the antecedent we obtain Σ ∪ {/ζ (x)} ` ∆. Now assume that /−1∆ ` ∅ ∪ ζ (x) for each

x ∈ V ar+. Since 〈Σ,∆〉 is quanti�er-suited, we get Σ∪ {∃v / ζ (v)} ` ∆ by (QS2). By the pairness of 〈Σ,∆〉
we know that Σ 0 ∆, so it must be the case that ∃v / ζ (v) ` D for some �nite disjunction D in ∆ (otherwise

Σ ∪ {∃v / ζ (v)} 0 ∆). The Barcan formula (A.5b) gives /∀vζ (v) ` ∃v / ζ (v) ` D, and by cut, /∀vζ (v) ` D.

Therefore {/∀vζ (v)} ` ∆. By pairness /∀vζ (v) /∈ Σ and then by fullness /∀vζ (v) ∈ ∆. Consequently

∀vζ (v) ∈ /−1∆. Clearly then, /−1∆ ` ∅ ∪ {∀vζ (v)}, as desired.�

Now for QS2, �x an x ∈ V ar+. If /−1∆ ∪ {ζ (x)} ` ∅ then C ∧ ζ (x) ` ⊥ with C a �nite conjunction

of formulas in /−1∆. We obtain C ` ζ (x) ⊃ ⊥ by implication. Assume that /−1∆ ∪ {ζ (x)} ` ∅ for all

x ∈ V ar+. Then the previous result (QS1 holds) can be applied to /−1∆ ` ∅∪{ζ (x) ⊃ ⊥} to obtain /−1∆ `
∅∪{∀v (ζ (v) ⊃ ⊥)}. Then C ` ∀v (ζ (v) ⊃ ⊥) . By (QN2), and since v is not free in ⊥, C ` ∀v (ζ (v) ⊃ ⊥) `
∃vζ (v) ⊃ ⊥. Thus C ` ∃vζ (v) ⊃ ⊥ by cut and then C ∧ ∃vζ (v) ` ⊥. Finally /−1∆ ∪ {∃vζ (v)} ` ∅ as

desired.� �

Claim 60. If ϕ ⊃ ψ /∈ Σ then 〈Σ ∪ {ϕ} , {ψ}〉 is a quanti�er-suited pair.
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Proof. Assume that ϕ ⊃ ψ /∈ Σ.

We �rst show that 〈Σ ∪ {ϕ} , {ψ}〉 is a pair. Assume towards a contradiction that Σ ∪ {ϕ} ` {ψ}. Then

there exists a �nite set of formulas {χi}i∈I ⊆ω Σ such that
(∧

i∈I χi
)
∧ ϕ ` ψ. Then by implication rule,∧

i∈I χi ` ϕ ⊃ ψ which gives us Σ ` {ϕ ⊃ ψ}. Since 〈Σ,∆〉 is a pair by assumption, then ϕ ⊃ ψ /∈ ∆, which

by fullness gives us ϕ ⊃ ψ ∈ Σ. Contradiction! Hence for any �nite set of formulas {χi}i∈I ⊆ω Σ we have(∧
i∈I χi

)
∧ ϕ 0 ψ and thus 〈Σ ∪ {ϕ} , {ψ}〉 is a pair.�

By the �nite addition lemma (lemma 53), 〈Σ ∪ {ϕ} , {ψ}〉 is quanti�er suited if 〈Σ ∪ {ϕ} ,∅〉 is. So let us

prove the second.

For QS1 , �x an x ∈ V ar+ . If Σ ∪ {ϕ} ` {γ (x)} ∪ ∅. Then C ∧ ϕ ` γ (x)∨ ⊥ (with
∨
∅ =⊥ and C a

�nite conjunction composed of elements from Σ). A disjunction with bottom always simpli�es into a single

member, so C∧ϕ ` γ (x) and then by implication rule C ` ϕ ⊃ γ (x) .Given Σ ` {ϕ ⊃ γ (x)} for all x ∈ V ar+,
and by weakening the consequent with ∆ we get Σ ` {ϕ ⊃ γ (x)}∪∆ and �nally Σ ` {∀v (ϕ ⊃ γ (v))}∪∆ by

quanti�er-suitedness of 〈Σ,∆〉. We can choose w.l.o.g. a v not free in ϕ and then Σ ` {ϕ ⊃ ∀vγ (v)}∪∆. Since

〈Σ,∆〉 is a pair, then ϕ ⊃ ∀vγ (v) /∈ ∆ and then by fullness {ϕ ⊃ ∀vγ (v)} ∈ Σ. But then Σ ` {ϕ ⊃ ∀vγ (v)},
that is, C ` ϕ ⊃ ∀vγ (v) and then C ∧ ϕ ` ∀vγ (v) which �nally leads us to Σ ∪ {ϕ} ` {∀vγ (v)} ∪ ∅ as

desired.�

For QS2, �x an x ∈ V ar+. If Σ ∪ {ϕ} ∪ {γ (x)} ` ∅ we have C ∧ ϕ ∧ γ (x) `⊥, with C a �nite conjunction

composed of elements from Σ. Then C∧ϕ ` γ (x) ⊃⊥ by implication rule. Assume that Σ∪{ϕ}∪{γ (x)} ` ∅
for all x ∈ V ar+. Then the previous result (QS1 holds) can be applied to Σ∪{ϕ} ` {γ (x) ⊃⊥}∪∅ to obtain

Σ∪ {ϕ} ` {∀v (γ (v) ⊃⊥)} ∪∅ and by QN2 from C ∧ϕ ` ∀v (γ (v) ⊃⊥) we get C ∧ϕ ` ∃vγ (v) ⊃⊥ and then

C ∧ ϕ ∧ ∃vγ (v) `⊥ which means that Σ ∪ {ϕ} ∪ {∃vγ (v)} ` ∅ as desired.� �

Claim 61. If ϕ− ψ ∈ Σ then 〈{ϕ} , {ψ} ∪∆〉 is a quanti�er-suited pair.

Proof. Assume that ϕ− ψ ∈ Σ.

We �rst show that 〈{ϕ} , {ψ} ∪∆〉 is a pair. Assume towards a contradiction that {ϕ} ` {ψ} ∪ ∆ so

ϕ ` ψ ∨ D with D a �nite disjunction composed of elements from ∆. By substraction we get ϕ − ψ ` D,

that is {ϕ− ψ} ` ∆. Since 〈Σ,∆〉 is a pair then Σ 0 ∆ and ϕ − ψ cannot be in Σ, contradiction! Hence

〈{ϕ} , {ψ} ∪∆〉 is a pair.�

By the �nite addition lemma (lemma 53),〈{ϕ} , {ψ} ∪∆〉 is a quanti�er-suited if 〈∅, {ψ} ∪∆〉 is. So let us

prove the second.

For QS2, �x an x ∈ V ar+. If ∅∪{ζ (x)} ` {ψ}∪∆ then ζ (x) ` ψ∨D with D a �nite disjunction composed of

elements from ∆. Then ζ (x)−ψ ` D by substraction and by weakening the antecedent with
∧
C and C ⊆ Σ

we get
∧
C∧(ζ (x)− ψ) ` D. Now assume that ∅∪{ζ (x)} ` {ψ}∪∆ for all x ∈ V ar+. Then Σ∪{ζ (x)− ψ} `

∆ for all x ∈ V ar+ and since 〈Σ,∆〉 is quanti�er-suited then Σ∪{∃v (ζ (v)− ψ)} ` ∆ by (QS2). Since 〈Σ,∆〉
is a pair, then ∃v (ζ (v)− ψ) /∈ Σ and then by fullness ∃v (ζ (v)− ψ) ∈ ∆, so {∃v (ζ (v)− ψ)} ` ∆ which means

that ∃v (ζ (v)− ψ) ` D. By (QN3) we obtain ∃vζ (v)−∃vψ ` ∃v (ζ (v)− ψ) ` D and then ∃vζ (v)−∃vψ ` D
by cut. Since we can choose v not free in ψ, this amounts to ∃vζ (v)−ψ ` D and then ∃vζ (v) ` ψ∨D which

�nally leads us to ∅ ∪ {∃vζ (v)} ` {ψ} ∪∆, as desired.�

For QS1, �x an x ∈ V ar+. If ∅ ` {ψ}∪∆∪{ζ (x)} then > ` ψ∨D∨ζ (x) withD a �nite disjunction composed

of elements from ∆, and thus > ` ζ (x)∨ψ∨D and then >−ζ (x) ` ψ∨D by substraction. This can be stated

as ∅∪{> − ζ (x)} ` {ψ}∪∆. Now assume that ∅ ` {ψ}∪∆∪{ζ (x)} for all x ∈ V ar+ and we can apply the

previous result (QS2 holds) to obtain ∅∪ {∃v (>− ζ (v))} ` {ψ} ∪∆ from ∅∪ {> − ζ (x)} ` {ψ} ∪∆. Thus
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∃v (>− ζ (v)) ` ψ∨D which by (QN4) gives us >−∀vζ (v) ` ∃v (>− ζ (v)) ` ψ∨D, then >−∀vζ (v) ` ψ∨D
by cut, and �nally > ` ψ ∨D ∨ ∀vζ (v) which stated as ∅ ` {ψ} ∪∆ ∪ {∀vζ (v)} is our result.� �

3.3. The truth lemma

The canonical valuation stipulates that truth at a point corresponds to membership to (the �rst coordinate

of) such point. The Truth lemma lifts this property to arbitrary formulas (recall that any such point is a full

quanti�er suited pair in L+
Q

′
).

Lemma 62. (Truth lemma): for any formula ψ of our logic and any point 〈Σ,Γ〉 in the canonical model,

V c〈Σ,Γ〉 (ψ) = 1 i� ψ ∈ Σ.

Proof. By induction on the complexity of ψ.

Base case:

V c〈Σ,∆〉 (P (x1, . . . , xn)) = 1 i� P (x1, . . . , xn) ∈ Σ for any atomic sentence P (x1, . . . , xn). This follows im-

mediately from the de�nition of the canonical valuation given above ( on page 32). In particular we get

V c〈Σ,∆〉 (P (x1, . . . , xn)) = 1 i� 〈x1, . . . , xn〉 ∈ V c〈Σ,∆〉 (P ) i� P (x1, . . . , xn) ∈ Σ.

Inductive step

Conjunction

V c〈Σ,∆〉 (ψ ∧ ϕ) = 1 i�

{
V c
〈Σ,∆〉(ψ)=1 and

V c
〈Σ,∆〉(ϕ)=1

i� (by IH)
{
ψ∈Σ and
ϕ∈Σ i� ψ ∧ ϕ ∈ Σ because 〈Σ,∆〉 is a full pair.

The last equivalence holds because:

⇒ if ϕ ∈ Σ and ψ ∈ Σ then clearly Σ ` ϕ ∧ ψ by conjunction introduction, so ϕ ∧ ψ /∈ ∆ (because Σ 0 ∆)

and then ϕ ∧ ψ ∈ Σ by fullness.

⇐ if ϕ ∧ ψ ∈ Σ then Σ ` ϕ ∧ ψ, so Σ ` ϕ and Σ ` ψ by conjunction elimination. Clearly ϕ /∈ ∆ and ψ /∈ ∆

(because Σ 0 ∆) but then ϕ ∈ Σ and ψ ∈ Σ by fullness.

Therefore V c〈Σ,∆〉 (ψ ∧ ϕ) = 1 i� ψ ∧ ϕ ∈ Σ

Disjunction

V c〈Σ,∆〉 (ψ ∨ ϕ) = 1 i�

{
V c
〈Σ,∆〉(ψ)=1 or

V c
〈Σ,∆〉(ϕ)=1

i� (by IH)
{
ψ∈Σ or
ϕ∈Σ i� ψ ∨ ϕ ∈ Σ. The last �if and only if� holds

because 〈Σ,∆〉 is a full pair and by claim 40, Σ is a prime theory (if T is a prime theory then: φ ∨ ψ ∈ T i�

φ ∈ T or ψ ∈ T ).

�-case:

V c〈Σ,∆〉 (�ϕ) = 1 i� 〈Σ,∆〉Rc� 〈Γ,Π〉 ⇒ V c〈Γ,Π〉 (ϕ) = 1 by de�nition of�. By induction hypothesis V c〈Γ,Π〉 (ϕ) =

1 i� ϕ ∈ Γ. Hence: V c〈Σ,∆〉 (�ϕ) = 1 i� 〈Σ,∆〉Rc� 〈Γ,Π〉 ⇒ ϕ ∈ Γ.

Now we show that 〈Σ,∆〉Rc� 〈Γ,Π〉 ⇒ ϕ ∈ Γ i� �ϕ ∈ Σ.

Left to right direction will be proved by contraposition. Claim: if �ψ /∈ Σ then there is a full quanti�er suited

pair 〈a, b〉 such that 〈Σ,∆〉Rc� 〈a, b〉 and ψ /∈ a. Assume that �ψ /∈ Σ . Then by lemma 55.1
〈
�−1Σ, {ψ}

〉
is a quanti�er suited pair, with �−1Σ := {ϕ | �ϕ ∈ Σ}. Notice that {ψ} is �nite and thus we can apply the

pair extension in the same language (lemma 54) which states then that there is a full quanti�er-suited pair

〈a′, b′〉 extending
〈
�−1Σ, {ψ}

〉
in the same language. Clearly 〈a′, b′〉 is such that 〈Σ,∆〉Rc� 〈a′, b′〉 because

�A ∈ Σ ⇒ A ∈ �−1Σ ⇒ A ∈ a′ so it ful�lls the de�nition of Rc�. Since {ψ} ⊆ b′ then ψ /∈ a′ otherwise
we would have a′ ` b′ against the assumption that 〈a′, b′〉 is a pair. Hence if �ψ /∈ Σ then there is a full

quanti�er suited pair 〈a, b〉 such that 〈Σ,∆〉Rc� 〈a, b〉 and ψ /∈ a, namely take 〈a′, b′〉 = 〈a, b〉 as witness.�
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For the right to left direction, suppose �ϕ ∈ Σ and assume further that 〈Σ,∆〉Rc� 〈Γ,Π〉. Then by de�nition

of Rc� we have ϕ ∈ Γ, so the implication 〈Σ,∆〉Rc� 〈Γ,Π〉 ⇒ ϕ ∈ Γ holds, as desired.�

Hence V c〈Σ,∆〉 (�ϕ) = 1 i� �ϕ ∈ Σ.

♦-case.

V c〈Σ,∆〉 (♦ϕ) = 1 i� there exists an 〈Γ,Π〉 such that 〈Σ,∆〉Rc♦ 〈Γ,Π〉 and V c〈Γ,Π〉 (ϕ) = 1. By IH V c〈Γ,Π〉 (ϕ) = 1

i� ϕ ∈ Γ.

Now we show that there exists an〈Γ,Π〉 such that 〈Σ,∆〉Rc♦ 〈Γ,Π〉 and ϕ ∈ Γ i� ♦ϕ ∈ Σ.

Direction ⇒ Assume there exists an 〈Γ,Π〉 such that 〈Σ,∆〉Rc♦ 〈Γ,Π〉 and ϕ ∈ Γ, then by de�nition of Rc♦
we have ♦ϕ ∈ Σ, as desired.�

Direction ⇐. Suppose ♦ϕ ∈ Σ. Then, by lemma 55.3 and since 〈Σ,∆〉 is a full quanti�er suited pair, we

know that
〈
{ϕ} ,♦−1∆

〉
is a quanti�er suited pair. Notice that {ϕ} is �nite and thus we can apply the pair

extension in the same language (lemma 54) which states then that there is a full quanti�er-suited pair 〈a′, b′〉
extending

〈
{ϕ} ,♦−1∆

〉
in the same language. Observe that 〈Σ,∆〉Rc♦ 〈a′, b′〉 by de�nition of Rc♦. Clearly, if

ψ ∈ a′ then ψ /∈ b′ by the pair condition. Hence ψ /∈ ♦−1∆ ⊆ b′ and thus ♦ψ /∈ ∆ . By fullness of 〈Σ,∆〉 we
then get ♦ψ ∈ Σ and the condition for 〈Σ,∆〉Rc♦ 〈a′, b′〉 is ful�lled, as desired. Hence there is an 〈Γ,Π〉 such
that 〈Σ,∆〉Rc♦ 〈Γ,Π〉 and ϕ ∈ Γ, namely take 〈a′, b′〉 = 〈Γ,Π〉 as witness.�

Therefore, V c〈Σ,∆〉 (♦ϕ) = 1 i� ♦ϕ ∈ Σ.

.-case.

V c〈Σ,∆〉 (.ϕ) = 1 i� 〈Σ,∆〉Rc. 〈Γ,Π〉 ⇒ V c〈Γ,Π〉 (ϕ) = 0 by def of .. By induction hypothesis V c〈Γ,Π〉 (ϕ) = 1 i�

ϕ ∈ Γ. Hence, V c〈Σ,∆〉 (.ϕ) = 1 i� 〈Σ,∆〉Rc. 〈Γ,Π〉 ⇒ ϕ /∈ Γ. Now we show that 〈Σ,∆〉Rc. 〈Γ,Π〉 ⇒ ϕ /∈ Γ i�

.ϕ ∈ Σ.

Left to right direction will be proved by contraposition. Claim: if .ψ /∈ Σ then there is a full quanti�er suited

pair 〈a, b〉 such that 〈Σ,∆〉Rc. 〈a, b〉 and ψ ∈ a. Assume that .ψ /∈ Σ. Then
〈
{ψ} , .−1Σ

〉
is a quanti�er-suited

pair, by lemma 55.2. Notice that {ψ} is �nite and thus we can apply the pair extension in the same language

(lemma 54) which states then that there is a full quanti�er-suited pair 〈a′, b′〉 extending
〈
{ψ} , .−1Σ

〉
in the

same language. Clearly 〈a′, b′〉 is such that 〈Σ,∆〉Rc. 〈a′, b′〉 because .A ∈ Σ⇒ A ∈ .−1Σ⇒ A ∈ b′ ⇒ A /∈ a′,
where the last implication follows from the pair condition. So 〈a′, b′〉 ful�lls the de�nition of Rc.. Since .ψ /∈ Σ

then ψ /∈ .−1Σ ⊆ b′ and then ψ /∈ b′. By fullness of 〈a′, b′〉 we get ψ ∈ a′. Hence if .ψ /∈ Σ then there is a

full quanti�er suited pair 〈a, b〉 such that〈Σ,∆〉Rc. 〈a, b〉 and ψ ∈ a, namely take 〈a′, b′〉 = 〈a, b〉 as witness.�

Direction ⇐ Suppose .ϕ ∈ Σ. Assume further that 〈Σ,∆〉Rc. 〈Γ,Π〉. Then, by applying modus ponens to

the de�nition of Rc., we have ϕ /∈ Γ, as desired.�

Therefore: V c〈Σ,∆〉 (.ϕ) = 1 i� .ϕ ∈ Σ.

/-case.

V c〈Σ,∆〉 (/ϕ) = 1 i� there exists an 〈Γ,Π〉 such that 〈Σ,∆〉Rc/ 〈Γ,Π〉 and V c〈Γ,Π〉 (ϕ) = 0. By induction

hypothesis V c〈Γ,Π〉 (ϕ) = 1 i� ϕ ∈ Γ, thus we have:

V c〈Σ,∆〉 (/ϕ) = 1 i� there exists an 〈Γ,Π〉 such that 〈Σ,∆〉Rc/ 〈Γ,Π〉 and ϕ /∈ Γ. Now we show that there

exists an 〈Γ,Π〉 such that 〈Σ,∆〉Rc/ 〈Γ,Π〉 and ϕ /∈ Γ i� /ϕ ∈ Σ.

Direction ⇒ Suppose that there exists an 〈Γ,Π〉 such that 〈Σ,∆〉Rc/ 〈Γ,Π〉 and ϕ /∈ Γ. Then by applying

modus ponens to the de�nition of Rc/ we immediately have: /ϕ ∈ Σ.�
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Direction ⇐ Suppose /ϕ ∈ Σ. Then by lemma 55.4. and since 〈Σ,∆〉 is full quanti�er suited, we know

that
〈
/−1∆, {ϕ}

〉
is a quanti�er suited pair. Notice that {ϕ} is �nite and thus we can apply the the pair

extension in the same language (lemma 54) which states then that there is a full quanti�er-suited pair 〈a′, b′〉
extending

〈
/−1∆, {ϕ}

〉
in the same language. Since ϕ ∈ {ϕ} ⊆ b′ then ϕ /∈ a′ by the pair condition and thus

ϕ /∈ /−1∆ ⊆ a′, which �nally leads us to /ϕ /∈ ∆. But then by fullness, /ϕ ∈ Σ. So, by de�nition of Rc/ we

have: 〈Σ,∆〉Rc/ 〈a′, b′〉 . Hence there exists an 〈a, b〉 such that 〈Σ,∆〉Rc/ 〈a, b〉 and ϕ /∈ a, namely take the

witness 〈a′, b′〉 = 〈a, b〉 .�

Therefore V c〈Σ,∆〉 (/ϕ) = 1 i� /ϕ ∈ Σ.

−-case

V c〈Σ,∆〉 (ϕ− ψ) = 1 i� there exists an 〈Γ,Π〉 such that 〈Γ,Π〉 ⊆∗ 〈Σ,∆〉 and
{
V c
〈Γ,Π〉(ϕ)=1 and

V c
〈Γ,Π〉(ψ)=0

which by

induction hypothesis translates into
{
ϕ∈Γ and
ψ/∈Γ . Now we show that there exists an 〈Γ,Π〉 such that 〈Γ,Π〉 ⊆∗

〈Σ,∆〉 and
{
ϕ∈Γ and
ψ/∈Γ if and only if ϕ− ψ ∈ Σ .

For the right to left direction, assume that ϕ− ψ ∈ Σ. By the lemma 55.6 and since 〈Σ,∆〉 is full quanti�er
suited, we know that 〈{ϕ} , {ψ} ∪∆〉 is a quanti�er-suited pair. Notice that {ϕ} is �nite and thus we can apply
the pair extension in the same language (lemma 54) which states then that there is a full quanti�er-suited pair

〈a, b〉 extending 〈{ϕ} , {ψ} ∪∆〉 in the same language. Since ∆ ⊆ ({ψ} ∪∆) ⊆ b then ∆c ⊇ ({ψ} ∪∆)
c ⊇ bc,

but then, since 〈a, b〉 and 〈Σ,∆〉 are full, we know that bc = a and∆c = Σ which means that Σ ⊇ ({ψ} ∪∆)
c ⊇

a. Therefore 〈a, b〉 ⊆∗ 〈Σ,∆〉. Moreover {ϕ} ⊆ a and {ψ} ⊆ b so
{
ϕ∈a and
ψ/∈a , as desired.�

For the left to right direction we use contraposition. Thus assume that ϕ − ψ /∈ Σ. Then by the semantic

de�nition of substraction, we know that for all points 〈Γ,Π〉 such that 〈Γ,Π〉 ⊆∗ 〈Σ,∆〉 it is the case that

V c〈Γ,Π〉 (ϕ) = 1 implies V c〈Γ,Π〉 (ψ) = 1, but by induction hypothesis this is converted into ϕ ∈ Γ ⇒ ψ ∈ Γ. In

short: there does not exist any point 〈Γ,Π〉 ⊆∗ 〈Σ,∆〉 such that
{
ϕ∈Γ and
ψ/∈Γ , which exactly what we needed.

�

Therefore V c〈Σ,∆〉 (ϕ− ψ) = 1 i� ϕ− ψ ∈ Σ.

⊃-case

V c〈Σ,∆〉 (ϕ ⊃ ψ) = 1 i� for all 〈Γ,Π〉 such that 〈Σ,∆〉 ⊆∗ 〈Γ,Π〉 we have V c〈Γ,Π〉 (ϕ) = 1 ⇒ V c〈Γ,Π〉 (ψ) = 1

which by induction hypothesis translates into ϕ ∈ Γ ⇒ ψ ∈ Γ . Now we show that all 〈Γ,Π〉 such that

〈Σ,∆〉 ⊆∗ 〈Γ,Π〉 are such that ϕ ∈ Γ⇒ ψ ∈ Γ i� ϕ ⊃ ψ ∈ Σ.

The left to right direction will be veri�ed by contraposition. We assume then that ϕ ⊃ ψ /∈ Σ, which by 55.5

tells us that 〈Σ ∪ {ϕ} , {ψ}〉 is a quanti�er-suited pair. Notice that {ψ} is �nite and thus we can apply the

pair extension in the same language (lemma 54) which states then that there is a full quanti�er-suited pair

〈a, b〉 extending 〈Σ ∪ {ϕ} , {ψ}〉 in the same language. Since (Σ ∪ {ϕ}) ⊆ a then 〈Σ,∆〉 ⊆∗ 〈a, b〉 and ϕ ∈ a.
But ψ /∈ a because {ψ} ⊆ b and 〈a, b〉 is a pair. Thus ϕ ∈ a; ψ ∈ a as desired.�

Assume that ϕ ⊃ ψ ∈ Σ, for the right to left direction. Then by the semantic de�nition of ⊃ we have

V c〈Γ,Π〉 (ϕ) = 1 ⇒ V c〈Γ,Π〉 (ψ) = 1, for all 〈Γ,Π〉 such that 〈Σ,∆〉 ⊆∗ 〈Γ,Π〉. But this turns into ϕ ∈ Γ⇒ ψ ∈ Γ

by induction hypothesis, which provides just what we needed.�

Therefore V c〈Σ,∆〉 (ϕ ⊃ ψ) = 1 i� ϕ ⊃ ψ ∈ Σ.

∀-case

V c〈Σ,∆〉 (∀vϕ) = 1 i� V c〈Σ,∆〉 (ϕ [x/v]) = 1 for each x ∈ V ar+. By induction hypothesis we have V c〈Σ,∆〉 (ϕ [x/v]) =

1 for each x ∈ V ar+ i� ϕ [x/v] ∈ Σ for each x ∈ V ar+. Now we need to show that ϕ [x/v] ∈ Σ for each
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x ∈ V ar+ i� ∀vϕ ∈ Σ, but this already follows from lemma 43 and the fullness and quanti�er suitedness of

〈Σ,∆〉.

Therefore V c〈Σ,∆〉 (∀vϕ) = 1 i� ∀vϕ ∈ Σ.

∃-case

V c〈Σ,∆〉 (∃vϕ) = 1 i� V c〈Σ,∆〉 (ϕ [x/v]) = 1 for some x ∈ V ar+. By induction hypothesis we have V c〈Σ,∆〉 (ϕ [x/v]) =

1 for some x ∈ V ar+ i� ϕ [x/v] ∈ Σ for some x ∈ V ar+. Now we need to show that ϕ [x/v] ∈ Σ for some

x ∈ V ar+ i� ∃vϕ ∈ Σ, but this already follows from lemma 43 and the fullness and quanti�er suitedness of

〈Σ,∆〉.

Therefore V c〈Σ,∆〉 (∃vϕ) = 1 i� ∃vϕ ∈ Σ.

The Truth lemma is proven. �

3.3.1. Completeness theorem and proof. The moment arrived for us to present the completeness

theorem.

Theorem 63. (completeness) Given a pair Σ 0Λ ∆ and a CDML logic Λ there is a model M based on some

DML-frame F such that Σ 1M ∆ (i.e. there exists a point w ∈W such that M, w 
 Σ and M, w 1 ∆).

Proof. Assume Σ 0 ∆. Then 〈Σ,∆〉 is a pair which, by the Pair extension lemma on a new lan-

guage (lemma 46), can be extended to a full quanti�er-suited pair 〈Σ′,∆′〉. Such pair is a point in the

DML-canonical frame as described in de�nition 44, and the canonical valuation guarantees that 〈Σ′,∆′〉 
Mc

Σ and 〈Σ′,∆′〉 1Mc ∆ and therefore Σ 1Mc ∆. Hence there is some model M in which Σ 1M ∆, namely the

canonical model. �

3.3.2. Remarks on a completeness proof for substructural operators. As expected, the canoni-

cal model Mc for a SDML-logic on the language L+
SQ

′
is entirely analogous to de�nition 44 with〈

(W,⊆∗) , Rc�, Rc♦, Rc., Rc/, Rc◦, Rc→, Rc←, V ar, V c
〉
, and the canonical relations Rc◦ ,Rc→ and Rc← de�ned as

follows:

• 〈Σ,∆〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉 i� for each ϕ,ψ ∈ L+
SQ

′
we have ϕ ∈ Γ & ψ ∈ Θ⇒ ϕ ◦ ψ ∈ Σ

• 〈Σ,∆〉Rc→ 〈Γ,Π〉 〈Θ,Ω〉 i� for each ϕ,ψ ∈ L+
SQ

′
we have (ϕ ∈ Γ ⇒ ψ ∈ Θ) ⇒ ϕ→ ψ ∈ Σ

• 〈Σ,∆〉Rc← 〈Γ,Π〉 〈Θ,Ω〉 i� for each ϕ,ψ ∈ L+
SQ

′
we have (ψ ∈ Γ ⇒ ϕ ∈ Θ) ⇒ ψ ← ϕ ∈ Σ

The veri�cation that the canonical frame is an SDML-frame (de�nition 20) would run similarly by supplying

the veri�cation of the additional accessibility relations.

(1) (≥) ◦R◦ ⊆ R◦ ◦ (≥,≥) that is: ∀t, u, v, z [(t ≥ u ∧ R◦uvz)→ ∃w,w′ (R◦tww′ ∧ w ≥ v ∧ w′ ≥ z)].
In the canonical frame, such condition takes the following shape (we assume universal closure):

(〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ,∆〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉)⇒
∃〈Γ′,Π′〉 , 〈Θ′,Ω′〉 (〈Σ′,∆′〉Rc◦ 〈Γ′,Π′〉 〈Θ′,Ω′〉 & 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉 & 〈Θ,Ω〉 ⊆∗ 〈Θ′,Ω′〉).

Proof. Let 〈Σ,∆〉 , 〈Γ,Π〉, 〈Σ′,∆′〉 and 〈Θ,Ω〉 be full quanti�ed-suited pairs from L+
SQ

′
such

that 〈Σ,∆〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. Then for each ϕ,ψ ∈ L+
SQ

′
we have

(ϕ ∈ Γ & ψ ∈ Θ)⇒ ϕ ◦ ψ ∈ Σ, and since Σ ⊆ Σ′ then (ϕ ∈ Γ & ψ ∈ Θ)⇒ ϕ ◦ ψ ∈ Σ⇒ ϕ ◦ ψ ∈ Σ′.

Therefore 〈Σ′,∆′〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉. So just take 〈Γ′,Π′〉 = 〈Γ,Π〉 and 〈Θ′,Ω′〉 = 〈Θ,Ω〉 as the

witnesses. �
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(2) (≥)◦R→ ⊆ R→◦(≤,≥) that is: ∀t, u, v, z [(t ≥ u ∧ R→uvz)→ ∃w,w′ (R→tww′ ∧ w ≤ v ∧ w′ ≥ z)].
In the canonical frame, such condition takes the following shape (we assume universal closure):

(〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ,∆〉Rc→ 〈Γ,Π〉 〈Θ,Ω〉)⇒
∃〈Γ′,Π′〉 , 〈Θ′,Ω′〉 (〈Σ′,∆′〉Rc→ 〈Γ′,Π′〉 〈Θ′,Ω′〉 & 〈Γ′,Π′〉 ⊆∗ 〈Γ,Π〉 & 〈Θ,Ω〉 ⊆∗ 〈Θ′,Ω′〉).

Proof. Let 〈Σ,∆〉 , 〈Γ,Π〉, 〈Σ′,∆′〉 and 〈Θ,Ω〉 be full quanti�ed-suited pairs from L+
SQ

′
such

that 〈Σ,∆〉Rc→ 〈Γ,Π〉 〈Θ,Ω〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. Then for each ϕ,ψ ∈ L+
SQ

′
we have

(ϕ ∈ Γ ⇒ ψ ∈ Θ) ⇒ ϕ → ψ ∈ Σ, and since Σ ⊆ Σ′ then (ϕ ∈ Γ ⇒ ψ ∈ Θ) ⇒ (ϕ→ ψ ∈ Σ) ⇒
(ϕ→ ψ ∈ Σ′). Therefore 〈Σ′,∆′〉Rc→ 〈Γ,Π〉 〈Θ,Ω〉. So just take 〈Γ′,Π′〉 = 〈Γ,Π〉 and 〈Θ′,Ω′〉 =
〈Θ,Ω〉 as the witnesses. �

(3) (≥)◦R← ⊆ R←◦(≥,≤) that is: ∀t, u, v, z [(t ≥ u ∧ R←uvz)→ ∃w,w′ (R←tww′ ∧ w ≥ v ∧ w′ ≤ z)].
In the canonical frame, such condition takes the following shape (we assume universal closure):

(〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉 & 〈Σ,∆〉Rc← 〈Γ,Π〉 〈Θ,Ω〉)⇒
∃〈Γ′,Π′〉 , 〈Θ′,Ω′〉 (〈Σ′,∆′〉Rc← 〈Γ′,Π′〉 〈Θ′,Ω′〉 & 〈Γ,Π〉 ⊆∗ 〈Γ′,Π′〉 & 〈Θ′,Ω′〉 ⊆∗ 〈Θ,Ω〉).

Proof. Let 〈Σ,∆〉 , 〈Γ,Π〉, 〈Σ′,∆′〉 and 〈Θ,Ω〉 be full quanti�ed-suited pairs from L+
SQ

′
such

that 〈Σ,∆〉Rc← 〈Γ,Π〉 〈Θ,Ω〉 and 〈Σ,∆〉 ⊆∗ 〈Σ′,∆′〉. Then for each ϕ,ψ ∈ L+
SQ

′
we have

(ψ ∈ Γ ⇒ ϕ ∈ Θ) ⇒ ψ ← ϕ ∈ Σ, and since Σ ⊆ Σ′ then (ψ ∈ Γ ⇒ ϕ ∈ Θ) ⇒ (ψ ← ϕ ∈ Σ) ⇒
(ψ ← ϕ ∈ Σ′). Therefore 〈Σ′,∆′〉Rc← 〈Γ,Π〉 〈Θ,Ω〉. So just take 〈Γ′,Π′〉 = 〈Γ,Π〉 and 〈Θ′,Ω′〉 =
〈Θ,Ω〉 as the witnesses. �

When preparing the truth lemma, the �rst di�culties are reached. Given that we are still on the distributive

setting, and since the unary diamond case in the Truth lemma works �awlessly, one may expect that the

corresponding proof for fusion -a binary diamond- requires no more than a straightforward adaptation of the

unary diamond case. In the truth-lemma, one direction is given by the de�nition of the canonical relation

Rc◦, while the other direction requires to provide two witness points. Namely, we would have:

V c〈Σ,∆〉 (ϕ ◦ ψ) = 1 i� there exists an 〈Γ,Π〉 such that V c〈Γ,Π〉 (ϕ) = 1, and a 〈Θ,Ω〉 such that V c〈Θ,Ω〉 (ψ) = 1 with

〈Σ,∆〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉. By induction hypothesis we have V c〈Γ,Π〉 (ϕ) = 1 i� ϕ ∈ Γ and V c〈Θ,Ω〉 (ψ) = 1 i� ψ ∈ Θ.

At this stage we would need to show that there exists an 〈Γ,Π〉 such that ϕ ∈ Γ and a 〈Θ,Ω〉 such that ψ ∈ Θ

with 〈Σ,∆〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉 if and only if ϕ◦ψ ∈ Σ. Direction⇒ is the one given by the de�nition of Rc◦. For

direction⇐ we suppose ϕ◦ψ ∈ Σ and then we would need an analogue of lemma 55 for fusion. Such analogue

would state that since 〈Σ,∆〉 is a full quanti�er suited pair, we know that
〈
{ϕ} ,

⋃
β∈L+

Q
′ {c | c ◦ β ∈ ∆}

〉
and〈

{ψ} ,
⋃
α∈L+

Q
′ {c | α ◦ c ∈ ∆}

〉
are quanti�ed-suited pairs, which then would be extended to full quanti�ed

suited pairs, to serve us as witnesses. In di�erent words, in the truth lemma, for each formula ϕ ◦ ψ ∈ Σ we

will need to have witness points with ϕ ∈ Γ and ψ ∈ Θ such that 〈Σ,∆〉Rc◦ 〈Γ,Π〉 〈Θ,Ω〉, and here, in this

last condition resides the di�culty. For ΣRc◦ΓΘ demands by de�nition (def.44) that for no formula such that

α ◦ β /∈ Σ (equivalently α ◦ β ∈ ∆) we have both α ∈ Γ and β ∈ Θ. Thus we need either α ∈ Π or β ∈ Ω for

each formula α ◦ β /∈ Σ. This is the reason why we de�ne the initial witness pairs above as generally as we

do (notice, however, that they are more restrictive than needed but for the sake of discussion, they su�ce).

We do not see clearly how to prove this claim, however:

Given 〈Σ,∆〉 a full quanti�er suited pair, if ϕ ◦ ψ ∈ Σ then
〈
{ϕ} ,

⋃
β∈L+

Q
′ {c | c ◦ β ∈ ∆}

〉
and〈

{ψ} ,
⋃
α∈L+

Q
′ {c | α ◦ c ∈ ∆}

〉
are quanti�ed-suited pairs.

Regarding the pairness property, it can be easily shown that {ϕ} 0 {c | c ◦ β ∈ ∆} for any formula β.

But from this, it does not follow that {ϕ} 0
⋃
β∈L+

Q
′ {c | c ◦ β ∈ ∆}. The next idea would be to build⋃

β∈L+
Q

′ {c | c ◦ β ∈ ∆} in stages using the enumeration of all β formulas, adding a single {c | c ◦ β ∈ ∆} set
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(which can be empty) per stage and then run an induction proof. This does not seem to work well either. Be-

cause each {c | c ◦ β ∈ ∆} set is added unconditionally, there is not enough information to push the inductive

step through.

The cases for implication and co-implication face similar issues and could get even trickier as reported by

[Restall 2005].



CHAPTER 4

The non-distributive setting: Generalized Kripke frames

We will now expose the discrete duality for non-distributive (propositional) substructural logic from

[Gehrke 2006] as a natural outcome of the progressive generalization of classical modal logic tools to modal

logics based on distributive lattices, non-distributive lattices and posets. The single most important concep-

tual piece underlying these results is Correspondence Theory, as it is at the root of the interplay between

frames (and thus relational semantics) and their complex algebras (and thus algebraic semantics) inside the

discrete duality. Discrete duality allows to explore the unfamiliar arena of Kripke frames for non-distributive

logics with the safe guidance of a still transparent algebraic behaviour. Thus, the non-distributive generaliza-

tion takes place on the algebraic side �rst, by looking at posets and their canonical extensions, which happen

to be perfect lattices (4.3.1.). Both posets with monotone expansions and perfect lattices with extended

operations are shown to be duals of polarities in [Dunn, Gehrke & Palmigiano 2005]. A subclass of

polarities, called RS-frames, are shown to be the natural counterpart of Kripke frames in this wider context

[Gehrke 2006] (4.3.2.). None of the material in this chapter is original.

4.1. Frame de�nability and correspondence theory

Correspondence theory exploits the observation that Kripke frames can be studied not just as models of

modal logic, but also as models of �rst order logic. This immediately brings the possibility to de�ne classes

of Kripke frames by using either modal formulas or �rst order formulas (on the modal side, frame de�nability

builds on the notion of a certain formula being valid in a given frame). We may then say that a modal

formula and a �rst order sentence correspond to each other if they de�ne the same class of Kripke frames.

The following series of de�nitions makes all this more precise. The material of this subsection is taken from

[Blackburn, de Rijke & Venema 2001].

Definition 64. (validity) Let τ be a modal similarity type. Then:

• a τ -formula ϕ is valid at a point w in a τ -frame F (F, w 
 ϕ) if ϕ is true at that point for every

valuation based on F (F, V, w 
 ϕ for every V )

• a τ -formula ϕ is valid on a τ -frame F (F 
 ϕ) if ϕ is true at every point for every valuation based

on F (F, V, w 
 ϕ for every V and every w)

• a τ -formula ϕ is valid on a class K of τ -frames (K 
 ϕ) if ϕ is valid on every F in K

All the above concepts can be extended to sets of formulas being valid.

Remark 65. The notion of frame validity is inherently a second-order property as it quanti�es over all

possible valuations which are (assignments of) subsets of frames (i.e. �monadic predicates�) -a formula ϕ

is valid on a frame if for all sets assigned to it by valuations, such set has same extension than the frame

universe.

Definition 66. (de�nability) Let τ be a modal similarity type. Then a τ -formula ϕ de�nes or characterizes

a class K of τ -frames if for every frame F, F is in K i� F 
 ϕ. This de�nition can be extended to sets of

formulas as well.

51
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Remark 67. It is usual to say that a formula ϕ (or a set Γ of formulas) de�nes a property of the accessibility

relation (e.g. re�exivity) if it de�nes precisely the class of frames with such a relation. Also note that

the notion of frame de�nability inherits its second-order nature from frame validity, as it builds upon it

[Blackburn, de Rijke & Venema 2001].

Remark 68. Given the availability of �rst order logic to study Kripke frames and the second-order nature

of frame de�nability, a modal similarity type comes associated with two frame languages besides the modal

one.

Definition 69. (Frame languages) Given a modal similarity type τ ,

• the �rst-order frame language L1
τ of τ is the �rst-order language that has identity symbol = and an

(n+ 1)-ary relation symbol R4 for each n-ary modal operator 4 ∈ τ .
• and given a set Φ of propositional letters, the monadic second-order frame language L2

τ (Φ) of τ over

Φ is the second-order language that results from adding a Φ-indexed collection of monadic-predicate

variables to L1
τ , thus additionally quantifying over subsets of frames.

L1
τ is often called the �rst-order correspondence language for τ , and L2

τ the second-order correspondence

language for τ (with the restriction to monadic predicates assumed).

Definition 70. (Frame correspondence) If a class of frames (which can informally be seen as a property)

can be de�ned by a modal formula ϕ and by a formula ψ from one of these frame languages L1
τ or L2

τ , it is

said that ψ and ϕ are each others (global) correspondents.

Remark 71. All modal formulas can be translated into a formula of L2
τ , only some of these will turn out

to have an equivalent in L1
τ . When modal formulas have a �rst-order correspondent, it is always a single

formula, no correspondence ever arises with a set of �rst-order formulas.

Theorem 72. If K is a �rst-order de�nable class of frames, then the normal modal logic ΛK is canonical

(and thus strongly complete w.r.t. K)

Correspondence theory is precisely, within the model theory of modal logic, the systematic study of the corre-

spondence phenomenon. This study provides useful methods and tools to approach modal logic problems. In

particular, in the more general settings of non-Boolean and non-distributive logics, the relational semantics

grow much faster in di�culty than the algebraic counterparts. In fact, it is now well-known that the algebraic

theory and methods involved in these wider settings remain essentially the same than what we have for classi-

cal modal logic ([Conradie & Palmigiano 2012, Dunn, Gehrke & Palmigiano 2005, Gehrke 2006,

Gehrke, Nagahashi & Venema-2005]). Moreover, the algebraic perspective is particularly well suited

for a modular approach, which easily accommodates the expansion or reduction of a signature in several

directions and the combination of these.

In recent years, there has been an increasing amount of studies on logics for which the associated algebras are

not Boolean algebras, but generalizations of these which play precisely with the modular addition or removal

of certain operators.
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BooleanAlgebra

↗ withOperators ↘
add operators drop negation

↗ mGoldblatt duality ↘
BooleanAlgebra DistributiveLattices

DescriptiveGeneral Frames withOperators

mStone duality ↘ ↗ m
drop negation Relational Priestley

BooleanSpace ↘ add operators Spaces

↗
DistributiveLattices

mPriestley duality
Priestley Spaces

We have already exploited some of these studies in the previous chapter, particularly the duality for dis-

tributive lattices expanded with modal operations as presented in [Conradie & Palmigiano 2012]. But

a duality theory has also started to be developed for bounded lattices which are no longer distributive (for

instance,[Hartung 1992, Urquhart 1978] and for the modal view on it [Haim 2000]), and �nally for

partially ordered sets along with a development of canonical extension theory for order-preserving and order

reversing expansions [Dunn, Gehrke & Palmigiano 2005, Gehrke 2006]. We �rst provide (4.2) a brief

overview of the discrete duality that arise on increasingly generalized modal settings, to �nally focus on

the canonical extension and discrete duality for the non-distributive setting (4.3.), as preparation for the

completeness result exposition in Chapter 5.

4.2. Discrete duality from the classical case to the non-distributive case.

A brief overview on how the discrete duality emerges in the classical and distributive settings will show that

the non-distributive discrete duality comes as a natural extension of a well-known strategy.

4.2.1. Stone duality. The Stone representation theorem states that every Boolean algebra A can be

embedded in the complete and atomic Boolean algebra Aσ de�ned as the power set algebra of the collection

of its ultra�lters1, where the latter generalize the notion of atoms. Thus even when a Boolean algebra is not

atomic nor complete, it can be embedded into a complete and atomic Boolean algebra, as every power-set

algebra belongs to this category. In fact, this is often reformulated as an isomorphism (every Boolean algebra

is a power-set algebra, up to isomorphism). Thus, a very obvious advantage of Representation theorems -of

which this one is an example- is that they allow to reduce a class of structures to a proper subclass with a

simpler behaviour. The usual shape of this type of theorems is that every element of the class of structures S

is isomorphic to some element of a proper subclass S′ ⊂ S of structures. It is often the case that this subclass

S′ has some nice extra properties that makes it more suitable to work with than the original class S, while

the isomorphism ensures that any isomorphim-invariant result proved in S′ will carry over to S. But this

is just one aspect of the insight gained, a fully detailed formulation of a representation theorem provides a

precise de�nition of the embedding used to prove it.

1hence a point in this algebra is a family of ultra�lters
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Theorem 73. Stone representation theorem. Let A = 〈A,∧,∨,¬, 0, 1〉 be a Boolean algebra and let Uf (A) be
the set of ultra�lters of A. Then the function v : A −→ ℘ (Uf (A)) de�ned by v (a) = â = {U ∈ Uf (A) | a ∈ U}
is an injective morphism of lattices. Consequently, every Boolean algebra A can be embedded in the complete

and atomic Boolean algebra Aσ de�ned as the powerset algebra of the set of ultra�lters of A

Such embedding provides a concrete and intuitive interpretation of otherwise abstractly de�ned operations.

More precisely, this result links the rather abstract meaning of Boolean operations in A to a concrete (i.e.

set theoretic) view of such meaning. Thus a∧ b can be seen as â ∧ b = â∩ b̂, for instance, with abstract meet

now being interpreted as set intersection.

The main interest of representation theorems and canonical extensions in the context of this thesis, and more

generally from logical viewpoint, is that they are an important source of completeness results. For instance,

via the reformulation in terms of isomorphism, Stone representation theorem presents the completeness of

classical logic as an essentially algebraic result. We can directly see A as a subalgebra of Aσ by recovering

the fact that, given the embedding, A is isomorphic to its image under v (·). Since validity of equations is

preserved under taking subalgebras, we can easily see this representation theorem as a powerful tool to obtain

completeness results via discrete duality (validity of equations is preserved on taking subalgebras, thus logical

counterexamples in the Lindenbaum algebra are preserved in the opposite direction: they are still invalid in

the canonical extension of the Lindenbaum algebra).

The existence of the following two dualities of categories is crucial for the Stone representation theorem.

CABA
(·)+

// Sets
(·)+

oo
Discrete duality

BA
(·)∗

//

(·)σ

OO

(·)•=U◦(·)∗

==

Stone

U

OO

(·)∗
oo

Topological duality

Given a Boolean algebra A, its associated stone space (A)∗ is formed by taking the subset of its powerset that

consists only of ultra�lters and setting as the basis of the space the collection
⋃
a∈A {U ∈ Uf (A) | a ∈ U} of

families of ultra�lters selected by a common element. In general, the collection of clopens of any topological

space forms a Boolean algebra, but the particular Boolean algebra that arises from a given Stone space has a

special property with respect to the original BA -and this is what the Stone representation theorem states-:

every Boolean algebra A is isomorphic to the Boolean algebra ((A)∗)
∗
of clopen subsets of its associated

Stone space SA = (A)∗.
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4.2.2. The modal family. We can now consider a diagram where we have Boolean algebras expanded

with modal operators (BAOs) instead of raw Boolean algebras.

CABACO
(·)+

// KrFr
(·)+

oo
Discrete duality

BAO
(·)∗

//

(·)σ

OO

(·)•=U◦(·)∗

==

DGF

U

OO

(·)∗
oo

Topological duality

A Boolean algebra with an operator or BAO is a pair 〈A,♦〉 where A is a Boolean algebra and ♦ : A −→ A

is a function that preserves binary joins (and thus all �nite ones). A unary operator is complete if it preserves

arbitrary joins, and CABACO is the category of complete and atomic Boolean algebras with a complete

operator.2 KrFr is the category of Kripke frames, which can be seen as sets expanded with a relation on

them. DGF is the category of descriptive general frames which can be seen as Stone spaces endowed with a

point-closed relation (R is point-closed if for every point w ∈W , the set of successors R [w] = {t ∈W | Rwt}
is a closed set in the topology).

Just as the discrete and topological dualities lead to a representation theorem in the Boolean case, they

also support a representation theorem in the expanded version, namely the Jonsson-Tarski representation

theorem.

Theorem 74. (Jonsson-Tarski representation theorem). Any BAO A can be embedded in its canonical

extension Aσ

This representation theorem tells us that any BAO, and in particular the Lindenbaum-Tarski algebra of

classical modal logic, can be represented as (read �embedded into�) a concrete BAO, i.e. an algebra that

comes from a frame, or more precisely, as an algebra that is linked to frames through a discrete duality and

has some well-behaved properties. We may remark en passant that the complex algebra of the canonical

frame is (up to isomorphism) identical to the canonical extension of the Lindenbaum-Tarski algebra.

2We call an operation f : C −→ C′ an operator if it is normal and additive in all coordinates, where normality holds if f (⊥) =⊥′
and additivity holds if f (a ∨ b) = f (a) ∨′ f (b)
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(LindenbaumTarskiAlg.)
σ ∼= (Canonical Frame)

+

(·)+
// Canonical Frame

(·)+
oo

LindenbaumTarskiAlgebra
(·)∗

//

(·)σ

OO

(·)•

66

DGF

U

OO

(·)∗
oo

When generalizing to distributive modal algebras, the scheme is as follows (PBLO: Perfect Bounded Dis-

tributive Lattices with Operators, OrKrFr: Ordered Kripke Frames):

PBLO
(·)+

// OrKrFr
(·)+

oo
Discrete duality

BLO
(·)∗

//

(·)σ

OO

(·)•=U◦(·)∗

<<

PriestleyDGF

U

OO

(·)∗
oo

Topological duality

We have detailed the discrete duality of this scheme on Chapter 1. The next step in the generalization involves

considering posets (with order preserving or reversing maps) on the algebraic side and RS-polarities (with

modal relations). The canonical extension of posets is abstractly de�ned and then proved -by purely algebraic

means- to exist and to be unique in [Dunn, Gehrke & Palmigiano 2005]. Such canonical extensions are

characterized there as perfect lattices (the corresponding category being PLat in the diagram). Then a

discrete duality between perfect lattices and RS-polarities is developed in [Gehrke 2006]. The topological

duality has not yet been established and therefore the corresponding diagram generalizing the previous ones

is incomplete.

PLat
(·)+

// RSPol
(·)+

oo
Discrete duality

Poset

(·)σ

OO

(·)•=?

==
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Given the modular nature of operations, it su�ces to add the relevant operations and their dualizations to

obtain the modal scheme, with PLatE the category of perfect lattices with extra operations, GKFr the category

of Generalized Kripke frames (RS-frames plus modal operations) and MPE the category of monotone poset

expansions (i.e., posets with operations that either preserve or reverse the order):

PLatE
(·)+

// GKFr
(·)+

oo
Discrete duality

MPE

(·)σ

OO

(·)•=?

==

What really concerns us here is the discrete dualities, so we summarize the situation as follows.

-The dual of perfect BAOs are Kripke frames with the set of atoms as universe, which dualize back as the

powerset algebra of this set of atoms.

• Given a perfect BAO A = (A,∧,∨,−,♦, 0, 1), its relational dual is A+ = (At (A) , R♦) with At (A)
the set of atoms of A and R♦ab⇔ a ≤ ♦b.

• On the opposite direction, given a frame F = (W,R♦), its complex algebra is

F+ =
(
℘ (W ) ,∩,∪,c ,∅,W,mR♦

)
with mR♦ (S) = {w ∈W |∃s (R♦ws)}.

-The dual of a perfect DMA is an Ordered Kripke frame with the set of completely join prime irreducibles

as universe, which dualize back as the powerset algebra of upsets.

• Given a perfect DMA D = (D,∧,∨,♦,�, ., /, 0, 1), its relational dual is

D+ = ((J∞P (D) ,≥) , R♦, R�, R., R/) with J∞P (D) the set of completely join-prime irreducibles

of D with dual order and the modal relations de�ned as in de�nition 18.

• On the opposite direction, given a DML-frame F = ((W,≤) , R♦, R�, R., R/), its complex algebra is

F+ =
(
℘↑ (W ) ,∩,∪,∅,W, 〈R♦〉 , [R�] , [R.〉 , 〈R/]

)
with the modal operations de�ned as in de�nition

9

-The dual of perfect lattices are RS-polarities with the set of completely join irreducibles and the set of

completely meet irreducibles as a two-sorted universe, which dualize back as the lattice of Galois-stable sets.

• Given a perfect lattice L = (L,∧,∨,♦,�, ., /, ◦,→,←, 0, 1), its relational dual is

L+ = ((J∞ (L) ,M∞ (L) ,≤) , R♦, R�, R., R/, R◦, R→, R←) with J∞ (L) the set of completely join

irreducibles and M∞ (L) the set of completely meet irreducibles of L, and the relations de�ned as

in section 5.1.4.1.

• On the opposite direction, given a generalized Kripke-frame F = ((X,Y,≤) , R♦, R�, R., R/, R◦, R→, R←),

its complex algebra is F+ = 〈G (F) ,∧,∨,∅, X, 〈R♦〉 , [R�] , [R.〉 , 〈R/] , 〈R◦〉 , 〈R←〉 , 〈R→〉〉 with the

modal operations de�ned as in de�nition 23
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4.3. The non-distributive diagram in further detail

We will focus on the nuclear component of the Generalized Kripke frames,

4.3.1. Perfect lattices from posets: The canonical extension of posets.

4.3.1.1. Abstract characterization. In this section we will brie�y display the content of

[Dunn, Gehrke & Palmigiano 2005]. Algebraic methods are used to prove the existence and unique-

ness of the canonical extension of partially ordered sets. Those algebras which are canonical extensions of

partially ordered sets are furthermore characterized as perfect lattices.

Although distributive lattices still have a topological duality, at this level of generality the work has just

started to search what the topological duality should look like. In fact not even the ultra�lter frame functor

is described, cf. [Gool 2009]. Hence, while in the Boolean and distributive settings the existence can be

obtained via the topological duality, the existence of canonical extensions of posets must be proved by other

means, i.e. relying purely on algebraic methods for the construction. Such construction, when dealing with

lattices, takes as key ingredients the sets of (proper) �lters and ideals of the lattice. The same procedure

can be extended to the more general case of posets but this requires a generalization of the lattice-oriented

concepts of �lter and ideal. There is more than one suitable choice regarding the more general de�nition

of �lters and ideals. In fact, as �lters we can take any set of upsets F as long as it contains the principal

upsets and likewise for the ideals, any set of downsets I which contains the principal downsets will do. Given

this choice, the canonical extension must now be parametrized according to what de�nition of �lters/ideals

is taken as base for the construction. Hence, a canonical extension constructed out of elements in F and I
is labeled the (F , I)-completion. For ease of notation, we will simply assume that a de�nition of �lters and

ideals has been �xed. In [Dunn, Gehrke & Palmigiano 2005] the de�nition based upon the concept of

up/down-directed sets is used and it is the one we assume:

Definition 75. (down-directed subset) A subset A ⊆ P of a poset (P,≤) is a down-directed subset if A 6= ∅
and for every a, a′ ∈ A there is a c ∈ A such that c ≤ a and c ≤ a′. An up-directed subset is de�ned

order-dually.

Remark 76. A down-directed subset is not required to be upward-closed, but if it is, then we have a

generalization of the lattice-notion of �lter (the notion of being a upward-closed down-directed subset of a

poset is weaker than the notion of being �lter of the poset, since there is no requirement on c to be the

greatest lower bound). Likewise, a downward-closed up-directed subset of a poset is a generalization of the

notion of ideal.

Definition 77. Let P be a poset. A non-empty subset F ⊆ P is called a �lter if it is a down-directed upset:

• if a, b ∈ F then there exists a c such that c ≤ a, c ≤ b and c ∈ F .
• if b ∈ P and a ∈ F with a ≤ b then b ∈ F

The notion of an ideal is de�ned order-dually.

Remark 78. The direct poset analogue of the lattice-notion of �lter, however, would be to just deal with

the possibility of a non-existent meet for a given pair of elements. A non-empty subset F ⊆ P is then a �lter

if it is an up-set closed under existing binary meets, that is, we demand that if a, b ∈ P and {a, b} has a
greatest lower bound c in P then c ∈ F . [Gool 2009] shows that the collection of sets de�ned as �lters along

the above de�nitions fall all within his concept of �lter systems. We now present the concepts of extension

and of canonical extension for posets as given in [Dunn, Gehrke & Palmigiano 2005].
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Definition 79. Let P be a poset. An extension of P is a pair (e,Q) where Q is a poset and e : P −→ Q a

map such that for every x, y ∈ P , x ≤P y i� e (x) ≤Q e (y). In short, an extension of P is an order-embedding.

A completion of a poset P is an extension (e,Q) where Q is a complete lattice.

We call K (Q) the set of closed elements of Q, where an element q ∈ Q is closed if q =
∧
e [F ] for some �lter

F of P. Likewise, we call O (Q) the set of open elements of Q, where an element q ∈ Q is open if q =
∨
e [I]

for some ideal I of P.

• An extension (e,Q) of P is said to be dense when for every q ∈ Q we have q =
∨
{k ∈ K (Q) |k ≤ q} =∧

{o ∈ O (Q) |q ≤ o}
• An extension (e,Q) of P is said to be compact if whenever a non-empty down-directed set D ⊆ P

and a non-empty up-directed set U ⊆ P are such that whenever
∧
e [D] ≤

∨
e [U ] we also have

witnesses d ∈ D and u ∈ U with d ≤ u.

Definition 80. Let P be a poset. A canonical extension of P is a dense and compact completion of P.

The above de�nition constitutes an abstract (purely algebraic) characterization of a canonical extension

of a poset. It is proven in [Dunn, Gehrke & Palmigiano 2005] that when a poset P has a canonical

extension, it is unique up to an isomorphism that �xes P. Moreover, this de�nition �ts well the concrete

completion of P given by the polarity built upon the set F of �lters of P, the set I of ideals of P and the

relation of non-disjointness between them, which ultimately proves existence (for details we refer the reader

to [Dunn, Gehrke & Palmigiano 2005]).

It is shown in [Dunn, Gehrke & Palmigiano 2005] and [Gehrke 2006] that the RS-frames (a special

kind of polarity) can be seen as perfect posets3 and viceversa: they are two sides of the same coin and the

alternative presentations can be interchanged at convenience for most purposes. While the �rst authors focus

on a discrete duality between perfect lattices and perfect posets, the latter author shifts focus to RS-frames

and their discrete duality with perfect lattices. The following diagram schematizes two algebraic methods to

obtain a concrete canonical extension of a poset.

Perfect Lattices
dd

Galois−stable sets

Perfect Posets
F⊕Ioo

Posets
(F,I,⊥)−polarity

//

F⊕I=(F]I/≡,≤)(·)σ

OO ::

RS − Frames
��

1−1bijection

KS

The �rst method is to take advantage of the presentation of RS-frames as perfect posets and to de�ne a

quotient on the quasi-order given by the disjoint union of �lters and ideals of the starting poset P and then

to take the MacNeille-completion of such quotient (upper path of the diagram). This purely algebraic path

is brie�y described below (4.3.1.2.-4.3.1.3.) but is detailed in both [Dunn, Gehrke & Palmigiano 2005]

and [Fulford 2009]. The second method, detailed in [Gool 2009], takes the lower path and exploits the

3de�ned as: Z is a perfect poset i� J∞ (Z) / M∞ (Z) is join-dense / meet-dense in Z and Z = J∞ (Z) ∪M∞ (Z)
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discrete duality between perfect lattices and RS-frames: we build a polarity out of the �lters and ideals of

the starting poset P and then take the Galois-stable lattice (details below in section 4.3.2.1-4.3.2.2.). Notice

here that this works only because we restrict ourselves to RS-frames. The Galois-stable lattice of polarities

in general do not give us a perfect lattice, but just a complete one.

Remark 81. The polarities built upon the family of optimal �lters and optimal ideals of a poset are in fact

RS-frames.

4.3.1.2. Concrete algebraic construction of the canonical extension. De�ne a quasi-order (also known as

preorder)4 on F ] I as follows: for all F ∈ F and all I ∈ I,

• F v I i� F ∩ I 6= ∅.
• I v F i� for all x ∈ F and all y ∈ I: y ≤ x.
• F v F ′ i� F ⊇ F ′

• I v I ′ i� I ⊆ I ′

For every X,Y ∈ F ] I we set: X ≡ Y i� X v Y and X w Y . Since v is a preorder, ≡ is clearly an

equivalence relation (transitive, re�exive, and now symmetric). Now ≤≡ de�ned as ≡ /v is a partial order

such that for every X,Y ∈ F ] I, [X] ≤≡ [Y ] i� X v Y .

The principal upsets and downsets are key ingredients to guarantee that P embeds into F⊕ I.

Lemma 82. For all p ∈ P and for all X,Y ∈ F ] I:

(1) [↑ p] = [↓ p]
(2) No other sets are identi�ed by ≡ unless they are equal

(3) [↑ (_)] : P −→ F⊕ I is an order embedding.

We can de�ne the amalgamation F ⊕ I as the poset (F ] I/ ≡,≤). This amalgamation has the necessary

properties for ([↑ (_)] ,F⊕ I) to be an (F , I)-extension of P and has denseness and compactness, the reader

can check the details in [Fulford 2009] but let us remark that the opens of F⊕I are precisely the equivalence
classes of form [I] for I ∈ I and the closeds are precisely the equivalence classes of shape [F ] for F ∈ F .

Finally, by taking the Dedekind-MacNeille completion F⊕ I of F ⊕ I, we obtain a complete extension of P
which still is dense and compact (Dedekind-MacNeille completion preserves all existing meets and joins).

This yields:

Theorem 83. For any poset P, F⊕ I is a canonical extension of P.

4.3.1.3. Extending the maps to the canonical extension. There are canonical ways to extend an arbitrary

monotone map f between two posets A and B to a map Aσ −→ Bσ (with a map in A extended to Aσ −→ Aσ

as an important but particular case in which B = A). Such extension is given in two steps, we �rst take

care of the closed and open elements of Aσ. Then, we rely on the useful fact that -by denseness of the

canonical extension- every element of Aσ or Bσ can be seen as the join of the closed elements below it,

or the meet of the open elements above it. By de�nition, for every closed element k in Aσ we have: k =∧
{a ∈ A | a ≥ k} so if we let fσ (k) =

∧
{f (a) | a ∈ A : a ≥ k} with fσ : K(Aσ) ∪ O(Aσ) −→ Bσ we still

have fσ monotone. Observe that this de�nition relies on Bσ being complete, which guarantees the existence

of
∧
{f (a) | a ∈ A : a ≥ k}. Likewise we have, for every open element o in Aσ we have: o =

∨
{a ∈ A | a ≤ o}

4Recall that a quasi-order is a re�exive and transitive binary relation. When antisymmetry is added, it turns into a partial
order.
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so if we let fπ (o) =
∨
{f (a) | a ∈ A : a ≤ o} with fπ : K(Aσ)∪O(Aσ) −→ Bσ we still have fπ monotone.. As

before, this de�nition relies on Bσ being complete, which guarantees the existence of
∨
{f (a) | a ∈ A : a ≤ o}.

So far we know what happens (in the extended map) with the opens and closeds of Aσ. To determine what

happens with an arbitrary (not necessarily open nor closed) element of Aσ we simply use denseness, which

states that for all u ∈ Aσ:
∨
{k ∈ K(Aσ) | u ≥ k} = u =

∧
{o ∈ O(Aσ) | o ≥ u}.

Thus we de�ne fσ, fπ : Aσ −→ Bσ as follows, after ([Dunn, Gehrke & Palmigiano 2005]):

fσ (u) =
∨
{
∧
{f (a) | a ∈ A : a ≥ k} | u ≥ k ∈ K(Aσ)}

fπ (o) =
∧
{
∨
{f (a) | a ∈ A : a ≤ o} | u ≤ o ∈ O(Aσ)}

Once we have presented the canonical extension of a poset -which is a perfect lattice-, we can look at the

objects on the other side of the discrete duality: the polarities.

4.3.2. Polarities. Now, the dual of a perfect lattice should be an object consisting of two sets and a

relation between them, usually these objects are known as polarities.

Definition 84. A polarity W is a triple (X,Y,R) with X,Y non-empty sets and R ⊆ X × Y a binary

relation.

Since a perfect lattice Pσ is by de�nition generated by J∞ (Pσ) and M∞ (Pσ) , we have a straightforward

way to represent Pσ as a polarity.

Definition 85. Let L be a perfect lattice. Then the polarity L+ associated with L is the triple

(J∞ (L) ,M∞ (L) ,≤L ∩ (J∞ (L)×M∞ (L))).

Now, since we are aiming at a duality, we should now try to see how to obtain a perfect lattice (isomorphic

to) L from its corresponding polarity L+. This will be achieved through a Galois-connection.

4.3.2.1. Complete lattices via Galois-connection. First recall that given (X,≤) and (Y,≤) partial orders
and f : Y → X and g : X → Y monotone maps. These form a Galois connection f � g between posets X

and Y if the following holds:

f(x) ≤ y i� x ≤ g(y).

Graphically:

X Y

x
g(−)

// g(x)

f(y)

≤

OO

y
f(−)

oo

≤

OO

Then f is the lower adjoint of g and g the upper adjoint of f . A Galois connection induces one closure

operator f ◦ g over X and one interior operator g ◦ f over Y . The original notion in Galois theory is slightly

di�erent, formulated in terms of antitone maps:



4.3. THE NON-DISTRIBUTIVE DIAGRAM IN FURTHER DETAIL 62

y ≤ f(x) i� x ≤ g(y).

This erases the lower/upper distinction and the pair of functions is now entirely symmetric. Thus both

compositions are closure operators.

It is a well-known property of complete lattices that they can be seen as polarities, closure systems and

topped
⋂
-structures[Davey & Priestley 2002]:

• Every topped
⋂
-structure is a complete lattice and, up to isomorphism, every complete lattice is a

topped
⋂
-structure.5

• The set of concepts (Galois-stable sets) of a polarity forms a complete lattice and, up to isomorphism,

every complete lattice is the set of concepts of some polarity.

• Every (antitone) Galois connection induces two closure maps and thus also induces a pair of iso-

morphic complete lattices.

• There is a bijection between closure operators over a set X and the topped
⋂
-structures over X. In

particular, a closure operator on X can be used to de�ne a topped
⋂
-structure on X and viceversa.

For this reason, a topped
⋂
-structure is also named as a �closure system�.

These facts pave the way to a complex algebra for polarities, and the failure to guarantee an �atomic� complete

lattice motivates the restriction to RS-frames. More precisely, the desire for a lattice L that contains the

original universe and the empty set as members (i.e. as possbile interpretants), motivates the restriction

to separating frames (S-frames), while the desire for a lattice L that is �atomic� in some sense (i.e. whose

completely join-irreducibles are join-dense in L and whose completely meet-irreducibles are meet-dense in L)
motivates the restriction to reduced separating frames (RS-frames).

4.3.2.2. The complex algebra of polarities. We �rst present the Galois connection that will serve as base

for the complex algebra construction.

Definition 86. Let W = (X,Y,R) be a polarity. Then the functions uR and lR relating X and Y are de�ned

as follows:

• uR :

℘ (X) −→ ℘ (Y )

S 7−→ uR (S) = {y | ∀x ∈ S : xRy}

• lR :

℘ (Y ) −→ ℘ (X)

S′ 7−→ lR (S′) = {x | ∀y ∈ S′ : xRy}

Observe that uR retrieves the set of R-upper bounds of its input (all in Y given that R ⊆ X × Y ), while
lR retrieves the set of R-lower bounds (all in X given that R ⊆ X × Y ). Then uR and lR form a Galois

connection between the posets (℘ (X) ,⊇) and (℘ (Y ) ,⊆), or equivalently, 〈uR, lR〉 is a residuated pair.

Hence, the composition cR = lR ◦ uR : ℘ (X) −→ ℘ (X) is a closure operator on X, and S ⊆ X is said to

be cR − closed or R-Galois-stable if cR (S) = S. The collection of cR − closed subsets of X form a complete

lattice (W)
+

= {A ⊆ X |A = lR (uR (A))} with the meet and join operations de�ned as follows: for any

S ⊆ X,
∧
S =

⋂
S and

∨
S = cR (

⋃
S). It is also useful to remember that the set of upper bounds is always

an R-upset and the set of lower bounds is always an R-downset (so stable sets are all downsets).

It is noted in [Gehrke 2006] that polarities are too general to provide the desired generalization of a

Kripke-frame. In particular, just as Kripke-frames complex algebras are atomic -besides being complete-, we

wish to have a suitable prolongation of this property in the distributive and non-distributive cases. Moreover,

5Observe that a topped
⋂
-structure is a complete meet semi-lattice. When a structure has all meets, it also has all joins and

thus a topped
⋂
-structure turns out to be a complete lattice.
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we also need to guarantee that the sets X and Y are represented in the dual algebra (or to use Gehrke's

terms, to guarantee that they are potential interpretants) just as W is represented in BAOs by the set of

singletons in ℘ (W ) .

Definition 87. (Separating frame) A polarity W = (X,Y,R) is said to be a separating frame (an S -frame

henceforth), if:

• ∀x1, x2 ∈ X (x1 6= x2 ⇒ uR ({x1}) 6= uR ({x2}))
• ∀y1, y2 ∈ Y (y1 6= y2 ⇒ lR ({y1}) 6= lR ({y2}))

Remark 88. In an S -frame W = (X,Y,R), the sets X,Y are thus taken as contained in (W)
+
but in the

sense that they are represented by corresponding Galois-stable sets, i.e. if X = {1, 2, 3} and Y = {a, b, c}
then X is represented in (W)

+
by {R (1R) , R (2R) , R (3R)} and Y by {Ra,Rb,Rc}.

Definition 89. (Complex algebra for polarities) Given an polarity W = (X,Y,≤), its complex algebra

W+ = 〈G (W) ,∧,∨〉 is a complete lattice, where G (W) is the family of Galois-stable sets of (X,Y,R) and

∧ =
⋂

but ∨ = cR ◦
⋃

(cf. Def. 86). When W is an RS-frame, then W+ = 〈G (W) ,∧,∨,∅, X〉.

Now we need a pair of maps that relate the elements on the two-sorted frame to the elements in the polarity-

dual, its complex algebra.

Definition 90. Let W = (X,Y,R) be a polarity. Then the functions Ξ and Υ are de�ned as follows:

• Ξ :

X −→ (W)
+

x 7−→ lR (uR ({x}))

• Υ :

Y −→ (W)
+

y 7−→ lR ({y})

When W is an S-frame the functions Ξ and Υ are injective and consequently no information is lost regarding

the sets X and Y . The proposition 86 below spells out the link between the partial order ⊆ on the set

(Ξ [X] ∪Υ [Y ]) ⊆ (W)
+
and the relation R. In fact, ⊆ restricted to Ξ [X]×Υ [Y ] is entirely order-isomorphic

to R: for all x ∈ X and all y ∈ Y : xRy ⇐⇒ Ξ (x) ⊆ Υ(y).

Proposition 91. Let W = (X,Y,R) be an S-frame and let Z1, Z2 ∈ Ξ [X] ∪Υ [Y ], then the following holds:

• Ξ (x1) ⊆ Ξ (x2) i� ∀y ∈ Y (x2Ry ⇒ x1Ry)

• Υ(y1) ⊆ Υ(y2) i� ∀x ∈ X (xRy1 ⇒ xRy2)

• Ξ (x1) ⊆ Υ(y2) i� x1Ry2

• Υ(y1) ⊆ Ξ (x2) i� ∀x ∈ X, ∀y ∈ Y (xRy1 & x2Ry ⇒ xRy)

Just as we have that ℘ (W ) is generated by W (every S ∈ ℘ (W ) is the union of the singletons below it) here

we have that (W)
+
is meet-generated by Υ [Y ] and join generated by Ξ [X] .

Proposition 92. Let W = (X,Y,R) be any polarity, then Ξ [X] join generates (W)
+
and Υ [Y ] meet gener-

ates (W)
+
.

Corollary 93. Let W = (X,Y,R) be an S-frame, then X join generates (W)
+
-thus also Ξ [X]∪Υ [Y ]- and

Y meet generates (W)
+
-thus also Ξ [X] ∪ Υ [Y ] . We also have Ξ [X] ∪Υ [Y ] = (W)

+
, where Ξ [X] ∪Υ [Y ]

is the Dedekind-MacNeille completion of Ξ [X] ∪Υ [Y ].

Join-irreducibility and meet-irreducibility take the following shape:
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Definition 94. (Reduced frame) Let W = (X,Y,R) be a frame, then W is reduced if the following properties

hold

• ∀x ∈ X ∃y ∈ Y with x � y and ∀x′ ∈ X, if x′ < x, then x′ ≤ y.
• ∀y ∈ Y ∃x ∈ X with x � y and ∀y′ ∈ Y , if y < y′, then x ≤ y'.

When W is an S-frame, the �rst condition amounts to join-irreducibility in X -and thus in Ξ [X] ∪Υ [Y ]- of

every x, while the second condition amounts to meet-irreducibility in Y -and thus in Ξ [X] ∪Υ [Y ]- of every

y.

When lattices are restricted to distributive and Boolean settings, we obtain the usual family of admissible

sets:

Theorem 95. Let W = (X,Y,R) be an RS-frame6.

• If Ξ [X] ∪Υ [Y ] is distributive, then Ξ [X] ∪Υ [Y ] ∼= O (W ) ∼= K (W )

• If Ξ [X] ∪Υ [Y ] is Boolean, then Ξ [X] ∪Υ [Y ] ∼= O (W ) ∼= ℘ (W )

Proposition 3.33. of [Gehrke 2006], which we reproduce below, states that there is a correspondence between

binary relations that are RS-frame compatible and residuated pairs of maps between the Galois stable sets.

Proposition 96. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS-frames. Then the following holds:

(1) If G (F1)
g

�
h
G (F2) is a residuated pair, then both maps are uniquely determined by the relation

Rh ⊆ Y1×X2 de�ned as: y1Rhx2 ⇐⇒ y1 ≥ h (x2)⇐⇒ g (y1) ≥ x2. Since for any x2 ∈ X2 and any

y1 ∈ Y1 we have Rh [_, x2] =↑ h (x2) ∩ Y1 and Rh [y1,_] =↓ g (y1) ∩X2, these are stable sets and

therefore Rh ⊆ Y1 ×X2 is F1,F2-compatible.

(2) Conversely, if a relation R ⊆ Y1×X2 is F1,F2-compatible (that is, for any x2 ∈ X2 and any y1 ∈ Y1
we have that Rh [_, x2] and Rh [y1,_] are stable sets) then the maps hR : G (F2) −→ G (F1) and

gR : G (F1) −→ G (F2) de�ned by:hR (x2) =
∧
R [_, x2] for x2 ∈ X2

hR (u2) =
∨
{hR (x2) |u2 ≥ x2 ∈ X2} =

∧
{y1|∀x2 ∈ X2 (x2 ≤ u2 ⇒ y1Rx2)} for u2 ∈ G (F2)

andgR (y1) =
∨
R [y1,_] for y1 ∈ Y1

gR (u1) =
∧
{gR (y1) |u1 ≤ y1 ∈ Y1} =

∨
{x2|∀y1 ∈ Y1 (y1 ≥ u1 ⇒ y1Rx2)} for u1 ∈ G (F1)

form a residuated pair.

(3) If G (F1)
g

�
h
G (F2) is a residuated pair, then hRh

= h and gRh
= g, and if R ⊆ Y1 × X2 is a

F1,F2-compatible relation, then RhR
= R.

This allows for the following de�nition of a dual of a complete lattice homomorphism (de�nition 3.34 in

[Gehrke 2006])

Proposition 97. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS-frames and hR : G (F2) −→ G (F1) a

complete lattice homomorphism. Then the dual of h is de�ned as the pair (Rh, Sh) where Rh ⊆ Y1 × X2

is the relation described in 96 which arises from the fact that h is residuated, and Sh ⊆ X1 × Y2 is the

corresponding relation arising from h being dually residuated. In other words: y1Rhx2 ⇐⇒ y1 ≥ h (x2) and

x1Shy2 ⇐⇒ h (y2) ≥ x1
6O (W) is the traditional notation for the family of downsets of W ordered by inclusion. The O designation comes from the
association of downsets with the opens of a topology and K from the association of upsets with the closed elements of the
topology.
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De�nition 3.35 in [Gehrke 2006] extends this to n-ary relations.

Definition 98. A generalized Kripke frame is a structure F = (X,Y,≤, R) such that (X,Y,≤) is an RS −
frame and R ⊆ X ×X ×Y is a compatible relation. Associated with R there is another compatible relation

R↓ ⊆ X ×X ×X de�ned by: (x1, x2, x3) ∈ R↓ i� x3 ∈ R [x1, x2,_]
l
.

Finaly, as complex algebra of a generalized Krikpe frame we obtain the following de�nition by simply con-

sidering the extra operations:

Definition 99. (Complex algebra for generalized Kripke-frames) Given a generalized Kripke-frame F =

((X,Y,≤) , R♦, R�, R., R/, R◦, R→, R←), its complex algebra

F+ = 〈G (F) ,∧,∨,∅, X, 〈R♦〉 , [R�] , [R.〉 , 〈R/] , 〈R◦〉 , 〈R←〉 , 〈R→〉〉 is a perfect (substructural-modal) lattice,

where G (F) is the family of Galois-stable sets of the RS-polarity (X,Y,R) which constitutes F 's universe,

and ∧ =
⋂

but ∨ = cR ◦
⋃

(cf. Def. 86), with the modal operations de�ned as in de�nition 23

4.3.3. Polarities from perfect lattices and from posets: Optimal �lters and ideals. The max-

imal �lters of a Boolean algebra constitute the points of the dual space of such Boolean algebra. The same

role is ful�lled in the non-Boolean case by the prime �lters of a distributive lattice, where these �lters are a

generalization of the former ones. Optimal �lters (and optimal ideals) push the generalization process one bit

further, being the basis of dual representation of a non-distributive lattice. Optimal �lters of a distributive

lattice are exactly the prime ones, and prime �lters of a Boolean algebra are exactly the maximal ones.

The following de�nition was �rst formulated for proper �lters and ideals of bounded lattices by [Haim 2000]

as Def.1.3.6. and then generalized for posets by [Gool 2009] (Def.3.1.1.).

Definition 100. (maximality) Let L be a poset. Let F, I be a �lter and ideal of L, respectively.

• F is I-maximal i� it is ⊆-maximal with respect to being disjoint from I:

� F ∩ I = ∅
� If F ′ is a proper �lter such that F ⊂ F ′ then F ′ ∩ I 6= ∅.

• The notion of I being F -maximal is dual.

• (Maximal �lter-ideal pairs) A pair 〈F, I〉 is a maximal �lter-ideal pair i� F is I-maximal and I is

F -maximal. We also say that F and I are companions of each other.

• A �lter F is optimal if there is an ideal I such that the pair 〈F, I〉 is a maximal �lter-ideal pair.

The notion of optimal ideal is de�ned symmetrically. The sets of optimal �lters and optimal ideals

are denoted Fop (L) and Iop (L) respectively.

Again, the following theorem can be found in [Haim 2000] for bounded lattices as Theorem .1.3.7. plus

Corollary 1.3.9. and generalized for posets in [Gool 2009] as Theorem .3.1.2.

Theorem 101. (Disjoint Filter-Ideal pairs can be extended to maximal ones) Given a �lter F and an ideal

I in a poset L such that F ∩ I = ∅, then:

(1) there is an I-maximal �lter F∗ containing F and

(2) there is an F -maximal ideal I∗ containing I.

(3) 〈F∗, I∗〉 is a maximal pair

This theorem guarantees that any disjoint �lter-ideal pair can be extended to a maximal one. The reader will

recognize in it a generalization of the well known facts that every �lter in a Boolean algebra can be extended

to a maximal one (maximal �lters are ultra�lters in BAs) and that every �lter in a distributive bounded

lattice can be extended to a prime �lter. From this theorem stems a crucial corollary which we will use later.
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Corollary 102. If F is a �lter of L and a /∈ F , then there is an 〈F∗, I∗〉 maximal pair such that F ⊆ F∗

and a ∈ I∗. If I is an ideal of L and a /∈ I, then there is an 〈F∗, I∗〉 maximal pair such that I ⊆ I∗ and

a ∈ F∗

As before, it is found in [Haim 2000] for bounded lattices as Corollary 1.3.8. and generalized for posets in

[Gool 2009] as Corollary .3.1.3.

Remark 103. By de�nition, we already knew that:

(1) Every optimal �lter is I-maximal for some ideal I.

(2) Every optimal ideal is F -maximal for some �lter F .

Now, from corollary 96, the converses follows:

(1) If there is an ideal I of L such that the �lter F is I-maximal, then F is an optimal �lter (i.e., I can

be extended to an F -maximal I ′).

(2) If there is a �lter F of L such that the ideal I is F -maximal, then I is an optimal ideal (i.e., F can

be extended to an I-maximal F ′).

Every prime �lter is optimal. In fact, if F is a prime �lter, then there is exactly one ideal I that is F -maximal.

Thus, if F is a prime �lter, then there is exactly one ideal I companion of F .

The following proposition states some key facts about optimal �lters (Proposition 1.3.13 in [Haim 2000])

Proposition 104. Optimal �lters, prime �lters and distributivity

• The optimal �lters of a distributive lattice are exactly the prime �lters of it.

• Conversely, if every optimal �lter of a lattice L is prime, then L is distributive.

• The fact that every optimal �lter F of a lattice L has a unique companion does not imply that L is

distributive.

Optimal �lters and ideals can be put together into a polarity as follows.

Definition 105. Let L be a bounded lattice. Then we de�ne the disjointness relation ⊥⊆ Fop (L)×Iop (L)
by F ⊥ I ⇐⇒ F ∩ I 6= ∅, and we name A+ := 〈Fop (L) , Iop (L) ,⊥〉 the optimal polarity of L

Although the theory of optimal ideals and �lters was formulated in [Haim 2000] initially for bounded lattices

-thus only applicable to the discrete duality-, it has been now generalized to the wider context of posets by

[Gool 2009], hence the title of this subsection.

Definition 106. Let A be a poset. Then we de�ne the disjointness relation ⊥⊆ Fop (A) × Iop (A) by

F ⊥ I ⇐⇒ F ∩ I 6= ∅, and we name A• := 〈Fop (A) , Iop (A) ,⊥〉 the optimal polarity of A7

To round up this section, we add the de�nition of a perfect non-distributive modal algebra.

7Terminology introduced in [Gool 2009]
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Definition 107. (Perfect non-distributive modal algebra) A lattice L = 〈L,∧,∨,>,⊥,♦,�, ., /, ◦,→,←〉 is
a perfect non-distributive modal algebra if 〈L,∧,∨,>,⊥〉 is a -non necessarily distributive- perfect lattice

and for any S, S′ ⊆ L:

• ♦ (
∨
S) =

∨
(♦S) =

∨
{♦u |u ∈ S}

• � (
∧
S) =

∧
(�S) =

∧
{�u |u ∈ S}

• . (
∨
S) =

∧
(.S) =

∧
{.u |u ∈ S}

• / (
∧
S) =

∨
(/S) =

∨
{/u |u ∈ S}

•
∨
S ◦

∨
S′ =

∨
(S ◦ S′) =

∨
{s ◦ s′ | s ∈ S& s′ ∈ S′}

•
∨
S →

∧
S′ =

∨
(S → S′) =

∨
{s→ s′ | s ∈ S& s′ ∈ S′}

•
∧
S ←

∨
S′ =

∨
(S ← S′) =

∨
{s← s′ | s ∈ S& s′ ∈ S′}



CHAPTER 5

Completeness for non-distributive propositional case

We will now expose the completeness result for non-distributive (propositional) substructural logic from

[Gehrke 2006], adding the unary modal operators. The focus will be on clarifying the completeness results

under the light of the continuity along the classical/distributive/non-distributive line of progressive gener-

alization. Most importantly, we attempt to present the methodology used in a more transparent way, a

methodology which is greatly obscured in the original paper due to space limitations. We �rst draw the

reader's attention to the fact that although [Gehrke 2006] provides a Kripke semantics completeness proof,

the approach heavily relies on the algebraic side of the discrete duality. In fact, the relational semantics

itself is based upon a dualization of the algebraic interpretation map. This technique is shown to retrieve the

usual frame semantics on the distributive & classical settings (5.1.2.). Then we clarify the relation between

the points in polarities and the usual points in the distributive setting (5.1.3.). Once this checked, we use

this method (dualization of the algebraic assignments) to obtain relational satisfaction de�nitions for all

operations ♦,�, ., /, ◦,→,← in the non-distributive setting (5.1.4.). We �nally expose the completeness for

propositional substructural logic in the non-distributive case (5.2.).

5.1. Interpretation dualization

5.1.1. Interpretation of algebras. Given a language L, an interpretation on a perfect lattice expan-

sion C is a homomorphism V : Fm −→ C where Fm is the formula algebra based on L. When Fm is

just a propositional logic in a certain algebraic signature τ , then V is a τ -homomorphism1. This means

that interpretations into perfect lattices can be systematically dualized into relations, just as any other ho-

momorphism. In the Boolean and distributive setting and given any frame F with universe W and any

previously de�ned satisfaction relation 
⊆W ×Fm on it, an interpretation V : Fm −→ F+ can be de�ned

as an τ -homomorphism in a natural way. It su�ces to take the unique homomorphic extension of the map

V :=

AtProp −→ F+

p 7−→
−1 [p] = {w ∈W | w 
 p}
which is the equivalent functional representation of the relation


. For this equivalent functional representation to be well de�ned, we must ensure that the relation 
 is F+

compatible, that is, it must be such that 
−1 [p] ∈ F+ for every p ∈ AtProp.2

The resulting interpretation on the complex algebra F+ is such that for every ϕ ∈ Fm and every x ∈ J∞ (F+),

the following condition holds:

(5.1.1) x 
 ϕ i� x ≤ V (ϕ)

1Observe that when Fm is a quanti�ed predicate logic, then V must turn into a complete lattice homomorphism as well. To

see this notice that, where g is an assignment and g′
x
' g is the equivalence class of all assignment that are like g except

possibly on the value of x, V must satisfy the equalities V (∀xϕ (x))g = V
(∧

g′
x
'g

[ϕ (x)]g′
)

=
∧

g′
x
'g

(
V

(
[ϕ (x)]g′

))
and

V (∃xϕ (x))g = V
(∨

g′
x
'g

[ϕ (x)]g′
)
=

∨
g′

x
'g

(
V

(
[ϕ (x)]g′

))
2In the Boolean case this is automatically true since the complex algebra is the powerset algebra of W expanded with modal
operations and thus any subset of W is in it. But already in the distributive case, this is no longer true in general: 
−1 [p]
needs to be an upset since the carrier of the complex algebra is then ℘↑ (W ).

68
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where x ∈W on the frame side and x ∈ ℘↑ (W ) is the dual object representing x in the perfect lattice F+.

The notion of interpretation on an algebra in the non distributive case extends in a transparent way the

corresponding notion in the Boolean and distributive settings. The behaviour of the relational semantics at

this level of generality, on the other hand, is not well understood. Or, to say it di�erently, it does not follow

in any obvious way from the known relational semantics for classical and distributive modal logics.

Now suppose our perfect lattice C is the complex algebra F+ of some frame F =
〈
(X,≤, Y ) , {R4}4∈τ

〉
.

Given an interpretation V : Fm −→ F+ is it possible to de�ne a satisfaction relation on F associated to the

algebraic interpretation in similar way as before, i.e. in such way as to obtain the biconditional (5.1.1)? As

we will see in this section, this is indeed possible. The leading intuition is that interpretations on complex

algebras and satisfaction relations on the corresponding frames are dual to one another as an instance of the

more general duality between complete lattice homomorphisms and pairs of relations with special properties.

The algebraic notion of homomorphism will be taken as primitive and used to build the satisfaction relation

on frames at this new level of generality (i.e., in the non-distributive setting).

5.1.2. Retrieving the satisfaction relation from the interpretation function: distributive

case. Let us show that not only retrieving the satisfaction relation from the interpretation is possible, but

that it gives us the usual relational semantics in the distributive case (and hence also in the Boolean case).

We will assume for simplicity that our signature is composed by a bounded distributive lattice expanded with

a unary diamond.

We need to de�ne 
 inductively, in such a way that the equation (5.1.1) holds. Thus the basic step is provided

by the previous desiderata, for every x ∈ J∞ (F+) and every p ∈ AtProp we de�ne: x 
 p i� x ≤ V (p).

For the inductive step, let ϕ = ♦ψ and, as inductive hypothesis, suppose that (5.1.1) holds for any ψ of

strictly lower complexity than ϕ.

x 
 ♦ψ i� x ≤ V (♦ψ)

To unfold the inductive step we will make use of the following facts:

(1) F+ =
〈
℘↑ (W ) ,∩,∪,∅,W,♦F+

〉
is a perfect distributive lattice

(2) by 1, each element in ℘↑ (W ) is representable as the join of all join-irreducible elements below it or

equivalently as the meet of meet-irreducibles above it.

(3) J∞ (F+) = {↑ w | w ∈W}, hence in (5.1.1) x on the algebraic side is a principal upset (x =↑ w)
and x on the frame side is its generator (x = {w}).

(4) for all X ∈ F+; ♦F+

(X) = R−1♦ [X] where R♦ is the accessibility relation that interprets ♦ on the

frame F.
(5) V (ψ) ∈ F+ for all ψ.

(6) by 1, ♦F+

is completely join-preserving.

(7) Since by assumption V is a homomorphism, then V (♦ϕ) = ♦F+

V (ϕ)

Given these facts we have:
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x ≤ V (♦ψ) i� x ≤
∨
{♦F+

x′ | x′ ∈ J∞(F+) and x′ 
 ψ}
i� ∃x′(x′ ∈ J∞(F+) & x′ 
 ψ & x ≤ ♦F+

x′) (a)

i� ∃x′(x′ 
 ψ & x ≤ ♦F+

x′) (b)

i� ∃x′(x′ 
 ψ & ↑ x ⊆ R−1♦ [x′]) (c)

i� ∃x′(x′ 
 ψ & x ∈ R−1♦ [x′]) (d)

i� ∃x′(x′ 
 ψ & xR♦x
′) (e)

i� x 
 ♦ψ (f)

Proof. We expand the successive �i�s� as follows:

(a) V (ψ) =by 5&2

∨
{z ∈ J∞ (F+) | z ≤ V (ψ)} =by IH

∨
{z ∈ J∞ (F+) | z 
 ψ} and then V (♦ψ) = ♦F+

V (ψ) =

♦F+ ∨ {z ∈ J∞ (F+) | z 
 ψ} =by 6

∨{
♦F+

z | z ∈ J∞ (F+) and z 
 ψ
}
where the �rst equality holds because

V is an homomorphism by assumption. From such equality and for any x ∈ J∞ (F+) we have the following:

x ≤ V (♦ψ) i� x ≤
∨
{♦F+

x′ | x′ ∈ J∞(F+) and x′ 
 ψ}

.

Now because x is not only completely join-irreducible but in fact completely join-prime3, the second inequality

implies that x ≤ ♦F+

x′ for some x′ ∈ J∞(F+) such that x′ 
 ψ. The converse follows by lattice theoretic

laws, if x is below one element of the join, then it is certainly below the join itself, since a join is above all

its elements and the order induced by lattice operations is transitive. This settles (a).

(b) Clearly ∃x′(x′ ∈ J∞(F+) & x′ 
 ψ & x ≤ ♦F+

x′) implies ∃x′(x′ 
 ψ & x ≤ ♦F+

x′) by just forgetting a

property, but the converse is not so obvious. Suppose there is an x′ such that x′ 
 ψ and x ≤ ♦F+

x′, then using

the representation of x′ as a join of completely join-irreducibles we get x ≤ ♦F+ ∨ {z ∈ J∞ (F+) | z ≤ x′}
and by fact 6, x ≤

∨{
♦F+

z | z ∈ J∞ (F+) & z ≤ x′
}
. As before, because x is completely join-prime we have

x ≤ ♦F+

z for some z ∈ J∞(F+) such that z ≤ x′. But now we can apply the induction hypothesis to x′ 
 ψ

and get x′ ≤ V (ψ) , so z ≤ x′ ≤ V (ψ) and applying IH again, z 
 ψ. Therefore ∃y(y ∈ J∞(F+) & y 


ψ & x ≤ ♦F+

y), namely take y = z.

(c) Now observe that the condition x ≤ ♦F+

x′ is really the same as ↑ x ⊆ R−1♦ [x′]. The order ≤ is no more

than ⊆ itself, by fact 1; ♦F+

x′ = R−1♦ [x′] by 4; and x must be in fact the principal upset ↑ x by 3.

(d) Now clearly ↑ x ⊆ R−1♦ [x′] implies x ∈ R−1♦ [x′], and on the other hand if x ∈ R−1♦ [x′] then ↑ x ⊆ R−1♦ [x′],

because R−1♦ [x′] = ♦F+

x′ and so by 1 it must be an upset since ♦F+

x′ ∈ F+.

(e) and (f) follow immediately from the de�nitions of R−1♦ [x′] and the standard semantics for frames. �

This gives us the inductive step for the unary diamond. The above proof not only shows that it is possible

to retrieve a frame satisfaction relation from an algebraic interpretation function through a correspondence

argument, but also that the conditions obtained coincide exactly with the usual frame semantics.

5.1.3. The relation between the elements of Gehrke's RS-polarities and the elements of

usual frames. Given the claimed algebraic continuity between the Boolean, the distributive and the non-

distributive cases, it may look odd to see the non-distributive case complex algebra realized as a Galois

connection construction while no such construction seems to have been used on previous cases. Accordingly,

it can be confusing to see the elements of the distributive complex algebra materialized as principal upsets

while the corresponding elements in the Galois connection construction are downsets rather than the expected

upsets. This section is aimed at clarifying these matters.

3In distributive lattices the join-irreducible elements are exactly the join-prime ones
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In fact, the Galois construction used in the non-distributive case does specialize correctly in the distributive

and Boolean cases. In the distributive case, for each x ∈ X in the frame, we have ↑ x in the complex

algebra. By using the Galois-stable sets construction we would have R
(
({x})R

)
in the complex algebra as

representative of x ∈ X.

Corollaries 2.18 and 2.19 in [Gehrke 2006] link the standard presentation of Kripke frames, in the Boolean

and distributive settings, with the generalized two-sorted presentations (polarities). Given a Kripke frame

with poset (X,≤) as universe, there is a corresponding polarity-frame F = (X,X,�) whose complex algebra

G (F) is -as expected- a complete distributive lattice.

If R is ≤ then R
(
({x})R

)
is a downset for all x ∈ X. [Gehrke 2006] uses � as the relation R of the polarity

(xRy i� x � y), so for a subset Z ⊆ X we have (in what follows x is assumed to range over the set X and y

is assumed to range over the set Y ):

(Z)
R

= {y|∀z (z ∈ Z ⇒ zRy)}
= {y|∀z (z ∈ Z ⇒ z � y)}
= {y|∀z (z ∈ Z ⇒ z /∈↑ y)}
= {y|∀z (z ∈ Z ⇒ z ∈ (↑ y)c)}
= {y|∀z (z ∈ Z ⇒ y ∈ (↓ z)c)}
=

⋂
z∈Z

(↓ z)c

=

( ⋃
z∈Z
↓ z
)c

and then we have (with B =

( ⋃
z∈Z
↓ z
)c

):

R
(
(Z)

R
)

=

{
x|∀y

(
y ∈

( ⋃
z∈Z
↓ z
)c
⇒ xRy

)}
= {x|∀y (y ∈ B ⇒ x � y)}
= {x|∀y (y ∈ B ⇒ y /∈↓ x)}
= {x|∀y (y ∈ B ⇒ y ∈ (↓ x)c)}
= {x|∀y (y ∈ B ⇒ x ∈ (↑ y)c)}
=

⋂
y∈B

(↑ y)c

=

( ⋃
y∈B
↑ y

)c
On the particular case in which Z = {x} for some x ∈ X, this reduces to:

({x})R = (↓ x)c

and then

R
(
({x})R

)
=

⋂
y∈(↓x)c

(↑ y)c =

 ⋃
y∈(↓x)c

↑ y

c

=

⋃
y�x

↑ y

c

Now let us compare R
(
({x})R

)
to ↓ x. Clearly, ↓ x ⊆

( ⋃
y�x
↑ y

)c
. Now s ∈

( ⋃
y�x
↑ y

)c
implies s /∈

⋃
y�x
↑ y

implies y � x⇒ y � s implies y ≤ s⇒ y ≤ x. Now by substitution (y = s) we obtain s ≤ s⇒ s ≤ x which

implies s ∈↓ x. Thus ↓ x ⊇

( ⋃
y�x
↑ y

)c
and R

(
({x})R

)
= ↓ x.
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Remark 108. Observe that while

( ⋃
y∈(↓x)c

↑ y

)c
is a≤-downset, it is also anR-upset given that xRy i� x � y.

Thus, the representation of worlds in the lattice of Galois-stable sets coincides with their representations in

the standard complex algebra formed by taking the lattice of upsets of the universe of ordered Kripke frame.

Now let us check the Boolean case. There 6= is used as the relation R of the polarity (xRy i� x 6= y), so for

a subset Z ⊆ X we have (in what follows x is assumed to range over the set X and y is assumed to range

over the set Y ):

(Z)
R

= {y|∀z (z ∈ Z ⇒ zRy)}
= {y|∀z (z ∈ Z ⇒ z 6= y)}
= (Z)

c

and then we have:

R
(
(Z)

R
)

= {x|∀y (y ∈ (Z)
c ⇒ xRy)}

= {x|∀y (y ∈ (Z)
c ⇒ x 6= y)}

= ((Z)
c
)
c
= Z

Clearly, we obtain the same representation of each x ∈ X in the Galois-stable lattice than with the usual

powerset construction: the singleton {x} = R
(
({x})R

)
.

5.1.4. Retrieving the satisfaction relation from the interpretation function: non-distributive

case. The interpretants of a formula ϕ is a set of worlds in classical modal logic, an upset of worlds in dis-

tributive modal logic and a pair composed of an upset of worlds and a downset of co-worlds in non-distributive

modal logic. In this last setting, accordingly, we get a two-sorted satisfaction: the usual satisfaction relation

and a co-satisfaction relation.

5.1.4.1. Preliminaries: the duals of modal operations. As preliminary for the dualization of interpretation,

we will here treat the dualization of modal operations. The �rst operation to be treated will be taken as an

opportunity to illustrate correspondence method in more detail, details which will be mostly omitted in the

remaining cases. We start with the unary diamond. For the sake of generality we will use three complex

algebras C1,C2 and C3, even though we are just interested in the particular case where C1 = C2 = C3 .

Let ♦ :

C1 −→ C2

u 7−→ ♦u
then the relational dual has the shape R♦ ⊆ C2 × C1, or more precisely R♦ ⊆

M∞(C2) × J∞(C1) as it only covers sets of generators. Both C1 and C2 are perfect, which means that we

have a set of generators for each. We know ♦ (and thus each of its values) because the algebras over which it

operates are given. However, when we are interested in dualization to the frame side, the general de�nition

of ♦ which is built upon all elements of C1 (for the inputs) and all elements of C2 (for the values) needs

to be couched exclusively in terms of generators, because these are precisely the only elements that travel

through dualization. We have two sets of generators, the completely join irreducibles and the completely

meet irreducibles. We can represent any element in terms of either set as follows.

(1) for any u ∈ C1 we have u =
∧
{y1|y1 ∈M∞(C1) and u ≤ y1} =

∨
{x1|x1 ∈ J∞(C1) and u ≥ x1}.

(2) for any ♦u ∈ C2 we have ♦u =
∧
{y2|y2 ∈M∞(C2) and ♦u ≤ y2} =

∨
{x2|x2 ∈ J∞(C2) and ♦u ≥ x2}.

Therefore, by 1, ♦u = ♦
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1}, and we choose the representation in terms of the

join of lower generators, because ♦ is join preserving, which allows us to write

♦u = ♦
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} =

∨
{♦x1|x1 ∈ J∞(C1) and u ≥ x1}. This reduces the problem

of knowing where an arbitrary element of C1 is mapped to the problem of knowing where the generators

below it are mapped. There is no guarantee that for a given generator x1 the value ♦x1 will still be a
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generator in C2, however. Therefore we need to use 2. to approximate this value ♦x1 in terms of genera-

tors in C2. Such approximation provides us with the condition associated to the relational dual of ♦: since

♦x1 =
∧
{y2|y2 ∈M∞(C2) and ♦x1 ≤ y2} then:4

(5.1.2) y2R♦x1 i� ♦x1 ≤ y2

Similarly we let / :

C1 −→ C2

u 7−→ /u
and the relational dual has the shape R/ ⊆ M∞(C2) × M∞(C1).

For an arbitrary element u ∈ C1, /u = /
∧
{y1|y1 ∈M∞(C1) and u ≤ y1}, and we choose the repre-

sentation in terms of the meet of upper generators, because / turns meets into joins, which gives us

/u =
∨
{/y1|y1 ∈M∞(C1) and u ≤ y1}. As before, there is no guarantee that for a given generator y1

the value /y1 will still be a generator in C2. Therefore we need to approximate this value /y1 in terms of

generators in C2. Such approximation provides us with the condition associated to the relational dual of /:

since /y1 =
∧
{y2|y2 ∈M∞(C2) and / y1 ≤ y2} then:

(5.1.3) y2R/y1 i� / y1 ≤ y2

Given� :

C1 −→ C2

u 7−→ �u
the relational dual has the shapeR� ⊆ J∞(C2)×M∞(C1). For an arbitrary element

u ∈ C1, �u = �
∧
{y1|y1 ∈M∞(C1) and u ≤ y1}, and we choose the representation in terms of the meet of

upper generators, because � is meet preserving, which leads to �u =
∧
{�y1|y1 ∈M∞(C1) and u ≤ y1}. For

a given generator y1 , we approximate �y1 in terms of generators in C2 as follows:

�y1 =
∨
{x2|x2 ∈ J∞(C2) and �y1 ≥ x2}. This gives us the condition:

(5.1.4) x2R�y1 i� x2 ≤ �y1

Taking . :

C1 −→ C2

u 7−→ .u
as given, the relational dual has the shape R. ⊆ J∞(C2)× J∞(C1).

For an arbitrary element u ∈ C1, .u = .
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1}, and we choose the representation

in terms of the join of lower generators, because . turns joins into meets, property used to obtain .u =∧
{.x1|x1 ∈ J∞(C1) and u ≥ x1}. Again, for a given generator x1 we approximate the value .x1 as follows:

.x1 =
∨
{x2|x2 ∈ J∞(C2) and . x1 ≥ x2}, then:

4Notice that we choose R♦ ⊆ M∞(C2)× J∞(C1), but we could have equivalently chosen R♦ ⊆ J∞(C2)× J∞(C1) and taken
♦x1 ≥ x2 as the condition associated to R♦. The reason for which we made such choice (R♦ ⊆ −×J∞(C1)) is because we have
chosen to represent an arbitrary element of C1 as the join of generator below (instead of the set of generators above), choice
motivated by the property of ♦ to preserve joins. We can thus see the chain of dependencies in the choices being made: �rst we
see whether the operation in the algebra to be dualized is meet or join-preserving, then we choose a representation of arbitrary
elements in the algebra as joins, if it was join preserving, or meets if it was meet-preserving. Finally, these C1 -generators are
mapped by ♦ to C2, where these values need once more to be approximated in terms of generators of C2 as we have no longer the
guarantee that they are generators themselves. Finally we choose to represent R♦ as a relation from upper (or lower) generators
to bottom generators, if arbitrary C1-elements were choosen to be represented in terms of bottom generators and otherwise
if represented in terms of upper generators. Thus, the way to represent R♦ is dictated by our choice on how to represent or
approximate our arbitrary elements of C1 (from above or from below), dictated in turn by the preservation properties of the
operation treated.
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(5.1.5) x2R.x1 i� x2 ≤ .x1

We know proceed with the binary diamond, better known as fusion. Let ◦ :

(C1 × C2) −→ C3

(u, v) 7−→ u ◦ v
then its

dual is the corresponding relation R◦ ⊆ C3 × (C1 × C2) where the value of the operation will be taken as

�rst argument of the relation. The pair which makes up the input of the operation is taken as a unit and thus

the sequence is not altered when representing the relational dual. As before, all C1,C2 and C3 are perfect,

which means both have a set of generators for each.

(1) for any u ∈ C1 and any v ∈ C2 we have

(a) u =
∧
{y1|y1 ∈M∞(C1) and u ≤ y1} =

∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} and

(b) v =
∧
{y2|y2 ∈M∞(C2) and v ≤ y2} =

∨
{x2|x2 ∈ J∞(C2) and v ≥ x2}

(2) for any u◦v ∈ C3 we have u◦v =
∧
{y3|y3 ∈M∞(C3) & u ◦ v ≤ y3} =

∨
{x3|x3 ∈ J∞(C3) & u ◦ v ≥ x3}.

Therefore, by 1, u ◦ v =
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} ◦

∨
{x2|x2 ∈ J∞(C2) and v ≥ x2}, and we choose

the representation in terms of the join of lower generators, because ◦ is join preserving on both coordinates,

which allows us to write

u ◦ v =
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} ◦

∨
{x2|x2 ∈ J∞(C2) and v ≥ x2}

=
∨
{x1 ◦ x2|x1 ∈ J∞(C1) and x2 ∈ J∞(C2) and v ≥ x2 and u ≥ x1}

This reduces the problem of knowing where an arbitrary element (u, v) of C1×C2 is mapped to the problem

of knowing where the generators of each coordinate are mapped. There is no guarantee that for a given

pair of generators (x1, x2) that the value x1 ◦ x2 will still be a generator in C3. Therefore we need to use

2. to approximate this value x1 ◦ x2 in terms of generators in C3. Such approximation provides us with the

condition associated to the relational dual of ◦, since x1 ◦ x2 =
∧
{y3|y3 ∈M∞(C3) and x1 ◦ x2 ≤ y3} then:

(5.1.6) R◦ (y3, x1, x2) i� x1 ◦ x2 ≤ y3

We continue with implication. Given → :


(
C∂1 × C2

)
−→ C3

(u, v) 7−→ u→ v
the corresponding relation has the shape

R→ ⊆ C1×C3×C2. Because → is antitone on the �rst coordinate and monotone on the second, we �ip C1

order to simulate an operation which is monotone (in fact, meet-preserving) in both coordinates. As before,

all C1,C2 and C3 are perfect, which means both have a set of generators for each.

(1) for any u ∈ C1 and any v ∈ C2 we have

(a) u =
∧
{y1|y1 ∈M∞(C1) and u ≤ y1} =

∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} and

(b) v =
∧
{y2|y2 ∈M∞(C2) and v ≤ y2} =

∨
{x2|x2 ∈ J∞(C2) and v ≥ x2}

(2) for any u→ v ∈ C3 : u→ v =
∧
{y3|y3 ∈M∞(C3) & u→ v ≤ y3} =

∨
{x3|x3 ∈ J∞(C3) & x3 ≤ u→ v}.

Therefore, by 1, u → v =
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} →

∧
{y2|y2 ∈M∞(C2) and v ≤ y2}, and we

choose the representation in terms of the join of lower generators and the meet of upper generators, because

→ :
(
C∂1 × C2

)
−→ C3 is meet preserving on both coordinates (with the �rst coordinate turning into a meet

�rst by the order �ip, as it is a join in C1 but a meet in C∂1 ), which allows us to push → inside.

u→ v =
∨
{x1|x1 ∈ J∞(C1) and u ≥ x1} →

∧
{y2|y2 ∈M∞(C2) and v ≤ y2}

=
∨
{x1 → y2|x1 ∈ J∞(C1) and y2 ∈M∞(C2) and u ≥ x1 and v ≤ y2}
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This reduces the problem of knowing where an arbitrary element (u, v) of C∂1 ×C2 is mapped to the problem

of knowing where the generators of each coordinate are mapped. There is no guarantee that for a given pair

of generators (x1, y2) that the value x1 → y2 will still be a generator in C3. Therefore we need to use 2.

to approximate this value x1 → y2 in terms of generators in C3. Such approximation provides us with the

condition associated to the relational dual of →, since x1 → y2 =
∨
{x3|x3 ∈ J∞(C3) and x3 ≤ x1 → y2}

then:

(5.1.7) R◦ (x3, x1, y2) i� R→ (x1, x3, y2) i� x3 ≤ x1 → y2

We continue with coimplication. Let ← :


(
C2 × C∂1

)
−→ C3

(u, v) 7−→ u← v
then its dual is the corresponding relation

R← ⊆ C3×(C2 × C1). Because← is antitone on the second coordinate and monotone on the �rst, we �ip C1

order to simulate an operation which is monotone (in fact, meet-preserving) in both coordinates. The value

of arbitrary elements are represented in terms of the join of lower generators and meet of upper generators,

because ← :
(
C2 × C∂1

)
−→ C3 is join preserving on both coordinates (with the second coordinate turning

into a join �rst by the order �ip, as it is a meet in C1 but a join in C∂1 ), which allows us to push ← inside.

u← v =
∧
{y2|y2 ∈M∞(C2) and u ≤ y2} ←

∨
{x1|x1 ∈ J∞(C1) and v ≥ x1}

=
∨
{y2 ← x1|x1 ∈ J∞(C1) and y2 ∈M∞(C2) and u ≤ y2 and v ≥ x1}

There is no guarantee that for a given pair of generators (y2, x1) that the value y2 ← x1 will still be a generator

in C3. Therefore we approximate y2 ← x1 in terms of generators in C3. Such approximation provides us with

the condition associated to the relational dual of←, since y2 ← x1 =
∨
{x3|x3 ∈ J∞(C3) and x3 ≤ y2 ← x1}

then:

(5.1.8) R◦ (x3, y2, x1) i� R← (x3, x1, y2) i� x3 ≤ y2 ← x1

Remark 109. As the complex algebra F+ is given, so are all the operations on it. We can thus rely on

them to de�ne the corresponding relations on the frame F. This is what we just did with the correspondence

equivalences from 5.1.2 to 5.1.8. Now we can build upon them the dual of the algebraic interpretation, which

will be done in the next section.

5.1.4.2. Dualization of interpretation. The standard habit grown in the classical setting is to dualize

from frames to algebras, but when reaching a su�ciently general setting, as the non-distributive one, it is no

longer clear how will the relational semantics behave. On the algebraic side, however, the semantics is still

reasonably transparent since the operations and the building blocks involved match the general pattern found

in the Boolean and distributive settings and thus the overall jump in complexity is not a radical one. For

this reason, the natural method to approach the subject is to stand on the algebraic side where the terrain

is fairly familiar and then dualize to the relational side, hoping to reach a more manageable understanding

on the new relational semantics.

This dualization works through correspondence theory: in the algebra side properties are captured by equa-

tions in the Boolean case (or quasi-equations in the non-Boolean generalization). Such (quasi-)equations then

correspond to a �rst order formula in the language of frames. This �rst order formula provides the conditions

of satisfaction of the associated modal formula. Such method is what will be described here, but in a nutshell

the method is: de�ne a mapping from propositions into the complex algebra F+ and then dualize.
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Remark 110. We will have to deal with satisfaction and co-satisfaction, however it turns out that these

two parts of the dual of interpretation are not symmetric. The operations that are left adjoints will have

co-satisfaction as primitive and satisfaction as derived, while operations that are right adjoints will have

satisfaction as primitive and co-satisfaction as derived.

Let us now apply the same trick used in section 5.1.2. to the non-distributive setting to obtain the frame

satisfaction relation from the interpretation on the algebra side. In this setting, the interpretation V can be

systematically dualized into a tuple of relations (
V ,�V ) with 
V⊆ J∞ (F+)×Fm and �V⊆M∞ (F+)×Fm.

We will have to modify slightly our approach, however, because by dropping distributivity the completely

join-irreducible elements are no longer guaranteed to be completely join-prime. We used this crucial property

in two steps (a & b) of our distributive variant of the proof. Fortunately, by using the approximation from

above (i.e. using M∞ (F+)) instead of the one from below, this gap can be circumvented.

As expected, for the basic case, for every x ∈ J∞ (F+) and every y ∈ M∞ (F+) and every p ∈ AtProp we

de�ne:5

(5.1.9) x 
 p i� x ≤ V (p)

(5.1.10) y � p i� y ≥ V (p)

Now we will treat each inductive step to retrieve the (co-)satisfaction conditions for each modal operator.

We will make use of the following facts:

(1) F+ =
〈
G (F) ,∧,∨,∅, X,♦F+

,�F+

, .F
+

, /F
+

, ◦F+

,→F+

,←F+
〉
is a perfect (substructural-modal) lat-

tice6, where G (F) is the family of Galois-stable sets of the RS-polarity (X,Y,R) which constitutes

F 's universe, and ∧ =
⋂

but ∨ = cR ◦
⋃

(cf. Def. 86).

(2) by 1, each element in G (F) is representable as the join of all join-irreducible elements below it or

equivalently as the meet of meet-irreducibles above it.

(3) J∞ (F+) = {cR (x) | x ∈ X} and M∞ (F+) = {lR (y) | y ∈ Y } hence in (4.2.2) x on the algebraic

side is the downset cR (x).7

(4) for all S ∈ F+; ♦F+

(S) = R−1♦ [S] where R♦ is the accessibility relation that interprets ♦ on the

frame F; �F+

(S) =
(
R−1� [Sc]

)c
where R� is the accessibility relation that interprets � on the

frame F; /F+

(S) = R−1/ [Sc] where R/ is the accessibility relation that interprets / on the frame F;
.F

+

(S) =
(
R−1. [S]

)c
where R. is the accessibility relation that interprets . on the frame F.

(5) V (ψ) ∈ F+ for all ψ.

5Throughout what remains of 4.2.4. we will assume that all variables x range over J∞(F+), and all variables y range over
M∞(F+)
6Therefore, the following holds for any S, S′ ⊆ G (F):
• ♦ (

∨
S) =

∨
(♦S) =

∨
{♦u |u ∈ S}

• � (
∧
S) =

∧
(�S) =

∧
{�u |u ∈ S}

• . (
∨
S) =

∧
(.S) =

∧
{.u |u ∈ S}

• / (
∧
S) =

∨
(/S) =

∨
{/u |u ∈ S}

•
∨
S ◦

∨
S′ =

∨
(S ◦ S′) =

∨
{s ◦ s′ | s ∈ S& s′ ∈ S′}

•
∨
S →

∧
S′ =

∨
(S → S′) =

∨
{s→ s′ | s ∈ S& s′ ∈ S′}

•
∧
S ←

∨
S′ =

∨
(S ← S′) =

∨
{s← s′ | s ∈ S& s′ ∈ S′}

7In fact, X join generates F+ and Y meet generates F+, as can be checked in [Gool 2009]'s Proposition 2.2.3. or in
[Gehrke 2006] Proposition 2.10.
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(6) by 1, ♦F+

is completely join-preserving, �F+

is completely meet-preserving, .F
+

is completely join-

reversing and /F
+

is completely meet-reversing.

(7) Since by assumption V is a homomorphism, then V (♦ϕ) = ♦F+

V (ϕ), V (�ϕ) = �F+

V (ϕ),

V (.ϕ) = .F
+

V (ϕ) and V (/ϕ) = /F
+

V (ϕ). Also, V (ϕ ◦ ψ) = V (ϕ) ◦F+

V (ψ), V (ϕ→ ψ) =

V (ϕ)→F+

V (ψ) and V (ϕ← ψ) = V (ϕ)←F+

V (ψ).

Let us start with the inductive step for the satisfaction of ♦.

Inductive step for the satisfaction of ♦:

x 
 ♦ψ i� x ≤ V (♦ψ)

Then we have:

x 
 ♦ψ i� x ≤ V (♦ψ) i� x ≤
∧
{y ∈M∞(F+) | V (♦ψ) ≤ y}

i� ∀y(V (♦ψ) ≤ y ⇒ x ≤ y) (a)

i� ∀y(
∨
{♦F+

x′ | x′ ∈ J∞(F+) and x′ ≤ V (ψ)} ≤ y ⇒ x ≤ y) (b)

i� ∀y
[
∀x′
[
x′ ≤ V (ψ) ⇒ ♦F+

x′ ≤ y
]
⇒ x ≤ y

]
(c)

i� ∀y[∀x′[x′ 
 ψ ⇒ yR♦x
′] ⇒ x ≤ y] (d)

We expand the equivalences as follows. The �rst added equivalence relies on the fact 2., namely, that

our complex algebra F+ is a perfect lattice and thus has two sets of generators, M∞(F+) and J∞(F+).

In fact that is precisely the reason why we use M∞(F+): because of its generation properties, while the

additional fact that these elements are completely meet irreducibles is not used at all. Notice that since we

have established that all variables x range over J∞(F+), and all variables y range over M∞(F+), we can

simply omit the explicit mention of this fact for a shorter notation. So we have V (♦ψ) =
∧
{y ∈ M∞(F+) |

V (♦ψ) ≤ y} and we may abbreviate as
∧
{y | V (♦ψ) ≤ y}. Then (a) stems from order-theoretic properties

of meets. For (b) we observe that the equality V (♦ψ) = ♦F+

V (ψ) = ♦F+ ∨ {x′ ∈ J∞ (F+) | x′ ≤ V (ψ)} =∨{
♦F+

x′ | x′ ∈ J∞ (F+) and x′ ≤ V (ψ)
}
is still valid in the non-distributive setting, since it only uses the

fact that ♦F+

is completely join-preserving and that V is a homomorphism. We obtain (c) by order-theoretic

properties of joins and notational abbreviation. By IH (5.1.9) we have x′ ≤ V (ψ) i� x′ 
 ψ and (5.1.2) gives

us the remaining step to get (d)

Inductive step for the co-satisfaction of ♦:

y � ♦ψ i� y ≥ V (♦ψ)

The case y ≥ V (♦ψ) has already been developed above (a)-(d) as the antecedent of a conditional. Thus we

have

y ≥ V (♦ψ) i� ∀x′[x′ 
 ψ ⇒ yR♦x
′]

Remark 111. We have started the diamond treatment by its satisfaction relation to parallel the distributive

setting, but notice that it is the co-satisfaction relation that is primitive in this case while the satisfaction

is derived from it. Indeed, the condition to satisfy a diamond should be written as x ≤ V (♦ψ) i�∀y[y �
♦ψ ⇒ x ≤ y] where one can clearly see the dependency.

Now we continue with �, but this time we start with the main component of the dual of �-interpretation

(satisfaction) and leave the derived component (�-co-satisfaction) for afterwards.



5.1. INTERPRETATION DUALIZATION 78

Inductive step for the satisfaction of �:

x 
 �ψ i� x ≤ V (�ψ)

Then we have:

x 
 �ψ i� x ≤ V (�ψ) i� x ≤
∧
{�F+

y|y ∈M∞(F+) and V (ψ) ≤ y}
i� ∀y(V (ψ) ≤ y ⇒ x ≤ �F+

y) (a)

i� ∀y(y � ψ ⇒ xR�y) (b)

The �rst equivalence added relies on the representation of V (ψ) as meet of upper generators, giving V (ψ) =∧
{y|y ∈ M∞(F+) and V (ψ) ≤ y}, and since V is an homomorphism and � preserves all meets, then:

V (�ψ) = �F+

V (ψ) = �F+ ∧{y|y ∈ M∞(F+) and V (ψ) ≤ y} =
∧
{�F+

y|y ∈ M∞(F+) and V (ψ) ≤ y} =∧
{�F+

y|V (ψ) ≤ y} with the last equality amounting to a notational abbreviation, which we make e�ective

in the next step. (a) stems from order-theoretic properties of meets, and (b) relies on the IH (5.1.10) for the

antecedent and on (5.1.4) for the consequent.

Inductive step for the co-satisfaction of �:

y � �ψ i� y ≥ V (�ψ)

Then we have:

y � �ψ i� y ≥ V (�ψ) i� y ≥
∨
{x ∈ J∞(F+) | V (�ψ) ≥ x}

i� ∀x(V (�ψ) ≥ x ⇒ x ≤ y) (a)

i� ∀x(x 
 �ψ ⇒ x ≤ y) (b)

The �rst equivalence added relies on the representation of V (�ψ) as join of lower generators, then (a) stems

from order-theoretic properties of joins and notational abbreviation (x is assumed to be lower generator),

and �nally (b) relies on the satisfaction relation for � which was just de�ned above.

We continue with /, starting with the main component of the dual of /-interpretation (co-satisfaction) while

the derived component (/-satisfaction) is left for afterwards.

Inductive step for the co-satisfaction of /:

y � /ψ i� y ≥ V (/ψ)

Then we have: y � /ψ i� ∀y′ [(y′ � ψ)⇒ yR/y
′]

y � /ψ i� y ≥ V (/ψ) i� y ≥
∨
{/F+

y′|y′ ∈M∞(F+) and V (ψ) ≤ y′}
i� ∀y′

[
V (ψ) ≤ y′ ⇒ /F

+

y′ ≤ y
]

(a)

i� ∀y′ [y′ � ψ ⇒ yR/y
′] (b)

The argument proceeds as before, just recall that / turns meets into joins, thus: V (/ψ) = /F
+

V (ψ) =

/F
+ ∧{y|y ∈ M∞(F+) and V (ψ) ≤ y} =

∨
{/F+

y|y ∈ M∞(F+) and V (ψ) ≤ y} =
∧
{/F+

y|V (ψ) ≤ y} . Last
line uses (5.1.10) as IH for the antecedent and (5.1.3) for the consequent.

Inductive step for the satisfaction of /:

x 
 /ψ i� x ≤ V (/ψ)

Then we have:
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x 
 /ψ i� x ≤ V (/ψ) i� x ≤
∧
{y′|y′ ∈M∞(F+) and V (/ψ) ≤ y′}

i� ∀y′ [V (/ψ) ≤ y′ ⇒ x ≤ y′]
i� ∀y′ [y′ � /ψ ⇒ x ≤ y′]

The reader may notice how the entire previous unraveling of co-satisfaction conditions could be plugged in

as equivalent of y′ � /ψ in the antecedent of the last line. Now we continue with ., the main component of

the dual of .-interpretation being the satisfaction relation while co-satisfaction is derived.

Inductive step for the satisfaction of .:

x 
 .ψ i� x ≤ V (.ψ)

Then we have:

x 
 .ψ i� x ≤ V (.ψ) i� x ≤
∧
{.F+

x′|x′ ∈ J∞(F+) and V (ψ) ≥ x′}
i� ∀x′(V (ψ) ≥ x′ ⇒ x ≤ .F+

x′)

i� ∀x′ [x′ 
 ψ ⇒ xR.x
′]

For the last line we use (5.1.9) as IH for the antecedent and (5.1.5) for the consequent.

Inductive step for the co-satisfaction of .:

y � .ψ i� y ≥ V (.ψ)

Then we have:

y � .ψ i� y ≥ V (.ψ) i� y ≥
∨
{x′ ∈ J∞(F+) | V (.ψ) ≥ x′}

i� ∀x′(V (.ψ) ≥ x′ ⇒ x′ ≤ y)
i� ∀x′ [x′ 
 .ψ ⇒ y ≥ x′]

The conditions of satisfaction for . have been established previously so the antecedent of the conditional in

the last line can be unraveled properly. Now we continue with ◦, the main component being the co-satisfaction

relation, but to parallel the unary diamond we will start with the satisfaction conditions.

Inductive step for the satisfaction of ◦:

x 
 ϕ ◦ ψ i� x ≤ V (ϕ ◦ ψ)

x 
 ϕ ◦ ψ i� x ≤ V (ϕ ◦ ψ) i� x ≤
∧
{y | y ∈M∞(F+) and V (ϕ ◦ ψ) ≤ y}

i� ∀y [V (ϕ ◦ ψ) ≤ y ⇒ x ≤ y] (a)

i� ∀y
[∨
{x1 ◦F

+

x2 | x1 ≤ V (ϕ) and x2 ≤ V (ψ)} ≤ y ⇒ x ≤ y
]

(b)

i� ∀y
[
∀x1, x2

[
(x1 ≤ V (ϕ) and x2 ≤ V (ψ))⇒ x1 ◦F

+

x2 ≤ y
]
⇒ x ≤ y

]
(c)

i� ∀y
[
∀x1, x2

[
(x1 
 ϕ and x2 
 ψ)⇒ x1 ◦F

+

x2 ≤ y
]
⇒ x ≤ y

]
(d)

i� ∀y [∀x1, x2 [(x1 
 ϕ and x2 
 ψ)⇒ R◦ (y, x1, x2)]⇒ x ≤ y] (e)

This is entirely analogue to the ♦ case above. Just notice that V is an homomorphism and thus V (ϕ ◦ ψ) =
V (ϕ)◦F+

V (ψ) , and both V (ϕ) and V (ψ) lie in the algebra, which is perfect. This allows us to represent V (ϕ)

and V (ψ) in terms of generators, either from above or from below. In this case, since ◦F+

is join preserving

in both coordinates, the representation as a join is the most convenient. Thus, V (ϕ ◦ψ) = V (ϕ) ◦F+

V (ψ) =

(
∨
{x1 | x1 ∈ J∞(F+) and V (ϕ) ≥ x1}) ◦F

+

(
∨
{x2 | x2 ∈ J∞(F+) and V (ψ) ≥ x2}) =

∨
{x1 ◦F

+

x2 | V (ϕ) ≥
x1 and V (ψ) ≥ x2}(a) simply translates the order theoretic properties of meets (x is below a meet i� it is

below all its elements), and (c) does the same but this time order-dually (y is above a join i� it is above all
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its elements). (d) follows from the induction hypothesis and (e) relies on the dualization to the frame side of

the function ◦F+

as developed in (5.1.6).

Inductive step for the co-satisfaction of ◦:

y � ϕ ◦ ψ i� y ≥ V (ϕ ◦ ψ)

The case y ≥ V (ϕ◦ψ) was already developed above (a)-(e) as the antecedent of a conditional. Thus we have:

y � ϕ ◦ ψ i� ∀x1, x2 [(x1 
 ϕ and x2 
 ψ)⇒ R◦ (y, x1, x2)]

Inductive step for the satisfaction of →:

x 
 ϕ→ ψ i� x ≤ V (ϕ→ ψ)

x 
 ϕ→ ψ i� x ≤ V (ϕ→ ψ) i� x ≤
∧{

x′ →F+

y |x′ ≤ V (ϕ) and y ≥ V (ψ)
}

i� ∀x′, y
[
[x′ ≤ V (ϕ) and y ≥ V (ψ)]⇒ x ≤ x′ →F+

y
]

(a)

i� ∀x′, y [[x′ 
 ϕ and y � ψ]⇒ R→ (x′, x, y)] (b)

First observe that:

V (ϕ→ ψ) = V (ϕ)
∂ →F+

V (ψ) =
∧
{x′ | x′ ∈ J∞(F+) and x′ ≤ V (ϕ)} →F+ ∧{y | y ∈ M∞(F+) and y ≥

V (ψ)} =
∧{

x′ →F+

y |x′ ≤ V (ϕ) and y ≥ V (ψ)
}

Then, the last lines uses the IH on the antecedent and relies on (5.1.7) for the consequent.

Inductive step for the co-satisfaction of →:

y � ϕ→ ψ i� y ≥ V (ϕ→ ψ)

Then we have:

y � ϕ→ ψ i� y ≥ V (ϕ→ ψ) i� y ≥
∨
{x | x ∈ J∞(F+) and x ≤ V (ϕ→ ψ)}

i� ∀x [x ≤ V (ϕ→ ψ)⇒ x ≤ y]
i� ∀x [x 
 ϕ→ ψ ⇒ x ≤ y]

Where x 
 ϕ → ψ in the last line can be replaced by the associated satisfaction conditions as established

above.

Inductive step for the satisfaction of ←:

x 
 ψ ← ϕ i� x ≤ V (ψ ← ϕ)

x 
 ψ ← ϕ i� x ≤ V (ψ ← ϕ) i� x ≤
∧{

y ←F+

x′ |x′ ≤ V (ϕ) and y ≥ V (ψ)
}

i� ∀x′, y
[
[x′ ≤ V (ϕ) and y ≥ V (ψ)]⇒ x ≤ y ←F+

x′
]

i� ∀x′, y [[x′ 
 ϕ and y � ψ]⇒ R← (x, x′, y)]

First observe that:

V (ψ ← ϕ) = V (ψ) ←F+

V (ϕ)
∂
=
∧
{y | y ∈ M∞(F+) and y ≥ V (ψ)} ←F+ ∧{x′ | x′ ∈ J∞(F+) and x′ ≤

V (ϕ)} =
∧{

y ←F+

x′ |x′ ≤ V (ϕ) and y ≥ V (ψ)
}

Then, the last lines uses the IH on the antecedent and relies on (5.1.8) for the consequent.
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Inductive step for the co-satisfaction of ←:

y � ψ ← ϕ i� y ≥ V (ψ ← ϕ)

Then we have:

y � ψ ← ϕ i� y ≥ V (ψ ← ϕ) i� y ≥
∨
{x | x ∈ J∞(F+) and x ≤ V (ψ ← ϕ)}

i� ∀x [x ≤ V (ψ ← ϕ)⇒ x ≤ y]
i� ∀x [x 
 ψ ← ϕ⇒ x ≤ y]

Where x 
 ψ ← ϕ in the last line can be replaced by the associated satisfaction conditions as established

above.

Given the previous unraveling of satisfaction conditions, for any given interpretation V : AtProp −→
G ((X,Y,≤)) into the complex algebra F+, and withM = (F, V ) and F = ((X,Y,≤) , R�, R♦, R., R/, R◦, R→, R←),

we can de�ne the associated two-sorted relational semantics by induction as follows: for x ∈ X, y ∈ Y and

p ∈ AtProp we let

M, x 
 p i� x ≤ V (p)

M, y � p i� y ≥ V (p)
. For ϕ,ψ ∈ Form (AtProp)

(5.1.11) M, y �V ♦ψ i� ∀x′[x′ 
V ψ ⇒ yR♦x
′]

(5.1.12) M, x 
V ♦ψ i� ∀y[y �V ♦ψ ⇒ x ≤ y].

(5.1.13) M, x 
V �ψ i� ∀y[y �V ψ ⇒ xR�y].

(5.1.14) M, y �V �ψ i� ∀x[x 
V �ψ ⇒ x ≤ y].

(5.1.15) M, y �V Cψ i� ∀y′[y′ � ψ ⇒ yRCy
′].

(5.1.16) M, x 
V Cψ i� ∀y[y �V Cψ ⇒ x ≤ y].

(5.1.17) M, x 
V Bψ i� ∀x′[x′ 
V ψ ⇒ xRBx
′].

(5.1.18) M, y �V Bψ i� ∀x[x 
V Bψ ⇒ x ≤ y].

(5.1.19) M, y �V ϕ ◦ ψ i� ∀x1, x2 [(x1 
 ϕ and x2 
 ψ)⇒ R◦ (y, x1, x2)]
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(5.1.20) M, x 
V ϕ ◦ ψ i� ∀y [y �V ϕ ◦ ψ ⇒ x ≤ y]

(5.1.21) M, x 
V ϕ→ ψ i� ∀x′, y [[x′ 
V ϕ and y �V ψ]⇒ R→ (x′, x, y)]

(5.1.22) M, y �V ϕ→ ψ i� ∀x [x 
V ϕ→ ψ ⇒ x ≤ y]

(5.1.23) M, x 
V ψ ← ϕ i� ∀x′, y [[x′ 
V ϕ and y �V ψ]⇒ R← (x, x′, y)]

(5.1.24) M, y �V ψ ← ϕ i� ∀x [x 
V ψ ← ϕ⇒ x ≤ y]

We now proceed to build the canonical model for non-distributive logic with modal/substructural signature

type.

5.2. Propositional substructural logic completeness on non-distributive setting

A model is a pair M = (F, V ) where F is a frame, V : AtProp −→ G ((X,Y,≤)) is an interpretation.

Our canonical model will be based on an RS-polarity (X,Y,≤) where the elements of X will be certain

theories Σ and the elements of Y will be certain co-theories ∆ (see claim 115 below). For every theory

Σ ∈ X and every co-theory ∆ ∈ Y we set Σ ≤ ∆ i� Σ ` ∆. The truth lemma now will have to treat both

satisfaction and co-satisfaction relations, and reducing them to the set-theoretic belong-to relation, in short

(
c,�c) =truth lemma (3,3).

Definition 112. Let Mc = (Fc, V c) be the canonical model for non-distributive substructural modal logic

(SML henceforth), based on the canonical frame Fc =
(
(X,Y,≤) , Rc�, Rc♦, Rc., Rc/, Rc◦, Rc→, Rc←

)
, where:

• X is the set of all optimal theories, i.e. X = {Σ | 〈Σ,∆〉 is a maximal �lter-ideal pair for some ∆};
• Y is the set of all optimal co-theories, i.e. Y = {∆ | 〈Σ,∆〉 is a maximal �lter-ideal for some Σ};
• ≤⊆ X × Y , is s.t. Σ ≤ ∆ i� Σ ∩∆ 6= ∅;
• The canonical relations Rc� , Rc♦ , Rc. ,R

c
/ and R

c
◦ are de�ned as follows:

� Rc♦ ⊆ Y ×X, s.t. ∆Rc♦Σ i� ♦[Σ] ∩∆ 6= ∅;
� Rc� ⊆ X × Y , s.t. ΣRc�∆ i� �[∆] ∩ Σ 6= ∅;
� RcC ⊆ Y × Y , s.t. ∆RcC∆

′ i� /[∆′] ∩∆ 6= ∅;
� RcB ⊆ X ×X, s.t. ΣRcBΣ

′ i� .[Σ′] ∩ Σ 6= ∅;
� Rc◦ ⊆ Y ×X ×X, s.t. ∆Rc◦Σ,Σ

′ i� Σ ◦ Σ′ ∩∆ 6= ∅, with Σ ◦ Σ′ = {ϕ ◦ ψ|ϕ ∈ Σ& ψ ∈ Σ′}
• The canonical valuation V c : AtProp→ F+ is s.t. V c(p) :=

∨
{Σ | Σ ∈ X and p ∈ Σ} =

∧
{∆ | ∆ ∈

Y and p ∈ ∆}.

Claim 113. The equality
∨
{Σ | Σ ∈ X and p ∈ Σ} =

∧
{∆ | ∆ ∈ Y and p ∈ ∆} indeed holds.
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Proof. Let A = {Σ | Σ ∈ X and p ∈ Σ} and B = {∆ | ∆ ∈ Y and p ∈ ∆}. Clearly, for any Σ ∈ A and

any ∆ ∈ B we have Σ∩∆ 6= ∅ with p as witness. So Σ ≤ ∆ by de�nition. Thus, Au = B and Bl = A. Hence∨
A is the least element in B and

∧
B is the greatest element in A. Therefore

∨
A =

∧
B, as desired. �

Remark 114. Our de�nitions closely follow [Gehrke 2006] work. We have swapped Y coordinate on Rc◦

to look more alike the usual approach with diamond like interpretation. Likewise we omit Rc→ and Rc←

de�nitions as they are simply swappings of Rc◦. We refer the reader to [Gehrke 2006]:267-68 for the proofs

that the canonical frame is of the right kind (based on a polarity which is an RS-frame) and whose relations

are compatible (this is proven for Rc◦ but it is straightforward to see it carries over to unary modal relations).

Claim 115. Given 〈Σ,∆〉 a maximal pair, then Σ is a theory and ∆ a co-theory.

Proof. To show that Σ is a theory amounts to prove it is closed under derivability. So suppose that

Σ ` ϕ and assume towards a contradiction that ϕ /∈ Σ. Then Σ′ := Σ∪ {ϕ} is a proper extension of Σ. Now

observe that Σ ` ϕ implies C (Σ) = C (Σ′) -they have the same set of consequences-. Then Σ 0 ∆ implies

Σ′ 0 ∆. But this contradicts the assumption that 〈Σ,∆〉 is maximal. Therefore ϕ ∈ Σ. The proof that ∆ is

a co-theory is order-dual. �

The following lemma will need later on to create witness points. An optimal theory is a generalization of the

notion of prime theory (cf. de�nition 39), and simply states that the theory ful�lls the de�nition of �lter for

posets (de�nition 77). Co-theory is the dual generalization.

Lemma 116. If Σ is an optimal theory and ∆ is an optimal cotheory then

• �−1 [Σ] is an optimal theory and

• .−1 [Σ] an optimal cotheory.

• ♦−1 [∆] is an optimal cotheory and

• /−1 [∆] is an optimal theory.

• ∆1 = {χ′|χ′ ◦ ψ ∈ ∆} is an ideal (an optimal cotheory).

• ∆2 = {ψ′|∃χ′ (χ′ ∈ Σ&χ′ ◦ ψ′ ∈ ∆)} is an ideal (an optimal cotheory).

Remark 117. To prove such lemma we will need to consider the residual operations for all the unary modal

operations -fusion already has it own residuals-. So let �,�,J,I be the residual operations of �,♦, ., /

respectively. As [Gehrke 2006] points out, although �,♦, ., / are not generally stipulated to be residuated,

they become so in the canonical extension.

Proof. Suppose Σ is a theory. Then it is closed under derivability, i.e. if Σ ` ϕ then ϕ ∈ Σ, and it is

downdirected.

We show �−1 [Σ] is closed under derivability. So suppose �−1 [Σ] ` ψ. Then there are ϕ1, . . . , ϕn ∈ �−1 [Σ]

such that
n∧
i=1

ϕi ` ψ. But then �
n∧
i=1

ϕi ` �ψ and thus
n∧
i=1

�ϕi ` �ψ since � preserves meets. From

ϕ1, . . . , ϕn ∈ �−1 [Σ] it immediately follows that �ϕ1, . . . ,�ϕn ∈ Σ and hence Σ ` �ψ , with Σ being a

theory. Then �ψ ∈ Σ and thus ψ ∈ �−1 [Σ] . Since ψ was an arbitrary formula, we proved that �−1 [Σ] is

closed under derivability, i.e. it is a theory. It is downdirected: Suppose ϕ,ψ ∈ �−1 [Σ], then �ϕ,�ψ ∈ Σ

and since Σ is downdirected, then there is some β ∈ Σ with

β ` �ϕ

β ` �ψ
. Therefore

�β ` ϕ

�β ` ψ
with

�β ∈ �−1 [Σ], as � = �−1. Since ϕ,ψ were arbitrary, this shows that �−1 [Σ] is downdirected.

We show .−1 [Σ] is closed under inverse of derivability. Now suppose ψ ` .−1 [Σ]. Then there are ϕ1, . . . , ϕn ∈
.−1 [Σ] such that ψ `

n∨
i=1

ϕi. But then .
n∨
i=1

ϕi ` .ψ and thus
n∧
i=1

. ϕi ` .ψ since . turns joins into meets.
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From ϕ1, . . . , ϕn ∈ .−1 [Σ] it immediately follows that .ϕ1, . . . , .ϕn ∈ Σ and hence Σ ` .ψ, with Σ being

a theory. Then .ψ ∈ Σ and thus ψ ∈ .−1 [Σ] . Since ψ was an arbitrary formula, we proved that .−1 [Σ]

is closed under inverse of derivability, i.e. it is a cotheory. It is updirected: Suppose ϕ,ψ ∈ .−1 [Σ], then

.ϕ, .ψ ∈ Σ and since Σ is downdirected, then there is some β ∈ Σ with

β ` .ϕβ ` .ψ
. Therefore

ϕ `J β

ψ `J β

with J β ∈ .−1 [Σ], as J= .−1. Since ϕ,ψ were arbitrary, this shows that .−1 [Σ] is updirected.

Suppose ∆ is a co-theory. Then it is closed under inverse of derivability, i.e. if ϕ ` ∆ then ϕ ∈ ∆ and it is

updirected.

So suppose ψ ` ♦−1 [∆]. Then there are ϕ1, . . . , ϕn ∈ ♦−1 [∆] such that ψ `
n∨
i=1

ϕi. But then ♦ψ ` ♦
n∨
i=1

ϕi

and thus ♦ψ `
n∨
i=1

♦ϕi since ♦ preserves joins. From ϕ1, . . . , ϕn ∈ ♦−1 [∆] it immediately follows that

♦ϕ1, . . . ,♦ϕn ∈ ∆ and hence ♦ψ ` ∆ , with ∆ being a co-theory. Then ♦ψ ∈ ∆ and thus ψ ∈ ♦−1 [∆] .

Since ψ was an arbitrary formula, we proved that ♦−1 [∆] is closed under inverse of derivability, i.e. it is a

co-theory. It is updirected: Suppose ϕ,ψ ∈ ♦−1 [∆], then ♦ϕ,♦ψ ∈ ∆ and since ∆ is updirected, then there

is some β ∈ ∆ with

♦ϕ ` β

♦ψ ` β
. Therefore

ϕ ` �β

ψ ` �β
with �β ∈ ♦−1 [∆], as � = ♦−1. Since ϕ,ψ were

arbitrary, this shows that ♦−1 [∆] is updirected.

Now suppose /−1 [∆] ` ψ. Then there are ϕ1, . . . , ϕn ∈ /−1 [∆] such that
n∧
i=1

ϕi ` ψ. But then /ψ ` /
n∧
i=1

ϕi

and thus /ψ `
n∨
i=1

/ ϕi since / turns meets into joins. From ϕ1, . . . , ϕn ∈ /−1 [∆] it immediately follows that

/ϕ1, . . . , /ϕn ∈ ∆ and hence /ψ ` ∆ , with ∆ being a cotheory, i.e. closed under the inverse of derivability.

Then /ψ ∈ ∆ and thus ψ ∈ /−1 [∆] . Since ψ was an arbitrary formula, we proved that /−1 [∆] is closed

under derivability, i.e. it is a theory. It is downdirected: Suppose ϕ,ψ ∈ /−1 [∆], then /ϕ, /ψ ∈ ∆ and since

∆ is updirected, then there is some β ∈ ∆ with

/ϕ ` β/ψ ` β
. Therefore

I β ` ϕ

I β ` ψ
with I β ∈ /−1 [∆], as

I= /−1. Since ϕ,ψ were arbitrary, this shows that /−1 [∆] is downdirected.

Now we show that ∆1 = {χ′|χ′ ◦ ψ ∈ ∆} is an ideal (a cotheory). It is down-closed. Let a ∈ ∆1 and b ` a,
then a ◦ ψ ∈ ∆ and b ◦ ψ ` a ◦ ψ since fusion is order preserving on both coordinates. Therefore b ◦ ψ ∈ ∆

since ∆ is a cotheory. Then b ∈ ∆1. It is updirected: if a, b ∈ ∆1 then there is some z ∈ ∆1 with a ` z

and b ` z. To see this, let a, b ∈ ∆1 then

a ◦ ψ ∈ ∆

b ◦ ψ ∈ ∆
and thus

a ◦ ψ ` cb ◦ ψ ` c
for some c ∈ ∆ because ∆ is

updirected. Then by residuation,

a ` c← ψ

b ` c← ψ
and (c← ψ) ◦ ψ = c ∈ ∆. Thus c← ψ ∈ ∆1 and c← ψ is

our witness z.

Finally, we show ∆2 = {ψ′|∃χ′ (χ′ ∈ Σ&χ′ ◦ ψ′ ∈ ∆)} is an ideal (a cotheory). Suppose α ∈ ∆2, then there

is some z ∈ Σ s.t. z ◦ α ∈ ∆, which is a downset. Suppose further that β ` α, then z ◦ β ` z ◦ α as fusion

is order preserving on both coordinates. Therefore z ◦ β ∈ ∆ and β ∈ ∆2. Thus ∆2 is a downset. Now we

show it is updirected. Assume ψ′, ψ” ∈ ∆2, then there exist ϕ′, ϕ” ∈ Σ with (∗)

ϕ′ ◦ ψ′ ∈ ∆

ϕ” ◦ ψ” ∈ ∆
. Since

Σ is down-directed then there exists θ ∈ Σ such that

θ ` ϕ′θ ` ϕ”
. But then (∗∗)

θ ◦ ψ′ ` ϕ′ ◦ ψ′θ ◦ ψ” ` ϕ” ◦ ψ”
since
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fusion is order preserving on both coordinates. Now from (∗) and (∗∗) we have

θ ◦ ψ′ ∈ ∆

θ ◦ ψ” ∈ ∆
because ∆ is

a downset. Since ∆ is up-directed, then there is some θ′ ∈ ∆ with (∗ ∗ ∗)

θ ◦ ψ′ ` θ′θ ◦ ψ” ` θ′
. Now θ → θ′ ∈ ∆2

because θ ◦ (θ → θ′) = θ′ ∈ ∆ and θ ∈ Σ. Now

ψ′ ` θ → θ′

ψ” ` θ → θ′
by applying residuation to (∗ ∗ ∗), so ∆2 is

updirected with θ → θ′ as witness. �

The following lemma is the key to the truth-lemma and thus to the completeness result:

Lemma 118. (Existence lemma) Let Σ be an optimal theory and ∆ an optimal co-theory of our language

• if ♦ψ /∈ ∆, then
〈
{ψ},♦−1[∆]

〉
can be extended to a maximal pair 〈Σ′,∆′〉.

• if ♦ψ /∈ Σ, then 〈Σ, {♦ψ}〉 can be extended to a maximal pair 〈Σ′,∆′〉.
• if �ψ /∈ Σ, then

〈
�−1[Σ], {ψ}

〉
can be extended to a maximal pair 〈Σ′,∆′〉.

• if �ψ /∈ ∆, then 〈{�ψ},∆〉 can be extended to a maximal pair 〈Σ′,∆′〉.
• if /ψ /∈ ∆ then

〈
/−1 [∆] , {ψ}

〉
can be extended to a maximal pair 〈Σ′,∆′〉.

• if /ψ /∈ Σ, then 〈Σ, {/ψ}〉 can be extended to a maximal pair 〈Σ′,∆′〉.
• if .ψ /∈ Σ, then

〈
{ψ} , .−1 [Σ]

〉
can be extended to a maximal pair 〈Σ′,∆′〉.

• if .ψ /∈ ∆, then 〈{.ψ} ,∆〉 can be extended to a maximal pair 〈Σ′,∆′〉.
• if χ ◦ ψ /∈ ∆, then

� 〈{χ} ,∆1〉 with ∆1 = {χ′|χ′ ◦ ψ ∈ ∆} can be extended to a maximal pair 〈Σ′,∆′〉.
� 〈{ψ} ,∆2〉 with ∆2 = {ψ′|∃χ′ (χ′ ∈ Σ′&χ′ ◦ ψ′ ∈ ∆)} can be extended to a maximal pair 〈Σ”,∆”〉.

Proof. Given the case per case assumptions (regarding modal formulas not belonging to Σ or ∆), all the

pairs to be extended are indeed disjoint. Now given the global assumption about Σ and ∆ being respectively

a theory and cotheory, these are in fact a �lter and an ideal. Now a straightforward application of corollary

102 will su�ce. �

5.2.1. The truth lemma. Let (
c,�c) be the satisfaction and co-satisfaction relations associated with

V c (or more precisely, with its unique homomorphic extension), then:

Lemma 119. (Truth lemma) For every ϕ ∈ Fm, every Σ ∈ X and every ∆ ∈ Y :

• Σ 
c ϕ i� ϕ ∈ Σ;

• ∆ �c ϕ i� ϕ ∈ ∆.

Proof. By induction on the complexity of ϕ.

Base case:

If ϕ = p ∈ AtProp, then:

Σ 
c p i� Σ ≤ V c(p) =
∧
{∆ | ∆ ∈ Y and p ∈ ∆}

i� ∀∆[(∆ ∈ Y and p ∈ ∆) ⇒ Σ ≤ ∆]

i� ∀∆[(∆ ∈ Y and Σ � ∆) ⇒ p /∈ ∆]

i� ∀∆[(∆ ∈ Y and Σ ∩∆ = ∅) ⇒ p /∈ ∆].

So suppose that Σ 
c p and assume towards a contradiction that p /∈ Σ. Since Σ ∈ X, then it is an optimal

�lter, so in particular Σ is maximal w.r.t. some ∆′ ∈ Y . Since ∆′ ∈ Y and Σ ∩∆′ = ∅ then we conclude

by the above equivalences that p /∈ ∆′. But then Σ′ := Σ ∪ {p} would be a proper extension of Σ and
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Σ′ ∩∆′ 6= ∅. Since ∆′ is a co-theory, this implies that Σ′ 6` ∆′, against the maximality of Σ w.r.t. ∆′. This

shows that p ∈ Σ. The proof that ∆ �c p i� p ∈ ∆ is analogous. Therefore, for every p ∈ AtProp:

• Σ 
c p i� p ∈ Σ;

• ∆ �c p i� p ∈ ∆.

Inductive step:

As for the inductive step, we need to consider various cases:

The primary cases do the hard job of breaking down the complexity of the formula, reason for which they

need the existence lemma, and the secondary cases rely on the primary ones.

♦-case

Primary subcase.

Assume that ϕ = ♦ψ and that for every Σ ∈ X and every ∆ ∈ Y , Σ 
c ψ i� ψ ∈ Σ and ∆ �c ψ i� ψ ∈ ∆.

Let us �x ∆ ∈ Y and let us show that:

∆ �c ♦ψ i� ♦ψ ∈ ∆.

(⇐) Assume that ♦ψ ∈ ∆. By de�nition of ∆ �c ♦ψ in (5.1.11), we need to show that if Σ′ ∈ X and

Σ′ 
c ψ, then ♦[Σ′]∩∆ 6= ∅. By induction hypothesis, Σ′ 
c ψ means that ψ ∈ Σ′, so ♦ψ ∈ ♦[Σ′], and since

by assumption ♦ψ ∈ ∆, then indeed ♦[Σ′] ∩∆ 6= ∅.

(⇒) Conversely, assume that ♦ψ /∈ ∆. We need to show that there exists some Σ′ ∈ X such that ψ ∈ Σ′

and ♦[Σ′] ∩∆ = ∅, i.e. Σ′ ∩ ♦−1[∆] = ∅. Since ♦ψ /∈ ∆, by the Existence Lemma (118)
〈
{ψ},♦−1[∆]

〉
can

be extended to a maximal pair 〈Σ′,∆′〉. Then Σ′ ∈ X, ∆′ ∈ Y and ψ ∈ Σ′. Moreover, ♦−1[∆] ⊆ ∆′ and

Σ′ ∩∆′ = ∅ implies that Σ′ ∩ ♦−1[∆] = ∅. So result is proven.

Secondary subcase.

Now let us �x Σ ∈ X and show that:

Σ 
c ♦ψ i� ♦ψ ∈ Σ.

(⇐) Assume that ♦ψ ∈ Σ. By de�nition of Σ 
c ♦ψ in (5.1.12), we need to show that if ∆ ∈ Y and ∆ �c ♦ψ
then Σ ≤ ∆, that is Σ ∩ ∆ 6= ∅. So suppose ∆ ∈ Y and ∆ �c ♦ψ. By the previous case this means that

♦ψ ∈ ∆. But then clearly Σ ∩∆ 6= ∅ since we assumed ♦ψ ∈ Σ.

(⇒) Assume that ♦ψ /∈ Σ. We need to show that there is some ∆ ∈ Y such that ∆ �c ♦ψ and Σ � ∆, that

is Σ ∩∆ = ∅. Since ♦ψ /∈ Σ, by the Existence Lemma (118) 〈Σ, {♦ψ}〉 can be extended to a maximal pair

〈Σ′,∆′〉. Then Σ′ ∈ X, ∆′ ∈ Y and ♦ψ ∈ ∆′, that is ∆′ �c ♦ψ. Moreover, Σ ⊆ Σ′ and Σ′ ∩∆′ = ∅ implies

that Σ ∩∆′ = ∅. So result is proven.
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�-case

Primary subcase.

Let Σ ∈ X. We shall show that: 1
Σ 
c �ψ i� �ψ ∈ Σ.

(⇐) For the easy direction, from right to left, assume that �ψ ∈ Σ. Then by de�nition of Σ 
c �ψ in

(5.1.13), we have to show ∀∆[∆ �V ψ ⇒ ΣRc�∆]. So let ∆ ∈ Y and suppose that ∆ �V ψ. Then by IH

ψ ∈ ∆ and thus � [∆] ∩Σ 6= ∅ so ΣRc�∆ by de�nition of Rc�. Since ∆ ∈ Y was arbitrary, the implication is

shown and therefore Σ 
c �ψ.

(⇒) For the other direction, assume that �ψ /∈ Σ. To show that Σ 1c �ψ we have to �nd a ∆ ∈ Y such

that ∆ �V ψ and such that ΣRc�∆ doesn't hold, that is � [∆] ∩ Σ = ∅. Since �ψ /∈ Σ, by the Existence

Lemma (118)
〈
�−1[Σ], {ψ}

〉
can be extended to a maximal pair 〈Σ′,∆′〉. Then Σ′ ∈ X, ∆′ ∈ Y and ψ ∈ ∆′.

Thus by IH ∆′ �V ψ. Moreover, �−1[Σ] ⊆ Σ′ so Σ′ ∩∆′ = ∅ implies that �−1[Σ] ∩∆′ = ∅. Hence ∆′ is

the desired counterexample and Σ 
c �ψ doesn't hold.

Secondary subcase.

Let ∆ ∈ Y . We shall show that:

∆ �c �ψ i� �ψ ∈ ∆.

(⇐) For the easy direction, from right to left, assume that �ψ ∈ ∆. Then by de�nition of ∆ �c �ψ in

(5.1.14), we have to show ∀Σ[Σ 
c �ψ ⇒ Σ ≤ ∆]. So let Σ ∈ X and suppose Σ 
c �ψ. Then �ψ ∈ Σ as

we just have shown above and therefore ∆∩Σ 6= ∅ so Σ ≤ ∆ by de�nition of ≤. Since Σ ∈ X was arbitrary,

the implication is shown and therefore ∆ �c �ψ.

(⇒) For the other direction, assume that �ψ /∈ ∆. To show that ∆ � �ψ we have to �nd a Σ ∈ X such

that Σ 
c �ψ but Σ � ∆. Since �ψ /∈ ∆, by the Existence Lemma (118) 〈{�ψ},∆〉 can be extended to a

maximal pair 〈Σ′,∆′〉. Then Σ′ ∈ X, ∆′ ∈ Y and �ψ ∈ Σ′. Moreover, ∆ ⊆ ∆′ so Σ′ ∩∆′ = ∅ implies that

∆ ∩ Σ′ = ∅ which means Σ � ∆, as desired.

/-case

Primary subcase.

Let ∆ ∈ Y . We shall show that:

∆ �c /ψ i� / ψ ∈ ∆.

(⇐) Let /ψ ∈ ∆. By de�nition of co-satisfaction (5.1.15) we have to show ∀∆′ [∆′ �c ψ ⇒ ∆Rc/∆
′]. So let

∆′ �c ψ for some ∆′ ∈ Y , then by IH ψ ∈ ∆′ and thus ∆∩/ [∆′] 6= ∅ which by de�nition leads to the desired

result : ∆Rc/∆
′. Thus ∆ �c /ψ.

(⇒) Let /ψ /∈ ∆. By the de�nitions of co-satisfaction and ofR/ we have to show ∃∆′ [∆′ �c ψ &∆ ∩ / [∆′] = ∅],

with ∆′ �c ψ rewritten as ψ ∈ ∆′ by IH. Since /ψ /∈ ∆ then
〈
/−1 [∆] , {ψ}

〉
is a pair, which by the Existence

Lemma (118) can be extended to a maximal pair 〈Σ′,∆′〉. Then Σ′ ∈ X, ∆′ ∈ Y and ψ ∈ ∆′. Moreover,

/−1 [∆] ⊆ Σ′ so Σ′ ∩∆′ = ∅ implies that /−1 [∆] ∩∆′ = ∅ which means ∆ ∩ / [∆′] = ∅, as desired.

Secondary subcase.

Let Σ ∈ X. We shall show that:

Σ 
c /ψ i� / ψ ∈ Σ.
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(⇐) Let /ψ ∈ Σ. By (5.1.16) we have to show ∀∆[∆ �c /ψ ⇒ Σ ≤ ∆]. Let us �x a ∆ ∈ Y and assume

∆ �c /ψ then by the previous proof /ψ ∈ ∆ and thus Σ∩∆ 6= ∅. Therefore Σ ≤ ∆ as desired. Since ∆ was

arbitrary, this shows the implication.

(⇒) Let /ψ /∈ Σ. We have to show that there exists ∆ �c /ψ and Σ � ∆, that is Σ ∩ ∆ = ∅. Since Σ is

a theory, it is clear that Σ 0c /ψ, hence we can try and extend 〈Σ, {/ψ}〉 to a maximal pair 〈Σ′,∆′〉 by the

Existence lemma (118). Then Σ′ ∈ X, ∆′ ∈ Y and /ψ ∈ ∆′, thus by the previous results ∆′ �c /ψ. Since

Σ ⊆ Σ′ then Σ′ ∩∆′ = ∅ implies Σ ∩∆′ = ∅ and thus Σ � ∆′ as desired.

.-case

Primary subcase.

Let Σ ∈ X. We shall show that:

Σ 
c .ψ i� . ψ ∈ Σ.

(⇐) For the easy direction, from right to left, assume that .ψ ∈ Σ. Then by de�nition of Σ 
c .ψ in (5.1.17),

we have to show ∀Σ′[Σ′ 
c ψ ⇒ ΣRc.Σ
′]. So let Σ′ ∈ X and suppose that Σ′ 
c ψ, which by IH means

ψ ∈ Σ′ . But then .[Σ′] ∩ Σ 6= ∅, as desired.

(⇒) For the other direction, assume that .ψ /∈ Σ. To show that Σ 1c .ψ we have to �nd a Σ′ ∈ X such that

Σ′ 
c ψ (by IH ψ ∈ Σ′) but ΣRc.Σ
′ doesn't hold, that is .[Σ′] ∩ Σ = ∅. Since .ψ /∈ Σ then

〈
{ψ} , .−1 [Σ]

〉
is a pair and by the Existence lemma (118), it can be extended to a maximal pair 〈Σ′,∆′〉. Then Σ′ ∈ X,

∆′ ∈ Y and ψ ∈ Σ′. Since .−1 [Σ] ⊆ ∆′ then Σ′ ∩∆′ = ∅ implies Σ′ ∩ .−1 [Σ] = ∅, that is .[Σ′] ∩Σ = ∅ as

desired.

Secondary subcase.

Let ∆ ∈ Y . We shall show that:

∆ �c .ψ i� . ψ ∈ ∆.

(⇐) Assume .ψ ∈ ∆. Given the de�nition in (5.1.18) we have to show ∀Σ [Σ 
c .ψ ⇒ Σ ≤ ∆]. So �x an

Σ ∈ X and let Σ 
c .ψ, then .ψ ∈ Σ by previous proof, and then Σ∩∆ 6= ∅ which gives Σ ≤ ∆ by de�nition.

Since Σ was arbitrary, the implication is proven.

(⇒) Assume .ψ /∈ ∆. We have to show ∃Σ [Σ 
c .ψ &Σ � ∆]. By the previous result Σ 
c .ψ amounts to

.ψ ∈ Σ. Since .ψ /∈ ∆ then 〈{.ψ} ,∆〉 is disjoint and can be extended to a maximal pair 〈Σ′,∆′〉 by the

Existence Lemma (118). Then Σ′ ∈ X, ∆′ ∈ Y and .ψ ∈ Σ′. Since ∆ ⊆ ∆′, then Σ′ ∩ ∆′ = ∅ implies

Σ′ ∩∆ = ∅, that is Σ′ � ∆ as desired.

◦-case

Primary subcase.

Assume that ϕ = χ ◦ ψ and that for every Σ ∈ X and every ∆ ∈ Y :

• Σ 
c χ i� χ ∈ Σ and ∆ �c χ i� χ ∈ ∆.

• Σ 
c ψ i� ψ ∈ Σ and ∆ �c ψ i� ψ ∈ ∆.

Let us �x ∆ ∈ Y and let us show that:

∆ �c χ ◦ ψ i� χ ◦ ψ ∈ ∆.

(⇐) Assume that χ ◦ ψ ∈ ∆. By de�nition of ∆ �c χ ◦ ψ in (5.1.19), we need to show that if (a) Σ ∈ X
and Σ 
c χ and (b) Σ′ ∈ X and Σ′ 
c ψ, then Σ ◦ Σ′ ∩∆ 6= ∅, with Σ ◦ Σ′ = {ϕ ◦ ψ|ϕ ∈ Σ& ψ ∈ Σ′}. By
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induction hypothesis, (a) means that χ ∈ Σ, and likewise (b) means that ψ ∈ Σ′, so χ ◦ ψ ∈ Σ ◦Σ′ and since

by assumption χ ◦ ψ ∈ ∆, then indeed Σ ◦ Σ′ ∩∆ 6= ∅.

(⇒) Conversely, assume that χ ◦ ψ /∈ ∆. We need to show that there exists some Σ,Σ′ ∈ X such that ϕ ∈ Σ

and ψ ∈ Σ′ and Σ ◦ Σ′ ∩∆ = ∅. Let ∆1 = {χ′|χ′ ◦ ψ ∈ ∆}, then χ /∈ ∆1. Since χ /∈ ∆1 then 〈{χ} ,∆1〉 is
disjoint pair and by lemma 118 it can be extended to a maximal pair 〈Σ1,∆

′
1〉, our �rst witness point. Now

let ∆2 = {ψ′|∃χ′ (χ′ ∈ Σ1 &χ′ ◦ ψ′ ∈ ∆)} be our starting base for our 2nd witness. Notice that ψ /∈ ∆2. For

suppose otherwise, if ψ ∈ ∆2 then there exists β ∈ Σ1 such that β ◦ ψ ∈ ∆. But then β ∈ ∆1 and therefore

β ∈ Σ1 ∩ ∆1. However 〈Σ1,∆
′
1〉 is a maximal pair with ∆1 ⊆ ∆′1 and thus Σ1 ∩ ∆1 = ∅, contradiction!

Therefore 〈{ψ} ,∆2〉 is a disjoint pair which can be extended to a maximal pair 〈Σ2,∆
′
2〉 by lemma 118.

Now we have

〈Σ1,∆
′
1〉 with∆1 ⊆ ∆′1 &χ ∈ Σ1

〈Σ2,∆
′
2〉 with∆2 ⊆ ∆′2 &ψ ∈ Σ2

. Let δ ∈ Σ1. If there is some δ′ such that δ ◦ δ′ ∈ ∆

then δ′ ∈ ∆2 ⊆ ∆′2. Therefore δ′ /∈ Σ2 because 〈Σ2,∆
′
2〉 is a disjoint pair. As δ, δ′ were arbitrary then

Σ1 ◦ Σ2 ∩∆ = ∅, as desired.

Secondary subcase.

Now let us �x Σ ∈ X and show that:

Σ 
c χ ◦ ψ i� χ ◦ ψ ∈ Σ.

By de�nition of Σ 
c χ ◦ ψ in (5.1.20), Σ 
c χ ◦ ψ if and only if ∀∆[∆ �V ϕ ◦ ψ ⇒ Σ ≤ ∆], that is

∀∆[ϕ ◦ ψ ∈ ∆⇒ Σ ≤ ∆] by the previous result. But clearly (ϕ ◦ ψ ∈ ∆) ⇒ Σ ≤ ∆ i� (ϕ ◦ ψ ∈ ∆) ⇒
Σ ∩∆ 6= ∅ i� ϕ ◦ ψ ∈ Σ. So Σ 
c χ ◦ ψ i� χ ◦ ψ ∈ Σ, as desired.

The Truth lemma is proven. �

5.2.2. Completeness theorem and proof. The moment arrived for us to present the completeness

theorem.

Theorem 120. (completeness) Given a pair Σ 0Λ ∆ and a SML logic Λ there is a model M based on some

SML-frame F such that Σ 1M ∆ (i.e. there exists a two-sorted point 〈x, y〉 which is a maximal pair with

x ∈ X and y ∈ Y and such that M, x 
 Σ and M, y � ∆).

Proof. Assume Σ 0 ∆. Then 〈Σ,∆〉 is a disjoint pair which via corollary (102) can be extended to

a maximal pair 〈Σ′,∆′〉. Consequently Σ′ ∈ X and ∆′ ∈ Y in the DML-canonical frame as described in

de�nition 112, and the canonical valuation guarantees that Σ′ 
Mc Σ and ∆′ �Mc ∆ and therefore Σ 1Mc ∆.

Hence there is some model M in which Σ 1M ∆, namely the canonical model. �



CHAPTER 6

Conclusion and future work

The present thesis was motivated by the idea of extending the completeness results in [Restall 2005] to

substructural operators. We did not succeed in this task, however a small �aw in the original proof was

corrected and the material was presented in more accessible way. The propositional non-distributive com-

pleteness result from [Gehrke 2006] was presented in similar fashion, with clari�cation of the methods used

and with the addition of unary modal operators to the completeness proof (only binary ones are treated in

the original paper). The overall picture emerging from the thesis is one in which classical, distributive and

non-distributive settings share a non-negligible amount of features. This looks quite obvious when classical

and distributive settings are seen as particular cases of posets. In the distributive setting, the universe of a

Kripke-frame is a non-empty set with a (possibly) non-trivial order over it. Such order, in the classical case,

boils down to the degenerate order given by identity. In fact, the two-sorted nature of Generalized Kripke

frames is present all the way down to classical modal logic, but just in a less explicit way. We have seen in

Chapter 3 that the absence of Boolean negation in the language required from us to explicitly bring into our

table an element usually hidden in the background: the (order-) dual side of the theories, i.e. the co-theories.

While the theory of a point in a frame is the set of all sentences satis�ed in it -which constitute some sort of

�nger-print of the point-, the co-theory is the set of all unsatis�ed (or refuted) sentences. Algebraically, in the

poset of the formulas ordered by deducibility, the theories are �lters while the co-theories are ideals. More

precisely, while we did not have negation in the language we simply treated it directly on the structures being

interpreted by considering both the (�lter-shaped) positive side and the (ideal-shaped) negative side of a point

in the canonical frame and then by talking about these in the metalanguage. Since we were in a distributive

setting, though, this order-dual structure of ideals mirrors perfectly the structure of �lters (the family of

positive sides of points). To state it di�erently: a theory still uniquely determines its co-theory, and thus

both sorts can still be seen as a two-sided monolith. Quanti�ers are not disturbed by the increased generality

at this level: the distributive setting looks very much as the classical setting although its canonical frame

makes reference to co-theories. Its discrete duality indeed only needs to treat completely join irreducibles of

the algebra. The treatment of binary modal operators seems unexpectedly harder in this distributive setting

than with the unary analogues or than the non-distributive treatment. The two-sided monolith aspect of

theories/co-theories without the two-sorted discrete duality and associated two-sorted satisfaction relations

makes it presumably harder to track information.

90
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We can summarize the humble contribution of our thesis as the parentheticals in the following table, along

with the systematization in the presentation of the results.

modal operators
Distributive setting Non-distributive setting

completeness completeness

Propositional logic

unary
subsumed under

(added unary ops.)
the quanti�ed result

binary
[Gehrke 2006]

(methods clari�ed)

Constant domains
unary

[Restall 2005]

Quanti�ed logic
(�aw �xed and detail increased)

remains to do
binary remains to do

We leave for future research the extension of [Restall 2005]'s proof to accommodate substructural opera-

tions (seen as binary modal operations), and the extension of the propositional completeness result in non-

distributive setting to account for constant domain quanti�cation. This might require a revised interpretation

of quanti�ers, as the standard interpretation forces distributivity.
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