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Abstract

We analyze IF /hyper-classical games by bringing together two viewpoints from Jaakko Hintikka's

work: game semantics, and epistemic logic. In the process, we link up between logic and game theory.

1 Logic meets games

Game theory and logic met in the 1950s – and Jaakko Hintikka has been a pioneer ever

since in introducing game-theoretic viewpoints into logic, from his early basic

evaluation games for predicate logic to his more recent ‘information-friendly’ logic

based on extended games that go far beyond classical systems. The grand

philosophical program behind these technical efforts is found in his books “Logic,

Language Games and Information” (1973), “The Game of Language” (1985), the

Handbook of Logic & Language chapter with Gabriel Sandu on ‘Game-Theoretical

Semantics’ (1997), and many recent papers and manifestoes (cf. Hintikka 2002).

Connections between logic and games are attracting attention these days, ranging from

special-purpose ‘logic games’ to 'game logics' analyzing general game structure (cf.

the general program in van Benthem 1999–2002). IF logic is intriguing in this respect,

as it sits at the interface of ordinary logic games, whose players have perfect

information about their position during play, and general game theory, where players

may typically have imperfect information of various sorts. My aim in this paper is to

explore the game content of Hintikka’s systems using tools from epistemic logic, and

more generally, clarify their thrust at the interface of logic and game theory.

Exegetically, however, this is a somewhat tricky business. There is much less game

content to Hintikka’s systems than one might expect. His true interest is closer to the

classical logical agenda of meaning and expressive power, mainly for quantifier

expressions, viz. the notion of (in-)dependence. Despite occasional declarations of

love for games as such as the basis of rational enquiry, they remain mostly a didactic

device for studying dependence in quantification – and a way of drawing battle-lines
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in that well-trodden war zone of compositionality. By contrast, I myself am a post-

Hintikkean radical, whatever the original motivations. Games are important per se as

models for action and information flow, and the interface of logic and game theory has

a logical agenda of its own, which may make the classical one less urgent. So,

admittedly, by taking the games too seriously in this essay, there is a grave risk of

missing the point of Hintikka's work by pursuing a shallow dispensable metaphor. But

I will cheerfully accept that stigma, provided – fair is fair – I can take the credit for all

the pleasant new views that arise by setting off resolutely on my shallow path.

But what vistas can there be? One look at a game theory book shows that the field is

driven by concerns far removed from Hintikka's evaluation games, or other logic

games due to Lorenzen, Ehrenfeucht, and more recent authors such as Hodges, Blass,

or Abramsky. Game theorists look at such issues as players’ preferences, strategic

equilibria, imperfect information, uncertainty and probability, bounded rationality,

repeated behaviour, or the powers of coalitions. The intersection between logic and

game theory may be as thin as just the shared notion of a strategy. Well, let us see.  In

this paper, I will first analyze Hintikka's original first-order games (Section 2), usually

thought rather trivial, and uncover lots of general game-theoretic structure. Then I

analyze the more mysterious IF games (Section 3) as imperfect information versions

of the original games, using a mix of the game theoretic notions just found and

epistemic logic. Both analyses broaden the bridge between logic games and general

game theory, and show the contours of a new game logic. In Section 4, I discuss IF

logic once more, but now from a general game-theoretic perspective. Finally, I state

my conclusions and suggestions in Section 5. The tools for all this are two: (a) some

unbiased reflection on the role of games in logic, and (b) the use of an explicit

epistemic language of actions and knowledge. Both are things we have learnt from

Jaakko Hintikka, and thus, the title of this essay has been explained.

2 First-order evaluation games

We start with the simplest games which Hintikka proposed back in the 1960s, taking

off with some well-known facts, and becoming airborne in a few pages.

2.1 Evaluation games, truth and winning strategies

Let two parties disagree about a statement in some model M under discussion: Verifier

V claims it is true, Falsifier F that it is false. Evaluation games describe their moves of

defense and attack – with a schedule of turns driven by the statement:
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atoms test to determine who wins

disjunction A∨B V chooses which disjunct to play

conjunction A∧B F chooses which conjunct to play

negation ¬A role switch between the two players,

play continues with respect to A

existential quantifiers ∃x A(x) V picks an object d, after which

play continues with respect to A(d)

universal quantifiers ∀x A(x) likewise, but now for F

E.g., consider the first-order formula

∀x ∃y x≠y

on a model with two objects s, t. The game may be pictured as a tree of possible moves

of object picking and fact testing, with the schedule read from top to bottom:

     F
     x:= s x:= t

V V

     y:= s y:= t      y:= s y:= t

  s≠s          s≠t t≠s t≠t

loseV         winV           winV            loseV

Falsifier starts, Verifier must respond. There are four possible runs of the game, with

two wins for each player. Games like this are easy to play in class, and they sharpen

the students’ sense of first-order expressive power and model checking complexity.

A bit more precisely (though one can go even further), think of the states as pairs

<s, ψ>

where s is an assignment of objects in M to the variables in the original formula φ, and

ψ   is a subformula of φ . In particular, the game must start from some initial

assignment, which can be modified by quantifier moves, and whose descendants

eventually serve to identify the relevant atomic fact to be tested.

In the preceding game, players are not evenly matched. For, V has a winning strategy,

a map from her turns to available moves that guarantees a winning outcome against
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every play by the opponent: she just needs to play the object different from the one

picked by V. This makes sense, as she has Truth on her side. This illustrates a general

connection between evaluation games and standard first-order semantics:

Proposition    The following two assertions are equivalent:

(a) Formula φ is true in model M under assignment s

(b) Verifier has a winning strategy for φ’s evaluation game

played in M starting from the initial state <s, φ>

This equivalence seems at best a Pyrrhic victory for game-theoretical semantics.

It says that the game-theoretic analysis amounts to a notion that we knew already. So,

it yields nothing new, except for a pleasant didactic tool for feeding our students the

Tarskian fare we had decided they should eat anyway. But the result has many

interesting features, and it is worth-while to take our time, and think about these.

2.2 Exegetic intermezzo: the importance of strategies

Strategies  First, the Proposition highlights the role of winning strategies, or generally,

strategies. In particular, it suggests a new semantic notion. Verifier may have more

than one winning strategy in the game for a given formula. E.g., for a disjunction with

both disjuncts true, there are two winning strategies 'choose left', 'choose right'. (The

number of strategies can be computed for any formula and model.) Thus, winning

strategies are a more fine-grained semantic object than the usual denotations (truth

values, predicates): say, patterns of verification, or reasons for truth. Classical model

theory does not deal with these as such, unless in the auxiliary guise of Skolem

functions, but they have lots of nice features.

In fact, as most logic games capture basic notions by winning strategies for some

player (Proponent, Duplicator, etc.), a general calculus of strategies is a mechanism

underlying much of logic. For instance, take a classically valid inference like

A&(B∨C) |=     (A&B)∨C

At the finer-grained level of semantic reasons, this says that any winning strategy σ for

Verifier in an A&(B∨C)–game can be transformed explicitly into one in an (A&B)∨C–

game. In the latter, V makes the same choice at the start that σ  prescribes in the

premise game if F were to play “right” . After that she can sit back and wait…
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Powers        Strategies do not just serve to win. Any strategy gives a player a power, a

certain control over the outcomes of the game, no matter what the other player does.

The Proposition says that a winning power for V amounts to truth. But F may still

have powers, too. E.g., in the above game, even though V can always win, it is up to F

to decide where that winning takes place. This, too, may be a crucial feature of a game.

Think of my having a strategy ensuring I will defeat you, but either in some boring

meadow, or a picturesque location. If it is up to you to decide, you will go for the Last

Stand at Thermopylae, as bards will sing about your defeat for centuries… To get its

full impact, this story needs finer preferences for players than just zeroes and ones, but

nothing prevents us from introducing these, and liven up logic games. But bare powers

are of interest by themselves, and we will pursue them later on.

Games and boards   Another striking feature of the Proposition is the juxtaposition of

two relevant objects: an external game board – here, a model M  plus all variable

assignments over it – and a game tree with internal states for the game played over this

board, generated by the formula φ. One board can accommodate many games. The

Proposition says that some game-internal property, the existence of a winning strategy

for player V, reduces to an external first-order property of the game board.

Activities versus assertions But the Proposition contains one more juxtaposition!   It

distinguishes games as dynamic activities from assertions about games. This is just as

in dynamic logics of programs, which have two kinds of expression on a par: terms

denoting actions and formulas denoting propositions. In the present setting, the

distinction is easy to overlook, since the same letter 'φ ' denotes a game in clause (b)

and a standard proposition in (a). In fact, most of the literature on game-theoretic

semantics wavers on this issue, using 'φ ' both for the game and the assertion that V has

a winning strategy in it, or the assertion expressed by φ  without any games at all. This

may reflect the earlier point that people are not really interested in the games, but in

their good old logical propositions. I will try to be explicit about the difference where

it matters. Indeed, when all is said and done, the Proposition makes a plea for having

three kinds of entity on a par: games, assertions, and strategies.

Even this discussion has just skimmed the surface of the Proposition! For a more

elaborate analysis of Adequacy Theorems for logic games, cf. van Benthem 2002C.
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2.3 Logical laws, players' powers, and game equivalence

The Proposition is a bridge between logic and game theory. Let's take a walk on it.

For a start, logical laws now acquire game-theoretic import.

Determinacy   Consider the classical law of excluded middle A∨¬A. That Verifier has

a winning strategy for it in every model means she can choose to play either A as

Verifier, or ¬A as Verifier, i.e., A as Falsifier, and still have a winning strategy for the

remainder. But this just expresses a well-known notion from game theory:

Fact   All evaluation games are determined: one player has a winning strategy.

This is true for a very general game-theoretic reason:

Theorem      (Zermelo 1913)  All two-player games with perfect information

that are zero-sum  and have finite branch depth are determined.

Determinacy is important in descriptive set theory and foundations of mathematics:

Zermelo's theorem started a long line of results on classes of determined games.

Nevertheless, this first link between logic and game theory may be misleading. Not all

games are determined, and excluded middle is not the most significant logical law

from a game-theoretic viewpoint. We will do better in a moment.

Powers once more    Determinacy emphasizes powers of one player only. Indeed,

Hintikka’s work has a bias towards Verifier. But a more general description of games

must state what both players can achieve – especially in non-determined settings such

as the IF games of Section 3. Here is a somewhat more formal definition.

Definition    A player's powers in a game are all sets of outcomes X

for which the player has a strategy in the game which ensures that

all its outcomes, regardless of the opponent’s moves, lie inside X.

Consider the following abstract version of our earlier game:

    F
        a                b

V V

  c          d    c           d

1 2 3 4

Here is the complete description of the power structure in this game.
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F has two strategies: 'left' with power {1, 2}, and 'right' with {3, 4}, 

V has four strategies: 'left, left' with power {1, 3}, 'left, right' with

{1, 4}, 'right, left' with power {2, 3}, and 'right, right' with {2, 4}.

This tells us much more about the interaction encoded by the game. More generally,

players'  powers satisfy some general conditions which together are necessary and

sufficient for representability in a determined game (van Benthem 2001A):

Monotonicity If j has power X and X⊆Y, then j has power Y

Consistency If V has power X and F has power Y, then X, Y overlap

Determinacy If V (F) lacks power X, then F (V) has power –X

Now, here is the deeper connection with logical laws. Many of these have the form of

equivalences. Now consider a propositional tautology like distribution:

 p∧(q∨r)  ↔  (p∧q)∨(p∧r)

Here are the two games corresponding to the formulas on the left and the right:

F V

p V F F

q r       p         q       p          r

Fact Both players have the same powers in both games.

On the left, F has strategies ‘left’ and ‘right’ yielding powers {p}, {q, r} , while V has

‘left’, ‘right’ yielding {p, q}, {p, r}. On the right, V has two strategies yielding again

{p, q}, {p, r}, while F has four, yielding {p}, {p, r}, {q, p}, {q, r}. But as supersets

represent weaker powers, two are redundant, and F has really powers {p}, {q, r}.

Power equivalence is an excellent notion of game equivalence overall, and we have:

Theorem     All valid equivalences of predicate logic, with their formulas 

interpreted as evaluation games, give players equal powers on both sides.

From logic games to game logics    There is much more to this style of analysis. One

can design richer modal power languages (Parikh 1985, Pauly 2001) with operators

{G, j}φ expressing that player j has the power to enforce proposition φ by the end of
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game G. Such a language for describing games expresses many further properties

preserved under power equivalence. Cf. also van Benthem 2002A for links with modal

languages in computational process theories. Actually, this is a momentous move –

even though we will downplay it in this paper, to keep the focus on Hintikka games.

Logic now plays two roles. We started with logic games: very specific games for

analyzing logical formalisms. But now we also have game logics, formalisms that

describe properties of games in general. And then the mill starts turning: there are also

logic games for analyzing game logics, and so on: mind-boggling, but useful!

2.4 Compositionality and operations on games

Perhaps the most lively discussion concerning Hintikka games has been the issue of

their compositionality. I, too, would love to write on this fascinating subject, but must

honour the ten-year moratorium on the subject imposed at Amsterdam.

General operations in evaluation games    Instead, let me point out a related, and

equally interesting aspect of the above evaluation games, viz. the completely general

game-forming operations embodied in them:

(a) offer a choice between two games G, H to one of the players:

a disjunction ∨ gave this to V, and a conjunction & to F

(b) negation switches the roles in G to get the dual game Gd

(c) compose two games G;H, playing one after the other

The latter operation occurs in a quantified formula like ∃x Px, where V first picks

some object for x, and then an atomic test is played. Properly understood, first-order

evaluation games are operational compounds of two sorts of semantic base game:

 (i) object picking (single quantifiers)

(ii) fact testing (atomic formulas)

But there are other natural operations on games, which are less sequential and more

parallel, such as playing two games interleaved (“having a family breakfast” while

“reading one’s paper”). The latter are more prominent in that other grand tradition of

logic games, running from the pioneering work of Paul Lorenzen to modern game

semantics for linear logic (Blass 1992, Abramsky 1996).

Game algebra    Where there are operations, there must be algebra. The above set of

{choices, switch, composition} support a natural abstract game algebra. Its criterion
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for validity of an identity G=H is – as above – that, when interpreted on any game

board, the two expressions G,H define games in which both players have the same

powers. The earlier distribution law is generally valid in this sense:

p∧(q∨r)  ↔  (p∧q)∨(p∧r)

Game-theoretically, it says that one can reverse the scheduling order of players

without affecting their powers. Many other equivalence laws of first-order logic are

game-valid, too. But game algebra also includes some further principles, such as the

following laws for composition that go beyond first-order syntax:

(G ∨ H) ; K =  (G ; K) ∨ (H ; K) left-distribution

(G ; H)d =   Gd ; Hd dualization

Typically non-valid, however, would be right-distribution

G ; (H ∨    K) = (G ; H) ∨ (G ; K)

To refute this, set  G = ∀x, H = Px,  K = Qx. Basic game algebra is decidable and

axiomatizable, cf. Goranko 2000. Moreover, it tells us something new about first-order

logic from a game-theoretic perspective. The corresponding set of valid equivalences

φ↔ψ may be viewed as a new decidable sublogic  of first-order logic. The above

criterion of algebraic validity then amounts to the following:

The equivalence between two formulas should hold no matter what formulas 

we substitute for their atomic predicates, and also no matter what quantifiers 

(or general game expressions) we substitute for their quantifier occurrences.

The latter clause explains why right-distribution fails, even though predicate logic

validates ∃x(Px∨Qx) ↔ ∃xPx∨∃xQx for the special case of the existential quantifier.

One more result of interest here is that each non-validity of general game algebra can

be refuted by such predicate-logical equivalences. In that precise sense, logic games

are complete for game logics (cf. the representation theorem in van Benthem 2002B).

2.5 Finer levels of game structure: extensive games and modal logic

Choosing an invariance   What we have so far suffices for analyzing logic games as

usually understood. But from a game-theoretic viewpoint, we have still missed an
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important issue. In any field, a crucial test on understanding its structures is asking

when two presentations are the same. In the philosophers' terms, we need a criterion of

identity. Now, the above power equivalence is one answer, but it seems rather coarse

and global, disregarding details of players' turns and moves. Indeed, asking when two

games are equivalent is an excellent test on one’s understanding of any game-

semantics. So, let's go back once more to our distribution example:

F V

p V F F

q r       p         q       p          r

In terms of powers, these two games were the same. In game theory, this corresponds

to looking at strategic forms of games, which only care about input-output relations.

But game theory also studies extensive games, the full trees of what can happen (cf.

Osborne & Rubinstein 1994 for this, and other game-theoretic points). And then, the

two games have important differences of detail. Their scheduling of turns clearly

differs, and also the intermediate powers. E.g., V might get a choice between q and r

on the left, but this will never happen in the game on the right.

Modal logic    Extensive games are like process graphs in computer science or Kripke

models which can be studied using modal and dynamic logics. Typically, modal logic

allows us to express the key difference between the two games:

<>(<>q & <>r)  is true in the root on the left, but not on the right

Also, V’s having a winning strategy in the game of Section 2.1 is expressed by a

modal-dynamic formula with assignment actions and choices ∪ inside the boxes:

[x:=s  ∪  x:=t] <y:=s  ∪ y:=t> winV

A more complex example is the earlier Zermelo Theorem on determinacy, whose

proof involves this modal inductive clause for computing winning positions of player

E, with E  the union of all moves available to her, and A the same for player A:

WINE ↔  (end & winE) ∨ (turnE & <E >WINE) ∨ (turnA & [A]WIN E)
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Specialized to first-order evaluation games, this schema may be seen as an alternative

formalization of the recursive mechanics of the truth definition. For more on this fine-

grained analysis using modal logic as the game logic, cf. van Benthem 2001A, 2002A.

For the moment, we just remark that game equivalence at this level would be more like

modal bisimulation, a much finer sieve than power equivalence. What level of detail

wants depends very much on the intended application.

2.6 A first summary

We have not yet reached IF games! And we have already found the beginnings of a

research program about the connections between evaluation games and game theory.

Moreover, this perspective passes one test: it tells us things about first-order logic that

we did not know before. One striking example was the discovery of a decidable game

algebra lying underneath its surface. But one can find such things basically anywhere.

For instance, take our final excursion into modal logic, at the game level which 'did

not fit' first-order equivalence. Actually, the issue of finer levels than standard

equivalence at which to identify logical propositions has a long history, going back at

least to Russell. Bisimulation of evaluation games provides one such answer to this,

and more generally, different levels of game representation might provide different

accounts of logical propositions: some more ‘extensional’, some more ‘intensional’

(cf. Moschovakis 1994). Thus there is much more game structure to evaluation games

than you’d think, once you stop waving the classical tourbook.

3 IF games and imperfect information

3.1 IF logic in a nutshell

It is high time to turn to Hintikka’s more spectacular proposals, changing standard

evaluation games into an engine for general information-friendly logic ('IF logic'). In

what follows, we presuppose familiarity with this system on the part of the reader.

Here is the program in a nutshell. Standard first-order logic imposes a linear operator

order, which introduces hosts of dependencies, since 'later means under'. There are

many reasons for breaking away from this – in logic, philosophy, linguistics, computer

science, or even physics. We wish to allow for more complex non-linear constellations

of quantifiers with only partial dependencies. In terms of the above evaluation games,

perfect information meant that players have access to all previous moves by their

opponent and themselves. Breaking with this constraint requires new games where

players may have to make their choices of objects independently from what the other

player has done before. One typical way of achieving this involves imperfect

information, where players need not know where they are in the game tree. This is the
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typical situation in card games, where we do not know each other's hands – and

indeed, in game theory, imperfect information is a well-established subject (cf.

Osborne & Rubinstein 1994). In logic, however, it is a major innovation, whose

repercussions are still widely debated (Hodges 1997, Janssen 2002).

In this Section, we make just one major logical point. Imperfect information means

that players cannot distinguish between different states of a game. This is precisely the

standard semantics of epistemic logic, and hence we can introduce explicit epistemic

knowledge operators to formalize various aspects of IF games. The benefits of such a

move are the same as those of epistemic logic generally: clarity of analysis, and

suggestiveness for further topics. Using this tool, we will look at IF games more or

less as in Section 2, at various levels. Viewed as theatres for players operating under

ignorance, we analyze them using a dynamic-epistemic language. Viewing them as

just outcome-producing ‘machines’, we extend the earlier ‘power equivalence’ to deal

with IF equivalence, and relate the result to known game theory.

3.2 Getting acquainted

Many discussions of IF games start with perplexities, and attempts at formulating the

design intuitions behind the system. Here, we will just make a brief tour of issues.

Slash syntax and nondetermined games  IF  logic has a lush syntax of slashes,

indicating that quantifiers are independent, or that players may have imperfect

information about previous moves. In what follows, we forego a priori limitations:

players may be uncertain about their own, or the opponent’s moves. There are some

syntax restrictions in IF logic, such as F's never being uncertain about V – but these

seem mainly remnants of a statement focus, making Verifier the prima donna. Having

grasped the general scene, we will discuss systematic restrictions later. As an example,

consider the earlier game with a 2-object domain, but now for the game

∀x ∃y/x x≠y

where the slash indicates that Verifier no longer has access to the first object

mentioned by Falsifier. She may have forgotten, the object may have been presented in

a sealed envelope, etc. Intuitively, this game has the following tree:

      F
      x:= s          x:= t   

V                 V          V
 y:= s       y:= t              y:= s       y:= t

          winF          winV       winV        winF
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Here the dotted line is a standard game-theorist’s device indicating Verifier’s natural

equivalence relation of indistinguishability between the two game states in the middle.

Equivalence classes of this relation  are called players' 'information sets' in game

theory – a deviant terminology going back to an independent rediscovery of Hintikka's

epistemic logic (Hintikka 1962) by game theorists in the 1970s.

Crucially, the new game is non-determined, in a sense appropriate to the extended

setting. Verifier still has her old winning strategy, but it is not useable. What she needs

is a uniform winning strategy, whose prescribed actions are the same across all game

states that are indistinguishable to her. Game theorists would even call this the only

strategies for V in this game, as strategies assign moves to information sets. But no

such uniform strategy exists in this game. The only two candidates (‘choose object s’,

‘choose object t’) cannot guarantee a win. But neither does Falsifier have a winning

strategy: anything he does might be countered by a move for Verifier.

Skolem forms and complexity   In logical terms, the statement that Verifier has a

winning strategy corresponds closely to normal forms using Skolem functions. E.g., a

standard first-order formula ∀x ∃y R(x, y) is equivalent to

∃f ∀x R(x, fx)

Likewise, the statement that V has a uniform winning strategy in the above game for

∀x ∃y/x x≠y can be written as follows, dropping one variable dependency:

∃f ∀x R(x, f)

This gets more exciting in more complex examples. As an illustration consider

∀x ∃y ∀z ∃u/x  R(x, y, z, u)

Here the statement that V has a winning strategy amounts to saying that

∃f ∃g ∀x ∀z R(x, f(x), z, g(z))

There is a body of technical theory on this (cf. Sandu & Väänänen 1992), showing that

the expressive power of IF logic goes up to fragments of second-order logic. That is,

the statement that Verifier has a uniform winning strategy in an IF game can leading to

branching non-first-order quantification patterns over Skolem functions.



14

Of course, in terms of Section 2.2, this says something about the complexity of some

statements about IF  games. It does not tell us much about the games themselves.

Imperfect information is all around us: in card games, or in parlour games, with

sometimes quite sophisticated mechanisms of information hiding. The logic of those

mechanisms is an exciting ongoing story (cf. Baltag, Moss & Solecki 1999, 2002, van

Ditmarsch 2000, van Benthem 2001B), but it has taught us at least this. That some

technical statements about imperfect information games need high complexity is

orthogonal to the issue whether the games themselves, as activities, are easy or hard to

play. Some might even be easier to play than their perfect information counterparts, as

there may be fewer things to keep in mind in small memories.

Can IF games be played at all?    Even so, all this does not address the question how,

or even whether, one can play IF games. IF  syntax allows arbitrary slashing of

quantifiers and connectives, suppressing dependencies on any earlier operators. Does

this correspond to realistic settings where players find themselves in such

circumstances? Hintikka and Sandu never provide a definition of IF games. We are not

given the game trees, let alone specific mechanisms that would make arbitrary IF

games playeable. Parts of the syntax suggest imperfect information about moves (as in

the above game), others memory loss, perhaps even just intermittent:

∀x ∃y ∀z ∃u/x ∀v ∃s R(x, y, z, u, v, s)

One interpretation offered in the folklore is that all slashes make sense when we

assume that V and F are really teams whose members work in parallel. This would be

like the typical game-theoretic notion of a coalition (cf. Section 4) –  but no precise

interpretation of this form has been specified so far by Hintikka or his critics.

My own view is the following. IF syntax is a specification for patterns of knowledge

and ignorance. It does not address the issue of designing actual games that meet these

specifications. Also, it ignores finer distinctions. Some ignorance is public, and part of

the legitimate design of a game. Examples are putting moves in envelopes, shuffling

cards, or dealing hands to players. Such games can be played by ideal players without

limitations on their capacities for reasoning and observation. Another, quite different

source of ignorance are players’ limitations: they may not pay attention, have bounded

memory, cheat, and so on. This might even happen with games of perfect information.

These different sources of ignorance are run together in IF syntax, so that discussion is

bound to remain confused.
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Way-out!   At this stage, I should offer the reader an escape hatch. All these worries

only hurt if one takes the games seriously. On the other exegetic hypothesis, IF logic is

just about (in-)dependence, and the game metaphor can be thrown away as soon as it

becomes a nuisance. I intend to pursue the games, but one does not have to follow.

To focus what follows here are a few more concrete test questions to play with.

Test problems   Here is a first example. Many people claim that the above game

∀x ∃y/x x≠y

is not yet an issue, because it is ‘really’ equivalent to the first-order formula

∃y ∀y x≠y

For, in order to win the first game, Verifier must put up an object that works against

anything that Falsifier may have mentioned. But upon reflection, this story is strange!

The first game is non-determined, the second game has perfect information. So they

differ in significant properties – and one would expect them to come out as being

different. (They are.) Equivalence judgments are a nice test for understanding any

proposed semantics. Typically, when quizzed on equivalence of slash formulas, people

will either quote Hintikka, or try to look mysterious and appeal to private semantic

intuitions. We will analyze what goes on in neutral game-theoretic terms, leading to a

different outcome – which is actually nicer purely logically.

A second example are the beautiful signalling phenomena found in Hodges 1997.

Consider a slight modification of ∀x ∃y/x Rxy, with a vacuous quantifier inserted:

∀x ∃z ∃y/x x≠y

Some people’s intuitions tell them a vacuous quantifier never makes a difference 'since

it is redundant in standard logic'. This reasoning is hard to understand, since one of the

purposes of IF logic was to extend standard logic, so that intuitions from that original

area need to be sifted as to what should generalize and what should not. Indeed,

vacuous quantifiers are additional moves, which do matter in game theory. This time,

Verifier does have a uniform winning strategy:

"use  your z-move to copy F's first move, 

  then copy that for your own y-move".
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This is admissible. If we want to prevent V from using her earlier z-response, we

should rather consider a different IF game, with some obvious extended slash syntax:

∀x ∃z ∃y/{x, z} x≠y

There is nothing mysterious here, and we will provide precise game-theoretic details.

I will now show how to treat at least some IF games as imperfect information game

trees, and we can then embark on the program outlined at the end of Section 3.1.

3.3 IF games as imperfect information games

Intriguing examples    In Section 2, it was easy to define an extensive game tree

game(φ, M, s) for any first-order formula φ, model M, and variable assignment s. We

have not really specified the last details of this, but it can be done, given enough

industry. Can we do the same when φ is a slash formula from IF syntax? We already

did the example of ∀x ∃y/x x≠y on a two-object domain, whose form will also be clear

for arbitrary models M. The underlying game tree was the ordinary one for ∀x ∃y x≠y,

while the slash told us where to put dotted lines in that tree for players' uncertainties.

Next, consider the two (non-)signalling examples from Section 3.2, again for

convenience over a two-object domain. Lots of things will emerge.

An imperfect information game for ∀∀∀∀x ∃∃∃∃z ∃∃∃∃y /x x≠≠≠≠y    It may not be immediate from

this first slash formula how to draw dotted lines for V in the underlying game tree. But

a rather simple algorithm does exist – and it is implicit in the next picture:

F

   x:= s          x:= t

       V              V

z:= s       z:= t             z:= s           z:= t

  V         V   V               V

   y:= s       y:= t       y:=s   y:=t    y:= s         y:= t y:=s              y:=t

   winV        winF      winV   winF     winF          winV winF          winV
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The dotted lines represent V's uncertainty in the third round about F's first move. But

at the same time, in that round, the lines show that she knows her own move in the

second round. We indicate a uniform winning strategy for her with bold-face arrows:

F

   x:= s          x:= t

       V              V

z:= s       z:= t             z:= s           z:= t

  V         V   V               V

   y:= s       y:= t       y:=s   y:=t    y:= s         y:= t y:=s              y:=t

   winV        winF      winV   winF     winF          winV winF          winV

There are some subtleties here in interpretation! V's strategy is indeed uniform by

definition, as it assigns the same move to states that she cannot distinguish. Moreover,

it is a winning strategy, in that, if she follows it, she will in fact end in a winning state,

whatever F does. But when the third round has come, V will not know that her strategy

is winning, as she considers it possible that F played another move, so that her

prescribed move will make her lose. In other words, one can have a uniform winning

strategy without knowing at each stage of following it that playing the rest of the

strategy is in fact winning. This is like following a guide through a bog, having

forgotten the reasons that convinced us that the guide was going to get us across. Some

people find such subtleties annoying: I myself find them delightful.

In game-theoretic terms, notice that the above is a game without Perfect Recall. In the

third round, V has forgotten information which she did have in the second round. Such

games are notoriously harder to interpret than games where players cope with

uncertainty without memory failures, like expert card players.

Knowledge about strategies   The interpretation of what happens under various

scenarios in imperfect information games remains a contested issue, even in game

theory. Incidentally, these difficulties reflect those of interpreting IF syntax, and so

they strengthen, rather than weaken the connection that we are making. For instance,

consider this. Since V is just as rational as you and me, she can see that the above

strategy must make her win. Will not this knowledge assure her in the third round that

she must win? Well, for that to happen, she must remember her strategy. But modeling

the latter knowledge goes beyond knowing where one is in the game tree: it

presupposes a richer representation, including information about possible strategies.

Such 'meta-models' of games have existed in game theory since the 1970s in
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discussions of rational behaviour (cf. Osborne & Rubinstein 1994, Stalnaker 1999),

but they would take us too far here. In particular, if V remembers her strategy

throughout the game, her information should only contain the game played according

to that strategy. But then, the above picture changes, and we get a 'cut-off version':

F

   x:= s          x:= t

       V              V

z:= s                       z:= t

  V               V

  y:= s                             y:=t

     winV            winV

An imperfect information game for ∀∀∀∀x ∃∃∃∃z ∃∃∃∃y /{x, z} x≠≠≠≠y    The preceding game may

be contrasted with the next, where only the dot pattern for V changes:

       F

    x:= s               x:= t

       V              V

z:= s           z:= t                    z:= s       z:= t

  V             V                      V         V

 y:= s          y:= t        y:=s         y:=t       y:= s     y:= t        y:=s              y:=t

    winV       winF           winV         winF        winF   winV              winF    winV

With the uncertainty lines in this game, V has no strategy which she knows to work.

The phenomenon encountered with ∀x ∃z ∃y/x x≠y is called self-signalling. Players

may be able to derive officially unavailable information by a roundabout route. To

work well, signalling arguments depend on epistemic assumptions about knowledge,

such as players know their available moves, how many moves have been played, etc. In

general games of imperfect information, players need not know how many moves

were played. But IF syntax always seems to assume at least this much: V may know

nothing about the object which F chose, but she does know that he made a choice.

I have not formulated a precise algorithm for drawing game trees for IF formulas, but

the general method should be clear from these examples. One first draws the slash-free

game tree, and then, at the level corresponding to an operator, one connects all

histories for E which differ only in positions on which her choice should not depend.
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3.4 Powers, game equivalence, and game algebra

Hintikka & Sandu sometimes call IF  games three-valued: either V has a winning

strategy (this is ‘truth’), or F has a winning strategy (‘falsity’), or neither (‘third truth

value’). This  is about the most niggardly way of giving imperfect information games

some additional structure beyond that of perfect information games.

Uniform powers   Instead, let us look at the power analysis of Section 2.3. This

extends immediately to imperfect information games, but this time considering only

uniform strategies. Thus, in the game of Section 3.2, F retains the powers he had in the

perfect information version, but V loses two former powers, retaining only those for

her remaining strategies “left, left” and “right, right”:

      F

  
         V    V            V

 

    1         2          3      4

powers of F {1, 2}, {3, 4}

powers of V {1, 3}, {2, 4}

This list seems poorer than for the perfect information version. But one can also see it

as a more subtle form of power sharing where V and F have become more equal. In

fact, imperfect information is often needed in designing organizations giving members

just the right amount of influence. This time, the only general conditions that hold are

Monotonicity and Consistency. Van Benthem 2001A shows that these suffice to

represent any power list for two players by an imperfect information game.

Power equivalence   Game equivalence may again be analyzed in terms of powers in

this new sense. An interesting check is that there already exists a calculus to this effect

in game theory, the 'Thompson transformations' (Osborne & Rubinstein 1994, Chapter

11). These match the predictions of power equivalence precisely, at least for games

with Perfect Recall. We are now in a position to answer an earlier question:

What is the correct game equivalent for ∀x ∃y/x x≠y?

The answer is, not ∃y ∀x x≠y, but the much more symmetric formula:

∃y ∀x/y x≠y
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This corresponds to the above game tree, with turns and outcomes interchanged:

      V

  
F             F

    F

    1         3           2        4

Clearly, players' uniform powers are exactly the same here as in the above game. This

scheduling equivalence is about the most basic Thompson transformation.

A similar analysis of the Hodges example ∀x ∃z ∃y/x x≠y shows that it is equivalent to

the formula ∀x ∃y x≠y, which is slash-free and determined! On the other hand, this is

not a Thompson transformation, as we are not assuming Perfect Recall.

IF logic as game calculus    These observations raises some interesting logical issues.

We can see the equivalential part of IF-logic as a calculus for game equivalence, just

as first-order logic encoded such a calculus for perfect information games in Section

2.4. For instance, the equivalence between ∀x ∃y / x  φ   and ∃y ∀x/yφ   is a valid

distribution law of sorts. It also has propositional equivalents, such as

(A∨∨∨∨/∧    B) ∧ (C∨∨∨∨/∧ D)   ↔ (A∧∧∧∧C/∨) ∨ (B∧∧∧∧/∨D)

One interesting question is this:

Does IF logic have a simple subsystem of operator equivalences

which axiomatizes uniform power equivalence over general games?

Operations and game algebra    But there are also pitfalls in extending the account of

Section 2. Hintikka's well-known quarrels with compositionality reflect the game-

theoretic difficulty that imperfect information games 'have no good notion of a

subgame'. Their dotted lines mess up the compositional structure of the underlying

game tree. So, are there natural operations at all on imperfect information games?

Parallel products   Perhaps a shift in perspective is needed. Abramsky 2000 embeds

some IF  games in linear game semantics, using parallel composition to achieve

imperfect information. This would embed part of IF logic into linear logic, although

the sense in which is a bit unclear, given the different complexities. Netchitajlov 2000

proposes further parallel products, allowing for interleaved play.
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Here is a simpler observation from van Benthem 2002B with a similar point. A basic

structure in game theory are strategy matrices. Two players move in parallel, with four

possible outcomes. A parallel phenomenon in logic is 'branching quantification':

∀x  ∃y

Rxyzu

∀z  ∃u

This lets choices for prefixes take place independently – bringing them together at the

end to evaluate the matrix assertion Rxyzu. Such games involve a mild form of

imperfect information: ignorance of others' moves played at the same time. We can

define the corresponding game operation more generally as 

product  G x H

whose runs are pairs of separate runs for G, H with the product of their end states as

the total end state. In terms of players' powers, this works out as follows:

ρi 
GxH  (s, t), X   iff   ∃U: ρi 

G s, U , ∃V: ρi 
H  t, V : UxV  ⊆ X

Players' powers in such games are no longer determined, but they still satisfy

Monotonicity and Consistency, and there is an analogue of the above representation.

Fact The following identities of game algebra hold for product games:

A x (B∪C) =  (AxB) ∪ (AxC)

(A∪B) x C =  (AxC) ∪ (BxC)

(AxB)d  =  Ad x Bd

G x H  = H x G

This may be proved by straightforward analysis of players' powers. The fourth line

also assumes that the component order in product states (s, t) is immaterial.

But now back to IF  games. What would it mean to play an evaluation game φxψ ?

Consider the above branching quantifier. Here is a corresponding slash formula:

∀x ∃y ∀z/{x, y} ∃u/{x, y} Rxyzu
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which suppresses all information flow between the two prefixes. In game-algebraic

terms, this would be written as follows, with a 'test game' at the end:

((∀x ; ∃y) x (∀z ; ∃u)) ; Rxyzu?

Thus, again, at least this fragment of IF logic seems a mixture of general game algebra

and special facts about first-order semantic procedures. Game-algebraic laws now

have IF-instances that allow one to manipulate quantifier prefixes, such as

(∀x ; ∃y) x ((∀z ; ∀u) ∪ (∃v ; ∃u))  =

((∀x ; ∃y) x (∀z ; ∀u))  ∪   ((∀x ; ∃y) x (∃v ; ∃u))

Also, valid principles of IF logic show up as algebraic validities. E.g., the above

∀x ∃y/x Rxy   ↔   ∃y ∀x/y Rxy

says in game-algebraic terms that

(G x H) ; K  =  (H x G) ; K

This principle follows easily from the above game algebra. But IF logic can also detect

invalid algebraic principles. Here is an example of the latter:

(A x B) ;  C  =  (A ; C) x (B ; C)

An IF-counterexample is the slash formula ∃x ∀y/x Rxy, whose evaluation game is not

equivalent to that for the perfect information game for ∃x Rxy ; ∀y Rxy. Given these

observations, can we extend the representation theorem for perfect information games

via evaluation games in van Benthem 2002B to IF logic after all?

3.4 Dynamic-epistemic logic of actions and knowledge

Games as dynamic-epistemic models   Inside information games many interesting

phenomena occur as players move through a game. To bring this out, we must move to

the action level of Section 2.5, with a formalism to describe what players know. Games

of imperfect information have states, moves, and epistemic equivalence relations ~i for

players i between states. The resulting models look like this:

M = (S, {Ra| a∈A}, {~i | i∈I}, V)
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In principle, any uncertainty pattern might occur. Players need not know what the

opponent has played, or they themselves, they need not know whether it is their turn, if

the game has ended, and so on. Game theorists sometimes impose restrictions like

common knowledge of the current turn or moves – which can be special axioms.

Dynamic-epistemic logic   These models support a standard combined dynamic-

epistemic language, with action modalities [a],  <a>  for moves as in Section 2.6, and

knowledge operators for each player:

M, s |= Kiφ iff M, t |=φ   for all  t  s.t. s ~i t

Now we can talk about knowledge and ignorance of players when the game has

reached a certain state. This illuminates the situation depicted in Section 3.1. At the

intermediate states, Verifier’s knowledge may be described as follows:

KV (<y:=s>win V ∨ <y:=t>win V) 

¬KV<y:=s> winV &  ¬K V<y:=t> win V

This is a familiar distinction from intensional logic. V knows  de dicto that she has a

winning move, but she lacks a de re version: there is no particular move which she

knows to be winning. You may know the ideal partner is walking around in this dark

rain-swept town without knowing of any passer-by whether (s)he is that partner...

Players can also have iterated knowledge about others’ knowledge and ignorance via

formulas like KiKjφ , Ki¬K jφ, which may be crucial to understanding the course of a

game. Also players may achieve common knowledge about certain facts:

C{1, 2} φ φ  is true in all those states that can be reached from

the current one in a finite number of  ~1  and  ~2 steps

E.g., in the above game, E's plight is common knowledge between the players.

As for systematic reasoning about players’ actions, knowledge, and ignorance in such

models, the complete set of axioms for validity in dynamic-epistemic logic is

(a) the minimal dynamic logic for the modal operators [a]

(b) epistemic S5 for each knowledge operator Ki

With a common knowledge operator added, we also get the minimal logic of that (cf.

Fagin et al. 1995). There are no further axioms in general – but see below.



24

Defining uniform strategies     In these game models, we can also define players’

strategies as in Chapter 2. Recall that the relevant strategies now are the uniform ones,

which have to prescribe the same moves at indistinguishable nodes for a player where

it is her turn. Speaking generally, this restricts the possible behaviours. The above

examples suggest that the uniform strategies are the ones of which a player knows that

they lead to the desired result. This will show in available strategy definitions of this

language, which may contain instructions like

"IF KyouP THEN do a ELSE do b"

It was suggested in Section 3.3 that uniform strategies are precisely those that force a

set of outcomes such that their owners know at each stage of using them that they will

produce that set. But this is still imprecise, and not always true – e.g. with 'self-

signalling' examples like the above ∀x ∃z ∃y/x x≠y. A more precise description is

found in van Benthem 2001A, which shows that for players with Perfect Recall,

uniform strategies and ‘fully predictive’ strategies of this epistemic kind indeed

coincide. This may be seen as a kind of epistemic analysis of Skolem functions.

Varieties of imperfection  Within the total universe, specific imperfect information

games may validate additional epistemic-dynamic axioms, such as the game-theoretic

assumptions mentioned above, which also hold for IF games:

 (a)  The fact who is to move is common knowledge between players

(b)  All  indistinguishable nodes have the same possible actions

More generally, in this way, we can do an epistemic analysis of types of imperfect

information game, distinguishing different strands inside full IF syntax. In particular,

the cited reference shows how one can distinguish ways of playing games, and

describe their effects. For instance, consider players who have the above-mentioned

feature of Perfect Recall, operating with perfect memory amidst the structural

uncertainties introduced by the game itself. In particular, the latter may arise through

defective observation of other players' moves. This restricts the pattern of dotted

uncertainty lines in ways expressed by two additional principles:

(a) turni & K i[a] φ  →  [a]K iφ 

(b) ¬turni & K i[A] φ  →  [A]K iφ

with A the union of all actions available to the other player



25

These axioms say that moves of player i in this game commute with her knowledge.

This commutation fails in general dynamic-epistemic logic, since my normal actions

can have epistemic side-effects. I may know that “having a beer” will lead to my

“being a bore”, without knowing I am being a bore once I have drunk the beer. The

resulting restriction on games is a commutative diagram. E.g., for (a) we get:

       x   i i u ∀∀∀∀xyz: TURNix & Ra xy & y ~i z

         a →→→→        ∃∃∃∃u: x ~i u & Ra uz

y i z

One can take this restriction to IF games, and ask just which syntactic slash patterns

obey this commutative condition. In particular, the preceding diagram says that V's

slashes at some level in a quantifier prefix must have ancestors at the preceding prefix

position, if the latter is an existential quantifier. The result of the restricted syntax

might be a simpler sublogic for game equivalence.

At an opposite extreme to Perfect Recall, players have Bounded Memory, allowing

them to remember only the last k moves played for some k. This, too, can be expressed

in dynamic-epistemic logic. E.g., with  k=1, we get a characteristic axiom

E(<a>T & φ) →  U[a∪]¬K i¬φ

 
where E (U) is an existential (universal) modality. This, too, is a pattern of IF syntax:

slashes should start appearing beyond a certain distance in the quantifier prefix.  More

generally then, it would be of interest to look at the fine-structure of IF games, and

characterize those fragments of IF syntax which model natural ways of playing games,

with their a corresponding axioms in our logic. The dynamic-epistemic language will

allow us to reason about V and F's interaction in these games.

3.5 A second summary

We have shown how IF games may be seen as perfectly ordinary games of imperfect

information. The fact that there are some difficulties of making intuitive sense of them

merely reflects intriguing similar subtleties in game theory. At the level of players'

powers, on can do an analysis of equivalence in terms of uniform strategies, and even

an incipient game algebra. This led to open questions about IF logic serving as a

complete algebra for varieties of imperfect information games. But perhaps the most

interesting perspective is the more detailed action level. There we can use explicit
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epistemic logic to describe players' progress in a game, and define interesting types of

special behaviour. These correspond to IF sublanguages, with perhaps better-behaved

logics. Thus, we get a handle on the fine-structure of IF logic.

4 Discussion

Finally, we point at some further issues concerning IF logic which we had to forego

here. After that, we state our main claims, and draw our general conclusions.

Logical aspects    There are many further logical aspects to IF logic in the above.

First, it would be good to add an explicit component of strategy calculus, dealing,

amongst others, with Skolem functions. But the latter would have to be generalized, as

we are dealing not just with V but also with independent powers of F. Instead of

embedding IF  logic into second-order logic as it is now, this might enrich second-

order logic to a system with a duality between Skolem functions for two players.

Another aspect is the question whether the first-order language, even when slashed, is

really the right formalism for the enterprise. With many other deviant logics, one is led

to introduce new logical operators reflecting the new setting. Examples are the

product operations of linear logic, which made their appearance in Section 3.3. Other

examples might be polyadic quantifiers, letting players pick bunches of objects at the

same time. Redesign of the IF syntax is also taken up in Hintikka 2002.

Finally, a widely noted desideratum, one would like to have a more general account of

'IF-ing', which can also be applied to study imperfect information versions of other

logic games, such as proofs where participants do not know some earlier moves, or

model comparisons where players must make do with a finite memory.

Game-theoretic aspects     IF games introduce one type of more realistic structure over

traditional logic games of semantic evaluation, viz. imperfect information. But there

are other candidates. For instance, real game theory is about games where players have

finer preferences than the 'win'/'lose' of logic games. This can also be done in logic

games, giving V, F independent evaluations of atomic facts in a model. This fits with

modern default logics using preferences for players in their models. An example was

the non zero-sum battle-field game of Section 2.2:
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    F
     x:= s x:= t

V V

     y:= s y:= t      y:= s y:= t

  s≠s          s≠t t≠s t≠t

V-value 0 1 1 0

F-value 1             ε>0 0  1

Now the deeper issue is this. In game theory, preferences  lead to Nash's notion of

strategic equilibrium, and finer predictions of behaviour. E.g., the original game of

Section 2.2 has two Nash equilibria: V plays her winning strategy, F any strategy:

    F
     x:= s x:= t

V V

        y:= t      y:= s

         s≠t t≠s

The game with the ε-preference has only one equilibrium, resulting in

     F
  x:= s

        V

         y:= t

            s≠t

The set of Nash equilibria of its evaluation games might be a good candidate for a

more radical game-theoretic denotation of a logical formula!

Another realistic game-theoretic feature are coalitions. Perhaps the most significant

move in epistemic logic after Hintikka's pioneering work has been the introduction of

operators that are typical to groups of agents, such as common knowledge (Fagin et al.

1995, Osborne & Rubinstein 1994). It suggests a similar extension of IF-logic with

joint actions for groups of agents. In particular, the players V, F themselves might be

teams. A first logical analysis of coalitions is found in Pauly 2001, but epistemic and

dynamic logic have not yet taken in this notion in its full generality.

Probability?    But things are even more intriguing. The basic insight in game theory

has been that strategic equilibria may only exist in a game when we move from pure to

mixed strategies, using probabilistic mixtures of pure strategies. This will not arise in
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the standard logic games of Section 2 with preferences added, as we can always find

Nash equilibria there using the well-known algorithm of 'backward induction', a

numerical version of the proof of the Zermelo Theorem on determinacy.

Probabilistic solutions do arise in some IF games! The little game in Section 3.2

      F

x:= s  x:= t   

V                 V          V

 y:= s       y:= t    y:= s       y:= t

          winF          winV            winV          winF

is just the game-theoretic classic of ‘Matching Pennies’. This has an optimal value

(1/2, 1/2), achieved by players using their uniform strategies with probability 1/2.

I find this observation extremely intriguing from a logical point of view. We know that

probability sometimes emerges naturally in pure logic, telling us something about

long-term behaviour. An example are the Zero-One laws of first-order logic, which

state that with increasing finite domain size, the probability that any given first-order

formula is true goes to either 1 or 0. Could it be that IF games also involve an essential

probabilistic feature, which we just have not been able to identify yet?

Architecture of intended applications    The original grand motivations of game-

theoretical semantics (Hintikka & Sandu 1997) had to do with describing large-scale

cognitive systems such as natural language. Evaluation games are just a small part of

this story, and more can be said. Natural language, or ordinary reasoning, involve

many different games. There are terminating finite-depth games for short-term tasks,

such as evaluation or proof. Nice recent examples on very different principles from IF

games are the interpretation games of van Rooy 2001 with speaker/hearer preferences

from linguistic optimality theory, and the argumentation games of Rubinstein 2000

analyzing Gricean pragmatics. But there are also infinite games providing the

hopefully never-ending 'operating system' for these short-term tasks, such as the

procedural rules of civilized conversation or debate. Another missing feature then is an

account of architecture: how do different games fit together into one coherent system?

How can information be passed from one game to another?

5 Conclusion

What has been shown in this paper is that logical evaluation games, either Hintikka's

original ones or their IF versions, can be linked systematically with game-theoretic
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themes, some of them present in existing game theory, and some of them new. In

particular, this has led to some insights and new questions about game-theoretical

semantics, summarized in Sections 2.6 and 3.5, which need not be repeated here.

Whatever its merits as an exegesis of Hintikka's intentions, I hope this has been a

convincing sample of the lively current interface between logic, computer science, and

game theory, which naturally covers many more topics (cf. van Benthem 1999–2002,

and dedicated conferences such as TARK, LOFT, and GAMES).

More specifically toward IF games, we propose viewing them in a systematic game-

theoretic light, which suggests a host of new perspectives and questions. In doing so,

one encounters Hintikka's pioneering work once more, since the tool of choice in this

area is his very own epistemic logic in its original form. This is somewhat surprising,

since many of the informal explanations behind the Hintikka & Sandu approach

involve players' knowledge, but they are left implicit. Admittedly, there are published

IF versions of epistemic languages, but my point is rather that one can illuminate the

workings of any IF by means of standard static epistemic operators. Of course, one can

then play a carrousel research game of systems  EL(IF(EL(IF…

Finally, let us briefly reconsider the central IF motivation of possible independence

between quantifiers. As said before, Hintikka's writings leave open an interpretation

where this is the central topic, and the games just a discardable wrapping. This is a

crucial decision point. For, if we take the games seriously, then eventually,

dependence and independence will not be the central notions. They are rather

derivatives from something still more central, namely, interaction between players.

I will make no further defense of the latter here, but the issue cannot be evaded.

Nevertheless, I totally agree that independence is a crucial logical topic. But, then we

must be radical, and account for the fact that it is quite diverse, with intuitively

different sources. Hintikka describes one of these: procedural dependencies which

arise in a process of evaluating assertions. These are absolutely important – but there

are also objective dependencies in the nature of things, lying encoded in models

whether or not we interpret anything at all. Objective dependencies have been studied

by van Lambalgen 1995 on the logic of independent events in probabilistic reasoning.

Another example, with more published results, is 'generalized assignment semantics'

for first-order logic (Németi 1985, van Benthem 1996, 1997), which drops the

assumption of the standard Tarskian models that values for variables can be modified

completely independently of what happens to other variables. This, too, generates a

new base logic of dependent and independent quantifiers different from standard first-
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order logic, while supporting a richer logical vocabulary of polyadic quantifiers and

substitutions. But the intriguing difference with IF  logic is that in this case, the true

first-order basic logic without any built-in objective independence assumptions has

lower, rather than higher complexity: it becomes decidable! Were I to write a paper on

independence – which I have not done – a comparison between these varieties of

independence logics would be the first order of business.

Despite possible divergences in interests, one only writes a long paper like this if the

subject seems worth-while. IF logic offers an attractive laboratory for studying the

logic of imperfect information and information flow generally. Jaakko’s broad

intellectual vision and challenging ideas over the years have been remarkable – and

like many colleagues, I am still happy to experience his continued influence.
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