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Abstract

Games are an important tool in mathematics and logic, providing a clear and intuitive
understanding of the notions they define or characterize. In particular, since the seminal
work of Wadge in the 1970s, game characterizations of classes of functions in Baire space
have been a rich area of research, having had significant and far-reaching development
by van Wesep, Andretta, Duparc, Motto Ros, and Semmes, among others.

In this thesis we study the connections between these games and the notion of
Weihrauch reducibility, introduced in the context of computable analysis to express
a particular type of continuous reducibility of functions. Especially through the work
of Brattka and his collaborators, Gherardi, de Brecht and Pauly, among others, several
functions — commonly referred to as choice principles — have been isolated that capture
the complexity of classes of functions with respect to Weihrauch reducibility.

In particular, we use the games for the corresponding classes to provide new proofs
of the Weihrauch-completeness of countable choice for the Baire class 1 functions and of
discrete choice for the functions preserving ∆0

2 under preimages, and to introduce new
Weihrauch-complete choice principles for the class of functions preserving ∆0

3 under
preimages and for a particular class Λ2,3 characterized by a games of Semmes. In the
process, we recast some of these games in a different style, which also allows for a
uniform intuitive view of the way each game presented is related to the class of functions
it characterizes.



Chapter 1

Introduction

Games have had considerable importance in several areas of mathematical logic since at
least the middle of the 20th century. They have been used, e.g., to provide semantics
for languages (see [13] for a survey) and to compare structures as in the Ehrenfeucht-
Fraïssé game (see, e.g., [19, p. 52ff.]), among many other applications, and have been
an important tool in set theory and the foundations of mathematics, starting with early
work by Banach, Borel, Zermelo, and Kőnig, among others — see, e.g., [16, §27] for a
thorough historical account of the subject—, and being heavily influenced by the seminal
work of Gale and Stewart [10] on the determinacy of certain types of set-theoretical
infinite games. One of the reasons for such a broad range of applications of games is
that they provide an intuitive and clear understanding of several structural properties of
their underlying objects, and these properties may then be used to help solve problems
which could otherwise be less tractable — a prototypical example is Blackwell’s short
and elegant game proof of Kuratowski’s coreduction principle for analytic sets [2].

In particular, game characterizations of classes of functions in Baire space have been
in vogue since the 1970s, starting with Wadge’s characterization of continuous functions
via what is now known as the Wadge game, a result which would only be published years
later in his PhD thesis [27] (see also [28] for Wadge’s later account of this development).
New advances were made mainly through the work of van Wesep and his backtrack
game [30], later proved by Andretta to characterize the functions preserving the class ∆0

2
under preimages, Duparc’s (unpublished) eraser game for Baire class 1 (see, e.g., [25]),
and with significant recent development by Semmes and his multitape, tree, G1,3, and
G2,3 games characterizing the functions preserving the class ∆0

3 under preimages, the
Borel measurable functions, the Baire class 2 functions and another related class, later
denoted as Λ2,3, respectively [26]. The work of Motto Ros and his general results about
such characterizations [20, 21, 22] are also worthy of special note, among the research of
other people in the area.

This thesis is about the connection between these types of games and the notion
of Weihrauch reducibility, a certain type of continuous reducibility introduced in the
unpublished work of Weihrauch in the early 1990s (see, e.g., [5]). Weihrauch was working
in the context of computable analysis, where one is interested in questions involving the
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computable content of classical mathematical theorems. This reduction gives rise to a
very rich degree structure which in a sense extends Turing and Medvedev degrees from
computability theory [6, 12].

In this context, some functions have been isolated that capture the Weihrauch-
complexity of certain classes of functions. These are commonly referred to by the name
choice principles, the reason being their close relation to the operation of choosing an
element from a set, given just a certain type of representation of the set. Through the
work of Brattka and his collaborators [3, 5], Weihrauch-complete choice principles for
the continuous functions, the functions preserving the class ∆0

2 under preimages, the
Baire class k+ 1 functions with k ∈ ω, and the Borel measurable functions have already
been uncovered.

In this thesis we give a uniform treatment of the games from the literature, and
then apply them both to give new proofs of the Weihrauch-completeness of some choice
principles, as well as to introduce new complete choice principles for the class of functions
preserving the class ∆0

3 under preimages and the class Λ2,3.
The text is organized as follows.
We close the present chapter with a brief review of some necessary preliminaries, and

fix the notation to be used in the rest of the thesis.
In Chapter 2, we review the aforementioned games from the literature. In some cases

our presentation differs from the original, so we prove some general results about the
equivalence of certain types of presentations of games. We close the chapter with an
overall picture of the games presented, showing in an intuitive sense how varying the
value of two parameters — as dictated by the values m and n of the class Λm,n being
characterized, in the first six cases — one can obtain all seven games above.

In Chapter 3, we review the basics of Weihrauch reducibility of functions between
represented spaces, presenting without proof the completeness of the choice principles of
k-countable choice for Baire class k with k ≥ 2 and of closed choice on Baire space for the
Borel measurable functions. Furthermore, we present with new proofs the completeness
of discrete choice for Λ2,2 — although this is a fairly straightforward adaptation of a
known result — and of countable choice for Baire class 1, and present two new complete
choice principles for for the classes of functions preserving the class ∆0

3 under preimages
and the class Λ2,3, respectively, obtained in a direct way from the corresponding game
characterizations.

Finally, in Chapter 4 we review the results presented in the thesis and point out some
possible paths for future development.

Preliminaries and notation

We assume some knowledge of descriptive set theory, although for the purposes of this
thesis only the development of that theory until the definition of the Borel hierarchy is
necessary. Most of the notation we use is standard and can be found in the classic book
by Kechris [17]. However, let us take this opportunity to fix some of the most important
notation and nomenclature used in this thesis.
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Sequences

As usual in descriptive set theory, we will mainly work on Baire space ωω, the topological
space composed of countably infinite sequences of natural numbers. The topology on
ωω is the product topology of ω, itself endowed with the discrete topology; this topology
has a basis of clopen sets

{[σ] : σ ∈ ω<ω},
where ω<ω is the set of finite sequences of natural numbers, and

[σ] := {x ∈ ωω : σ ⊂ x},

for each σ ∈ ω<ω. This topology is also generated by the complete metric

d(x, y) =
{

0, if x = y,

2−n, if n is least such that x(n) 6= y(n).

We will usually denote elements of ωω by x, y, z, . . ., and elements of ω<ω by σ, τ, . . .
Sometimes it will also be useful to have the notation ω≤ω := ω<ω ∪ ωω of the set of all
sequences of natural numbers, finite or otherwise. We will use angle brackets when we
want to specify the elements of a sequence explicitly, e.g., 〈2, 3, 5, 7, 11〉 is the sequence
of the first five prime numbers. The empty sequence 〈〉 is denoted by ε. Given n ∈ ω,
we denote by ~n the infinite sequence 〈n, n, n, . . .〉 ∈ ωω.

Given σ ∈ ω<ω we denote by |σ| the unique n for which σ ∈ ωn, and call it the length
of σ. We denote by lastσ the last element of σ, i.e., the number σ(|σ| − 1).

Given σ ∈ ω<ω and s ∈ ω≤ω, we denote by σ_s the concatenation of σ and s, i.e.,
the sequence with domain {n ∈ ω : n < |σ| or n+ |σ| ∈ dom s} and given by

(σ_s)(n) =
{
σ(n), if n < |σ|,
s(n+ |σ|), otherwise;

thus σ_s = 〈σ(0), σ(1), . . . , lastσ, s(0), s(1), . . .〉, with s determining whether this se-
quence is finite or infinite. We will sometimes abuse notation slightly and write n_σ and
σ_n instead of 〈n〉_σ and σ_〈n〉 respectively.

Given s, t ∈ ω≤ω, we write s || t when either s ⊆ t or t ⊆ s, and s ⊥ t when neither is
the case.

Trees

A tree is a set T ⊆ ω<ω that is closed under initial segments. An infinite path of T , or
simply a path of T , is an element x ∈ ωω such that x�n ∈ T for any n ∈ ω; we then say
that each x�n is on the path x. We say T is pruned when every σ ∈ T is on some path.
We denote by [T ] the set of paths of T , and call it the body of T . The following classic
result will be useful.
Theorem 1.1. A set X ⊆ ωω is closed iff there exists a pruned tree T such that X = [T ].

The set of all trees is denoted by T (ω), the set of finite trees by Tω(ω), and the set
of trees with a unique path by UP.
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Function classes

Given X ⊆ ωω and countable ordinals α and β, we will denote by Λα,β(X) the class of
functions f : X ωω for which

f−1(U) ∈ Σ0
β(X)

for any U ∈ Σ0
α(ωω), where as usual X is endowed with the subspace topology — thus,

in particular, Σ0
β(X) = {A ∩X : A ∈ Σ0

β(ωω)}. When X is clear from the context, we
will omit it from the notation and simply write Λα,β.

In this thesis, we will denote partial functions by dashed arrows, e.g., we will write
f : A B to denote that f is a function with dom f ⊆ A and ran f ⊆ B. Then, when
A = B = ωω, we will simply write f ∈ Λα,β instead of f ∈ Λα,β(dom f).

Recall that, given an ordinal α, a function f : ωω ωω is said to be of Baire class
α when f is the pointwise limit of functions fn : dom f ωω such that either α = 1
and each fn is continuous, or for each fn there exists 1 < αn < α such that fn is of
Baire class αn. We will make repeated implicit use of the following result, whose proof
we omit.

Theorem 1.2 (Lebesgue, Hausdorff, Banach cf. [17, Theorem 24.3]). Let f : ωω ωω.
Then

f is of Baire class α iff f ∈ Λ1,α+1.

Tupling functions on ω and ωω

Let us briefly fix some bijective tupling functions which will be used throughout the
thesis, particularly in Chapter 3. We will use the same notation for most of them, but
which function is meant in each case will always be clear from the context.

– The pairing p·q : ω2 ω, given by

pn0, n1q = 1
2(n0 + n1 + 1)(n0 + n1) + n1,

which associates each number n ∈ ω to a pair pn0, n1q in a dovetailing fashion, as
seen in Figure 1.1 below. In particular, this function and its inverse are computable.

Figure 1.1: Pairing on ω.
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– The finite tupling p·q : ωk ω, given by

pn0, . . . , nk−1q = pn0, pn1, p· · · , pnk−2, nk−1q · · ·qqq.

– The finite tupling p·q : (ωω)k ωω, given by

px0, . . . , xk−1q(n) = xk′(n′),

where n′ =
⌊
n
k

⌋
and k′ = n mod k, i.e.,

px0, . . . , xk−1q = 〈x0(0), x1(0), . . . , xk−1(0), x0(1), x1(1), . . . , xk−1(1), . . .〉,

with inverse
x 7→ 〈(x)k0, . . . , (x)kk−1〉,

where (x)kn = 〈x(n), x(n+ k), x(n+ 2k), . . .〉.

– The infinite tupling p·q : (ωω)ω ωω, given by

ppq(pn, kq) = p(n)(k),

with inverse
x 7→ 〈(x)0, (x)1, . . .〉,

where (x)n(k) = x(pn, kq).

It will also be useful to have the following non-bijective tupling functions for ω<ω.

– the injection p·q : (ω<ω)2 ω<ω, with domain {〈σ, τ〉 : |σ| = |τ |}, given by

pσ, τq = 〈σ(0), τ(0), σ(1), τ(1), . . . , lastσ, last τ〉, and

– for each n ∈ ω, the function (·)n : ω<ω ω<ω, given by

(σ)n = 〈σ(pn, 0q), σ(pn, 1q), . . . , σ(pn, kq)〉,

where k is maximum such that pn, kq < |σ|.

Note that in particular we have

px, yq =
⋃
k∈ω
px�k, y �kq and

(x)n =
⋃
k∈ω

(x�k)n

for any x, y ∈ ωω and n ∈ ω.
The following result will be useful in the sequel.

Theorem 1.3. The finite tupling p·q : (ωω)k ωω is continuous.
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Proof. Let U ⊆ ωω be open, and let (x0, . . . , xk−1) ∈ (p·q)−1[U ]. Then there exists n ∈ ω
such that, for all z ∈ ωω, if z � n = px0, . . . , xk−1q � n then z ∈ U . Therefore, letting
m := dnk e, for any (u0, . . . , uk−1) ∈ (ωω)k we have

d((u0, . . . , uk−1), (x0, . . . , xk−1)) < 2−m =⇒ u0�m = x0�m, . . . , uk−1�m = xk−1�m
=⇒ pu0, . . . , uk−1q�n = px0, . . . , xk−1q�n
=⇒ (u0, . . . , uk−1) ∈ (p·q)−1[U ],

where the metric d on (ωω)k used above is the usual maximum metric. Hence (p·q)−1[U ]
is open. �

A note on end-of-proof symbols

In this thesis, as we already did in Theorem 1.3 above, we will use the symbol � to
signify the end of a proof. However, in order to facilitate the reading, when we structure
a proof in separate claims we will number them sequentially within that proof and signify
the end of each of their “mini”-proofs by the symbol �n , where n is the number of the
respective claim being proved. We will omit this symbol when the end of the mini-proof
of the claim and of the overall proof coincide.
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Chapter 2

Games

In this chapter we review the games in the literature that characterize the classes of
continuous, Baire class 1, Baire class 2, Λ2,2, Λ2,3, Λ3,3, and Borel measurable functions,
presenting some of them in a slightly novel way that will highlight the relationships
between them and help us construct complete choice principles for the corresponding
classes in the next chapter.

2.1 Games for functions on ωω

In vague terms, for our purposes a game is played between two players, I and II, who
take turns in infinitely many rounds, each building at any given round a finitary ap-
proximation of an infinite object, and having access to one another’s past moves. These
infinite objects must satisfy a certain given set of rules for each player, and the winning
condition of the game is then expressed in terms of whether or not the two constructed
objects are related in some prescribed way. We will follow the usual convention and
assume that I is a man and II is a woman.

The particular case of games for functions in Baire space has a well-established
tradition in descriptive set theory, starting with Wadge’s seminal work in the 1970s
and 80s, and continuing with developments by van Wesep, Duparc, Andretta, and more
recently through the work of Motto Ros and Semmes, among others. We will study
these games extensively in this chapter, but for an intuitive idea we can say that in
them, players I and II build elements of Baire space x and y, respectively, and the
winning condition is then given in terms of whether or not we have f(x) = y, where
the parameter f is a function from Baire space into itself that is known by both players
from the offset. As a matter of fact, in all games we will consider the same fixed set of
rules for player I, and so we will specify each different game by just describing the rules
for II.

2.1.1 Definitions

Our style of presentation is largely based on Motto Ros’s PhD thesis [20].
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Definition 2.4. A game is a triple G = (M,R, ι), where M is a nonempty set of moves,
R ⊆Mω is a nonempty set of rules, and ι : R ωω is the interpretation function of G.

Given f : ωω ωω and a game G = (M,R, ι), a run of G for f , or a run of G(f),
is played by two players, I and II, in ω rounds. At each round n, I first picks a natural
number xn and II then picks an element yn ∈ M . At the (end of the) nth round of
the run, we denote by I(n) and II(n) the sequence of moves played so far by I and II
respectively; thus, e.g., I(n) = 〈x0, . . . , xn〉. After ω rounds, I produces x := 〈x0, x1, · · ·〉
and II produces y := 〈y0, y1, . . .〉. II wins the run when x 6∈ dom f , or when y ∈ R and
f(x) = ι(y); otherwise I wins.

Given a game G = (M,R, ι), a strategy for I in G is a function φ : M<ω ω. We
say that I follows φ in a run of G(f) when he plays φ(ε) at round 0 and φ(II(n− 1)) at
round n > 0 of that run. Then, given σ ∈M<ω, we denote by φ ∗ σ the finite sequence
produced by I after |σ| + 1 rounds of a run of G(f) where he follows φ and II’s first
moves produce σ; thus φ ∗ σ = 〈φ(σ �0), φ(σ �1), . . . , φ(σ)〉. This notation is extended to
φ ∗ y, where y ∈ Mω, by putting φ ∗ y :=

⋃
n(φ ∗ (y �n)). A strategy φ for I is winning

in G(f) when I wins all runs of G(f) where he follows φ, i.e., when φ ∗ y ∈ dom f for all
y ∈Mω, and f(φ ∗ y) 6= ι(y) whenever y ∈ R.

Similarly, a strategy for II in G is a function φ : ω<ω M . We say that II follows
φ in a run of G(f) when she plays φ(I(n)) at round n of that run. Given σ ∈ ω<ω, we
denote by σ∗φ the finite sequence produced by II after |σ| rounds of a run of G(f) where
she follows φ and I’s first moves produce σ; thus σ ∗ φ = 〈φ(σ �1), φ(σ �2), . . . , φ(σ)〉.
This notation is extended to x ∗ φ, where x ∈ ωω, by putting x ∗ φ :=

⋃
n((x � n) ∗ φ).

A strategy φ for II is legal in G(f) when x ∗ φ ∈ R whenever x ∈ dom f , and such a
strategy is winning in G(f) when II wins all runs of G(f) where she follows φ, i.e., when
x ∗ φ ∈ R and f(x) = ι(x ∗ φ) for all x ∈ dom f .

Given a class Γ of partial functions from ωω to ωω and a game G, we say that G
characterizes Γ when for every f : ωω ωω we have

f ∈ Γ iff II has a winning strategy in G(f).

In this chapter, our main objective is to review the games in the literature that
characterize several classes of functions in the stratification Λm,n, as well as the Borel
measurable functions. It will turn out to be useful to present the games in a uniform
fashion, each game being given in terms of player II being allowed to change tapes,
pass, and erase past moves. This unified presentation of the games will help make the
relationships between them clear, and will also come in handy when we are trying to
extract choice principles from them in Chapter 3.

2.1.2 Default moves, rules, and interpretation

We will give player II countably many tapes on which to play, intuitively meaning
that she will be able to build different potential outputs in parallel, as long as in the
long run she chooses one of them as her actual output. This is implemented by a set
T := {tn : n ∈ ω} of moves, with tn interpreted as change to the nth tape.

8



Given a set M and σ ∈ (M ∪ T)<ω, n ∈ ω and m < |σ|, we say that σ(m) is
played on tape n when σ(m) 6∈ T, and either σ(k) = tn for the maximum k < m such
that σ(k) ∈ T, or n = 0 and there is no k < m such that σ(k) ∈ T. For any n ∈ ω,
the function tapen : (M ∪ T)<ω M<ω then extracts the contents of the nth tape of
σ ∈ (M ∪ T)<ω as the finite sequence of moves in σ that are made on tape n. Formally,
tapen is defined recursively by tapen(ε) = ε and{

tapen(σ_s) = tapen(σ)_s, if s is played on tape n
tapen(σ_s) = tapen(σ), otherwise,

and its extension tapen : (M ∪ T)≤ω M≤ω is given by

tapen(x) =
⋃
k∈ω

tapen(x�k)

for x ∈ (M ∪ T)ω. We then define UT := {x ∈ (M ∪ T)ω : ∃!n. tapen(x) ∈ Mω}. For
x ∈ UT, we denote the unique infinite sequence tapen(x) by o(x) and call it the output
tape of x.

Passing and erasing moves are implemented by the sets P := {p} and E := {en :
n ∈ ω}, with en interpreted as erase all but the first n elements of the current tape.
Formally, given a set M we define a function erase : M<ω × ω × ω M<ω recursively
by erase(ε, n,m) = ε, erase(σ, n, 0) = σ, and

erase(σ_s, n,m+ 1) =
{

erase(σ, n,m), if s ∈M and is played on tape n,
erase(σ, n,m+ 1)_s, otherwise,

which now allows us to define ι∗ : (M ∪ P ∪ E)<ω M<ω recursively by ι∗(ε) = ε and

ι∗(σ_s) =


ι∗(σ)_s, if s ∈M ,
ι∗(σ), if s = p,
erase(ι∗(σ), n, |tapen(ι∗(σ))| −m), if s = em is played on tape n.

Given that they will all be defined with (subsets of) the same sets of moves M∗ :=
ω ∪P∪E∪T, what will make the games we consider in this thesis significantly different
will be their rules and interpretation functions. Still, the rules will always be given as
subsets of

R∗ := {x ∈ (ω ∪ P ∪ E ∪ T)ω : x ∈ UT and ∀n ∃k > n. o(x)(k) ∈ ω},

and the interpretation functions will be given in terms of ι∗.

2.2 Classical games

In this section we review some of the more well-established games in the literature,
namely the Wadge game, the eraser game, and the backtrack game, characterizing con-
tinuous, Baire class 1, and Λ2,2 functions, respectively.
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2.2.1 The Wadge game

In his PhD thesis [27], William Wadge introduced a game characterizing the continuous
functions. This is the simplest game we will study in this thesis, and upon which all the
other games will be built.

Definition 2.5. The Wadge game is the game GW = (MW, RW, ιW), where

MW = ω ∪ P,
RW = Mω

W ∩R∗, and
ιW(x) =

⋃
n∈ω

ι∗(x�n).

Thus, intuitively GW is the game in which II can elect to pass — i.e., not play any
natural number — for finitely many rounds before making any valid move.

Let us now prove that the Wadge game characterizes the continuous functions.

Theorem 2.6 (Wadge). Let f : ωω ωω. Then

f is continuous iff II has a winning strategy in GW(f).

Proof. (⇒) The continuity of f means that, for all σ ∈ ω<ω and for all x such that
f(x) ∈ [σ], there exists n such that f [x�n] ⊆ [σ]. In particular, for all i ∈ ω and x ∈ ωω
there exists σix ∈ ω<ω such that x ∈ [σix] and f [σix] ⊆ [f(x)� i].

Then the following is a winning strategy for II.

Strategy: At round n, let i := |ι∗(II(n− 1)|. If I(n) ∈ {σi+1
x : x ∈ ωω} then play

f(I(n)_~0)(i); otherwise pass.

(⇐) By contraposition. Suppose f is not continuous, and let σ ∈ ω<ω be such that
U = f−1[σ] is not open. Thus, there exists x ∈ U such that, for all n, there exists
xn ∈ [x � n] with xn 6∈ U , i.e, such that f(xn) 6∈ [σ]. Then the following is a winning
strategy for I.

Strategy: Play x(0), x(1), . . . until the round n in which II plays σ, then play xn(n +
1), xn(n+ 2), . . . �

2.2.2 The eraser game

The eraser game, usually attributed to unpublished work by Jacques Duparc (see,
e.g., [25]), builds upon the Wadge game in order to characterize the Baire class 1 func-
tions. Duparc’s idea was to allow player II to erase her past moves, as long as for each
position in the output there is a round after which it is never erased again.

Definition 2.7. The eraser game is the game Ge = (Me, Re, ιe), where

Me = ω ∪ P ∪ E,
Re = Mω

e ∩
{
x ∈ R∗ : ∀n. {k ∈ ω : x(k) = en} is finite

}
, and

ιe(x) = lim
n∈ω

ι∗(x�n).

10



The limit in the definition above is taken pointwise, i.e., given a sequence 〈σn〉n∈ω
in ω<ω and x ∈ ωω, we have x = limn σn iff ∀k ∃N ∀n ≥ N. |σn| > k and σn(k) = x(k).
Thus for all x ∈ Re we have that limn ι∗(x�n) is indeed well-defined.

Let us now move straight into the proof that the eraser game characterizes the Baire
class 1 functions.

Theorem 2.8 (Duparc, folklore). Let f : ωω ωω. Then

f is Baire Class 1 iff II has a winning strategy in Ge(f).

Proof. (⇒) Let f0, f1, . . . be continuous functions with domain dom f , such that f =
limn fn. For each n, let φn be a winning strategy for II in GW(fn), and let φ be the
following strategy for II.

Strategy: Begin by declaring that we are following f0. At round n, when following fN , for
ease of notation let σ := ι∗(II(n−1)). If there exists a maximum k ∈ {N+1, . . . , n} such
that σ ⊥ ι∗(I(n) ∗ φk), then play em for the least m such that σ(m) 6= ι∗(I(n) ∗ φk)(m),
and declare that we now following fk. Otherwise, if σ ⊂ ι∗(I(n) ∗ φN ), then play
ι∗(I(n) ∗ φN )(|σ|), else pass.

Claim 1. The strategy φ is winning for II in Ge(f).
Indeed, let x ∈ dom f and i ∈ ω. Since limn fn = f , there exists N ∈ ω such that

for all n ≥ N we have fn(x)(i) = f(x)(i). If for some round k we have |ι∗(x�k ∗ φ)| > i
but ι∗(x�k ∗ φ)(i) 6= f(x)(i), then at that round II was following some fm with m < N .
Therefore, at some later round II will erase her ith output, and start following some fm′

with m′ > m. Thus, at some later round II will define her ith output while following
some fn with n ≥ N , and never again erase it. Hence

ιe(x ∗ φ)(i) = lim
n∈ω

ι∗((x�n) ∗ φ)(i)
= ιW(x ∗ φN )(i)
= fN (x)(i)
= f(x)(i) �1

(⇐) Let φ be a winning strategy for II in Ge(f). For each n ∈ ω, define fn : dom f →
ωω by

fn(x) = ι∗((x�n) ∗ φ)_~0,

Thus x � n = y � n implies fn(x) = fn(y), so in particular fn is continuous for every
n ∈ ω.
Claim 2. f = limn fn.

Indeed, given x ∈ dom f and i ∈ ω, let N ∈ ω be such that for all n ≥ N we
have |ι∗((x�n) ∗ φ)| > i; such N exists since φ is a legal strategy for II in Ge(f). Since
ιe(x ∗ φ)(i) = f(x)(i), it now follows that fn(x)(i) = f(x)(i) for all n ≥ N . �
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Allowing player II to change tapes

We have defined the eraser game so as to allow player II to use each of her eraser finitely
often, but not change tapes. However, as we shall see in this section, also allowing her to
change tapes finitely often turns out to not give her any more power — any such change
of tape could have been legally mimicked by a careful use of the erasers. Although this
will make the game arguably more artificial, it will turn out to be useful when we give
an uniform overview of the games at the end of the chapter.

Formally, let G′e be the game (M ′e, R′e, ι′e), where

M ′e = ω ∪ P ∪ E ∪ T,
R′e = (M ′e)ω ∩

{
x ∈ R∗ : ran x ∩ T is finite, and

∀n. {k ∈ ω : o(x)(k) = en} is finite
}
,

ι′e(x) = lim
n∈ω

ι∗(o(x)�n).

Theorem 2.9. Let f : ωω ωω. Then

II has a winning strategy in Ge(f) iff she has one in G′e(f).

Proof. Clearly, for any f : ωω ωω, any winning strategy for II in Ge(f) is also a
winning strategy for II in G′e(f), so to prove the converse let φ′ be a winning strategy
for II in G′e(f), and let φ∗ be the strategy for her in Ĝe(f) obtained from φ′ by copying
the moves in ω ∪ P ∪ E, but substituting a move of the form tn ∈ T at round k by the
move e0

_ι∗(tapen((x�k) ∗ φ)).
One then readily sees that φ = seq(φ∗) is a strategy for II in Ge(f) that produces

the same output as φ′.
Claim 1. The strategy φ is winning for II in Ge(f).

Indeed, since ran(x ∗ φ′) ∩ T is finite, each en is only used finitely many more times
when II follows φ than when she follows φ′, so that {k ∈ ω : (x∗φ)(k) = en} is also finite,
and thus φ is legal. Furthermore, after she plays e0 (when following φ) corresponding to
the last time φ′ dictated that she should play in T, all her moves are done following φ′,
and therefore φ is winning. �

2.2.3 The backtrack game

The backtrack game, introduced by Robert van Wesep in his PhD thesis [30], also builds
upon the Wadge game but characterizes the class Λ2,2. The idea is to allow player II to
start over with the construction of her output finitely often.

Definition 2.10. The backtrack game is the game Gbt = (Mbt, Rbt, ιbt), where

Mbt = ω ∪ P ∪ T,
Rbt = Mω

bt ∩ {x ∈ R∗ : ran x ∩ T is finite}, and
ιbt(x) =

⋃
n∈ω

ι∗(o(x)�n).
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The backtrack game is more commonly defined by allowing player II to make moves
in ω ∪ P ∪ {bt}, where bt is a move interpreted as ignore all moves made so far, as long
as II makes moves in ω infinitely often and plays bt only finitely often. Clearly, these
definitions are equivalent; playing bt has exactly the same effect as playing some t ∈ T
that has never been played before, and thus requiring that II play bt only finitely often
is the same as requiring that II only use finitely many tapes.

The following is the most important tool when dealing with Λ2,2.

Theorem 2.11 (Jayne-Rogers [14]). Let f : ωω ωω. Then f ∈ Λ2,2 iff dom f can be
partitioned into relatively closed sets {An : n ∈ ω} in such a way that f �An is continuous
for any n ∈ ω.

The proof of this theorem is outside the scope of this thesis, and can be found in,
e.g., [23] (see also [15]). Let us now see how the Jayne-Rogers theorem can be used to
prove that the backtrack game characterizes Λ2,2.

Theorem 2.12 (Andretta [1]). Let f : ωω ωω. Then

f ∈ Λ2,2 iff II has a winning strategy in Gbt(f).

Proof. (⇒) Let T0, T1, . . . be trees on ω<ω such that {[Tn]∩dom f : n ∈ ω} is a partition
for f as in the Jayne-Rogers theorem. For each n, let φn be a winning strategy for II in
GW(f � [Tn]), and let φ be the following strategy for II in Gbt(f).

Strategy: At round n, do the following.
If at the last round we did not play in T, then let φk be the strategy we are following,

m be the tape we are playing on, and ` = |tapem(II(n− 1))|. If I(n) ∈ Tk, then play
φk(I(`)); else go to a new tape (i.e., play some t ∈ T that has never been played before).

Otherwise, if at the last round we played in T, or if this is the first round, then play
φk(I(0)), where k is least such that I(n) ∈ Tk, and declare that we are now following φk.

Claim 1. The strategy φ is winning for II in Gbt(f).
Indeed, suppose I produces x ∈ dom f and II follows φ. There is a unique n such

that x ∈ [Tn]; thus, for any k < n such that II follows φk at some round, there is a first
later round m such that x �m 6∈ Tk, and at that round II will start playing in a new
tape. At round m+ 1, II then starts following some strategy φ` with ` > k. Therefore,
at some point II starts following φn, and from that point on she will never play in T
again. Thus o(x ∗ φ) = x ∗ φn, and

ιbt(x ∗ φ) =
⋃
n∈ω

ι∗(o(x ∗ φ)�n)

=
⋃
n∈ω

ι∗((x ∗ φn)�n)

= (f � [Tn])(x)
= f(x). �1
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(⇐) Let φ be a winning strategy for II. Since for every x ∈ dom f we have ran(x ∗
φ)∩T finite, we can without loss of generality assume that each time φ tells II to change
tape, it is into a brand new one. Now define

BT := φ−1[T],

i.e., BT is the set of words that cause II to change tape when following φ.
For each σ ∈ BT ∪ {ε}, define

Aσ :=
(
[σ]r

⋃
{[τ ] : τ ∈ BT and σ ⊂ τ}

)
∩ dom f,

i.e., Aσ is the set of x ∈ [σ] ∩ dom f for which the last time II plays in T is when I
plays σ. Since [σ] is clopen for any σ ∈ ω<ω, we have that Aσ is relatively closed for
any σ ∈ BT. Furthermore, for any x ∈ dom f , note that x ∈ Aσ ∩Fτ implies σ = τ , and
therefore {Aσ : σ ∈ BT} is a countable partition of dom f , after weeding out repetitions
if necessary.
Claim 2. The function f �Aσ is continuous for each σ ∈ BT.

Indeed, a winning strategy for II in GW(f �Aσ) is to pass until I(n) = σ, and then
start following φ. �2

Thus, again by the Jayne-Rogers theorem, we have f ∈ Λ2,2. �

2.3 Semmes’s games

In his PhD thesis [26], Brian Semmes introduced several new games, characterizing the
Borel functions, the Baire class 2 functions, and the classes Λ2,3 and Λ3,3. However, his
approach was slightly different from ours; except for his multitape game characterizing
Λ3,3 which fits nicely into our framework, in Semmes’s games player II plays a finite
tree in some tape at each round, and in the end her output is the unique infinite path of
the infinite tree resulting from the union of the trees she played on her output tape (in
particular the rules dictate that such a unique infinite path must exist). The variation
between the games is then given by demanding that this resulting tree have a certain
specific shape in each case.

Intuitively, the idea behind requiring that II play finite trees is that making such
moves is equivalent to making finitely many moves in ω∪E at each round, the branching
nodes of the finite tree representing corrections to II’s current guess of what the prefix
of the correct output should be, and therefore corresponding to the power that II has
by being allowed to erase past moves. And making finitely many moves at each round
turns out not to be any more powerful than making a single one; as we shall see, by
carefully keeping track of what she has to play, and in which order, II can produce the
same output by making one move at each round as she could by making finitely many.

Let us make a small detour to make these observations more precise in a general
setting.
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Allowing II to make finitely many moves at each round

In most of the games we describe in this thesis, player II is only allowed to make one
move at each round. However, for convenience sometimes it will be useful to allow her
to make any finite number of moves at each round, which we will prove does not give
player II any more freedom.

Given a game G = (M,R, ι), let Ĝ = (M̂, R̂, ι̂) be given by

M̂ = M<ωr{ε}
R̂ = {ŷ ∈ (M̂)ω : y = ŷ(0)_ŷ(1)_ŷ(2)_ · · · ∈ R}

ι̂(ŷ) = ι(y),

i.e., Ĝ is the version of G where II is allowed to make finitely many moves at each round.

Theorem 2.13. Let f : ωω ωω. Then

II has a winning strategy in G(f) iff she has one in Ĝ(f).

Proof. Clearly, winning strategies for II in G are also winning for her in Ĝ. Now, given
a strategy φ for II in Ĝ, let seq(φ) be the following strategy for her in G:

Strategy: Start with an empty queue Q.
At round n, add φ(I(n))(0), φ(I(n))(1), . . . , lastφ(I(n)) to Q, in that order, then

remove the first element s from Q and play it.

In other words, seq(φ) is the strategy that makes the same moves as φ in the long
run, and in the same order, but only makes one of them at each round. Hence, by
construction, for any x ∈ ωω we have

x ∗ seq(φ) = φ(x�1)_φ(x�2)_φ(x�3)_ · · ·
= x ∗ φ.

Therefore, for any f : ωω ωω, if φ is winning in Ĝ(f) then so is seq(φ) in G(f). �

In our framework, strategies for II are functions from ω<ω to ω∪P∪E∪T; call these
regular strategies, to contrast with strategies for Semmes’s games, which are functions
from ω<ω to Tω(ω) ∪ T, and which we call tree strategies.

Transforming tree strategies into regular ones

Given φ : ω<ω Tω(ω) ∪ T, first define φ∗ : ω<ω (ω ∪ P ∪ E ∪ T)<ω as follows (for
convenience, we will describe φ∗ using the game lingo we have used so far, i.e., in order
to describe how to obtain φ∗(σ) we will pretend we are in the nth round of a run of a
game in which I(n) = σ).
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Strategy: Start with an empty queue Q.
At round n, let k be the tape we are currently playing on, τ = ι∗(tapek(II(n− 1))),

and m = |τ |.
If φ(I(n)) ∈ T then add φ(I(n)) to the end of Q. Otherwise add all elements of

tapek(I(n) ∗ φ)(m)rtapek(I(n) ∗ φ)(m − 1) — or all elements of tapek(I(n) ∗ φ)(m) if
m = 0 — to the end of Q.

Now remove the first element σ of Q. If σ ∈ T, then play σ. Otherwise, if σ ⊆ τ play
p, and if τ ⊂ σ, then let ` := |τ | and play

〈σ(`), σ(`+ 1), . . . , lastσ〉.

Finally, if τ ⊥ σ, then let ` be least such that τ(`) 6= σ(`), then play

〈e`, σ(`+ 1), σ(`+ 2), . . . , lastσ〉.

Now define sim(φ) := seq(φ∗) : ω<ω ω ∪ P ∪ E ∪ T, where seq(·) is as described
in the proof of Theorem 2.13.

By construction, we have the following

Theorem 2.14. For any tree strategy φ, x ∈ ωω and n ∈ ω we have{
ι∗
(
tapen((x�k) ∗ sim(φ))

)
: k ∈ ω

}
=
⋃
{T : T ∈ ran tapen(x ∗ φ)} .

In particular, if σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · is an infinite chain in

A :=
{
ι∗
(
tapen((x�k) ∗ sim(φ))

)
: k ∈ ω

}
,

then y =
⋃
n σn is an infinite path of

B :=
⋃
{T : T ∈ ran tapen(x ∗ φ)} ,

and conversely if y is an infinite path of B, then {y �k : k ∈ ω} is an infinite chain in A.

Transforming regular strategies into tree ones

Given φ : ω<ω ω ∪ P ∪ E ∪ T, we define tree(φ) : ω<ω Tω(ω) ∪ T as follows.

Strategy: For every k, let T k0 := ∅.
At round n, if φ(I(n)) ∈ T, then play φ(I(n)). Otherwise, let k be the current tape

we are playing on and m be the number of moves we have made so far on this tape, then
play T km+1 := T km ∪ {ι∗(tapek(I(n) ∗ φ))}.

Again by construction, we have the following
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Theorem 2.15. For any regular strategy φ, x ∈ ωω and n ∈ ω we have{
ι∗
(
tapen((x�k) ∗ φ)

)
: k ∈ ω

}
=
⋃
{T : T ∈ ran tapen(x ∗ tree(φ))} .

In particular, if σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · is an infinite chain in

A :=
{
ι∗
(
tapen((x�k) ∗ φ)

)
: k ∈ ω

}
,

then y =
⋃
n σn is an infinite path of

B :=
⋃
{T : T ∈ ran tapen(x ∗ tree(φ))} ,

and conversely if y is an infinite path of B, then {y �k : k ∈ ω} is an infinite chain in A.

The following simple observation, whose proof follows directly from the definitions
and will therefore be omitted, will be useful in the sequel.

Lemma 2.16. For any y ∈ (ω∪P∪E∪T)ω and any n ∈ ω, we have that infinite chains
in

{ι∗
(
tapen(y �k)

)
: k ∈ ω}

are the same as infinite chains in

{σ ∈ ω<ω : ∃∞k. σ ⊆ ι∗
(
tapen(y �k)

)
}.

2.3.1 The game G1,3

The first of Semmes’s games we will see is the game G1,3, which characterizes the Baire
class 2 functions by building upon the eraser game, in a sense.

Definition 2.17. G1,3 is the game (M1,3, R1,3, ι1,3), where

M1,3 = ω ∪ P ∪ E,
R1,3 = Mω

1,3 ∩
{
x ∈ R∗ : {σ ∈ ω<ω : ∃∞k. σ ⊆ ι∗(x�k)} is a chain 〈σxn〉n∈ω

}
, and

ι1,3(x) =
⋃
n∈ω

σxn

Thus, intuitively II can make the same moves as in the eraser game, but she is now
allowed to use each eraser infinitely often, as long the set of words which are part of her
output at infinitely many rounds forms a chain.

Originally, this game was presented by Semmes as the game GS1,3(f) = (MS
1,3, R

S
1,3, ι

S
1,3),

where

MS
1,3 = Tω(ω),

RS1,3 = {x ∈ (MS
1,3)ω : TS1,3(x) :=

⋃
n x(n) ∈ UP, ∀n. x(n) ⊆ x(n+ 1), and

all infinitely branching nodes of TS1,3(x) lie on its infinite path},
ιS1,3(x) = the infinite path of TS1,3(x)

As promised, these games are equivalent.
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Theorem 2.18. Let f : ωω ωω.
For any legal strategy φ for II in GS1,3(f), we have that sim(φ) is a legal strategy for

her in G1,3(f), and that ι1,3(x∗sim(φ)) is the infinite path of T1,3(x∗φ) for any x ∈ dom f .
Conversely, for any legal strategy φ for II in G1,3(f), we have that tree(φ) is a legal

strategy for her in GS1,3(f), and that ι1,3(x ∗ φ) is the infinite path of TS1,3(x ∗ tree(φ)) for
any x ∈ dom f .

Proof. Let φ be legal for II in GS1,3(f). To see that sim(φ) is legal for her in G1,3(f), let
x ∈ dom f . Since TS1,3(x ∗ φ) is infinite, by Theorem 2.14 it follows that x ∗ sim(φ) ∈ R∗.
Furthermore, again by Theorem 2.14 and using Lemma 2.16, since all infinitely-branching
nodes of TS1,3(x ∗ φ) lie on its unique infinite path, we have that the set {σ ∈ ω<ω :
∃∞k. σ ⊆ ι∗((x ∗ sim(φ)) � k)} is an infinite chain, so x ∗ sim(φ) ∈ R1,3, i.e., sim(φ) is
legal. Finally, once more by Theorem 2.14, we have that

ι1,3(x ∗ sim(φ)) =
⋃
{σ ∈ ω<ω : ∃∞k. σ ⊆ ι∗((x ∗ sim(φ))�k)}

is the infinite path of TS1,3(x ∗ φ).
Conversely, let φ be legal for II in G1,3(f). To see that tree(φ) is legal for her in GS1,3(f),

let x ∈ dom f . Clearly for any n ∈ ω we have (x ∗ tree(φ))(n) ⊆ (x ∗ tree(φ))(n + 1).
Also, since {σ ∈ ω<ω : ∃∞k. σ ⊆ ι∗((x∗φ)�k)} is an infinite chain, by Theorem 2.15 and
Lemma 2.16 we have that TS1,3(x ∗ tree(φ)) has a unique infinite path, and all infinitely-
branching nodes of TS1,3(x ∗ tree(φ)) lie on this path. Thus tree(φ) is legal. Finally, again
by Theorem 2.15, we have that ι1,3(x ∗ φ) =

⋃
{σ ∈ ω<ω : ∃∞k. σ ⊆ ι∗((x ∗ φ)�k)} is the

infinite path of TS1,3(x ∗ tree(φ)). �

We will omit the proof that GS1,3(f) characterizes the Baire class 2 functions, referring
the reader to the original [26] for the details.

Theorem 2.19 (Semmes [26]). Let f : ωω ωω. Then

f is Baire Class 2 iff II has a winning strategy in GS1,3(f).

Corollary 2.20. Let f : ωω ωω. Then

f is Baire Class 2 iff II has a winning strategy in G1,3(f).

Allowing player II to change tapes

As we did in the eraser game, let us now show that we can allow player II to change
tapes in G1,3 — even infinitely often — in such a way as to not increase her overall power
in the game. Again, although this will make the game arguably more artificial, it will
turn out to be useful when we give an uniform overview of the games at the end of the
chapter.
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Formally, let G′1,3 be the game (M ′1,3, R′1,3, ι′1,3), where

M ′1,3 = ω ∪ P ∪ E ∪ T,
R′1,3 = (M ′1,3)ω ∩

{
x ∈ R∗ : {σ ∈ ω<ω : ∃∞k ∃mk. σ ⊆ ι∗(tapemk(x�k))}

is a chain 〈σxn〉n∈ω
}
, and

ι′1,3(x) =
⋃
n∈ω

σxn

Theorem 2.21. For any f : ωω ωω, II has a winning strategy in G1,3(f) iff she has
one in G′1,3(f).

Proof. Clearly any winning strategy for II in G1,3(f) is also winning for her in G′1,3(f), so
to prove the converse let φ′ be a winning strategy for II in G′1,3(f). Let φ be the strategy
for her in G1,3 obtained from φ′ exactly as in the proof of Theorem 2.9.
Claim 1. The strategy φ is winning for II in G1,3(f).

Indeed, for any τ ∈ ω<ω we have

τ ∈ {σ ∈ ω<ω : ∃∞k ∃mk. σ ⊆ ι∗(tapemk((x ∗ φ′)�k))}
⇐⇒ τ ∈ {σ ∈ ω<ω : ∃∞k. σ ⊆ ι∗((x ∗ φ)�k)},

so these sets have the same unique infinite chain. �

2.3.2 The game G2,3

The game G2,3 was introduced by Semmes in order to characterize the class Λ2,3. The
idea by Semmes was to build upon the eraser game by allowing player II the further
freedom of changing tapes infinitely often, as long as there is a unique tape that she
makes moves on infinitely often.

Definition 2.22. G2,3 is the game (M2,3, R2,3, ι2,3), where

M2,3 = ω ∪ P ∪ E ∪ T,
R2,3 = Mω

2,3 ∩
{
x ∈ R∗ : ∀n. {k ∈ ω : o(x)(k) = en} is finite

}
, and

ι2,3(x) = lim
n∈ω

ι∗(o(x)�n).

Originally, this game was presented by Semmes as the game GS1,3(f) = (MS
1,3, R

S
1,3, ι

S
1,3),

where

MS
2,3 = Tω(ω) ∪ T,

RS2,3 = {x ∈ (MS
2,3)ω : x ∈ UT, ∀n∀i, j ∈ dom tapen(x).tapen(x)(i) ⊆ tapen(x)(j),
TS2,3(x) :=

⋃
n o(x)(n) ∈ UP, and TS2,3(x) is finitely branching},

ιS2,3(x) = the infinite path of TS2,3(x)

Again, these games are equivalent.
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Theorem 2.23. Let f : ωω ωω.
For any legal strategy φ for II in GS2,3(f), we have that sim(φ) is a legal strategy for

her in G2,3(f), and that ι2,3(x∗sim(φ)) is the infinite path of T2,3(x∗φ) for any x ∈ dom f .
Conversely, for any legal strategy φ for II in G2,3(f), we have that tree(φ) is a legal

strategy for her in GS2,3(f), and that ι2,3(x ∗ φ) is the infinite path of TS2,3(x ∗ tree(φ)) for
any x ∈ dom f .

Proof. Let φ be legal for II in GS2,3(f) To see that sim(φ) is legal for her in G2,3(f), let
x ∈ dom f . Since TS2,3(x ∗ φ) is infinite and x ∗ φ ∈ UT, by Theorem 2.14 it follows that
x ∗ sim(φ) ∈ R∗. Furthermore, since TS2,3(x ∗ φ) is finitely branching, and since the times
II plays en when following sim(φ) correspond to branching nodes on the nth level of
TS2,3(x ∗ φ), it follows that for any n we have that {k ∈ ω : o(x ∗ sim(φ))(k) = en} is
finite, and thus sim(φ) is legal. Finally, again by Theorem 2.14 it is easy to see that
ι2,3(x ∗ sim(φ)) is the infinite path of T2,3(x ∗ φ).

Conversely, let φ be legal for II in G2,3(f). To see that tree(φ) is legal for her in
GS2,3(f), let x ∈ dom f . Clearly, for all n ∈ ω and i, j ∈ dom tapen(x ∗ tree(φ)) we have
tapen(x ∗ tree(φ))(i) ⊆ tapen(x ∗ tree(φ))(j). Also, since the branching nodes on the
nth level of TS2,3(x ∗ tree(φ)) correspond to rounds k such that o(x ∗ φ)(k) = en, and
since x ∗ φ ∈ R2,3, we have that TS2,3(x ∗ tree(φ)) is finitely branching. Furthermore by
Theorem 2.15 we have that TS2,3(x ∗ tree(φ)) has a unique infinite path, so that tree(φ) is
legal and ι2,3(x ∗ φ) is this infinite path. �

As happened with the backtrack game, G2,3 characterizes in a natural way a class of
functions defined by a partition property.

Theorem 2.24 (Semmes [26]). Let f : ωω ωω. Then II has a winning strategy in
G2,3(f) iff dom f can be partitioned into relatively Π0

2 sets {An : n ∈ ω} in such a way
that f �An ∈ Λ1,2 for any n ∈ ω.

Proof. (⇒) Let φ be a winning strategy for II in G2,3(f), and for each n define

An := {x ∈ dom f : o(x ∗ φ) = tapen(x ∗ φ)},

i.e., An is the set of those x ∈ dom f such that II’s output tape when following φ against
x is the nth tape.
Claim 1. The function f �An is Baire class 1 for any n ∈ ω.

Indeed, for each n let φn be the following strategy for II in Ge(f �An) obtained from
φ by copying the moves made on tape n and substituting the other moves for p. Since φ
is legal and o(x ∗ φ) = tapen(x ∗ φ) for any x ∈ An, it follows that φn is legal, and then
by construction for such x we have

ιe(x ∗ φn) = ιe(tapen(x ∗ φ))
= ι2,3(x ∗ φ)
= f(x). �1

Claim 2. The set An is relatively Π0
2 for any n ∈ ω.
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Indeed, for each m,n let

Bm,n :=
⋃
{[σ] : σ ∈ ω<ω and |tapen(σ ∗ φ)| ≥ m}.

Thus each Bm,n is an open set, and for every x ∈ dom f and n ∈ ω we have

x ∈
⋂
m

Bm,n ⇐⇒ ∀m ∃k. |tapen((x�k) ∗ φ)| ≥ m

⇐⇒ tapen(x ∗ φ) is infinite
⇐⇒ x ∈ An. �2

(⇐) Let {An : n ∈ ω} be a partition of dom f as in the statement of the theorem, and
for each n let φn be a winning strategy for II in Ge(f �An). Finally, let {Bm,n : m,n ∈ ω}
be open sets such that An =

⋂
mBm,n ∩ dom f for each n ∈ ω. Let φ be the following

strategy for II in Ĝ2,3(f), i.e., in the equivalent version of G2,3(f) where II is allowed to
make more than one move at each round.

Strategy: At round n = pm, kq, if there exists ` ∈ ω such that [I(n)] ∩ B`,m = ∅ then
pass. Otherwise, let

σ := ι∗(I(n) ∗ φm)
τ := ι∗(tapem(II(n− 1))).

Now, if σ ⊆ τ then pass, else if τ ⊂ σ and we are currently playing on tape m then
play

s := 〈σ(|τ |), σ(|τ |+ 1), . . . , lastσ〉,

otherwise play tm_s.
Finally, if σ ⊥ τ , let p be least such that σ(p) 6= τ(p), and if we are playing on tape

m play
s′ := ep_〈σ(p), σ(p+ 1), . . . , lastσ〉,

otherwise play tm_s′.

Claim 3. The strategy φ is winning for II in Ĝ2,3(f).
Let x ∈ dom f . To see that x ∗ φ ∈ UT, note that

tapem(x ∗ φ) is infinite ⇐⇒ ∀`∀k. [x�pm, kq] ∩B`,m 6= ∅
⇐⇒ ∀`. (

⋂
k[x�k]) ∩B`,m 6= ∅

⇐⇒ x ∈ Am,

so since {An : n ∈ ω} partitions dom f we have that tapem(x ∗ φ) is infinite for a unique
m.

Furthermore, since moves in any tape m are made following the legal strategies φm,
it follows that φ is also legal and, for any x ∈ dom f ,

ι2,3(x ∗ φ) = ιe(tapem(x ∗ φ)) for the unique m with infinite tapem(x ∗ φ)
= ιe(x ∗ φm)
= f(x) since x ∈ Am. �
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As happened with the Jayne-Rogers theorem for Λ2,2, the proof that the class of
functions defined by this partition property is exactly Λ2,3 is outside the scope of this
thesis, and will be omitted. It should be noted that this

Theorem 2.25 (Semmes [26]). Let f : ωω ωω. Then

f ∈ Λ2,3 iff dom f can be partitioned into relatively Π0
2 sets {An : n ∈ ω}

in such a way that f �An ∈ Λ1,2 for any n ∈ ω.

As a consequence, we have the following.

Corollary 2.26. Let f : ωω ωω. Then

f ∈ Λ2,3 iff II has a winning strategy in G2,3(f).

2.3.3 The multitape game

The multitape game builds upon the Wadge game to characterize the class Λ3,3, in an
analogous way to that in which G2,3 extended the eraser game.

Definition 2.27. The multitape game is the game Gmt = (Mmt, Rmt, ιmt), where

Mmt = ω ∪ P ∪ T,
Rmt = Mω

mt ∩R∗, and
ιmt(x) =

⋃
n∈ω

ι∗(o(x)�n).

As with the backtrack and G2,3, this game fits nicely into a partition-flavored theorem.

Theorem 2.28 (Andretta-Semmes, cf. [26]). Let f : ωω ωω. Then II has a winning
strategy in Gmt(f) iff dom f can be partitioned into relatively Π0

2 sets {An : n ∈ ω} in
such a way that f �An is continuous for any n ∈ ω.

The proof is analogous but simpler than the proof of Theorem 2.24, and is therefore
omitted. And, as we did for the corresponding theorems for Λ2,2 and Λ2,3, we will omit
the proof that this partition property defines the class of total Λ3,3 functions.

Theorem 2.29 (Semmes [26]). Let f : ωω ωω. Then

f ∈ Λ3,3 iff dom f can be partitioned into relatively Π0
2 sets {An : n ∈ ω}

in such a way that f �An is continuous for any n ∈ ω.

As a consequence, we have the following.

Corollary 2.30. Let f : ωω ωω. Then

f ∈ Λ3,3 iff II has a winning strategy in Gmt(f).
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2.3.4 The tree game

The tree game was introduced by Semmes to characterize the class of Borel measurable
functions, and thus it generalizes all the games we have seen so far. Naturally, it is the
game in which player II has the most freedom among the games we will see in this thesis.

Definition 2.31. The tree game is the game GT = (MT, RT, ιT), where

MT = ω ∪ P ∪ E,
RT =

{
x ∈ R∗ : {ι∗(x�k) : k ∈ ω} has a unique maximal infinite chain 〈σxn〉n∈ω

}
ιT(x) =

⋃
n∈ω

σxn

Originally, this game was presented by Semmes as the game GST = (MS
T , R

S
T, ι

S
T),

where
MS

T = Tω(ω),
RST = {x ∈ (MS

T )ω : ∀n. x(n) ⊆ x(n+ 1), and TST (x) :=
⋃
n

x(n) ∈ UP}, and

ιST(x) = the unique infinite path of TST (x)

Once again, these games are equivalent.

Theorem 2.32. Let f : ωω ωω.
For any legal strategy φ for II in GST(f), we have that sim(φ) is a legal strategy for

her in GT(f), and that ιT(x∗ sim(φ)) is the infinite path of TST (x∗φ) for any x ∈ dom f .
Conversely, for any legal strategy φ for II in GT(f), we have that tree(φ) is a legal

strategy for her in GST(f), and that ιT(x ∗ φ) is the infinite path of TST (x ∗ tree(φ)) for
any x ∈ dom f .

Proof. Let φ be legal for II in GST(f). To see that sim(φ) is legal for her in GT(f), let
x ∈ dom f . As in the proof of Theorem 2.18, since TST (x) has an infinite path, we have
x ∗ sim(φ) ∈ R∗. Also, by Theorem 2.14, the unique infinite path in TST (x) is the union
of the unique maximal infinite chain in {ι∗((x ∗ sim(φ)) � k) : k ∈ ω}, so that sim(φ) is
legal, and by definition the union of this infinite chain is ιT(x ∗ sim(φ)).

Conversely, let φ be legal for II in GT(f). To see that tree(φ) is legal for her in
GST(f), let x ∈ dom f . Clearly (x ∗ tree(φ))(n) ⊆ (x ∗ tree(φ))(n + 1) for any n ∈ ω,
and by an analogous argument as above, Theorem 2.15 implies that tree(φ) is legal and
ιT(x ∗ φ) is the infinite path of TST (x ∗ tree(φ)). �

We omit the proof that GST(f) characterizes the Borel measurable functions, again
referring the reader to the original [26] for the details.

Theorem 2.33 (Semmes). Let f : ωω ωω. Then

f is Borel measurable iff II has a winning strategy in GST(f).

Corollary 2.34. Let f : ωω ωω. Then

f is Borel measurable iff II has a winning strategy in GT(f).
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2.4 Summary

We are now in a good position to give an intuitive summary of the games seen in this
chapter. Here we use implicitly refer to the respective modified versions G′e and G′1,3
when talking about the eraser game and G1,3.

• The games characterizing the classes Λ1,1 (Wadge game), Λ1,2 (eraser game), and
Λ1,3 (G1,3) are obtained by varying the freedom with which player II can use each of
her erasers — never, finitely often, and infinitely often (as long as the set of words
which appear at infinitely many rounds on some tape is a chain, respectively)—,
and by granting her the same level of freedom in changing tapes;

• The games characterizing the classes Λ2,2 (backtrack game) and Λ2,3 (G1,3) are
obtained by varying the freedom with which player II can use each of her erasers
— never and finitely often, respectively —, and by granting her one degree higher
of freedom in changing tapes — finitely often and infinitely often (as long as only
one is played on infinitely often), respectively;

• The game characterizing the class Λ3,3 (G1,3) is obtained by not allowing player II
to erase any position, and granting her two degrees higher of freedom in changing
tapes, i.e., infinitely often (as above).

• The game characterizing the Borel measurable functions is obtained by allowing
player II to erase each position infinitely often, as long as the set of words which
appear at infinitely many rounds contains a unique maximal infinite chain.
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Chapter 3

Choice principles

In this chapter we review the Weihrauch reducibility relation, a concept from computable
analysis that expresses a specific notion of continuous reducibility between functions,
and use the games of the last chapter to give new proofs of the completeness of discrete
choice Cω for Λ2,2 and countable choice C for Λ1,2 with respect to this relation, introduce
two complete functions for Λ2,3 and Λ3,3 respectively, and briefly review other complete
functions for Λ1,1, Λ1,k with k > 2, and the Borel measurable functions.

3.1 Weihrauch reducibility

Computable analysis is the branch of mathematics that studies the concepts of classical
mathematical analysis under the light of computability theory. Of course, since most
objects studied in analysis are infinitary in nature, this has to be done with a certain
amount of care.

A represented space is a pair (X, δX) where X is a set and δX : ωω X. We say
that δX represents X, and when x ∈ dom δX we say that x is a δX-name of δX(x). Note
that in general we don’t require that δX be injective, so each element of X may have
several δX -names.

The notion of a represented space is the key starting point for developing an analog
to computability theory in spaces other than ω or ωω; with it, we are able to transfer
well-understood concepts from these spaces to more general ones, as we shall see in part
in this chapter. For a thorough study of this area, including aspects that are outside the
scope of this thesis, we refer the reader to [8, 29].

Unless stated otherwise, in what follows ωω will always be represented by id, and ω
will be represented by the total function δω : x 7→ x(0).

Although in classical computability theory one usually studies partial functions from,
say, ω to ω, in computable analysis it is useful to work in a more general setting, consider-
ing binary relations between represented spaces. Following the standard nomenclature,
we will call such relations partial multi-valued functions, or partial multifunctions, or
simply functions, through an arguably large abuse of nomenclature. We will, however,
always make explicit exactly what kind of function is meant in each case by a careful
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Notation Meaning
f : A B function in the usual sense (total functional binary relation)
f : A B surjective function (total functional surjective binary relation)
f : A B partial function (functional binary relation)
f : A B surjective partial function (functional surjective binary relation)
f : A B multifunction (total binary relation)
f : A B surjective multifunction (total surjective binary relation)
f : A B partial multifunction (binary relation)
f : A B surjective partial multifunction (surjective binary relation)

Table 3.1: Notation adopted for functions throughout this chapter.

use of the notation presented in Table 3.1. In summary, single or double arrows in-
dicate whether the function is single- or (possibly) multi-valued, solid or dashed line
styles whether it is total or (possibly) partial, and double arrow heads that the func-
tion is surjective. Note that this is compatible with the notation for total and partial
(single-valued) functions we have used in the rest of this thesis.

One of the reasons for working with partial multifunctions is that this allows one
to treat mathematical theorems of the form ∀x ∈ X ∃y ∈ Y. P (x, y) as objects of the
theory, and thus one can talk about one theorem being more computable than another,
or reducible to it, etc., as has been extensively done in the literature, e.g., in [5, 7, 11, 24].

Given f : X Y and x ∈ dom f , we will denote by f(x) the set {y ∈ Y : (x, y) ∈ f},
and given g : U V with Y ∩U 6= ∅ we denote by g◦f , or gf , the function with domain
{x ∈ dom f : f(x) ∩ dom g 6= ∅}, and given by

g ◦ f(x) =
⋃

y∈f(x)
g(y).

When f(x) is a singleton {y} most of the times we will write f(x) = y, as usual, but
sometimes it will be convenient not to do this, as in Definition 3.35 below for the case
when f is single-valued.

When talking about notions involving functions between represented spaces that
are sensitive to what the specific representations are, most of the times we will write
f : (X, δX) (Y, δY ) instead of f : X Y , to make the representations explicit,
although we may not use this convention when δX and δY are clear from the context.
Naturally, the same observation goes for the other types of functions listed in Table 3.1.

Definition 3.35. Given f : (X, δX) (Y, δY ), we say that F : ωω ωω is a (δX , δY )-
realizer of f , denoted by F ` f , when

δY ◦ F (x) ∈ f ◦ δX(x)

27



for all x ∈ dom(fδX), which we will express diagrammatically by saying that

ωω ωω

X Y

F

δX δY

f

commutes.

In other words, F ` f when F (x) is a δY -name of an element of f(δX(x)), whenever
x is a δX -name of an element of dom f . In particular domF must contain all names of
elements in dom f .

Note that, although the notion of a realizer depends on the representations of the
spaces involved, this is not reflected in the notation F ` f . This will not be a problem,
however, as the representations will always be clear from the context in which this
notation is to be used. For the same reason, sometimes we will just say that F is a
realizer of f . Note also that a realizer is always a single-valued function.

If f itself is of the form f : ωω ωω with both domain and codomain represented
by id, then we have by definition that F ` f iff F extends f , so we can safely always
consider such functions to be realized by themselves.

The notion of a realizer is the main tool that allows us to transfer concepts from ωω

to general represented spaces, as in the following definition.

Definition 3.36. Let Γ be a class of partial functions from ωω to ωω, and let f :
(X, δX) (Y, δY ). We say that f is (δX , δY )-Γ when f has a realizer F ∈ Γ.

Again, we will usually omit (δX , δY ) from the notation above when δX and δY are
clear from the context, and thus write things such as f ∈ Λm,n for f : (X, δX) (Y, δY ),
and so on. When X, Y are represented topological spaces satisfying a certain com-
putability condition, the usual topological notion of Σ0

k-measurability for total functions
coincides with that of (δX , δY )-Σ0

k-measurability given above for any k ∈ ω; see [3] for
the details.

The first reducibility between partial multifunctions we will consider is the following.

Definition 3.37. Let f : (X, δX) (Y, δY ) and g : (U, δU ) (V, δV ). We say that
f is strongly Weihrauch-reducible to g, denoted by f ≤st g, when there exist continuous
H,K : ωω ωω such that HGK ` f for any G ` g, i.e., when

ωω ωω ωω ωω

U V

X Y

K

δX

G

δU

H

δV

δY

(1)

g

f

commutes for any G that makes (1) commute.
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The subscript “t” stands for “topological”, to contrast with a computable counterpart
of this relation which we will see at the end of this section. As usual, the strict version
of ≤st is denoted by <st, and the equivalence relation induced by ≤st is denoted by ≡st.

Example 3.38. The identity function idX : (X, δX) (X, δX) cannot be strongly
Weihrauch-reduced to any constant function between represented spaces.

This example indicates that the reducibility ≤st is actually too fine for our objectives,
distinguishing between more functions than we would like. Intuitively speaking, this is
because demanding that HGK ` f whenever G ` g means that H needs to be able to
“output” a name of an element of f(x) without having direct access to a name of the
“input” x. However, this reducibility still has many interesting theoretical properties;
see, e.g., [9].

Instead, the reducibility that will be more interesting to us is the following.

Definition 3.39. Let f : (X, δX) (Y, δY ) and g : (U, δU ) (V, δV ). We say that
f is Weihrauch-reducible to g, denoted by f ≤t g, when there exist continuous H,K :
ωω ωω such that

Hpid, GKq ` f

for all G ` g, i.e., when

ωω (ωω)2 ωω ωω

ωω ωω

U V

X Y

(id,GK)

K

δX

p·q H

δY

G

δU δV(1)

g

f

commutes for any G that makes (1) commute.

Note that this is clearly weaker than ≤st; f ≤st g implies f ≤t g, but the converse
does not hold. For example, any two continuous partial functions from ωω to ωω with
nonempty domains are easily seen to be Weihrauch-reducible to one another, but we saw
above that id is not strongly Weihrauch-reducible to any constant function.

The following result is not as immediate as the analogous one for ≤st.

Proposition 3.40. The relation ≤t is a preorder.

Proof. Reflexivity is clear — just take H = (·)2
1 and K = id. For transitivity, suppose

f ≤t g ≤t h. Let A1, A2, B1, B2 : ωω ωω be continuous functions such that

A1pid, GB1q ` f, ∀G ` g, and
A2pid, HB2q ` g, ∀H ` h.
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Now let A3(x) = A1p(x)2
0, A2pB1((x)2

0), (x)2
1qq and B3 = B2B1, both of which are con-

tinuous functions. Then we have, for any H ` h,

A3pid, HB3q(x) = A1px,A2pB1(x), HB2B1(x)qq
= A1px,GB1(x)q
= F (x),

where G is the realizer A2pid, HB2q of g, and F is the realizer A1pid, GB1q of f . �

The relations <t and ≡t are defined from ≤t in the usual way.
Note that where we used continuous functions to define ≤st and ≤t, we could have

used any other reasonable class of functions that is closed under compositions and con-
tains the identity and the projections, obtaining meaningful reducibilities as results.

In particular, the following class will be used at some points in this chapter.
Definition 3.41. A function f : ωω ωω is computable when there exists a computable
(in the usual sense) winning strategy for II in GW(f).

Thus every computable function is continuous, but the converse does not hold – .
We then define ≤sc, ≡sc, etc., analogously to ≤st, ≡st, etc., but with H,K computable.

The following follows directly from the definitions, and will be used throughout this
chapter.
Theorem 3.42. Let f : (X, δX) (Y, δY ) and g : (U, δU ) (V, δV ). Then, if f ≤t g
and g ∈ Λm,n, then also f ∈ Λm,n.
Proof. Let H,K : ωω ωω be continuous functions such that Hpid, GKq ` f for any
G ` g. In particular, letting G′ be a Λm,n realizer of g, since p·q is continuous by
Theorem 1.3, it follows that Hpid, G′Kq is a Λm,n realizer of f . �

3.2 Choice principles

In the theory of Weihrauch-reducibility, certain (multi-valued partial) functions have
been isolated that capture the complexity of some function classes of interest. We will
refer to these by the common name choice principles. The intuition behind this name
is that most of the ones we are going to consider are restrictions of a function CX ,
called closed choice, whose realizers choose elements of a set given a specific type of
representation of it.

Our main goal in this chapter is to prove that certain choice principles are Weihrauch-
complete for some classes in the stratification Λm,n of the Borel measurable functions.
We will focus on (partial) functions from ωω to ωω, which will be convenient since this
will allow us to apply the games from the preceding chapter, but this turns out to be
without any loss of generality.
Theorem 3.43. Suppose g : (U, δU ) (V, δV ) is Λm,n, and that for all F : ωω ωω

we have F ∈ Λm,n iff F ≤t g. Then, for any f : (X, δX) (Y, δY ) we have

f ∈ Λm,n iff f ≤t g.
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Proof. (⇒) Let F ` f be such that F ∈ Λm,n. Then by hypothesis there exist continuous
H,K : ωω ωω such that F ⊆ Hpid, GKq for any G ` g, which impliesHpid, GKq ` f
for any G ` g, i.e., f ≤t g.

(⇐) Let H,K : ωω ωω be continuous functions such that Hpid, GKq ` f for any
G ` g. Therefore, letting G′ be a Λm,n realizer of g, since p·q is continuous we have that
Hpid, G′Kq is a Λm,n realizer of f . �

3.2.1 Continuous choice

As we have seen, any two continuous functions with non-empty domains are Weihrauch-
reducible to one another, and thus any such function is Weihrauch-complete for the class
of continuous functions. However, in order to state a general result in a later section in
a more uniform way, it will be convenient to isolate one such function at this point.

Definition 3.44. The principle of continuous choice is the function C0 : ωω ωω

given by

C0(x)(n) =
{

0, if x(n) 6= 0
1, otherwise.

Thus C0 “flips” nonzero values in its input to zero and vice versa. Hence C0 is
continuous, and we have

Theorem 3.45. Let f : (X, δX) (Y, δY ). Then

f is continuous iff f ≤t C0.

3.2.2 Discrete choice

Definition 3.46. The principle of discrete choice is the function Cω : ωω ω given by

Cω(x) = ωrran x,

with dom Cω = {x : ran x 6= ω}.

Intuitively, the infinitary nature of Cω should indicate that it is not (id, δω)-continuous
— given x ∈ ωω which is a priori known to not contain every n ∈ ω in its range, a realizer
of Cω must then output a sequence whose first element is not in the range of x. However,
Cω does not lie very high in the stratification of the Borel functions.

Proposition 3.47. Cω ∈ Λ2,2.

Proof. Let F (x) = ιbt(x ∗ φ), where φ is the following strategy for II in Gbt.

Strategy: At round n, let k = min(ωrran I(n)). If at the last round we played k or
changed tape, then play k. Otherwise, go to a new tape.

Thus, if x ∈ dom Cω, at some point II will play min(ωrran x) as the first move on
a tape, and from that point on she will always make that same move and never change
tape again. Therefore we have F (x)(0) ∈ Cω(x) for any x ∈ dom Cω, i.e., F ` Cω �
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This section is dedicated to the proof that this choice principle captures the com-
plexity of Λ2,2 exactly.

Theorem 3.48 (Brattka-de Brecht-Pauly [4]). Let f : (X, δX) (Y, δY ). Then

f ∈ Λ2,2 iff f ≤t Cω.

First we need some auxiliary notions and results, starting with an alternative repre-
sentation lim∆ of ωω, given by

lim∆(x) = lim
n

(x)n,

with dom lim∆ = {x : ∃i∀j ≥ i. (x)j = (x)i}, i.e., lim∆(x) is the discrete limit of the
sequence in ωω encoded by x, whenever this limit exists.

Proposition 3.49. lim∆ ≤t Cω.

Proof. Let H,K : ωω ωω be the continuous functions given by

H(px, yq) = (x)y(0)
K(x) = ιW(x ∗ φ),

where φ is the following strategy for II in GW.

Strategy: At round n = pm, kq, let σ := I(n).
Let A = {i < m : i has not been played by II yet and there exists j ∈ {i, . . . ,m− 1}

such that (σ)j ⊥ (σ)j+1}.
If A 6= ∅, then play minA. Otherwise, play 0.

Then ranK(x) = {0} ∪ {n : ∃k ≥ n. (x)k 6= (x)k+1}, so

n ∈ Cω(K(x)) ⇐⇒ n ∈ ωrranK(x)
⇐⇒ ∀k ≥ n. (x)k = (x)k+1
⇐⇒ lim∆(x) = (x)n.

Recall that we have that G : ωω ωω realizes Cω iff G(x)(0) 6∈ ran x for any x such
that ran x 6= ω. Therefore, for any such G and x we have

lim∆(x) = (x)n for any n such that ∀k ≥ n. (x)k = (x)k+1
= (x)n for any n ∈ Cω(K(x))
= (x)GK(x)(0)
= H(px,GK(x)q) �

Theorem 3.50. Let f : ωω ωω. Then

f is (id, id)-Λ2,2 iff f is (id, lim∆)-continuous.
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Proof. (⇒) Let φbt be a winning strategy for II in Gbt(f), and let F : ωω ωω be
given by F (x) = ιW(x ∗ φ), where φ is the following strategy for II in GW.

Strategy: At round n, let σ := ι∗(II(n−1)), |σ| = pk,mq, and finally τ := ι∗(tape`(I(n)∗
φbt)), where ` is the tape on which φbt(I(n)) is played.

If (σ)k and τ are incomparable, then play 0. Otherwise if (σ)k ⊇ τ then play p, and
if (σ)k ⊂ τ then play τ(|(σ)k|).

It now remains to be shown that F is an (id, lim∆)-realizer of f . For any x ∈ dom f ,
there exists a least N such that φbt(x�n) 6∈ T for any n ≥ N . Therefore, for any k such
that pk, 0q ≥ N , we have (F (x))k = ιbt(x∗φbt) = f(x), and therefore lim∆◦F (x) = f(x).

(⇐) Let F be a continuous (id, lim∆)-realizer of f , and let φW be a winning strategy
for II in GW(F ). Let φ be the following strategy for II in Gbt(f).

Strategy: Begin by declaring that we are following 0.
At round n, having made i moves in ω on the current tape and following k, let

σ := ι∗(I(n) ∗ φW).
If |(σ)k| ≤ i, then pass. Otherwise, if there exist k′ > k and i′ ≤ i such that

|(σ)k′ | > i′ and (σ)k(i′) 6= (σ)k′(i′), then go to a new tape and start following k′ instead
of k. Finally, if no such k′ and i′ exist, then play (σ)k(i).

To see that φ is a winning strategy, just note that for any x ∈ dom f there exists
a least K such that (F (x))k = f(x) for any k > K. Therefore, if at some point in the
game II is following k such that (F (x))k 6= f(x), then there exist k′ > k and i such that
(F (x))k(i) 6= (F (x))k′(i), so II will change into a new tape at some later round and start
following some k′′ > k. Therefore, eventually II will be following k ≥ K, and will then
never change tape again. Since her moves will then be made copying (F (x))k, it follows
that ιbt(x ∗ φ) = f(x). �

We are now in a position to prove the main result of this section.

Proof of Theorem 3.48. By Theorem 3.43, it suffices to prove the result for f : ωω ωω.
(⇒) Let f ∈ Λ2,2. By Theorem 3.50, f has a continuous (id, lim∆)-realizer, i.e.,

f = lim∆◦F for some continuous F : ωω ωω. Thus, in particular, we have f ≤st lim∆,
which by Proposition 3.49 implies f ≤t Cω.

(⇐) Note that, if f ≤t Cω, then f ≤t F for any F ` Cω. Therefore, the result follows
from Proposition 3.47 and Theorem 3.42. �

3.2.3 Countable choice

Definition 3.51. The principle of countable choice is the function C : ωω ωω given
by

C(x)(n) =
{

0, if ∃k. x(k) = n+ 1
1, otherwise.
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In other words, C transforms enumerations of subsets of ω into their characteristic
functions.

Proposition 3.52. C ∈ Λ1,2.

Proof. Let φ be the following strategy for II in Ge(C).

Strategy: At round n, if xn = m+1 form < |ι∗(II(n− 1))| such that ι∗(II(n−1))(m) = 1,
then play em. Otherwise, if there exists k ≤ n such that xk = |ι∗(II(n− 1))| + 1 then
play 0, else play 1.

Claim 1. The strategy φ is winning for II in Ge(C).
Indeed, for any x ∈ ωω, first note that each en is played at most once, so φ is legal.

Furthermore, we have

ιe(x ∗ φ)(n) = 0 ⇐⇒ ∃k. x(k) = n+ 1
⇐⇒ C(x)(n) = 0. �

This section is dedicated to the proof that C is Weihrauch-complete for Baire Class 1
functions. However, it will be convenient to work instead with the strongly computably
equivalent choice principle C1 : ωω ωω, given by

C1(x)(n) =
{

0, if ∃k. x(pn, kq) 6= 0
1, otherwise.

Proposition 3.53. C ≡sc C1.

Proof. (C ≤sc C1): Let

K(x)(pn, kq) =
{

1, if x(k) = n+ 1
0, otherwise

Then we have
C(x)(n) = 0 ⇐⇒ ∃k. x(k) = n+ 1

⇐⇒ ∃k. K(x)(pn, kq) = 1
⇐⇒ C1 ◦K(x)(n) = 0

(C1 ≤sc C): Let

K(x)(pn, kq) =
{
n+ 1, if x(pn, kq) 6= 0
0, otherwise

Then we have
C1(x)(n) = 0 ⇐⇒ ∃k. x(pn, kq) 6= 0

⇐⇒ ∃k. K(x)(pn, kq) = n+ 1
⇐⇒ C ◦K(x)(n) = 0 �

Therefore, the theorem we will prove in this section is the following.
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Theorem 3.54 (Brattka [3]). Let f : (X, δX) (Y, δY ). Then

f ∈ Λ1,2 iff f ≤t C1.

As in the proof of Theorem 3.48, we will proceed by first defining an appropriate
alternative representation of ωω, from which it will then be easier to transform a winning
strategy for II in Ge(f) into a Weihrauch-reduction of f to C1, and vice versa, by passing
through this representation as an intermediate step.

This alternative representation is lim : ωω ωω, given by lim x = lim
n

(x)n, where
dom lim = {x : lim

n
(x)n exists}, i.e., dom lim is the set of all x ∈ ωω such that

∃x∗ ∀m∃N ∀n ≥ N. x∗�m ⊂ (x)n.

Proposition 3.55. lim ≤c Ĉω ≤sc C1.

Proof. (lim ≤c Ĉω :) Define continuous H,K : ωω ωω by

H(px, yq)(n) = (x)y(n)(n)
K(x) = ιW(x ∗ φ),

where φ is the following strategy for II in GW.

Strategy: At round pn, kq, let A := {m : m has not been played at any round pn, k′q
with k′ < k, and there exists m′ ≥ m such that pm′ + 1, nq < pn, kq and I(pm′, nq) 6=
I(pm′ + 1, nq)}.

If A 6= ∅ then play minA, otherwise play 0.

Then we have

M 6∈ ran (K(x))n =⇒ ∀m ≥M. (x)m(n) = (x)M (n)
=⇒ lim

m
(x)m (n) = (x)M (n)

=⇒ lim x (n) = (x)M (n).

Hence, if G ` Ĉω, then for any x ∈ dom Ĉω and n ∈ ω we have G(x)(n) 6∈ ran (x)n, hence

lim x (n) = (x)GK(x)(n)(n)
= Hpx,GK(x)q(n).

(Ĉω ≤sc C1) Define H,K : ωω ωω by

H(x)(n) = µk. x(pn, kq) = 1

K(x)(ppn, kq,mq) =
{

1, if (x)n(m) = k

0, otherwise

with domH = {x : ∀n ∃k. x(pn, kq) = 1} and domK = ωω. Then we have

k 6∈ ran (x)n ⇐⇒ @m. K(x)(ppn, kq,mq) 6= 0
⇐⇒ C1K(x)(pn, kq) = 1,
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and therefore
HC1K(x)(n) = µk. C1K(x)(pn, kq) = 1

= µk. k 6∈ ran (x)n,

thus HC1K ` Ĉω. �

Proposition 3.56. The function C1 is (id, lim)-computable.

Proof. Define K : ωω ωω by

K(x)(pn, kq) =
{

0, if ∃k′ ≤ k. x(pk′, nq) 6= 0
1, otherwise.

Then we have
C1(x)(n) = 0 ⇐⇒ ∃k0. x(pn, k0q) 6= 0

⇐⇒ ∀k ≥ k0. K(x)(pk, nq) = 0
⇐⇒ ∀k ≥ k0. (K(x))k(n) = 0
⇐⇒ limk (K(x))k (n) = 0
⇐⇒ lim ◦K(x) (n) = 0. �

Corollary 3.57. lim ≡c Ĉω ≡c C1.

Theorem 3.58. Let f : ωω ωω Then

f is (id, id)-Λ1,2 iff f is (id, lim)-continuous.

Proof. (⇒) Let φe be a winning strategy for II in Ge(f), and let F : ωω ωω be given
by F (x) = ιW(x ∗ φ), where φ is the following strategy for II in GW.

Strategy: At round n = pk,mq, let σ := II(n− 1) and

(σ)k := 〈σ(pk, 0q), . . . , σ(pk,m− 1q)〉,

let σ′ := ι∗((σ)k), and finally τ := ι∗(I(n) ∗ φe). If σ′ and τ are incomparable, then play
0. Otherwise if |τ | ≤ m then play p, and if |τ | > m then play τ(m).

It now remains to be shown that F is an (id, lim)-realizer of f . For any x and m,
there exists N such that

∀n ≥ N. f(x)�m ⊂ ι∗((x�n) ∗ φe).

Therefore, for any k such that pk, 0q ≥ N , we have that

(F (x))k �m = ιe(x ∗ φe)�m
= f(x)�m,

so limF (x) = f(x).
(⇐) Let F be a continuous (id, lim)-realizer of f , and let φW be a winning strategy

for II in GW(F ). Let φ be the following strategy for II in Ge(f).
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Strategy: Begin by declaring that we are following 0.
At round n when following k, let σ = ι∗(II(n− 1)) and τ := ι∗(I(n) ∗ φW).
If there exists k′ > k such that σ and (τ)k′ are incomparable, then let k′ be the

maximum such number and m be least such that σ(m) 6= (τ)k′(m), then play em and
declare we are now following k′.

Otherwise, if there does not exist k′ ≥ k such that pk′, |σ|q < |τ | then pass, else play
(τ)k′(|σ|) for maximum such k′ and declare that we are now following k′.

To see that φ is a winning strategy, let x ∈ dom f . By induction, we will prove that
for every m there exists Nm such that f(x) �m ⊆ ι∗((x � n) ∗ φ) for any n ≥ Nm, the
base case being trivial. For the induction step, note that since limF (x) = f(x), there
exists least km+1 ≥ Nm such that f(x) �m ⊆ (F (x))n for any n ≥ km+1. Therefore,
if at some round II follows n < km+1 to make her (m + 1)th valid move, then there
exists n′ > n such that (F (x))n and (F (x))n′ are incomparable, and by the induction
hypothesis this discrepancy does not happen in the first m elements of the sequences.
Hence, after playing em once, II’s next move will be made following some n′′ > n, so that
eventually at some round Nm+1 she will follow n′′′ ≥ km+1 to make her (m+ 1)th valid
move, and then never erase that number in the future. Thus, for any round n ≥ Nm+1,
we will have f(x)�(m+ 1) ⊆ ι∗((x�n) ∗ φ). �

We are now in a position to prove Theorem 3.54.

Proof. By Theorem 3.43, it is enough to prove the result for f : ωω ωω.
(⇒) Let f ∈ Λ1,2. By Theorem 3.58, f has a continuous (id, lim)-realizer, i.e.,

f = lim ◦F for some continuous F : ωω ωω. Thus, in particular, we have f ≤sc lim,
which by Proposition 3.55 implies f ≤t C1.

(⇐) By Theorem 3.42, it is enough to show that C1 ∈ Λ1,2, which follows from
Proposition 3.56 and Theorem 3.58. �

3.2.4 k-Countable choice

Definition 3.59. Given k ∈ ω, the principle of k-countable choice is the function Ck :
ωω ωω given by

Ck(x)(n) =
{

0, if ∃nk−1 ∀nk−2 . . .Qn0. x(pn, nk−1, . . . , n0q) 6= 0
1, otherwise

where the quantifiers ∃ and ∀ in the condition above are alternating — thus Q is ∃ when
k is odd and ∀ otherwise.

Proposition 3.60. For each k ∈ ω, we have that Ck is of Baire class k.

Proof. First note that

C1 ◦ Ck ◦ C0(x)(n) = 0 ⇐⇒ ∃nk. Ck ◦ C0(x)(pn, nkq) 6= 0
⇐⇒ ∃nk ∀nk−1 . . .Qn0. C0(x)(ppn, nkq, nk−1, . . . , n0q) = 0
⇐⇒ ∃nk ∀nk−1 . . .Qn0. x(ppn, nkq, nk−1, . . . , n0q) 6= 0
⇐⇒ Ck+1(x)(n) = 0.
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Therefore, since the composition of a Baire class 1 function with a Baire class k
function is of Baire class k + 1, and since C1 is of Baire class 1 by Proposition 3.52, the
result now follows by an easy induction. �

The proof of the following is outside the scope of this thesis, and is therefore omitted.

Theorem 3.61 (Brattka [3]). Let f : (X, δX) (Y, δY ). Then

f ∈ Λ1,k+1 iff f ≤t Ck.

3.2.5 Closed choice on ωω

In this section, we fix a computable enumeration s = 〈s(0), s(1), . . .〉 of ω<ωr{ε}. For
example, this can be done by s(n) := 〈m0, . . . ,m`〉, where n = p`, kq and m0, . . . ,m` ∈ ω
are the unique numbers such that pm0, . . . ,m`q = k.

We define A¬ as the represented space (Π0
1(ωω), δ¬), where the total function

δ¬(x) = ωωr
⋃
{[s(n)] : x(n) 6= 0}

is called the negative representation of Π0
1(ωω). The intuition behind the name is that

x ∈ ωω is a δ¬-name of the closed set A when it enumerates the basic open sets that
generate the complement of A.

Definition 3.62. The principle of closed choice on ωω is the function Cωω : A¬ ωω

given by
Cωω(A) = A,

with dom Cωω = Π0
1(ωω)r{∅}.

Although at first glance Cωω may look like a somewhat simple operation — that
of outputting A when given A as input — this impression is quickly ruled out when
one considers the problem of how the input and output are actually given: a closed set
A is given to Cωω by an indirect enumeration of its complement, and Cωω must then
transform this enumeration into the elements of A themselves, i.e., as represented by id.
Thus, in fact the intuition is that Cωω has high complexity, and indeed this is confirmed
in a precise way: Cωω is Weihrauch-complete for the class of Borel measurable functions.

Proposition 3.63. The function Cωω is Borel measurable.

Proof. Let F = ιT(x ∗ seq(φ)) with domain dom(Cωω ◦ δ¬) = {x ∈ ωω : δ¬(x) 6= ∅},
where φ is the following strategy for II in ĜT, i.e., in the modified version of GT where
II is allowed to make any finite number of moves at each round, which is equivalent to
GT by Theorem 2.3.

Strategy: At round n, if xn 6= 0 and s(n) ⊆ ι∗(y0
_ · · ·_yn−1), then play e0

_σ, where σ is
the lexicographically-least word of length n+ 1 that does not extend any s(i) with i ≤ n
and x(i) 6= 0.

Otherwise, play the least n ∈ ω such that ι∗(y0
_ · · ·_yn−1)_n does not extend any

s(i) with i ≤ n and x(i) 6= 0.
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Claim 1. For any x ∈ domF , we have that A := {σ ∈ ω<ω : ∃n. σ ⊂ ι∗((x � n) ∗ φ)}
contains exactly one maximal infinite chain, whose union is the lexicographically-least
element y of δ¬(x).

Indeed, let n ∈ ω and τ ∈ ωn, and note that if τ <lex y �n, then ∃k. x(k) 6= 0 and
s(k) ⊆ τ . Therefore, after round k, by the way φ is defined no word played by II can
contain τ . Hence at some point y �n will be played by II, and from that point on it will
be the prefix of every word played by II. �1

Therefore φ is legal, which implies that seq(φ) is also legal, and thus F (x) is the
lexicographically-least element of

δ¬(x) = Cωω ◦ δ¬(x) = ωωr
⋃
{[s(n)] : x(n) 6= 0}

for any x ∈ dom(Cωω ◦ δ¬), i.e., F ` Cωω . �

The proof of the following result is outside the scope of this thesis, and is therefore
omitted. We refer the reader to the original paper [4] for the details.

Theorem 3.64 (Brattka-de Brecht-Pauly [4]). Let f : (X, δX) (Y, δY ). Then

f is Borel measurable iff f ≤t Cωω .

3.2.6 New choice principles for Λ2,3 and Λ3,3

In this section, we will introduce Weihrauch-complete choice principles for Λ2,3 and Λ3,3.
This will be done by directly coding the corresponding games into partial functions from
ωω to ωω, which will result in functions which are arguably more artificial than the
choice principles we have seen so far. However, this method of coding games into choice
principles helps uncover the close connection between these two independently-developed
areas, namely the games for Baire space functions on the one hand and the theory of
Weihrauch-reducibility on the other, even more clearly than the other theorems we have
seen so far.

Let us start by defining some auxiliary coding functions.
Define skip0 : ω<ω ω<ω by recursion, putting skip0(ε) = ε, and

skip0(σ_s) =
{

skip0(σ)_s, if s 6= 0
skip0(σ), otherwise,

and extend it to skip0 : ω≤ω ω≤ω by putting

skip0(x) =
⋃
n∈ω

skip0(x�n)

for x ∈ ωω. Note that skip0(x) ∈ ω<ω exactly when x is eventually constant 0.
This function will be used for two goals: it will take the place of the passing move

p, and it will also be used to help code the contents of the tapes of a sequence of moves.
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Now define info : ωω ωω by

info(x) = (x)n

for the unique n such that skip0((x)n) ∈ ωω, with dom info exactly the set of x ∈ ωω for
which such a unique n exists.

As we saw above, 0 will be used to code lack of information, in a sense. The intuition
behind the function info is then to extract from x the unique infinite sequence which
contains an infinite amount of information.

Finally, given x ∈ ω≤ω with 0 6∈ ran x, denote by (x−1) the sequence given by
(x−1)(n) = x(n) − 1 for all n ∈ dom x — since 0 is reserved for “lack of information”,
we will need to renormalize sequences by subtracting one from each of their entries.

A complete choice principle for Λ2,3

The function C2,3 : ωω ωω is given by

C2,3(x) = lim
n∈ω

(skip0[(info(x))n]−1),

with dom C2,3 the set of x ∈ dom info such that skip0[(info(x))n] ∈ ω<ω for any n ∈ ω,
and for which the limit above exists.

In other words, C2,3(x) is obtained from x by first going to the unique (x)n that
contains an infinite amount of information, extracting that information as an infinite
sequence of finite words, and then computing the limit of this sequence.

Therefore, the following should intuitively hold.

Proposition 3.65. C2,3 ∈ Λ2,3.

Proof. Let φ be the following strategy for II in Ĝ2,3(C2,3), i.e., in the modified version
of G2,3 where II is allowed to make any finite number of moves at each round, which is
equivalent to G2,3 by Theorem 2.3.

Strategy: At round n = pm, k, `q, if xn = 0 then pass. Otherwise let

σ := (skip0((I(n))m)−1) and
τ := ι∗(tapem(II(n− 1))).

Now, if σ ⊆ τ , then pass. Otherwise, if τ ⊂ σ, then if we are on tape m play

s := 〈σ(|τ |), σ(|τ |+ 1), . . . , lastσ〉

else play tm_s. Finally, if σ ⊥ τ , then let p be least such that σ(p) 6= τ(p), and if we are
on tape m play

s′ := ep_〈σ(p), σ(p+ 1), . . . , lastσ〉,

else play tm_s′.

Claim 1. The strategy φ is winning for II in Ĝ2,3(C2,3).
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Indeed, let x ∈ dom C2,3 and note that at the end of round n of a run of Ĝ2,3(C2,3)
where I plays x and II follows φ, for each m we have

ι∗(tapem((x�n) ∗ φ)) = (skip0((x�n)m)−1).

Therefore, x ∈ dom C2,3 directly implies that φ is legal, and furthermore

theoremι̂2,3(x ∗ φ) = lim
n∈ω

ι∗(o(x ∗ φ)�n)
= lim

n∈ω
(skip0[(info(x))n]−1)

= C2,3(x). �

And, as C2,3 was defined from G2,3 in such a direct way, the following should also be
no surprise.

Theorem 3.66. Let f : (X, δX) (Y, δY ). Then

f ∈ Λ2,3 iff f ≤t C2,3.

Proof. By Theorem 3.43, it is enough to prove the result for f : ωω ωω.
(⇒) We will actually prove the stronger result that f is (id,C2,3)-continuous.
Let φ be a winning strategy for II in G2,3(f), and let F := ιW(x ∗ φW), where φW is

the following strategy for II in GW.

Strategy: At round n = pm, k, `q, let σ := ι∗(tapem(I(k) ∗ φ)) and if ` < |σ| then play
σ(`) + 1, otherwise play 0.

φW is clearly a legal strategy and, by construction, for every x ∈ ωω and m, k ∈ ω
we have

(skip0[((x ∗ φW)m)k]−1) = ι∗(tapem((x�k) ∗ φ)),

and therefore
C2,3 ◦ F (x) = C2,3 ◦ ιW(x ∗ φW)

= lim
n∈ω

(skip0[(info(x ∗ φW))n]−1)
= lim

n∈ω
ι∗(o(x ∗ φ)�n)

= ι2,3(x ∗ φ)
= f(x).

(⇐) Follows from Proposition 3.65 and Theorem 3.42. �

A complete choice principle for Λ3,3

The function C3,3 : ωω ωω is given by

C3,3(x) := (skip0(info(x))−1),

with dom C3,3 := {x ∈ ωω : ∃!n ∀m ∃k > m. (x)n(m) > 0}.
In other words, C3,3(x) is obtained from x by decoding the unique sequence encoded

by x that contains infinitely much information.
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Proposition 3.67. C3,3 ∈ Λ3,3.

Proof. Let φ be the following strategy for II in Ĝmt(C3,3), i.e., in the modified version
of Gmt where II is allowed to make any finite number of moves at each round, which is
equivalent to Gmt by Theorem 2.3.

Strategy: At round n = pm, kq, if x(n) = 0 then pass. Otherwise, if we are currently on
tape m then play x(n)− 1, else play tm_x(n)− 1.

Claim 1. The strategy φ is winning for II in Ĝmt(C3,3).
Indeed, for any x ∈ ωω and n ∈ ω, by construction we have that the moves in ω that

are made in tapen(x∗φ) follow (skip0((x)n)−1) exactly. Therefore, since for x ∈ dom C3,3

we have that exactly one (skip0((x)n)−1) is infinite, it follows that φ is legal and

C3,3(x) = ι̂mt(x ∗ φ). �

As before, since C3,3 was defined in such an analogous way to Gmt, the following holds
intuitively.

Theorem 3.68. Let f : (X, δX) (Y, δY ). Then

f ∈ Λ3,3 iff f ≤t C3,3.

Proof. By Theorem 3.43, it is enough to prove the result for f : ωω ωω.
(⇒) We will actually prove the stronger result that f is (id,C3,3)-continuous.
Let φ be a winning strategy for II in Gmt(f), and let F := ιW(x ∗ φW), where φW is

the following strategy for II in GW.

Strategy: At round n = pm, kq, let

σ := ι∗(tapem(I(n) ∗ φ))
` :=

∣∣{i < k : (II(n− 1))m(i) 6= 0}
∣∣.

If |σ| > ` then play σ(`) + 1, otherwise play 0.

Note that if x ∈ dom f , then since φ is legal, we have that tapen(x ∗ φ) contains
elements of ω infinitely often for exactly one n. Therefore, since for every m the non-
zero moves in (x ∗ φW)m are made following the moves in ω made in tapem(x ∗ φ), it
follows that φW is legal and

C3,3 ◦ F (x) = C3,3 ◦ ιW(x ∗ φW)
= ιmt(x ∗ φ)
= f(x).

(⇐) Follows from Proposition 3.67 and Theorem 3.42. �
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Chapter 4

Conclusion and future work

Let us wrap up this thesis with a brief review of the results contained herein and an
outline of some of the possible avenues for future development.

In Chapter 2, we presented the games characterizing classes of functions in Baire
space currently known in the literature. In some cases, our presentation differed from
that found in the original works, and for that reason we proved Theorems 2.13, 2.14,
and 2.15 about the general equivalence of certain types of presentations. We closed the
chapter pointing out, in an informal way, how all the currently known games can be
obtained by varying two parameters — the freedom player II has in changing tapes and
erasing past moves — as dictated by the values of m and n of the class Λm,n being
characterized, or in a particular way for the game characterizing the Borel measurable
functions.

In Chapter 3, we briefly introduced some basic concepts from computable analysis
in order to define the relation of Weihrauch-reducibility. We then presented the known
results about the completeness of certain functions, generically called choice principles,
in some classes of functions. Specifically, we stated without proof the completeness of
k-countable choice for Baire class k with k ≥ 2 and of closed choice on ωω for the
Borel measurable functions, we presented new proofs of the completeness of countable
choice for Baire class 1 and of discrete choice for the class of functions preserving ∆0

2
under preimages, and introduced new complete choice principles for the class of functions
preserving ∆0

3 under preimages and for the class Λ2,3 via a direct coding of the respective
games.

Among the directions for future research, we can highlight the following.

Uniform description of games. Develop a formal counterpart to the intuitive rela-
tion between the rules of the currently known games and the classes of functions they
characterize, as summarized at the end of Chapter 2.

New games. Develop games characterizing classes Λm,n with m or n greater than 3,
possibly by also introducing new basic moves other than passing, changing tapes, or
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erasing, where a formalization of the relation between the currently known games and
the classes they characterize could be instrumental. We also note that Louveau claimed
in [18] that he, in joint work with Semmes, has provided a general method for generalizing
Semmes’s results to some of these classes, although this is yet to be published.

Another line of investigation is to attempt the reverse path than the one we adopted
in this thesis, i.e., try to extract games from complete choice principles. This could be
useful, e.g., in order to obtain new games for the Baire class n functions with n > 3.

Partition properties. Investigate new partition characterizations of the classes Λα,β

in the style of the Jayne-Rogers theorem, which may in turn suggest new games for
them.

Composition properties. Develop a theory of composition of games that may be
brought to bear on questions concerning the composition of functions. More specifically,
for the moment let us denote Λα,β ◦Λα′,β′ := {f ◦ g : f ∈ Λα,β and g ∈ Λα′,β′}. Straight-
forward game arguments show, for example, that Λ1,2 ◦Λ2,2 = Λ1,2 and Λ1,3 ◦Λ2,2 = Λ1,3

— since finitely many backtracking moves can be legally simulated by erasers in each
case — but as far as we can tell not much else is known at this point. Relevant open
questions in which games may be an important tool include, e.g., whether either one of
Λ2,2 ◦Λ1,3 and Λ3,3 ◦Λ1,2 equals Λ2,3.

Connections between games and choice principles. Investigate the plausibility
of a general method for obtaining a complete choice principle for a class of functions
from a game characterizing that class, generalizing our results from Section 3.2.6.
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